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Abstract 

This thesis studies the design, synthesis, and optimization of radiopharmaceuticals for 

targeted alpha therapy applications with actinium-225 (225Ac). In Chapter 2, three novel 

radiopharmaceuticals - 2.1 (DOTA-CCZ-N-Me-α-CycMSH), 2.2 (Macropa-CCZ-N-Me-

α-CycMSH), and 2.6 (Macropa-α-CycMSH) for malignant melanoma therapy were labeled 

with 225Ac and evaluated. All three radiopharmaceuticals exhibited excellent in vitro 

stability, while Macropa-CCZ-N-Me-α-CycMSH showed lower tumor uptake and 

moderate normal tissue uptake. In Chapter 3, a total of 5 diaza-18-crown-6 macrocyclic 

ligands (macropa, macropaquin, macroquin-SO3, macrohopo, and macrohopo’) as chelators 

for 225Ac were investigated. Two of the chelators (macrohopo and macrohopo’) which 

contain hydroxypyridinone pendant donor arms are novel and were 

synthesized/characterized in this work. Macropaquin was able to quantitively radiolabel at 

chelator concentrations as low as 10-6 M at ambient temperatures within one hour, while 

chelator macrohopo was unable to achieve 225Ac complexation under any conditions. This 

thesis showcases the complexity of radiopharmeticuals, in particular for 225Ac.  

 
Keywords:  Actinium-225; targeted alpha therapy (TAT); 𝛼-CycMSH; 

hydroxypyridinone (HOPO) groups; macrocyclic ligands 
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Chapter 1.  
 
Introduction 

1.1. Motivation 

Accounting for approximately 30% of Canadians deaths, cancer is the number one 

cause of death in Canada1. There have been significant improvements in early detection 

and treatment options, indicated by decreases of 35% and 20% in mortality rates for males 

and females respectively1. However, the Canadian Cancer Society estimates in 2021, that 

1 in 2 Canadians will develop cancer in their lifetime and 1 in 4 Canadians will die from 

the disease1. As such, innovative methods for better therapeutics and early detection 

methods are of the utmost importance. Current detection methods include laboratory tests, 

biopsy, physical examinations, and image testing2. Therapeutic methods include 

chemotherapy, surgery, immunotherapy, radiation therapy, targeted drug therapy, and 

more2. This thesis focuses on the use of nuclear medicine for the diagnosis and selective 

treatment of cancers.  

1.2. Nuclear Medicine  

Nuclear medicine has become a formidable tool for various medicinal fields 

(cancer, heart disease, neurological disorders, etc.) which relies on the use of radioactive 

nuclides for diagnostic imaging and treatment of diseases. Diagnostic methods use positron 

(𝛽&) emitters and gamma ray (𝛾) emitters. Diagnostic radionuclides emit radiation that 

minimally interacts with biological tissues, allowing them to escape and reach external 

detectors3, while therapeutic applications require radionuclides that can cause cytotoxicity. 

Therapeutic methods can include both internal (targeted internal therapy, brachytherapy, 

etc.) and external therapy (FLASH, proton therapy, etc.). The development and constant 

improvement of radiopharmaceuticals have significantly expanded clinical applications. 

Herein, this thesis focuses on internal targeted radionuclide therapy (TRT). 
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1.2.1. Diagnostics 

The two nuclear medicinal imaging techniques are single-photon emission 

computed tomography (SPECT) and positron emission tomography (PET) (Figure 1.1). 

Unlike structural diagnostic methods (computed tomography (CT), magnetic resonance 

imaging (MRI), ultrasound (US), and x-ray), nuclear medicine allows for functional 

imaging to analyze chemical and biological processes within the body4. Cutting edge 

hybrid imaging simultaneously utilizes both PET/SPECT in conjugation with MRI/CT 

(i.e., PET-CT, SPECT-CT) to get both structural and functional images4.  

 
Figure 1.1: Visual representation of SPECT and PET diagnostics 

PET utilizes positron emitting radionuclides such as fluorine-18 (18F). As the 

nuclide decays, it emits a positively charged beta particle (𝛽&) that travels a short distance 

(3 - 5 mm) within the body until it collides with an electron (negatively charged beta 

particle, (𝛽'))4. This collision, also known as an annihilation will release two 511 keV 

gamma (𝛾) rays that are emitted 180º from one another4. The circular arrangement of PET 

coincidence detectors allows for the simultaneous detection of the two 𝛾 rays4. If the two 

detections are within 12 nanoseconds (ns), it is assumed an annihilation has occurred4. 

With enough annihilation events (106), a 3D image with excellent resolution (2 - 3 mm) 

can be reconstructed5. In addition to higher resolution, PET is more sensitive than SPECT 

with required tracer concentrations of 10-8 to 10-10 M, compared to ~10-6 M5. However, the 

major limitations of PET are high operational costs and a limited number of FDA-approved 

PET radiotracers.  
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SPECT, the older modality utilizes gamma cameras that will detect a gamma (𝛾) 

emission within 100 – 250 keV4. With a powerful computerized calculation system, cross-

sectional images allow for a 3D image to be reconstructed4. Despite lower resolution 

pictures (10 – 14 mm), SPECT is the more commonly used methodology4. One major 

reason is the higher availability; as of 2017, there were 330 SPECT machines, 261 SPECT-

CT machines, and only 51 PET-CT machines in Canada6. The other key reason is the much 

lower operational costs for SPECT compared to PET. Unlike PET which traditionally 

employs cyclotron produced “organic” radionuclides (11C, 18F, 13N, and 15O), SPECT can 

use metallic “inorganic” radionuclides such as technetium-99m (99mTc) and indium-111 

(111In).  

1.2.2. Therapeutics  

 Internal targeted radionuclide therapy (TRT) via the use of radiopharmaceuticals 

is an emerging therapeutic method due to its highly selective nature, non-surgical approach, 

and minimal amounts of required radioactivity. There are three types of radioactive 

particles that can be utilized in TRT – alpha particles (𝛼), beta particles (𝛽'), and Meitner-

Auger electrons (MAE) (Table 1.1). Herein, my focus will be on the use of alpha particles 

for targeted alpha therapy (TAT), a subdivision of targeted radionuclide therapy (TRT).  

Table 1.1:  Radioactive particles that can be utilized in TRT 
Decay Energy  Range  LET (keV/µm) 
𝜶  5 - 9 MeV 40 – 100 µm  50 – 230 
𝜷' 0.05 – 2.3 MeV 0.05 – 12 mm ~ 0.2 

Auger Electrons eV - keV 2 – 500 nm 4 – 26 
LET - linear energy transfer (energy deposited per unit distance) 

Beta Particles (𝜷') 
Beta particles are used for medium – large tumors due to their larger penetration 

depth (0.05 – 12 mm), lower energy deposits (0.05 – 2.3 MeV), and small linear energy 

transfer (LET; the amount of energy deposited per unit distance) of 0.2 keV/µm. This even 

distribution of beta particles in heterogenous tumors results in single-strand DNA 

breakage4,7, which can be repaired through DNA repair pathways. With sub-lethal damage, 

very high doses (up to several gigabecquerel (GBq)/cycle) of 𝛽' radiotherapeutics must be 
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administrated to have therapeutic effects in patients8. Common beta emitters such as 

lutetium-177 (177Lu), yttrium-90 (90Y), and iodine-131 (131I) have been incorporated into 

FDA approved targeted beta therapeutics including but not limited to: [177Lu]Lu-

DOTATATE for neuroendocrine tumors, [131I]NaI for thyroid cancer, and [90Y]Y-

ibritumomab tiuxetan (Zevalin®) for non-Hodgkin’s lymphoma9.  

 

Meitner-Auger electrons (MAE) 
MAEs have very short penetration depth in tissue (2 – 500 nm) and minor energy 

deposits (eV – keV) resulting in a moderate LET of 4 – 26 keV/µm7. The efficacy of MAEs 

is dependent on the ability of the targeting vector to internalize such that the radionuclide 

is localized in the cell nucleus. One benefit of MAEs is their low cellular toxicity in the 

blood or bone marrow during circulation within the body4. This relatively new 

radiotherapeutic method has a limited number of successful preclinical studies and clinical 

applications8,10,11. Initial studies of MAEs investigated conventionally used imaging & 

therapeutic radionuclides such as 111In, 125I, 99mTc, and gallium-67 (67Ga), while new 

unconventional MAE emitting radionuclides such as antimony-119 (119Sb), lanthanum-135 

(135La), and mercury-197m/g (197m/gHg) are being explored8,10.  

 

Alpha particles (𝜶) 
Targeted alpha therapy (TAT) uses alpha emitting radionuclides for small and 

metastatic tumor applications7,12. Alpha particles are highly cytotoxic causing double 

stranded DNA breakage, due to their small penetration depth of 40 – 100 µm, high energy 

(5 – 9 MeV) deposit, and large LET of 50 – 230 keV/µm4,7. Their cytotoxicity potency is 

over 100 times greater than beta emitters, such that it requires less than five DNA hits to 

kill a cell4. In 2013, radium-223 [223Ra]Ra-dichloride (Xofigo®) became the first and to 

date, only FDA-approved targeted alpha therapeutic drug13. Over the past decade, five 

other alpha emitters (actinium-225 (225Ac), bismuth-213 (213Bi), astatine-211 (211At), lead-

212 (212Pb), and thorium-227 (227Th)) have gained significant interest for TAT13.  
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1.3. Construction of Radiopharmaceuticals  

A plethora of radioisotopes can be incorporated into a radiopharmaceutical for 

either therapy or imaging. Generally, the construction of a radiopharmaceutical will be 

governed by the chemical nature of the isotope used – either ‘organic’ (e.g., 11C, 18F) or 

‘inorganic’/metallic (e.g., 68Ga, 111In). The focus of this thesis is the use of metallic 

radioisotopes (aka radiometals) – in particular, the emerging alpha-emitter actinium-225 

(vide infra), as such the construction of a metallic radiopharmaceutical will be discussed. 

Typically, radiometal-based radiopharmaceuticals consist of four main components;  

I) Chelator – provides radionuclide stability through metal-chelator 
binding 

II) Linker – connects the chelator to the targeting vector  
III) Targeting vector – a biomolecule with selective binding for over-

expressed tumor receptors 
IV) “Inorganic” radionuclide – provides the radioactive emission for 

therapy/imaging  

Each component is meticulously chosen as radiopharmaceuticals must be 

thermodynamically stable, chemically inert, and fairly easy/inexpensive to synthesize. 

They also must have quick tumor uptake and fast clearance from non-target tissues to 

achieve high tumor-to-background ratios, which ensures reduced radiation exposure to 

healthy tissues4.  

1.4. Chelators  

Chelators are an essential component of metal-based radiopharmaceuticals. When 

designing a chelator, radiometal properties such as the ligand donor atom preferences 

(based on hard-soft-acid-base theory) and coordination number/geometry need to be 

considered14. Chelators can be divided into two types: macrocyclic (closed chain) and 

acyclic (open chained). Macrocyclic ligands are normally more kinetically inert and 

thermodynamically stable than acyclic ligands, due to a phenomenon known as the 

macrocyclic effect14. Yet, macrocycles often require heating at extended times for 

quantitative radiolabeling14. The widely adopted bifunctional chelator (BFC) method 
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utilizes a chelator that I) can bind radionuclides and II) has reactive functional groups that 

can be covalently coupled to targeting vectors (vide infra). With long synthetic alterations 

of the linker, chelate, and biomolecule performed before radionuclide introduction, 

unnecessary decay of the precious radiometal can be avoided (Figure 1.2). The most 

attractive quality of the BFC technique is it allows for a countless number of different 

targeting vectors to be conjugated to limitless numbers of chelators. 

