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ABSTRACT

The Impact of Programming Language’s Type on Probabilistic Machine
Learning Models

by Sherif Elsaid

Software development is an expensive and difficult process. Mistakes can be

easily made, and without extensive review process, those mistakes can make it to the

production code and may have unintended disastrous consequences.

This is why various automated code review services have arisen in the recent

years. From AWS’s CodeGuro and Microsoft’s Code Analysis to more integrated

code assistants, like IntelliCode and auto completion tools. All of which are designed

to help and assist the developers with their work and help catch overlooked bugs.

Thanks to recent advances in machine learning, these services have grown tremen-

dously in sophistication to a point where they can catch bugs that often go unnoticed

even with traditional code reviews.

This project investigates the use of code2vec [1], which is a probabilistic machine

learning model on source code, in correctly labeling methods from different program-

ming language families. We extend this model to work with more languages, train

the created models, and compare the performance of static and dynamic languages.

As a by-product we create new datasets from the top stared open source GitHub

projects in various languages. Different approaches for static and dynamic languages

are applied, as well as some improvement techniques, like transfer learning. Finally,

different parsers were used to see their effect on the model’s performance.
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CHAPTER 1

Introduction

Due to their nature, graph structures tend to hold more information, and can

provide extra contextual meaning about the data they represent. Moreover, computer

programs are the perfect medium to be represented as graphs, since all applications

in all languages can be represented as abstract syntax trees (AST).

This allows a program being represented as a graph to hold both syntactical and

in some languages also semantic meaning. This rich data structure is perfect as an

application for machine learning (ML). Consequently, by applying machine learning

techniques, usually borrowed from the Natural Language Processing (NLP) area, on

the source code, we can unlock new areas of research and explore novel possibilities

that were unavailable before.

1.1 Terminology

Throughout this work, the following acronyms are used.

• ML: Machine Learning

• AI: Artificial Intelligence

• SAAS: Software As a Service

• IDE: Integrated Development Environment

• SMT: Statistical Machine Translation

• GNN: Graph Neural Networks
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• GGNN: Gated Graph Neural Networks

• AST: Abstract Syntax Tree

• LSTM: Long Short Term Memory

• RNN: Recurrent Neural Network

• NLP: Natural Language Processing

1.2 Big Code

Big Code is a new term that refers to the large amount of source code available

on source control repositories, like GitHub and BitBucket. Both private code bases

within the confinement of a company and open source code that is accessible by

anyone offer billions of lines of code. Code that could be used by data scientists and

ML experts to gain insights into the inner workings of a particular codebase, help

in the development process, catch potential errors and improve the overall quality of

these projects. The abundance of these patterns of code allow researchers to combine

machine learning, programming languages, and software engineering to open up new

areas of research that were not feasible before.

For decades, research in software engineering has been dominated by formal, or

logico-deductive approaches, and these approaches are characterised by its rigorous

mathematical terms. Algorithms and various techniques were developed to provide

tools for program verification, bug detection, and refactoring [3].

But thanks to the emergence of Big Code, a new domain of research named

MLonCode (short for Machine Learing on Source Code) have been created that aim

to take advantage of the already existing codebases that were written by industry
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professionals. Most of that have already undergone an extensive review process to

ensure high quality and reliability. This new “Data driven” approach to developing

software tools greatly reduces the cost of developing quality software and reduces the

time for testing it.

1.3 Motivation

Machine learning has seen a resurgence in popularity and usage in the past

decade after a long period of inactivity or what researchers called the “ Artificial

Intelligence (AI) Winter”, But thanks to breakthroughs in graphics processing unit

(GPU) architectures and the resurgence of deep learning (DL) techniques. Both

academia and industry have once again turned their attention to artificial intelligence

and machine learning as a novel and efficient method to solve a variety of problems

across multiple domains.

From healthcare, medicine and pharmaceutical, to production lines, security, and

online shopping and streaming services, ML models have become an integral part of

everyone’s daily lives.

As such it comes as no surprise that the software engineering (SE) industry and

computer science (CS) academics have started to research ways to use ML to solve

some of their problems as well. This is mainly done by producing ML and DL models

that work on the source code itself. Therefore, they manage to provide solutions to

a plethora of issues and problems that normally could only be fixed using manual

reviewing from experienced developers.

Representative problems are detecting software bugs [4] (both syntactical and

logical ones), code duplication and code similarity, malware detection, methods and

variables naming, API discovery and retrieval, code summarization and even code
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generation. All of these problems are now solved as applications thanks to the ad-

vances in ML techniques and the innovative ways they are applied to source code.

Although, ML on source code is relatively speaking a new field of study, the

current applications and produced results are nothing short of staggering. Thankfully,

it opens the doors to a whole new way for both experienced and novice software

engineers to interact with code and their programs.

1.4 Main Challenges

There are many common software challenges that would benefit greatly from

ML on source code, and probabilistic machine learning models. The first challenge is

method naming [5], which is often considered one of the hardest tasks in computer

science, along with cache invalidation.

The second is duplicate code detection, which have applications from detecting

plagiarism in academic settings [6], to reducing code smells in code repositories, like

GitHub and BitBucket [7]. The third application is detecting dangerous source code,

both malicious malware [8], and benign software vulnerabilities [9].

The final challenge is detecting logical bugs that often go unnoticed during static

analysis, and would cause run-time crashes and major issues unless caught by the

developer. The most widely occurring logical errors are out-of-bound array access [4],

wrong return value, and incorrect assertions (often due to hasty coding or copy and

paste mistakes) [10].
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1.5 Overview

This project starts by covering the basics on ML on source code, and the recent

state of the art on the subject. Then the focus is shifted to examples of using DL

models on source code.

In particular we focus on the performance of code2vec, which is one of the most

recent and advanced state of the art probabilistic machine learning models, for source

code prediction in various languages.

The research studies how the choice of programming language and its type can

affect both the performance of the model as well as the performance of its applications

(such as method naming).

1.6 Historical Background

Static code analysis tools have existed for a very long time, and they are a

staple development tool for all software engineers, since they help developers to code

faster, cleaner, and with fewer bugs. Almost every major Integrated development

environment (IDE) will have either a built-in or a plugin code analysis tool.

However, the majority of these tools run static analysis of the code base, meaning

that they cannot detect the type of errors that are logical in nature. Some examples

are incorrect method naming, off-by-one errors, copy and paste mistakes, duplicate

code, incorrect assertions, and various other types of code smells that traditionally

require a human eye to be detected and corrected.

Furthermore, and not surprisingly, code analysis tools tend to perform better

for statically and strong typed languages. While all complied languages can benefit

from code analysis before execution, it is a fact that dynamic languages need code
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analysis even more, since bugs in them can easily go unnoticed and make its way to

production code, causing issues that require spending extra time and resources to get

it fixed.

All the previously mentioned problems -both for dynamic and static languages-

and many other challenges such as code summarization [11], code generation [12],

[13], API discovery and retrieval [14] become tractable by applying ML techniques

directly on source code.

1.7 Current Research Areas

Machine Learning on source code or more formally probabilistic models of code

work by drawing statistical conclusions gained from analyzing or ‘Learning’ from

millions of lines of code that share similar patterns.

As with natural languages, programming languages are also a method of com-

munication. In this case between the developer and the machine. Thus, they have

strict rules, grammar, but compared to natural languages, they have a much smaller

set of vocabulary that could be structured in a finite number of ways.

Probabilistic code models could be divided into two main areas: generation and

representation. Code generation models are often used to auto generate simple se-

quences of code, while code representation models are used to name methods, predict

types, or detect bugs.

The N-gram model is one example of a sequence based code generation model

that is popular for its simplicity. Although DL architectures, like Recurrent Neural

Networks (RNN), and Long short-term memory (LSTMs) have started to replace

N-gram models in the same task due to their superior performance [3].
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On the other hand, Semantic Models that view source code as a graph, which

lends itself well to source code representation, since all programs can be viewed as

graphs through their ASTs. These models however are not as good at generating code

snippets compared to their sequence based model counterparts.

