
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

Fall 12-17-2021 

Task Classification During Visual Search Using Classic Machine Task Classification During Visual Search Using Classic Machine 

Learning and Deep Learning Learning and Deep Learning 

Devangi Vilas Chinchankar 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

 Part of the Artificial Intelligence and Robotics Commons 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1048&utm_medium=PDF&utm_campaign=PDFCoverPages


 
Task Classification During Visual Search Using Classic Machine Learning and Deep Learning 

 

A Project 

 

 

 

Presented to  

 

Department of Computer Science 

San José State University 

 

 

 

In Partial Fulfillment  

Of the Requirements of the degree 

Master of Science 

  

 

 

By 

Devangi Vilas Chinchankar 

December 2021 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

©2021 

Devangi Vilas Chinchankar 

ALL RIGHTS RESERVED 



 

The Designated Project Committee Approves the Project Titled  

“Task Classification during Visual Search using Classic Machine Learning and Deep Learning” 

 
 

By 

Devangi Vilas Chinchankar 

 

FOR THE DEPARTMENT OF COMPUTER SCIENCE 

 SAN JOSE STATE UNIVERSITY 

 

December 2021 

 

 

Dr. Nada Attar, San Jose State University 

Dr. Mark Stamp, San Jose State University 

Dr. Noha Elfiky, Saint Mary’s College of California 

 



 

 
ABSTRACT 

 
 

In an average human life, the eyes not only passively scan visual scenes, but most times 

end up actively performing tasks including, but not limited to, searching, comparing, and counting. 

As a result of the advances in technology, we are observing a boost in the average screen time. 

Humans are now looking at an increasing number of screens and in turn images and videos. 

Understanding what scene a user is looking at and what type of visual task is being performed can 

be useful in developing intelligent user interfaces, and in virtual reality and augmented reality 

devices. In this research, we run machine learning and deep learning algorithms to identify the task 

type from eye-tracking data. In addition to looking at raw numerical data, we take a “visual” 

approach by experimenting on variations of Computer Vision algorithms like Convolutional 

Neural Networks on the visual representations of the user gaze scan paths. We compare the results 

of our visual approach to the classic algorithm of random forests. 

 
Keywords -  Visual Search, Visual Attention, Eye Tracking, Machine Learning, Random 
Forests, Deep Learning, Convolutional Neural Networks, Computer Vision 
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I. INTRODUCTION 
 

Living forms perceive their surroundings primarily with the help of the five vital sensory 

organs – eyes, ears, nose, tongue, and the skin. The brain then receives and processes this 

information to determine and activate the response mechanisms. Studies suggest that sight 

contributes to about 80% of all the sensory information that the brain processes [1].  

 Eyesight is a physical phenomenon, while vision deals with how the scenes are processed 

by the brain. Visual exploration and search are routine tasks that humans or non-human living 

forms with higher cognitive abilities perform in their day-to-day activities. They involve active 

scanning of the surrounding environment to observe and/or look for objects of interest. A 

typical visual search experiment asks the participants to search for a distinctive object in an 

image where the degree of visual attention required is directly affected by the degree of 

distraction in the provided image.  

Understanding where the user is looking at and what interests the user visually can tell a 

lot about the user as well as the possible surroundings. The inspection behavior and therefore 

the viewing pattern is significantly impacted by the viewing instruction that is being given [2]. 

Multiple studies have shown the role of visual attention in visual search and have proposed the 

possibility to determine the type of visual search task being performed from the experiment 

data points. 

In this research, we plan on identifying the visual task that a user performs by looking at 

the scan paths by considering it as a computer vision problem. We also try to assess if the size 

of the pupil is a contributing factor in giving away the type of visual task. 
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II. RELATED WORK 
 

Yarbus in [2] has provided extensive findings and qualitative data pointing towards the 

existence of patterns in visual search tasks. Yarbus’s observation on how the distribution of 

fixation gaze points differs with change in the kind of information requested by the task is 

invaluable.   Multiple studies have focused on understanding tasks using pattern analysis from 

visual search data. Previous works on classifying the tasks have involved using various 

statistical and learning methods on raw data. Hutt et al. [4] classified tasks related to mind 

wandering using Bayesian networks while the study by Faber et. al. [5] used logistic regression. 

