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Abstract 

Although the first bacterial genome sequence was published almost 20 years ago, there 

is still no generalizable method for automatically assigning natural products to their 

cognate biosynthetic gene clusters (BGCs). This thesis describes the development of a 

mass spectrometry-based parallel stable isotope labeling (SIL) platform, termed 

IsoAnalyst, which automatically associates metabolite stable isotope labeling patterns 

with BGC structure prediction in order to connect natural products to their cognate 

BGCs. The parallel SIL experiments were optimized for small scale and a custom tool 

written in Python was developed for the untargeted detection and interpretation of SIL 

labeling patterns. This approach was validated in the industrial production strains 

Saccharopolyspora erythraea and Amycolatopsis mediterranei demonstrating that the 

compounds erythromycin A and rifamycin SV respectively, could be associated with the 

proper BGCs based on the distribution of isotopomer labeling patterns. The method was 

further validated by connecting known biosynthetic intermediates of these compounds to 

their associated BGCs and the identification of various siderophores through a 

combination of SIL labeling patterns and MS/MS fragmentation data. Extension to 

environmental organisms using a sequenced Micromonospora sp. from our 

Actinobacterial isolate library led to the discovery of lobosamide D, a new member of the 

lobosamide family of natural products, and an update to the lobosamide BGC to include 

relevant tailoring enzymes. This discovery illustrates the power of the IsoAnalyst 

platform for identifying new compounds, linking molecules to BGCs, and generating new 

knowledge about biosynthesis.  

Keywords:  Metabolomics; Mass Spectrometry; Stable Isotopes; Biosynthetic Gene 

Clusters; Natural Products 
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Chapter 1.  
 
Modern Natural Products: Interdisciplinary 
Approaches in the Multi-Omics Era 

1.1. Introduction  

The relationship humanity shares with chemistry produced in nature has been 

central to not only to our health but also to our indulgence in food, color, and aromas for 

as long as humans have had the capacity to value such pleasures.1,2 The oldest 

recorded uses of natural products come from plants, as they are a plentiful and 

accessible source of chemistry. Records of humans using plants for medicinal purposes 

dates back as far 2900 B.C., with the Ebers Papyrus, an Egyptian pharmaceutical record 

documenting over 700 plant-based medicines.1 Willow bark, for example, has been 

utilized as a medicinal treatment for pain and fever in traditional cultures around the 

world for thousands of years, due to the presence of a compound salicin, which is 

metabolized to the active component, salicylic acid, in the human body.1,3 In the 

nineteenth century, salicylic acid was further developed into acetylsalicylic acid, more 

commonly known as aspirin, and is still one of the most popular drugs for treating 

common maladies.3  

Since the advent of natural product chemistry as a modern scientific discipline, 

we have been continually inspired by the complexity and specificity of natural product 

structures. Compounds evolved to solve problems encountered by plants, fungi, and 

bacteria in the natural world have had an undeniably massive effect on human health.4,5 

Biological sources from every corner of the planet have been studied for their capacity to 

produce bioactive chemistry.1,6 Single-agent approaches to drug discovery have not only 

advanced therapeutic applications, but also provide researchers with chemical probes 

and tools for studying mechanism of action.7,8 While the question of how many truly 

novel natural product scaffolds remain to be discovered in nature is still contended,9–11 

the ecological functions of many known natural products are still not understood.5,6 In the 

last century there have been significant advances in our ability to study these 

compounds, which are often produced in incredibly small quantities due to their potency 
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and the energy required to produce them.12 Genomics has further changed the face of 

natural products by revealing immense metabolic diversity in the genomes of 

microorganisms.13,14 Genetic and environmental factors contribute to the chemical 

phenotype of plant and microbial sources,15 suggesting more complex questions 

surrounding the biological production and ecological functions of natural products. 

In the post-genomic era, natural products research has moved beyond drug 

discovery to other applications in human health such as the complex interactions and 

immunity conferred by the microbiome.16,17 There is no doubt that natural product 

research has had a massive impact on modern medicine,4 but historical, traditional, and 

cultural knowledge of natural sources of medicines are still making their mark on human 

health.18 The Nobel laureate, Tu Youyou, was acknowledged in 2015 for her work 

towards the discovery of the anti-malarial natural product artemisinin, which she 

famously extracted by interpreting ancient Chinese medical texts.19,20 According to the 

World Health Organization (WHO), traditional and complementary medicines are a 

significant source of primary and complementary health care globally.21 WHO 

emphasizes the importance of researching of naturally derived medicines which will 

continue to play a significant role in global health.21 Developing a more holistic 

understanding of natural products and their roles in nature and human health is finally 

possible under the culmination of decades of biological and chemical research in multi-

omics disciplines.18  

1.1.1. The Omics Family 

Twenty years ago, William Bains wrote in regards to the field of genomics:22  

The genome has turned out the be a relatively poor source of explanation 
for the differences between cells or between people. 

This was something of a bitter revelation that took the scientific community 

decades to come to understand. The discovery of the genetic code led to ever growing 

excitement over promises the ‘blueprint for life’ offered to revolutionize medicine by 

revealing a genetic source for every disease. Over time, the sequencing of genes 

became faster, cheaper, and more efficient, and the field of genetics grew into 

genomics. Certainly if genetic sequences could provide the instructions for cellular 

functions, whole genome sequences would reveal every gene and its function in the 
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diversity of life. However, the one gene one enzyme model began to unravel as full 

genome sequencing revealed far fewer genes than could account for all characterized 

proteins.  

At the turn of the century, the field of genomics had reached a pivotal moment. 

The genetic determinism that had dominated the past 50 years of biology was no longer 

sufficient to describe biological variation. In his 2001 commentary “The parts list of life”, 

Bains underpins the significant need to transition towards a systems biology approach in 

order to apply different levels of explanation, such as genomics or proteomics, to higher 

levels of understanding disease, human health, and basic phenotypic variations.22 In an 

earlier commentary, he compares this systematic thinking to a more obvious scenario:23 

Saying that a gene ‘causes’ hypertension or depression is similar to saying 
that a flat tire ‘causes’ a car to slow down. In a few pathological situations, 
the two are causally linked, but most cars traveling slowly do not have flat 
tires. A ‘tire knockout car’ would tell us little about traffic lights or driving 
skills or speed cameras.  

It seems a bit ridiculous to take the tires off of a car in order to answer questions 

about the car’s speed, but this does demonstrate the nature of genetic knock-out 

experiment with a narrow outlook on how the genetic knock-out actually changes the 

system. The speed of the car is not only determined by the tires but also inherently by 

the engine and circumstantially by the driver, traffic, weather, and route. Likewise, a 

gene’s function is determined by many more factors than just its sequence. A researcher 

interested in applying the knowledge of genomics to a biological system needs a toolbox 

of approaches at many explanatory levels, or else risk mistaking a traffic light stuck on 

red with a nail in the tire. Proteomics, transcriptomics, and metabolomics were young 

fields twenty years ago, but they were already being applied in innovative ways to 

explain phenotypes and metabolic processes.24 Genomics, and the daughter 

technologies that have come subsequently, arose from a need to functionally understand 

the connection between genotype and phenotype.  

 Transcriptomics looks at a snapshot of mRNA transcripts present in the cell as 

evidence to account for genes that are actively being transcribed, while proteomics 

provides evidence for enzymes and other proteins that are actively being translated. All 

stages, including genomics, are subject to a variety of factors that regulate and control 

the flow of information through each level.25 Epigenomics is a growing area looking at 
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factors influencing gene expression that has added yet more complexity to the whole 

picture of gene expression.26 Metabolomics is the only omics technology that looks 

directly at output of all the aforementioned biochemical processes. Metabolomics is the 

most direct way to study phenotypic output and has proven to be much more powerful in 

clinical diagnostics than genomics.25,27  The main bottleneck in metabolomics studies is 

still the difficulty in quickly and definitively identifying compounds, as well as 

differentiating unknown from known metabolites.12,25,28 

Today, multi-omics approaches are advancing quickly and becoming the 

standard for understanding biological systems. As our knowledge of biological systems 

deepens, there is an ever greater need to incorporate large datasets together to draw 

meaningful conclusions and many reviews are now available on technological advances 

allowing for the combination of this information.26,29–31 In this thesis I focus on the 

development of a mass-spectrometry based metabolomics tool to connect chemical 

phenotypes to genomic information. The motivation for this work is grounded in the 

unique position of metabolomics to galvanize a more holistic view of systems biology 

through its relationship to other omics technologies. 

1.1.2. The Genomic Era of Natural Product Discovery 

Genome sequencing has fundamentally changed the paradigm of natural 

products research and discovery. By the 1980s, natural product chemistry as a field was 

already focused on the chemical phenotype of cells, but had yet to fully dive below the 

surface of the genomic origin of these metabolites.14 Classical genetic techniques were 

used to establish biosynthetic logic and understand the genetic basis for specialized 

metabolism, but most natural product discoveries in bacteria and fungi were applied in a 

chemistry-focused manner.14 Bio-assay guided fractionation was the dominant technique 

that focused on identifying chemistry in terms of its structure and function.1 Bacterial 

natural products had been a fruitful area of research for a number of decades but around 

the 1990s many industrial research programs were turning away from natural products 

research as it was believed we were reaching a plateau of discovery.1,18 Model 

actinobacterial species such as Streptomyces coelicolor were known to produce a few 

compounds and an organism that produced 5 or 6 compounds was considered a 

privileged producer (Figure 1.1). However, when S. coelicolor was sequenced in 2002 it 
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was found to have a plethora of identifiable BGCs without distinct products known to be 

produced.14,32 This observation became a trend as more bacterial genomes were  

 
Figure 1.1 Natural Products Produced by Streptomyces coelicolor 
Structures of natural products produced by S. coelicolor which were discovered prior to the 
publication of the full genome in 2002 (top), and those products discovered after the genome was 
sequenced (bottom).  

sequenced and initiated a genomics revolution in natural products research. Like genetic 

determinism, genomics-driven natural products research at first promised to generate 
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fast and high-throughput workflows to discover novel chemistry by drawing direct 

connections between BGCs and compounds.13 As databases fill with BGC sequences, 

the influx of novel chemistry discovery has not followed, and the idea that every new 

BGC would also produce novel chemistry was soon shown to be flawed.33 Just as one 

gene does not produce one enzyme, BGCs likewise do not produce singular chemical 

entities.34,35 The levels of explanation of BGC diversity and evolution are still being built 

through the development of computational and analytical tools discussed throughout this 

chapter.  

1.2. Advances and Challenges in Genomic Discovery of 
Natural Products 

1.2.1. Tools for Sequencing and Analyzing Biosynthetic Gene 
Clusters 

With advancing technology and decreasing costs, the accessibility of high-quality 

genome information has increased exponentially.36,37 Over the last decade, this 

accumulation of genome sequence data has inspired the development and refinement of 

computational tools for identifying biosynthetic gene clusters (BGCs),38 predicting 

structural elements of the compounds they produce,39,40 prioritizing novel BGCs,41 or a 

combination thereof.42 Technological advances in sequencing have been a major driver 

in that ability of researchers to access genetic sequences of BGCs. BGCs are made up 

of large multi-modular domains resulting in long repetitive genetic sequences that are 

difficult to align due to high overlap.43 Second and third generation sequencing 

technologies have complementary strengths, in terms of read length compared to error 

rate.44 Third generation single molecule real time (SMRT) sequencing produces average 

read length of over 10 kb, compared to the 250 bp maximum read length of Illumina 

HiSeq, but suffers from a higher error rate.44 For the application of assembling the large 

multi-domain BGCs that produce natural products, the tradeoff of a higher error rate for 

longer read lengths offered by SMRT is necessary to align large BGC sequences. Even 

laboratories that are not equipped to work with genomic sequencing technology can 

access genomic data and analysis of published BGC sequences through public 

databases such as the atlas of biosynthetic gene clusters within the Integrated Microbial 

Genomes system (IMG-ABC),45 the Minimum Information about a BGC database,46 and 

the antiSMASH database47 (Figure 1.2). These databases will continue to grow in both 
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size and value to the scientific community as annotations and experimental validation of 

chemical structures are updated. Community efforts such as the Natural Products Atlas48 

and Lotus49 databases also enhance our understanding of the “specialized metabolome” 

by providing curated records linking structures to the taxonomy of their producing 

organisms. 

 
Figure 1.2 Overview of Genomics, Metabolomics, and SIL Tools 
This thesis focuses on the intersection of genomics, metabolomics, and SIL, which have 
complementary technologies and have been integrated in various ways. The center of this figure 
shows the technologies and advantages of each technique and the lines connecting genomics, 
metabolomics, and SIL show current integration of each technique. Genomics tools for BGC 
identification include antiSMASH for bacterial genomes, as well as related programs for fungi, 
plants, and intestinal microbiome sources, large-scale comparative genome analyses (BiG-
SCAPE52), and open source BGC databases such as MIBiG46 and IMG/ABC.45 In metabolomics, 
growing metabolite databases facilitate the extension of both targeted and untargeted studies. 
SIL has proven to be a versatile technique, which is applied in different ways to both genomics 
and metabolomics.  

Because of the increasing availability of full genome data, there have also been 

important advances in computational tools for the identification of BGCs, and for 
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prioritizing them based on novelty or relatedness.50 High confidence/low novelty tools 

that utilize hidden Markov models (HMM) and training sets to identify BGC Pfams are 

now standard for identifying non-ribosomal peptide synthase (NRPS) and polyketide 

synthase (PKS) BGCs.36 Computational tools such as antiSMASH42 and PRISM37  apply 

HMMs to identify BGCs and represent a significant advance in the accessibility of BGC 

analysis to natural product chemists who do not typically have the background or 

resources to work with large genomic datasets. These tools rely on training sets of 

sequence alignments from well-characterized biosynthetic domains and therefore have a 

bias towards finding BGCs related to known classes. Although this is very effective for 

identifying new BGCs of known classes, two novel algorithms that prioritize novelty over 

confidence have been developed. The ClusterFinder algorithm uses an HMM to identify 

regions of the genome containing Pfam domains that resemble the overall organization 

and frequency of a BGC, as opposed to specific domains related to biosynthetic 

transformations.38 ClusterFinder is available within the antiSMASH platform and can be 

run alongside the more traditional profile HMM algorithm for detecting known 

biosynthetic classes. Another approach, termed EvoMining, searches for additional 

copies of genes for primary metabolic enzymes, on the basis that specialized 

metabolism evolves from divergent copies of primary metabolic genes.41 EvoMining 

prioritizes novelty by searching for genes known to derive from primary metabolism, but 

which may have novel biosynthetic activity compared to relying on training sets derived 

from known biosynthesis.41  

The growing accessibility and versatility of these BGC analysis tools has 

transformed genome mining towards a more global approach. Large-scale comparison 

of genomic datasets and sequence alignment has enabled BGC discovery and 

classification across phyla, and deepened our understanding of gene cluster 

families.14,33,36 The sequencing and characterization of hundreds of BGCs over that past 

ten years has opened new opportunities to look at the global diversity of BGCs across 

phyla. Comparisons of BGC families across multiple genomes have proven to be 

powerful tools in leveraging these large dataset for natural product discovery.38,51 

Bacterial genome analysis is rapidly changing from an effort directed towards a handful 

of strains, to one focused on thousands of sequences. Large-scale comparisons of BGC 

families have proven to be powerful tools in leveraging these large datasets for natural 
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product discovery and for associating shared biosynthetic capacity with natural product 

production.31,52 

1.2.2. Connecting Molecules to Biosynthetic Gene Clusters 

The highest standard of evidence for connecting a BGC to the metabolite(s) 

produced is through heterologous expression, or a combination of promoter and knock-

out studies to validate compound production when the BGC is being expressed. Pre-

genomic era approaches relied on reverse genetics and heterologous expression to 

painstakingly assign BGCs to known chemistry.14 Modern techniques for heterologous 

expression53,54 and silent BGC activation55 have re-invigorated biochemical approaches 

for natural product discovery. However, the massive accumulation of genomic data is 

further enabling analytical techniques for making connections between BGCs and 

compounds on a larger scale.31 New BGCs are discovered with a higher frequency than 

new natural products due to a lack of tools for systematically connecting chemistry with 

BGCs.31,56 It is a much more standard procedure to detect and compare BGCs across 

genomic datasets than it is to fully characterize the chemical potential of a single 

organism.  

Two major bottlenecks in identifying chemistry from BGCs are the inaccuracy of 

compound structure prediction from BGC sequences, and the detection and 

dereplication of known and unknown compounds in metabolomics datasets.31 Structure 

prediction from BGC sequences does not currently have a high enough accuracy to be 

fully automated.31 Although domain sequences can be leveraged to predict enzyme 

substrates, especially for PKS and NRPS gene clusters, tailoring reactions, 

modifications, and cyclization reactions are not as predictable.31 This precludes the 

ability to predict the exact structure, fragmentation, and molecular formula of a natural 

product from its BGC. Research on co-evolving sub-clusters are advancing our ability to 

predict shared structural features among gene cluster families,40 however literature 

review remains necessary for accurate BGC substrate analysis.  

One of the most significant challenges is that not all BGCs are expressed under 

laboratory conditions.33  There are many techniques that can assist in the expression of 

cryptic or silent BGCs, including media experiments (one strain many compounds), 

challenge agents such as antibiotics, and co-culturing have all been used to encourage 
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expression of BGCs.57 Many innovative approaches have been developed to elicit 

compound production including high-throughput elicitor screening58 and CRISPR-Cas9 

strategies for activating BGCs in the native host.55 However, these powerful tools for 

compound elicitation still require advanced analytical techniques to identify target 

compounds.  

To address analytical challenges, there are two main types of approaches for 

connecting molecules to BGCs using MS metabolomics data. Feature-based methods 

use pattern matching of molecular networks generated from MS/MS fragmentation data 

to structural predictions from BGCs. The molecular networking approach employed by 

the Global Natural Products Social Molecular Networking (GNPS) knowledge base uses 

MS/MS spectra to visualize MS features with related fragmentation spectra59 (Figure 1.2) 

Algorithms that predict BGC substrates, particularly for NRPS gene clusters, can be 

associated with molecular families identified by MS/MS networks.34,60,61 This is effective 

for discovering compounds of specific classes, especially those that have distinct 

MS/MS fragmentation patterns. Correlation-based methods look at links between gene 

cluster families and molecular families across many strains harboring related 

BGCs.31,35,62 Correlation-based methods can associate shared chemistry produced 

across many strains without MS/MS data, although the fragmentation spectra often plays 

an important role. A recent preprint by Eldjárn et al. details a novel computational 

approach which applies both feature and correlation based linking of compounds to 

BGCs systematically.63 It is clear that all of these approaches have powerful ongoing 

applications in natural product discovery by genome mining. However, the over-reliance 

on MS/MS fragmentation for identifying and characterizing chemistry is a weakness that 

biases these approaches towards compounds that fragment well and BGCs that have 

predictable structures. Indeed, substrate predication is not nearly as automated as 

MS/MS fragmentation or BGC correlation across strain libraries, so orthogonal analytical 

methods to identify products of BGCs would greatly enhance these approaches.  

In this chapter I describe the context of the development of such an analytical 

method which relies on genomics, metabolomics, and SIL tracers to identify natural 

products in association with the producing BGC. This method relies on the strengths of 

each area, and the modern technological advances that have galvanized the opportunity 

to draw connections between BGCs and chemistry in a systematic manner.  
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1.3. Natural Product Characterization in Metabolomics 

1.3.1. Primary and Specialized Metabolomics 

Natural products are generally understood to be small compounds (< 1500 Da) 

produced in nature that do not serve any primary biological function, but may serve 

important biological roles under environmental pressures. For this reason, natural 

products have been referred to as ‘secondary metabolites’, implying that they are not 

required for the organism’s survival.64,65 Our understanding of what constitutes a 

secondary metabolite remains unclear as many molecules traditionally categorized as 

natural products have been shown to serve essential biological functions in niche 

environments. Consequently, the term ‘specialized metabolite’ is often used to indicate 

that these molecules serve specialized but still essential functions. While the monomeric 

units of proteins, sugars, DNA, and lipids remain nearly ubiquitous across domains of 

life, specialized metabolites are distributed according to varying ecological and 

evolutionary pressures.65  

In reality, all structural classes of compounds are differentially subject to 

metabolomics-based investigation, and do not divide neatly into primary and specialized 

metabolites based on physical and chemical characteristics alone.28 Primary and 

specialized metabolism also share pools of monomers and are biochemically structurally 

related evolutionary relatedness between metabolic processes.66 For example, even 

though they are often structurally modified and contain non-canonical amino acids, 

NRPS compounds can be analyzed by fragmentation patterns using the same physical 

and chemical principles that define how protein sequences are derived from predictable 

fragmentation in proteomics.67 Similarly, terpenes and fatty acids come from completely 

different biosynthetic classes, but both are characterized by hydrocarbon backbones. 

Although derived from different biosynthetic pathways and serving different biological 

roles, these classes of compound can both be detected and quantified by standard 

GCMS methods due to their volatility, availability of standards, and abundance of 

published protocols.68,69  

Within this body of work I will henceforth use the terms specialized metabolite 

and natural product synonymously. This is done with the intention of distinguishing 

primary and specialized metabolomics studies, not by the compounds detected in the 
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experimental system, but rather by the experimental design and proposed data analysis. 

Primary metabolic pathways that are central to proliferation and growth have been 

studied through metabolomics to establish pathway sequences, compare altered 

metabolism is different disease states, and as disease markers.25,28 Primary 

metabolomics often goes beyond looking at a snapshot of metabolite levels, towards the 

study of fluxomics, which aims to observe metabolic flux in biological systems.70 

Systems biology and fluxomics studies can inform natural product applications, 

especially in chassis optimization for production of the primary building blocks necessary 

for heterologous expression. However, secondary metabolomics studies typically aim to 

characterize the final product of a pathway, rather than assess the overall metabolic 

processes at play.12  

Both primary and specialized metabolomics aim to characterize the final products 

of gene expression however the prioritization of detected compounds differs significantly. 

Primary metabolites can be studied in a very targeted manner, focusing only on 

compounds with known identities, to derive biological insight.12 For example, routine 

metabolomics methods targeting central metabolites are used to characterize glycolysis, 

pentose phosphate pathway, and the TCA cycle as well as amino acid metabolism.25 

Many specialized metabolomics experiments aim to discover unknown or novel 

metabolites and identify known compounds only in order to deprioritize them.12 The 

value of natural products in human medicine drives this field to focus heavily on the 

discovery of new chemistry, for applications in drug discovery. The differences in aims is 

what sets apart primary and specialized metabolomics studies more than the target 

metabolites, as there is often overlap between primary and specialized metabolite pools. 

Annotation of chemistry associated with BGCs has implications across many disciplines 

in both medicine and chemical ecology.13 

1.3.2. Traditional Compound Isolation and Characterization 

Compound identification and characterization techniques have changed 

significantly throughout the history of studying natural products. In the earliest period of 

natural product discovery, from the 1940s through the 1970s, relatively simple analytical 

techniques were frequently rewarded with the discovery of novel compounds with 

powerful biological activities.64 Extracts were typically profiled using a simple but 

powerful screening technique known as TLC-bioautography. Biological extracts were 
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applied as mixtures to agar plates inoculated with target organisms as whole-cell 

live/dead assays. Hits were determined by a zone of inhibition around the spot where the 

extract was applied. Extracts demonstrating activity were then further separated using a 

TLC solvent system, and applying TLC-separated extracts to the same agar assays in 

order to track the active component in the mixture. In this iterative manner, the active 

component was identified and purified from large scale fermentations for further 

characterization.64,71 Prior to HPLC, isolation methods were less precise and often 

resulted in mixtures of isomeric compounds. Similarly, chemical characterization 

methods such as IR, NMR, and degradation analyses were less precise and required 

large quantities of compound. Because of these limitations, this period is defined by the 

discovery of compounds often produced in high titer under laboratory conditions, and 

compounds which have strong identifiable activity in whole-cell antibacterial assays.  

In the 1980s, HPLC revolutionized natural product research through the 

development of the bio-assay guided fractionation approach.1,64 Bio-assay guided HPLC 

fraction workflows were essentially a result of multiple technological advances in both 

chromatography and biological activity determination. HPLC separations of extracts are 

slow due to their time-consuming and serial nature compared to TLC which is relatively 

quick and easily run in parallel conditions.71 Despite this, the improvement in 

chromatographic precision achieved with HPLC allowed for more complete separation of 

isomers, confidently purified compounds on a micro-scale, and all around more efficient 

workflows. Automated fraction collection systems were a major driver in the throughput 

of this fractionation process, which was necessary to keep up with the advances in 

biological screening. By the mid-2000s, high throughput screening campaigns were 

becoming more available for applying large libraries of compounds made from HPLC 

separated extracts from natural sources.1 Developments in NMR and MS technologies 

further drove this field to isolate and characterize more compounds.72 

Bioactivity guided fractionation by HPLC quickly became a dominant workflow in 

natural products and it is still relied on heavily today. However, even carefully planned 

HTS and metabolomics experiments often lead to the rediscovery of compounds that 

were just as easily discovered in the TLC-bioautography workflows of the 60s and 70s.1 

Technological advances certainly drove natural products discovery over the last several 

decades, by improving the purification and analysis of natural products, but the 

challenge of deconvolution remains as a complex problem in metabolomics today as it 
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was in early discovery workflows. Indeed, databases with Rf values in numerous solvent 

systems and bioactivity profiles of natural products were used to dereplicate TLC-

bioautography results much in the same way MS/MS fragmentation comparison has 

become essential to the dereplication toolbox of modern natural products 

researchers.59,71 Advancing technology is continually met with the infinite complexity of 

nature.  

Modern metabolomics is done using MS or NMR based approaches and both 

have advantages and challenges associated with them. NMR is inherently quantitative 

but this advantage also biases the technique towards compounds produced in higher 

concentrations.65 Various techniques have been developed for compound identification 

by NMR metabolomics of complex extracts,73 however, the work presented in this thesis 

focuses on MS-based metabolomics approaches.  

1.3.3. Mass Spectrometry Metabolomics 

Technological Advances in MS have motivated the application of metabolomics 

to many different biological systems. Although it is sample destructive, MS is a highly 

sensitive technique for many compound classes and for this reason is often preferred 

over NMR for metabolomics applications. Improvements in MS resolution have 

culminated in the ultra-high resolution of the Fourier transform ion cyclotron resonance 

(FTICR) (resolution >500,000, accuracy <1ppm).65 The increase in mass accuracy has 

greatly improved our ability to predict molecular formulae and identify compounds by 

database matching. Still, a sub-1 ppm mass error is not sufficient to eliminate all 

possible molecular formulae.74 Advances in ultra-high-pressure liquid chromatography 

(UPLC) technology has allowed for sub-2 µm particle size, pressures above 500 bar, 

and effective runtimes under ten minutes. UPLC-MS is ideal for high throughput of 

metabolomics samples due to the short runtimes and excellent reproducibility in peak 

retention. No single hyphenated MS technique is ideal for complete coverage of all types 

of metabolites, however orthogonal chromatography methods (reverse phase, HILIC, 

GC, super critical fluid chromatography) and ionization techniques (ie EI, ESI, APCI, 

MALDI, DESI, etc) facilitate customized workflows for diverse metabolite coverage. 

Protocols for specific classes of compounds have become standardized for targeted 

metabolomics studies, especially of primary metabolism.25 



15 

In terms of natural products research and discovery, MS/MS molecular 

networking has become the gold standard for dereplication and has invigorated many 

creative MS metabolomics applications.75 The GNPS community has contributed over 

70,000 annotated MS/MS spectra for known compounds, allowing a more 

comprehensive and streamlined process for dereplication than ever before. The strength 

and sensitivity of modern MS technologies combined with the accessibility of the GNPS 

database has changed the face of natural products discovery. Beyond dereplication, the 

layering of multi-informational data such as bioactivity, taxonomy, geographical location, 

genomics, epigenetics, and SIL have greatly enhanced opportunities to apply molecular 

networking to complex problems and large datasets.75 Imaging MS has also invigorated 

new natural products discovery approaches by allowing for spatial resolving power and 

in situ detection of metabolites. There are many different ionization techniques for 

imaging MS that can be applied to different types of samples and target compounds.76 

Imaging MS can also be paired with different detection systems to allow for high mass 

accuracy, ion mobility separation, and MS/MS fragmentation.76  

These developments have led researchers to move towards a more global 

outlook on metabolomics. The sensitivity and throughput of modern MS technology 

allows for the acquisition and analysis of hundreds of thousands of mass features, many 

of which are not able to be identified by database searching.25,28 As our experimental 

snapshots of the metabolome become more complete, it is clear that our current view of 

metabolism is insufficient to account for the complexity observed in the metabolome. 

These observations demonstrate that targeted metabolomics studies will only take us so 

far in advancing our understanding of metabolism, and consequently untargeted 

metabolomics workflows have become more popular and standardized.25 While targeted 

metabolomics studies can be said to be ‘hypothesis-driven’, untargeted metabolomics 

studies are better viewed as ‘hypothesis-generating.’ A more global view of the 

metabolome promises an incredible potential for discovery, but is accompanied by new 

experimental and computational challenges. Untargeted MS metabolomics approaches 

have been mainly limited by compound identification which precludes the ability to draw 

significant biological conclusions.25 Untargeted approaches are still limited by compound 

identification, however there are a growing number of tools available to analyze MS 

metabolomics data in an untargeted manner, and databases.  
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1.4. Stable Isotope Labeling 

There is no doubt that isotopic labeling has shaped and driven our understanding 

of metabolism. The radioactive isotope 14C was used by Krebs to elucidate the TCA 

cycle77 and soon became established as the primary technique for following the fate of 

carbon atoms through biological transformations. Even stable isotopes such as 13C and 
2H were detected by chemical degradation prior to the availability of MS to elucidate the 

biosynthesis of cholesterol.78 Since heavy isotopes were first used in substrates to be 

fed into a biological system and traced to determine their metabolic fate, many advances 

have been made in both applications of SIL feedings, and detection of downstream 

metabolites. MS in particular has allowed for the efficient detection of stable isotopes, 

which have effectively replaced radioactive isotopic tracing in biosynthesis studies due to 

the considerably safer and more sensitive detection of stable isotopic tracers. SIL is the 

cornerstone of natural product biosynthesis, however, SIL applications are far from old-

fashioned, and are continually being adapted for use with innovative applications.70  

1.4.1. SIL Approaches for Genome Guided Natural Product Discovery 

Because SIL precursor feeding has been so successful in the area of elucidating 

biosynthesis, it is a natural addition to the toolbox of genome-based discovery. 

Information about the domain specificities within BGCs allow for substrate predictions, 

which are particularly well-studied for NRPS and PKS gene clusters. The genomisotopic 

approach coined in 2007, led to the discovery of the lipopetides, orfamides A-C.79 In this 

study the authors identified an NRPS BGC and used computational tools to predict the 

amino acid sequence of the peptide product79 (Figure 1.3) They used 15N labeled 

leucine, which was selected because it was predicted to occur in the product structure 

four times, ensuring more robust MS and NMR signals. This was a highly targeted but 

effective approach, which relied on selecting SIL precursors specific to a single target 

BGC.  