Code Representation is where semantic models often shine, they work by assign-

ing a conditional probability distribution of a code property (like a type or name),

and they can be broadly classified into two main types.

The first type is structured prediction, which is a generalization of standard clas-

sification problems to multiple output variables. This can be used to build dependency

networks among variables within the code snippet [15].

The second type is Distributed representation of code (the main focus of this

work), which is a technique that is often used in the NLP domain. There is ongoing

research on learning the distributed representation of code for different usages, such as

predicting names for methods and variables, code summarization, and bug detection.

Allamanis et al. [16] used code vectors to detect logical errors in code that often

go undetected by traditional static analyzers. And more advanced models such as

code2vec [1] take these tasks even further and could be used to detect code similarity,

predict names, detect malware and code bugs.

It is worth noting that both structured prediction and distributed representation

are not mutually exclusive, but can be and often are used together in developing

representational code models.

1.8 Research Questions

This research project aims to answer the following research questions:
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• How does the code2vec model perform on different programming languages, in

particular dynamic vs static ones.

• Does the choice of the parser used to build the ASTs and extract the context

paths affect the performance of the model itself?

• How much can the usage of transfer learning on a well performing model from

static languages help improve the performance of other much harder to train

dynamic languages.

1.9 Contributions

The main contributions of this project can be summarized as follows:

• Collating and preparing multiple comprehensive datasets from the top 1000

open source projects on GitHub. For the purpose of experimentation on source

code in different languages (C#, Python, JavaScript, and C)

• Evaluating the performance of the code2vec model on weak and strong typed

dynamic languages and comparing the results with the baseline of static strong

typed languages; by utilizing the ASTminer tool to extend code2vec to work on

Python and JavaScript.

• Studying the effect of transfer learning techniques on the code2vec model when

applied on static and dynamic languages.

• Studying the effect of using different parsers for feature extraction on the per-

formance of code2vec.

8



1.10 Chapters Overview

We present a study on the performance of code2vec model on different program-

ming languages, and different sized datasets. Along with discussing some possible

applications that benefit from probabilistic machine learning models, like code2vec.

Chapter 2 covers some of the related research in the topic, how it pertains to

different languages and possible practical applications for it. Chapter 3 goes into

great detail explaining the necessary technical background required for this research.

It explains what an AST is, how source code gets parsed to extract its features. And

finally how the code2vec model works and a brief overview of its architecture.

In Chapter 4, the datasets used for this research is presented and all the necessary

clean up steps are shown. Chapters 5 and 6 pertain to the actual experimental design,

the hyperparameters used, the results produced, and the implications of the results.

Finally, Chapter 7 covers the conclusion for this paper and an evaluation of the

produced results, along with the future work that was not completed in this research.
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CHAPTER 2

Related Work

2.1 Statically and Dynamically typed Languages

Most programming languages can be divided into two main categories depending

on their data type system, languages could be either statically typed like Java or

C# or dynamically typed, and among the dynamic typed languages, they could be

strongly typed such as Python or weak typed such as JavaScript. Languages such

as C and Objective C are considered statically weak typed languages but are not

considered in this research.

Note that there are some languages such as Lambda calculus which are not typed

at all, but they are not the focus of this study.

Static typing means that the types are checked at compile time before the pro-

gram’s execution while dynamic typing means that the types are interpreted at run-

time during the execution of the program. Strongly typed languages do not allow

type coercion (i.e, changing a variable type from one kind to another) while weakly

typed languages like JavaScript allows it. Thus a variable could hold a value of a

literal “1” string at some point then be changed to a numerical “1” value later on.

Such conversion will throw a type error in strong languages such as Java or Python.

Even though statically typed languages are always more verbose than their dy-

namic counterparts. This extra information provides many benefits, run time type

errors are prevented in static languages, and the compiler for static languages utilizes

the type information to provide extra optimization under the hood for faster execu-

tion. And while languages like JavaScript or Python are more flexible due to their
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typing system. And allow the developers to write “less code”. This lack of extra infor-

mation often limits the capabilities of static code analyzers and IDE code complete

features.

And this disparity extends itself as well when performing machine learning op-

erations on source code. For languages like Java or C#, the type information and

the more verbose syntax provides extra data for the machine learning models to learn

from. Since the parsed syntax trees simply have more information due to the richer

syntax, not to mention that even for equivalent projects, static languages tend to be

much larger in size than their dynamic counterparts, which limits the size of potential

datasets that are collected from dynamic languages.

Furthermore, in a study by Baishakhi et al. on the effect of programming lan-

guages on the code quality and number of reported bugs of the top open source

projects on GitHub. They found a small but significant result which implies that

static typing is better than dynamic typing, and strong typing is better than weak

typing [17]. Interestingly the same study found that functional languages had higher

quality and lower number of reported bugfixes than procedural languages, but func-

tional languages are not part of this study.

All of the previous points leads to the obvious conclusion, that the majority of

the research on probabilistic machine learning models on source code is often carried

on on statically typed languages such as Java, C++ or C#. As such this research

aims to study the differences in performance and applications when applying the

current state of art probabilistic model for machine learning on source code in static

and dynamic languages. And explores various methods to improve the performance

of ML models of dynamically typed languages to be on par with their statically typed

counterparts.
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2.2 Deep Learning on Source Code

In the paper code2vec: Learning Distributed representations of code by Alon et

al. [1]. The main idea of their research is to “to represent a code snippet as a single

fixed-length code vector, which can be later used to predict semantic properties of

the snippet” in the same way other NLP techniques like word2vec [18] works, i.e to

provide semantic labels for code snippets like methods. This was used to predict

method names using the contents of the method’s body where a good descriptive

name gives the developer an insight to what the method can do. The model was

trained on a dataset containing more than 14 million methods and consisting of code

snippets like methods and their corresponding labels, i.e the method name.

The authors leveraged the structured, and syntactical nature along with the

logical code flow of programming languages to produce better vector embeddings

from the paths in a program’s AST for better code representation. (similar to word

embedding in NLP applications). To achieve this goal they utilized a neural attention

network architecture using soft attention that gives different weights to the different

possible code paths (syntactic paths) in each code snippet. Some important Design

decisions were made that differentiated code2vec from other similar probabilistic ML

models.

• Model considers syntactical only context, making it language agnostic

• Each method or code snippet will have its own unordered bag of path-contexts

• The model utilizes a simple architecture that uses a large corpus of data
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Another major paper in the realm of representational distributed code is learning

to represent programs with graphs by Allamanis et al [16] . This one takes a different

approach to the same problem, instead of depending entirely on syntactical analysis

with no regards to the programming language semantics. The authors used a gated

graph neural network to represent both the syntactic and semantic structure of the

code.

The authors focused their applications on the tasks of variable naming and vari-

able misuse. The main contribution of their research was the incorporation of data

flow and type hierarchies information in the analysis phase of the source code. This

was done by “encoding the programs or code snippets as graphs in which edges rep-

resent syntactic relationships (e.g. “token before/after”) as well as semantic rela-

tionships (e.g. “variable last used/written here”, “formal parameter for argument is

called stream”, etc.)”. This design decision however traded the language neutrality

for performance since the model requires a compilable static language for its input.

The paper Summarizing Source Code using a Neural Attention Model by Iyer

et al [19] is another example of using NLP techniques on source code to automate a

task that most developers have to do manually. The authors used LSTM (Long Short

Term Memory) networks with attention to produce a model (called CODE-NN) that

can produce complete sentences to describe C# code snippets and SQL queries. Their

dataset was scrapped and collected from Stack Overflow. They tested their model

on two main areas, code summarization and code retrieval. The model managed to

outperform the previous state of the art on both tasks.
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2.3 MLonCode Applications

Big Code ML models or probabilistic code models are not just for theoretical

researchers, they are actively being used in both academia and industry for many ap-

plications. Code auto-completion, code recommendation, and automatic code review

systems have already been utilized within the software engineering industry and are

available for usage as a SAAS service by all of the major cloud providers. Almost

all major IDEs nowadays have some form of machine learning assisted code comple-

tion (such as Visual Studio’s Intellisense), and some even offer suggestions for coding

conventions (such as PyCharm’s Python pip 8 suggestions).