Recent studies of Kumar et al. [3] achieved a classification accuracy of about 95.4% on 

four types of visual search tasks. Their work performed studies on fixation tasks, where the 

participant is asked to fixate their gaze in the center of the image, no matter the type of image. 

Their work was extended through the study by Thentu [8] in classifying free viewing tasks 

where participants can freely observe/search the image unlike in fixation tasks.  

Previous efforts on task classification from image representation have been made by Wang 

et al. [6] to represent data as images using Gramian Angular Fields (GAFs) and Markov 

Transition Fields (MTF).  Thentu [8] represented the scan paths as RGB images and explored 

computer vision algorithms for the classification task. Efforts in [8] focus solely on the scan 

path of the eye. An important feature that would otherwise present itself in raw data is missing 

- pupil dilation. Could a user’s pupil response (pupil dilation) to a given task potentially vary 

with different tasks [14, 15]? Given the varying level of attention different tasks need, could 

pupil dilation give away the type of task? In this report, we try to use Deep Learning to analyze 

if incorporating pupil information, visually, can make an impact on the classification of the 
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tasks. We aim to present a new way to classify these tasks using classic machine learning 

models as well as state-of-the-art computer vision algorithms.  

Before testing the image representation, we reproduce results from [3] using Random 

Forests as a baseline. Then we run various flavors of Convolutional Neural Networks (CNNs) 

to find the best setting. Experiments on Transfer Learning and Data Augmentation show 

significants improvements on 1-layered CNNs. 
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III. DATASET 
 

We use the same dataset which was used by Kumar et al. [3] from Otero-Millan et al’s 

study [7]. We have a total of 480 observations from 8 subjects where each trial lasts for about 

45 seconds and results in 22000 data points. The type of target stimuli images used are a blank 

scene, natural scene (observe), picture puzzle (find the difference), and “Where’s Waldo” (find 

an object); samples of which are shown in Figure 1. The stimuli images have a  resolution of 

921 x 630 pixels. 

 

                
 

(a)                                                                     (b) 
  

                 
 
                                     (c)                                                                     (d) 
 

Figure 1 Sample source for the 4 task types (a) Blank, (b) Natural, (c) Puzzle, (d) Waldo 
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(a)                                              (b)                                                             (c) 
 
Figure 2 "Where's Waldo?"; (a) the character 'Waldo', (b) location of Waldo in the image, (c) enlarged part of 

the location 

 

 

A. Viewing Conditions 

As part of the experiments conducted to collect this data, users were asked to 

view these tasks in two viewing conditions – Free-viewing and Fixation. In the Free-

viewing condition, users were asked to freely look at the image in the “Natural” and 

“Blank” type tasks,  actively find the difference in the “Puzzle” tasks, and locate an 

object (find Waldo) in the “Waldo” images. The task of viewing “Natural” scenes 

comes under the visual exploration category while viewing the “Puzzle” and “Waldo” 

scenes comes under the visual search category. In contrast to this method of observing 

patterns,  users were asked to fixate at the center of the target image in the Fixation 

condition irrespective of the type of image,  
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B. Data Distribution 

 
Experiments were conducted by running the images through 8 subjects. Each 

subject was asked to look at 60 different images in both Free-viewing and Fixation 

conditions yielding a total of 480 observations for both Free-viewing and Fixation. 