Similar approaches have been successful in targeting compound discovery 

based on substrate specificity analysis of enzymatic domains of cryptic BGCs.80,81 This 

however often requires the use of advanced precursors which target the BGC of interest 

selectively compared to other BGCs present in the genome. Compounds that are 

tailored to predicted enzyme specificity are more expensive and it is common to use 
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precursors containing multiple labeled positions to clarify instances of direct 

incorporation from labeling derived from metabolic processing of the SIL precursor prior 

to incorporation80 (Figure 1.3) Although the genomisotopic approach is powerful for 

targeted discovery, these limitations impede the development of an easily generalizable 

approach for isotopically labeling natural products globally. 

 
Figure 1.3 SIL Tracers and Common Biological Applications 
Examples of SIL tracers that are commonly used in SIL feeding experiments to study primary 
(orange boxes) and specialized (blue boxes) metabolism. Most groups of metabolites used as SIL 
tracers may be applied to both primary and specialized metabolism. Because metabolic flux 
experiments look at the full metabolic landscape, they tend to rely on central primary pathways 
while specialized SIL metabolomics tend to use more targeted SIL tracers.  
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1.4.2. Stable Isotope Labeling in MS Metabolomics 

SIL has many versatile applications in MS metabolomics. In particular, SIL 

assists in molecular formula assignment74 and in differentiating biologically derived 

compounds from background ions.70 Fully labeled extracts can be paired with unlabeled 

extracts as reference standards to assist in compound identification.70 SIL MS 

metabolomics is also applied to detect the biotransformations of xenobiotics82 as well as 

in metabolic flux analysis to determine metabolic fluxes under steady-state or dynamic 

conditions.83 Metabolic flux is a measure of metabolite turnover over time and provides 

an orthogonal view of cellular metabolic phenotype to metabolomics (Figure 1.3).   

Metabolomics is an attempt to observe the complete metabolic phenotype of an 

organism at a given moment in time.70 Although this static view of the metabolome is rich 

and informative, it is not sufficient to gain a complete biological understanding of 

metabolism. Fluxomics is an adjacent field to metabolomics that is often used in 

conjunction with other ‘omics’ techniques to build systems level models of biological 

systems. SIL compounds, typically labeled by 13C, are used to trace the flux through 

different metabolic pathways over time. Advanced computational analysis of SIL 

incorporation across the metabolome can determine pools of metabolites that are 

enlarged or depleted, and illuminate the metabolic pathways responsible based on 

layered omics information that underlies the constructed metabolic network.83 Metabolite 

levels and fluxes provide complimentary and essential pieces of information in 

understanding the underlying metabolic system.70 For example, a metabolomics 

experiment may detect a significant increase of a certain metabolite in a disease state 

model, but the metabolite level alone will not tell you if the pathway that consumes it has 

been downregulated, or if a reaction that produces it has been upregulated. Complex 

computational models are used to interpret these data but intuitive interpretation of 

untargeted SIL metabolomics data can be used to complement fluxomics. Because 

metabolic flux analysis is constraint based and requires exact inputs to the system, it is 

not ideal for natural product discovery which relies on changing environmental conditions 

and genetic manipulations to encourage compound production. In natural products, 

fluxomics analyses are most often applied to microbial factory and chassis optimization 

as opposed to compound discovery. However, because fluxomics aims to look at the full 

metabolic system of an organism, many powerful orthogonal data analysis tools have 

been developed for untargeted SIL detection across the metabolome.84  



19 

1.4.3. Untargeted Metabolomics 

Untargeted SIL metabolomics present a very exciting outlook on the future of 

metabolic studies. These approaches have great potential for discovery of new 

metabolites, pathways, and genes.84 As I have covered throughout this chapter there 

have been significant advances in MS technologies, and SIL approaches that facilitate 

researchers’ ability to access massive amounts of data about biological systems. 

Despite the exciting perspective these approaches can bring to studying metabolism, 

untargeted SIL metabolomics is still quite intractable due to the great difficulty in 

analyzing the data.84 Without knowing ahead of time which compounds to look for, MS-

metabolomics datasets are intimidating in the sheer number of ions to interrogate. 

Advances in automated processing and database information about known compounds 

are assisting in the progress of dereplicating known compounds in both primary and 

secondary metabolism. Most of these methods are focused on fluxomics, and primary 

metabolism, but there are powerful implications these approaches can have in 

specialized metabolite discovery.  

In natural products discovery, truly untargeted SIL MS metabolomics approaches 

are not common. Although it is true that all metabolomics studies aim to find the 

metabolic phenotype of a particular genotype, natural product metabolomics has a 

particularly strong focus on final metabolite discovery. Many untargeted approaches aim 

to identify metabolites in the context of their biological role in metabolism and often 

generate hypotheses about the biological system being studied.84 In these kinds of 

metabolomics approaches statistical analyses are used to determine differences in 

metabolite flux and concentration under a biological context, while novel compound 

isolation is de-prioritized. In natural products, metabolomics is most often used as a 

discovery tool to identify compounds of interest for further isolation and characterization 

and application to an unrelated system.12 Natural product metabolomics innovation is 

marked by the integration of orthogonal biological data from high-throughput screening 

with MS metabolomics data to facilitate compound discovery. This distinction in aims is 

likely why SIL MS metabolomics studies involving natural products are nearly always 

targeted.  

The culmination of knowledge in the areas of genomics, BGC analysis, MS 

metabolomics, and systems biology has created a unique opportunity to better 
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understand the relationship between genes and molecules. I have developed an 

untargeted SIL metabolomics platform which aims to facilitate specialized metabolite 

discovery by genome mining and is flexible enough to apply to any microbial culture and 

compound class. The central principle of this technique it to bring together knowledge of 

both the genome and metabolome to characterize the complex chemical phenotypes of 

BGCs.  

1.5. Overview of IsoAnalyst Approach  

The research described in this thesis brings together the strengths and weakness 

of current approaches in genomics, MS metabolomics, and SIL tracers to produce a 

systematic method for the untargeted discovery of compounds produced by BGCs. This 

platform employs parallel stable isotope labeling (SIL) to categorize specialized 

metabolites in liquid fermentations based on biosynthetic precursor incorporation, and 

connects these molecules to candidate BGCs using annotated genome sequence data. 

Parallel fermentation of the test organism is performed in the presence of either an 

isotopically labeled precursor or a control culture containing the corresponding unlabeled 

precursor for a panel of SIL tracers (Figure 1.4a). In Chapter 2 I describe the 

development of this fermentation protocol and describe the results of optimizing the 

growth media and SIL tracer selection. Following workup and UPLC-MS analysis of all 

samples, the IsoAnalyst pipeline identifies unique MS features present in each condition, 

and compares mass isotopologue distributions between unlabeled and labeled 

conditions to determine the degree of labeling by each precursor (Figure 1.4b). In 

Chapter 3 I describe the IsoAnalyst program itself, including the input data requirements, 

statistical analysis, and validation. I further validate the application of IsoAnalyst in 

Chapter 4 using model organisms with well-characterized biosynthetic pathways. The 

experimental precursor incorporation patterns determined by IsoAnalyst are then 

manually compared against the theoretical precursor incorporation rates derived from 

BGC annotations (Figure 1.4c) to yield candidate BGC(s) responsible for the production 

of each labeled metabolite. This approach streamlines the categorization of analytes by 

their biosynthetic origin and reduces MS metabolic profiles to quickly delineate the 

complex phenotypes of BGCs. In Chapter 5, I demonstrate the full application of the 

IsoAnalyst platform and BGC analysis on a sequenced environmental isolate, 

Micromonospora sp., from our Actinobacterial isolate library. This complete workflow 



21 

culminated in the association of both known and unknown compounds originating from 

the same BGC and the discovery of a new analogue belonging to the lobosamide family 

of macrolactams. There are many exciting and innovative applications for the IsoAnalyst 

platform to facilitate novel compound discovery and complete characterization of 

complex chemical phenotypes. In this thesis, I lay the foundation for this technique and 

demonstrate the utility of IsoAnalyst to understanding biosynthetic potential in 

microorganisms. 

 
Figure 1.4 Overview of the IsoAnalyst Workflow 
(a) SIL and unlabeled extracts are grown in parallel for four days, extracted, and analyzed by 
UPLC-MS. (b) IsoAnalyst program identifies SIL incorporation in MS features aligned across all 
samples. (c) IsoAnalyst profiles generated for all MS features are compared to curated genomic 
information from antiSMASH and MIBiG.  
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Chapter 2.  
 
Design and Optimization of Parallel SIL Fermentation 
Method 

2.1. Introduction  

 Stable isotope labeling (SIL) is a versatile technique that is utilized in many 

different biological and chemical applications. There are two main ways to apply SIL 

treatments to biological samples. You could replace an essential nutrient completely with 

a labeled version to generate a fully labeled metabolome. For example, replacing the 

sole carbon source in a minimal media with U-13C6 glucose for multiple generations 

results in a metabolome fully labeled by 13C. Replacing an essential nutrient entirely with 

an SIL compound is powerful in that it allows the researcher to trace all metabolic 

processes involving that nutrient. This approach is used for metabolic flux 

measurements, quantification of known compounds, and untargeted discovery of novel 

metabolic pathways, however it is expensive to fully replace an essential nutrient with an 

SIL version.1 It is also not necessary to fully label a pool of metabolites in order to gain 

insights from an SIL experiment.1  Another approach is to add an SIL tracer molecule as 

a supplement to a culture medium which already contains all essential nutrients. This 

allows the researcher to add more specialized or expensive SIL precursors to target 

specific pathways as opposed to fully replacing a light element for a heavy one 

throughout the metabolome. Stable isotope labeling using amino acids in cell culture 

(SILAC) is commonly used where labeled amino acids are supplemented to the growth 

medium for applications in both metabolomics and proteomics.2,3 Whether fully replacing 

an essential nutrient, or supplementing the culture with an SIL tracer, carefully controlled 

media conditions are used to ensure proper calculations of isotopic incorporation and 

reduce dilution of the SIL precursor by complex media constituents.  

 Although these studies do often use minimal media, not all SIL studies require 

knowledge of the exact isotopic ratios to draw useful biological conclusions. SIL has 

been used in the elucidation of specialized biosynthetic pathways that produce natural 

products by supplementing an excess of SIL tracer in complex growth media.4 There is a 

balance between providing a medium that is rich enough to elicit compound production 



30 

but simple enough to not interfere with the incorporation of the SIL precursor. Studies in 

polyketide biosynthesis for example often use a semi-rich media with aliquots of [1-
13C]acetate or [1,2-13C]acetate supplemented into the media throughout the growth 

phase.5 This is necessary to produce a sufficient amount of labeled material to fully 

purify the target compound and determine the positions of 13C incorporation by NMR. 

There is no one set of media conditions and SIL precursors that will work for all target 

organisms or all BGCs. Metabolism by definition is highly flexible, and chemical 

phenotypes are known to be influenced more by small environmental changes than by 

genomic differences. In this chapter I discuss the preliminary experiments I used to 

develop the experimental design of the IsoAnalyst approach. This experimental design 

may be generally applicable to Actinobacteria, however, these experiments also 

demonstrate the overall considerations needed to optimize the IsoAnalyst method for 

any microorganism.  

2.1.1. Considerations for Experimental Design 

 The purpose of this method is to label natural products on the basis of their 

biosynthetic pathways. Natural product structures are highly complex and are often 

derived from multiple specialized biosynthetic pathways. Microorganisms can harbor 

many different classes of BGCs, but most draw from the same pool of metabolites as 

primary metabolism for biosynthetic building blocks. The substrates of common 

biosynthetic classes such as NRPS, PKS, and terpenes can be partially deduced from 

the sequence of the BGC. I aimed to develop a generalizable method that could be 

adapted to cover many biosynthetic pathways, without expensive or multiply labeled 

tracer compounds. The main factors that went into developing this method were the 

media conditions, selection of SIL precursors, and selection of microorganisms to use for 

the optimization of this technique.   

 Three microorganisms are used throughout this chapter to test different media 

conditions and the SIL precursors. Two of these are model organisms that have been 

studied extensively for their natural product biosynthesis and one is a sequenced 

environmental isolate from our marine Actinobacteria isolate library. I performed SIL 

experiments in a variety of additional type strain organisms during the development of 

this fermentation protocol. The examples selected here generally demonstrate the 

factors that need to be considered when applying the IsoAnalyst technique to any target 
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organism, and the basis for the optimized protocol used throughout the rest of this 

thesis.  

 Streptomyces coelicolor M145 was selected due to it’s well-studied metabolism 

and known production of a variety of natural products. S. coelicolor is a popular 

organism to test different environmental conditions due to the production of the colorful 

pigments actinorhodin and prodigiosin, which allow for the easy visual evaluation of 

metabolic changes. Four compounds produced by S. coelicolor are described in this 

chapter. Dihydrokalafungin (2.1) is the biosynthetic precursor to the polyketide 

actinorhodin including g-actinorhodin (2.2), streptorubin B (2.3) is a PKS-NRPS hybrid, 

and desferrioxamine (2.4) is a common hydroxymate siderophore produced by many 

Actinobacteria (Figure 2.1). Other known compounds produced by S. coelicolor such as 

calcium dependant antibiotic, and coelimycin were not observed under any of the media 

conditions tested. Saccharoplyspora erythraea NRRL 23338 was used to test SIL 

incorporation into the macrolide antibiotic erythromycin A, and this model organism is 

used throughout this thesis as a proof-of-concept for the entire IsoAnlayst workflow. S. 

erythraea produces the polyketide antibiotic, erythromycin A (2.5, Figure 2.1), which has 

been studied extensively as a model for polyketide biosynthesis6 and antibiotic drug 

discovery.7 Finally, a Micromonospora sp. from the Linington Lab’s marine 

Actinobacteria isolate library was used in the development of this method. This isolate 

was selected due to the fact that it produced a family of polyketides previously 

discovered in our lab, and this had prompted the complete sequencing of it’s genome.8 

Having the full genome sequence of an organism is an important prerequisite for the 

development of this tool and offers discovery potential through genome mining. In this 

chapter I will only discuss the previously characterized lobosamide A (2.6, Figure 2.1) 

produced by Micromonospora sp. The complete strain designations for all microbial 

strains are indicated in the methods at the end of this chapter.  
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Figure 2.1 Natural Products Produced by Model Organisms 
Structures of natural products discussed throughout this chapter and names of the producing 
organisms. Dyhidrokalafungin (2.1), g-actinorhodin (2.2), streptorubin B (2.3), and 
desferrioxamine B (2.4) are produced by S. coelicolor. Erythromycin A (2.5) is produced by S. 
erythraea. Lobosamide A (2.6) is produced by Micromonospora sp.  
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2.2. Media Optimization  

 Media conditions for growing bacteria isolated from marine sources have been 

tested extensively since the 1960s, including both complex and minimal media.9–13 The 

main objectives of these experiments were to selectively isolate marine bacteria that had 

a high likelihood of producing natural products, and to optimize for the production of 

natural products. I am also aiming to enhance the production of different natural 

products, however, my central objective is to optimize the incorporation of SIL tracers 

into the natural products that are produced. Because there is no one growth medium that 

will optimize the production of all natural products an organism is capable of making, it is 

important to test a variety of conditions both for compound production and SIL 

incorporation. Specialized and primary metabolism are intricately connected, and those 

media constituents which are known to modify specialized metabolism also affect the 

central metabolic processes which govern transformations of the SIL tracer prior to 

incorporation into a natural product.14,15 

 The three major essential nutrients that need to be considered in a minimal 

media are carbon, nitrogen, and phosphate. Other essential nutrients include 

magnesium (MgSO4) and iron (FeSO4), but additional heavy metals and salts are often 

included as well. The Actinobacteria strains in our strain library were all isolated from 

marine sediments and were initially grown in a media made with a high salt 

concentration from a product called ‘Instant Ocean’ which contains the approximate salt 

mixture found in ocean water. This was intended for the isolation of marine obligate 

bacteria, however we cultivate many strains that are adaptable to more standard media 

without marine salts. The Micromonospora sp. isolated from our library was known to 

grow in GNZ media which does not contain Instant Ocean, so I aimed to develop a 

standard minimal media recipe with low salinity that could be generalized for all of the 

organisms discussed in this thesis. The ingredients for all media discussed are 

described in the last section of this chapter.  

 All of the experiments discussed in this section test the incorporation of [1-
13C]acetate into polyketide and NRPS compounds. I used this simple SIL tracer for the 

development of this technique due to its high applicability to a variety of natural products 

and its affordability as a simple and commonly used SIL tracer. [1-13C]Acetate can be 

incorporated directly into polyketide products via malonyl-CoA, but can also be 
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incorporated into other biosynthetic monomers such as amino acids through primary 

metabolism recycling (Figure 2.2). This makes [1-13C]acetate a valuable feedstock for 

labeling a wide cross-section of natural product classes but it also complicates data 

interpretation, as I will discuss further in Chapter 4. Briefly, [1-13C]acetate enters the TCA 

cycle as [1-13C]acetyl-CoA resulting in 13C incorporation into all TCA intermediates 

(Figure 2.2). When a 13C labeled succinyl-CoA is converted to succinate, the position of 

the 13C label becomes ambiguous due to the symmetry of succinate. Because of this, 

two positions have an equal chance of being labeled in the subsequent TCA cycle 

intermediates (Figure 2.2). Labeled oxaloacetate re-enters the TCA cycle resulting in up 

to two 13C incorporation events in citrate, isocitrate, and a-ketoglutarate. The 

interconversion of succinate and succinyl-CoA leads to the indirect incorporation of 13C 

into the C1 position of methylmalonyl-CoA as indicated by an open red circle while the 

direct labeling of the C4 position of methylmalonyl-CoA is lost to decarboxylation during 

the PKS condensation of methylmalonyl-CoA units (Figure 2.2). Some amino acids are 

derived from TCA cycle biosynthetic precursors, and therefore are able to be labeled by 

[1-13C]acetate. [1-13C]Acetate incorporation into amino acids was not detected in any of 

the experiments described in this chapter, and will therefore be discussed in more depth 

in Chapter 4.  

 Initially I optimized the media conditions to promote [1-13C]acetate incorporation 

into polyketides due to the expected promiscuity of this SIL precursor incorporation into 

central pathways connected to the TCA cycle. I expected that the media conditions that 

significantly altered central metabolism would result not only in different natural product 

biosynthesis, but also different amounts of SIL tracer incorporation. The experiments 

presented in this chapter are not likely to produce the same results for every organism in 

every media. Media selection is an important part of optimizing and SIL tracer study to 

the test organism’s metabolism, and the media conditions tested in this section 

represent a good starting place for applying SIL feeding to any microorganism. 
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Figure 2.2 TCA Cycle Labeling by [1-13C]Acetate 
Red filled circles represent 13C derived from [1-13C]acetate following its direct transformation to 
acetyl-CoA. Open circles represent labeled carbon positions which are ambiguous due to 
compound symmetry. Molecules depicted with two open circles may have labeling in either 
position but not both. Groups of amino acids that are derived from TCA cycle biosynthetic 
precursors are indicated.  

2.2.1. Carbon and Nitrogen Sources 

Many members of the Actinobacteria phylum that are known for producing 

diverse natural products are found in soil environments. These environments are 

typically rich in different carbon sources from plant debris but are limited in nitrogen and 

phosphate.14 Actinobacteria from both terrestrial soil and marine sediment are known to 
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utilize a wide variety of simple and complex carbohydrates.14 Carbon source influences 

antibiotic production, most notably by carbon catabolite repression which is known to 

repress the production of many natural products while the microorganism is consuming 

glucose as a preferred carbon source.16 Many papers have been published looking at 

the selective use of carbon sources by microorganisms, and the influence of carbon 

source on the production of natural products.10,17  

Nitrogen source also has a significant impact on natural product production and 

overall metabolism. Unlike carbon however, nitrogen is a limited resource in the natural 

soil environment of Actinobacteria. Streptomyces in particular are known to lack 

repression of amino acid biosynthesis pathways, such that most amino acids are being 

produced at all times in the bacterial lifecycle.14 It has been suggested that the tight 

regulation of specialized metabolism allows for the catabolism of amino acids when a 

natural source of amino acids or other nitrogen source becomes available.14 Because 

these bacteria have lost their ability to regulate much of the amino acid production, a 

sudden influx of a nitrogen source can result in the overproduction of certain amino 

acids. Without the ability to repress some of these pathways, natural product 

biosynthesis can act as a metabolic sink for the excess of specific amino acids. The tight 

regulation of specialized metabolism makes up for the lack of regulation of the primary 

metabolic pathways, and therefore can be heavily influenced by the availability of 

specific nitrogen sources. 

2.2.2. Effects of Carbon and Nitrogen Sources on Micromonospora 
sp. Metabolism 

The very first question I pursued as a graduate student was, ‘what minimal media 

conditions induce compound production and facilitate [1-13C]acetate incorporation into 

polyketides produced by Micromonospora sp.?’ I began with the assumption that 

Micromonospora sp. may not produce lobosamides or any other natural product in most 

media, and so I aimed to test nutrients that were shown to influence natural product 

production. I grew Micromonospora sp. in a variety of media conditions with different 

carbon and nitrogen sources and screened for lobosamide A production using LCMS. I 

selected the media that were exhibiting the production of lobosamide A in 

Micromonospora sp., and performed an experiment testing how these media conditions 

influenced [1-13C]acetate incorporation into lobosamide A. Five types of media were 
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tested using [1-13C]acetate, and the full list of ingredients is given in Table 2.1 in the 

methods section at the end of this chapter. Four types of carbon sources were tested 

including glucose, maltose, sucrose, and soluble starch. All of these carbon sources 

were paired with (NH4)2SO4 as a nitrogen source, while starch was tested with both 

(NH4)2SO4 and glutamate due to the fact that both combinations produced lobosamide A. 

The basal media in all conditions was the same (Table 2.1). Observationally, I noticed 

that the starch media enhanced the growth of Micromonospora sp. regardless of which 

nitrogen source it was paired with, while the other carbon sources seemed to induce 

growth and lobosamide A production more when paired with the ammonium nitrogen 

source.  

In this first experiment, I used the Linington Lab’s standard extract library building 

protocol to extract and prepare the SIL samples for UPLC-MS analysis. Briefly, the 

bacterial cultures were grown in 60 mL of liquid minimal media and supplemented with 

12 mM of either unlabeled acetate or [1-13C]acetate. Unlabeled control cultures were 

grown in parallel with SIL supplemented cultures for each media condition. Cultures 

were grown for seven days while shaking at 200 rpm and extracted on the seventh day. 

A standard C18 column chromatography protocol was used to generate prefractionated 

extracts on the basis of polarity as described in the methods at the end of this chapter. 

Previous work done on lobosamide A production by this Micromonospora sp. strain had 

demonstrated that lobosamide A was present in the 80% and 100% methanol fraction 

and so these fractions were further processed for UPLC-MS analysis.  

Figure 2.3 shows the MS results for lobosamide A in an unlabeled sample and in 

each of the five media conditions when labeled by [1-13C]acetate. Clearly observable SIL 

incorporation was detected in the media with glucose and maltose carbon sources 

paired with (NH4)2SO4 (Figure 2.3b,c) as well as in starch paired with glutamate (Figure 

2.3f). The sucrose and starch carbon sources paired with (NH4)2SO4 appeared to have 

very minor SIL incorporation when compared to the unlabeled condition (Figure 2.3d,e).  
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Figure 2.3 [1-13C]Acetate Incorporation in Lobosamide A (2.6) 
MS spectra of the [M+H-H2O]+ ion (m/z 466.29) of 2.6 in media containing different carbon and 
nitrogen sources. (a) Unlabeled MS spectrum of 2.6. MS spectra of 2.6 labeled by [1-13C]acetate 
in media containing (NH4)2SO4 and one of four carbon sources (glucose (b), maltose (c), sucrose 
(d), starch (e)), and an additional media containing glutamate and starch (f).   



39 

These results show that carbon source affects the incorporation of [1-13C]acetate 

into lobosamide A, but the difference between starch media containing glutamate or 

(NH4)2SO4 indicates that nitrogen source influences [1-13C]acetate incorporation as well. 

[1-13C]Acetate incorporation was higher in the starch media containing glutamate 

compared to the starch media containing (NH4)2SO4 (Figure 2.3e,f). Like other bacteria, 

Actinobacteria are known to prioritize nutrient consumption based on availability. This is 

central to carbon catabolite repression, which prioritizes glucose and other accessible 

carbon sources over more complex carbohydrate sources. Because starch is broken 

down into glucose, starch is also known to induce carbon catabolite repression, which 

may not be ideal for the production of many natural products. However, starch is used in 

many of the common growth media used for Actinobacteria and induced observably 

better growth in Micromonospora sp. and SIL incorporation in lobosamide A. Glutamate 

is readily used as a carbon source as well as a nitrogen source, and feeds directly into 

the TCA cycle by conversion to a-ketoglutarate. Media containing glutamate has been 

used to elicit natural product production, and the supply of two carbon sources that feed 

into the TCA cycle from different pathways improves overall growth and natural product 

production.18 Labeling studies using S. coelicolor grown on media containing glucose 

and glutamate indicated that glutamate is a preferred carbon source, which heavily 

dominates the TCA cycle, while glucose-derived carbon dominates the pentose 

phosphate and glycolysis intermediates.19 Because the starch-glutamate growth medium 

feeds carbon sources into the TCA cycle from two different pathways, a surplus of TCA 

cycle intermediates are likely generated. This surplus of TCA cycle intermediates may 

modify the central metabolic processes such that the [1-13C]acetate tracer remains 

available for specialized metabolism. 

Relying only on qualitative analysis, the glucose-ammonium, maltose-

ammonium, and starch-glutamate media had essentially the same results, but the 

starch-glutamate medium may have slightly more SIL incorporation due to the fact that 

heavier isotopologues were detected with a relatively higher abundance (Figure 2.3f). I 

selected the starch-glucose medium moving forward because Actinobacteria are known 

for growing well and producing natural products in media containing complex 

carbohydrates such as starch10 and because I observed more robust and consistent 

growth in the cultures containing starch. Starch is also present in both low salinity (GNZ) 

and high salinity media recipes used in our lab, indicating that starch is often an 
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important nutrient for encouraging both bacterial growth and natural product 

biosynthesis.  

2.2.3. Effects of Nitrogen Source on S. coelicolor Metabolism 

The initial experiment performed with Micromonospora sp. indicated that a 

starch-glutamate minimal medium produced sufficient [1-13C]acetate incorporation in 

lobosamide A, but changing the nitrogen source to (NH4)2SO4 decreased [1-13C]acetate 

incorporation. I aimed to test a starch-based minimal medium with different nitrogen 

sources in another microorganism to determine whether this growth medium was 

generalizable for [1-13C]acetate incorporation in other Actinobacteria. Streptomyces 

coelicolor is a model organism that is known to produce a variety of natural products 

including blue and red pigments, actinorhodin and prodigiosin respectively.  

In the subsequent experiments, I adopted a 24-well plate fermentation protocol 

that was optimized for Streptomyces strains to allow for screening of more conditions,20 

and simplified the extraction protocol. The well plates contain 2 mL of growth medium in 

each well, effectively decreasing the amount of SIL required and allowing for more 

media conditions and replicates to be tested. The complete optimized fermentation 

protocol is described in methods at the end of this chapter. For the extraction of the 24-

well plate cultures, after five days of fermentation, I added an equal volume of methanol 

to each well, resulting in a 1:1 water:methanol extract. Each sample was sonicated and 

centrifuged prior to analysis by MS. This simplified protocol allows for a higher 

throughout of samples, at the cost of less compound coverage. As with any 

metabolomics experiment there will always be some bias in the compounds that are 

extracted and detected. I opted for a simple workup that would retain compounds of 

relatively low and high polarity, from the cells and the supernatant. It is important to note 

that although this general extraction method will work for many natural products, it 

should be optimized on the basis of target compound classes.  
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Figure 2.4 Photos of S. coelicolor Cultures in Different Minimal Media 
S. coelicolor cultures grown in minimal media containing the same core ingredients but varying 
nitrogen sources. Three replicates of each media are shown. (a) Media containing limited 
nitrogen but excess phosphate. (b) Media containing excess nitrogen but limited phosphate. 

Initially, I performed a qualitative experiment growing S. coelicolor in a starch 

based media with different nitrogen sources. S. coelicolor growth and natural product 

production is visually modified in different growth conditions, allowing for facile screening 

of media or other environmental changes. I tested S. coelicolor in 12 different minimal 

media with six different sources of nitrogen and either nitrogen or phosphate limitation. 

All of the minimal media contained starch as a carbon source (Table 2.2). Both nitrogen 

and phosphate limitation have both been shown to elicit different natural product 

production in various organisms.9,11 This experiment was evaluated visually in order to 

narrow down ideal conditions to test [1-13C]acetate incorporation. Figure 2.4 is a 

photograph showing the visual changes in S. coelicolor growth in response to both the 
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nitrogen source, and the limiting nutrient in the media. Figure 2.4a shows the six 

different media when nitrogen is a limited nutrient, meaning the growth medium will run 

out of nitrogen before running out of phosphate. Figure 2.4b shows media containing the 

same ingredients, but with phosphate limitation and an excess of nitrogen. Generally, 

the nitrogen-limited media all induced varying pigmentation and sufficient growth, while 

most of the phosphate-limited conditions resulted in lower growth and little to no 

pigmentation (Figure 2.4). The phosphate-limited medium containing glutamate, 

however, did result in observable red pigmentation and significantly more biomass than 

the other phosphate-limited conditions (Figure 2.4). I selected three nitrogen-limited 

media from this panel to move forward and test [1-13C]acetate incorporation with S. 

coelicolor. I selected the (NH4)2SO4, glutamate, and asparagine media, due to the fact 

that these three media resulted in visual differences in pigment production in the initial 

screening (Figure 2.4a).  

I performed an experiment using the 24-well plate protocol and addition of 12 mM 

of [1-13C]acetate in these three media and analyzed the samples by UPLC-MS according 

to the protocol described at the end of this chapter. The glutamate media again showed 

the best results across all the compounds detected in this experiment. Figure 2.5 shows 

the [1-13C]acetate incorporation into the three putatively identified products g-

actinorhodin(2.2), streptorubin B (2.3), and desferrioxamine B (2.4) in the nitrogen-

limited glutamate medium. Although the nitrogen-limited glutamate medium in Figure 

2.4a was clearly dominated by blue pigmentation, both prodigiosin and actinorhodin 

were putatively identified with substantial labeling by [1-13C]acetate (Figure 2.5).  