 
Figure 1.2: Illustration of a radiometal-based radiopharmaceutical containing 

bifunctional chelator (BFC) 

1.4.1. Acyclic Chelators  

DTPA (diethylenetriaminepentaacetic acid, N3O5), is one of the most widely used 

acyclic chelators in radiochemistry (Figure 1.3). While it can quantitatively radiolabel 

many radiometals (111In, 177Lu, copper-64 (64Cu), 86/90Y, 68Ga, 213Bi, and zirconium-89 

(89Zr)) at room temperature quickly, it can suffer from low in vivo stability. Nevertheless, 

DTPA has been successful as I) 2 FDA approved SPECT agents - OctreoScanTM and 

ProstaScint® ([111In]In-DTPA-octreotide (OC) and [111In]In-DTPA-capromab 

respectively), II) FDA approved 𝛽' therapy Zevalin® ([90Y]Y-ibritumomab tiuxetan), and 

III) MRI gadolinium (Gd) contrast agents.  

CHX-A”-DTPA (2-(p-isothiocyanatobenzyl)-cyclohexyldiethylenetriamine-

pentaacetic acid, N3O5), a second-generation acyclic chelator has shown improved stability 

and kinetic inertness, a result of the chiral cyclohexyl motif in the DTPA backbone (Figure 

1.3). CHX-A”-DTPA has been thoroughly investigated for 90Y, 111In, 213Bi, and 177Lu, and 

promising clinical trials are underway15.  

1.4.2. Macrocyclic Chelators  

TETA (1,4,8,11-Tetraazacyclotetradecane-1,4,8,11-tetraacetic acid, N4O4), an 

octadentate chelator was only heavily investigated for 64Cu radiopharmaceuticals (Figure 
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1.3). In 2001, one clinical trial found [64Cu]Cu-TETA-OC as a potential PET tracer for 

neuroendocrine tumors16. However, newer generation chelators (i.e. NOTA and TETA 

derivatives) which have improved in vivo stability have replaced older generation TETA14.  

NOTA (1,4,7-Triazacyclononane-1,4,7-triacetic acid, N3O3), a hexadentate 

chelator is the current gold standard for complexation of 68Ga and 64Cu, exhibiting 

favourable radiolabeling conditions and excellent in vivo stability14 (Figure 1.3). As 68Ga 

and 64Cu gain significant interest as PET imaging agents, new promising chelators have 

arisen. However, due to the commercial availability of NOTA and its bifunctional 

analogues, NOTA is still considered the “practical” gold standard14. 

DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, N4O4) a tetraaza 

macrocyclic chelator, is the current gold standard for complexation of several trivalent 

radiometal ions (111In, 177Lu, 86/90Y, 225Ac, and 44/47Sc)17 (Figure 1.3). DOTA can form 

kinetically inert complexes but at the expense of slow radiolabeling kinetics and elevated 

temperatures (60 – 90 °C), which makes conjugation to heat sensitive targeting vectors (i.e. 

antibodies) quite challenging18. Despite conjugation issues, DOTA and DOTA derivatives 

have been incorporated as chelates into more than 50 clinical trials for PET imaging, 𝛽' 

therapy, and/or 𝛼 therapy.  
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Figure 1.3: Structures of acyclic (CHX-A”-DTPA and DTPA) and macrocyclic 

(TETA, NOTA, and DOTA) chelators discussed 

1.5. Linkers  

Linkers, the connector between chelators and the targeting vector are also a critical 

component as they can affect the pharmacokinetics of the radiopharmaceutical. Linkers 

can be classified into four categories i) cationic, ii) anionic, iii) neutral, or iv) metabolically 

cleavable19. Common linkers include polyethylene glycol (PEG) to slow excretion through 

the hepatic system, long hydrocarbon chains increasing lipophilicity, and peptide 

sequences to improve hydrophilicity19. Studies have shown modifying the linker can 

significantly impact the biodistribution of radiotracers19–22. For example, the introduction 

of a cationic piperidine linker allowed for rapid in vivo clearance and increased tumor 

uptake when compared to neutral 8-aminooctanoic acid (Aoc) peptide linker and neutral 

PEG linker for preclinical melanoma imaging with 68Ga and 18F23,21. By modifying 

pharmacokinetics of linkers, higher tumor uptake while minimizing undesired organ 

uptake can be obtained.  
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1.6. Targeting Vectors/Biomolecules  

The choice of targeting vector is crucial, as it will determine the biodistribution and 

pharmacokinetics of radiopharmaceuticals. Ideally, biomolecules must have a high affinity 

for receptors that are over-expressed on diseased cells yet minimally expressed (or are 

absent) on healthy cells. Moreover, the targeting vector’s biological half-life should match 

the physical half-life of the selected radionuclide, exhibit high in vivo stability and minimal 

renal accumulation. Targeting vectors used in radiopharmaceutical design can be 

categorized into one of 3 classes: antibody, peptide, and other. Each class of targeting 

vector will have different biological/physiological properties, advantages, and 

disadvantages.  

1.6.1. Antibodies 

Antibodies, also known as an immunoglobulin are large Y-shaped proteins crucial 

to immune systems. With an average weight of 150 kDa and relatively large size, 

antibodies are slow to circulate and have long biological half-lives. The major benefit of 

antibodies is their highly specific nature allowing for selective tumor localization. 

However, antibodies have slow clearance rates which can cause high radiation doses to 

healthy tissue, resulting in moderate tumor-to-background ratios24. One tactic to mitigate 

this issue is a pre-targeting approach, wherein the targeting vector and cytotoxic 

radionuclide are administered separately (vide infra)24. Another method is the use of 

smaller bioconjugates such as peptides or antibody fragments.  

1.6.2. Peptides 

Similar to antibodies, peptides offer numerous advantages for 

radiopharmaceuticals, including high tumor uptake and a vast number of biological targets. 

Additionally, peptides experience rapid clearance from the blood/non-target tissues due to 

their significantly smaller size (2-20 amino acids)25. Endogenous peptides are known to be 

metabolically unstable, yet synthetic modifications to improve pharmacokinetics and slow 

degradation without altering receptor affinity are well developed3. Moreover, solid-phase 

peptide synthesis allows for easy preparation of peptides with diverse modifications. The 
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major disadvantage of peptides is their excessively rapid clearance can prevent sufficient 

tumor uptake3.  

1.6.3. Others 

Other bioconjugates utilized in radiopharmaceuticals can include nanoparticles 

(NP) and antibody fragments. The biodistribution of nanocarriers is primarily driven by 

their large size and shape, although they can be modified with targeting vectors (peptides 

and antibodies) to increase tumor uptake26. For nanocarriers without targeting vectors, they 

rely on passive targeting, such as the Enhanced Permeability and Retention (EPR) effect26; 

wherein defective vascularization and ineffective lymphatic drainage of tumors allows for 

large carriers to be trapped and accumulated in tumor tissue26. Nanoparticles are 

predominantly excreted through the hepatic system due to their large size, which can cause 

unwanted high liver uptake13. Antibody fragments have superior tumor penetration depth 

and rapid blood clearance while maintaining high receptor affinity24,27,28. However, similar 

to peptides, rapid blood clearance of antibody fragments has been associated with reduced 

tumor uptake24,27,28. 

1.7. Radionuclides 

A radionuclide is an unstable atom that undergoes decay, emitting radiation to 

become stable. Radionuclides used in the nuclear medicine field should have high 

radionuclidic, radiochemical, and chemical purity4. Ideally, the radioisotope should be 

carrier-free (every atom is radioactive) or have a high specific activity (activity per unit 

mass)4. Additionally, the radionuclide half-life (t1/2) should match the biological half-life 

of the targeting vector. For example, antibodies that can take up to days to circulate are 

best matched with long lived radioisotopes. For therapeutic isotopes, the emission of 

gamma rays (in optimal energy ranges) as the radioisotope undergoes decay is valuable as 

low-dose imaging can be performed to determine the distribution of the 

radiopharmaceutical for non-invasive dosimetry determination.  
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1.8. Conjugation 

Conjugation between targeting vectors and bifunctional chelators is dependent on 

the bioconjugation handles on both the linker and the chelator (Figure 1.4). Common 

conjugation techniques include14:  

I) Carboxylic acid and a primary amine coupling with a coupling reagent  
II) Activated esters and a primary amine coupling 
III) An isothiocyanate and a primary amine coupling 
IV) Inverse Electron-demand Diels-Alder (IEDDA) “click” between a 

tetrazine and transcyclooctene  
V) Copper catalyzed “click” between an azide and an alkyne  

 
Figure 1.4: Depiction of conjugation methods discussed in this thesis 

Bioconjugation must be specific to the available handle, not decrease the binding 

affinity of the chelate to the radioisotope, and should occur rapidly at mild conditions14. 

The “click” methodology between tetrazine (Tz) and transcyclooctene (TCO) is rapidly 

gaining interest as the quick metal-free reaction allows for pre-targeting methods14. For 

pre-targeting, the antibody with a TCO handle is introduced into the patient, allowing the 
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antibody adequate time to circulate and accumulate (Figure 1.5). Once accumulated at the 

tumor, a complimentary chelated radionuclide with a Tz handle is administered. In vivo, a 

rapid “click” reaction between TCO-Tz forms the intact radiopharmaceutical, followed by 

rapid clearance of excess radioligand.  

 
Figure 1.5:  Depiction of pretargeted radioiummunotherapy approach (PRIT) 

1.9. Special considerations for α-emitting radiopharmaceuticals  

1.9.1. Recoiling Daughters 

Upon the decay of an α-emitting radioisotope, the daughter nuclide experiences 

recoil energy. To conserve momentum, the daughter nuclide will recoil 180 º from the alpha 

particle. The heavier daughter nuclide will experience a significantly smaller amount of 

energy (100 – 200 keV) compared to the lighter, highly energetic (5 – 9 MeV) alpha 

particle. The recoil energy of a daughter nuclide is calculated using the equation below, 

where 𝑚, is the mass of the alpha particle, 𝑚-./012 is the mass of the daughter nuclide and 

𝐸, is the energy of the alpha particle29.  

𝐸-./012	 = 	
𝑚,

𝑚-./012
𝐸, 

The recoil experienced is 100 - 1000 times stronger than chemicals bonds, resulting 

in the release of the bound daughter7. Consequently, the unchelated daughters, which are 

often radioactive in themselves, can redistribute through the body providing radiation to 

undesired organs. Redistribution will be affected by I) distance covered during the recoil, 
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II) intrinsic affinity of the radionuclide for specific organs, III) active transport, and IV) 

diffusion processes7,30. 

 

Redistribution of recoiling daughters 
Redistribution of recoiled daughters can be difficult to measure and is therefore 

mostly studied post-mortem ex vivo. Theoretically, recoiled daughters will cover on 

average 100 nm in water26, breaking free of its chelate. As the daughter acquires a new 

position, diffusion processes and active transport will become key30. Diffusion of the now 

free ion will be dependent on the type of medium, as the ion experiences different 

interactions with blood-like medium or cell-like components (extra/intracellular matrix)30. 