Each subject looked at 15 images each of type Puzzle, Waldo, Blank, and Natural. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Input data files generated by a single subject 

 

 
1. Data Pre-processing 

One of the most important tasks of Machine Learning implementations is the 

quality of data that is being used. Missing data, unnormalized values, outliers, etc. can 

significantly affect model performance. We found that our raw data in the form of 

Free-viewing, 
60 

Fixation,  
60 

15 Puzzle, 
15 Natural, 
15 Waldo, 
15 Blank 

120 files 
per 

subject 
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CSVs contained a few rows with missing values. The missing values corresponded to 

the data points where the user looked outside of the viewing area. Using the data as it 

is affected model performance and gave a very poor accuracy; no better than 

guesswork. Eliminating such rows (observations at a time instant) drastically improved 

overall performance.  

  



8 
 

IV. WORKING ON RAW DATA 
 

Kumar et. al's work in [3] showed promising results for the classification of the fixation 

condition on raw data. Each data point in the observation file for a user denotes a timestep of 

the observation. The authors considered each such datapoint as a separate sample for the 

training process and conducted experiments considering only the features of the left eye. We 

designed our experiments on random forests in a similar approach, but by considering features 

for both left and right eyes.  In addition, we also tried to run the algorithms on free-viewing 

data.  

We chose this particular subset of features which includes the gaze fixation points (LXpix, 

LYpix, RXpix, RYpix) and the pupil information (LP, RP) since the same subset is used to 

translate the data into image representations in the latter experiments and serves as a common 

ground for comparison. 

 

All features  = { LXpix, LYpix, RXpix, RYpix, LXhref, LYhref, RXhref, RYhref, LP, RP } 

Subset = { LXpix, LYpix, RXpix, RYpix, LP, RP } 

 

The results in Figure 4 and Frigure 5 are of the random forest experiments with the number 

of trees set to 10 and the maximum depth to be until all the leaves are pure. 
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(a)                                                                                                     (b) 

Figure 4 Confusion matrixes for ‘Free Viewing’ condition using Random Forests when using (a) a subset of features (b) all 
features 

 
 

    

(b)                                                                                                     (b) 

Figure 5 Confusion matrixes for ‘Fixation’ condition using Random Forests when using (a) a subset of features (b) all 
features 
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Table 1 shows the accuracies for both Free-viewing and Fixation conditions using Random 

Forests. 

 

 

 

 

 

 

 

Similar experiments were run using Random Forests seem to work fairly impressively with 

an almost perfect accuracy for both viewing conditions when all the features are considered. 

The issue we felt with this approach, and as discussed in [9], is that each timestep of the 

viewing observation of a user is considered as a separate training sample. In reality, each time 

step is just a part of the whole observation and represents a single gaze point. Data from a 

single timestep can possibly be useful to understand cognitive load at a particular task state but 

not automatically be useful for the entire scanning pattern across the entire task time period. 

The observation as a whole should ideally make up a single training sample to reflect the 

correct cognhitive state. 

  

Random Forest Subset of Features All Features 

Free Viewing 98% 99% 

Fixation 99% 100% 

Table 1 Summary of Results using Random Forests 
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V.  IMAGE REPRESENTATIONS OF SCANPATH 
 
 

Thentu [9] presented a novel technique by using image representations of the scan path 

information for classification. The author took the average of the LXpix and RXpix values to 

get the resultant x co-ordinate, and LYpix and RYpix values to get the Y co-ordinate to plot 

one single gaze point, and such subsequent points gave rise to the entire scan path image 

representation.  

 

  
(a)                                                                                                     (b) 

Figure 6 Scanpath of the “Waldo”  image in Figure 2 for a random user in (a) Free-viewing and (b) Fixation conditions 

 
 But we can imagine that not all gaze points are distinct from each other and some 

amount of overlap is inevitable. Would we not look at the same point twice if we find 

something interesting on it? By adjusting the opacity of the pixels, we can easily see what 

points are looked at repeatedly i.e. where the user is focusing more. This can be visualized in 

Figure 7. The points where there are darker colored pixels probably are points of interest for 

the user than the ones which are lighter.  
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(c)                                                                                                     (b) 

Figure 7 Scanpath of "Waldo" image in Figure 2 in (a) Free viewing and (b) Fixation conditions where darker points show 
points looked at repeatedly 

 
 

Pupils are known to dilate in darker environments to let more light in while to contract 

in brighter environments. In addition to this relationship of pupil diameter with the illuminance 

of the environment, studies [15] have shown that pupil size can be affected by the degree of 

attention and the type of emotion that the target invokes. The “degree of attention”  finding is 

especially interesting to us. To further help analyze the theory that pupil dilation plays a role 

in task classification, we plotted the pupil value on the scan path indicative by a color range.  