Bug detection is another major application of probabilistic code models, Run-

time errors like off-by-one and Null-Reference exceptions and other code defects are

impossible to detect by static analyzers and can often go unnoticed during the code

review development phase till they reach production.

Therefore, it comes as no surprise that statistical machine translation (SMT)

models have began to replace rule based models in code translations tasks such as

transcoding an application in one language like Java to a different one like C#, thus

saving the developer teams hundreds of hours of work. While other models can even

go beyond detecting bugs and can do code cleanup for not so obvious errors like copy

and paste mistakes and incorrect API usages as shown by the work of Allamanis et al.

who managed to achieve a 58.6% accuracy in the ask of smart paste where a specific

snippet of code is intelligently adapted to the surrounding existing source code [20].

Other models use an auto-encoder architecture to detect code similarity and

duplication like in the work by White et al. [21] while others like Iyer et al. [19]

utilized the neural attention architecture to summarize code and to auto generate
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documentation.

The opposite direction is also possible with some models like the seq2sql model

which able to generate valid SQL statements from natural language sentences [22].

The list of possible applications goes on and on, from API discovery and Retrieval to

malware detection and even program synthesis [3].

2.4 code2vec Applications

Code2vec as a probabilistic model have plenty of applications, and although the

authors Alon et el in their paper only explored the task of method naming, they

mentioned that the model could be used for many more tasks, in the paper “Learning

Off-By-One Mistakes: An Empirical Study” by Hendrig et el [23]. The authors used

the code2vec model to detect runtime bugs that can not be detected by static analysis

tools in Java projects, in particular they explored the infamous off-by-one mistake

that developers often make by forgetting to set the correct boundary for an iterator

(i.e. using ‘<’ or ‘>’ instead of ‘<=’ or ‘>=’ or vice versa) thus going over the array

or list limit and potentially causing a runtime exception.

By selecting methods that are candidate for the off-by-one errors (containing

for loops), the authors introduced errors in those methods by mutating the body

of the method and adding or removing the ‘=’ operator, all mutated methods was

labeled defective while the original methods was labeled non-defective. By doing that

they effectively changed the predictor on code2vec’s original model to be a binary

classifier instead of giving a probability distribution to potential method names, thus

they were able to predict whether a method contained an off-by-one error or not.

They managed to achieve a precision of 80% and a recall of 77% on the Java large

dataset (roughly the top 10000 open source projects from GitHub provided by Alon
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et al in their original research) , but suffered a performance drop (43% precision and

23% recall) on real world code bases.

Another popular task that code2vec model is suitable for is detecting code simi-

larity or clone detection, this could be achieved based on the program’s functionality

or the program’s source code content. In the paper titled ‘Code Clone Detection

using Code2Vec’ by Anupriya Prasad [24], the author utilized the code2vec model

for the purpose of detecting functionally similar methods in Java source code. The

dataset used is the top starred Java projects from GitHub as prepared by [1]. The

results were evaluated using the precision and recall metrics by utilizing the ’Measure

Precision’, ’BigCloneBench’ [25], and ’InspectorClone’ [26] open source tools.

Code2vec was also the basis of the research by Compton et al. who investigated

the effect of obfuscating the variable names from the extracted methods during the

training phase of the code2vec model [8]. By removing the model’s reliance on variable

names for prediction and thus forcing it to focus solely on the code structure and

patterns. They tested the new model on Java source code on a variety of tasks from

method naming (where the obfuscating model saw a performance degradation) to

duplicate code detection and malware classification.
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CHAPTER 3

Technical Background

3.1 Abstract Syntax Trees (AST)

An Abstract Syntax Tree or AST is a tree structure representation of a program’s

code, more specifically the syntactic structure of the code. Thus an AST does not

hold any semantic meaning regarding the source code but conveys its structure. ASTs

do not include some information such as formatting and whitespaces. A node in the

AST represents a syntactic unit of the program’s source code such as a variable, an

operator or an operation. The children of the node represent the lower-level units

associated with this current node.

Mathematically an abstract syntax tree can be defined as

"An Abstract Syntax Tree (AST) for a snippet of source code can be defined as a

tuple in the form of <N, T, X, s, 𝛿, 𝜑>" [1], where:

• N and T are the sets of non-terminal and terminal nodes in the tree respectively

• X is the set of values

• s ∈ N is the root node of the tree

• 𝛿 : N → (N ∪ T ) is a function mapping a non-terminal node to a list that

contains all of its children

• 𝜑 : T → X is a function mapping a terminal node (i.e. leaf node) to some

associated value
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An example of a generated AST for a simple squaring function can be shown in

Figure 1 [2]:

Figure 1: AST example from PathMiner [2]

3.1.1 AST Path

An AST path ’p’ is a sequence of connected vertices or nodes in the syntax tree,

representing a path from one vertex (often a leaf) to another leaf. Leafs in an AST

represent a code token like a type or a variable name. Thus an AST path is a way to

represent a logical flow or operation within the constructed code snippet. Officially a

path is denoted by a sequence of its start and end nodes and the traversal direction

between them.

This was mathematically defined by Alon el al. [1] as
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"An AST-path of some length k is a sequence of the form 𝑛1𝑑1 . . . 𝑛𝑘𝑑𝑘𝑛𝑘+1", where:

• 𝑛1 and 𝑛𝑘+1 ∈ 𝑇 are the starting and ending terminal nodes in ’p’ denoted as

start(p) and end(p) respectively

• 𝑛𝑖 ∈ 𝑁 are non-terminal nodes, for 𝑖 ∈ [2 . . . 𝑘]

• 𝑑𝑖 ∈ ↑, ↓, for 𝑖 ∈ [1 . . . 𝑘] are movement directions, traversing the AST in an

upward or downward direction to create the path between the two terminal

nodes.

Therefore, if 𝑑𝑖 =↑, then 𝑛𝑖 ∈ 𝛿(𝑛𝑖+1), and if 𝑑𝑖 =↓, then 𝑛𝑖+1 ∈ 𝛿(𝑛𝑖). Using an

example from Figure 1, the AST path highlighted in red in that tree is (SN ↑ MD ↓

B ↓ RS ↓ IE ↓ SN) [2].

3.1.2 Path Context

Having defined an AST, and an AST-path, a path-context can now be defined

as a triplet 〈xs , p, xt〉 that consists of the value associated with start vertex (a leaf

node), the value associated with the end vertex (another leaf node), and the path

between the two of them, where:

• 𝑥𝑠 = 𝜑(𝑠𝑡𝑎𝑟𝑡(𝑝))

• 𝑥𝑡 = 𝜑(𝑒𝑛𝑑(𝑝))

So, again by using the highlighted red line example in Figure 1, the path-context

shown in red can be denoted as (square, SN ↑ MD ↓ B ↓ RS ↓ IE ↓ SN, x) [2].
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From the simple example in Figure 1, It’s clear that a single simple function

will have more than one path-context, and that can increase exponentially with the

increased complexity of the source code. It’s also clear that not all path-contexts are

important or contribute the same weight.

So to get a fair representation of what the function or code snippet does, we need a

collection of the most important path-context extracted from each code snippet. And

since different programming languages have different syntaxes and grammar rules.

Creating an AST and extracting path-contexts for different languages is a difficult

and often repetitive task. Thus the need for an external tool that encapsulates this

complexity.

3.2 PathMiner A Library for Mining of Path-Based Representations of
Code

Building the dataset for code2vec or similar representational ML models involves

transforming the source code files into a format digestible by the machine learning

algorithm. This format which often take the form of a Json or csv file(s) includes the

important parts of the code snippets that we want the model to focus on, and their

associated labels.