The movement of particles in tissues depends on their size, charge, configuration, and the 

physicochemical properties of the medium31. The majority of the time, the recoiled nuclide 

is released into the bloodstream, where the intrinsic affinity of the radionuclide will 

determine its fate.  

One effective solution to redistributed recoiled daughters is the use of short-lived 

α-emitting radionuclides (213Bi or 211At) with simple decay schemes7. However, a short 

half-life can present logistical issues for generator elution, radiolabeling, drug 

administration, and allowing for sufficient circulation time. In addition, longer lived α-

emitting radioisotopes with complex decay schemes offer superior cytotoxicity that is hard 

to replicate7.   

 

Retention of recoiled daughters  

There are several approaches to deal with recoiling daughters currently under 

investigation, herein three approaches are described: I) encapsulation in nanocarriers, II) 

fast tumor accumulation, and III) local administration.  

The use of nanocarriers such as metal-based particles, polymersomes, and 

liposomes has been investigated for recoiled daughter retention26,30,32–39. Liposomes 

(phospholipid vesicle) exhibit insufficient retention (~ 12% of 213Bi) at all sizes between 

100 – 800 nm32. Polymersomes (polymer vesicle) have been examined for encapsulation 

of 225Ac and its daughters through simulations and in vitro studies. In 2011 Thijssen et al., 
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examined polymersomes to retain recoiling daughters via a Monte Carlo simulation26. A 

double-layer polymersome was significantly more effective than a single-layer 

polymersome26. Wang et al., compared previous simulations with in vitro experiments, 

wherein 800 nm polymersomes retain 221Fr and 213Bi fairly well (~70% and ~53% 

respectively)33. However, complex alpha decay schemes results in cascading that soft 

materials such as polymersomes and/or liposomes cannot sufficiently handle. To achieve 

adequate retention, nanocarriers should have non-organic components. Lanthanide-based 

phosphate (LnPO4) nanoparticles have shown some promise in reducing toxicity from 

recoiled 225Ac daughters34 (vide infra).  

The second approach hinges on the radiopharmaceutical rapidly taken up by the 

tumor, minimizing circulation within the body. Internalization promotes the sequestering 

of the targeted radionuclide in the tumor cell’s cytoplasm, leading to a higher accumulation 

of radioactivity in the tumor, compared to nontarget organs35. For example, cyclized α-

Melanocyte-Stimulating Hormone (CycMSH/ αMSH), a disease targeting peptide for 

melanoma skin cancer has shown rapid internalization for various derivatives20. 

Particularly three tracers, [68Ga]Ga-CCZ01048, [68Ga]Ga-CCZ01047, and [68Ga]Ga-

CCZ01056 can internalize ~ 36 - 52 % of total bound activity into B16F10 cells after 30 

minutes20.  

For large, easily accessible tumors local administration of the radiopharmaceutical 

offers a simple solution. Notably, a phase I clinical study with locally injected [213Bi]Bi-

DOTA-substance P into gliomas showed high target site retention40. Moreover, no 

local/systemic toxicity was observed and radiation induced necrosis of the tumor allowed 

subsequent resection40. This innovative methodology allows for possible treatment for 

previously non-operable and non-treatable gliomas. Similar promising results were 

obtained in phase I clinical studies with [212Pb]Pb-labeled trastuzumab41 and [111At]At-

labelled chimeric anti-tenascin C monoclonal antibody (ch81C6)42. However, this 

approach is not feasible for small metastases which cannot be easily localized.  
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1.10. Actinium 

Since the discovery of actinium in 1899, 32 isotopes of actinium have been 

identified - ranging from 205Ac to 236Ac43. Of the 32 isotopes, only two - 227Ac (t1/2 = 21.8 

y) and 228Ac (t1/2 = 6.1 h) - are naturally occurring from the decay of uranium-235 (235U) 

and 232Th respectively43. Despite the spiked interest in actinium-225 for TAT, the 

fundamental chemistry of this element is still poorly understood; an outcome of limited 

supply and all actinium isotopes being radioactive12. With an ionic radius of 1.12 Å 

(coordination number (CN) = 6)12,44 and a +3 oxidation state, actinium is the largest 

trivalent actinide. Recently Ferrier et al., determined the hydration number of Ac3+ to be 

10.9 ± 0.5, with an Ac-OH20 distance of 2.63 Å44. Classified as a “hard” Lewis acid 

(according to the hard-soft-acid-base theory), actinium prefers nonpolarized 

electronegative Lewis bases such as oxygen donors12. As all isotopes of actinium are 

radioactive, it is most commonly compared to La3+ due to their similar ionic radii (1.03 Å; 

CN = 6).  

1.11. Actinium-225 (225Ac3+) 

The promising 225Ac3+ ion has a complex decay scheme, including 4 α decays, two 

ß- decays, and two SPECT appropriate	γ emissions13 as seen in Figure 1.6. These highly 

energetic (5.8 MeV, 6.3 MeV, 7.1 MeV, 5.9 MeV, or 8.4 MeV) α decays allow for 

considerable cytotoxicity per atom of actinium. Moreover, it can generate bismuth-213 

(213Bi), a good candidate for TAT currently in clinical trials13. As a long-lived radionuclide 

(t1/2 = 9.9 days), it is suitable for antibody conjugation13. Within the past decade, there have 

been several noteworthy clinical successes with 225Ac3+-radiopharmaceuticals (vide 

infra)45–54. However, 225Ac-radiopharmaceuticals remain underdeveloped, an outcome of 

limited 225Ac radionuclide supply, an inability to form kinetically inert complexes under 

ideal conditions (quick kinetics and mild temperatures), and recoiling radioactive 

daughters.  
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Figure 1.6:  The decay scheme of Ac-225 with imaging relevant gamma emissions 

in green 

1.11.1. Ac-225 Production 

The current global average production of 225Ac is 63 GBq – the equivalent of only 

1000 patient treatments yearly, yet the estimated current demand for 225Ac is 185 GBq per 

year13. The main source of 225Ac originates from thorium-229 (229Th, t1/2 = 7340 y) 

stockpiles extracted from uranium-223 (223U, t1/2 = 1.6 x 105 y) decay (Figure 1.7)13. The 

key advantage of this method is the isolation of high purity radionuclide with no other 

actinium isotopes present, nevertheless, it fails to meet current demand13. One production 

method under investigation is proton bombardment of radium-226 (226Ra) via the 
226Ra(p,2n)225Ac nuclear reaction13. The promising 226Ra(p,2n)225Ac reaction can produce 

108 Ci (3.9 TBq) monthly with a 1g 226Ra target; however, major safety concerns around 

the highly radioactive target manufacturing, radiation protection, processing, and recycling 

has slowed this potential production method from moving forward13. The other main 

production method under investigation is the spallation of thorium-232 (232Th) targets via 

high energy protons13. With the largest potential monthly production at 11.2 TBq, the major 

disadvantage is the production of dozen of isotopes such as long-lived 227Ac (t1/2 = 21.7 y) 

that requires extensive separation and purification methods13. Production method 
natU(p,x)225Ac produces small amounts of pure 225Ac3+ and mother nuclide 225Ra (which 

can be eluted every 17 days to produce additional 225Ac)13. However, the total produced 
225Ac activity for 2016 was only 44.4 MBq, indicating this production method is 

insignificant compared to the current 229Th generators13.  
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Figure 1.7: The decay scheme of U-233 to Ac-225 

1.11.2. Ac-225 Chelation   

With a lack of fundamental understanding of 225Ac3+ coordination chemistry, 

predicting chemical structures of ligands that complex actinium and exhibit in vitro and in 

vivo stability is difficult. The first studies involved commercially available chelates such 

as EDTA, DTPA, and DOTA that have shown some clinical use13,55–57. Out of the 10 

chelates initially examined (vide infra), only DOTA illustrated quantitative labeling and in 

vivo stability. DOTA quickly became the “gold standard” for the trivalent actinide, leading 

to DOTA-antibody and DOTA-peptide targeted 225Ac-radiotherapeutics.   

Initial studies of [225Ac]Ac-DOTA-antibody conjugates found higher temperatures 

(>60 °C) were required for adequate 225Ac complexation. As antibodies are unstable at 

elevated temperatures (>37 °C), a novel two-step procedure was introduced55. Bifunctional 

DOTA-isothiocyanate (DOTA-NCS) was quickly radiolabelled with 225Ac, followed by 

the conjugation of an antibody yielding an [225Ac]Ac-DOTA-antibody construct55. This 

process was successfully employed for antibodies HuM195, B4, huJ591, mJ591, and 3F855. 

The radiochemical yield was low at 9.8 ± 4.5 %, however, the radiochemical purity was 

>90 % for all constructs with moderate specific activities (4.1 ± 2.6 GBq/g)55. In hopes of 

finding a superior option, Maguire et al., investigated a direct 1-step labeling of antibody-

DOTA constructs at temperatures suitable for antibodies58. Radiolabeling was performed 

at 37 oC for 2 hours with the addition of radiolytic protectant L-ascorbic acid58. 

Remarkably, the radiochemical yield increased 10 fold (~80%) compared to 2-step 

methods (6 - 12%) and up to a 30 fold increase in specific activity (~130 GBq/g)58. 

Currently, no other rapid or mild radiolabeling conditions have been discovered for 225Ac 

radiolabeling with chelate DOTA58. Despite that, DOTA is the chelator of choice for all 

human clinical studies with 225Ac (vide infra –Table 1.3). 
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1.11.3. Ac-225 Recoiling Daughters  

With 4 α decays per atom of actinium, the bio-distribution of each alpha emission 

in 225Ac’s decay chain (Figure 1.6) needs to be evaluated. Nonchelated 225Ac distributes 

primarily to the liver, spleen, and skeleton with some retention in the kidney56 (Table 1.2). 
217At has the shortest half-life (32 ms) of the alpha emitters and is often assumed to have 

identical biodistribution to 221Fr13. The distribution of 213Bi and 221Fr to the renal system 

(kidneys, renal pelvis, bladder, etc.) is the major limitation of 225Ac TAT.  

Table 1.2: Major targeted organs for Ac-225 daughters (t1/2 > 3 min) 
Daughter  Major targeted organs 
Actinium Liver, spleen, skeleton, and kidneys56 
Francium  Primarily kidneys59 
Bismuth Urine, kidneys, and blood59 

Lead Blood, liver, skeleton, and kidneys30 

Encapsulation in nanoparticles has become one of the leading efforts to capture 
225Ac’s recoiling daughters. One study examined the effectiveness of gold coated 

lanthanide phosphate (LnPO4) nanoparticle (NP) to contain the recoiled 225Ac daughters34. 

It hinges on the concept that highly energetic α-particles will only lose <2% of their energy 

in the layered NP, while the recoiling daughter will only travel 20 nm in bulk LnPO434. The 

layered NPs consist of {La0.5Gd0.5}PO4 core with GdPO4 shells coated in gold34. With 4 

GdPO4 shells, retention of 225Ac and daughter 221Fr was excellent at >99.99 % and 88% 

respectively after 3 weeks in vitro34. Moreover, the authors demonstrated antibody 

conjugated NPs retained specific binding affinity of the antibody and significant amounts 

of 213Bi were retained within the NP in various tissues (>70 %)34.  