In addition to the consideration of opacity or “interest” in Figure 7, we adopted a color range 

to map the range of pupil values found across the dataset. Meaning, the lowest across all and 

the highest across all determined the range of the pupil values, and hence color maps across all 

image representations can be said to be emitting information on a uniform level. Thus, in our 

experiment, we can consider opacity to denote “interest” and color to denote “pupil dilation”.  

We generated such scan paths from the raw data on every user for fixation as well as free-

viewing conditions on the 4 types of tasks defined above. 
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(a)                                                                                                     (b) 

Figure 8 Scanpath of "Waldo" image in Figure 2 with colors reflecting pupil dilation in (a) Free-viewing and (b) Fixation 
conditions 

 
 

A. Choice of color scheme 
 

Would it matter if we chose only shades of red to represent this data? Or just red and 

orange? Would it be better if there was a contrasting element? Contrasting values, as opposed 

to monochromatic values, would be able to better distinguish different pupil values, and for 

computer vision tasks, this distinction can be important [16]. We assessed the idea of how 

important a role, color could play for the task of classification. We ran 1 layered CNNs on scan 

paths represented by (a) shades of blue as shown in Figure 7 and (b) contrasting red and green 

shades (option ‘nipy_spectral’ in the Python package Matplotlib) as represented in Figure 8. 

The first approach gave us accuracies of 62%, 71%, 77% while the second approach gave us 

accuracies of 66%, 75%, 79% for classification on 4 classes, 3 classes, and 2 classes 

respectively keeping the rest of the parameters same. Even this slight improvement can be 

useful which led us to choose the latter approach for the rest of our experiments. 
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VI. DEEP LEARNING 
 

Convolutional Neural Networks are known to be successful in identifying patterns well in 

images that are not necessarily evident to the human eye. Unlike most other machine learning 

algorithms, the process of feature extraction and selection is not on the shoulders of the 

experimenter but is taken care of by the algorithm itself. The image to be classified is the only 

input required.  Scan path images that were generated for our experiments had attributes that 

matched the needs of this algorithm. We alone as humans cannot easily identify all task types 

from the images. But, a CNN might find some useful patterns that make a “Waldo” scan path 

different from a “Natural” scan path.  

CNNs usually have an input layer, one or more convolutional layers and max-pooling 

layers, and finally an output layer. The convolutional layers are responsible for extracting 

features with the help of some “filters”. The number of such layers, the number of filters used, 

and the size of the filters are parameters that can affect the performance of the network. 

In the following sections, we have run our models on both Free-viewing and Fixation 

conditions while considering all 4 classes for classification as well as two additional subsets 

of classes. As mentioned earlier, of the four task types, two are visual search type tasks, one is 

a visual exploration type and the other a blank scene type. We wanted to see if the models 

could differentiate between the visual exploration tasks versus the blank task, hence one of the 

subsets includes only the Puzzle, Waldo and Blank task types and eliminates the Natural type 

for classification. As a third experiment, we now also eliminated the Blank task type and 
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assessed how the models could differentiate between the two Visual Search tasks of Puzzle 

and Waldo. 

A. 1 Layered CNN 
       

      Before we moved ahead to employing deeper CNN models, we first ran 1 layered 

CNNs to establish a baseline. This shallow architecture included a single convolutional 

layer with 16 3*3 filters.  