The actinorhodins are dimeric benzoisochromanequinone polyketide antibiotics 

which are made up of 16 subunits of malonyl-CoA. There are various related 

actinorhodin analogues, but they are all biosynthesized by the dimerization of the 

octaketide dihydrokalafungin (2.1).21 The only actinorhodin compound I was able to 

putatively identify in the nitrogen-limited glutamate media was g-actinorhodin (2.2, Figure 

2.5a). Although substantial incorporation of [1-13C]acetate was detected (Figure 2.5a), 

the heaviest detectable isotopologue peak was M9, indicating that not all sixteen 

available positions had SIL incorporation. Streptorubin B (2.3, Figure 2.5b) is an NRPS- 
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Figure 2.5 Mass Spectra of S. coelicolor Natural Products 
Structures and mass spectra of (a) g-actinorhodin (2.2), (b) streptorubin B (2.3), and (c) 
desferrioxamine B (2.4) in unlabeled and [1-13C]acetate labeled extracts. Red circles represent 
positions which are expected to be labeled by [1-13C]acetate. The open circles in 2.4 (c) represent 
alternate positions which can be labeled due to the symmetry of succinate (Figure 2.2).  

PKS hybrid molecule which contains seven units of malonyl-CoA in the cyclized alkyl tail 

and one in the backbone.22 There are eight carbon positions in streptorubin B (2.3) that 

are derived from malonyl-CoA and may be labeled by [1-13C]acetate, but M5 was the 

heaviest isotopologue detected (Figure 2.5b). Like g-actinorhodin, streptorubin B had 
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substantial incorporation of [1-13C]acetate, but did have complete SIL incorporation in 

every available position. Desferrioxamine B (2.4) is a hydroxamate siderophore which 

also had detectable labeling by [1-13C]acetate in one position (Figure 2.5c), likely 

corresponding to the acetyl-CoA subunit. Desferrioxamine B also contains succinyl-CoA 

subunits which can be labeled by [1-13C]acetate indirectly through the TCA cycle, 

however these positions did not appear to have detectable SIL incorporation (Figure 

2.5c).  

Surprisingly, no streptorubin B or any other related prodigiosin compound was 

identified in the nitrogen-limited (NH4)2SO4 medium despite the fact that this medium did 

clearly produce red pigmentation which can be observed visually (Figure 2.4a). Similarly, 

the nitrogen-limited asparagine medium did not produce detectable amounts of any 

desferrioxamines, prodigiosins, or actinorhodins. This was less surprising due to the 

overall less consistent growth and pigmentation observed in these cultures (Figure 2.4a), 

but does complicate the ultimate goal of comparing SIL incorporation across the different 

media conditions. 

One compound was identified in all three media conditions (Figure 2.6). 

Dihydrokalafungin (2.1) is a biosynthetic precursor to the polyketide actinorhodin. 

Although g-actinorhodin was only putatively identified in the glutamate medium (Figure 

2.5a), other actinorhodin analogues were likely produced in the (NH4)2SO4 and 

asparagine media due to the fact that the precursor 2.1 was produced. I was not able to 

detect any actinorhodin compounds in the (NH4)2SO4 or asparagine media, which could 

be accounted for by multiple factors. A single extraction technique was used on all 

samples which may not be ideal for all actinorhodin analogues and the overall titer of 

actinorhodin production in the (NH4)2SO4 and asparagine media may not be sufficient for 

detection by MS. There are additional biological factors such as the regulation of the 

biosynthetic pathway or degradation of the final product. Due to these inconsistencies, 

2.1 was the only compound for which I was able to directly compare [1-13C]acetate  
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Figure 2.6 Mass Spectra of 2.1 in Minimal Media 
Mass spectra of dihydrokalafungin (2.1) in minimal media containing (NH4)2SO4 (a), glutamate (b), 
or asparagine (c) as a nitrogen source. The red circles represent positions that are expected to 
be labeled by [1-13C]acetate through malonyl-CoA or acetyl-CoA.  

incorporation (Figure 2.6). More SIL incorporation was detected in 2.1 in the glutamate 

medium than either the (NH4)2SO4 or asparagine media (Figure 2.6). This is clear from 

two observations. The M1 isotopologue peak is the base peak in the labeled spectrum of 

2.1 in the glutamate medium, compared to the other media which maintain a higher 

relative intensity of the monoisotopic M0 peak compared to the M1 isotopologue peak 

(Figure 2.6). Additionally, isotopologue peaks up to M5 were detected in the glutamate 

medium, indicating a higher degree of labeling than the other conditions. Interestingly, 

the (NH4)2SO4 medium produced a DHKF spectrum with the M2 isotopologue as the 

base peak. This highlights the importance of observing the unlabeled control MS 

spectrum side-by-side with the labeled spectrum. The M2 isotopologue peak also had a 

higher intensity in the unlabeled control (Figure 2.6), indicating that this isotopologue 

peak is overlapped with the monoisotopic M0 peak of a related analogue, likely the 

reduced form of 2.1. The overall isotopologue distribution in the labeled spectrum of 2.1 

in the (NH4)2SO4 medium indicates that both the oxidized and reduced forms of 2.1 have 

some [1-13C]acetate incorporation. However, the overlap of these signals complicates 

the interpretation of the SIL incorporation. It is likely that the mixture of oxidation states 



46 

in this medium results from the ammonium content in the media, making this medium 

less ideal for interpreting [1-13C]acetate in this class of compounds. [1-13C]acetate 

incorporation was also observable in 2.1 in the asparagine condition, but the lower signal 

to noise and smaller distribution of isotopologue peaks indicates that this medium is also 

not ideal for [1-13C]acetate detection in 2.1. The incorporation of [1-13C]acetate into three 

additional compounds in the glutamate condition (Figure 2.5) supports the selection of 

this media because of the consistency of SIL incorporation across three different natural 

products. Although none of these compounds exhibited full [1-13C]acetate incorporation 

into all available positions, the consistency of these results was encouraging evidence 

that the nitrogen-limited media containing glutamate as the sole nitrogen source was a 

good general medium for conducting SIL studies in other Actinobacteria besides 

Micromonospora sp.  

These results also indicated that S. coelicolor is not an ideal model organism for 

use in this study because its growth in the minimal media was highly inconsistent in 

follow-up experiments. Following these experiments, I struggled to maintain consistent 

growth with the S. coelicolor cultures. Figure 2.4 shows the clumpy sort of growth 

observed across these cultures, which is common for S. coelicolor but appeared to be 

exaggerated in the minimal media recipes compared to rich media. This observation 

paired with the inconsistent production of the target compounds led me to move away 

from using S. coelicolor as a model organism. Still, the results here support the notion 

that media selection has a significant influence on the experimental outcome, and that 

the nitrogen-limited media containing starch and glutamate enhanced [1-13C]acetate 

incorporation into polyketide compounds.  

2.2.4. Phosphate and Nitrogen Limitation in Micromonospora sp.  

In the preliminary media experiment using S. coelicolor, I observed significant 

differences in metabolism and growth between nitrogen and phosphate limited 

conditions (Figure 2.4). I selected the nitrogen-limited media to test [1-13C]acetate 

incorporation because nitrogen limitation induced more consistent production of 

observable natural products in S. coelicolor, however phosphate limitation has also been 

shown to improve natural product production in other cases.11 Excess of either nitrogen 

or phosphate tends to delay and decrease the production of most natural products.9 

Many different combination and concentrations of nutrients have been tested in terms of 
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optimizing natural product production, and limiting nitrogen or phosphate is commonly 

applied to influence specialized metabolism. Phosphate in particular controls many 

aspects of central metabolism including RNA, DNA, and protein synthesis as well as 

cellular respiration and ATP levels.11 Testing different combinations of nitrogen sources 

with both nitrogen and phosphate as the limiting nutrient can not only induce different 

natural product biosynthesis as shown with S. coelicolor, but also influences central 

metabolism and therefore the efficiency of [1-13C]acetate incorporation.  

I tested the effect of phosphate and nitrogen limitation on [1-13C]acetate 

incorporation into lobosamide A. I also tested glutamate and glutamine as different 

nitrogen sources. Glutamine is metabolically related to glutamate, but keeping the molar 

amount of nitrogen equal in the media results in a smaller molar amount of carbon 

coming from glutamine as opposed to glutamate. I qualitatively tested how the 

combination of nitrogen source and nitrogen or phosphate limitation affected [1-
13C]acetate incorporation into lobosamide A. I also increased the concentration of [1-
13C]acetate in the cultures to 30 mM in order to increase the SIL incorporation compared 

to the previous experiment shown in Figure 2.3. The basal media for this experiment 

contained starch as the primary carbon source and the same salt and metal content as 

the previous experiment (Table 2.2). 

Both of the media containing glutamate as the nitrogen source demonstrated a 

slightly higher degree of [1-13C]acetate labeling compared to the media containing 

glutamine (Figure 2.7). This observation is based on the general shift of the isotopologue 

distribution towards heavier isotopologues in the glutamate condition compared to 

glutamine, although all four media conditions had detectable intensity for the M9 

isotopologue peak of lobosamide A. The phosphate limited conditions generally had less 

SIL incorporation that the nitrogen limited media containing the same nitrogen source 

(Figure 2.7). However, the phosphate limited media containing glutamate has a more 

intense M0 peak than the nitrogen limited media containing glutamine, indicating that the 

total SIL incorporation is actually less in the nitrogen limited - glutamate media. Even 

though the whole pool of lobosamide A ions in the phosphate-limited glutamine media 

have more SIL incorporation, the extent of [1-13C]acetate incorporation is lower in the 

heavy isotopologues M6, M7, M8, and M9 (Figure 2.7). This is an important observation to 

consider in terms of the aims of the experiments presented here. Many SIL studies focus 

on the flux of an SIL tracer through a system or the fraction of labeled carbon present in 



48 

a pool of labeled compounds. However, in this work I aim to use SIL precursors to infer 

the number of biosynthetic building blocks derived from that precursor. The optimization 

of this experiment aims to detect the heaviest labeled isotopologue peak, regardless of 

the overall efficiency of SIL incorporation. When comparing the phosphate-limited 

glutamate condition and the nitrogen-limited glutamine condition, the phosphate-limited 

glutamate condition is more optimal because it results in a high extent of labeling even 

though the pool of ions has a lower overall percentage of 13C incorporation. 

 
Figure 2.7 [1-13C]Acetate Incorporation in 2.6 in Nutrient Limited Media 
Mass Spectra of lobosamide A (2.6) in minimal media containing either glutamate or glutamine as 
a nitrogen source, and limitation in either nitrogen or phosphate. The filled red circles represent 
positions that are expected to be labeled by [1-13C]acetate through malonyl-CoA or acetyl-CoA. 
The open red circles represent positions that may be indirectly labeled by [1-13C]acetate through 
conversion to methylmalonyl-CoA (Figure 2.2).  

Overall, these experiments show that the nitrogen-limited starch-glutamate media 

was optimal for both Micromonospora sp. and S. coelicolor in terms of compound 

production and [1-13C]acetate incorporation into target polyketide products. I use this 
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minimal growth medium in the subsequent SIL experiments described throughout this 

thesis, further demonstrating that this media recipe is generally effective for SIL 

incorporation in a variety of Actinobacteria. Although this medium is a good option, 

generally speaking, for the Actinobacteria presented in this thesis, the data presented 

here indicate that optimizing minimal media conditions for the test organism in terms of 

both compound production and SIL incorporation is crucial to success.  

2.3. SIL Precursor Selection  

In addition to [1-13C]acetate, I selected three other SIL precursors to allow for 

association of MS signals with BGCs. IsoAnalyst was developed to permit flexibility in 

terms of SIL precursor selection. Any type of SIL tracer can be used in the IsoAnalyst 

method, but the goal of this approach is to minimize the cost of SIL tracers by using 

simple building blocks that are isotopically labeled in a single position. Theoretically, 

multiply labeled precursors can be used in IsoAnalyst, however, algorithms for detecting 

multiply labeled precursors already exist and are well-established. One novel aspect of 

IsoAnalyst is to detect the number of SIL precursors incorporated into a natural product 

structure, rather than identify SIL incorporation by large mass shifts associated with 

specific functional groups. I will discuss this aspect of the data analysis more in Chapter 

3, but the SIL precursors selected here reflect this objective. With the ultimate goal of 

detecting the number of biosynthetic units in a compound, ideal SIL tracer molecules are 

those which are incorporated directly into natural product pathways but are not so 

specific that they only target a few BGCs. The SIL tracers described here were selected 

based on their general applicability to the model organisms used and can be used for 

first-pass screening of biosynthetic potential in any organism, but are by no means 

optimized for the full coverage of all classes of BGCs.  

 To demonstrate the scope of IsoAnalyst across a broad cross section of 

biosynthetic classes, I selected four SIL precursors; [1-13C]acetate, [1-13C]propionate, 

[methyl-13C]methionine, and [1-15N]glutamate. [1-13C] Propionate is predominantly used 

for identifying polyketide pathways, due to its conversion to methylmalonyl-CoA, a 

common building block in type I and type II polyketide biosynthesis. [methyl-
13C]Methionine was selected in order to label compounds methylated by S-adenosyl 

methionine (SAM). Methylation by SAM is encountered relatively frequently in natural 

product biosynthesis and therefore assists in prioritizing compounds which have a high 
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likelihood of being natural products, especially if they are also labeled by one or more of 

the other SIL precursors. Finally, [1-15N] glutamate was selected to constitutively label all 

products containing nitrogen atoms. To accomplish this, 50% of the total available 

nitrogen was labeled in the form of [1-15N] glutamate, with the remainder deriving from 

standard unenriched glutamate. The growth medium and procedures used in this 

experiment are described in the methods section at the end of this chapter.  

2.3.1. Parallel SIL Incorporation in Erythromycin A 

The biosynthesis of erythromycin A has been studied extensively as a model 

system for modular polyketide synthases.23 The macrolide core is formed by the 

condensation of one propionyl-CoA and six methylmalonyl-CoA units followed by 

glycosylation with the saccharides desosamine and mycarose (Figure 2.8). [1-
13C]Propionate is directly converted to the substrates propionyl-CoA and methylmalonyl-

CoA, however the latter may also be labeled by [1-13C] acetate through conversion to the 

TCA cycle intermediate succinyl-CoA (Figure 2.2). The indirect labeling of 

methylmalonyl-CoA by [1-13C] acetate is included in the labeling prediction as we cannot 

differentiate analytically between direct and indirect SIL incorporation (Figure 2.8a). 

Desosamine contains a tertiary dimethylamino group which is expected to be labeled by 

a single position in the [1-15N]glutamate condition, and two positions in the [methyl-13C] 

methionine condition. The mycarose unit has a single methylation position and is later 

methylated by an O-methyltransferase following attachment to the macrolide core 

(Figure 2.8a).  

I optimized the concentration of each SIL precursor by testing a range of 

concentrations as described in the methods section at the end of this chapter. The final 

concentrations used for precursor were 30 mM [1-13C]acetate, 30 mM [1-13C]propionate, 

5 mM [methyl-13C]methionine, and 10 mM [1-15N]glutamate. The expected labeled 

positions of erythromycin A and the MS spectra in each SIL condition are shown in 

Figure 2.8b. Substantial labeling was observed in all four conditions. In particular, [1-
13C]propionate, [methyl-13C]methionine, and [1-15N]glutamate qualitatively appear to 

have complete SIL incorporation in every available position (Figure 2.8b). [1-13C]Acetate 

did not label erythromycin A as extensively as anticipated, however [1-13C]acetate is only 

incorporated into erythromycin A indirectly through the conversion of succinyl-CoA to 

methylmalonyl-CoA (Figure 2.2).  
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Figure 2.8 Biosynthesis and SIL Tracer Incorporation in 2.5 
(a) The erythromycin BGC, expected biosynthetic precursors, and the expected SIL incorporation 
in those precursors. (b) Structure of erythromycin A (2.5) with positions of SIL incorporation 
indicated. Mass Spectra of 2.5 showing labeling by [1-13C]acetate, [1-13C]propionate, [methyl-
13C]methionine, and [1-15N]glutamate. Arrows indicate the heaviest isotopologue peak that 
visually appears to have SIL enrichment. (c) Comparison of expected SIL incorporation on the 
basis of the BGC to observed SIL incorporation. Although visual inspection implies sufficient 
labeling, a statistical technique for determining the true SIL incorporation will be described in the 
next chapter.  

The heaviest isotopologue peaks that are clearly enriched are indicated in Figure 

2.8b by arrows, however it is not possible to tell by observation alone if these peaks are 

enriched with heavy isotopes derived from the SIL precursor, or from naturally occurring 
13C. Figure 2.8c shows the expected labeling on the basis of interpreting the BGC, but 

comparable information cannot be derived from observing the MS spectra alone. In 

Chapter 3 I will discuss the statistical approach used to interpret these data, however 

this fermentation and SIL precursor addition protocol were successfully optimized on the 

basis of this qualitative data analysis.  
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2.4. Optimized Parallel SIL Feeding Experiments in Minimal 
and Rich Media 

Having optimized this experiment for the labeling of erythromycin A, and 

confirmed that the SIL incorporation qualitatively matched what was expected on the 

basis of the BGC, I aimed to test the full SIL panel in Micromonospora sp. I performed 

the same SIL experiment described previously for S. erythraea using Micromonospora 

sp. in the nitrogen-limited starch-glutamate minimal media. I looked at lobosamide A 

again to assess the outcome of this SIL experiment. Lobosamide A is a polyene 

macrolactam polyketide, which is biosynthesized from six units of malonyl-CoA, three 

methylmalonyl-CoA, and a 3-aminobutryate starter unit which is derived from glutamate.8 

I performed an additional experiment with Micromonospora sp. using the rich media 

GNZ which was previously used for the large-scale fermentation of this organism in 

order to isolate lobosamide A and related analogues.8 The ingredients for the GNZ 

media are described in the last section of this chapter. I used higher concentrations of 

each SIL tracer in the GNZ media to ensure sufficient incorporation (100 mM [1-
13C]acetate, 100 mM [1-13C]propionate, 16.5 mM [methyl-13C]methionine, and 100 mM 

[1-15N]glutamate). 

Both the minimal medium and rich medium resulted in substantial labeling in the 

[1-13C]acetate, [1-13C]propionate, and [1-15N]glutamate conditions. Surprisingly, the [1-
13C]acetate incorporation was lower in the rich medium, while [1-13C]propionate 

incorporation was higher in the rich medium. These results demonstrate that this parallel 

SIL feeding approach can not only be applied in rich media, but in some cases may 

result in more complete incorporation of certain SIL precursors. This underscores the 

importance of testing a variety of media conditions and the utility of applying this 

technique in combination with different environmental stimuli to induce natural product 

biosynthesis.  

  



53 

 
Figure 2.9 SIL Incorporation in 2.6 in Mimimal and Rich Media 
Mass Spectra showing SIL Incorporation in lobosamide A (2.6) in nitrogen-limited starch-
glutamate minimal medium (a) and the rich growth medium GNZ (b). More SIL incorporation was 
observed for [1-13C]acetate in the minimal media, while more SIL incorporation was observed for 
[1-13C]propionate in the rich media, indicating that there is not likely a single media condition that 
will be optimal for every SIL tracer used.  

2.4.1. Significance of Fermentation Optimization 

In this chapter I showed the importance of testing how major nutrients affect 

target compound production, as well as influence SIL incorporation into target 

compounds as an initial optimization step. The results of these experiments indicate that 

the minimal medium and SIL conditions developed in this chapter are generally 

applicable to my model organisms. Because of these promising results, I used the 

nitrogen-limited starch-glutamate minimal media and the SIL tracer concentrations 

described in this chapter throughout the remainder of this thesis. However, from working 

with minimal media and testing various conditions it was clear to me that the process of 

making and testing media conditions is tedious and often leads to discouraging results. 
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Particularly in the case of S. coelicolor, I was not able to induce detectable natural 

product biosynthesis in many of the media conditions. Even in the model organisms 

used, minimal media does not result in the production of more than one or two 

compound families. Furthermore, screening fermentation conditions typically involves 

rich media to induce compound production, and a method which relies solely on minimal 

media may not have the same potential for discovery due to this limitation. Still, the 

flexibility of this approach allows for many fermentation systems to be tested for 

compound discovery in parallel, and further optimized following identification of labeled 

MS signals.   

When screening for unknown compounds, a variety of media conditions may be 

necessary in order to find the optimal conditions for the organism, compound, and 

selected SIL precursors. Alternatively, a starch-glutamate based media may be a good 

starting point, especially for labeled acetate incorporation, which is involved in many 

central metabolic processes. Beginning with a simple medium one can also perform a 

series of challenge experiments using heavy metals or antibiotics to induce different 

natural product biosynthesis while ensuring observable SIL incorporation. Complex 

media can be used as well however this requires a higher concentration of SIL tracers 

due to the high availability of different nutrients including amino acids, nucleic acids, and 

carbohydrates. Complex media are also likely to result in less reproducibility between 

batches because the ingredients are not exactly specified. Despite these caveats, a 

combination of minimal and rich media can easily be tested in parallel to optimize this 

method for any microorganism. 

The data in this chapter were analyzed qualitatively for the purpose optimizing 

the fermentation conditions and SIL tracers. This was adequate for screening media and 

SIL conditions, however, in Chapter 3 I will describe the analytical platform I developed 

using Python 3 to statistically determine the number of SIL precursors incorporated into 

every MS feature in the parallel SIL metabolomics experiments presented here. 
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2.5. Methods 

2.5.1. Strain Designations 

Saccharopolyspora erythraea ATCC 11635 (NRRL 2338) and Streptomyces 

coelicolor ATCC BAA-471 (A3(2) / M145) were purchased from ATCC (USA). 

Micromonospora sp. RL09-050-HVF-A was isolated and sequenced as described in 

Schulze et al.8 The Micromonospora sp. RL09-050-HVF-A genome was uploaded to 

NCBI under the accession number JAGKQP000000000 and the BioProject ID 

PRJNA718589. 

2.5.2. Media Recipes 

The minimal media recipes used for SIL experiments in this chapter are shown in 

Table 2.1 and Table 2.2. Variation in phosphate, nitrogen, and carbon sources and 

concentrations are also indicated. Table 2.1 shows the media recipes used in section 

2.2.1 for preliminary experiments with Micromonospora sp. The basal medium in Table 

2.2 was used with the microtiter plate protocol for the remainder of the experiments in 

this chapter.   
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Table 2.1 Minimal Media for Nitrogen and Carbon Sources 

Basal Medium Concentration 
MgSO4 2.0 g/L 
CaCO3 1.5 g/L 
FeSO4 1.5 mg/L 
CuSO4 1.5 mg/L 
ZnSO4 1.6 mg/L 

Phosphate  

K2HPO4 1.5 g/L 
Carbon  

Starch 40 g/L 
Glucose 40 g/L 
Maltose 40 g/L 
Sucrose 40 g/L 
Nitrogen  

Glutamate 5 g/L 
(NH4)2SO4 5 g/L 

The complex medium GNZ (10 g glucose, 20 g starch, 5 g N-Z-amine, 5 g yeast 

extract, 1 g CaCO3, and 14 g agar per liter of water) was used to grow Micromonospora 

sp. seed cultures in all experiments, and as the primary growth medium in the SIL 

experiment in section 2.4. The complex medium ISP (3 g yeast extract, 5 g acid 

hydrolyzed casein, and 14 g of agar per liter of water) was used to grow seed cultures of 

S. coelicolor and S. erythraea. Both GNZ and ISP culture plates were made using 15 g/L 

of agar for streaking frozen stocks of all bacterial strains.  
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Table 2.2 Minimal Media for Nitrogen and Phosphate Limitation 

Basal Medium Concentration 
NaCl 2.0 g/L 

MgSO4 1.0 g/L 
CaCO3 1.0 g/L 
FeSO4 0.01 g/L 
CuSO4 1.5 mg/L 
ZnSO4 3.0 mg/L 
CoSO4 0.15 mg/L 
MnSO4 0.15 mg/L 

Na2MoO4 1.0 mg/L 
Carbon  

Starch 10 g/L 
Phosphate 4 mM 10 mM 

KH2PO4 0.16 g/L 0.41 g/L 
K2HPO4 0.49 g/L 1.22 g/L 
Nitrogen 60 mM 20 mM 
Glutamate 10.2 g/L 3.38 g/L 
Asparagine 7.93 g/L 2.64 g/L 
(NH4)2SO4 3.96 g/L 1.32 g/L 

2.5.3. Medium Scale Fermentation and Extraction 

Initial experiments testing nitrogen and carbon source with the Micromonospora 

sp. were carried out using the standard growth and extraction protocol used for building 

the Linington Lab’s marine Actinobaterial natural product extract library. 

Micromonospora sp. was grown in culture flasks containing a metal spring and 60 mL of 

each type of media indicated in Table 2.1. Every carbon source was paired with 

(NH4)2SO4, but only starch was paired with glutamate as a nitrogen source. The 

selection of these media for fermentation with [1-13C]acetate was made on the basis of 

preliminary time-course experiments done in small scale for the detection of lobosamide 

A. Each culture flask also contained 1.2 g of Amberlite XAD-16 adsorbant resin to assist 

with the extraction of natural products from the culture medium. Each 60 mL culture was 

inoculated with 3 mL of seed culture grown in GNZ media for three days. An unlabeled 

control culture containing 12 mM of unlabeled acetate was grown in parallel to 

experimental cultures containing 12 mM of [1-13C]acetate. Cultures were shaken at 200 

rpm for seven days and then extracted and fractionated by polarity.  
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Each 60 mL culture was first filtered by vacuum filtration and the cell debris and 

resin were then extracted in a 1:1 mixture of methanol and dichloromethane for one 

hour. The organic extract was collected by vacuum filtration and dried by rotary 

evaporation. The crude organic extract was initially separated into seven fractions by a 

stepwise methanol/water elution (10, 20, 40, 60, 80, 100 vol/vol) and an additional ethyl 

acetate wash step on a RediSep Rf C18 cartridge (Teledyne Isco) using a Teledyne Isco 

CombiFlash Rf flash chromatography system. Lobosamide A is found in the 80% 

methanol and 100% methanol fractions, so these fractions were prepared for UPLC-MS 

analysis for each media condition control and [1-13C]acetate culture. Samples were 

prepared by first dissolving each pre-fractionated extract in 1 mL of methanol and 

diluting the sample by 1:200 into 50% (vol.vol) methanol/water.  

2.5.4. Microtiter Plate Fermentation with SIL Tracers 

The SIL feedstock compounds, [99% 1-13C]acetate, [99% 1-13C]propionate, [99% 

methyl-13C]methionine, and [98% 1-15N]glutamate, and unlabeled version of each 

compound were prepared as stock solutions in Milli-Q water and sterilized by filtration 

(0.2 uM filter). Bacterial inoculum was prepared by first streaking a frozen stock on a 

GNZ agar plate (10 g glucose, 20 g starch, 5 g N-Z-amine, 5 g yeast extract, 1 g 

CaCO3, and 14 g agar per liter of water) for Micromonospora sp. and ISP agar plate (3 g 

yeast extract, 5 g acid hydrolyzed casein, and 14 g of agar per liter of water) for S. 

erythraea. Single colonies were selected to inoculate a 7 mL liquid culture of either GNZ 

or ISP media. Once turbid growth was observed in rich media, 50 µL of this culture was 

used to inoculate a 7 mL culture of the same minimal media to be used in the SIL 

experiment. After 24 hours of growth, this culture was used for the inoculation of the 

microtiter plates. The same culture was used as inoculum for all replicate wells of every 

feedstock condition in a given experiment. The 24-well microtiter plates and sandwich 

covers used for micro-scale bacterial cultures were purchased from Enzyscreen B.V. 

(The Netherlands) and the protocol for microtiter well plate fermentations was adapted 

from Duetz et al.20  

The 24-well microtiter plates were cleaned and sterilized according to Duetz et 

al.,20 and 2 mL of minimal media was added to each well. The first and last columns in 

each 24-well plate were left with sterile media and the inner 16 wells were inoculated 

with 80 µL of bacterial inoculum. Following inoculation, either an SIL compound or the 
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corresponding unlabeled compound was added to each well by sterile filtration. Four 

replicate wells were prepared and inoculated for each condition, including unlabeled 

controls. Unlabeled control cultures were included for each feedstock condition to 

account for metabolic changes that may occur as a result of adding the precursor 

compound. The SIL feedstock compounds were tested at various concentrations as 

indicated in the following sections. Stock solution concentrations were adjusted 

according to the final desired concentration of each SIL or unlabeled precursor in the 

culture so that a minimal volume of 20-100 µL of stock solution was added to each well. 

The replicate cultures were fermented and analyzed separately and therefore account 

for technical variation in both the fermentation experiment as well as the analytical 

variation in the MS data.  

Microtiter plates containing SIL supplemented bacterial cultures were shaken at 

200 rpm and maintained at 23.0 °C for five days. On the fifth day the cultures were 

extracted by adding 2 mL of Optima methanol to each well. The contents of each well 

were then transferred to Eppendorf tubes, sonicated for 5 minutes, and centrifuged for 1 

minute at 16,000 g. Methanol/water extracts were injected directly onto the UPLC-qTOF 

system, or diluted to maintain the most intense signals in the chromatogram in an 

optimal range for both sensitivity and mass accuracy.  

2.5.5. Optimization of SIL Tracer Incorporation in Erythromycin A 

In order to determine the optimal concentration for each of our SIL precursors, I 

performed an experiment using S. erythraea as described above with replicates of the 

following concentrations of each SIL: (100 mM, 10 mM, 1 mM, 0.1 mM) [1-13C]acetate, 

(100 mM, 10 mM, 1 mM, 0.1 mM) [1-13C]propionate, (16.5 mM, 10 mM, 1 mM, 0.1 mM) 

[methyl-13C]methionine, and (20 mM, 10 mM, 2 mM) [1-15N]glutamate. In all conditions 

the total concentration of glutamate is 20 mM, as glutamate is the only nitrogen source in 

the minimal media. For the [1-15N]glutamate labeling condition we tested three ratios of 

[1-15N]glutamate and unlabeled glutamate, so that the total available nitrogen was the 

same in every condition. Unlabeled controls were performed as four replicates with 

matching concentrations of unlabeled acetate, propionate, methionine, and glutamate 

respectively. Erythromycin A (2.5) was used as a test case to determine the optimal 

concentrations of each SIL precursor (Figure 2.10).  
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Figure 2.10 Mass Spectra of 2.5 with Varying Concentrations of SIL Tracers 
Mass spectra of erythromycin A (2.5) from S. erythraea extracts supplemented with [1-13C]acetate 
(a), [methyl-13C]methionine (b), [1-13C]propionate (c), and [1-15N]glutamate (d) at the 
concentrations indicated.   

2.5.6. UPLC-MS Methods 

The samples that were prepared from the pre-fractionated extracts of 60 mL 

bacterial cultures were processed and ran at UC Santa Cruz using an Agilent 1260 

binary pump and an Agilent 6230 time-of-flight mass spectrometer with a Jetstream ESI 

source. A 2 uL sample was injected onto a 1.8-um particle size, 50 x 2.3 mm i.d., 

ZORBAX RRHT C18 column. A gradient from 10 to 90% acetonitrile over 4 min with a 
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1.5  min hold at 90% and 3 min re-equilibration. Flow rate 08 mL/min. 0.02% formic acid 

in solvents. Positive mode, 100 – 1700 m/z, source temp 350 C, 11L/min drying gas.  

All other samples were prepared and analyzed by the following procedure. 