Jaggi et al., investigated reducing the renal accumulation of unchelated 225Ac 

daughters through the use of metal chelation and diuretics59. Metal chelator 2,3-

dimercapto-1-propanesulfonic acid (DMPS) and meso-2,3-dimercaptosuccinic acid 

(DMSA) were administered orally prior to the injection of [225Ac]Ac-DOTA-lintuzumab 

into mice and monkeys59. DMSA significantly reduced renal 213Bi accumulation (14.8 % 

ID/g (injected dose per gram) reduction, 6 hrs post injection), but was less potent than 

DMPS (31.2 % ID/g reduction, 6 hrs post injection (p.i.)) in doing so59. In contrast, 
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diuretics furosemide and chlorothiazide (known to chelate metals and enhance its 

excretion) minimized the accumulation of both 221Fr and 213Bi59. The combination of 

DMPS with a diuretic caused an excellent reduction of renal 213Bi activity (~75 – 80%)59. 

Preclinically, this study shows metal chelation and diuretics can be used to reduced renal 

accumulation of 225Ac daughters. 

Poty et al., investigated pretargeted α-radioimmunotherapy (PRIT) as an alternative 

strategy to reduce non-specific toxicities for conventional 225Ac α-radioimmunotherapy 

(RIT)60 of pancreatic ductal adenocarcinoma. After 3 days of circulation, tumor uptake for 

both methods were not significantly different (PRIT: 29.6 ± 6.6 % ID/g, RIT: 31.1 ± 21.4 

% ID/g; 3 d p.i.). Conversely, there were significantly higher tumor-to-liver, tumor-to-

bone, and tumor-to-spleen ratios for PRIT compared to conventional RIT. The radionuclide 

daughters’ redistribution was followed by performing ex vivo Cerenkov imaging 

immediately after sacrifice and again after secular equilibrium. The radiance in the kidneys 

dropped ~ 4 fold (from 16,400 p/sec/cm2/sr to 4,900 p/sec/cm2/sr) after reaching 

equilibrium, a result of the free 213Bi, 221Fr, and their 𝛽' daughters accumulating in the 

kidneys. Poty et al., illustrated PRIT is as effective as RIT while reducing off target 

toxicities but neither method significantly limited the redistribution of the 225Ac daughters.  
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1.11.4. Ac-225 Clinical Trials  

 
Figure 1.8:  Structures of radiopharmaceuticals used in clinical trials with 225Ac 

(as of September 15, 2021) 

With a prolonged half-life (t1/2 = 9.9 d), initial 225Ac clinical studies used long-lived 

antibody conjugates such as lintuzumab as disease targeting vectors (Figure 1.8 and Table 

1.3). The first of its kind study was a dose-escalation trial to determine the safety, 

pharmacology, and biological activity of [225Ac]Ac-lintuzumab in Acute Myeloid 

Leukemia (AML)45. Patients with AML have abnormal immature white blood cells (blasts) 

populating over 20% of peripheral/bone marrow cells compared to 1 – 5 % for healthy 
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individuals. [225Ac]Ac-lintuzumab was administrated as 18.5, 37, 74, 111, or 148 kBq per 

kg of body weight doses to 18 patients45. Peripheral blasts were eliminated in 63% of 

patients and bone marrow blasts reductions were observed in 67% of patients45 (for those 

receiving >18.5 kBq/kg doses). However, serious toxicities (grade >3), myelosuppression, 

and death from sepsis occurred in 2 patients receiving 148 kBq/kg (2/2) and 1 patient 

receiving 111 kBq/kg (1/2) dosages45. A subsequent trial treated 18 patients with 18.5 (n = 

3), 37 (n = 6), 55.5 (n = 3) or 74 (n = 6) kBq/kg, diuretic furosemide and low-dose 

cytarabine (LDAC)46. Overall, only 5/18 (28%) patients had complete remission and 

median progression-free survival was 2.7 months.  

Notably, [225Ac]Ac-PSMA-617 (prostate-specific membrane antigen-617) has 

shown remarkable success in clinical trials targeting metastatic prostate cancer51,54,52,50 

Figure 1.8 and Table 1.3). In 2014/2015, two patients with late-stage metastatic castration-

resistant prostate cancer (mCRPC) were offered [225Ac]Ac-PSMA-617 as salvation therapy 

after exhausting conventional therapy options54. Patient A received 3 cycles of 9 - 10 MBq 

of [225Ac]Ac-PSMA-617 (100 kBq/kg of body weight) at bi-monthly intervals, with one 

additional 6 MBq consolidation therapy session54. Patient B received 3 cycles of 6.4 MBq 

of [225Ac]Ac-PSMA-617 (100 kBq/kg of body weight) at bi-monthly intervals54. Two 

months after the last cycle, both patients’ PET/CT scans and laboratory tests (prostate 

specific antigen (PSA) <0.1 ng/mL) indicated they were in complete remission54. A 

subsequent trial in 2015/2016, treated 40 patients with 100 kBq/kg of body weight at bi-

monthly intervals, where 87% of surviving patients had a PSA decline of any degree and 

63% of patients had a PSA decline >50%51. It should be noted, both patients in the first 

study and 10% of the patients in the second clinical trial experienced intolerable 

xerostomia51,54. In another recent clinical trial, 17 chemotherapy-naïve patients with 

advanced metastatic prostate cancer were treated52. The first cycle was 100 kBq/kg of body 

weight with subsequent cycles either increasing, remaining constant, or decreasing activity 

based on patient response52. Remarkably, seventy-one percent (12/17) of patients reported 

a PSA decline of >80% after only the first cycle52. A tolerable grade ½ xerostomia was 

found in all patients, indicating the de-escalation of the administrated dose is a possible 

way to minimize side effects while maintaining therapeutic efficacy52. Another approach 

to mitigate severe xerostomia was evaluated during a tandem study of [177Lu]Lu-PSMA-
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617 with low activity [225Ac]Ac-PSMA-61750. Herein, 20 patients received 1.5 – 7.9 MBq 

of [225Ac]Ac-PSMA-617, followed directly by 5.0 – 11.6 GBq of [177Lu]Lu-PSMA-61750. 

Sixty-five percent (13/20) of patients had a PSA decline of >50%, and xerostomia was mild 

(grade 2) in only 25% (5/20) of patients50. This study suggests tandem therapy with 

[225Ac]Ac-PSMA-617/[177Lu]Lu-PSMA-617 can minimize xerostomia while also 

providing alternative therapeutic options for those who are resistant to [177Lu]Lu-PSMA-

617.  

Table 1.3: Summary of clinical trials with Ac-225 unless otherwise specified (as 
of September 15, 2021) 

Paper 
reference 

Phase Targeting Vector  # of 
patients 

Administered 
225Ac 

mAb Small molecule   
Juric 201145 I 

 
Lintuzumab  20 18.5 to 148 

kBq/kg 

Juric 201646 I Lintuzumab with 
low-dose 

Cytarabine 

 18 18.5 to 74 
kBq/kg 

Kratochwil 
201654 

I  PSMA-617 2 100 kBq/kg  

Kratochwil 
201851 

I  PSMA-617 40 100 kBq/kg 

Sathekge 
201952 

I  PSMA-617 17 100 kBq/kg†  

Sathekge 
202053 

I/II  PSMA-617 73 100 kBq/kg† 

Khreish 
202050 

I  225Ac-PSMA-617 
with 177Lu-PSMA-

617 

20 60 kBq/kg  

Ballal 202047 I  DOTATATE 32 100 kBq/kg 

Zhang 
202048 

I  DOTATOC 1 9.8 MBq 

Królicki 
202149 

I  DOTA-SP 21 10, 20, or 30 
MBq 

† patients originally received 100 kBq/kg and subsequent doses were determined based on patient response.  

Currently, there are 4 [225Ac]Ac-lintuzumab clinical studies in progress or actively 

recruiting; other 225Ac clinical trials actively recruiting include: [225Ac]Ac-JNJ-69086420 
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for advanced prostate cancer, [225Ac]Ac-FP1-1434 for advance solid tumors15. With 

promising phase I/II 225Ac clinical results and several 225Ac clinical trials currently 

underway, the development of chelators that can form kinetically inert 225Ac complexes 

under ideal conditions (quick kinetics and mild temperatures) with favourable 

biodistribution is essential.  

1.12. Thesis Overview 

This thesis presents the design, synthesis, and optimization of radiopharmaceuticals 

for targeted alpha therapy applications with actinium-225. Chapter 2 reports three novel 

radiopharmaceuticals: 2.1 (DOTA-CCZ-N-Me-α-CycMSH), 2.2 (Macropa-CCZ-N-Me-α-

CycMSH), and 2.6 (Macropa-α-CycMSH) for targeted alpha therapy of malignant 

melanoma. Specifically, chapter 2 investigates the effect of choice of chelate and targeting 

vector/linker modifications on 225Ac complexation, in vitro stability, and biodistribution of 
225Ac-radiopharmaceuticals. Chapter 3 reports the synthesis and characterization of two 

novel macrocyclic chelators (3.6 and 3.12) and their subsequent ability to complex 225Ac. 

By directly comparing these novel chelators with previously reported chelators, the impact 

of donor arms on diaza-18-crown-6 ligands as chelators for 225Ac is investigated.  
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Chapter 2.  
 
Evaluating αMSH radiopharmaceuticals for 225Ac targeted 
alpha therapy  

2.1. Introduction 

With over 80,000 cases a year in Canada, skin cancer is the most diagnosed cancer 

with more cases than breast, prostate, lung, and colon cases combined61. Skin cancer is 

categorized into two main types: melanoma skin cancer and non-melanoma skin cancer. 

Non-melanoma skin cancer includes basal cell carcinoma (BCC) and squamous cell 

carcinoma (SCC), which account for ~95 - 99% of all skin cancers62. While melanoma skin 

cancer only accounts for 1 - 5% of diagnosed skin cancers, it causes the majority of skin 

cancer related deaths63. For cancers that tend to metastasize such as malignant melanoma, 

early diagnosis and treatments are crucial for long-term survival63. Early-stage melanoma 

skin cancer has a 5-year survival of 88%, while late-stage melanoma has a 5-year survival 

rate of only 34%1. Diagnostic options include biopsy, ultrasound, CT, MRI, PET, and PET-

CT63. Dependent on the stage of melanoma, treatment possibilities include surgically 

removing the melanoma (best for local, early-stage melanoma), radiation therapy used as 

adjuvant treatment, or oral medications/IVs for late-stage developments including 

immunotherapy, chemotherapy, and/or targeted therapy63.  

As malignant melanoma is one of the most resistant cancers to conventional 

chemotherapy, the development of immunotherapy and targeted therapy is of great 

interest64. Several specific markers for malignant melanoma cells have been studied64. With 

expression in nearly all melanomas (>80%) and low expression levels in normal tissues, 

melanocortin 1 receptor (MC1R) has been the focus antigen for melanoma targeted 

imaging and therapy64. The melanocortin (MC) family consists of five melanocortin 

receptors (MC1R to MC5R) that belong to G protein-coupled receptors64. Alpha-

melanocyte stimulating hormone (α-MSH), a tridecapeptide is a non-selective naturally 

occurring ligand to the MC family of receptors (except MC2R)64. Impressively, α-MSH 

binds to MC1R with subnanomolar binding affinity (Ki = 0.23 nM)65. However, as an 
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endogenous peptide, α-MSH is subject to degradation in vivo. Over the past decade, α-

MSH derivatives with improved in vivo stability and binding affinity to MC1R have been 

investigated20,35,64. The most promising α-MSH analogues contain lactam cyclization and 

unnatural amino acid substitution23 (Nle4-cyclo[Asp5-His6-D-Phe7-Arg8-Trp9-Lys10]; Nle-

CycMSH) as illustrated in Figure 2.1. 