 

1. Results – 4 classes 
 

The confusion matrices in Figure 9 show us that the classification for the 

“Natural” condition is the least accurate for the Free-Viewing condition. The Natural 

task type suffers the most probably because of the similarity in the viewing patterns in 

Blank and Natural task types. Another consideration to note is that the task of 

exploration likely depends significantly on the user’s cognitive functions. The “idea” 

of exploration can vary from user to user. On the contrary, searching tasks of either 

finding an object (Waldo) or finding the difference (Puzzle) demand some specific 

information from the user. Visual Exploration tasks do not ask the user to perform a 

specific activity, hence classifying these tasks can be challenging due to the lack of 

existence of evident and uniform patterns.  
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(a)                                                                                                     (b) 

 
Figure 9 Confusion Matrices (4 classes)  using 1 layered CNN in (a) Free-viewing and (b) Fixation conditions 

 
2. Results – 3 classes (Puzzle, Waldo, Blank) 

 
Upon eliminating the “Natural” class, we now tested if running the algorithm 

on only the other three classes gives us any better performance. We see that in Figure 

10(a) the “Blank” class now seems to perform quite well with a sensitivity of 92%. The 

model can differentiate between Visual Search task types vs Blank screen task types in 

the Free-Viewing condition.  

      
 

(a)                                                                                                     (b) 

Figure 10 Confusion Matrices (3 classes) - 1 layered CNN on (a) Free-viewing and (b) Fixation conditions 
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3. Results – 2 classes (Puzzle, Waldo) 

Figure 11 shows the results in the case of the experiments on only two classes. 

Results show only a slight improvement for the Free-viewing condition, but a drastic jump 

for the Fixation condition. An explanation for it could possibly be the fact that even if the 

users are asked to fixate at the center of the image, some amount of distraction is bound to 

happen. The distraction provided by the Puzzle and Waldo tasks can be a little different 

and specific since in the Puzzle images, users might get distracted sideways in a restrained 

attempt to compare while in the Waldo image the distraction could take place in all the 

directions in a restrained attempt to locate Waldo. The Blank image adds no specific 

distraction and the wavering gaze patterns found in this case can be random and possibly 

act as noise for the classifiers. 

        
 

(a)                                                                                                     (b) 

 
Figure 11 Confusion Matrices (2 classes) - 1 layered CNN on (a) Free-vieing and (b) Fixation conditions 

 
Figure 12 summarizes the results for the shallow CNN. 
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Figure 12 Summary of results – I layered CNN 

 
The experiments helped us establish a starting point for our study. We did find 

promising results and also some possible ways to extract the most out of the data at hand. 

 

B. Deep CNNs 

For the 1 layered CNN, we ran our models on images of size 64*64. Experiments on 

Deeper CNNs were conducted on different image sizes from 64*64, 128*128, and 256*256 

to see how the performance of the CNN was affected as the image size changed. Our model 

had a depth of 3 and we tested the number of filters to be either 16/32 and the filter size to 

be of the popular size of 3*3 units. We split our data 80/20 for the training and testing 

processes, and further split the data into 80/20 to be the actual training samples and the 
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validation samples. We employed 5 fold cross-validation and averaged the results over the 

5 iterations. Tables 3, 4, and 5 summarize results by using CNNs on different image sizes. 

The discussion on the choice of the subset of classes and the probable reasons for the effect 

on accuracy upon the elimination of classes is carried forward from the previous sections. 

 

1. Results – 4 classes 
 

Results in Table 3 show that higher image size is helpful, but going any further is 

not beneficial. We experimented with image sizes of 256*256 and the results did not 

add any improvement, rather dropped in the accuracy. 

 

 
 
 
 
 
 
 
 

 

      
  

(a)                                                                                                     (b) 

Figure 13 Confusion Matrices (4 classes) - Deep CNN on (a) Free-viewing and (b) Fixation conditions 

Deep CNN, 4 
classes 

64*64 128*128 256*256 

Free Viewing 60% 70% 54% 

Fixation 26% 28% 25% 

Table 2 Summary of Results using CNN (4 classes) 
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2. Results – 3 classes (Puzzle, Waldo, Blank) 

Results in Table 4 tell a different story about the image sizes. Here, it is seen that a 

smaller image size fared better than the 128 that performed well for 4 classes. Again, 

in this case, experiments on 256*256 yielded insignificant accuracies. 