In the case of code2vec, each code snippet is transformed into a collection of

path contexts extracted from the program’s AST. In the current research, there are

two main methods to build the dataset from the original source code files. Either by

using or extending the custom mining/Extractor library provided by the authors of

code2vec, or by using the external library ‘PathMiner’ and its provided tools to add

extra languages.

PathMiner (sometime referred to as ASTminer based on the implementation of
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the paper with the same name [2]) is a novel approach to represent programs (source

code) in a format suitable for machine learning algorithms by extracting the path-

based representation -path-contexts- from code.

It was developed by Kovalenko et al from the JetBrains Research group to fa-

cilitate the experimentation on source code by machine learning researchers by sepa-

rating the often difficult and technically challenging part of building the graph based

dataset into a separate tool, making it easier for non-developers and newcomers to

this research area to focus their time and effort on designing the algorithms used to

process code for machine learning models.

The library currently supports the extractions of Path-based representations of

files/methods, as well as their Raw ASTs. This approach utilizes the program’s AST

to represent the code snippet as a collection of paths derived from its syntax tree. This

representation captures the structure of the code along with its semantic meaning.

It is a two step process involving parsing the code into its AST representation,

then extracting the relevant paths from its syntax tree. This process is technically

challenging and often gets in the way of machine learning researchers who rather focus

on developing the ML model rather than the technical details of building the dataset.

3.2.1 Astminer Tool

The Astminer tool is a fast and flexible open source library for mining path-based

representations of code based on the pathminer paper. Path-based representation of

code is one of latest ways to represent source code in a way suitable for ML algorithms

to operate on, Other methods such “vector of tokens” and “traversal sequence of the

syntax tree” have been used by researchers before, but do not offer the same flexibility

and wide use of applications.
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Currently Astminer supports mining of code in Java, Python, and JavaScript,

and is designed to be easily extensible to support other programming languages.

This is achieved by providing a convenient extension point for parsers generated by

ANTLR.

ANTLR an acronym for "Another Tool for Language Recognition" is a powerful

parser generator that uses LL(*) for reading, processing, executing, or translating

structured text or binary file [27]. Antlr takes as input a context-free grammar file

for a specific language, and it can then generate a parser and lexer for that language

that can build and traverse the language’s AST. It is currently at version 4.

The integration of ANTLR within the Astminer tool provides easy extending

capabilities for additional languages within the same mining framework. An overview

of PathMiner extraction workflow and its main components can be shown in Figure 2:

At its core, Astminer/pathminer has two main stages, A parsing step to build

an AST for a particular language -either using ANTLR or using other parsers-. And

an Extraction step to extract the path from the generated AST based on predefined

filters such as the width and length of the paths between the leaves and then storing

the paths in a configurable format after encoding it numerically for memory efficiency

purposes. Finally PathMiner is implemented in Kotlyn but have Python wrappers

for easier integration with other machine learning workflows.
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Figure 2: PathMiner Architecture Paper [2]
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3.3 Code2Vec

Code2Vec is a deep learning model created by Alon et al. based on the bag

of paths method in order to generate continuous distributed vectors (also known as

code embeddings) from source code files. The model itself is language agnostic but

the authors currently implemented the feature extraction and preprocessing for Java

and C# languages and only tested the model on Java datasets.

In the original paper [1], Alon et al. experimented with the task of predicting

method names, but since the code embeddings are saved during the extraction process,

the model could be extended to perform other tasks such detecting code similarity,

doing binary classification, and other similar tasks. This can be achieved by modifying

the extractor to spit out different labels rather than the method name.

An example of code2vec usage on the task of method name prediction can be

seen in Figure 3.

Figure 3: A code snippet and its predicted labels as computed by our model as
demonstrated in [1].

3.3.1 Code Embeddings

The main idea behind code embeddings is that by mapping code snippets to a

distributed collection of vector representations, similar code snippets (semantically

speaking) will have similar code vectors.

The authors presented a neural network model that can learn those code embed-
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ding and assigns weights to them, thus making a corresponding relation between a

method’s (or any code snippet) label and it’s most significant distributed vectors.

Code2Vec leverages the structured nature of source code to reduce the learning

effort, as opposed to other vector representation models in traditional natural lan-

guage processing tasks that have to re-learn the entire vocabulary of the language.

But thanks to formal languages strict syntax, code2vec can learn to generate the

distributed vectors from the code’s AST directly. It uses the syntax paths (code em-

beddings) derived from the code’s AST to capture the most common code patterns.

This helps lower the training effort since the model does not need to learn unnec-

essary information within the entire’ s code text, while still being general enough that

it is not tightly coupled to a single problem domain (i.e. only predicting a method

name and nothing else).

By representing each code snippet (such as a method) as a collection or a bag of

paths extracted from its body, and assigning a weight to each path in that bag using

a soft attention mechanism architecture[28], the neural network can then aggregates

the top weighted paths (i.e. most important paths in the code snippet) into a single

weighted average vector along with its associated label.

This ensure that the resulting aggregated vector contains all of the relevant

information about the code without being a strict representation of it. Thus allowing

the model to predict labels for methods that share similar code vectors (i.e. the same

relevant information) even if they are not strictly similar.
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3.3.2 Context Path Example

An example of how code2vec works on a sample method can be seen in Figure 4

which shows a simple java method that checks for the existence of an element within

an a given list. The highlighted paths are the most imports logical flows or patterns

in this method.

Figure 4: Sample method [1]

Figure 5 shows the AST representation of the method in Figure 4. The code2vec

attention neural network assigns weights to the selected context paths within the tree.

Where the widest highlighted path corresponds to the most important logical flow

within that method, and is given the largest weight.

Finally, Figure 6 shows the final top predicted labels for the method, and the

accuracy score for each label. Here the model correctly assigned the ’contains’ label

to the method’s name.
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Figure 5: Top 4 paths in the method below where the width of each colored path is
proportional to the attention it was given (red 1 : 0.23, blue 2 : 0.14, green 3 : 0.09,
orange 4 : 0.07) [1].

Figure 6: Top predicted results [1].
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3.3.3 Code2vec Architecture

The code2vec model has a simple but novel architecture, utilizing an attention

neural network and fully connected layer that learns to combine the path context

vectors and assigns different weight to each of them.

The aggregated vector is calculated by weighting each code vector by a factor of

its dot product with another global attention vector. Both of the individual vectors

and the aggregated vector are trained and learned at the same time using back-

propagation.

The final aggregated code vector is what is used to for label prediction. The

architecture of the path attention network can be seen in Figure 7:

Figure 7: The path attention network architecture [1]
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CHAPTER 4

Datasets

4.1 Datasets Size

For the purpose of this research, 4 different datasets with different sizes from 4

languages were collected and prepared (C, C#, Python, and JavaScript). Although

eventually only 2 of them were utilized in this research with other two being available

for future research.

Java was chosen as a static strongly typed language and acts as the baseline for

the rest of the comparisons since the original code2vec experiments by Alon et al.

were performed on Java. For Dynamic languages, Python was picked as a strong

typed dynamic language while JavaScript was picked as an example for weakly typed

dynamic languages.

For the Java and Python experiments, a medium and large sized datasets was

used. It consisted from the top 1000 and 10000 open source projects on GitHub respec-

tively. While for JavaScript, a similar medium sized dataset was curated but eventu-

ally a smaller sized dataset consisting of the top 100 rated projects was used. Hyper-

parameter tuning was done using a small Python dataset of around 100 projects.

Note that Alon et al. [1] prepared 3 Java datasets for the purpose of their

research. A large dataset containing top starred 9500 Java projects from GitHub

(with a 9000/200/300 split for train/val/test). A medium dataset consisting of the top

starred 1000 Java projects on GitHub (with a 800/100/100 split for train/val/test).

And Finally a smaller dataset of only 11 Java projects.