Development and optimization of Nle-CycMSH based conjugates with chelator 

DOTA and series of linkers have been investigated for imaging20–23. The introduction of 

cationic piperidine linker allowed for high tumor uptake and rapid in vivo clearance for two 

derivatives ([68Ga]Ga-CCZ0104823 and [18F]CCZ0106420). To date, only two studies 

investigated emerging radionuclide 225Ac for possible melanoma targeting therapy with a 

Nle-CycMSH derivative66,67. Both studies used the same Nle-CycMSH based peptide with 

piperidine linker, but the chelate of choice differed, Ramogida et al., evaluated gold 

standard DOTA66 while Yang et al., evaluated novel crown67 chelate (Figure 2.1). In vivo 

biodistribution of [225Ac]Ac-DOTA-α-CycMSH revealed moderate tumor uptake (5.2 ± 

1.8% ID/g) 2 hours post injection. In vivo biodistribution of [225Ac]Ac-crown-α-CycMSH 

revealed higher tumor uptake (12.7 ± 2.3% ID/g) 2 hours post injection.  

 
Figure 2.1:  Structures of I) endogenous alpha-melanocyte stimulating hormone 

(α-MSH), II) Nle-CycMSH (an α-MSH analogue), III) DOTA-α-
CycMSH, and IV) crown-α-CycMSH 
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2.2. Aim of the Project 

Many tactics have been investigated for increasing tumor uptake and in vivo 

stability, reducing off-target uptake, and exhibiting rapid in vivo clearance20–22,67–69. 

Herein, I investigate the effect of some of those tactics with three novel radiotracers: 2.1 

(DOTA-CCZ-N-Me-α-CycMSH), 2.2 (macropa-CCZ-N-Me-α-CycMSH), and 2.6 (VB-

02-32/ macropa-α-CycMSH). The intrinsic characteristics of a chelator such as 

lipophilicity, charge, and coordination number can significantly impact the biodistribution 

of radiopharmaceuticals67. As such, I evaluate 2.6, a macropa-α-CycMSH derivative - a 

direct comparison to DOTA66 and crown67. Two novel tracers: 2.1 (DOTA) and 2.2 

(macropa) contain slight linker and targeting vector modifications when compared to 2.5 

to allow for longer blood circulation, theoretically increasing radiation dose delivery to 

tumor sites68 (Figure 2.2). Due to patent protection, the structures of 2.1 and 2.2 cannot be 

disclosed. In this chapter, the ideal radiolabeling conditions, in vitro stability, and/or in 

vivo biodistribution of 2.1, 2.2, and 2.6 are determined. 
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2.3. Results/Discussion 

2.3.1. Synthesis Methodology 

 
Scheme 2.1:  Synthetic route of novel macropa-α-CycMSH bioconjugate 2.6 

Both 2.1 (DOTA-CCZ-N-Me-α-CycMSH) and 2.2 (Macropa-CCZ-N-Me-α-

CycMSH), were synthesized and characterized by Dr. Chengcheng Zhang at British 

Columbia Cancer Agency (BCCA). Peptide 2.5 was synthesized and characterized by Dr. 

Chengcheng Zhang at British Columbia Cancer Agency (BCCA). 2.6 (macropa-α-

CycMSH) was synthesized following a modified procedure as per Thiele et al.17 as shown 

in Scheme 2.1. Precursor macropa-NH2 (2.3) was provided as a trifluoroacetic acid (TFA) 

salt by the Wilson group at Cornell University. Functionalization of 2.3 with thiophosgene 

and sodium carbonate in dry acetone formed the isothiocyanate 2.4. Due to substantial 

light, moisture, and temperature sensitivity of 2.4, the crude product was immediately 

carried forward to the next reaction after a quick workup. Conjugation of crude 2.4 and 

purified 2.5 (CCZ01048 peptide) yielded novel macropa-α-CycMSH bioconjugate 2.6, 

which was purified via semi-preparative high performance liquid chromatography (HPLC) 

using method 2A, resulting in a low yield of 2.5%. 
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2.3.2. Actinium-225 radiolabeling and in vitro stability 

Ideal radiolabeling conditions yield high specific activity products under mild 

temperatures (ambient – 40°C), quickly (<15 min is ideal) and with high (>90%) 

radiochemical yield. By adjusting the pH and temperature of the reaction, ideal 

radiolabeling conditions for 2.1, 2.2, and 2.6 (molar activity, M.A. = 20 kBq/nmol of 

ligand) were developed for low amounts of 225Ac (<100 kBq). 2.1, a DOTA construct 

requires elevated temperatures (85ºC) for 1 hr and a pH of ~ 6 to obtain quantitative 

radiochemical yield (RCY). When reaction temperatures were lowered to 75ºC and 65ºC 

insufficient complexation was achieved (between 18 – 42% RCY). Conversely, the 

macropa-CCZ-N-Me-α-CycMSH (2.2) derivative proved to be robust, with >99% RCY at 

ambient temperatures (25ºC) within 1 hr for a wide range of pHs (5 – 7). Macropa-α-

CycMSH (2.6) was able to quantitatively label using the same conditions as macropa-CCZ-

N-Me-α-CycMSH (pH ~ 6, 1 hr at ambient temperature).  

Radiopharmaceuticals must be kinetically inert, such that when injected into 

patients the radionuclide is not transchelated with endogenous proteins within the blood. 

To determine the in vitro stability of 2.1, 2.2, and 2.6, the radiometal-complexes were 

challenged with human serum (3:1 serum to:radiometal-complex) over 10 days. The results 

for the stability of [225Ac]Ac-DOTA-CCZ-N-Me-α-CycMSH), [225Ac]Ac-macropa-CCZ-

N-Me-α-CycMSH, and [225Ac]Ac-macropa-α-CycMSH are compiled in Table 2.1. All 

three tracers show excellent stability in vitro, remaining >90% intact after 7 days. While 

complex stability in vitro can indicate the kinetic inertness, caution must be taken as in 

vitro studies rarely accurately predict in vivo stability of the radiopharmaceutical70. As 

such, further studies to determine in vivo stability and biodistribution are warranted.  
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Table 2.1: Summary of 10-day in vitro human serum stability assay for novel 
radiotracers, with all reported data as % RCY (intact) at that specific 
time point (n = 3 for each data point) 

 1 H 1D 3D 4D 5D 7D 8D 10D 
2.1 >99 98.4 ± 

0.2 
96 ± 
1.1 

>99 N.D* N.D* 91.1 ± 
8.0 

91.2 ± 
5.9 

 2.2 >99  >99 >99 >99 N.D* >99 N.D* >99 
 2.6 >99  >99 >99 N.D* 97.5 ± 

2.6  
94.4 ± 

4.1 
N.D* N.D* 

* N.D – no data  

2.3.3. Biodistribution Results  

Biodistribution studies require high purity, carrier-free 225Ac extracted from 

uranium-233 (223U, t1/2 = 1.6 x 105 y) decay (source A, vide infra). With limited pure 

radionuclide supply, the biodistribution of only 2.1 and 2.2 were investigated herein.  

2.1 was precluded from in vivo studies due to low % RCY (<10%) during 

radiolabeling with high amounts of 225Ac (8.71 MBq). As such, the biodistribution of 

[225Ac]Ac-macropa-CCZ-N-Me-α-CycMSH (M.A = 1.38 MBq/nmol) was evaluated for 

two different injected radioactivities. A total of 8 (n = 4) B16F10 tumor bearing mice were 

injected with either dose 1 (103.6 kBq/75 pmol of ligand) or dose 2 (51.8 kBq/37.5 pmol 

of ligand). After two hours post injection (2 hr p.i.), all mice were sacrificed, and the 

harvested organs of interest were measured immediately after sacrifice and after secular 

equilibrium was met (>6 hr). As there was no statistical difference between time points, 

results are reported after equilibrium was met. [225Ac]Ac-macropa-CCZ-N-Me-α-

CycMSH demonstrated quick excretion through the renal system, with moderate-to-high 

uptake in the bladder, kidneys, and urine. Moderate off-target uptake was observed for the 

spleen (1.85 ± 0.64% ID/g), blood (2.13 ± 0.33 % ID/g), and gall bladder (3.35 ± 0.66 % 

ID/g), while more significant uptake was seen in the liver (5.93 ± 0.4 % ID/g). Tumor 

uptake was low at 2.50 ± 0.49 and 0.67 ± 0.11 % ID/g for dose 1 and dose 2 respectively 

(see Figure 2.2). With low tumor and moderate off-target uptake, [225Ac]Ac-macropa-

CCZ-N-Me-α-CycMSH demonstrates poor tumor-to-normal tissue ratios (Table 2.2).   
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Figure 2.2: Biodistribution of [225Ac]Ac-macropa-CCZ-N-Me-α-CycMSH at 2 hr 

post-injection for dose 1 (103.6 KBq/75 pmol of ligand) and dose 2 
(51.8 kBq/37.5 pmol of ligand) in B16F10 tumor bearing mice 

Table 2.2: Summary of tumor-to-normal tissue ratios for [225Ac]Ac-macropa-
CCZ-N-Me-α-CycMSH at 2 hr post-injection for dose 1 (103.6 KBq/75 
pmol of ligand) and dose 2 (51.8 kBq/37.5 pmol of ligand) 

 Tumor Tumor: 
kidney 

Tumor: 
blood  

Tumor: 
liver 

Tumor: 
spleen 

Tumor: 
gallbladder 

Dose 1 2.50 ± 0.49 0.88 ± 0.16 1.17 ± 0.18 0.42 ± 0.07 1.80 ± 0.46 0.78 ± 0.24 
Dose 2 0.67 ± 0.11 

 
0.71 ± 0.21 

 
0.73 ± 0.12 

 
0.40 ± 0.05 

 
1.03 ± 0.21 0.33 ± 0.24 

*all results are reported as %ID/g, measured in window A (80 – 120 keV) 

One explanation for the low tumor uptake is the sub-optimal radiopharmaceutical 

preparation and formulation conditions: I) [225Ac]Ac-macropa-CCZ-N-Me-α-CycMSH 

was prepared the day before injection, allowing for significant radiolysis and 2) purification 

of the tracer was performed via Sep-Pak (compared to HPLC purification). In a recent 

study, the optimal preparation and formulation of [225Ac]Ac-crown-α-CycMSH was 

evaluated by varying the time of preparation, purification of tracer, and addition of 

radiolytic protectant L-ascorbate67. The construct prepared the day before injection, even 
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with the addition of L-ascorbate was low (4.84 ± 3.2 % ID/g). Constructs prepared the 

same day as injection with L-ascorbate saw a dramatic increase in tumor uptake (12.7 ± 

2.3 % ID/g). Moreover, the tracers prepared the same day as injection had minimal uptake 

in non-target tissues, leading to superior tumor-to-blood, bone, and kidney ratios. 