 

 
 
 
 

 

 

 

                  

(b)                                                                                                     (b) 

    Figure 14 Confusion Matrices (3 classes) - Deep CNN on (a) Free-viewing and (b) Fixation conditions 

 

 

 

Deep CNN, 3 
classes 

64*64 128*128 256*256 

Free Viewing 78% 74% 62% 

Fixation 46% 31% 33% 

Table 3 Summary of Results using CNN (3 classes – Puzzle, Waldo, Blank) 
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Table 4 Summary of Results using CNN (2 classes – Puzzle, Waldo) 

 

3. Results – 2 classes (Puzzle, Waldo) 

 
 
 

 

 

                    

(c)                                                                                                     (b) 

Figure 15 Confusion Matrices (2 classes) - Deep CNN on (a) Free-vieing and (b) Fixation conditions 

 

4. Summarizing Deep CNN results 
 

The accuracy does not come close to what Random Forests could achieve. One of 

the reasons could be the size of the dataset. Our dataset has 480 observations, giving us 

only 480 images in total for both train and test. CNNs are known to suffer from smaller 

datasets and perform their best when presented with huge training samples. To 

Deep CNN,  
2 classes 

64*64 128*128 256*256 

Free Viewing 88% 81% 78% 

Fixation 62% 52% 52% 
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acknowledge this issue, we employed the techniques of transfer learning and data 

augmentation. 

 

 

Figure 16 Summary of results - Deep CNN 

 

C. Transfer Learning 

Transfer Learning is the process in which the “learning” achieved in one problem is 

used to solve another problem [17, 18]. It can be a useful technique to apply when the data 

available is not enough for the problem and some pre-learned “knowledge” can be helpful. 

By using the MobileNetV2 pre-trained model and then adding a fully connected layer 

ahead, we were able to achieve the following results shown in Table 7-9. MobileNetV2 

uses depth-wise separable convolutions as building blocks [21]. 
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Figure 17 The process of Transfer Learning 

 
 

1. Results – 4 classes 
 

With Transfer Learning used, we see promising improvements. Even with an image 

size of 256*256, we now see comparable results. Fixation condition still seems to 

struggle. 

 

 

 
 

CNN + Transfer Learning, 
4 classes 

64*64 128*128 256*256 

Free Viewing 65% 81% 80% 

Fixation 36% 29% 23% 

Target Output 
Labels (Puzzle, 
Waldo, Blank, 

Natural) 

Target Model 

Target Data 
(Scanpaths) 

Source Output 
Labels 

Trained Model 

Source Data 
(MobileNet) 

Transfer 
Learned 

Knowledge 

Large 
amount of 
data/labels 

Small 
amount of 
data/labels 

Table 5 Summary of Results using CNN with Transfer Learning (4 classes) 
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(a)                                                                                                     (b) 

Figure 18 Confusion Matrices (4 classes) - Transfer Learning on (a) Free-viewing and (b) Fixation conditions 

 
2. Results – 3 classes (Puzzle, Waldo, Blank) 

 
 

CNN + Transfer Learning, 
3 classes 

64*64 128*128 256*256 

Free Viewing 72% 90% 95% 

Fixation 40% 47% 46% 

 

    

(a)                                                                                                          (b) 

     Figure 19 Confusion Matrices (3 classes) - Transfer Learning on (a) Free-viewing and (b) Fixation conditions 

Table 6 Summary of Results using CNN with Transfer Learning (3 classes – Puzzle, Waldo, Blank) 
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3. Results – 2 classes (Puzzle, Waldo) 

 

 

CNN + Transfer Learning, 
2 classes 

64*64 128*128 256*256 

Free Viewing 90% 100% 100% 

Fixation 60% 68% 65% 

 

                       

(a)                                                                                                          (b) 

               Figure 20 Confusion Matrices (2 classes) - Transfer Learning on (a) Free-viewing and (b) Fixation conditions 

 
 

4. Summarizing Transfer Learning Results 
 

Our efforts for transfer learning do yield significantly improved accuracies than 

without employing the technique. The model can perfectly distinguish between “Puzzle” 

and “Waldo” tasks in the free-viewing condition while it can classify about 97% correctly 

if “Blank” is added to the data. Classification on all 4 classes still doesn’t match the results 

of Random Forests. 