Biological samples were diluted with an equal volume of methanol and the supernatants 

were subjected to chromatographic separation and mass spectrometric analysis. 

Chromatography was performed on a Waters I-Class Acquity UPLC system (Acquity 

HSS T3 1.8 µm, 2.1 x 100 mm) using a linear gradient (solvent A: H2O + 0.01% formic 

acid, solvent B: acetonitrile + 0.01% formic acid) of 5-98% B over 5.8 minutes, a hold a 

98% B for 0.3 min followed by a 1.8 minute re-equilibration at 5% B. All mass spectra 

were acquired using a Waters Synapt G2Si qTOF MS run in data-independent 

acquisition (DIA) mode. The MS detector range was set to 50-1500 m/z in positive 

mode, with a capillary voltage of 3.5 kV, and a desolvation temperature of 200 ºC.  
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Chapter 3.  
 
IsoAnalyst: An MS Metabolomic Platform for the 
Detection of Stable Isotopic Label Incorporation in 
Natural Products 

3.1. Introduction 

Advances in MS technology have driven a surge in the development of 

innovative metabolomics approaches. As discussed in Chapter 1, targeted 

metabolomics methods are now streamlined for many general classes of metabolites 

such as amino acids, and central carbon metabolism. This was achievable due to an 

increase in accessible methods to quickly acquire high resolution MS datasets and 

advances in compound identification databases, especially those that use fragmentation 

data such as GNPS.1,2 Untargeted metabolomics is an appealing approach to expand 

upon metabolomics for novel pathway and compound discovery. Coupling untargeted 

metabolomics studies with SIL precursors has powerful implications but there are 

challenges associated with such an approach. Many biologically relevant SIL tracers are 

commercially available, and MS facilitates the sensitive detection of their incorporation 

into metabolites, however dedicated and intuitive software for the interpretation of 

untargeted SIL MS data is lacking.3 Still, there have been some exciting developments in 

this area as there are wide reaching applications of untargeted SIL MS metabolomics.  

A recent study demonstrated how the complete 15N labeling of a cyanobacterial 

culture using Na15NO3 can be employed to associate peptide natural products with their 

NRPS BGCs.4 The authors focused on NRPS BGCs because adenylation domains can 

be identified in the genome sequence to predict the amino acid sequence and therefore 

the total number of expected nitrogen atoms in the product. By providing Na15NO3 as the 

sole nitrogen source, any nitrogen-containing natural product that the cyanobacteria 

produced may be labeled and detected. This was a rare untargeted study that aimed to 

detect all natural products in a given extract that demonstrated 15N incorporation, 

however the authors did not use any statistical analysis.4 Rather, they manually 

compared SIL incorporation in the experimental samples to the unlabeled controls to 

determine the number of 15N atoms present in each compound. They successfully 
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identified four compounds from four different BGCs by matching the mass difference 

between unlabeled and labeled isotopologue peaks with the expected number of 

nitrogen atoms in the predicted BGC products.4 Two of the compounds identified were 

new natural product structures, highlighting the ability to discover novel compounds and 

quickly generate hypotheses about their biosynthetic origin. This promising example of 

untargeted SIL metabolomics demonstrates the need for powerful and flexible tools for 

the detection of SIL tracers in complex datasets.  

Another recent study used [13C6]-phenylalanine in plants to detect compounds 

derived from this precursor, termed the ‘phenylalanine derived metabolome’. This study 

aimed to detect the entire phenylalanine derived metabolome of a wild type Arabidopsis 

thaliana and various mutants to identity genes associated with variation in phenylalanine 

derived metabolites.5 Like many other SIL tracer studies, these authors used an amino 

acid with multiple labeled atoms because this makes the detection of incorporation much 

more straightforward. In paired samples, the mass shift of 6 Da can be detected by mass 

searching and confirmed as a full incorporation of the entire SIL tracer. The use of a 

tracer like [13C6]-phenylalanine increases the ease of detecting target compounds but at 

a high financial cost. Cheaper SIL tracers are preferable when designing experiments 

with parallel labeling conditions. Interpretation of singly labeled tracers is not as 

straightforward due to isotopic contributions from natural 13C and the complex 

distributions of isotopologue peaks that occur when an SIL precursor is incorporated into 

the same compound multiple times. These recent publications show that there is a 

strong need across different biological systems to identify compounds associated with 

BGCs in a systematic way. Detection of SIL tracer incorporation in MS metabolomics is 

highly applicable across different systems and computational tools that allow for flexible 

SIL experimental designs are in high demand. 

3.1.1. Computational Tools For Untargeted SIL MS Metabolomics 

Untargeted SIL analyses have grown in popularity as they are better suited to 

novel pathway discovery and a number of tools have been developed for this purpose. 

Many of these tools can be used in conjunction with fluxomics analyses to discover 

novel pathways and metabolites, or to associate metabolites that are co-regulated under 

drug pressure or disease conditions.2,3 XCMS is a common MS data processing platform 

that was originally developed in R but now in its online version has become highly 
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accessible to researchers around the world.6 Supplemental programs that work with the 

XCMS output to further process metabolomics data are used for many different 

applications, including untargeted SIL analysis. In particular, X13CMS has become a 

useful tool for comparing isotopic incorporation in m/z features across different 

conditions.7,8 Other algorithms such as mzMatch-ISO9 and geoRge10 also rely on XCMS 

and mzMatch.R11 for data pre-processing. XCMS is most often used to process LCMS 

data although it can handle GCMS data as well. Dedicated algorithms such as non-

targeted tracer fate detection algorithm (NTFD)12,13 and mass isotopolome analyzer 

(MIA)14 were designed specifically for low resolution GCMS data. These tools have 

demonstrated effective deconvolution of low resolution SIL MS data and the ability to 

account for natural SIL abundances in bulky derivatization groups used for GCMS. The 

datasets generated by these tools have high potential for novel pathway discovery in 

global metabolic studies and in conjunction with fluxomics or other systems level 

modeling.15–17 Although these methods are all applicable to novel natural product 

discovery, they are limited in that they typically require a high degree of labeling such as 

from a fully labeled carbon source and aim to compare changes in labeling across the 

metabolome as a result of a perturbation. Because they aim to look globally at the 

central metabolome, these tools can be applied to synthetic biology and optimization of 

compound production, but are too promiscuous in the SIL design for easy identification 

of novel compounds. 

An R package, Miso, was recently developed specifically to handle the detection 

multiple SIL conditions in parallel experiments.18 Miso automatically detects SIL 

incorporation in isotopologues across different SIL precursor conditions and aligns them 

with an unlabeled dataset. The output of Miso contains a complete list of all isotopologue 

pairs detected, and the number of labeled atoms in each condition. Miso was originally 

created for a particular experimental design published by the same group termed Dual 

Labeling of Metabolites for Metabolome Analysis (DLEMMA).19,20 This approach requires 

parallel isotopic labeling conditions containing the same metabolite precursor with 

different SIL compositions (ie tyrosine-2H4 and tyrosine-13C9
15N1). The aim of this 

analysis is to assist in sub-structure searching and molecular formula assignment for 

metabolite identification, but requires multiply labeled tracers to target a specific 

pathway. The novelty of this approach is in its ability to align labeling data from parallel 

SIL conditions, however the particular requirements of the SIL selection make these 
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experiments somewhat inflexible. The Miso package has been developed to allow for 

additional flexibility in SIL precursor selection outside of the DLEMMA workflow.18 The 

Miso algorithm and workflow are a powerful new tool for investigating natural product 

biosynthesis and facilitating discovery in microbial natural products, although it was 

developed initially as an application in plant metabolomics.  

Like the untargeted SIL data analysis approaches described above, Miso 

compares isotopologue intensities between labeled and unlabeled conditions to 

statistically determine the enrichment of heavy isotopologue peaks in the labeled 

sample. Many of these methods give relative isotopologue ratios as outputs, but Miso 

gives a very specific output indicating the number of labeled atoms present in each 

detected molecule. This is possible because the published examples of the Miso 

analysis involve SIL precursors with multiple labeled atoms, and assumes that for 

biological relevance, the precursor will be fully or partially incorporated into the 

compounds of interest with two or more labeled atoms. This works well for the 

application of substructure searching of a specific metabolite or group of metabolites that 

are derived from a common precursor. Like Miso, IsoAnalyst aims to identify the number 

of SIL tracer molecules incorporated into metabolites across a set of SIL conditions. 

However, a method for interpreting isotopologue ion intensities that accurately detects 

iterative incorporations of a singly labeled SIL tracer is beyond what is currently available 

in untargeted MS metabolomics.  

All of the algorithms discussed so far apply similar processing and statistical 

analyses of isotopologue peaks by comparing relative isotopologue intensities between 

unlabeled and labeled samples. Peaks that are determined to be labeled are typically 

displayed as mass isotopomer distributions (MID), or isotopologue distributions 

depending the resolving strength of the mass spectrometer. MID patterns can be used 

for statistical association between features showing similar labeling patterns or 

visualized for manual comparison. Miso differs from this type of output by providing the 

number of heavy isotopes detected in each compound. IsoAnalyst aims to generate an 

output similar to Miso, but uses relative isotopologue ratios within a single labeled 

sample to determine the number of SIL tracers incorporated into the structure. This 

approach allows for the more sensitive detection of SIL incorporation beyond the most 

intense isotopologue peak in the mass spectra. 
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3.1.2. The IsoAnalyst Approach to Untargeted SIL MS Metabolomics 
Analysis  

While other approaches aim to interpret the SIL incorporation information directly 

for structure determination, IsoAnalyst focuses on the biosynthetic profile of molecules 

labeled under different conditions to generate hypotheses about the genomic origin of 

that molecule. To facilitate the use of various singly labeled precursors I developed the 

novel algorithm, IsoAnalyst, to determine the number of detectable SIL incorporation 

events in each feature under every SIL conditon. In Chapter 2 I covered how the 

IsoAnalyst approach is based on the flexibility of SIL precursor selection to identify 

different pathways. Here I will describe how IsoAnalyst determines the number SIL 

atoms in every mass feature across all experimental conditions.  

IsoAnalyst processes mass spectrometry data in three stages. Initially, the raw 

data are pre-processed using third party software to generate peak and feature lists as 

input files. MS features are then aligned across all unlabeled control samples in the first 

processing step to generate a ground truth feature list containing the monoisotopic m/z 

value (M0) for every MS feature detected across the entire experiment (Figure 3.1a). The 

next step uses the M0 peak of each feature in the master list to identify and scrape the 

associated isotopologue peak data (M1, M2, M3, etc.) for every feature in each SIL 

condition (Figure 3.1b) Finally, IsoAnalyst determines the degree of isotopic labeling for 

each analyte by comparing the relative isotopologue ratio M1:M0 of a feature in the 

unlabeled dataset with sequential pairs of peaks (e.g. M1:M0, M2:M1 etc.) in the labeled 

dataset. For every position where this ratio is significantly greater than the M1:M0 ratio of 

the unlabeled feature, we assume that at least that many positions are enriched in that 

given condition. The final output of IsoAnalyst is a summary of the number of SIL 

incorporations detected for each feature under every SIL condition (Figure 3.1b). 
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Figure 3.1 IsoAnalyst MS Data Processing Workflow  
(a) Required data pre-processing steps to generate input files for IsoAnalyst. Files are 
indicated as tilted rectangles and those highlighted with a light gray box are required input 
files. Requirements described in the software documentation are available in the GitHub 
repository. The ground truth feature list of features aligned across samples is highlighted 
in a dark gray box and may be generated by the ‘Prep’ step of the IsoAnalyst program 
(highlighted in green) or by third party tools. (b) IsoAnalyst performs the following steps: 
all isotopologue peak information for every feature is first scraped from the centroided 
peak lists in the ‘Scrape’ step (highlighted in blue). In the ‘Analyze’ step (highlighted in 
orange), the isotopologue ratios are compared for every feature in each SIL condition to 
determine the extent of labeling. Finally, a summary file is generated containing all of the 
SIL incorporation profiles for every feature that contains labeling in two or more 
conditions.  
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3.2. Standard Processing: Feature Detection and Alignment 

3.2.1. Peak Picking and Feature Detection 

Mass spectrometry generates complex multi-dimensional datasets, and pre-

processing of these datasets greatly affects the quality of downstream statistical results. 

There are many freely available tools and vendor specific software packages for this 

purpose, which typically involve processes such as noise filtering, baseline correction, 

peak picking, and retention time alignment.6,21,22 Centroiding, sometimes referred to as 

‘peak picking’,  determines the m/z peak’s centroid (or center) and collapses it into a 

single data point representing the intensity of one peak in one scan.23 This is not to be 

confused with the subsequent pre-processing step, feature detection, or the 

chromatographic alignment of m/z peaks. Because the extracted ion chromatogram of 

an m/z peak is also often referred to as a ‘peak’, representing compound elution over 

time, there is some overlap in the terminology between these two pre-processing steps. 

Feature detection often involves various other processes for cleaning up the data such 

as smoothing, background subtraction, and noise filtering.24 A chromatographic mass 

feature is a determined m/z value and retention time pair which represents a unique ion 

detected in an experiment. Isobars have the same mass but can elute at different times, 

highlighting the importance of accurate feature detection in order to determine individual 

analytes detected in an experiment even if they have the same mass. 

The confusion around this terminology is often disregarded because the majority 

of MS metabolomics studies apply statistical analyses to only the deconvoluted MS 

features. The centroided peak lists are typically considered as raw data files and are 

disregarded in the downstream analysis, except to follow up on specific analytes and to 

check data quality parameters such as peak shape and overlap. IsoAnalyst differs from 

other statistical analyses in that it requires separate input files with centroided m/z peak 

information for every sample and deconvoluted MS features for the unlabeled control 

samples only (Figure 3.1). Throughout this chapter I use the term ‘peak’ to refer to the 

centroided m/z peaks detected in each scan performed by the MS detector, and the term 

‘feature’ to refer to unique m/z and retention time pairs that were deconvoluted from the 

total ion chromatogram of the sample. When discussing the elution profile of an MS 

feature I will specify it as a ‘chromatographic peak’.  
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3.2.2. Considerations for Data Independent Acquisition 

All of the MS data in this thesis were acquired on a Waters Synapt G2Si qTOF 

mass spectrometer in a data independent acquisition (DIA) mode, termed MSE. 

Generally speaking, DIA of MS data means that all ions detected in the MS1 spectra are 

equally subjected to fragmentation. This is in contrast to data dependant acquisition 

(DDA) where only the highest intensity ions, or ions in an inclusion list will be 

fragmented. While more fragmentation information is retained in DIA methods, greatly 

reducing bias towards more abundant ions, the deconvolution of matching fragment ions 

to the corresponding parent mass is more complicated than in DDA. Waters MSE 

technology uses alternating low and high energy scans throughout the chromatogram to 

acquire full profile data across the entire dynamic range in both MS1 and MS2 mode for 

precursor and fragment ion detection respectively (Figure 3.2a) 

An in-house pre-processing pipeline which is specialized to handle MSE data 

from our Waters Syanpt G2Si was used for peak picking and feature detection. First, a 

centroiding algorithm is applied, to produce scan-by-scan peak lists for every sample in 

a csv format (Figure 3.2b). This centroiding algorithm is applied to the high and low 

energy scan separately to create two centroided peak lists for each sample. These peak 

lists are then deconvoluted in the pre-processing pipeline to produce feature lists for 

each sample. The analysis takes into account the chromatographic peak shape of each 

feature and determines the center (retention time) as well as the low and high scans 

indicating the beginning and end of the chromatographic peak. Importantly, this step 

includes de-isotoping, which is essential to the downstream processes because the 

feature lists are used to identify the monoisotopic M0 mass for every feature. The final 

step of feature detection that is specific to DIA MS data is to align the MS2 features with 

their parent MS1 ions and generate one file per sample which contains all parents and 

fragment ions (Figure 3.2c).  

IsoAnalyst is currently only designed to handle MS1 data, so although I perform 

the entire process shown in Figure 3.2 on every sample, I only keep the MS1 centroided 

peak list and disregard the MS2 peaks lists. I also disregarded the MS2 data in the final 

feature lists in order to simplify the initial development of the algorithm. Fragmentation 

data are investigated for SIL incorporation on a case-by-case basis to aid in structural 

assignment in the following chapters. Future development of this work could retain the 
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MS2 data in the processing pipeline however significant work remains in developing tools 

to automate the comparison of SIL labeled MS fragment ions across large datasets.  

 
Figure 3.2 Overview of DIA MS data acquisition and pre-processing 
(a) Cartoon diagram of DIA MS data acquisition, where alternating MS1 and MS2 continuum 
scans are acquired across the chromatographic run. (b) Centroiding of continuum data collapses 
peaks into a single intensity in each scan, which is then written to a .csv file  containing the full 
centroided peak lists. (c) Feature detection aligns the MS1 and MS2 data, and writes the data to a 
.csv file containing all MS1 features and their aligned MS2 features. 

3.2.3. Generating the MS Feature Master List  

The first step of the IsoAnalyst workflow is to align the features detected in the 

unlabeled control samples by retention time (0.03 min window) and m/z (15 ppm error) 

to generate a master list of all features present across the experiment (Figure 3.1a). 

IsoAnalyst contains a module which can perform this step, however other programs such 

as XCMS6 and MZmine21 can also align features across samples. This step may be 
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performed within IsoAnalyst, or by a third party tool (Figure 3.1a) The final ground truth 

list of features for the experiment contains the m/z value, retention time, charge state, 

low and high scan numbers, and the conditions the feature occurs in. This information is 

used in the following steps to guide the isotopologue data extraction.  A unique identifier 

is assigned to each feature and the m/z value recorded in the master list is assumed to 

be the monoisotopic M0 mass for that analyte due to the de-isotoping algorithm applied 

during feature detection. The scan ranges vary slightly between replicates, but are highly 

reproducible in retention time as expected from a UPLC system. IsoAnalyst takes the 

highest and lowest scan numbers from the list of replicates of each feature and uses this 

scan range to scrape isotopologue peaks from all of the experimental scan-by-scan data 

for that feature in the next step.  

The ground truth list of MS features is filtered to include only those features 

present in at least three of four replicate samples, and to exclude features present in 

solvent blanks. Doubly charged ions (ie [M+2H]2+) are observed in our experiment and 

retained in the ground truth feature list, however these ions are not analyzed in the 

subsequent steps of IsoAnalyst. The doubly charged ions observed in these experiments 

were all found to correspond to singly charged adducts and so I opted to focus on the 

statistical analysis of only the singly charged species for the development of this tool. 

Additional considerations should be made for interpreting SIL incorporation into high 

molecular weight doubly charged ions, which often correspond to large peptides. 

IsoAnalyst can easily be modified to detect and analyze these isotopologues, however 

the statistical approach presented here may not be ideal for the interpretation of SIL 

enrichment in such ions. Software currently exists that is more suited for the analysis of 

SIL incorporation into large peptides for proteomics applications.25 

3.3. Isotopologue Detection and Determination of SIL 
Incorporation 

3.3.1. Interrogation of SIL Experimental Data for All Isotopologue 
Peaks 

Isotopologues are isotopic homologs that contain the same number of light and 

heavy isotopic elements, but the isotopically enriched positions may differ.26 A mass 

spectrometer cannot differentiate the position of isotopic enrichment, but identifies 
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isotopologue peaks by their mass.27 The qTOF-MS system used in this study operates at 

about 25,000 FWHM resolving power, allowing for accurate mass determination. 

However, the resolving power of the qTOF mass spectrometer is not sufficient to 

differentiate between the natural occurrence of 13C and the enrichment of 15N in the [1-
15N]glutamate condition used in my experiment. These isotopologues are detected 

together as a single mass isotopomer peak27 as opposed to a pure isotopologue peak 

representing ions corresponding to the incorporation of an individual isotope. This 

complicates the detection of the isotopologue peaks in the [1-15N]glutamate condition 

slightly because the combined mass contribution of 15N and 13C skews the detected 

mass of the heavy isotopologue peaks in comparison to SIL conditions supplemented 

only with 13C.  

For identifying isotopologues in the unlabeled datasets, and in the SIL conditions 

containing only 13C enrichment, the mass difference of 1.00335 m/z is used to identify 

isotopologue peaks. For labeled features in the [1-15N]glutamate condition, the mass 

isotopomer peaks M1, M2, etc each represent a mixture of isotopologues containing 

either 15N, 13C, or some combination of both isotopes. For clarity, throughout this text I 

refer to all isotopically enriched peaks as ‘isotopologues,’ with the understanding that 

these peaks represent mixtures of isotopologues only in the [1-15N] glutamate condition. 

IsoAnalyst uses the mass difference between 14N and 15N (0.99704 m/z) to search for 

isotopologue peaks in the [1-15N] glutamate condition. The contribution of 13C to the 

isotopologue peaks in the [1-15N] glutamate condition is accounted for in the next step, 

where isotopologue ratios are compared directly between labeled and unlabeled 

conditions.  

The first challenge in analyzing the isotopologue peaks in this experiment was to 

attain the complete group of isotopologue peaks for every MS feature in the labeled 

samples. Because isotope distribution patterns vary significantly between analytes, I 

found that existing MS analysis software could not correctly identify the M0 peak of 

extensively labeled features in the SIL conditions. With the iterative incorporation of 

singly labeled precursors, my aim is to identify the heaviest isotopologue mass with 

detectable SIL incorporation even if it is not the most abundant isotopologue peak. The 

accurate and complete detection of the isotopologue distributions of every feature in the 

dataset is critical to the sensitivity and accuracy of the downstream analysis. The scrape 
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step in IsoAnalyst looks for all of the isotopologue peaks for every feature in the master 

list of feature aligned across the experiment in every sample (Figure 3.1b).  

To overcome the challenge of accurately aggregating this isotopologue data, 

IsoAnalyst uses the monoisotopic mass (M0) of each MS feature from the ground truth 

feature list as an anchor point to interrogate the labeled MS data for relevant MID 

patterns. This was accomplished using a custom data processing script that interrogated 

the centroided MS data from each experimental condition for the presence of each 

isotopologue peak (M0, M1, M2, etc) for every feature in the master list (Figure 3.1b). 

Starting from the M0 mass of each feature, the mass difference between the heavy and 

light isotope is iteratively added to obtain the theoretical masses of the isotopologue 

peaks M1, M2, M3, etc. IsoAnalyst then scrapes the scan-by-scan centroided data for 

every peak corresponding to the calculated isotopologue mass using a 15 ppm error 

window. The scan range used for obtaining the isotopologue peak data is determined by 

the initial feature detection step. Isotopologue data is interrogated this way for both 

unlabeled and labeled samples and written to a single file containing the full scan-by-

scan isotopologue data for all replicate samples in each feedstock condition (Figure 

3.1b).  

3.3.2. Calculating the Isotopologue Ratio 

The isotopologue distribution of a molecule can be theoretically calculated on the 

basis of the charge, molecular formula, and relative isotopic abundances of the elements 

present in the molecule.28 It is determined primarily by the natural abundance of 13C 

(1.07%) and the number of carbons present in the molecule, but smaller isotopic 

contributions from other elements such as nitrogen and oxygen are often incorporated 

into theoretical isotopologue distribution calculations.28 The measured isotopologue 

distribution of an analyte can be leveraged for molecular formula prediction and assist in 

compound identification.29 Complete isotopologue distributions can reduce candidate 

molecular formulas by >95% compared to accurate mass alone.28,30 Although this 

information is useful in compound identification, it is computationally time consuming to 

predict molecular formulas for hundreds to thousands of features. The ratio of the first 

isotopologue (one 13C; M1) to the monoisotopic mass (all 12C; M0) provides a more 

straightforward if less information rich way to measure isotopic abundance. This ratio 

(M1:M0) is not always sufficient for complete molecular formula predication but is a 
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molecule-specific measurement of natural isotopic abundance.31 The natural M1:M0 

isotopologue ratio for every feature in the unlabeled control data plays a special role in 

the IsoAnalyst workflow as this calculated ratio is the basis for statistically determining 

whether that feature is labeled in the SIL conditions. 

Mass accuracy has been a major focus in modern HRMS technological 

developments, however spectral accuracy is a companion concept that is often 

overlooked.32 In MS, spectral accuracy typically refers to the ability of the MS to 

accurately measure isotopic distributions. A common measurement of spectral accuracy 

is to calculate the percent error of the measured M1:M0 isotopologue ratio of a standard 

from its theoretical calculated M1:M0 isotopologue ratio.31 The M1:M0 ratio is usually 

calculated as a ratio of the integrated intensities of the M1 and M0 peaks across the 

chromatographic region.29,31,33 In IsoAnalyst I took a different approach to determine the 

M1:M0 isotopologue ratio by plotting the intensity values of the M1 and M0 peaks in each 

scan and plotting a linear regression function to determine the slope (Figure 3.3). The 

slope of this function is used as the experimentally determined M1:M0 ratio for the natural 

isotopic distribution of each MS feature detected in the unlabeled control data. These 

isotopologue intensity values are compared for a single analyte in a sample and the 

slopes of each intensity ratio plot are then averaged across replicates. The mean M1:M0 

ratio calculated for an MS feature in the unlabeled control samples is later used for 

statistical comparison to the isotopologue ratios in the labeled condition to determine the 

number of SIL precursors incorporated in the analyte. Centroid data are not preferable 

for  

 
Figure 3.3 MS data centroiding and isotopologue ratio plotting 
(a) Diagram of LC-MS data acquisition showing mass spectra collected at regular time intervals 
across a chromatographic peak. Each orange line represents a single mass spectrum, or scan 
containing m/z values across the instrument’s range. Data are first centroided, or peak picked, to 
give a single data point corresponding to the intensity of every m/z value in a scan. (b) All centroided 
scan data for a given feature plotted together as single points. (c) All centroided scan data for the 
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first two isotopologue peaks, M1 and M0, plotted by matching scans. The slope of the linear trend 
line in (c) is the isotopologue ratio used in the analysis step of the IsoAnayst workflow. 

spectral accuracy measurements as much of the spectral peak information is lost in the 

centroiding process.30,32 However, by plotting the centroided peak intensities by each 

scan I can assess the quality of the observed M1:M0 ratio in terms of linearity as well as 

spectral accuracy.  

To assess the variability of the naturally occurring M1:M0 isotopologue ratio for 

known analytes in our qTOF system, I analyzed erythromycin A at different 

concentrations (Figures 3.4, 3.5). Eight concentrations of erythromycin A, 500 nM, 100 

nM, 50 nM, 10 nM, 5 nM, 1 nM, 0.5 nM,  and 0.1 nM, were prepared and analyzed 

according to the methods at the end of this chapter. An additional higher concentration 

of 1 µM was tested, however the signal was highly saturated resulting in such a low 

mass accuracy that the isotopologue peaks could not be accurately detected and this 

sample was removed from the statistical analysis. Data was acquired for five replicate 

injections of each sample. Figures 3.4 and 3.5 show the calculated slope of the M1:M0 

intensity ratio for the [M+H]+ ion (m/z 734.4694) in the replicates for all eight 

concentrations. The linear regression statistics were computed using the linear 

regression function in the scipy.stats package. The slopes calculated from the linear 

regression of the M1:M0 intensity plot were then averaged to get the mean slope and 

standard deviation calculated across the five replicate sample injections (Figures 3.4, 

3.5). I refer to the mean slope and the M1:M0 ratio interchangeably throughout this 

section depending on the context. This value is used as the experimentally determined 

M1:M0 isotopologue ratio in comparison to the theoretical M1:M0 isotopologue ratio as 

calculated from a molecular formula. 

The standard error of regression (SER) values shown in figures 3.4 and 3.5 are 

similar to the commonly used R2 value indicating the linear fit of the data, but provide the 

error in the same numerical scale as the slope of the linear regression trend line rather 

than as a percentage. These SER values represent how well the data points in a single 

sample fit the linear regression model. The overall linear fit of these data is good across 

all concentrations, however the standard errors for the 500 nM replicates (Figure 3.4a) 

are notably an order of magnitude higher than the other concentrations. The lowest SER 

values were found for the intermediate concentrations 50 nM, 10 nM, and 5 nM (Figures 

3.4c,d, 3.5a). These statistics alone indicate that the data fit a linear model relatively well 
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across all concentrations, except 500 nM which demonstrated other systematic errors as 

discussed below.  

 
Figure 3.4 M1:M0 Isotopologue ratio plotting for commercial standard of 

erythromycin A (10 nM – 500 nM) 
Mass isotopologue distributions plotted by m/z versus intensity (left), linear plots of the M1:M0 
isotopologues of erythromycin A (center), and the individual and mean slopes of each replicate 
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linear graph, standard error (SER) of each linear model, and the standard deviation of the mean 
slope (right). Data shown for four concentrations 500 nM (a), 100 nM (b), 50 nM (c), 10 nM (d).   

 
Figure 3.5 M1:M0 Isotopologue ratio plotting for commercial standard of 

erythromycin A (0.1 nM – 5 nM) 
Mass isotopologue distributions plotted by m/z versus intensity (left), linear plots of the M1:M0 
isotopologues of erythromycin A (center), and the individual and mean slopes of each replicate 
linear graph, standard error (SER) of each linear model, and the standard deviation of the mean 
slope (right). Data shown for four concentrations 5 nM (a), 1 nM (b), 0.5 nM (c), 0.1 nM (d).   
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The mean slope and standard deviation were also calculated for each 

concentration. The standard deviation represents the variability of the mean slope 

calculated across the five replicates, whereas the SER values indicate how well the 

M1:M0 isotopologue intensity ratio plot of each replicate fits a linear model. The standard 

deviations of the mean slope are low across all concentrations, except the lowest 

concentration (0.1 nM) which was an order of magnitude higher than the other 

concentrations (Figure 3.5d). The SER values for the 0.1 nM data were also slightly  

higher than the higher concentrations. This indicates that although the overall precision 

of determining the M1:M0 ratio by linear regression is high, there is a lower limit in signal 

intensity where it is not ideal for measuring the isotopologue intensity ratio. 

3.3.3. Accuracy and Variability of the Isotopologue Ratio 

The theoretical M1:M0 ratio for the [M+H]+ ion of erythromycin A was calculated 

as 0.417 using the online tool enviPat Web 2.4.34 Table 3.1 indicates the relative percent 

error of the experimentally determined M1:M0 ratio for each concentration, from the 

theoretical ratio M1:M0 calculated by the equation 3.1: 

!1:!0	&''('	(%) = !1:!0(exp. ) −!1:!0(2ℎ&('. )
!1:!0	(2ℎ&('. ) 	× 	100	 

This calculation has been used previously to assess spectral accuracy of MS 

systems, or how faithfully the MS signals demonstrate the true isotopic abundance.31–33  

 A percent error of 2-5% is often cited as the optimal range for spectral accuracy 

as measured by the M1:M0 ratio of known compounds.28,30,31 All of the experimentally 

derived M1:M0 ratios for the erythromycin A standard were within 10% of the true M1:M0 

ratio, except 500 nM which was much higher (64.5%) (Table 3.1). The mean M1:M0 

ratios and standard deviations for all eight concentrations of the erythromycin A standard 

are plotted together in Figure 3.6a. The dotted line in Figure 3.6 is drawn at the 

theoretical value 0.417. There is an apparent trend in these data that the M1:M0 ratio 

tends to decrease as concentration, and therefore signal intensity, decreases. This is 

true up to a point, as the lowest concentration (0.1 nM) demonstrated a higher average 

and larger standard deviation (Figure 3.6a). 