Radiolysis of [225Ac]Ac-macropa-CCZ-N-Me-α-CycMSH could lead to peptide 

degradation resulting in low tumor uptake or destroy the chelator encapsulating 225Ac. 

Consequently, the intrinsic affinity of unbound 225Ac can cause high off-target uptake in 

the liver, spleen, skeleton, and kidneys56. Another possible explanation for off-target 

uptake in the urine, kidneys, and blood is the intrinsic affinity of the ejected radioactive 

daughters 221Fr and 213Bi for these organs (vide supra - Table 1.2). The purification of the 

tracer via HPLC, the addition of a radiolytic protectant, and/or immediate injection could 

minimize degraded [225Ac]Ac-macropa-CCZ-N-Me-α-CycMSH being injected into the 

mouse, ultimately increasing tumor uptake and decreasing off-target uptake.  

2.4. Conclusion & Future Work 

In chapter 2, three novel radiopharmaceuticals for malignant melanoma therapy, 

2.1 (DOTA-CCZ-N-Me-α-CycMSH), 2.2 (macropa-CCZ-N-Me-α-CycMSH), and 2.6 

(macropa-α-CycMSH) were examined. Macropa constructs (2.2 and 2.6) were robust with 

>99% RCY at ambient temperatures for a wide range of pHs (5 – 7), whereas DOTA 

construct 2.1 required elevated temperatures (85 ºC) for 1 hr to obtain a quantitative 

radiochemical yield. The kinetic inertness was studied in vitro via a human serum stability 

assay, wherein all three radiopharmaceuticals exhibited favourable stability with >90% 

RCY after 7 days. The biodistribution of [225Ac]Ac-macropa-CCZ-N-Me-α-CycMSH was 

investigated for two doses (103.6 KBq/75 pmol of ligand or 51.8 kBq/37.5 pmol of ligand). 

Tumor uptake was low at 2.50 ± 0.49 and 0.67 ± 0.11 % ID/g for dose 1 and dose 2 

respectively, while off-target uptake was moderate leading to low tumor-to-normal tissue 

ratios. A possible explanation for low tumor & moderate normal tissue uptake is the 

preparation and formulation of [225Ac]Ac-macropa-CCZ-N-Me-α-CycMSH, but further 

studies need to be performed to confirm. Many tactics have been investigated for increasing 

tumor uptake and in vivo stability, reducing off-target uptake, and exhibiting rapid in vivo 

clearance20–22,67–69. As intrinsic characteristics of a chelator and linker can significantly 
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impact the biodistribution of radiopharmaceuticals67, this chapter aimed to study those 

effects in vivo.  

Future work for this project is dependent on the purity of supplied 225Ac. If high 

purity, carrier-free 225Ac extracted from uranium-233 is available, further animal studies 

can be performed. Specifically, an in vivo biodistribution study of 2.2 and 2.6, wherein 

[225Ac]Ac-macropa-CCZ-N-Me-α-CycMSH and [225Ac]Ac-macropa-α-CycMSH are 

prepared the day of injection, with L-ascorbate, and purified via HPLC, should be 

conducted in the future. The biodistribution evaluation of 2.6 is a direct comparison to 

[225Ac]Ac-crown-α-CycMSH and [225Ac]Ac-DOTA-α-CycMSH investigating the effect of 

chelator choice on in vivo biodistribution. The biodistribution of [225Ac]Ac-2.2 prepared 

with optimized radiopharmaceutical preparation and formulation conditions will provide 

experimental reasoning for the low tumor uptake and high non-target tissue of [225Ac]Ac-

macropa-CCZ-N-Me-α-CycMSH. 

2.5. Experimental  

2.5.1. Materials and Methods 

All solvents and reagents were purchased from commercial suppliers (TCI 

America, Fisher Scientific, Macrocyclic, and Sigma Aldrich). Solvents noted as “dry” were 

obtained following storage over 3 Å molecular sieves. 1H and 13C NMR spectra were 

referenced to the residual solvent peak and recorded at 25 oC (unless noted otherwise) on 

Bruker AV400, AV500, or AV600 instruments. Deionized water (>18 MΩ cm) was used 

via Millipore-Direct (Milli-Q IQ 7000) purification. High-resolution electrospray-

ionization mass spectrometry (HR-ESI-MS) was performed on an Agilent 6210 time-of-

flight instrument (TOF). The semi-preparative HPLC used for the purification of non-

radioactive compounds was an Agilent 1100 series consisting of a G1311A Quaternary 

Pump, G2260A autosampler, and G1315B variable wavelength absorbance detector. 

Purification was performed with a Kinetex semi-preparative C18 column, 5 µm, 100 Å, 

150 x 10.0 mm at a flow rate of 3.0 mL/min unless otherwise noted. Gradient HPLC 

methods utilized a binary mobile phase that contained H2O with 0.1 % TFA (A) and 
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Acetonitrile (CH3CN) with 0.1 % TFA (B). HPLC Method 2A: 10% B (0 – 5 minutes), 10 

– 100% B (5 – 40 minutes).  

225Ac/225/227Ac† radiolabelling reactions were monitored via aluminum backed 

silica thin layer chromatography (TLC) plates (TLC-SG, silica gel 60, F254, MERCK, 

Germany). Developed TLC plates were counted using an AR-2000 imaging scanner 

equipped with PD-10 gas and analysis of RCYs was carried out using WinScan V3_14 

software at least 8 h later to allow for daughter isotopes to decay completely. Radioactivity 

and radionuclidic purity were determined using a High Purity Germanium (HPGe) detector 

(Mirion Technologies (Canberra) Inc.) with Genie 2000 software by measurement of 

gamma emission lines for 213Bi (t1/2 = 45.6 min, 440 KeV, 25.9% abundance) and 221Fr (t1/2 

= 4.9 min, 218 KeV, 11.4% abundance).  

2.5.2. Synthesis Methodology  

 
6-((16-((6-carboxypyridin-2-yl)methyl)-1,4,10,13-tetraoxa-7,16-diazacycloocta decan 

-7-yl)methyl)-4-isothiocyanatopicolinic acid (macropa-NCS, 2.4). Macropa-NCS was 

prepared with slight modifications from previously published procedures17. CSCl2 (50 µL, 

0.7 mmol, 20 Eq) was slowly added to a suspension of Macropa-NH2·4 TFA (2.3; 4-

Amino-6-((16-((6-carboxypyridin-2-yl)methyl)-1,4,10,13-tetraoxa-7,16- diaza-

cyclooctadecan-7-yl)methyl)picolinic acid) reported in Thiele et al., (30 mg, 29.9 µmol, 1 

Eq) and Na2CO3 (47.5 g, 0.5 mol, 15 Eq) in dry acetone (3 mL). After stirring the reaction 

for 3 hours under argon at room temperature, the solvent was removed under reduced 

pressure. ESI-MS calcd. for [C27H35N5O8S + 2H]+2: 295.61787; found 295.6 [(M+2H)]+2. 

No NMR was obtained for this product. 
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4-(3-(1-(2-(((S)-1-(((3S,6S,9R,12S,15S,23S)-12-((1H-imidazol-5-yl)methyl)-3-((1H-

indol-3-yl)methyl)-9-benzyl-23-carbamoyl-6-(3-guanidinopropyl)-2,5,8,11,14,17-

hexaoxo-1,4,7,10,13,18-hexaazacyclotricosan-15-yl)amino)-1-oxohexan-2-yl) amino )-

2-oxoethyl)piperidin-4-yl)thioureido)-6-((16-((6-carboxypyridin-2-yl)methyl)-1,4,10, 

13-tetraoxa-7,16-diazacyclooctadecan-7-yl)methyl)picolinic acid (VB-02-32, 2.6). N-

N-Diisopropylethylamine (DIPEA; 25 µL, 0.14 mmol, 20 Eq) was added to a solution of 

macropa-NCS (9.8 mg, 16.6 µmol, 2 Eq) and purified CCZ01048 peptide 2.5 (8 mg, 7.1 

µmol, 1 Eq) in dry dimethylformamide (DMF; 0.75 mL) After stirring the reaction 

overnight (12 h) under argon at room temperature, the solvent was removed under reduced 

pressure. The solid was re-dissolved in 23% CH3CN (with 0.1 % TFA) and purified via 

HPLC, using method 2A to yield a colourless oil (300 µg, yield = 2.5%). ESI-MS calcd. 

for [C82H113N22O17S + H]+: 1711.852578; found 1711.8 [M+H]. No NMR was obtained 

for this product. 

2.5.3. 225Ac Sources  

Two sources of Actinium-225 were used within this chapter: A) 225Ac extracted 

from uranium-233 (223U) decay and B) 225Ac produced from irradiated thorium (232Th(p,x) 

225/227Ac†). Actinium-225 acquired from uranium-233 decay (Source A) was obtained from 

Canadian Nuclear Laboratories (CNL) and purified via a DGA resin as described in 

Ramogida et al66., to ensure radionuclide purity. 225/227Ac† acquired from irradiated thorium 

(Source B) was obtained from TRIUMF and the separation of  225/227Ac†  from irradiated 

thorium was performed as described in Robertson et al. 202071. The 225Ac was received as 
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a 0.01 M HNO3 solution in final concentrations of either 93.5 or 29.2 kBq/µL. The 
225/227Ac† was received as a 0.01 M HNO3 solution in final concentrations of 50.9 kBq/µL.  

2.5.4. 225Ac Radiolabeling Studies  

Stock solutions (1x 10-3 M) of 2.1, 2.2, and 2.6 were made with ultra-pure deionized 

water. Temperature-dependent and pH-dependent radiolabeling studies were performed by 

the addition of 225/227Ac† or 225Ac (~100 kBq) to a solution containing ligand sock (5 µL; 

or deionized water for negative controls) in either 0.2 M sodium acetate (NaOAc) pH 6.0 

or 0.2 M NaOAc pH 7. The actinium reaction mixtures were gently agitated using a vortex 

mixer and the pH was confirmed to be between 5 - 7 by spotting a portion (1 - 2 µL) of the 

reaction mixture on pH paper. The radiochemical yield (RCY) was analyzed after 30 and/or 

60 minutes at room temperature/elevated temperatures. The iTLC plate system used was: 

Method A - aluminum backed silica with citrate buffer (0.4 M, pH 4.0). Free 225Ac migrates 

with the solvent front (Rf = 1) while 225Ac-ligand complexes will remain at the baseline (Rf 

= 0).  

TLC radio-chromatograms of the radiolabeling (with ligand and control) can be 

found in the Appendix. Measurements were performed in triplicate. 

2.5.5. Human Serum Stability 

The 225Ac-complexes (2.1, 2.2, and 2.6) were prepared using the pre-determined 

ideal radiolabeling conditions as described above. After confirming a radiochemical yield 

>95% by TLC, 180 µL of human serum (3:1 volume, stored at −5°C and thawed at ambient 

temperature) was added to each radiolabeling solution (60 µL). A control was also prepared 

using water instead of ligand. At various times (1 hr to 7 d), small aliquots (3 – 7 µL) were 

spotted on iTLC plates and developed using Method A (vide supra) described above.  