Table 7 Summary of Results using CNN with Transfer Learning (2 classes – Puzzle, Waldo) 



26 
 

 

Figure 21 Summary of results – CNN with Transfer Learning 

 
For the Fixation condition, however, the results don’t compare with the Free-viewing 

counterpart. This can be understood because, even for the naked human eye, distinguishing 

the task types is difficult. Since the user is asked to fixate on the task, the scan paths do not 

differ much and hence the struggling classification accuracies. 

 
 
D. Data Augmentation 

Many machine learning tasks, especially computer vision tasks work the best with huge 

amounts of data [19]. Not always is the data available in such amounts and such tasks call 

for the need to synthetically produce data. In the case of our research too, we had a dataset 

of 480 images for both Fixation and Free-viewing. To augment it 3-fold, for each image, 

we generated 2 new images by randomly shifting each pixel by some small value in either 
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the upward, downward, leftward or rightward directions giving us 2 synthetic images from 

every image and increasing our dataset to 1440 images from 480 images. We took this 

approach of pixel-wise shifting because our image data is highly positional and making 

drastic changes to the original images to generate new ones is not the best way of creating 

artificial data. We instead simulated different eye positions and generated new images 

accordingly. Figure 23 shows a sample of how a synthetically produced scan path image 

looks from its original scan path in Figure 22. 

         

Figure 22 Original Scanpath of a random user looking at a Puzzle image for Fixation condition 

 

 

Figure 23 Synthetically produced scan path for a Puzzle image for Fixation condition 
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1. Results – 4 classes 

 
 
 

Data Aug+CNN, 4 classes 64*64 128*128 

Free Viewing 86% 25% 

Fixation 43% 23% 

 

                  
 

(a)                                                                                                      (b) 

 
Figure 24 Confusion Matrices (4 classes) - CNN on Augmented Data on (a) Free-viewing and (b) Fixation conditions 

 
2. Results – 3 classes (Puzzle, Waldo, Blank) 

 
 

 

                

 

 

 

Data Aug+CNN, 3 classes 64*64 128*128 

Free Viewing 93% 95% 

Fixation 62% 67% 

Table 8 Summary of Results using CNN with Data Augmentation (4 classes) 

Table 9 Summary of Results using CNN with Data Augmentation (3 classes) 
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(b)                                                                                                      (b) 

Figure 25 Confusion Matrices (3 classes) - CNN on Augmented Data on (a) Free-viewing and (b) Fixation conditions 

 
3. Results – 2 classes (Puzzle, Waldo) 

 
 

 

           
(c)                                                                                                     (b) 

Figure 26 Confusion Matrices (2 classes) - CNN on Augmented Data on (a) Free-viewing and (b) Fixation conditions 

Data Aug+CNN, 2 classes 64*64 128*128 

Free Viewing 95% 90% 

Fixation 73% 74% 

Table 10 Summary of Results using CNN with Data Augmentation (2 classes) 
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4. Summarizing Data Augmentation results 

 
Data Augmentation seems to have helped both viewing conditions pretty well, 

but especially the Fixation condition. Transfer Learning could only improve so much, 

but with this approach accuracy in classifying all 4 classes jumped from 28%  to 43%, 

38% to 67% for 3 classes, and 56% to 74% for 2 classes. Again, these results are not 

the best and are still not comparable to Random Forests. 