All the datasets for this research was collected and built from the top starred
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open source projects on GitHub. The working assumption is that the top rated and

starred projects on GitHub are of high enough quality to ensure best practices, good

naming conventions for methods and variables and a high software quality, since they

are active and continuously maintained.

As such a Python script was created to pull and clone the top 1000 starred

projects for Python and JavaScript. The Java dataset was provided by Alon et al.

[1] also from the top rated open source projects on GitHub. Due to the difference

in languages used, the top projects from each language usually vary greatly in size

and and oftentimes quality. However by selecting a relatively speaking large sample

size, all of these individual differences should even out and provide a common starting

point for the training of the subsequent models.

4.2 Data Preprocessing

Considerable preprocessing steps was needed to be done before the source code

files could be used or fed into the ASTminer extractor. Since when dealing with huge

amounts of unfiltered source code, Data cleaning and preprocessing becomes a vital

step for producing good results. Therefore, another Python script was created that

handled the cleaning up process, to perform the following tasks:

• The first step in cleaning up was to remove all the .git associations and any

unrelated files as well as any files that do not have the explicit extension for

the target languages such as Json files, XMLs, projects builds, etc, in order to

keep only the source code (i.e. ‘.js’ for JavaScript, ‘.Java’ for Java, and ‘.py’ for

Python)

• All projects files were flattened into one level, such that for every project, all
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of its files will reside in the same directory. This was achieved by a script that

moved all of the files nested inside the project’s directory hierarchy to the top.

By doing this, the extractor would have an easier and faster time in processing

the source code files, and prevent possible memory issues during the processing

of very long files paths.

• To prevent names clashes that could arise from the previous step, For dynamic

languages such as Python and JavaScript, all source code files were renamed

to a randomly generated UUID. UUID or Uiversal Unique Identifier is a 128

bit random object that gets displayed as a 36 character alphanumeric string

that guarantees uniqueness. This is done to preserve as much as possible of the

original source code files since for these languages a large size of the business

logic could reside inside the main entry point file (Ex: ‘main.js’ for JS and

‘main.py’ for Python), and since the objective is collect Paths information (code

embedding) from as many methods as possible, files with duplicate names could

collide within the same project

• For static languages, this is not an issue since the entry point files that could

clash (‘program.cs’ for C and ‘main.java’ for java) often does not include im-

portant methods of its own nor should they have any business logic that should

be mined. Thus any duplicate files were simply removed.

• For JavaScript, any file larger than 1 MB was removed from the dataset, this is

to prevent heap memory issues during the extraction process, since very large

files (often the case with JS minimized files) would cause the extractor to run

out of memory.

This cleaning-up process is essential to trim down the size of the cloned repos
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and only keep the relevant source code files. It also greatly reduces the size of the final

dataset by around 97.5%. More often entire projects are trimmed and removed from

the final trimmed dataset. For example, in the Python large dataset, the original

cloned projects of around 7300 repositories contained 1268519 different files with a

size of 186.7 GB. But after the cleanup process, the resulting files are only 433438 with

a final size of around 3.6 GB and with more than 40 projects completely removed.

4.3 Dataset Split

All medium and small sized datasets were divided into train, validation and test

sets with a split of roughly 80%, 15% and 5% respectively, while the large datasets

had a split of roughly 90%, 5%, 5% for the train, val, and test sets.

An overview of the datasets and their split that was used in this research after

the preprocessing phase was completed can be seen in Table 1

Table 1: Source Code Datasets

Java Python JavaScript
Small Dataset Size 506.7 MB 118.7 MB 643.3 MB

No of Projects 11 24 N/A
No of Files 96552 22016 10204

Source Code2Vec GitHub GitHub
Medium Dataset Size 2.5 GB 1.5 GB 1 GB

No of Projects 995 902 330
No of Files 466667 194903 127331

Source Code2Vec GitHub GitHub
Large Dataset Size 12.2 GB 2.7 GB 2.8 GB

No of Projects 9556 7188 814
No of Files 3186464 366016 308067

Source Code2Vec GitHub & SRILAB N/A
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4.4 JavaScript Dataset

Both Java and Python experiments were performed on similar sized datasets with

respect to the number of projects (considered to be medium sized datasets for this

sort of experiments). However due to issues with with extracting the context-paths

from JavaScript files causing memory issues, additional preprocessing was needed to

successfully generate the JavaScript input data to eliminate larger sized files. Thus

the fnal size of the JavaScript dataset is only one third the size of original prepared

datset.
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CHAPTER 5

Experiments

5.1 Requirements

AstMiner is implemented in Java and Kotlin and has the following requirements:

• The Java 8 JDK

• Gradle for handling build dependencies

• Optionally Docker for handling parser dependencies

Code2vec is implemented in Python and has two model implementations, the

default implementation in pure TensorFlow which is used for all experiments in this

research, and a more limited TensorFlow Keras implementation. Either of them have

the following requirements:

• The Java JDK for using the provided Java Extractor for building Java datasets

• DotNet Core for using the provided C# Extractor for building C# datasets

• Python 3

• TensorFlow 2.0.0

• CUDA 10.0 for GPU support

• Optionally Docker for handling parser dependencies
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5.2 Hardware

All Dataset cleanup, and feature extraction was completed on an Azure NC6

Standard instance, with the following specifications:

• Ubuntu 18 OS

• 6 vCPUs

• 56 GB Memory Ram

• 1x K80 GPU

All the model training was completed on SJSU’s CoS HPC cluster nodes with

following specifications:

• Centos 7.9.2009 OS

• Xeon E5-2680 v4 2.4GHz (broadwell) (14 core/CPU)

• NVIDIA Tesla K40

5.3 Workflow Pipeline

The workflow for training a model consists of parsing the ASTs from the source

code files for a specific language and extracting all the context paths along with their

associated labels. This step is handled by the Astminer library. After which the

generated pathcontexts.c2s files undergo an extra preprocessing step by the code2vec

preprocessing script to shuffle the training data, and pad the context paths to be the

same length.

After the specified number of context paths to keep for each method along with

the desired number of words, paths and target words to keep in the vocabulary are
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supplied. The preprocessing script will generate a histogram of the possible target

names from the training data. The histogram will be later used to build the model’s

vocabulary file which contains all of the possible labels that it can predict. The output

of the preprocessing step is are the ’c2v’ files that are then fed to train the model.

The entire workflow can demonstrated in figure 8:

Figure 8: Feature Extraction and Model Training Pipeline/Workflow

5.4 Feature Extraction

The main objective of this research is to compare the performance of the code2vec

model on different language types, to see how much of a performance drop will occur

on dynamic languages versus their static counterpart, and finally what can be done

to improve that performance.

As such the first experiment is to evaluate the different target languages based

on their performance as depicted in the original code2vec research in the task of

predicting method names. Intuitively static languages should perform better due to
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their strong typed nature, whereas dynamic languages do not have this advantage

and thus their code embedding carries less information.

More over the top starred Java projects tend to be of higher quality and have

better naming conventions for their methods and variables as compared to more

beginner friendly languages like JavaScript or Python.

To produce an accurate and objectively comparable results, all the training data

was mined using the same parser (Antlr) and extractor (AstMiner) before being pro-

cessed by the code2vec preprocessor script. The code2vec model requires a language

agnostic file (extension c2v) that contains all the path context and their associated

labels. Producing that file for external languages requires a two step process:

5.4.1 Path contexts extraction

First step is the feature extraction of path contexts from the source code files, this

involves parsing all the code in a given file, splitting the methods inside, extracting

the paths from each method and associating each one with its label. Different parsers

(Ex: ANTLR, GumTree, ..etc), and different filters can be applied in this step (like

ignoring constructors, empty methods, or methods larger than a specified size).

The ASTminer tool that was used for this step requires the input data to be

split into three directories (train, test, and val), and outputs three path contexts files

(train, test, and val c2s files) where each line in those files represent a label followed

by a sequence of space-separated triples.