TLC radio-chromatograms of the serum competition assay (with ligand and 

control) can be found in the Appendix. Measurements were performed in triplicates.  
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2.5.6. In Vivo Biodistribution 

Animal experiments were conducted according to the guidelines established by the 

Canadian Council on Animal Care and approved by Animal Ethics Committee of the 

University of British Columbia. B16F10 tumors were inoculated by injection of 1 x 106 

B16F10 cells on the right shoulder of each mouse. A total of eight female C57BL/6J mice 

were used in biodistribution studies for two doses of macropa-CCZ-N-Me-α-CycMSH (n 

= 4 for each dose) once the tumor grew to ~ 8 – 10 mm in diameter.  

Radiotracers were prepared with a high specific activity (>200 kBq/nmol) with the 

predetermined ideal radiolabeling conditions. Purification of the radiotracers was 

performed by loading the radiolabeling reactions onto a pre-conditioned C18 Light 

SepPack to remove free 225Ac3+, collecting the purified peptide in 100% ethanol. The 

radiotracers were further diluted with 0.9% NaCl saline, ensuring the % ethanol 

concentration was <10% by volume in the final formulation to minimize undesired ethanol 

effects seen in mice. Quality control reactions were conducted in parallel and analyzed via 

iTLC to ensure >98% chemical purity by preparing an unlabeled reaction of 225Ac in buffer 

solution. Through an intravenous tail injection, 100 µL of the purified radiolabeling 

reactions was injected into each mouse, recording the time of injection. After 2 hours, the 

mice are sacrificed by CO2 asphyxiation under isoflurane anesthesia. Cardiac puncture was 

promptly performed to recover blood and the organs of interest are harvested, rinsed with 

1 x phosphate buffered saline (PBS), and blotted dry. Organs of interest were weighed and 

measured via a calibrated gamma counter (Packard Cobra II Auto-gamma counter, Perkin 

Elmer, Waltham, MA, USA) using energy windows A) 60 – 120 keV and B) 180 – 260 

keV. Counting was performed immediately after sacrifice and after secular equilibrium 

was met. Radioactivity was decay corrected and normalized to injected dose and expressed 

as the percentage of the injected dose per gram of tissue. No differences were noted 

between the data measured immediately and at equilibrium, or between different energy 

windows; therefore, the biodistributions are reported using the data acquired after 

equilibrium using window A.  



37 

Chapter 3.  
 
Optimizing pendant donor arms of diaza-18-crown-6 
ligands as chelators for 225Ac 

3.1. Introduction  

A chelator with ideal radiolabeling conditions (vide supra) can be achieved by 

tuning the chelator to the radiometal properties such as coordination number/geometry, 

ligand donor atom preference, ionic radius, and charge72. As mentioned, the highly 

cytotoxic actinium-225 (225Ac3+) is a promising radionuclide for targeted alpha therapy 

with several remarkable clinical trials. With a lack of fundamental knowledge for actinium, 

chelators for actinium-225 are tuned on the basis that it is the largest trivalent actinide with 

a preference for oxygen donors and a coordination number of 8 or 10. 

Initially polyaminocarboxylate and polyaminophosphonate chelates were screened 

for their ability to coordinate 225Ac and form stable complexes in vitro and/or in vivo13,55–

57 (see Figure 3.1). McDevitt et al., compared 225Ac complexation with DTPA, DOTA, 

TETA, DOTPA, TETPA, and DOTMP at 37ºC after 2 hours55. Only DOTA and DOTMP 

were successful in chelation, with 100% and 78% radiochemical yields respectively55. 

When challenged with 25% serum, the 225Ac-DOTMP complex rapidly dissociated while 

the DOTA complex retained >90% intact after 10 days55.  

HEHA was one of the first novel macrocyclic chelators specifically designed for 
225Ac complexation73. With pendent carboxylate arms and polyaza core, HEHA (N6O6) is 

structurally similar to DOTA (N4O4) with a larger macrocyclic core73. Deal et al., 

compared the in vivo stability of HEHA to EDTA, CHX-A”-DTPA, PEPA, and DOTA 

(alongside acetate as a control)73. Quantitative complexation (>95%) was obtained within 

30 minutes at 40ºC for all ligands except PEPA (80%)73. The [225Ac]Ac-DOTA complex 

had significantly decreased uptake in the liver (3.3 % ID/g) and exhibited quicker excretion 

than EDTA, CHX-A”-DTPA, and PEPA. [225Ac]Ac-HEHA had the lowest organ uptake, 

with <0.3% ID/g of radioactivity after 5 days in any organ73. However, the authors 

speculate the overall -3 charge of the complex caused extremely fast excretion, giving the 



38 

illusion of in vivo stability73. When the in vitro stability of [225Ac]Ac-HEHA-antibody 

conjugates were evaluated, >50% decomposed after 24 h73. While a larger 18-membered 

macrocyclic cavity of HEHA may be better matched to large 225Ac3+ ion, the overall charge 

may not be suitable for in vitro and in vivo stability. DOTA, the only initial chelate that 

provided complexation, in vitro and in vivo stability is considered the current gold standard 

in 225Ac chelation chemistry. 

 
Figure 3.1:  Structures of acyclic and macrocyclic chelators initially investigated 

for actinium-225 

With an intrinsic preference for smaller metal ions and slow complexation, DOTA 

is a mediocre “gold standard” for 225Ac. In the past decade, there have been significant 

efforts in developing 225Ac chelates that form kinetically inert complexes quickly under 

mild temperatures17,18,66,67,72,74. Various macrocyclic and acyclic chelates have been 

proposed for 225Ac3+ chelation; the majority of which outperformed DOTA at ambient 

temperatures17,66,67,72,74. Notably, 5 chelates (CHX-octapa66, py4pa74, noneunpa72, 
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macropa17 and crown67, Figure 3.2) can successfully complex 225Ac3+ (RCY >90%) at 

ambient temperatures with chelator concentrations as low as 10-6 M within one hour. 

Moreover, they have shown favourable in vitro stabilities via a human serum and/or a 

lanthanum competition assay (Table 3.1). However, only crown, macropa, py4pa were 

further investigated via biodistribution studies when conjugated to CycMSH67 (for 

malignant melanoma), RPS-07075 (a PSMA derivative for prostate cancer), and 

Trastuzumab74 (for ovarian cancer) respectively. Perhaps the most interesting fact is that 

these five promising ligands weren’t reported for 225Ac complexation until 2017 – 2021, 

demonstrating much of 225Ac fundamental chelation including predicting chemical 

structures of ligands that complex actinium and exhibit in vitro and in vivo stability is 

unknown.  

 
Figure 3.2: Structures of CHX-octapa, py4pa, noneunpa, crown, and macropa 

chelators discussed 
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Table 3.1: Labeling, in vitro and in vivo data for CHX-octapa, py4pa, noneunpa, 
crown, and macropa chelators discussed 

Chelator Labeling (at 10-6 M) 
In Vitro Stability (% 

intact) In vivo 
La3+ Serum  

CHX-octapa66 ~ 94% RCY at ambient 
temp within 30 min 

4% 
over 7 d 

96% 
over 7 d N.D* 

py4pa74 ~ 97% RCY at ambient 
temp within 30 min N.D* 99% 

over 7 d 
Yes - high tumor 

uptake & moderate 
normal tissue uptake 

noneunpa72 >95% RCY at ambient 
temp within 10 min N.D* 90% 

over 7 d N.D* 

macropa17 >99% RCY at ambient 
temp within 5 min 

91% over 
7 d 

90% 
over 7 d 

Yes – high tumor 
uptake & moderate/low 

normal tissue 
uptake17,75 

crown67 >96% RCY at ambient 
temp within 10 min 

18.8% 
over 5d 

90% 
over 5 d 

Yes - high tumor 
uptake & low normal 

tissue uptake 

3.2. Aim of Project 

With the reported success of macropa (N4O6), two novel ligands (3.6 and 3.12) with 

similar characteristics were designed; a diaza-18-crown-6 macrocyclic ligand with 

hydroxypyridinone (HOPO) groups. The HOPO groups offer hard oxygen donors, and 

HOPO derivatives have proven complexation with 89Zr4+, Fe3+, Ga3+, and several actinides. 

Recently, Fiszbein et al., investigated the impact of donor arms on diaza-18-crown-6 

ligands as chelators for 213Bi76; macropa, macroquin-SO3, and macropaquin exhibited 

impressive 213B complexation. Herein, I investigate, 3.6 (macrohopo), 3.12 (macrohopo’), 

3.13 (macroquin-SO3), 3.14 (macropaquin), 3.15 (macropa), and standard DOTA for 225Ac 

complexation. The focus of this chapter is to study the effect of varied rigidity, coordinating 

atoms (N4O6 vs N2O6), and pendant donor arm basicity of diaza-18-crown-6 macrocyclic 

chelators on the ability to complex 225Ac.  
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Figure 3.3:  Structures of chelators DOTA, macropa, macropaquin, macroquin-

SO3, novel macrohopo and macrohopo’ investigated in this chapter 

3.3. Results/ Discussion  

The ligands investigated, 3.6 (macrohopo), 3.12 (macrohopo’), 3.13 (macroquin-

SO3), 3.14 (macropaquin), 3.15 (macropa), and standard DOTA feature varied intrinsic 

characteristics (as seen in Figure 3.3) which can affect the ligands ability to complex 225Ac 

and therefore 225Ac radiolabeling efficiency and complex stability with each ligand should 

be studied.  
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3.3.1. Synthesis and characterization 

 
Scheme 3.1: Outlined synthesis of macrohopo (3.6) and macrohopo’ (3.12) from 

same starting material; 6-hydroxypicolinic acid (3.1) 

As illustrated in Scheme 3.1, macrohopo (3.6) and macrohopo’ (3.12) were 

synthesized from the same commercially available starting reagent; 6-hydroxypicolinic 

acid (3.1). Oxidation of 3.1 with peracetic acid and glacial acetic acid formed 3.2 as a pale 

pink solid in good yield (81%). After the first step, 3.6 and 3.12 were synthesized through 

two separate routes as demonstrated in Scheme 3.2 and Scheme 3.3. 

 
Scheme 3.2:  Synthesis of precursors 3.2 – 3.5 and macrohopo (3.6) 
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Protection of 3.2 via benzyl bromide and potassium carbonate in methanol formed 

benzyl protected acid 3.3 as a peach solid in good yield (80%). Subsequent reaction of 3.3 

with N-hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) 

formed succinimide 3.4, which was purified by silica column chromatography obtaining a 

white crystalline solid in moderate yield (42%). Coupling of 3.4 with commercially 

available 4,13-diaza-18-crown-6-ether produced 3.5. After two silica column purifications, 

3.5 was achieved as a white solid in moderate yields (53%). Deprotection of 3.5 with 1:1 

v:v of concentrated hydrochloric acid and acetic acid formed the final ligand 3.6 which was 

purified via preparative high performance liquid chromatography (HPLC) using method 

3A, resulting in a good yield of 56%.  