  

 
 

Figure 27 Summary of results - CNN with Data Augmentation  
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VII. RESULTS AND DISCUSSIONS 
 

This section consolidates and summarizes all the results and findings. The aim is to find 

the best model that fits this task and in the process also find the answer to the question – “Does 

pupil play an important role in distinguishing tasks?” The label ‘ConvNet+SVM’ just picks up 

results from the work in [9] for comparison where the author combined CNNs with SVMs to 

classify the image representations (without the pupil information).  

 

Figure 28 Summary of results for the Free Viewing condition 

 

Figure 29 Summary of results for the Fixation condition 
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Figure 28 and Figure 29 summarize the results for the Free Viewing and Fixation 

conditions respectively. Classification on all 4 classes perhaps performs the worst. Of the 

models experimented as part of this work, CNN on augmented data gives the best results 

for both viewing conditions. Results with the use of Transfer Learning come a close 

second. But these results are in no way comparable to results from Random Forests. For 

both the classification between 3 classes and 2 classes, we observe that for the Free-

Viewing condition, out of the CNNs that were experimented, Transfer Learning gives the 

best results whereas, for Fixation, Data Augmentation helps. We can say that for the Free-

Viewing conditions, accuracy shows a promising increase when deeper networks are used.  

Generally speaking, the free-viewing condition fares better than the fixation condition. 

In none of the experiments does the fixation condition come close to the accuracy achieved 

in raw data using Random Forests. Does adding pupil information help? Looking at the 

classification results for 4 classes, we cannot see a significant improvement in accuracy by 

including the pupil data. By comparing the results of our “Deep CNN” implementations 

with those from [9] using ConvNet + SVM, the results are comparable but do not exceed 

for the Free Vewing condition. On the contrary, adding pupil information shows improved 

results for the Fixation condition.  

Although computer vision tasks are usually greatly solved with the help of CNNs, we 

observed, with our problem, that it is not always true. Machine Learning models like 

Random Forests seem to be working best in both the cases of Fixation and Free-Viewing 

conditions, but CNNs show comparable results with the help of techniques like Transfer 
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Learning and Data Augmentation for the Free-Viewing condition. For the Fixation 

condition, the models do improve in accuracy than previous CNN implementations. 
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VIII. CONCLUSION AND FUTURE WORK 
 

In this study, we viewed the problem of task classification as a computer vision problem 

and tried to incorporate pupil information in our representation. Results showed that simple 1 

layered CNNs were not equipped for this problem. As a solution, we tried Deeper CNNs that 

improved the accuracy as the added layers were able to extract more information. In addition 

to that, to combat the problem of a small dataset, we implemented the technique of Transfer 

Learning due to which we observed significant improvements in accuracy for the Free-

Viewing condition. Another solution that we employed was data augmentation; by 

synthetically reproducing data, we achieved improved accuracies, especially for the Fixation 

condition.  

Although these results were promising, they do not yet compare to the Random Forest 

results. Machine Learning is still the winner. But an important point that can be observed by 

comparing the performance gain from CNNs in both viewing conditions is that CNNs 

techniques do better in situations where visual attention is maximum. Free-viewing conditions 

require the user for active participation. Whereas, the CNNs still struggle when user attention 

is minimal and when the visual representation fails to deliver all the information. The human 

eye as well as the models struggle to visually distinguish between different task type scan paths 

with low attention. We focused on the computer vision aspects of this problem as part of this 

study, but other studies can focus on leveraging the sequential information in the data and 

employing algorithms like HMMs, LSTMs and ensemble of classic machine learning 

algorithms. 
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The ability to understand the task type of a visual search experiment can open many doors 

in the field of Human-Computer Interaction. User service can be customized if we can know 

where the user is looking at and what interests them. In the world of virtual and augmented 

reality, tracking what the user sees and tailoring experiences based on it can significantly 

improve user satisfaction. Studies can be carried out on not only identifying the task type from 

the observations but also on identifying user attributes like age from the viewing patterns. The 

domains of user behavior and user psychology combined with computational techniques open 

the paths to numerous researches. 
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