Each triple contains comma-separated IDs of the start token/vertex, path, and

end token/vertex. The tool also outputs extra csv files that contain the mapping

between the numerical IDs in the path context files and their corresponding node
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types and tokens.

5.4.2 Preprocessing the path contexts files

The second step is to transform the previous output into a format that the

code2vec model accepts, this is done by passing the path context files to a modified

version of code2vec’s preprocessing script.

The script will pad or truncate the data in the files to a specified number of

fields, The output of this step is the language agnostic c2v file that the model uses

for training, along with the dictionary file that contains all vocabulary for the dataset

(i.e. all possible labels used for prediction).

5.5 Feature Extraction Results

Tables 2, 3, and 4 show the results of preprocessing the train, Val, and Test

datasets using ASTminer respectively. The dataset size and the number of projects

and files per dataset are shown for each languages, along with the most important

settings that were configured for mining the ASTs.

The Max and Average number of contexts refer to the specified amount of path

contexts to be extracted from each method’s AST, and the actual amount that was

extracted (i.e. a simple short function may not have enough contexts to match the

max number of contexts specified in the setting).

Along with the parser type, ASTminer support filters for the AST itself, from

the maximum size of the tree (i.e. the number of nodes/tokens in the AST), to how

deep should each context path be considered, and how far apart each two leafs would

be considered. So a max path of length 8 and width 2 will restrict the extraction of
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contexts paths to any path that only goes up to 8 levels down in the abstract syntax

tree, with no more than 2 leafs apart at the bottom of the tree.

The total examples refer to the complete number of methods that were extracted

successfully from the source code files, and hence will be used for training, validation,

or testing. Note that all of these settings are configurable through YAML files that

gets passed as argument to the ASTminer tool.

Table 2: Feature extraction for Training data

Language Java Python JavaScript
Dataset size 1.9 GB 1.2 GB 523.5 MB

No of Projects 670 727 N/A
No of Files 347735 155264 7790

Extraction Time 21:56 58:27 39:36
Max No Contexts 300 300 300
Avg No Contexts 191.182 254.480 242.76
Total Examples 2627188 1377753 55726

Max Path Length 8 8 8
Max Path Width 2 2 2

Parser antlr antlr antlr
Max Tree Size (no of nodes) 500 500 500

5.5.1 Observations about the feature extraction results

The results from Tables 2, 3, and 4 show a positive correlation between the size

of the dataset and the extraction time, where the 4x larger sized train sets took on

average 4x times to complete compared to the val sets. We can also see that dynamic

languages took more time than the static ones, with Python feature extraction taking

3x the time compared to Java even though the Java source code files were roughly

double the size of the Python ones. This shows that even by using the same parser on

the same hardware, building the ASTs and extracting the code embeddings is much
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Table 3: Feature extraction for Validation data

Language Java Python JavaScript
Dataset size 389.9 MB 257.3 MB 90.6 MB

No of Projects 185 145 N/A
No of Files 67083 29032 1315

Extraction Time 05:01 12:29 N/A
Max No Contexts 300 300 300
Avg No Contexts 195.351 253.053 231.9
Total Examples 607707 334865 1837

Max Path Length 8 8 8
Max Path Width 2 2 2

Parser antlr antlr antlr
Max Tree Size (# nodes) 500 500 500

Table 4: Feature extraction for Testing data

Language Java Python JavaScript
Dataset size 306.5 MB 77.2 MB 29.2 MB

No of Projects 140 30 N/A
No of Files 50850 9051 288

Extraction Time 03:38 3:46 N/A
Max No Contexts 300 300 300
Avg No Contexts 200.156 265.939 228
Total Examples 415156 84847 207

Max Path Length 8 8 8
Max Path Width 2 2 2

Parser antlr antlr antlr
Max Tree Size (# nodes) 500 500 500

easier for static languages like Java than it is for dynamic languages like Python or

JavaScript.
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5.5.2 Notes about JavaScript

The JavaScript dataset proved to be the hardest to extract from and transform

into the appropriate format, often times failing to complete the extraction process,

and running out of heap memory space.

Thus additional preprocessing was done on all JS source code files, where all the

files in every project were renamed to random UUIDs, then grouped together in one

directory and later split into individually UUID named directories each containing

exactly 50 files per directory. Any file larger than 1 MB was discarded and a smaller

set was used for the ASTminer extraction to avoid the heap memory issues. This

resulted in reducing the memory issues, and helped to better isolate and identify the

problematic files.

5.6 Hyper-parameters

Code2vec’s hyper-parameters can be adjusted by modifing the ’config.py’

file. All three models for Java, Python, and JavaScript were trained using similar

hyper-parameters in order to for the performance comparison to remain fair.

To find out the optimal hyper-parameters, multiple experiments were conducted

using a small sized Python dataset, by keeping all other code2vec hyper-parameters

and ASTminer settings constant and changing only one parameter at a time. Then

performing the feature extraction and model training on the two variations, and com-

paring the results by measuring precision, recall, F1-score, and the highest predicted

label accuracy. we identified the best hyper-parameters to be used for training the

larger datasets and the other programming languages.
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5.6.1 Batch Size

The batch size refers to the number of samples that will be propagated through

the neural network. By comparing a batch size of 512 against 1024, the later proved

to be marginally better as can be seen in Figure 9. Note that the authors of code2vec

Figure 9: Batch Size Hyper-Parameter Comparison

used a batch size of 1024 in their experiments.

5.6.2 DropOut Rate

Dropout is a regularization technique that is used to prevent over-fitting the

model. The dropout rate is probability of training a given node within the neural

network layer. A ratio of 0.75 implies that 25% of the neurons will be turned off, and

the remaining 75% will be trained. By comparing a dropout rate of 0.5 against 0.75,

the later proved to be marginally better as can be seen in Figure 10. Note that the

authors of code2vec used a dropout rate of 0.75 in their experiments.
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Figure 10: DropOut ratio Hyper-parameter Comparison

5.6.3 Number of Kwords Ratio

The number of kwords refer to the number of possible predicted labels that the

model will take into account when scoring a sample method, each will be assigned

a probabilistic accuracy score that refers to the models confidence in the predicted

label. By comparing a kword count of 5 against 10, the later proved to be marginally

better as can be seen in Figure 11. Note that the authors of code2vec used a kword

count of 10 in their experiments.

5.6.4 Context Paths Length and Width

The context path length refer to the maximum depth of an AST path within

the code’s abstract syntax tree, while the context path width refer to the maximum

distance between any two terminal nodes within the code’s abstract syntax tree. More

complex and larger methods usually have contain deep ASTs with much more leaves,

and overall more context paths. By comparing a combination of context path length
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Figure 11: Number of Kwords Hyper-parameter Comparison

and width of 8 and 2 respectively against a 12 and 6 length and width, the former

proved to be marginally better as can be seen in Figure 12. Note that the authors

Figure 12: Context Path Length and Width Hyper-parameter Comparison

of code2vec used values of 8 and 2 for paths length and width respectively in their

experiments.
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5.6.5 Number of Epochs

The number of epochs refer to how many forward and backward passes the

dataset goes through by the neural network during the training phase. The model

usually keeps on improving with each subsequent pass until it converges, then any

further training will not improve the model’s performance after that. By comparing

the number of epochs of 50 against 200, the former proved to be much faster to

train as one might expect, while also producing slightly better results as can be

seen in Figure 13. By investigating the output log during the model training, it is

Figure 13: Number of Epochs Hyper-parameter Comparison

noticed that the model tend to reach its peak performance in the early epochs, with

further training not resulting in any added benefits, but rather some performance

degradation.
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5.6.6 Number of Contexts

The number of contexts refer to the number of path contexts that were extracted

from a sample method. By comparing a context count of 50, 100, and 400, the results

were too close to draw any definitive conclusions as can be seen in Figure 14. Note

Figure 14: Number of Path Contexts Hyper-parameter Comparison

that the authors of code2vec used a value of 200 contexts in their experiments, and

mentioned that adding additional contexts will yield very small performance gains,

which conforms the results obtained from Figure 14.