 

(3.1) 
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Table 3.1 Statistics for the natural M1:M0 isotopologue ratio of erythromycin A  

Sample 
Mean 
Slope 

(M1:M0) 

Slope      
RSD 
(%) 

Percent Error 
± stdev 

(Spectral 
Accuracy)* 

Average 
High 

Intensity 

Intensity 
RSD (%) 

Shapiro-Wilk 
p-value 

erythromycin A 
commercial 

standard 

500 nM 0.686 0.44 64.5 ± 0.6 1.3E+07 0.52 0.183 (n=5) 

100 nM 0.426 0.94 2.08 ± 1.06 5.9E+06 0.89 0.476 (n=5) 

50 nM 0.407 1.97 -2.34 ± 1.88 5.0E+06 1.14 0.473 (n=5) 

10 nM 0.402 1.49 -3.70 ± 1.44 8.8E+05 5.11 0.780 (n=5) 

5 nM 0.392 1.53 -5.79 ± 1.46 4.9E+05 2.07 0.102 (n=5) 

1 nM 0.381 0.79 -8.69 ± 0.66 8.2E+04 3.88 0.531 (n=5) 

0.5 nM 0.387 1.81 -7.11 ± 1.55 3.7E+04 5.38 0.752 (n=5) 

0.1 nM 0.416 5.53 -0.295 ± 5.41 7.1E+03 4.54 0.225 (n=5) 

S. erythraea 
extract 

unlabeled acetate 0.356 2.81 -14.6 ± 2.38 8.2E+05 47.7 0.046 (n=4) 
unlabeled propionate 0.346 1.45 -17.0 ± 1.28 4.7E+05 17.3 0.668 (n=4) 
unlabeled methionine 0.352 1.14 -15.5 ± 0.86 4.5E+05 6.14 0.786 (n=4) 
unlabeled glutamate 0.345 2.03 -17.2 ± 1.77 3.6E+05 26.4 0.223 (n=4) 

All unlabeled 0.350 2.29 -16.1 ± 1.86 5.2E+05 49.8 0.238 (n =16) 
*Based on theoretical  M1:M0 0.417 

Most of the percent errors calculated were negative, which aligns with published 

work showing that most HRMS systems including qTOF tend to underestimate the M1:M0 

ratio.31,32 The exception being the two highest concentrations, 500 nM and 100 nM which 

both have M1:M0 ratios with positive percent error. The 500 nM concentration in 

particular has a very high percent error despite having low standard deviation and SER 

values (Table 3.1, Figure 3.4a). This strongly indicates that the signal intensity in this 

condition has saturated the detector. When the monoisotopic mass (M0) is saturated, the 

first isotopologue (M1) may continue to show increasing signal intensity before it too 

reaches saturation at a high enough concentration. Because of this, saturated signals 

give erroneous M1:M0 values that cannot be detected by linear regression or variation 

statistics alone. The 100 nM concentration also has a positive percent error, however it 

is within the expected 5% error28 from the theoretical value (Table 3.1).  

The ideal signal range for the Synapt G2Si is an ion intensity of approximately 

1.0e3 – 1.0e6. Signal intensities of 1.0e6 and higher are near saturation and often result 

in a decrease in mass accuracy, while signals higher than 8.0e6 are highly saturated 



82 

and not guaranteed to meet the specifications for mass accuracy. The average signal 

intensity for the highest intensity scan is shown for each concentration of erythromycin A 

in Table 3.1. The signal intensities in the standard erythromycin A samples were highly 

consistent due to the fact that the five replicates were sample injections from the same 

vials. In the fermentation experimental design, I include unlabeled control samples that 

are matched to every SIL precursor condition. This means that for each SIL precursor 

there are four control wells to which an unlabeled version of that biosynthetic precursor 

is added. These four replicates are inoculated from the same starter culture, but are 

fermented, worked up, and analyzed separately. These are technical replicates that 

account for variation in the wells of the microtiter plate, extraction technique, and MS 

analysis and so the variability in signal intensity was expected to be higher in these 

samples.  

 
Figure 3.6 Average natural M1:M0 ratios measure for erythromycin A 
Dotted line at 0.417 represents the theoretical M1:M0 ratio of erythromycin A as calculated using 
enviPat Web 2.4.34 Error bars are standard deviation of the mean where n = 5 for the commercial 
standard of erythromycin A and n = 4 for each unlabeled extract condition. 

I calculated the same statistics for the variability and accuracy of the M1:M0 ratios 

in the unlabeled control samples for a full S. erythraea experiment including acetate, 

propionate, methionine, and glutamate. The full experimental conditions can be found at 

the end of this chapter. Table 3.1 and Figure 3.6b include the statistics for the M1:M0 

ratios of the [M+H]+ ion of erythromycin A in the unlabeled control extracts of S. 

erythraea. The mean slopes in this table are generated from four replicate sample 
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extracts of cultures that were supplemented with the unlabeled precursor. Each 

unlabeled precursor control condition is processed separately, however the M1:M0 ratio is 

expected to be identical in these samples as they are all subject to the natural 

abundance of 13C and analyzed by MS on the same day. The variability (Slope RSD; 

Table 3.1) is low within these conditions and remains low when the M1:M0 ratio is 

averaged across all sixteen control samples (‘All unlabeled’). It is notable however that 

the percent errors calculated for the M1:M0 ratio of erythromycin A in the extracts were 

considerably larger in magnitude than in the standard samples (Table 3.1). The fact that 

the M1:M0 ratio was consistently smaller in the unlabeled extracts compared to the 

standard samples suggested that the signal intensity may be lower and potentially 

biasing the measurement towards a lower M1:M0 ratio. The average upper signal 

intensities for these samples were in the 3.0e5 - 9.0e5 range, which is within the ideal 

signal range according to Waters and based on the results using the standard of 

erythromycin A (Table 3.1). As expected, the relative standard deviation (RSD) of these 

signal intensities were much higher than in the standard samples (Table 3.1), however 

this did not translate to a higher variability in the M1:M0 ratio itself (Figure 3.6b).  

Although the M1:M0 ratio measured by qTOF-MS and calculated by the approach 

presented here is not reliably accurate to the literature standard28, it is clear that within a 

single experiment we can expect the detected isotopologue ratio to be precise if not very 

accurate. Because there was low variability in the M1:M0 ratio across the full set of 

sixteen unlabeled control samples, I expect that the factors that contributed to a larger 

deviance from the theoretical M1:M0 value were systematic and affected the entire 

sample set, including the labeled samples, with the same bias. The 2-5% accuracy 

suggested by Kind and Fiehn28 was intended for using the M1:M0 ratio to assist in the 

reduction of potential molecular formulas. This application requires objective accuracy of 

the M1:M0 ratio calculated for each molecular species, however my experiments use the 

M1:M0 ratio for internal comparisons so the overall precision is more important than the 

accuracy.  

 The subsequent statistical analysis described in the next section uses a Welch’s 

t-test which assumes that the sample sets being compared have a normal distribution. 

One informal way of assessing normality is to plot the data in a frequency distribution 

histogram or to use other methods of visual plotting. I am working with relatively small 

sample sizes that are not amenable to this assessment. There are also a variety of test 



84 

statistics used to determine is a sample set is normally distributed but the Shapirio-Wilk 

test is often cited as providing better power than other commonly used tests of 

normality.35 A Shapiro-Wilks test was employed using the scipy.stats package to test the 

normality of the unlabeled M1:M0 ratios for the [M+H]+ ion of erythromycin A in the 

standard samples and the unlabeled extracts. A significant p-value for a Shapiro-Wilk 

test (< 0.05) indicates that the data are not normally distributed. All of the M1:M0 ratios 

derived from standard and extract samples showed normal distribution according to this 

test except for the S. erythraea extract supplemented with unlabeled acetate (Table 3.1). 

This dataset was determined to include an outlier, as further indicated by the higher 

standard deviation in this condition. The Shapiro-Wilk p-value calculated for the full 

sixteen unlabeled control sample was also insignificant indicating an overall normal 

distribution of the M1:M0 ratios derived from linear regression slopes of these samples.  

3.3.4. Using Isotopologue Ratios to Determine the Extent of SIL 
Incorporation in MS Features 

Because all SIL precursors used in this method are singly labeled, incorporation 

of any SIL precursor will increase the M1:M0 intensity ratio for that condition. Starting with 

the M1:M0 ratio in the SIL condition, IsoAnalyst asks the question, 'is this isotopologue 

ratio significantly greater than the M1 to M0 ratio of the same chemical species having a 

natural isotopic distribution?' If the isotopologue ratio of M1:M0 for the feature in the SIL 

condition is statistically indistinguishable from the unlabeled feature, it is determined to 

have no isotopic enrichment in that condition. However, if it is significantly greater, the 

feature is determined to be labeled. IsoAnalyst then iteratively compares the intensity 

ratios for subsequent isotopologue pairs (e.g. M2:M1, M3:M2, etc) until the isotopologue 

ratio is no longer statistically distinguishable from the natural M1:M0 ratio. 

The heavy isotopologue ratios detected in the SIL conditions are expected to 

demonstrate a higher variability than the natural abundance M1:M0 ratios of features in 

the unlabeled conditions. The replicates in this experiment are derived from individual 

biological cultures maintained in separate sterile wells in 24-well plates. Although the 

media conditions are identical, and the culture inoculum for each well is derived from the 

same original colony, there will always be small variations that affect the metabolism of 

the SIL incorporation in each well. I looked at the variability of the heavy isotopologue 

ratios of erythromycin A in the [1-13C]acetate condition because this precursor is not 
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directly incorporated into the compound and therefore may demonstrate higher variability 

in SIL incorporation under minor environmental changes. Table 3.2 shows the mean 

slopes for each isotopologue ratio calculated for the [M+H]+ ion of erythromycin A in the 

[1-13C] acetate samples, with the RSD expressed as a percentage. The RSD values for 

the first three isotopologue ratios (M1:M0, M2:M1, M3:M2) were between 2-4% which is 

similar to the RSD of the M1:M0 isotopologue ratios calculated for the unlabeled 

conditions (Table 3.2). The heavier mass isotopologue ratios had increasing RSD values 

which could be explained not only by biological variability but the lower intensities of 

these heavy mass isotopologue peaks (M7:M6, M8:M7 in Table 3.2). Overall, the 

variability of the isotopologue ratios in the SIL conditions is slightly higher than the M1:M0 

isotopologue ratios in the unlabeled conditions.  

Table 3.2 Isotopologue ratio statistics for erythromycin A labeled by [1-
13C]acetate 

Isotopologue 
Ratio mean slope Slope RSD 

(%) 
Average High 

Intensity 
Intensity 
RSD (%) 

Shapiro-Wilk 
p-value 

M1:M0 2.074 2.25 3.0E+05 5.15 0.478 
M2:M1 1.032 3.71 3.1E+05 5.89 0.444 
M3:M2 0.664 1.68 2.0E+05 5.48 0.643 
M4:M3 0.446 4.06 9.2E+04 9.05 0.078 
M5:M4 0.323 7.57 3.0E+04 13.1 0.187 
M6:M5 0.268 4.65 8.2E+03 12.0 0.515 
M7:M6 0.262 10.0 2.1E+03 6.11 0.106 
M8:M7 0.212 21.8 4.9E+02 3.34 0.129 

 [1-13C]Acetate can be incorporated into erythromycin A in six positions, through 

the indirect transformation of methylmalonyl-CoA from the TCA cycle intermediate 

succinyl-CoA, as discussed in Chapter 2. Six carbon positions of erythromycin A can be 

labeled indirectly by [1-13C]acetate through malonyl-CoA (Figure 3.7a). The intensities of 

the isotopologue peaks of erythromycin A in each scan of the chromatographic peak are 

shown for one control replicate and one [1-13C]acetate experimental replicate (Figure 

3.7b). The M1:M0 ratio of the unlabeled control and all detectable isotopologue ratios in 

the [1-13C]acetate condition are then plotted as intensity ratios (Figure 3.7c). A single 

replicate is plotted for each isotopologue ratio for comparison (Figure 3.7c), however 

mean slope data (n=3) were used in the statistical analyses shown in Figure 3.7d.  



86 

The statistical comparison between isotopologue ratios of a compound in the SIL 

condition and the M1:M0 ratio in the unlabeled condition is done using a two-tailed 

Welch’s t-test with a p-value cut off of 0.05. Although IsoAnalyst performs a two-tailed t-

test in this analysis, it only determines an isotopologue peak to be enriched in an SIL 

precursor if the M1:M0 ratio is significantly greater than the natural M1:M0 ratio. This is 

effectively a one-tailed t-test (p-value cut off of 0.025), using a combination of the two-

tailed p-value (< 0.05) and the test statistic (< 0) to decide if a isotopologue is enriched 

with an SIL precursor. For erythromycin A labeled by [1-13C]acetate, the first four 

isotopologue ratios (M1:M0, M2:M1, M3:M2, and M4:M3) all have significant p-values and 

negative t-statistic values, indicating they are all significantly larger than the M1:M0 ratio 

in the unlabeled condition (Figure 3.7d). When plotted together, it is clear that these 

isotopologue ratios have larger slopes than the unlabeled M1:M0 ratio (Figure 3.7c). The 

M5:M4 isotopologue ratio does not have a significant p-value (Figure 3.7d), indicating that 

is statistically indistinguishable from the unlabeled M1:M0 ratio. Enrichment of SIL in the 

M5 isotopologue is therefore not detectable, as this isotopologue may have four positions 

enriched by 13C derived from the [1-13C]acetate tracer and one 13C position deriving from 

the natural abundance of 13C. Based on the statistical analysis shown in Figure 3.7d, the 

M4 isotopologue is the heaviest isotopologue that has statistically significant enrichment 

from the [1-13C]acetate tracer. The remaining isotopologues (M6:M5, M7:M6, and M8:M7) 

have significant p-values (< 0.05), but positive t-statistic values, indicating that they are 

all significantly smaller than the unlabeled M1:M0 ratio (Figure 3.7d).  

 Although various elements make small contributions to isotopologue abundance, 

the theoretical M1:M0 ratio for a compound depends primarily on the number of carbons 

in a compound’s structure. Larger organic molecules have a higher M1:M0 ratio because 

there are more carbon positions available in the molecule where 13C may occur. The M1 

isotopologue peak represents the same compound as the M0 peak, except with one 13C 

present somewhere in the structure. A molecule with more carbons will naturally have a 

higher probability of having a 13C present in its structure, consequently increasing the 

ratio of the M1 isotopologue peak in comparison to the monoisotopic peak. Likewise, 

when a molecule is enriched with an SIL precursor incorporated into its structure, the 

probability of the remaining carbons having a naturally occurring 13C is less than that of 

the whole molecule produced in unlabeled conditions. This is why we see significance in  
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Figure 3.7 Isotopologue ratios for erythromycin A labeled by [1-13C]acetate 
(a) Structure of erythromycin A with red circles representing positions where 13C can be 
incorporated into the structure via [1-13C]acetate. (b) Plot of the isotopologue peak intensities for 
erythromycin A in an unlabeled control (top) and an [1-13C]acetate labeled sample (bottom). (c) 
Isotopologue intensity ratios plots for M1:M0 ratio in the unlabeled control, and the first five 
isotopologue pairs in the labeled sample. (d) Table showing the mean slope of every isotopologue 
pair and the Welch’s two-tailed t-test results for each labeled isotopologue pair.  

the two tailed t-test beyond the isotopologue peak containing the most SIL atoms 

derived from the SIL precursor.  

This phenomenon is best illustrated when a compound has complete SIL 

enrichment in every available position. [1-13C]Propionate is a highly efficient SIL 

precursor for labeling erythromycin A, which uses six methylmalonyl-CoA units and one 

propionyl-CoA units in the biosynthesis of its polyketide backbone. In this experiment we 

observed complete labeling by [1-13C]propionate, which appears as a clear 7 Da shift 

from M0 to M7 (Figure 3.8b). Figure 3.8a shows the structure of erythromycin A 



88 

corresponding to the M1 peak in the unlabeled condition, with a single naturally occurring 
13C in its structure (open circle). The structure in Figure 3.8b represents the M8 

isotopologue in the [1-13C]propionate condition, which has seven 13C atoms derived from 

enrichment by the [1-13C]propionate (filled circles) and one position deriving from 

naturally occurring 13C (open circle). Erythromycin A has 37 carbon positions that may 

contain 13C derived from natural abundance to generate the M1 isotopologue structure 

shown in Figure 3.8a. The isotopologue of erythromycin A which has complete labeling 

by [1-13C]propionate (M7) has 30 remaining carbon positions that may contain 13C 

derived from natural abundance to generate the M8 isotopologue structure shown in 

Figure 3.8b. The ratio of M8:M7 is significant in the two tailed t-test (p = 1.6 x 106), but the 

graph in Figure 3.8c clearly shows that the M8:M7 ratio is significantly smaller than the 

M1:M0 ratio of the unlabeled feature. The M8:M7 ratio of erythromycin A in the [1-13C] 

propionate condition is significantly smaller than the M1:M0 ratio of erythromycin A in the 

unlabeled condition because there are less carbon positions remaining in the structure 

where natural 13C may occur. This trend of isotopologue ratios being a significantly 

smaller than the natural M1:M0 ratio was common for ions that had strong signal intensity 

for the heavy isotopologue peaks.  

This statistical analysis therefore assigns the degree of isotopic labeling detected 

for a given SIL precursor in every MS feature aligned across the experiment. IsoAnalyst 

evaluates every MS feature from the ground truth list in each SIL condition to determine 

whether or not the feature is isotopically enriched in that condition, and how many 

positions can confidently be assigned as labeled. These data create a profile for each 

MS feature indicating the extent of labeling in each SIL precursor tested. The final step is 

to combine the labeling information into a summary file with every feature from the 

ground truth feature list and the number of SIL precursors detected in each condition. 
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Figure 3.8 Isotopologue ratios for erythromycin A labeled by [1-13C]propionate 
(a) Structure of the M1 isotopologue of erythromycin A in the unlabeled sample. The open yellow 
circle represents 13C derived from the natural abundance of 13C. (b) Structure of the M8 
isotopologue of erythromycin A. Filled yellow circles represent 13C derived from [1-13C]propionate 
and the open yellow circle represents 13C from the natural abundance of 13C. (c) Isotopologue ratio 
plots from an unlabeled control and [1-13C]propionate labeled sample. (d) Table showing the mean 
slope and Welch’s two-tailed t-test results for the three heaviest isotopologue ratios of erythromycin 
A labeled by [1-13C]propionate.   

3.3.5. Complete SIL Incorporation in Erythromycin A 

The statistical approach presented in this chapter fulfils the need outlined in 

Chapter 2 to identify the heaviest isotopologue peak of a compound that is enriched by 

an SIL precursor. This analysis therefore identifies the number of singly labeled SIL 

precursors incorporated into a given ion, and aligns these data across parallel SIL 



90 

conditions. I have already shown that four 13C atoms from [1-13C]acetate and seven from 

[1-13C]propionate were detected in erythromycin A. This aligns well with the predicted 

incorporation of these SIL precursors (Figure 3.9a) because [1-13C]propionate is 

incorporated directly into all of the polyketide core substrates, while [1-13C]acetate only 

labels the methylmalonyl-CoA extender units indirectly through the TCA cycle. Four 

labeled methylation positions were detected in the [methyl-13C]methionine condition, 

corresponding to the dimethylamino group of desosamine, the methylation position of  

 
Figure 3.9 Full labeling prifle of erythromycin A by [1-13C]acetate, [1-

13C]propionate, [methyl-13C]methionine, [1-15N]glutamate 
(a) Erythromycin biosynthetic gene cluster, substrates used in the biosynthesis of erythromycin A, 
and the expected labeling of these substrates. (b) Structure of erythromycin A and the atoms that 
are expected to be labeled in the four SIL conditions, and MS data of erythromycin A in the four 
SIL conditons. (c) Comparison of expected and observed labeling of erythromycin A. 
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mycarose, and the O-methyl group of mycarose (Figure 3.9). Labeling of the single 

nitrogen present in desosamine was also detected in the [1-15N]-glutamate condition 

(Figure 3.9). This demonstrates that the IsoAnalyst MS data processing platform can 

accurately detect complete iterative SIL incorporation in erythromycin A, a compound 

with a well-established biosynthetic framework.  

 
Figure 3.10 IsoAnalyst labeling profiles for adducts and in-source fragments of 

erythromycin A 
(a) Diamonds represent MS features associated with erythromycin A plotted by m/z and retention 
time. Bar graphs show IsoAnalyst results for each features. (b) Chromatograms showing the peak 
shape and retention time of the MS features from (a).  

A common difficulty in MS metabolomics is the high number of mass adducts and 

in-source fragments that can inflate the number of detected features compared to real 

compounds present in a sample.36 A total of five features were detected for erythromycin 

A, corresponding to different fragments of the same compound (Figure 3.10). The 

dehydrated fragment ion m/z 716.4565 had labeling patterns that matched the [M+H]+ 
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ion, while smaller fragments showed decreased labeling from [methyl-13C]methionine 

due to the loss of the mycarose sugar subunit (Figure 3.10a). IsoAnalyst therefore not 

only accurately detects SIL incorporation in MS features across multiple conditions, but 

can also group adducts and fragments that derive from the same compound, simplifying 

interpretation of labeling data for complex samples. In the following chapters I will 

demonstrate how correlating labeling patterns between ions can not only relate 

fragments and adducts of the same molecule, but assists in the association of 

biosynthetically related molecules across the entire metabolome.  

3.4. Limitations of IsoAnalyst  

3.4.1. Signal Intensity and Variability 

Signal intensity is one of the main limiting factors in detecting compounds that 

are present in the extract, and has a known influence on accurate measurement of 

isotopologue ratios.37 The analysis of erythromycin A at different concentrations shows 

that the accuracy and variability of the M1:M0 isotopologue is affected at both low and 

high signal intensities. Signal saturation has a clear detrimental impact on the overall 

measurement of isotopologue ratios, that would significantly affect the downstream 

analysis. Because saturation overestimates the M1:M0 ratio, an ion that is saturated in 

the unlabeled condition would result in higher false negatives in SIL detection. Signal 

saturation is a common problem and optimizing sample concentration is always an 

important aspect of MS metabolomics. Signals in the upper intensity ranges may still be 

peak picked and processed in standard MS metabolomics workflows, however saturated 

signals may cause significant downstream problems in the statistical analysis employed 

in IsoAnalyst. For this reason, it is especially important to test sample concentrations 

ahead of time and maintain consistency in sample preparation techniques. 

At the lower end of signal intensity there are also limitations in data analysis. The 

main limiting factor is low concentrations of the compound in the sample either due to 

low production by the organism, ineffective extraction techniques, or inefficient 

ionization. The incorporation of singly labeled SIL compounds can exacerbate this by 

spreading the signal intensity across a larger number of isotopologue peaks, effectively 

lowering the signal intensity of individual isotopologue peaks compared to the unlabeled 

sample. In the case of erythromycin A, the ion intensity was consistently strong, all the 
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way up to the M8 isotopologue in the case of labeling by [1-13C] propionate. In this ideal 

case, I showed how t-test statistics beyond the heaviest labeled isotopologue can have 

results which show that the isotopologue ratio is significantly smaller than the M1:M0 ratio 

of the unlabeled compounds. While the statistics calculated beyond the heaviest labeled 

isotopologue help verify the SIL incorporation in ions with sufficient signal intensity, it is 

not required for the identification of labeling. Lower abundance ions may have more SIL 

positions that are labeled than are able to be detected, however I have shown that 

accurate detection of SIL incorporation is possible as low as 8.0e3 ion intensity (Table 

3.2, Figure 3.7d).  

 Another cause of low signal intensity that I have observed in these experiments 

is the inconsistent production of compounds across the panel of labeling conditions. The 

four SIL media conditions are fermented and analyzed separately, and this may 

influence the metabolism of the organism such that a compound is produced sufficiently 

in one SIL condition, but is not present or present in very small quantities in another. The 

purpose of growing paired controls with an unlabeled version of the precursor is to 

maintain similar nutrient environments so that the samples can be directly compared. 

Although this worked quite well for the compounds I observed and will discuss in the 

next chapter, this experimental design may be modified such that the medium used 

always contains unlabeled versions of every precursor. Doing so would potentially make 

the media conditions more consistent for compound production but, adds to the 

complication of setting up the experiment. This is a tradeoff that should be considered 

depending on the test organism.  

3.4.2. Incomplete SIL Incorporation 

A limitation of many studies that use SIL precursors is the interference of 

unlabeled nutrients which dilute the target biosynthetic precursor pools, and prevent 

complete labeling of target molecules. One approach to achieving compete labeling in 

the metabolome is to grow the organism in media containing a single carbon source of 

U-13C glucose, as is common in metabolic fluxomics studies. Since the aim of IsoAnalyst 

is to selectively label certain classes of molecules, it was not practical to supplement the 

media with fully labeled carbon sources. Overall the IsoAnalyst approach is limited by 

the efficiency of SIL incorporation. As discussed in Chapter 2, these challenges are 

mitigated mostly in the development of media conditions and SIL compounds as the rate 
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of SIL incorporation relies on the metabolic processes at play. This inherent limitation 

prevents IsoAnalyst from determining the true number of SIL precursors incorporated 

into any feature, but rather it identifies the number of SIL precursors that can be 

confidently detected in any given MS feature. This is important to consider when 

interpreting labeling data in terms of BGC information, as the absence of labeling cannot 

be conflated with the lack of particular substrate in the BGC structure prediction.  

3.4.3. BGC regulation 

IsoAnalyst only detects compounds which are produced under the media 

conditions used, and does not inherently elicit natural product production. The common 

challenges associated with silent BGCs apply to the IsoAnalyst experiments and 

workflow. One advantage of IsoAnalyst is that it is flexible and can be used in 

combination with other common methods for assessing genomic potential of micro-

organisms. IsoAnalyst can be applied to many different media conditions, co-cultures, or 

in combination with other elicitors such as antibiotics and heavy metals. It can also be 

applied to genetically manipulated organisms such as knock-outs or constitutive 

promoters, as well as to heterologous hosts. The flexibility of IsoAnalyst allows for its 

application to any experiment that aims to find chemistry produced in a biological 

fermentation, where the genome of the organism is known.  

3.5. Conclusion 

Many of the SIL MS metabolomics algorithms described in the introduction of this 

chapter retain only the most abundant isotopologue peaks in their analysis. This is why 

there is a great advantage to targeted approaches that utilize SIL precursors with 

specific biosynthetic targets and distinct isotopic combinations. In the IsoAnalyst 

approach, I aim to identify the iterative incorporation of multiple SIL precursors that are 

labeled in a single position in both known and unknown compounds. Rather than 

targeting a specific compound or group of compounds, IsoAnalyst allows for the efficient 

association of MS features by their biosynthetic origin. To achieve this, I aimed to 

develop a method that detects SIL incorporation, the number of SIL precursors present, 

and aligns the data across parallel labeling conditions. IsoAnalyst compares 

isotopologue ratios between unlabeled controls and labeled samples to leverage 
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information from the full isotopologue distribution, including highly labeled but low 

abundance isotopologue peaks. From this analysis it is possible to determine the 

minimum number of isotopic incorporation events for a given isotopically enriched 

feature. This analysis does not define the precise number of biosynthetic precursors in 

the structure, but rather the minimum number of detectable incorporation events, to 

provide overall labeling patterns for every feature under each SIL condition. In addition, it 

does not differentiate between direct biosynthetic incorporation and metabolic 

transformation of the feedstock prior to incorporation. Still, IsoAnalyst accurately 

detected SIL incorporation in all detected adducts and in-source fragment ions of 

erythromycin A across all four SIL conditions. In the subsequent chapters I will apply this 

method to the full metabolome of sequenced organisms to demonstrate how IsoAnalyst 

results relate to known biosynthetic pathways (Chapter 4) and discover novel chemistry 

from known biosynthetic pathways (Chapter 5).  

3.6. Methods  

3.6.1. UPLC-MS methods and data acquisition  

All solvents used for UPLC and HPLC were Optima grade, and water used for 

chromatography was purified by a Milli-Q water purification system.  All standard 

solutions and biological extracts were analyzed using a Waters Acquity I-class UPLC 

system coupled to a Waters Synapt G2Si qTOF mass spectrometer. Sample injections 

(5 µL) were subjected to chromatographic separation and mass spectrometric analysis. 

Chromatography was performed (Acquity HSS T3 1.8 µm, 2.1 x 100 mm) using a linear 

gradient (solvent A: H2O + 0.01% formic acid, solvent B: acetonitrile + 0.01% formic 

acid) of 5-98% B over 5.8 minutes, a hold a 98% B for 0.3 min followed by a 1.8 minute 

re-equilibration at 5% B. All mass spectra were acquired in MSE mode which is a data-

independent acquisition (DIA) mode (Figure 3.2). The MS detector range was set to 50-

1500 m/z in positive mode, with a capillary voltage of 3.5 kV, and a desolvation 

temperature of 200 ºC. A 0.4 second scan rate was used, with an alternating MS1 and 

MS2 scan acquisition. The MS2 data is acquired and processed by the method shown in 

Figure 3.2, however only the MS1 data is used in the IsoAnalyst processing workflow.  
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3.6.2. MS analysis of erythromycin A standard at varying 
concentrations 

Solutions containing a commercial standard of erythromycin A (Sigma-Aldrich) 

were prepared at the concentrations 500 nM, 100 nM, 50 nM, 10 nM, 5 nM, 1 nM, 0.5 

nM, and 0.1 nM in a 1:1 mixture of optima methanol and Milli-Q purified water. Five 

replicates of each concentration were analyzed. These data were pre-processed for 

peaking picking and feature detection by our in-house processing pipeline to produce the 

centroid peak lists and feature lists as shown in Figure 3.2. I then analyzed these data 

using the isotopologue scraping step of IsoAnalyst to detect all the naturally occurring 

isotopologues of the [M+H]+ ion of erythromycin A. I wrote a custom Python 3 script to 

calculate the linear regression of the M1:M0 isotopologue ratio and Shapiro-Wilk statistics 

for the M1:M0 ratio of the erythromycin A in the commercial standard samples. Linear 

regression and Shapiro-Wilk statistics were both calculated using the scipy.stats 

package in Python 3.  

3.6.3. IsoAnalyst program requirements 

IsoAnlalyst is a custom script written in Python 3. Additional information 

regarding input requirements and user guides for IsoAnalyst are available on the GitHub 

repository (www.github.com/liningtonlab/isoanalyst). The data presented throughout this 

thesis were pre-processed using an in-house custom tool, designed to handle Waters 

MSE data. This was done according to the workflow in Figure 3.2 to generate centroided 

peak lists and chromatographically aligned feature lists as .csv files for direct input to 

IsoAnalyst (Figure 3.1). IsoAnalyst also accepts generic data inputs that can be 

converted from most major vendor data types as described on the GitHub repository.  

3.6.4. Bacterial strain and inoculum preparation  

Saccharopolyspora erythraea ATCC 11635 (NRRL 2338) was purchased from 

ATCC (USA). Bacterial inoculum was prepared by first streaking a frozen glycerol stock 

on an ISP agar plate (3 g yeast extract, 5 g acid hydrolyzed casein, and 14 g of agar per 

liter of water). Single colonies were then selected to inoculate a 7 mL liquid culture of 

ISP media. Once turbid growth was observed in rich media, 50 µL of this culture was 

used to inoculate a 7 mL culture of the same minimal media to be used in the SIL 
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experiment. After 24 hours of growth, this culture was used for the inoculation of the 

microtiter plates.  

3.6.5. Parallel SIL experiment 

A minimal medium was used for all SIL fermentation experiments (10 g of starch, 

3.4 g of sodium glutamate, 0.4 g of KH2PO4, 1.2 g of K2HPO4, 1.0 g of MgSO4·7H2O, 2.0 

g of NaCl, 1.0 g of CaCO3, 0.01 g of FeSO4·7H2O, 1.5 mg CuSO4·5H2O, 3.0 mg 

ZnSO4·7H2O, 1.5 mg CoSO4·7H2O, 1.5 mg of MnSO4·H2O, and 1.0 mg of 

NaMoO4·2H2O per liter of water). This medium was used for all SIL precursor conditions, 

except for the [1-15N] glutamate and the corresponding unlabeled glutamate control. For 

these conditions the same minimal medium was prepared with 50% of the standard 

amount of unlabeled sodium glutamate (1.7 g/L instead of 3.4 g/L), and the remaining 

50% was replaced with either [1-15N] glutamate or unlabeled glutamate by sterile 

filtration at the time of inoculation.  

Stable isotopically labeled compounds were purchased from Cambridge Isotope 

Laboratories, Inc. The corresponding unlabeled compounds were purchased from 

ThermoFisher Scientific. The SIL feedstock compounds, [99% 1-13C]acetate, [99% 1-
13C]propionate, [99% methyl-13C]methionine, and [98% 1-15N]glutamate, and unlabeled 

version of each compound were prepared as stock solutions in Milli-Q water and 

sterilized by filtration (0.2 uM filter). The same culture was used as inoculum for all 

replicate wells of every feedstock condition in a given experiment. The 24-well microtiter 

plates and sandwich covers used for micro-scale bacterial cultures were purchased from 

Enzyscreen B.V. (The Netherlands) and the protocol for microtiter well plate 

fermentations was adapted from Duetz et al.38  

The 24-well microtiter plates were cleaned and sterilized according to Duetz et 

al.,38 and 2 mL of minimal media was added to each well. The first and last columns in 

each 24-well plate were left with sterile media and the inner 16 wells were inoculated 

with 80 µL of bacterial inoculum. Following inoculation, either an SIL compound or the 

corresponding unlabeled compound was added to each well by sterile filtration. Four 

replicate wells were prepared and inoculated for each condition, including unlabeled 

controls. Unlabeled control cultures were included for each feedstock condition to 

account for metabolic changes that may occur as a result of adding the precursor 
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compound. Stock solution concentrations were adjusted according to the final desired 

concentration of each SIL or unlabeled precursor in the culture so that a minimal volume 

of 20-100 µL of stock solution was added to each well. The replicate cultures were 

fermented and analyzed separately and therefore account for technical variation in both 

the fermentation experiment as well as the analytical variation in the MS data.  

 Microtiter plates containing SIL supplemented bacterial cultures were 

shaken at 200 rpm and maintained at 23.0 °C for five days. On the fifth day the cultures 

were extracted by adding 2 mL of Optima methanol to each well. The contents of each 

well were then transferred to Eppendorf tubes, sonicated for 5 minutes, and centrifuged 

for 1 minute at 16,000 g. Methanol/water extracts were injected directly onto the UPLC-

qTOF system, or diluted to maintain the most intense signals in the chromatogram in an 

optimal range for both sensitivity and mass accuracy.  
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Chapter 4.  
 
IsoAnalyst Case Studies: Connecting Chemical 
Phenotypes to Biosynthetic Gene Clusters of Model 
Organisms 

4.1. Introduction  

In this chapter I will demonstrate how the accurate detection of SIL incorporation 

described in Chapter 3 aligns with the biosynthesis of known compounds. IsoAnalyst 

enables the categorization of compounds detected in MS metabolomics experiments by 

their biosynthetic origin. I initially tested the IsoAnalyst platform on the type strain 

organisms Saccharopolyspora erythraea and Amycolotopsis mediterranei, which I 

selected for their efficient production of erythromycin A and rifamycin SV respectively.1,2 

The BGCs and biosynthetic machinery that produce these two compounds have served 

as model systems for understanding polyketide biosynthesis for decades.3 I selected 

these systems in order to apply IsoAnalyst to a full MS metabolomics dataset where I 

was confident that sufficient SIL incorporation would occur. These type strains are 

optimized for production of their respective polyketide antibiotics, although their 

genomes both reveal various other BGCs that have not been investigated extensively.1,2 

Using IsoAnalyst I identified families of biosynthetic intermediates and analogues of both 

erythromycin A and rifamycin SV, as well as siderophore production in both organisms.  

4.1.1. Differentiating Direct and Indirect SIL Incorporation 

 As I discussed in Chapter 2, a main challenge in using simple SIL precursors is 

that they can be transformed as substrates in primary metabolism prior to incorporation 

into natural products. [1-13C]Acetate is particularly promiscuous due to its direct 

incorporation into the TCA cycle through acetyl-CoA (Figure 4.1). [1-13C]Acetate has 

been added as a supplement to fermentations for the detection and analysis of 

polyketide structures for decades, however these studies often focus on specific 

compounds rather than looking at incorporation across the entire metabolome.4–7 Indirect 

incorporation of [1-13C]acetate into amino acids and other TCA-derived substrates is 

significant but variable under different metabolic conditions and therefore requires 
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careful consideration. To account for common SIL precursor turnover in primary 

metabolism, I created a Substrate Labeling Table (Table 4.1) by considering the 

metabolic fate of [1-13C]acetate, [1-13C]propionate, [methyl-13C]methionine, and [1-
15N]glutamate in common central metabolic pathways. The rows correspond to a list of 

common biosynthetic substrates in natural product biosynthesis and the columns to each 

SIL condition used in this study (Table 4.1). The Substrate Labeling Table designates 

the maximum theoretical incorporation events of each SIL precursor into each substrate.  

 
Figure 4.1 [1-13C]Acetate Incorporation in the TCA Cycle 
Red filled circles represent 13C derived from [1-13C]acetate following its direct transformation to 
acetyl-CoA. Open circles represent positions where the location of the 13C atom is ambiguous 
due to the symmetry of succinate. Only one position represented by an open circle may be 
labelled in a molecule. Amino acids derived from TCA cycle intermediates are indicated.  

 The amino acids that are derived from TCA cycle intermediates (Figure 4.1) are 

designated in Table 4.1 to be labeled by [1-13C]acetate a maximum of one or two times. 

Terpenes may be labeled by [1-13C]acetate only in organisms with the mevalonate 

pathway8 (Table 4.1).  The [1-15N]glutamate SIL condition is intentionally designed to be 
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promiscuous and label all amino acids and other subunits derived from amino acids 

(Table 4.1). Although the [1-15N]glutamate condition is designed to incorporate 15N into 

any substrate, in theory some amino substrate acids will be much more easily labeled 

than others. Amino acids that have an a-nitrogen that is derived directly from 

transamination by glutamate, are more likely to be labeled by [1-15N]glutamate. The 

biosynthesis of some amino acids are more tightly regulated than others such as 

histidine, arginine, and tryptophan due to their higher ATP demand.9 These amino acids 

are more likely to be derived from recycled sources and will potentially have less 15N 

incorporation from [1-15N]glutamate than other amino acids. The growth medium used in 

this experiment is quite limited in terms of nitrogen metabolism, as either unlabeled or [1-
15N]glutamate are the only nitrogen sources. Although this was designed with the 

intention of labeling any nitrogen position with 15N, the fact that glutamate is the sole 

nitrogen source in the media restricts the metabolism such that not all amino acids will 

be supplied in high quantities. This medium was selected for the optimization of [1-
13C]acetate incorporation, as described in Chapter 2, but may not be ideal for optimal 15N 

incorporation into all amino acids. It is likely that under these conditions the organism is 

limited by amino acid supply, and therefore this media is probably not optimal for eliciting 

biosynthesis of amino acid-containing natural products such as NRPSs. These 

limitations highlight the importance of considering the test organism’s ability to 

synthesize essential building blocks when optimizing the IsoAnalyst approach to that 

particular organism’s metabolism.   

 Unlike [1-13C]acetate and [1-15N]glutamate, [1-13C]propionate and [methyl-
13C]methionine are expected to label only specific substrates (Table 4.1). [1-
13C]Propionate is directly incorporated into propionyl-CoA and methylmalonyl-CoA, 

which are both common PKS substrates. [1-13C]Propionate may also label succinyl-CoA 

by the conversion of methylmalonyl-CoA to succinyl-CoA.10 [methyl-13C]Methionine 

labels compounds which have a methyl group derived from S-adenosyl methionine 

(SAM). The SIL incorporation events referenced in this table are based on current 

knowledge of the metabolism of the four SIL precursors used here, but they are by no 

means a comprehensive overview of all the potential metabolic pathways that these four 

compounds can undergo. There is long standing evidence that alternative pathways for 
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Table 4.1 Substrate Labelling Table 

Substrate A P M G 
Glu 2   1 
Gln 2   2 
Arg 2   4 
Pro 2   1 
Orn 2   2 
Asp 1   1 
Met 1  1 1 
Thr 1   1 
Ile 1   1 

Asn 1   2 
Lys 1   2 
Ala    1 
Leu    1 
Val    1 
Phe    1 
Tyr    1 
Trp    2 
Ser    1 
Gly    1 
Cys    1 
His    3 

Unknown amino acid    1+ 
Acetyl or Malonyl-CoA 1    

Propionyl-CoA  1   

Methylmalonyl-CoA 1 1   

Methoxymalonate   1  

Hydroxymalonate     

Methyl   1  

IPPa 2    

DMAPPa 2    

GPPa 4    

FPPa 6    

Succinyl-CoA 1 1   

Amino-saccharide    1 
Amino group    1 

amevalonate pathway only 
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amino acid and PKS monomer biosynthesis can not only be influenced by genetics but 

environmental factors.11 Other common pathways such as the glycoxylate cycle, and 

gluconeogenesis should be considered under metabolic circumstances where they are 

relevant. The Substrate Labeling Table (Table 4.1) can be modified to account for other 

such pathways or to include more SIL precursors. 

4.1.2. Application of IsoAnalyst to the Full Metabolome 

The summary output file of IsoAnalyst described in Chapter 3 contains every 

feature from the ground truth feature list, and the corresponding SIL incorporation for 

each condition. This summary file was filtered automatically to contain only those MS 

features that had detected isotope incorporation in two or more of the SIL conditions. 

This initial filtering reduces the number of primary metabolites present in the output. 

Although a compound with labeling in only one SIL condition may be a natural product, 

this is not sufficient to hypothesize which BGC is responsible for producing the labeled 

compound. There is an inherent bias in the selection of SIL precursors as to which types 

of natural products will be able to be identified. This element of the experimental design 

is flexible and can be adapted to different BGC classes. I then manually interrogated the 

summary file to filter features based on chromatographic peak shape and signal 

intensity. Features were eliminated if either of these factors interfered with the accuracy 

of the SIL detection. I manually grouped features that represented adducts or fragments 

of the same compound, and further compared SIL incorporation patterns between 

different compounds to relate compounds originating from the same BGC. Compound 

identities were confirmed by a combination of SIL incorporation, MS/MS fragmentation, 

and NMR when applicable. I did this for a full parallel SIL experiment using [1-
13C]acetate, [1-13C]propionate, [methyl-13C]methionine, and [1-15N]glutamate in S. 

erythraea and A. mediterranei.  

4.2. Saccharopolyspora erythraea  

S. erythraea has had a massive impact on biosynthesis research.12 Much of the 

basis for what we know about polyketide synthases today began with preliminary work 

on the 6-deoxyerythronolide B synthase (DEBS). Early studies on the biosynthesis of 

erythromycin A used [14C]-, [13C]-, [18O]-, and [2H]- labeled substrates to elucidate the 
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steps of the biosynthetic pathway, before the BGC had even been discovered.13 It was 

not until the genetic characterization of DEBS that the complex biochemical basis of 

polyketide formation was beginning to be understood.14,15 Complete heterologous 

expression of erythromycin A has been accomplished16 and this well-understood 

pathway has been manipulated countless times for drug development.17 Furthermore, 

due to the extensive studies of this biosynthetic pathway, each biosynthetic intermediate 

has been characterized and described in the literature.16 I have used the example of 

erythromycin A throughout the last two chapters because it is so often used as a model 

system for biosynthesis and there is strong evidence for the expected SIL incorporation 

pattern. Here I will focus on the overall metabolome of S. erythraea.  

The SIL incorporation into erythromycin A was used as the primary example in 

Chapter 3 to confirm the accurate detection of SIL incorporation into a known compound. 

This example demonstrated that the full expected labeling of each SIL precursor could 

be detected in all of the ion adducts and in-source fragments of erythromycin A. In this 

section I will look at the full MS metabolomic dataset for S. erythraea as generated by 

the SIL experiment and data analysis described Chapter 3. The ground truth feature list 

for this S. erythraea experiment contained 786 unique features, and IsoAnalyst identified 

147 which had SIL incorporation in two or more conditions. I further filtered this to 94 

features with reliable SIL detection on the basis of chromatographic peak shape. I 

identified 71 of these features corresponding to erythromycin A and five additional 

compounds with SIL incorporation patterns related to erythromycin A (Figure 4.2). The 

differential labeling in the biosynthetic intermediates of the erythromycin pathway 

demonstrate the strength of IsoAnalyst to efficiently relate MS features corresponding to 

the same BGC. Furthermore, seven of the labeled features detected by IsoAnalyst 

corresponded to a siderophore, erythrochelin, which has previously been isolated from 

S. erythraea18 (Figure 4.2).  
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Figure 4.2 Overview of Labelled Ions Detected from S. erythraea  
IsoAnalyst profiles and structures for selected labeled ions detected in the S. erythraea 
metabolome. Seventy-seven m/z features are shown which were identified as having SIL 
incorporation in two or more conditions, and having realistic ion intensity and chromatographic 
peak shape. Seventy-one features indicated as diamonds were identified as erythromycin A or 
related structures, and seven features indicated as circles were identified as erythrochelin. The 
IsoAnalyst results for selected ions are shown.   

4.2.1. Erythromycin Family  

The 14-member polyketide macrolide core, 6-deoxyerthronolide B, is 

biosynthesized from a propionyl-CoA starter unit and six methylmalonyl-CoA extender 

units by the large multi-domain PKS, 6-Deoxyerythonolide B Synthase (DEBS)12 (Figure 
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4.3). All of the erythromycin compounds identified using IsoAnalyst had identical SIL 

incorporation in the [1-13C]acetate and [1-13C]propionate conditions, indicating this 

shared polyketide core. By contrast, labeling in [methyl-13C]methionine and [1-
15N]glutamate varied between the five products, suggesting different degrees of 

decoration of the polyketide core (Figure 4.2). The polyketide product produced by 

DEBS, 6-deoxyerythronolide B (Figure 4.3), was not observed in this experiment. 

However, using IsoAnalyst I putatively identified the subsequent six biosynthetic 

intermediates, erythronolide B (4.1), O-α-mycarosylerythronolide B (4.2), erythromycin D 

(4.3), B (4.4), C (4.5), and A (4.6) (Figures 4.2, 4.3).  

 
Figure 4.3 Biosynthesis of Erythromycin A  
Biosynthetic scheme showing the steps in the biosynthesis of erythromycin A. The direct product 
of DEBS, 6-deoxyerythronolide B, is the only intermediate shown which was not detected in this 
experiment. All of the subsequent biosynthetic products have varying degrees of hydroxylation, 
methylation, and glycosylation, but contain the same polyketide core.  
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Erythronolide B (4.1) was not labeled by either [methyl-13C]methionine or [1-
15N]glutamate, consistent with the proposed structure containing only the core 

macrocycle (Figure 4.2). 3-O-α-Mycarosylerythronolide B (4.2) contained a single 

labeled position in [methyl-13C] methionine, consistent with the addition of the mycarose 

sugar, which contains a single site of SAM methylation. I isolated and confirmed the 

identity of 4.1 and 4.2 by NMR and UPLC-MS co-injection (Appendix A, Figures A1-A6). 

Erythromycin D (4.3) was putatively identified having three labeled positions in the 

[methyl-13C]methionine condition and one position in the [1-15N]glutamate condition, due 

to the addition of the desosamine sugar (Figures 4.2, 4.3). The final two reactions in the 

erythromycin pathway consist of a hydroxylation at C-12 of the macrolactone core and 

3”-O-methylation on the mycarose sugar (Figure 4.3). These reactions may occur in a 

variable order resulting in the products 4.4 and 4.6, which have one additional position 

labeled by [methyl-13C]methionine compared to 4.3, and 4.5, which has the same SIL 

incorporation as 4.3 in all four conditions (Figure 4.2). Erythromycin A (4.6) was also 

discussed in detail in Chapter 3, the same SIL incorporation results are shown here 

(Figure 4.2). The identity of 4.6 was confirmed by UPLC-MS co-injection with an 

authentic standard (Appendix Figure A7). These data align with what is known about 

erythromycin biosynthesis and support the putative identification of 4.3, 4.4, and 4.5. 

4.2.2. Erythrochelin 

 Erythrochelin (4.7) is a hydroxomate siderophore which has previously been 

isolated from S. erythraea.18 Erythrochelin is produced by the tetramodular nonribosomal 

peptide synthase (NRPS) ErcD.18,19 The core substrates used in the biosynthesis of 

erythrochelin are L-ornithine (3), L-serine (1), and acetyl-CoA (3) (Figure 4.4). L-

Ornithine is first hydroxylated by the d-N-ornithine monooxygenase, ErcB. L-d-N-

hydroxyornithine is acetylated twice in the starter unit of erythrochelin, followed by the 

condensation of serine, L-d-N-hydroxyornithine (hOrn) and L-d-N-acetyl-d-N-

hydroxyornithine (haOrn). Direct 13C incorporation into acetyl-CoA by [1-13C]acetate, and 
15N incorporation into ornithine and serine by [1-15N]glutamate, would result in an 

expected incorporation of three 13C atoms from [1-13C]acetate, and seven 15N atoms 

from [1-15N]glutamate (Figure 4.4). However, Table 4.1 indicates that ornithine is derived 

from the TCA intermediate a-ketoglutarate, which can also be labeled in two positions by 

[1-13C]acetate. This results in a theoretical maximum labeling of erythrochelin by nine 13C 
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positions derived from [1-13C]acetate, with six of these incorporation events occurring via 

labeling of the ornithine carbon skeleton (Figure 4.4).  

 
Figure 4.4 Biosynthesis of Erythrochelin 
Scheme showing the biosynthetic substrates that make up erythrochelin. Expected positions of 
SIL tracer incorporation are indicated by colored circles. Ornithine is first hydroxylated to produce 
hOrn and three units of hOrn are later acetylated to produce haOrn. The NRPS condenses three 
units of haOrn and one serine to generate the final product, erythrochelin.  

 Both the iron-chelated and protonated adduct ions of 4.7 were detected by 

IsoAnalyst to have eight positions labeled by [1-13C]acetate, and six positions labeled by 

[1-15N]glutamate (Figure 4.5). A more detailed interrogation of the SIL data confirmed the 

identity of compound 4.7 through a combination of fragment m/z values, which matching 

those previously reported for erythrochelin18 (Figure 4.6). The two larger fragment ions 

differ by the loss of a serine residue18 and each fragment had detectable 15N enrichment 

in 4 out of 5 positions and 3 out of 4 positions respectively (Figure 4.6a,b). This indicates 

that relative differences in SIL incorporation are detectable using IsoAnalyst, even when 

the SIL incorporation is not complete for every available position in the compound. The 

expected [1-13C]acetate labeling was for 5 positions in both of these fragment ions, as 

serine does not have expected labeling by [1-13C]acetate (Table 4.1). Four out of five 

positions were detected as having enrichment in [1-13C]acetate for both fragment ions in 

Figure 4.6a and Figure 4.6b. The smaller fragment ions are the L-d-N-acetyl-d-N-

hydroxyornithine subunit (Figure 4.6c) and d-N-hydroxyornithine (Figure 4.6d).18 These 

fragments show 13C enrichment in three positions for L-d-N-acetyl-d-N-hydroxyornithine, 

and two positions for the d-N-hydroxyornithine fragment (Figure 4.6c,d). Although the M1 

isotopologue is the most intense isotopologue peak in the [1-13C]acetate mass spectrum 

in Figure 4.6d, the 13C enrichment in the M2 isotopologue peak was determined to be 
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statistically significant for 13C enrichment using IsoAnalyst. These data confirm that two 

positions of ornithine are labeled by [1-13C]acetate as predicted in the Substrate Labeling 

Table (Table 4.1), even though the M2 isotopologue peak has a lower relative intensity 

than the M0 and M1 peaks (Figure 4.6d).  

 
Figure 4.5 SIL Incorporation in Erythrochelin 
(a) Substrates used in the biosynthesis of 7, and both the expected and observed labeling of 
erythrochelin. (b) Structures and mass spectra for the iron adduct (m/z 657.2064) and the 
protonated adduct (m/z 604.2950) of 7 in the [1-13C]acetate and [1-15N]glutamate conditions. [1-
13C]Propionate and [methyl-13C] methionine conditions are not shown as 7 was not produced 
under the [1-13C] propionate condition and no SIL incorporation occurred under the [methyl-
13C]methionine condition. 
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Figure 4.6 SIL Tracer Incorporation in Erythrochelin Fragment Ions 
Mass spectra of fragments m/z 390.1990 (a), m/z 303.1666 (b), m/z 173.0932 (c) and m/z 
131.0827 (d) under [1-13C]acetate and [1-15N]glutamate conditions indicate that the detected SIL 
incorporation is within the expected labeling maximums for the biosynthetic subunits derived from 
ornithine and acetyl-CoA. 
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4.3. Amycolatopsis meditteranei 

A. meditteranei produces the antibiotic rifamycin SV, which was first isolated with 

a mixture of rifamycins in 1959 when the organism was classified as Streptomyces 

meditteranei.20 Although rifamycin SV is the more potent antibiotic, it is a biosynthetic 

precursor of rifamycin B, and two A. meditteranei strains have been sequenced for 

specialization in producing either rifamycin B or SV.2,21 A. meditteranei U32 is the 

commercial producer of rifamycin SV, as it contains a mutation in the P450 gene 

responsible for converting rifamycin SV to rifamycin B.2 The biosynthesis of the 

rifamycins have been well-studied as a model PKS system making this organism a 

suitable test case for assessing SIL incorporation using IsoAnalyst 

4.3.1. Rifamycin 

Rifamycin SV is a macrocyclic polyketide which is biosynthesized from the starter 

unit 3-amino-5-hydroxybenzoic acid (AHBA), followed by chain extension with eight units 

of methylmalonyl-CoA and two units of malonyl-CoA.22 The rifamycin BGC contains 

genes for the biosynthesis of AHBA22 and this starter unit is only expected to be labeled 

by [1-15N]glutamate. The rifamycin backbone undergoes a rearrangement to form a five-

membered ring and ketal structure.23 In the process of this transformation, the methyl (C-

3) of one propionate unit is lost,23 however, this does not affect the number of expected 

positions labeled in my experiment, as the SIL tracer [1-13C]propionate is labeled in the 

carbonyl (C-1) position (Figure 4.7). Finally, the core polyketide is methylated by SAM, 

and acetylated to form rifamycin SV (Figure 4.7). Using Table 4.1 to account for both 

direct and indirect SIL incorporation, I determined the expected labeling of rifamycin SV 

to be 11 x [1-13C]acetate, 8 x [1-13C]propionate, 1x [methyl-13Cmethionine], and 1 x [1-
15N]glutamate positions (Figure 4.7). While rifamycin SV is most commonly discussed in 

the literature, I only observed the oxidized form, rifamycin S in the following experiments. 

I confirmed the presence of rifamycin S by co-injection with a commercial standard 

(Appendix Figure A8).  
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Figure 4.7 Biosynthesis and Expected SIL Incorporation in Rifamycin S 
Biosynthetic scheme showing the building blocks and positions which are expected to have SIL 
incorporation in rifamycin S (4.8). Eight units of methylmalonyl-CoA, two of malonyl-CoA and one 
AHBA are used to make the polyketide core, followed by an acetylation and methylation by SAM 
to form 4.8.  

Unlike the S. erythraea experiment, I was unable to detect different biosynthetic 

precursors or analogues to rifamycin S. However, I did detect a series of in-source 

fragments of rifamycin S which demonstrate how IsoAnalyst can assist in interpreting the 

positions of SIL incorporation by analyzing fragment ions. In addition to the [M+H]+ 

adduct (m/z 696.2994), I observed the subsequent loss of the O-methyl group (m/z 

664.2709), the acetyl group (m/z 604.2562), and H2O (m/z 586.2454) (Figure 4.8). The 

[M+H]+ adduct had the exact expected SIL tracer incorporation in the [1-13C]propionate, 

[methyl-13C]methionine, and [1-15N]glutamate conditions, but slightly less labelling (9 out 

of 11 expected positions) in the [1-13C]acetate condition Figure 4.8). As was the case 

with the erythromycins, this discrepancy is likely due to the indirect incorporation of [1-
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13C]acetate into the methylmalonyl-CoA subunits of rifamycin S. The fragment ions had 

decreased SIL incorporation in the [1-13C]acetate and [methyl-13C]methionine conditions, 

as expected from the loss of the O-methyl and acetyl groups (Figure 4.8).  

 

 
Figure 4.8 SIL Tracer Incorporation in Rifamycin S and Fragment Ions 
Four MS features were detected with SIL tracer incorporation patterns corresponding to the in-
source fragment ions of rifamycin S (4.8). The m/z 696.2994 is the [M+H]+ ion. The m/z 664.2709 
fragment has a loss of the O-methyl group. The m/z 604.2562 fragment has an additional loss of 
the acetate group, indicated by the decrease from 7 to 6 detected 13C positions in the [1-
13C]acetate condition. The m/z 586.2454 has a further dehydration.   
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4.3.2. Unknown Siderophore 

I detected a group of interesting MS features in the A. meditteranei experiment 

which had related labeling patterns and an iron adduct, similar to erythrochelin (Figure 

4.9). In addition to the iron (m/z 700.2448) and protonated (m/z 647.3337) adducts, I 

detected three smaller in-source fragments at the same retention time with similar SIL 

incorporation patterns (Figure 4.9). SIL incorporation was detected for 5 x [1-13C]acetate, 

2 x [1-13C]propionate, 3 x [methyl-13C]methionine, and 6 x [1-15N]glutamate units in the 

protonated adduct of this unknown siderophore (Figure 4.9). The iron adduct had more 

SIL tracer detected in the [1-13C]acetate and [1-15N]glutamate conditions, however, this 

method does not account for the contribution of 54Fe to the isotopologue ratios, so the 

SIL tracer incorporation in the protonated adduct is likely more reliable. Notably, this 

siderophore has three methylated positions, only one of which is lost in the smallest 

fragment ion detected (m/z 475.2508, Figure 4.9).  

The current antiSMASH database contains the complete BGC analysis output for 

A. meditteranei U32 performed in antiSMASH 5.0.24,25 I identified a candidate BGC for 

the production of the unknown siderophore, of which 80% of the genes present share 

similarity to genes in the BGC for the known siderophore, scabichelin (4.9, Figure 4.10). 

These similarity metrics are automatically generated in antiSMASH, to link to related 

BGCs in the MIBiG database.26 The scabichelin BGC contains five NRPS modules, two 

of which contain N-methyltransferase domain27 (Figure 4.10a). The scabilchelin BGC 

has been previously characterized and associated with scabilchelin through mutation 

studies.27 The diagram in Figure 4.10a is of the scabilchelin BGC modules which are 

provided in the MIBiG database.26 The BGC located in ‘region 18’ of the A. meditteranei 

U32 genome also contains five modules, although the predicted amino acids are slightly 

different. Three N-methyltransferase domains were detected in region 18, consistent 

with the [methyl-13C]methionine incorporation detected in the unknown siderophore 

(Figure 4.10). Additionally, two units of [1-13C]propionate were consistently  
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Figure 4.9 SIL Tracer Incorporation into an Unknown Siderophore 
Five MS features were detected with SIL tracer incorporation patterns corresponding to an 
unknown siderophore which eluted at 1.27 min. The m/z 700.2448 feature is an [M-2H+Fe]+ ion 
and the m/z 647.3337 feature is an [M+H]+ ion. The remaining m/z features are unidentified in-
source fragment ions.  

detected in all of the fragment ions associated with the unknown siderophore, 

suggesting the presence of an amino acid that can be biosynthetically derived from [1-
13C]propionate. Observation of the raw MS data indicates that the M0 peak of the 

protonated adduct (m/z 647.3337) was the base peak in the [1-13C]propionate condition, 

despite the fact that the M2 isotopologue peak was detected as having statistically 

significant SIL incorporation (Figure 4.11). This highlights both an advantage of 

IsoAnalyst, in that is it is sensitive to detecting SIL incorporation in higher isotopologues, 

as well as a limitation in the interpretation of the IsoAnalyst output. Observation of the 

raw data in this case clearly indicates that the 2 x [1-13C]propionate incorporation occurs 
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at a much lower ratio than the 3 x [methyl-13C]methionine incorporation into the same 

molecule (Figure 4.11). These data suggest that the [1-13C]propionate labelling in this 

siderophore originates from an indirect source, and orthogonal metabolomic approaches 

such as fluxomics or transcriptomic methods would assist in identifying the metabolic 

pathways involved. I was not able to determine the exact structural identity of this  

 
Figure 4.10 Comparison of Scabichelin BGC and Region 18 in A. meditteranei 
(a) Modules of the scabilchelin BGC taken from the MIBiG database.26 Substrates of each 
enzymatic module are indicated. Structure of scabichelin has been identified and associated with 
the BGC through genetic mutation studies.27 (b) Modules and enzymatic substrate predictions 
from BGC region 18 in the A. meditteranei genome taken from the antiSMASH database.25 
Subatrate abbreviations: L-N5-formyl-N5-hydroxyornithine (L-fhOrn), L-N5-hydroxyornithine (L-
hOrn),  L-N5-acetyl-N5-hydroxyornithine (L-haOrn)  

siderophore, however it is likely a hydroxamate siderophore containing two units of L-d-

N-acetyl-d-N-hydroxyornithine, one N-methylated L-serine, and two unknown amino 

acids that may be indirectly labelled by [1-13C]propionate. Further investigation of this 

compound may reveal a novel structure, and would provide evidence for the association 

of this siderophore with the BGC identified in region 18 of the A. meditteranei U32 

genome.  
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Figure 4.11 Unlabeled and SIL MS Spectra for m/z 647.3337 
Unlabeled and SIL MS data for protonated adduct (m/z 647.3337) of the unknown siderophore 
from A. meditteranei. SIL incorporation in [1-13C]acetate and [1-15N]glutamate resemble the 
isotopologue distributions I observed for other siderophores such as erythrochelin. However, SIL 
incorporation for [methyl-13C]methionine was distinctly efficient, showing very little isotopologue 
peak intensity for isotopologues below M3.  