5.6.7 Hyper-parameters Used

After comparing the results from the hyper-paramter tuning experiments, the

following parameters were used for training the Java, Python, and JavaScript models:

• Max number of epochs for training the model: 30

• Training and Testing batch size(s): 1024
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• Framework used: TensorFlow

• Starting number of words considered for each prediction: 10

• Default embedding size: 128

• Drop out rate: 0.75

• Max number of contexts: 300

• Max path vocabulary size: 911417

• Max target vocabulary size: 261245

• Max token vocabulary size: 1301136

• Max trained versions to keep: 3

Some Key decisions in Hyper-parameter tuning:

• The max number of the latest trained model versions to keep was reduced from

the default 10 to 3 to save on desk space.

• The max number of extracted contexts was increased from the default 200 to

300 to make up for the smaller sized datasets.

• The max number of epochs was increased from the default 20 to 30 to make up

for the smaller sized datasets.

• The vanilla tensor flow back-end was used instead of the Keras implementation,

since it had all the latest features and fixes.

• The rest of the default hyper-parameters were used as is, since those settings

produced the highest results in the original research by Alon et al.
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• The model performs early stopping based on the epoch version that maximizes

the F1-Score on the validation dataset

5.7 Model Evaluation

After the training step is completed, a model can be released so it can be easily

used for inference. A released model does not have any of its training parameters

anymore, Thus it can not be trained further or used for transfer learning with other

datasets. The advantage of releasing a model is to reduce the model’s size by up to

3 times.

Along with the trained model, all of the vocabularies from the training phase

(i.e. all the possible prediction labels) are saved to a ’dictionaries.bin’ file. This file

is used in tandem with released model to run inference on the test data.

There are two main methods to evaluate a code2vec model, either by passing

the model the test data file that was extracted in the feature extraction phase, and

running batch evaluation on it and viewing the results in an output log file. Or

by manually evaluating a single method from a single input file and examining the

model’s predictions on the output console. Both methods are explored in chapter 6.
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CHAPTER 6

Results

6.1 Precision, Recall, F1-Score, and Accuracy

All results are measured in term of precision, recall, F1 score, and accuracy.

Some definitions before we present our results:

• Precision also known as positive predictive value, is a measure of the correctly

predicted instances relative to the set of all positively predicted instances. A

low precision implies that the model incorrectly predicted a lot of the test data

(causing a large number of false positives).

• Recall also known as sensitivity, is a measure of the correctly predicted instances

relative to the set of all instances, a low recall implies that the model did not

classify a lot of correct test data (causing a large number of false negatives)

• F1 score also known as F-score, is a measurement that combines both the pre-

cision and recall results of a model. It’s defined as the harmonic mean of the

models precision and recall. Unlike the accuracy measurement, F-score takes

into account any imbalance that might have been introduced due to an unevenly

distributed dataset.

• Accuracy is the most intuitive measurement, it is the ratio of the correctly

predicted labels relative to the all predictions that the model made. However in

an unbalanced dataset, a high accuracy could be a sign of the model over-fitting

and will often fail on unseen test data.

Within code2vec’s evaluation metrics, accuracy refer to the assigned value for
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each label after scoring a method, where as the most probable label as predicted

by the model will be assigned the highest accuracy score. The number of possible

labels considered by the model depends on the number of kwords used as a

hyper-parameter.

The total number of potential labels that are available for the model during

the training phase will depend on the size of the vocabulary extracted from the

dataset. Note that the code2vec model can not predict out of vocabulary labels,

i.e. it can not assign a label for a method that it did not see during its training

phase.

6.2 Results

The model considers the top 10 possible labels during prediction (as configured

in the hyper-parameters), and assigns an accuracy value to each prediction. In this

paper, we look at the highest accuracy prediction which corresponds to the most likely

label/name for the test method (Top accuracy result from all 10 possible values).

6.2.1 Training Results

The results from training the Java, Python, and JavaScript after the training is

complete and the model converged are shown in Table 5 and Figure 15:

The results in Table 5 shows a clear performance difference among the 3 models,

with the Java model coming out ahead followed by Python model, and the JavaScript

one coming last. The difference in performance -although expected- can be attributed

to both the size of the datasets and the nature of the programming languages them-

selves.

Even though both Java and Python datasets were collected from the top 1000
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Table 5: The results from training the models from scratch

Language Java Python JavaScript
Training Time 23:01:57 22H:47M:2S 1H:31M:4S

Number of epochs 11 13 29
Precision 37.8 30.4% 18.3%
Recall 26.9 19.3% 19.3%

F1 score 31.5 23.6% 18.8%
Top accuracy score 30.7 24.2% 20.4%

projects of GitHub, the Java dataset is still roughly 1.7x the size of the Python one

with 2.4x the number of files. This translated to almost double (1.9x to be exact)

the number of training examples (i.e. extracted methods) used in the Java model

compared to its Python equivalent.

Thus despite the Python model using more contexts per method (1.3x) than the

Java one during training, the models appears to benefit more from a larger corpus of

data rather than smaller but ’denser’ one.

The JavaScript results on the other hand are not surprising considering the much

smaller dataset size that were used for both training and validation, as evidenced by

the much smaller training time.

6.2.2 Testing Results

The results from testing the Java, Python, and JavaScript using the test datasets

on a released model, are shown in Table 6 and Figure!16:

As shown from Tables 5 and 6, For the Java model, the testing scores are in-line

with validation ones, and the results are as expected.

The same can not be said for the Python and JavaScript ones. The Python model
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Figure 15: Training Results for Java, Python, and JavaScript

Table 6: The results from the testing dataset

Language Java Python JavaScript
Testing Time 07M:14S 01M:28S 0M:6S

Precision 39.4 22.9% 23.5%
Recall 27.3 13.7% 25.7%

F1 score 32.2 17.2% 24.5%
Lowest accuracy score 23.2 11.9% 23.2%
Top accuracy score 31.3 16.7% 25.1%
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Figure 16: Testing Results for Java, Python, and JavaScript

suffered a 5% to 7.5% loss in all metrics. While on the other hand the JavaScript

model gained a 4% to 7.5% increase in all metrics. Such results could be attributed

to the size of the datasets, with JavaScript being much smaller and as such not a true

representative of a wide test data. Or more likely, it enforces the hypothesis that the

dynamic nature of these languages (utilizing type inference instead of all the variables

being declared with types as with Java code) makes it hard for the model to generalize

among unseen source code. This coupled with fewer syntax and less verbose methods

are the reasons behind the difference in results between Java, Python, and JavaScript
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in the testing scores.

6.3 Transfer Learning

In an attempt to improve upon the results obtained from the experiment, but

without requiring a much larger dataset, transfer learning techniques were used. By

using a Java model that was trained on a much larger dataset and fine-tuning it using

the same datasets from the previous experiments, i.e. The Python and JavaScript

pre-processed datasets.

For this experiment, A non-striped (i.e. not in a release state and thus can

be trained further) trained model was used. That model was originally trained by

Alon et al [1] on a large Java dataset of 14 million examples from 10000 projects

roughly 10 times the size of datasets used in this research. By loading this model

and continuously training it on the datasets from other languages using the same

hyper-parameters from the previous experiment, the results can be seen in Table 7

and Figure 17.

Table 7: The results from fine-tuning the models -Transfer learning from the Java
14m trained model-

Language Python JavaScript
Training Time 15H:50M:43S 0H:29M:16S

Number of epochs 8 9
Precision 24.6% 15.8%
Recall 13.6% 10.6%

F1 score 17.5% 12.7%
Top accuracy score 19.6% 14.8%

It’s interesting to see that both the Python and JavaScript models have lower

scores across all metrics than their trained from scratch counterparts. This shows
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Figure 17: Transfer Learning Results for Python and JavaScript

that even though the code2vec architecture itself is language agnostic, the model did

not gain any advantages from the previously trained Java model.