4.4. Conclusion 

These case studies in commercially available type strain bacteria demonstrated 

promising results for the application of IsoAnalyst to PKS and NRPS biosynthetic 

pathways. In S. erythraea, IsoAnalyst identified nearly all of the known biosynthetic 

intermediates of erythromycin A and accurately detected variable SIL incorporation 

across these compounds. Furthermore I identified the siderophore erythrochelin, and 

IsoAnalyst accurately detected SIL incorporation into the fragments ions, supporting the 

putative identity of these molecules. The ability to groups related MS features together 

and to interpret the positional SIL incorporation through fragmentation are currently 

manual processes which I have implemented here. However, both of these approaches 

to working with the IsoAnalyst output may be automated in the future, as adduct 
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matching and fragmentation pattern association are already applied to unlabeled MS 

metabolomics data.28,29 Overall, the SIL incorporation patterns detected by IsoAnalyst 

could assist greatly in associating related adducts and fragments as well as facilitate 

structural interpretations of MS metabolomics data. I also detected SIL incorporation in 

the polyketide antibiotic rifamycin S, and related in-source fragment adducts. 

Surprisingly, I was able to identify an unknown labeled compound in the metabolome 

data for A. meditteranei, although this organism has been exploited for natural product 

production for many years. This compound appears to be a hydroxymate siderophore 

which is related to scabeichelin, on the basis of the SIL incorporation pattern and BGC, 

further validating the utility of IsoAnalyst in indicating the biosynthetic origin of 

compounds prior to compound isolation and structure elucidation.  

The examples shown here are limited as they represent only a narrow window of 

what is currently known about natural product biosynthesis. I selected these type strains 

which produce well-known polyketides and also identified siderophore NRPS 

compounds. While I have shown that the IsoAnalyst experimental design applied here 

works well for identifying these molecules, additional optimization would be needed to 

include a wider range of SIL tracers and biosynthetic pathways. Nonetheless, the 

generalizable SIL tracers used in combination with the IsoAnalyst data analysis platform 

have great potential for compound identification and biosynthetic grouping of MS 

features. 

4.5. Methods 

4.5.1. Parallel SIL Fermentation Experiments 

 Saccharopolyspora erythraea ATCC 11635 (NRRL 2338) and Amycolatopsis 

meditteranei ATCC 13685 were purchased from ATCC (USA). The parallel SIL 

fermentation protocols used in this chapter for S. erythraea and A. meditteranei were 

performed exactly as described in Chapter 3. The sample extraction, preparation, and 

UPLC-MS analysis were also performed as described in Chapter 3. Each experiment 

was analyzed using IsoAnalyst to generate a summary file of all ions with SIL 

incorporation detected in two or more conditions. The data were interrogated manually to 

identify the compounds described in this chapter.  
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4.5.2. Large Scale Fermentation and Extraction of 4.1 and 4.2 

Four large-scale S. erythraea cultures were grown in 2.8 L Fernbach flasks 

containing 20.0 g of Amberlite XAD-16 adsorbent resin, a stainless steel spring, and 1 L 

of the same minimal media used in the SIL experiments. The large scale fermentation 

was done without the supplementation of SIL precursors. Cultures were shaken at 200 

rpm for 6 days, at which time the cultures were filtered by vacuum filtration on Whatman 

glass microfiber filters. The cells and resin were collected and extracted with 250 mL of 

1:1 methanol/dicholormethane. The organic extract was collected by vacuum filtration 

and dried by rotary evaporation. The crude organic extract was initially separated into 

seven fractions by a stepwise methanol/water elution (10, 20, 40, 60, 80, 100 vol/vol) 

and an additional ethyl acetate wash step on a RediSep Rf C18 cartridge (Teledyne 

Isco) using a Teledyne Isco CombiFlash Rf flash chromatography system. 

4.5.3. Isolation and Characterization of 4.1 and 4.2 

Purification of compounds 4.1 and 4.2 was performed on a Waters 

autopurification system with a SQ Detector 2 quadrupole MS detector. Both compounds 

were purified from the 60% methanol extract fraction. For all HPLC purification of 4.1 

and 4.2 solvent A was water with 0.02% formic acid and solvent B was acetonitrile with 

0.02% formic acid. The 60% methanol pre-fraction was separated by HPLC (Waters 

Atlantis T3 prep OBO column 5 µm, 19 x 250 mm) using an elution gradient of 45-83% B 

over 21 minutes, at a flow rate of 20 mL/min. Erythronolide B (4.1) was collected at 6.5 

minutes by mass detection for the ion m/z 425.4 and 3 was collected at 9.5 minutes by 

mass detection for the ion m/z 529.4. 3-O-α-mycarosylerythronolide B (4.2) was further 

purified using an isocratic gradient of 42% B, with MEB eluting from the column at 11.8 

minutes. 2.5 mg of 4.1 and 4.5 mg of 4.2 were isolated in total and analyzed by NMR for 

comparison to authentic standards (Appendix A). 
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Chapter 5.  
 
IsoAnalyst Coupled to Whole Genome Analysis as a 
Tool for Natural Product Discovery 

5.1. Introduction 

The ultimate goal of the IsoAnalyst platform is to facilitate natural product 

discovery through the characterization of complex chemical phenotypes produced by 

BGCs. In Chapter 4, I showed how IsoAnalyst can be used to accurately interpret the 

biosynthetic pathway of known compounds and how the various analogues and 

biosynthetic precursors of erythromycin A can be associated on the basis of related SIL 

incorporation patterns. In this chapter, I apply this workflow to an environmental strain to 

demonstrate how IsoAnalyst can reduce a complete untargeted MS metabolomics 

dataset to a manageable number of labeled MS features. Whole genome sequences can 

be analyzed for BGC presence by open source online tools and the growing availability 

of genome data further allows for large-scale comparisons between BGCs across 

thousands of strains.1,2 I have developed a generalizable method for interpreting how 

BGC products will be labeled by specific SIL tracers on the basis of the enzymatic 

substrate predictions generated in antiSMASH1 and investigation of literature about 

related BGCs from MIBiG.2 I collaborated with the developers of these platforms to 

generate the manually curated substrate predictions, but I created the process for 

interpreting the data and associating the substrate prediction with the SIL incorporation 

profiles from IsoAnalyst. Using this complete workflow, I show how IsoAnalyst can 

quickly associate both known metabolites and unknown analytes to elucidate the 

complex chemical phenotypes of known BGCs.  

5.2. Whole Genome BGC Analysis of Micromonospora sp.  

In order to test the capacity of IsoAnalyst to identify natural products in a 

sequenced environmental strain, I applied the complete workflow to Micromonospora sp. 

RL09-050-HVF-A. This Micromonospora sp. was isolated from marine sediments in 

Point Lobos, California and produced the macrolactam, lobosamide A, which 

demonstrated submicromolar antitryposomal activity against Trypanosoma brucei and 
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the related analogues lobosamide B and C.3 In order to fully solve the configurational 

analysis of the hydroxyl groups present in the lobosamides, our laboratory had this 

Micromonospora sp. sequenced at the Institute of Genome Science sequencing facility 

(IGS, University of Maryland, Baltimore) using a Pacific Bioscience Sequencing machine 

and a 10KB insert library. The Micromonospora sp. RL09-050-HVF-A genome was 

uploaded to NCBI under the accession number JAGKQP000000000 and the BioProject 

ID PRJNA718589. 

5.2.1. Curated antiSMASH Output 

In order to apply the IsoAnalyst workflow to the full metabolome of 

Micromonospora sp., BGC mining was performed on the full genome using antiSMASH 

version 5.2.0-8ecc354. Our collaborators used the antiSMASH to perform sequence 

analysis of the BGCs, including automated substrate predictions. They further developed 

a protocol using MIBiG to manually interpret these substrate predictions using both 

sequence analysis and literature review. The antiSMASH output offers substrate 

predictions for a broad cross-section of biosynthetic classes using a suite of prediction 

algorithms including SANDPUMA,4 NRPSPredictor2,5 and RODEO.6 These substrate 

predictions have a fair degree of accuracy, but manual interpretation is nearly always 

required, as not all enzymes yield equally likely substrate predictions. For example, type 

I and II PKS and NRPS enzymes have more predictable substrates while special 

algorithms have been developed for other classes such as type III PKS.7 It is important 

to manually inspect every BGC substrate prediction in antiSMASH, as these predictions 

are potentially less accurate for more novel BGCs, and some BGCs have no substrate 

predictions at all. The antiSMASH output also indicates the most closely related BGC 

sequences that are available in the MIBiG database.2 Using the antiSMASH substrate 

prediction for the detected enzymatic domains, in combination with literature information 

from related BGCs in MIBiG, our collaborators developed a protocol for curating 

enzymatic substrate prediction information with the highest possible accuracy. This 

protocol is described in more detail in the methods section at the end of this chapter. 

The curated antiSMASH output for Micromonospora sp. is shown in Tables 5.1 and 5.2. 

Table 5.1 contains metadata and comments about each BGC. The BGC type is 

determined automatically in antiSMASH, and the comments are based on manual 

interpretations of related BGCs by comparison with the MIBiG database. The columns of 
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Table 5.2 contain predicted substrate counts for a single gene cluster from a list of 

commonly encountered biosynthetic substrates that are expected to be labeled by one 

or more SIL precursors. 

Table 5.1 BGCs Detected in Micromonospora sp. Genome 

Cluster Type Product # Comments 
1a NRPS 1  
1b RiPP 1  
1b RiPP 2  
2 PKS 1 galbonolides 
3 PKS 1  
4 PKS-NRPS 1  
5 RiPP 1  
6 NRPS 1+ desferrioaxamines 

7 & 21 terpene 1 sioxanthin - cluster 7 & 21 work together 
8 lantipeptide 2 very similar to SapB 
9 type II PKS 1 core PKS similar to frankiamycin type II PKS 
10 type I PKS 1 similar to maduropeptin 

11a PKS-NRPS 1  
11b lasso peptide 1  
12a NRPS 1  
12b PKS 1  
13 NRPS 1 indigoidine 
14 PKS 1  
15 phenazine 1  
16 NRPS 1 similar to Fruilimicin 
17 RiPP-like 1 no relevant predictions to be made 
18 terpene 1  
19 NRPS-like 1  
20 type III PKS 2 alkyl-O-dihydrogeranyl-methoxyhydroquinones 
21   see 7 
22 PKS-like 1 paulomycin without paulomycose 
23 indole 1 prenylated indole 
24 terpene 1  
25 NRPS 1  
26 NRPS 1 one AA is probably aromatic, possibly Phe 
27 NAGGN 1 N-acetylglutaminylglutamine amide 
28 lantipeptide 1  
29 RiPP-like 1 no relevant predictions to be made 

30a PKS-NRPS 1 similar to Tirandamycin 
30b terpene 2  
30c PKS 3 lobosamide 
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Table 5.2 Curated AntiSMASH Output for Micromonospora sp. 

Cluster 1a 1b 1b 2 3 4 5 6 7 & 
21 8 8 9 10 11a 11b 12a 12b 13 14 15 16 17 18 19 20 20 22 23 24 25 26 27 28 29 30a 30b 30c 

Product # 1 1 2 1 1 1 1 1+ 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 3 
Glu                                                                         1 
Gln                     1             2                           2           
Arg   2 2             1                                                       
Pro   3 3                       1           2                                 
Orn                                                                           
Asp                   1 1       3           2                       5         
Met     2                                                                     
Thr   4 3             3 3       1                                   2         
Ile   1                                                                       

Asn           1       1 1       1 1                                           
Lys               3                                                 1         
Ala   8 9             1 1       1                                   2         
Leu   3 1             4 4       3                                   2         
Val   7 5     1       1 1       1           1                       1         
Phe   1 1                                                                     
Tyr                                         1                                 
Trp                                                       1                   
Ser   1       1       5 5       1                                   1         
Gly   8 5             4 4       7 1         6                       2   1     
Cys                   2 2                           1               2         
His     1                                                                     

Unk. Amino Acid 1         1 1+                                             1 2             
Acetyl-CoA               1         2                                     1           

Malonyl-CoA         3+ 1           12 12+ 1+     1   8           3 3                 5   8 
Methylmalonyl-CoA       4 3+                       1   1                               5   3 
Methoxymalonate       4                                                                   
Hydroxymalonate                                                                           

Methyl group         1 1                           1         1 1                   1   
IPP                 8                           3           1+             2   

DMAPP                                                       1                   
GPP                                                 2                         
FPP                                                   2                       

Succinyl-CoA               2                                                           
Unknown fatty acid                       1 1     1         1   1 1                       1   
Amino saccharide                         1       1     1 1                                 

Amino group                                                                           
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5.2.2. BGC Labeling Prediction 

In Chapter 4 I introduced the Substrate Labeling Table (Table 5.3) to show how 

the SIL tracer incorporation detected by IsoAnalyst can be aligned with the substrates 

used in the biosynthesis of compounds in S. erythraea and A. medietteranei. This table 

can further be used to predict SIL tracer incorporation into the products of the BGCs 

shown in Table 5.2. To predict the labeling patterns for each BGC, I integrated data from 

the curated antiSMASH output (Table 5.2) and the Substrate Labeling Table (Table 5.3) 

to create a table of predicted precursor labeling for all BGCs in the genome (Table 5.4).  

Not all of the BGCs detected in the genome of Micromonospora sp. are equally 

amenable to SIL incorporation in our experiment. Some well-characterized BGC classes, 

such as terpenes, do not have sufficient SIL incorporation by the SIL tracers used in this 

experiment. On the other hand, some natural products may be labeled by the SIL 

precursors used, but cannot be easily connected to the BGC due to the lack of 

biochemical knowledge about the BGC. I used two criteria to determine the likelihood of 

identifying the product of a BGC with the SIL precursors used in this study. Firstly, the 

predicted product of a BGC should be labeled in two or more conditions, as it is not 

possible to differentiate products of related BGCs on the basis of labeling in a single 

condition. Additionally, the product must be labeled three or more times in at least one of 

the conditions, as minor SIL incorporation is likely to occur in off-target compounds 

involved in primary metabolism. In Table 5.4 BGCs that meet both criteria are 

highlighted in dark gray, while BGCs that meet only one of the criteria are highlighted in 

light gray. 

The BGC substrate analysis indicates that NRPS and PKS BGCs are most well 

suited to discovery using this approach. There are several reasons for this bias. BGC 

identification and annotation tends to be most reliable for these two well-studied 

biosynthetic classes. Future improvements in BGC informatics, particularly in the area of 

substrate prediction for less well studied BGC classes, will increase the coverage of the 

IsoAnalyst method. Likewise, SIL precursor selection has a significant impact on BGC 

class coverage. Additional SIL precursors could be included to provide labeling for 

specific biosynthetic classes. For example, terpenes will only have robust SIL 

incorporation with [1-13C] acetate if the organism possesses the mevalonate pathway. 

Inclusion of 13C labeled IPP as an additional SIL precursor would significantly improve 
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coverage of compounds in this class. Similarly, chorismate-derived precursors are also 

common and 13C labeled chorismate or shikimate could help to prioritize specific BGC 

products containing these substrates. In applying this tool to environmental organisms, 

substrate analysis of the BGCs present ideally should be done in advance to guide the 

precursor selection process and optimize coverage of that particular organism’s 

metabolism.  
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               Table 5.3 Substrate Labelling Table 

Substrate A P M G 
Glu 2   1 
Gln 2   2 
Arg 2   4 
Pro 2   1 
Orn 2   2 
Asp 1   1 
Met 1  1 1 
Thr 1   1 
Ile 1   1 

Asn 1   2 
Lys 1   2 
Ala    1 
Leu    1 
Val    1 
Phe    1 
Tyr    1 
Trp    2 
Ser    1 
Gly    1 
Cys    1 
His    3 

Unknown amino acid    1+ 
Acetyl or Malonyl-CoA 1    

Propionyl-CoA  1   

Methylmalonyl-CoA 1 1   

Methoxymalonate   1  

Hydroxymalonate     

Methyl   1  

IPPa 2    

DMAPPa 2    

GPPa 4    

FPPa 6    

Succinyl-CoA 1 1   

Amino-saccharide    1 
Amino group    1 
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       Table 5.4 BGC Labelling Prediction for Micromonospora sp. 

Cluster Type A P M G 
8 lantipeptide 7     27 

28 lantipeptide 8     19 
11b lasso peptide 7     20 
1b RiPP 16     44 
5 RiPP       1+ 

17 RiPP-like         
29 RiPP-like         
6 NRPS 6 2   6 

12a NRPS 1+     3 
13 NRPS 4     4 
16 NRPS 7+     13 
1a NRPS       1+ 
25 NRPS       1+ 
26 NRPS       2+ 
19 NRPS-like 1+       
4 PKS-NRPS 2   1 4 

30a PKS-NRPS 10 5   1 
11a PKS-NRPS 1+       
10 type I PKS 14+     1 
9 type II PKS 12+       

20 type III PKS 15   1 1 
2 PKS 4 4 4   
3 PKS 6+ 3+ 1   

12b PKS 2 1   1 
14 PKS 9 1     
30c PKS 11 3   1 
22 PKS-like         

7 & 21 terpene 16       
18 terpene 6+       
24 terpene 2+       
30b terpene 2+       
23 indole 3     1 
15 phenazine     1 3 
27 NAGGN 5     5 
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5.2.3. Micromonospora sp. Complete IsoAnalyst Results 

I performed parallel SIL culture, UPLC-MS analysis and data processing with the 

IsoAnalyst pipeline on Micromonospora sp. The summary file from IsoAnalyst initially 

contained 246 m/z features that were labeled in two or more SIL conditions. I then 

manually interrogated this file to filter features based on chromatographic peak shape 

and signal intensity. Features were eliminated if either of these factors interfered with the 

accuracy of the SIL detection. This manual filtering step resulted in 100 features that 

could be grouped into two major compound classes based on their isotope labeling 

patterns (Figure 5.1). Forty-nine features corresponded to the desferrioxamine family of 

hydroxamate siderophores and 51 features corresponded to the lobosamide 

macrolactam polyketides previously discovered in our lab. Both classes could be 

confidently linked to their BGCs on the basis of their SIL incorporation patterns and 

showed remarkable diversity in labeled products despite originating from only two 

distinct BGCs.  

5.3. Desferrioxamines 

The first group of similarly labeled features possessed significant labeling by [1-
13C]acetate (2-6 positions), [1-13C]propionate (1-2 positions), and [1-15N]glutamate (5-6 

positions), but not labeling by [methyl-13C]methionine (Figures 5.1, 5.2). The only BGC 

in Table 5.4 containing two or more [1-13C]propionate labels and six or more [1-
15N]glutamate labels is BGC 6. This group of labeled MS features was consistently 

associated with iron-adducts and related fragment ions, suggesting a family of related 

siderophores. BGC 6 was predicted to produce a siderophore by antiSMASH, and had 

100% match with the BGC responsible for producing desferrioxamine B (5.1) and E 

(5.2).  
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Figure 5.1 Overview of IsoAnalyst Results from Micromonospora sp. 
Diagram showing all MS features with detected SIL incorporation in two or more conditions, 
following manual filtering and grouping according to SIL incorporation profiles. (a) known 
desferrioxamines, (b) known lobosamides, (c) new desferrioxamine, (d) new lobosamide. 
Diamonds represent features with SIL incorporation patterns related to the lobosamides, and 
circles represent features with SIL incorporation patterns related to the desferrioxamines.  
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5.3.1. Known Desferrioxamine Siderophores 

 Desferrioxamines are hydroxymate siderophores that are made up of three 

subunits of N-hydroxycadaverine, which are acylated by the acyl-dependent acyl 

transferase, DesC, with either acetyl-CoA or succinyl-CoA.8 Des D catalyzes the 

oligomerization of either two units of N-hydroxy-N-succinylcadaverine (HSC) and one N-

hydroxy-N-acetylcadaverine (HAC) to yield the linear 5.1, or three units of HSC to yield 

the cyclized compound 5.2.9 N-Hydroxycadaverine is derived from lysine, which has two 

nitrogen atoms than can be labeled by [1-15N]glutamate and one carbon atom that can 

be labeled by [1-13C]acetate (Table 5.3). Succinyl-CoA can be labeled in one position by 

[1-13C]acetate through the TCA cycle, and one position by [1-13C]propionate through the 

transformation of methylmalonyl-CoA to succinyl-CoA (Table 5.3). In both cases, the 

position of the SIL incorporation is ambiguous due to the symmetry of succinate (Figure 

5.1). These positions are represented by open circles in Figure 5.1, but only one of the 

two indicated positions may be labeled in a given molecule. In all, 5.1 is expected to be 

labeled in six positions by [1-13C]acetate, two postions by [1-13C]propionate, and six 

positions by [1-15N]glutamate (Figure 5.1). Enrichment of SIL in compound 5.1 was 

detected for all six nitrogen atoms derived from lysine in the [1-15N]glutamate condition, 

four of the six expected subunits in the [1-13C]acetate condition, and one of the two 

expected subunits in the [1-13C]propionate condition (Figure 5.1). The cyclized 5.2 has 

one additional position expected to be labeled by [1-13C]propionate due to an additional 

incorporation of succinyl-CoA, however, 5.2 demonstrated slightly less SIL incorporation 

in both [1-13C]acetate and [1-15N]glutamate compared to 5.1 (Figure 5.1). These 

differences are likely due to a lower signal intensity for the isotopologue peaks of 5.2 

rather than biosynthetic differences between 5.1 and 5.2.  

 In addition to 5.1 and 5.2, four desferrioxamine derivatives that have been 

reported in the literature were identified based on MS spectra, database matching, and 

the manual interpretation of SIL patterns. The identities of all compounds were 

confirmed by co-injection with authentic standards (Figure 5.2, Appendix A Figures A9-

14). Desferrioxamine D2 (5.3) contains one ornithine-derived subunit instead of the 

lysine derived N-hydroxycadaverine, due to the substrate promiscuity of the lysine 

decrarboxylase DesA.10 Although ornithine is expected to have one more position 

labeled by [1-13C]acetate than lysine (Table 5.3), we detected less [1-13C]incorporation in 

5.3 compared to 5.2 (Figure 5.2). This discrepancy can again be attributed to a 
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difference in signal intensity, indicating that the variable intensities between 

biosynthetically related compounds is often a limiting factor in the exact interpretation of 

SIL incorporation in this study.  

 
Figure 5.2 SIL Incorporation in Desferrioxamines 
(a) Diagram showing all MS features with detected SIL incorporation in two or more conditions, 
following manual filtering and grouping according to SIL incorporation profiles. (b) SIL 
incorporation detected by IsoAnalyst in desferrioxamine B and related analogs. SIL incorporation 
shown for MS features indicated as filled circles.  

 Most of the structural variability in the desferrioxamine family is derived from the 

substrate flexibility of DesC which has been shown to also accept larger acyl substrates 
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besides acetyl-CoA and succinyl-CoA.8 N-Acylated desferrioxamine derivatives have 

been described in a few studies.11–14 A paper previously published in our lab describes 

microferrioxamines A (5.4), B (5.5), and C (5.6), which are linear aliphatic siderophores 

containing acyl chains of varying lengths15 (Figures 5.2, 5.3). Due to the varying lengths 

of the acyl tail, the number of maximum theoretical positions labeled by [1-13C]acetate 

cannot be accurately predicted (Figure 5.3). Despite this, the microferrioxamines have  

 
Figure 5.3 SIL Incorporation in Microferrioxamines and Fragment Ions 
Expected (left) and observed (right) labeling for microferrioxamines A (a), B (b), C (c), and their 
corresponding b-ion and y-ion fragments. The b-ion contains the acyl tail group and retains more 
[1-13C]acetate incorporation which varies across the different analogues. The SIL incorporation 
across the y-ion was consistent in all SIL tracers, except [1-15N]glutamate (c), which is likely due 
to differences in ion intensity. The [1-13C]acetate incorporation cannot be fully predicted for these 
molecules, as the length of the acyl chain varies and cannot be directly predicted from the BGC, 
and these positions are represented by ‘x’ in the expected labeling by [1-13C]acetate for each 
compound.  
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clearly related SIL incorporation patterns in the [M+H]+ and [M-3H+Fe]+ ions (Figure 5.2) 

as well as the detected fragment ions (Figure 5.3). The same y-ion (m/z 319.2342) was 

detected for all three microferrioxamines, and the corresponding b-ions have higher [1-
13C]acetate incorporation, indicating the relative position of the acyl tail. While the 

substrate variation among these derivatives does produce minor differences in detected 

SIL patterns, additional data such as mass fragmentation patterns and the presence of 

iron adducts assist in categorizing these compounds as a biosynthetically and 

structurally related family.  

5.3.2. New Desferrioxamine Siderophore 

Review of the remaining members of this compound group identified one 

molecule with a diagnostic ferrioxamine labeling pattern and iron-adduct that had no 

match in existing natural products databases (Figure 5.1c). This new molecule 

possessed an [M+H]+ adduct at m/z 575.3752 corresponding to the molecular formula 

C26H50N6O8 suggesting an analogue of 5.1 containing an additional CH2 subunit. This 

putative desferrioxamine derivative (5.7) showed related labeling to 5.1, with a nearly 

identical labeling pattern in the [1-15N]glutamate condition, but decreased labeling by [1-
13C]acetate, and increased labeling by [1-13C]propionate (Figure 5.4a). This suggested 

that the additional CH2 subunit present in 5.7 derived from substitution of one [1-
13C]acetate subunit with an additional [1-13C]propionate moiety. To further understand 

the structural differences between these compounds, we examined the MS/MS 

fragmentation data. The y-ion m/z 319.2343 was detected as an MS feature for both 5.1 

and 5.7 and possessed identical SIL patterns in both cases (Figure 5.4b). The 

corresponding b-ion fragments m/z 243.1342 and m/z 257.1505 were detected for 5.1 

and 5.7 respectively. These b-ions have identical labeling in the [1-15N]glutamate 

condition, but relative to each other, m/z 243.1342 is enriched in [1-13C]acetate, while 

m/z 257.1505 is enriched in [1-13C]propionate (Figure 5.4b) The combination of the mass 

difference of 14.0 Da, corresponding to CH2, and the enriched [1-13C] propionate labeling 

in comparison to the analogous fragment in 5.1, indicates that propionyl-CoA replaces 

acetyl-CoA in the acylation of the terminal N-hydroxycadaverine residue, confirming the 

identification of this molecule as a new member of the hydroxamate siderophore family 

of natural products. Together, these results show that this strain can produce a large 

suite of desferrioxamine derivatives, and that these ions can be easily grouped together  
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Figure 5.4 SIL Incorporation in Desferroxamine B and Unknown 

Desferrioxamine 
(a) Structure of desferrioxamine B (5.1), and the mass spectra of the [M+H]+ ion, the b-ion and y-
ion fragments of 5.1. (b) Putative structure of the new desferrioxamine (5.7) and the mass spectra 
of the [M+H]+ ion, the b-ion and y-ion fragments of 5.7.  Expected (left) and observed (right) SIL 
incorporation for each ion are shown in boxes. 
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by relating SIL patterns detected using the IsoAnalyst platform. In total, I identified seven 

compounds produced by the desferrioxamine BGC, including the novel desferrioxamine 

analogue 5.7. 

5.4. Lobosamides 

5.4.1. Lobosamide Biosynthetic Gene Cluster 

The second major class of labeled molecules in this dataset also had closely 

related labeling patterns in the [1-13C]acetate, [1-13C]propionate, and [1-15N]glutamate 

conditions (Figure 5.1). Comparison of these labeling patterns (8 x [1-13C]acetate, 3 x [1-
13C]propionate, 1 x [1-15N]glutamate) to the annotated BGC list identified two BGCs with 

an appropriate combination of biosynthetic modules; clusters 30a and 30c (Table 5.4). 

Both BGCs include a single [1-15N]glutamate incorporation, with BGCs 30a and 30c 

incorporating five and three [1-13C]propionate units respectively. Based on these data 

alone, the molecules could derive from either BGC 30a or 30c because incomplete SIL 

incorporation or incomplete detection of isotope labeling could limit our ability to 

accurately define the number of SIL incorporations in each molecule. From the [1-
13C]acetate predictions in Table 5.4 we see that both BGCs have a higher theoretical 

maximum for acetate incorporation than the eight [1-13C]acetate units detected in this 

compound class. BGC 30a includes a maximum of ten [1-13C]acetate incorporations 

while BGC 30c includes a maximum of eleven (Table 5.4). However, these predictions 

include both direct and indirect incorporation pathways. Specifically, the methylmalonyl-

CoA building blocks that are predicted to be labeled by [1-13C]propionate in these BGCs 

are also expected to be labeled indirectly by [1-13C]acetate. Considering only the direct 

incorporation of [1-13C]acetate through malonyl-CoA and not methylmalonyl-CoA, BGCs 

30a and 30c incorporate five and eight labeled precursors respectively (Table 5.4). The 

strong and consistent incorporation of a minimum of eight acetate units in the molecules 

of this class thus prioritizes BGC 30c as the cluster responsible for the production of this 

compound family. This prediction is further strengthened by the observation that the 

predicted direct incorporation for BGC 30c (8 x [1-13C]acetate, 3 x [1-13C]propionate, 1 x 

[1-15N]glutamate) exactly matches the observed SIL patterns in the compound family 

(Figure 5.1).  
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5.4.2. Diversity of Detected Lobosamides 

BGC 30c has previously been shown to produce the lobosamide family of natural 

products.3 All the major compounds in this group displayed diagnostic m/z features and 

distinctive [M+H-H2O]+ in-source fragments consistent with the lobosamide family. The 

presence of lobosamide C (5.8) was confirmed by HPLC purification and NMR 

comparison, while lobosamide A (5.9) was identified in the extracts by UPLC-MS 

comparison to an authentic standard (Appendix A Figures A15-A18). Known lobosamide 

structures only accounted for 6 of the 51 MS features with related SIL patterns. Most of 

the remaining features were produced in low titer and had mass differences related to 

the degree of unsaturation and varying oxidations of the known lobosamide scaffold, 

suggestive of a suite of lobosamide analogues. These features were detected across 

more than half of the chromatographic separation time, indicating a wide range of 

polarities despite having the same structural units (Figure 5.1). I also noticed that despite 

the large number of features with lobosamide-like SIL incorporation, many of these 

features shared the same m/z value but were eluted at different retention times, further 

suggesting that the lobosamide BGC produces a variety of isomers. Aside from 

substrate flexibility, these configurational isomers add to the complexity of the chemical 

phenotype of a BGC. Although not all isomers are produced in isolable quantities, the 

IsoAnalyst approach allows for the easy detection and association of these related 

features for further investigation and optimization for compound isolation.  

5.4.3.  Isolation and Characterization of Lobosamide D 

I isolated a representative molecule from this class with an [M+H]+ m/z feature at 

500.3012 and a calculated molecular formula of C29H41NO6. This molecule did have a 

[M+H-H2O]+ adduct, however it demonstrated a slightly different distribution of ion 

adducts than the known lobosamide compounds (Figure 5.5). These distinctive in-source 

dehydration fragments also appeared in the MS/MS spectra, however, no structurally 

informative MS/MS fragments were detected for any of the lobosamides. The 1H NMR 

spectrum of the isolated compound bore low similarity to the 1H spectra for the known 

lobosamides (Figure 5.6a). While the initial chemical characterization data provided 

ambiguous evidence for the structural relatedness of my isolated compound with other 

lobosamides, it was clear from the SIL incorporation data that the new compound was 

derived from the same biosynthetic pathway. Using a combination of 1D and 2D NMR 
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experiments (Appendix B) I determined the planar structure of this new metabolite as a 

5-5-6 fused ring system variant of 5.9 which  we named lobosamide D (5.10) (Figure 

5.7a). The full absolute configuration of this new molecule was determined using a 

combination of extensive 1D-selective and 2D ROESY experiments, coupled with 

configurational assignments based on sequence data for selected keto-reductase (KR) 

domains3 (Figure 5.7b). A detailed description of the NMR experiments used to solve 

this structure is provided in the methods section at the end of this chapter.  

 
Figure 5.5 MS Adduct and In-Source Fragment Ions of Lobosamides 
Adducts and in-source fragment ions corresponding to 5.8, 5.9, and 5.10, which had SIL 
incorporation detected by IsoAnalyst. The dehydration and multi-dehydration ions are present for 
nearly all of the detected lobosamides, however the increased fragments and adduct ions of 5.10 
could not be accounted for by increased ion intensity.   

The proposed biosynthesis of this new member of the lobosamide family via 

epoxidation followed by intramolecular cyclization (Figure 5.6b) is analogous to the 

production of dracolactams A and B from a common macrolactam precursor16 and the 

production of mirilactams C-E from the macrocyclic precursor mirilactam A.17 It has been 

proposed that the key epoxidation step in this proposed biosynthetic pathway is 

catalyzed by a cytochrome P450 epoxidase that is encoded outside of the macrolactam  
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Figure 5.6 Comparison of NMR and SIL Incorporation in Lobosamides 
(a) Comparison of the 1H NMR spectra and IsoAnalyst profiles of lobosamides 5.8, 5.9, and 5.10. 
(b) Biosynthetic scheme for post-PKS tailoring reactions which transform 5.8 to 5.10. This 
biosynthetic scheme is a hypothesis put forth by the Abe group, where a variety of similar 
cyclized macrolactams have been discovered.18 

core BGC.18 This transformation has been observed in other macrolactam BGCs, but no 

epoxidase is found in any of the BGCs that are known to produce these cyclized polyene 

macrolactam compounds, supporting this hypothesis.16–21 This complicates the process 

of predicting intramolecular cyclization events and other complex late-stage structural 
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rearrangements for structures such as 5.10 based solely on the BGC sequence. 

Importantly, IsoAnalyst is able to identify biogenetic relationships between molecules, 

even for those which have significant structural rearrangements, highlighting a key 

advantage of this new platform for linking molecules to their cognate BGCs. 

 
Figure 5.7 Key NMR Correletions for Lobosamide D (5.10) 
(a) COSY correlations indicated by bold bonds. Key HMBC correlations indicated by red solid 
arrows. (b) Key ROESY correlations indicated by dashed red arrows. 

5.5. Conclusion 

In this chapter I have demonstrated how a complete genome sequence can be 

analyzed for BGCs and manually curated based on expected substrates using freely 

available computational tools. This BGC analysis workflow was developed in 

collaboration with our colleagues Dr. Marnix Medema and Dr. Justin van der Hooft, and 

represents the utilization of the most recent tools and databases available. The complete 

BGC analysis described in this chapter would allow for the careful selection of SIL 

tracers to optimize discovery of compounds from a given organism. This flexibility sets 

IsoAnalyst apart from many currently available tools that require multiply labeled or 

specialized precursors to identify SIL incorporation, and allows for a wide range of both 

targeted and untargeted experimental designs. Using four general SIL tracers that are 

widely applicable to multiple biosynthetic classes, I successfully identified two compound 

families present by their SIL incorporation patterns and further characterized ten specific 

compounds from within these groups. This analysis significantly reduced the number of 

interesting m/z features to manually investigate, and easily associated m/z features 

across the entire run on the basis of SIL incorporation.  
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Although I show in Table 5.4 that the general SIL tracers used in this study do 

have good coverage of the BGCs present in the Micromonospora sp. genome, I only 

succeeded in identifying novel compounds within known classes. The application of 

IsoAnalyst to different growth conditions, perturbations, or genetically modified 

organisms offers future opportunities for novel compound class discovery through the 

characterization of novel or unknown BGCs. Despite this, I have shown that novel 

chemistry can be discovered from known BGCs and many unknown m/z features with 

identifiable SIL incorporation detected by IsoAnalyst can also be associated with a 

known biosynthetic class.  

5.6. Methods 

5.6.1. Parallel SIL Fermentation with Micromonospora sp.  

The parallel SIL fermentation protocol, sample extraction, and UPLC-MS method 

used to analyze Micomonospora sp. in this chapter were performed exactly as described 

in Chapter 3. 

5.6.2. BGC Analysis of Complete Micromonospora sp. Genome 

The genome of the Micromonospora sp. isolate was first mined for BGCs using 

antiSMASH version 5.2.0-8ecc354, resulting in 26 BGCs. AntiSMASH can predict 

numerous natural product compound classes including non-ribosomal peptides, type I, II, 

or III polyketides, lanthipeptides, and terpenes. These predicted BGCs were used to list 

the type and number of substrates needed to biosynthesize the product. In some cases, 

such as for NRPS, our analysis provided input for the predicted substrate specificity of 

each BGC domain detected, which helped to list the various expected amino acids used 

as a substrate. Likewise, the PKS domain architecture information was used to assess 

the number of expected acetate, malonate, methoxymalonate, and methylmalonate 

substrate building blocks incorporated into the polyketide. In some cases, the output 

from this analysis was further investigated by looking at the closest associated MIBiG 

entry for each BGC to find more information on the expected substrates and other 

chemical moieties likely to be incorporated based on similarity of enzyme-coding genes 

to those found in experimentally characterized pathways. Literature information and 

uniqueness of enzymatic domains present were taken into consideration in generating 
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the substrate predictions shown in Table 5.2 ultimately a result of computationally 

predicted substrates where possible and expert knowledge on biochemical pathways 

where needed and possible based on known enzyme functions, for example in the case 

of methylations by SAMs. 

5.6.3. Large-Scale Fermentation and Extraction of Micromonospora 
sp.  

Micromonospora sp. was grown in 2.8 L Fernbach flasks containing 20.0 g of 

Amberlite XAD-16 adsorbent resin, a stainless steel spring, and 1 L of the minimal media 

as described above for use in the SIL experiments. Four large scale fermentations were 

performed without the supplementation of SIL precursors. Cultures were shaken at 200 

rpm for 6 days, at which time the cultures were filtered by vacuum filtration on Whatman 

glass microfiber filters. The cells and resin were collected and extracted with 250 mL of 

1:1 methanol/dicholormethane. The organic extract was collected by vacuum filtration 

and dried by rotary evaporation. The crude organic extract was initially separated into 

seven fractions by a stepwise methanol/water elution (10, 20, 40, 60, 80, 100 vol/vol) 

and an additional ethyl acetate wash step on a RediSep Rf C18 cartridge (Teledyne 

Isco) using a Teledyne Isco CombiFlash Rf flash chromatography system. 

5.6.4. Isolation and Characterization of Lobosamide C and D 

Purification of 5.8 and 5.10 was carried out using an Agilent 1200 series HPLC 

system. Lobosamide C (5.8) (0.7 mg) was isolated from the 100% methanol pre-fraction 

by HPLC (Phenomenex Kinetix XB-C18 5µm, 250 x 4.6 mm) using an isocratic 

separation (45% methanol + 0.02% formic acid, 45% H2O + 0.02% formic acid, and 10% 

isopropyl alcohol with 0.02% formic acid) with a flow rate of 1.2 mL/min for 20 minutes. 

Lobosamide C (5.8) was eluted from the column at 34.4 min and was collected by UV 

detection at 300 nm. Lobosamide D (5.10) (0.4 mg) was isolated from the 40% methanol 

pre-fraction by HPLC (Phenomenex Kinetix XB-C18 5µm, 250 x 4.6 mm) using an 

isocratic separation (23% acetonitrile + 0.02% formic acid and 77% H2O + 0.02% formic 

acid) with a flow rate of 1.2 mL/min for 20 minutes. Lobosamide D (5.10) was eluted 

from the column at 15.0 min and was collected by UV detection at 280 nm.      

Lobosamide D: [α]D = -166.7 (c 0.042, MeOH); UV (MeOH), λmax 275 nm, log Ɛ = 3.45; 

HRMS (m/z): [M+H]+ calcd. for C29H41NO6, 500.3007; found, 500.3012. (see Appendix B 
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Table B1 for NMR shifts), SMILES: 

C[C@H]1C[C@@H](O)[C@]2([H])[C@@]3([H])[C@]4(C)/C=C(C)/C=C/C=C\[C@H](O)C

[C@H](O)[C@@H](O)[C@H](O)[C@@H](C)/C=C/[C@@H]4C=C[C@]3([H])C(N12)=O 

5.6.5. Full NMR Characterization of Lobosamide D 

 The molecular formula C29H41NO6 was calculated from the [M+H]+ ion detected at 

m/z 500.3012 (calcd. 500.3007, ∆ppm = 1.0), indicating 10 degrees of unsaturation. 

Review of the 1H and phase-sensitive HSQC spectra revealed 4 x CH3, 2 x CH2, and 20 

x CH including 9 olefinic signals. Further evaluation of the 13C and HMBC spectra 

identified a further 3 x qC signals, including one olefinic carbon, and one amide carbonyl. 

These components accounted for all carbons, 36 of 41 protons, one oxygen and one 

nitrogen from the molecular formula. The remaining five oxygens and five protons were 

assigned as hydroxy groups, based on the presence of five broad exchangeable signals 

in the proton spectrum and five signals in the HSQC (1H 3.35 - 4.61 ppm, 13C 65.5 - 75.7 

ppm) consistent with oxygenated methines. This completed the detection of all the 

elements in the molecular formula in the spectral data. 

 To solve the planar structure the COSY spectrum was used to identify one large 

spin system that incorporated all but two of the protonated carbons in the molecule. 

Starting from an olefinic doublet at 6.07 ppm (H17) sequential COSY correlations to 6.16 

(H16), 5.84 (H15) and 5.48 (H14) ppm identified a diene motif. COSY signals from 5.48 

(H14) sequentially to 4.61 (H13), diastereotopic methylene protons at 1.23 and 1.62 

(H12), and oxygenated methine protons at 3.97 (H11), 3.35 (H10), and 2.92 (H9) 

indicated a polyhydroxylated region which in turn was connected to another olefin 

through COSY correlations sequentially from 2.29 (H8) to 5.47 (H7) and from 5.47 (H7) 

to 5.10 (H6). This completed the linear portion of the spin system highlighted in red in 

Figure 5.8a.  

 The next section of the structure elucidation was complicated by the presence of 

a large number of aliphatic methine signals, suggestive of a complex fused ring system. 

From the last olefinic proton (H6) a series of sequential COSY signals connected 

protons at 2.88 (H5), 5.32 (H4), 5.75 (H3), 3.10 (H2), 2.09 (H21), 3.62 (H22), 3.96 (H23), 

a diastereotopic methylene at 1.58 and 2.42 (H24), 3.71 (H25) and a terminal methyl  
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Figure 5.8 Key NMR Correlations for Configurational Analysis 
(a) Key COSY and HMBC correlations used to solve the planar structure of lobosamide D (5.10). 
(b) Diagram of key ROESY correlations used in the configurational analysis of lobosamide D 
(5.10).   

signal at 1.16 ppm. This completed the second component of the spin system illustrated 

in blue in Figure 5.8a.  

 Assembly of the tetracyclic ring system in 5.10 required extensive use of HMBC 

data. This was complicated by severe signal overlap for two of the methyl signals (H28 

and H29). Key HMBC signals from H2 and H3 to the amide carbonyl carbon (C1) at 

172.2 placed the carbonyl at C2. This left a total of five carbons; 1 x aliphatic CH3, 1 x 

vinylic CH3, 1 x olefinic CH, 2 x qC. This was suggestive of a trisubstituted olefin, which 

was supported by the presence of a methyl singlet at 1H 1.76 13C 16.1 ppm (H27) which 

showed HMBC correlations to the olefinic methine (C19) and a quaternary carbon at 

134.9 (C18). In addition, this vinyl methyl signal (H27) showed a strong HMBC 

correlation to C17, placing it at the terminus of the major spin system. The olefinic 

methine signal (H19) showed reciprocal HMBC correlations to C17, C18 and C27, 

confirming this assignment. H19 possessed two additional HMBC correlations, one to 

the remaining quaternary carbon at 38.9 ppm (C20) and the other to the remaining 

methyl carbon at 19.4 ppm (C28). Closer examination of the quaternary carbon at 38.9 

(C20) revealed an HMBC correlation from H21, closing the macrocyclic ring. Finally, a 

strong HMBC correlation from methyl H28 to C20 placed the remaining methyl group on 

carbon 20. Additional HMBC correlations from this methyl group to C5 and C21 

confirmed the presence of the 6, 5 fused ring system, and completed all of the carbon-

carbon bond connections in the molecule.  
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 The five hydroxyl groups were located on carbons 9, 10, 11, 13 and 23 based on 

COSY correlations from each broad OH proton to its associated methine proton 

(Appendix B Figure B4). Finally, the remaining nitrogen atom on the amide functional 

group was connected to the two remaining open positions in the molecule (C22 and 

C25). This assignment was supported by the chemical shifts for these two carbons (65.5 

and 47.1 respectively) and completed the planar structure assignment, accounting for all 

of the degrees of unsaturation. 

 Lobosamide D (5.10) was isolated from the same strain, Micromonospora sp. 

RL09-050-HVF-A, which was previously published by our laboratory as the producing 

organism of lobosamides A-C. To determine the complete absolute configurations of 

lobosamides A-C we previously obtained a full genome sequence for this strain and 

identified the lob PKS biosynthetic gene cluster. This sequence data, in conjunction with 

extensive dipolar coupling NMR experiments, defined the absolute configuration at every 

position in the molecule.3  

 Given the common polyketide core precursor between lobosamides A-C and 

lobosamide D (5.10) and the absence of any other relevant polyketide BGCs in the 

genome of the producing organism we hypothesize that this same BGC also produces 

lobosamide D. The absolute configurations of positions 9, 11, and 13 of lobosamides A-

C were previously determined by genetic analyses of three ketoreductase (KR) domains 

responsible for these hydroxyls. The relative configurations of the methyl at position 8 

and the hydroxyl at position 10 were determined experimentally and the configurations 

were fully assigned through comparison to the hydroxyl stereocenters (9,11, and 13) 

produced by KR domains. The stereocenter at position 25 in all of the lobosamides and 

related compounds including salinilactam and micromonolactam, is derived from a 3-

aminobutyrate starter unit. The enzymatic mechanism that produces this starter unit was 

characterized for incednine and demonstrated stereospecificity in producing (S)-3-

aminobutyrate. This stereospecificity helped assign positions 25S for lobosamides A-C, 

and this conserved stereospecificity for compounds containing the (S)-3-aminobutyrate 

starter unit has been shown experimentally in other related natural products (mirilactam, 

micromonolactam, etc). The same absolute configuration is assigned to position 25 in 

lobosamide D. Based on these previously established data, we determined the absolute 

configuration of the following positions of lobosamide D to be 8S, 9R, 10R, 11S, 13R, 

25S.  
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 The double bond configurations in lobosamide D (5.10) are also expected to 

match the configurations in the lobosamides. Double bond configurations were 

consistent in lobosamides A-C except for the olefin at C14-C15, which is 14E in 

lobosamide B and 14Z in lobosamides A and C. Evaluation of key coupling constants 

between olefinic protons in lobosamide D confirmed that it matched the configuration of 

lobosamide A in all positions including C14 (3JH14-H15 = 10.1 Hz). The full double bond 

configurations for lobosamide D are 3Z, 6E, 14Z, 16E, and 18E (3JH3-H4 = 9.8 Hz, 3JH6-H7 = 

14.6 Hz, 3JH14-H15 = 10.1 Hz, and 3JH16-H17 = 15.7 Hz) The double bond at position 18E 

was corroborated by ROESY correlations between H19/H21 and H5/H27, indicating that 

H19 and H27 are on opposite sides of the 6-membered ring.  

 The full absolute configuration of the 5-5-6 fused ring system was determined 

using ROESY correlations. When possible, ROESY correlations from 2D ROESY 

experiments were confirmed by selective 1D ROESY experiments. ROESY correlations 

between H21/H6, H21/H19, and H21/H23 indicated that protons H6, H19, H21, and H23 

were all located on the same face of the ring system (Appendix B Figures B7-8, Figure 

5.8b) A ROESY correlation between H2/H28 and the trans relationship between H2 and 

H21 (3JH2-H21 = 13.0 Hz) indicated that H2 and H28 are located on the same face of the 

six membered ring (Appendix B Figure B7, Figure 5.8b).  

 The absolute configuration at position 25S was previously determined by BGC 

analysis which indicated the starter unit (S)-3-aminobutyrate. However, no correlations 

could be observed in the 2D ROESY spectra between H23 and H25 or H29 in order to 

establish the relationship between the fused ring system and the known configuration at 

position 25. To address this, we performed a 1D ROESY experiment selectively 

irradiating H25 and observed a correlation to H23 (Appendix B Figure B10). This 

connected the known absolute configuration at position 25 to the relative configurations 

in the 6,5,5 ring system determined by ROESY experiments and allowed us to assign 

the full absolute configuration of lobosamide D as 2R, 5S, 8S, 9R, 10R, 11S, 13R, 20R, 

21S, 22S, 23R, 25S. 
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Chapter 6.  
 
Conclusions 

In this thesis I have described the development, optimization, and validation of an 

MS-based workflow for the untargeted characterization of complex chemical phenotypes 

produced by BGCs in microorganisms. The ultimate goal of this work is to provide a 

hypothesis-generating workflow for connecting compounds to BGCs using parallel SIL 

experiments. I have demonstrated various limitations to the IsoAnalyst approach, and 

highlighted important factors to consider when applying this approach to different 

microorganisms. I have shown the IsoAnalyst can accurately detect SIL incorporation 

into compounds with well-established biosynthetic pathways, and identify novel variants 

of compounds from known classes. The flexibility of this tool will offer opportunities for 

the creative application towards understanding natural product biosynthesis and novel 

compound discovery.  

6.1. Limitations  

The metabolic limitations of SIL incorporation need to be considered and 

optimized prior to SIL feeding and I have shown that considerations of both core minimal 

media components and SIL tracer selection are essential to experimental optimization. 

In Chapter 2 I discussed the steps that went into developing the minimal medium used 

throughout this thesis. However, this optimization overall resulted in a lack of diversity in 

the compounds produced by Micromonospora sp. in the full application of the workflow 

in Chapter 5. The application of this medium with the four SIL tracers I selected was 

sufficient for the initial development of this method, but a further expansion of both 

growth media and SIL tracers is necessary to expand upon the types of compounds 

identified. Although the use of minimal media is often limited in eliciting natural products, 

I demonstrated in Chapter 2 that a rich media can also be used and still result in 

sufficient SIL incorporation for some SIL tracers. The IsoAnalyst workflow lends itself to 

the parallelization of many conditions and would be especially complementary to one-

strain many compounds (OSMAC) approaches which test different types of media or 

elicitors of biosynthesis.  
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The MS signal intensity is the main technical limiting factor in the IsoAnalyst 

platform. I showed in Chapter 3 that signal intensity was a significant factor in the 

reliability of statistical measurements of heavy isotopologue peaks. This was further 

addressed in Chapter 5, as both the desferrioxamine and lobosamide families had more 

variability in SIL incorporation among different analogues due to signal intensity than 

enzymatic substrate flexibility. This limitation underpins the fact that IsoAnalyst does not 

provide an exact interpretation of the biosynthesis of every detected compound. Rather, 

it is a general way of associating MS features with related biosynthetic origins and 

generating hypotheses about the BGC responsible for compound production. Factors 

such as MS signal intensity, chromatographic peak shape, and overlap of related 

compounds greatly influence the data interpretation and currently still require manual 

interrogation to interpret. 

While signal intensity is the biggest limitation in determining SIL incorporation, 

BGC analysis and substrate prediction also restrict our ability to connect the compounds 

identified with the correct BGC. In Chapter 5, I demonstrated how a few simple criteria 

can be used to qualitatively assess the likelihood of identifying a compound from a given 

BGC using a given set of SIL precursors. This is a generalizable approach that can be 

used to optimize SIL selection on the basis of the BGCs present in the genome. This 

process also entails many manual data curation steps, however the current rate of 

growth of BGC databases will likely increase the automation and confidence of these 

predictions as more BGC sequences are discovered and their cognate product 

structures confirmed.1 Still, there are many BGCs that are detectable in the genome but 

have unreliable substrate predictions, and little resemblance to other BGCs which are 

not likely to be discovered using IsoAnalyst alone. IsoAnalyst is a complementary 

technique that can be used alongside more established approaches such a molecular 

networking, heterologous expression, and correlation-based BGC discovery to draw 

connections between compounds and BGCs.  

6.2. Future Perspectives 

There are many intriguing ideas about how this platform can be applied to natural 

product discovery and MS metabolomics in general. Using IsoAnalyst, one can focus on 

the entire chemical phenotype produced by a BGC, and assess how this phenotype 

changes under different environmental or genetic conditions. Rather than looking at a 
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single product of a BGC, IsoAnalyst can assess the differences in the full profile of 

compounds produced by a BGC in a sample. This can be used to detect optimal 

conditions for production of specific analogues, or to better understand how substrate 

flexibility influences the ecological function of specialized metabolism. Evolutionary 

pressures may select for more highly specific biosynthetic enzymes to produce the most 

potent compound structure, much like structure-activity relationships are established in a 

laboratory setting during drug development. Yet we find more often than not that 

biosynthetic enzymes employ this substrate flexibility to produce a variety of related 

structures. IsoAnalyst represents a step towards understanding natural product 

discovery from a more holistic biosynthetic and ecological perspective. By catering the 

experimental design to a particular organism and compound class, IsoAnalyst can be 

used to observe whole phenotypic changes from different conditions, including co-

culture. IsoAnalyst takes a systematic approach to understanding natural product 

biosynthesis with the assumption that BGCs are not hard-coded to produce bioactive 

compounds, but rather interact adaptably with the environment to produce different 

chemical compositions. In heterologous expression, and other genetic techniques used 

to induce compound production in native hosts, identifying the target compound 

structure can still be difficult while optimizing the system.2 IsoAnalyst can identify related 

compounds that are significantly structurally modified but derived from the same 

biosynthetic precursors, such as in the case of lobosamide D, and could assist in the 

identification of unexpected biosynthetic products in heterologous host systems.  

Advances in genomic sequencing, publicly available computational tools, and 

BGC databases have motivated large scale studies of BGC sequences and products.3 

Both correlation and feature based approaches are used separately and together to 

make connections between specific BGCs and compounds, and to draw big-picture 

conclusions about the distribution and variation of BGCs and the natural products they 

produce.1,4,5 IsoAnalyst can be used in conjunction with correlation based approaches by 

comparing SIL incorporation in organisms with related BGCs to identify products. This 

allows for the comparison of not just single products, but overall phenotypic variation 

between organisms with similar biosynthetic potential. These insights will further our 

understanding of BGC convergent and divergent evolution by offering a chemistry-

centric perspective of BGC diversity orthogonally to well-established genetic 

comparisons. IsoAnalyst is also complementary to feature-based approaches which 
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focus on metabolite detection in MS1 but often in MS/MS features as well. Molecular 

networking has become one of the most widely used MS metabolomics tools for 

identifying related compounds and associating structures on the basis of related 

fragmentation.6 IsoAnalyst can support the conclusions drawn from molecular 

networking analysis and contribute to structural hypotheses on the basis of which 

fragment ions retain or lose isotopic enrichment from specific SIL tracers. Overall, 

IsoAnalyst fills a gap in both correlation and feature based approaches by offering 

complementary biosynthetic information about m/z features that can be used to generate 

hypotheses and guide follow-up studies on specific compound classes.  

IsoAnalyst can also be applied to microbial culture in other creative ways. 

Detection of SIL tracer incorporation into natural products over time can be used to 

observe compound production throughout the growth phase, or as a result of introducing 

a metabolic perturbation. By applying IsoAnalyst as a targeted workflow to observe 

specific groups of compounds, the timing and influence of environmental factors on 

chemical phenotype can be more carefully interrogated. Addition of SIL tracers at 

different time points can also be used to optimize the efficiency of SIL incorporation and 

directly observe the timing of biosynthetic activity throughout the growth phase. These 

applications are possible because of the flexibility of the IsoAnalyst experimental 

approach, and the statistical application used to detect SIL incorporation. By determining 

the number of detectable SIL tracers incorporated into m/z features, IsoAnalyst simplifies 

the data interpretation compared to metabolic flux measurements and other untargeted 

methods that compare overall SIL incorporation between conditions. The IsoAnalyst 

approach focuses on natural product biosynthesis in terms of the substrates used rather 

than the metabolic flux through the pathway to identify the entire metabolic phenotype in 

a single MS metabolomics experiment. The novelty and flexibility of this approach will 

offer many new opportunities for applications in natural product discovery, biosynthesis, 

and ecological function.  
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Appendix A.   
 
MS and NMR Data for Known Compounds and 
Commercial Standards 

 
Figure A1. Erythronolide B Standard Co-Injection and MS 
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Figure A2. 1H NMR Spectra of Erythronolide B acquired in DMSO-d6 at 600MHz 
Commercial standard (top) and isolated compound (bottom) 
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Expansion of Figure A2. 
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Figure A3. 13C NMR Spectra of Erythronolide B acquired in DMSO-d6 at 150 MHz 
Commercial standard (top) and isolated compound (bottom) 
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Expansion of Figure A3 
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Figure A4. 3-O-α-mycarosylerythronolide B Standard Co-Injection and MS  
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Figure A5. 1H NMR Spectra of 3-O-α-mycarosylerythronolide B acquired in DMSO-d6 at 600MHz 
Commercial standard (top) and isolated compound (bottom) 
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Expansion of Figure A5 
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Figure A6. 13C NMR Spectra of 3-O-α-mycarosylerythronolide B acquired in DMSO-d6 at 150 MHz 
Commercial standard (top) and isolated compound (bottom) 

0102030405060708090100110120130140150160170180190200210220

δ
(ppm)

O

O

O

O

OH

OH
OH

O OH

OH

0102030405060708090100110120130140150160170180190200210220

δ
(ppm)



169 

 
Expansion of Figure A6 
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Figure A7. Erythromycin A Standard Co-Injection and MS  
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Figure A8. Rifamycin S Standard Co-Injection and MS  
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Figure A9. Desferrioxamine B Standard Co-Injection and MS  
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Figure A10. Desferrioxamine E Standard Co-Injection and MS  
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Figure A11. Desferrioxamine D2 Standard Co-Injection and MS  
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Figure A12. Microferrioxamine A Standard and extract MS  
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Figure A13. Microferrioxamine B Standard and extract MS  
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Figure A14. Microferrioxamine C Standard and extract MS  
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Figure A15. Lobosamide C Standard and extract MS  
 

 
Figure A16. Lobosamide A Standard and extract MS  
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Figure A17. 1H NMR Spectra of Lobosamide C acquired in DMSO-d6 at 600MHz 
Standard (top) and isolated compound (bottom) 
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Figure A18. 13C NMR Spectra of Lobosamide C acquired in DMSO-d6 at 150MHz 
Standard (top) and isolated compound (bottom) 
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Appendix B.   
 
MS and NMR Data for Lobosamide D  

 
Figure B1. Lobosamide D Chromatogram and MS  
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 Table B1. NMR Signals for Lobosamide D 
Position d H (ppm) m J(Hz) d C 

1    172.2 
2 3.10 d 13.0 44.1 
3 5.75 d 9.8 121.1 
4 5.32 m  132.3 
5 2.88 d 9.8 52.6 
6 5.10 dd 9.8,14.6 127.5 
7 5.47 dd  134.4 
8 2.29 m  37.2 
9 2.92 dd 8.0,8.0 74.4 

10 3.35   75.7 
11 3.97 m  70.9 
12a 1.23 m  40.4 
12b 1.62 m   

13 4.61 m  68.8 
14 5.48 dd  138.1 
15 5.84 dd 10.1,10.1 125.2 
16 6.16 dd 10.1,15.7 122.3 
17 6.07 d 15.7 137.9 
18    134.9 
19 6.10 s  136.9 
20    38.9 
21 2.09 dd 9.3, 13.0 53.2 
22 3.62 dd 6.6, 9.3 65.5 
23 3.96 m  73.5 
24a 1.58 m  45.0 
24b 2.42 m   

25 3.71 m  47.1 
26 0.80 d 6.7 12.2 
27 1.76 s  16.1 
28 1.17 s  19.4 
29 1.16 d  21.0 

OH(9) 4.35    

OH(10) 4.34    

OH(11) 4.16    

OH(13) 4.60    

OH(23) 5.30    
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Figure B2. 1H NMR Spectrum of Lobosamide D acquired in DMSO-d6 at 600MHz 
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Expansion of Figure B2 
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Figure B3. 13C NMR Spectrum of Lobosamide D acquired in DMSO-d6 at 150MHz 
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Figure B4. COSY of Lobosamide D in DMSO-d6 at 600MHz 
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Figure B5. HSQC of Lobosamide D in DMSO-d6 at 600MHz 

0.51.01.52.02.53.03.54.04.55.05.56.06.5
δ (ppm)

10

20

30

40

50

60

70

80

90

100

110

120

130

140

δ
 (

p
p
m

)



188 

 
Figure B6. HMBC of Lobosamide D in DMSO-d6 at 600MHz 
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Figure B7. ROESY of Lobosamide D in DMSO-d6 at 600MHz 
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Figure B8. Selective 1D ROESY for H21 of (2.09 ppm) in DMSO-d6 at 600MHz 
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Figure B9. Selective 1D ROESY for H2 of (3.10 ppm) in DMSO-d6 at 600MHz 
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Figure B10. Selective 1D ROESY for H25 of (3.71 ppm) in DMSO-d6 at 600MHz 
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