And that the lower scores that the fine-tuned models achieved can be attributed

directly to the training gained from the Python/JavaScript dataset and not from the

transfer learning process itself, i.e. the F1 score achieved for the hyper-tuned Python

model is 17.5% after 8 epochs, which is in line with the trained from scratch Python

model after the same number of epochs, since the F1 score after 13 epochs was 23.6%.
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This leads us to conclude that the technical and syntax differences between the

2 static and dynamic pairs of languages (Java and Python, Java and JavaScript) are

too great for the model to generalize across languages. It would be interesting to

see if transfer learning would work better among the similar types of programming

languages (ex: Java and C # or Python and JavaScript).

6.4 Different Parsers

The ANTLR parser was picked in this research as the parser of choice for feature

extraction in the ASTminer library since it has support for all target languages (Java,

Python, JavaScript) so the comparison would be the same, and provides an easy

extendable options. However other parsers could be used with ASTminer to produce

similar results. In this experiment, The parser GumTree was used on the Python

dataset to see of the choice of parser during feature extraction would affect the final

performance of the code2vec model.

6.4.1 GumTree

GumTree is a tool that deals with source code, and can compute the differences

between source code files. It is also able to convert code snippets into language

agnostic tree formats. For the purpose of using it with ASTminer, it can be used as

a back-end parser for Java and Python files.

The result from the feature extraction phase can be seen in Table 8:

It is clear from table 8, that the features extracted from ANTLR and GumTree

are identical, with ANTLR being faster by a minute or two, which is statistically

insignificant.
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Table 8: Feature extraction for Python Dataset using GumTree Parser

Language Train Val Test
Dataset size 1.2 GB 257.3 MB 77.2 MB

No of Projects 727 145 30
No of Files 155264 29032 9051

Extraction Time 1:03:00 13:40 04:00
Max No Contexts 300 300 300
Avg No Contexts 254.48 253.053 265.939
Total Examples 1377753 334865 84847

Max Path Length 8 8 8
Max Path Width 2 2 2

Parser gumtree gumtree gumtree
Max Tree Size (no of nodes) 500 500 500

After training the model from scratch again using the same hyper-parameters

from before. But this time using the features extracted using GumTree, the results

in Table 9 were obtained:

Table 9: The results from training the Python model from scratch using GumTree

Language Python
Training Time 22H:58M:23S

Number of epochs 13
Precision 28.5%
Recall 18.1%

F1 score 22.2%
Top accuracy score 23.8%

Again, it comes at no surprise that the results obtained from this ’GumTree

extracted’ model is very similar (with a small statistically insignificant differences)

to the ones obtained using the ’ANTLR extracted’ one. Which aligns with how the

code2vec model operate being language agnostic.
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Since the model does not care about how the features were extracted from the

source code files. and since both parsers manage to transform the source code files

into their AST representation and extract the same number of path contexts (i.e.

embeddings), it follows that the results would be identical. With personal preference

and ease of use being the only differentiator.

6.5 Python Large

In a final attempt to improve the results of the Python model, the larger Python

dataset was used. This dataset was collected from a combination of GitHub and from

the 150k Python dataset available from SRILab [29]. This was done to increase the

size of dataset by as much as possible. The dataset was split into 90%, 5%, 5% train,

val, and test respectively. This followed the same split that was performed on the

Java large dataset by Alon et al. [1].

The same hyper-parameters from the python medium experiment were used, but

the maximum number of contexts was increased to 400. The feature extraction for

the entire dataset took almost 2 hours and 45 minutes, with an average extracted

context count of 347.5 and total vocabulary size of 261,245 tokens. Overall, the

model trained around 3,166,778 training samples over a period of 2 days with the

model’s performance peaking in the 8𝑇ℎ epoch. Both the training and testing results

can be seen in Table 10 and Figure 18.

The results obtained from the Python large dataset was much better than the

previous experiments, which proves that for this type of probabilistic models like

code2vec, dataset size have the most important factor in determining the model’s

performance. Even more interesting is the fact that, in this experiment, the testing

results were inline with training ones, suffering no performance degradation, with a
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Table 10: The results from training the Python model from scratch using the python
large dataset

Training Results Testing Results
Precision 44.9% 43.4%
Recall 30.5% 30.5%

F1 score 36.2% 35.8%
Lowest accuracy score 30% 29.5%
Top accuracy score 38.2% 37.5%

Figure 18: Training and Testing Results for Python large

very small statistically insignificant difference between the two results. This could be

due to the larger and more diverse sized combined dataset, or the difference in the

dataset split itself.

6.5.1 Python Datasets Comparison

A quick comparison at the different sized python datasets and their respective

performance after training each one from scratch can be seen in Table 11 and Figure 19
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Table 11: Python Datasets

Small Medium Large
Dataset Size 118.7 MB 1.5 GB 2.7 GB

No of Projects 24 902 7188
No of Files 22016 194903 366016

Figure 19: Python Training Results Comparison

The results in Table 11, along with the ones obtained from the hyper-parameter

tuning experiments, conforms the importance of dataset size in training code2vec and

other similar models. No other factor yielded as much difference in performance as

dataset size, which is inline with how deep learning models work in general.

6.5.2 Baseline Comparison

Finally, we compare our best results for dynamic languages that was obtained

from training the Python large dataset, with a little over 3 million methods, against

the static languages baseline Java model that was trained by Alon et al. on the Java
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large dataset, containing 12 million methods [1]. The results can be seen in Figure 20.

Figure 20: Python and Java Baseline Comparison

The Python model while still lagging behind its Java equivalent in all metrics,

managed to reach around 70% of the performance scores of the Java one. Implying

that while there is is still a gap in performance between static and dynamic languages

in this particular machine learning tasks, it is possible with further experimentation

to bridge that difference, and raise the dynamic language’s performance to the level

of its static counterpart.
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CHAPTER 7

Conclusion and Future Work

7.1 Summary

This project aims to provide a starting point for studying the differences in

performance among static and dynamic programming languages when it comes to

probabilistic machine learning models that act on source code.

It briefly explains the motivation and history behind machine learning on source

code, some of the current state of the art research on the subject. And a deep dive into

code2vec, which is one of the most innovative deep learning models for MLonCode

tasks.

The projects experimented with extending code2vec to work with the Python

and JavaScript programming languages using the ASTminer library. It compared the

training results from the two aforementioned languages against the standard Java one,

and experimented with techniques like transfer learning and using different parsers

in order to improve their performance.

The experiments showed the difficulty of dealing with dynamic languages in ma-

chine learning tasks on source code, with the best dynamic language model reaching

70% of the performance of its static counterpart. And provided a baseline for future

work to improve their performance and explore their potential applications.

7.2 Conclusion

In conclusion, machine learning on source code is without a doubt an exiting

new domain for ML researchers, it has picked up a lot of interest in recent years as
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evidenced by the increasing number of published research papers on the subject.

However, the majority of this interest seem directed towards static languages like

Java or C#. By completing this project, the authors hope to shine a new light on

the other type of programming languages, and showcase how dynamic languages like

Python or JavaScript would too benefit from these ML applications.

7.3 Future Work

• Since the final results for the dynamic languages are still less than their static

counterparts. A good start for future work, would be to improve the perfor-

mance with further experimentation.

• Due to preprocessing issues, the final size of the JavaScript used for training

the model was much smaller than initially expected, as such for future work,

and after solving these issues, it would be interesting to see how a much larger

JavaScript dataset would affect the performance of the trained model.

• It would also be interesting to see how functional languages would perform.

Given their nature, functional languages hold all of the application’s logic within

functions only, thus models trained on functional languages like Haskell or Clo-

Jure could in theory perform better than their Object oriented counterparts like

Java.

• Further experimentation to explore tasks such as detecting malware in

JavaScript source code files, or detecting run-time errors in Python scripts could

be done and compared with similar tasks that are often performed on the Java

model.
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