 
Scheme 3.3:  Synthesis of precursors 3.7 – 3.11 and macrohopo’ (3.12) 

Products 3.2 – 3.10 have been previously reported and were synthesized following 

established procedures77. The addition of thionyl chloride (SOCl2) in methanol produced 

methyl ester 3.7 in quantitative yields (>99%). Subsequent protection with allyl bromide 

and potassium carbonate in acetonitrile (CH3CN) yielded 3.8 as a pale brown/orange solid 

in good yield (91%). Reduction of the protected methyl ester 3.8 with sodium borohydride 

in methanol formed the protected alcohol 3.9 in moderate yields (63%). Halogenation of 

3.9 with thionyl chloride in dry dichloromethane (DCM) produced 3.10 in excellent yields 

(97%). Conjugation of 3.10 with commercially available 4,13-diaza-18-crown-6-ether 

produced 3.11. Products 3.7 to 3.10 were easily worked up with minimal purification. 

While 3.11 required two separate silica column purifications to produce a brown solid 

(yield = 85%). Subsequent deprotection of 3.11 with boron trichloride (1M in dry DCM) 
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formed 3.12 as a brown solid. 3.12 was purified via preparative high performance liquid 

chromatography (HPLC) using method 3A, resulting in a moderate yield of 56%.  

Intermediates 3.2 – 3.5 and 3.7 – 3.11 were fully characterized using high resolution 

electrospray ionization mass spectrometry (HR-ESI-MS) and NMR (1H, 13C, COSY, 

HSQC, and HMBC). Previously reported compounds (3.2, 3.7 – 3.10) were in good 

agreement with reported NMR spectra & mass spectrometry values. Final compounds 3.6 

and 3.12 were successfully complexed with lanthanum perchlorate (La(ClO4)3• 6H2O), and 

their metal complexes were fully characterized using HR-ESI-MS and NMR (1H, 13C, 

COSY, HSQC, and HMBC).  

The 1H NMR spectra at 25 °C in dimethylsulfoxide-d6 (DMSO-d6) of 3.6 shows three 

distinct peaks at 7.41, 6.54, and 6.22 ppm corresponding to the HOPO pendant arms and 

an unresolvable multiplet at 3.55 ppm corresponding to the macrocyclic core (Figure 3.4). 

Variable temperature (VT) NMR experiments from 10 to 40°C in D2O were performed, 

but there were no spectral changes. Upon complexation with La3+, studying the 1H NMR 

spectra for the pendant donors arm region shows one major isomer with one (or more) 

isomers present in solution (Figure 3.4). VT NMR (30 to 50°C) of [La(macrohopo)][ClO4] 

showed no spectral changes (see Appendix Figure A30).  
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Figure 3.4: 1H NMR spectra at 25 °C in DMSO-d6 of 3.6 (top) and 

[La(macrohopo)][ClO4] (bottom) 

The 1H NMR spectra at 25 °C in DMSO-d6 of 3.12 indicates a C2 symmetry, as 

reflected by chemical equivalents of the pendant donor arms (see Figure 3.5). Upon 

complexation with La3+, the 1H NMR spectrum (Figure 3.5 and Figure 3.6) shows distinct 

coupling patterns in the pendant donor arm region, which in conjunction with 13C-, COSY-

, HMBC-, and HSQC- NMR spectra was utilized to determine that two isomers are present 

in solution. Correlation between I) a1, b1, and c1 and II) a2, b2, and c2 were evident on the 

COSY with no correlation between a1 and a2, b1 and b2, and c1 and c3 indicating two 

separate isomers (see Appendix Figure A28). The relative chemical equivalence between 

the asymmetric (a2, b2, and c2) and the symmetric (a1, b1, and c1) pendant donor arms 

indicate a 1:1 ratio is present (Figure 3.6). Variable temperature (VT) NMR was 

performed, increasing the ratio of the asymmetric isomer (60:40) as temperature increased 

(see Appendix Figure A31).   
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Figure 3.5:  1H NMR spectra at 25 °C in DMSO-d6 of [La(macrohopo’)][ClO4] 

(top) and 3.12 (bottom) 

 

 
Figure 3.6:  1H NMR spectra at 25 °C in DMSO-d6 of [La(macrohopo’)][ClO4] 

(bottom) and 3.12 (top) illustrating a 1:1 asymmetric:symmetric ratio 
in solution; red – asymmetric, blue – symmetric  
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Chelates macropa (3.15), macropaquin (3.14), and macroquin-SO3 (3.13) were 

synthesized and characterized by Fiszbein, D at Cornell University (Wilson Group) based 

on established procedures17,78,79. Lanthanum complexation of macropa has been previously 

reported by Thiele et al., wherein full characterization (including NMR, IR, HPLC, x-ray 

crystallography, and UV-vis spectroscopy) was performed17. Lanthanum complexation of 

macropaquin (3.14) and macroquin-SO3 (3.13) was not performed.  

3.3.2. UV-Vis 

In situ complexation of 3.6 and 3.12 with lanthanum (La(ClO4)3•6H2O) was 

observed using UV-Vis. A solution of lanthanum perchlorate was added to either 3.6 or 

3.12 in 0.1 M KCl/0.1 M HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 

buffer solution (pH = 7.4) at 0.5 equivalents increments until excess metal (≥2 Eq) was 

present. Formation of [La(macrohopo)][ClO4] occurred when 1.0 equivalents of lanthanum 

was added to the ligand solution, indicated by the 𝜆9:; shift from 323 nm to 314 nm 

(Figure 3.7). As excess metal was added, the 𝜆9:; at 314 nm did not significantly shift in 

absorbance or wavelength, indicating a 1:1 metal to chelate (La:macrohopo) ratio. 

Complexation of 3.12 occurred when 0.5 equivalents of lanthanum was added to the ligand 

solution, indicated by the 𝜆9:; shift from 318 nm to 309 nm (Figure 3.7). Similarly to 3.6, 

a 1:1 metal to chelate ratio is demonstrated.  

 
Figure 3.7: UV-Vis spectra of in situ lanthanum complexation with novel 

chelators 3.6 (left) and 3.12 (right) 
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A possible explanation for [La(macrohopo’)][ClO4] formation occurring at 0.5 

metal Eq instead of 1 equivalent is the inability to get elemental analysis (EA) of 

macrohopo’. Precise molecular weights of these ligands are crucial when dealing with 10-5 

M final ligand concentrations. Unaccounted TFA, acetonitrile, and/or water molecules 

present in the final compound, can significantly vary the Eq of ligand present ultimately 

impacting the amount of metal required for complexation.  

3.3.3. Initial Radiolabeling 

Determination of ideal 225Ac3+ radiolabeling conditions at final ligand 

concentrations of 10-3 or 10-4 M (buffer, pH, and reaction time) were performed during 

initial radiolabeling experiments. Subsequent concentration dependence studies were 

executed using the ideal radiolabeling conditions and the results are compiled in Figure 

3.8. Not surprisingly, gold standard DOTA required heating at 80 °C for 1 hr to obtain 

quantitative labelling at 10-3 M. DOTA was able to maintain quantitative labeling at 10-4 

M; however, as ligand concentrations decreased to 10-5, 10-6, and 10-7 M, the radiochemical 

yield decreased to 37.5 ± 7.9, 4.5 ± 0.8 and <1% respectively. Macropa results were 

comparable to previous impressive findings, with quantitative labeling achieved for 10-6 M 

final ligand concentrations at ambient temperatures17. Impressively, within 5 minutes 

macropaquin can achieve >95% RCY for 10-5 M at ambient temperatures (pH 5.5). For   

10-6 M, macropaquin exhibits slower kinetics with 26.0% RCY at 5 minutes and 92.6% 

RCY after 1 hour. With a RCY >90%, macropaquin becomes the 6th reported ligand that 

can obtain quantitative 225Ac labeling at ambient temperatures within 1 hour for 10-6 M. 

Conversely, macroquin-SO3 was able to achieve quantitative labeling at 10-4 and 10-5 M, 

but dropped to 47.6 ± 47.1% RCY for 10-6 M at ambient temperatures (pH 7.0). At even 

10-3 M final ligand concentration, macrohopo was unable to complex 225Ac at ambient 

temperatures in a variety of buffers (0.1 M HEPES, NaOAc, NH4OAc, MeOH, and EtOH) 

and pHs (between 5.5 – 10.0) after 1 hr. Heating the reaction to 80 °C and/or allowing it to 

proceed for longer (2 hr) did not facilitate 225Ac complexation. Due to limited radionuclide 
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supply, macrohopo’ was not investigated for 225Ac complexation at this time, but will be 

performed in future.   

 
Figure 3.8:  Radiochemical yields (RCY, %) for 225Ac3+ radiolabeling reactions of 

DOTA (pH 5.5, 85 °C, 1h), macropa (pH 6, RT, 1h), macropaquin (pH 
5.5, RT, 1h), macroquin-SO3 (pH 6, RT, 1h) and macrohopo (pH 5 – 11, 
85 °C, 1h) 

The ligands investigated, 3.6 (macrohopo), 3.13 (macroquin-SO3), 3.14 

(macropaquin), and 3.15 (macropa), feature varied intrinsic characteristics which can affect 

the ligands ability to complex 225Ac. As protons compete with metal ions for binding sites 

on ligands, ligand basicity is an important factor for a ligand’s metal affinity80. Thiele et 

al., determined the protonation constants (Ka) for macropa, macropaquin, and macroquin-

SO380 (Appendix Table A1). The replacement of picolinate arms on macropa by 8-

hydroxyquinoline groups decreases the basicity of the nitrogen atoms of the macrocyclic 

core80, a trend seen with various other chelators80–84. While the SO3 electron withdrawing 

groups of macroquin-SO3 produce more acidic phenols (log Ka1 = 9.34 and log Ka2 = 9.43) 

when compared to macropaquin (log Ka1 = 10.33), macropaquin and macroquin-SO3 do 

not exist fully deprotonated in solution below pH of 8.080. At physiological pH (7.4), 43% 

of macropa is fully deprotonated whereas, the monoprotonated species of macropaquin 

predominates (56%) and macroquin-SO3 presents (78%) as a diprotonated species. The 
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increased overall basicity of macropaquin may explain the slower kinetics at 10-6M 

chelator concentrations when compared to macropa. The 1,2-hydroxypyridinone groups in 

3.6 and 3.12 have a reported log ka value of 5.8785, and the secondary amines of diaza-18-

crown-6 macrocycles typically range from 6 – 976,79,80,86. Theoretically, 3.6 and 3.12 should 

exhibit slightly lower/comparable overall basicity to macropaquin and macroquin-SO3. 

However, experimental determination of the protonation constants for 3.6 and 3.12, were 

not performed at this time.  

The hydroxypyridinone groups on 3.6 and 3.12 offer hard oxygen donors, 

appropriate for 225Ac complexation. With four oxygens and two nitrogens on the 

macrocyclic backbone, the hydroxypyridinone pendent arms facilitate a 10 coordination 

species (N2O8). The inability of 3.6 to complex actinium may be associated with pendant 

donor arms rigidity, a result of the carbonyl group on the pendant donor arms. If the HOPO 

pendant donor arms on 3.12 don’t participate in the coordination, poor 225Ac complexation 

of the diaza-18-crown-6 macrocycle can be expected. 

Interestingly, all chelators with superior 225Ac complexation (CHX-octapa66, 

py4pa74, noneunpa72, macropa17 and crown67 and macropaquin) contain ≥1 

aminocarboxylate group with a large core that can accommodate the large 225Ac actinide 

and overall +1 or -1 charge. Yet, they vary in flexibility (macrocyclic vs acyclic), 

coordination number (CN = 8, 10, and/or 11), coordinating atoms (N4O4, N7O4, and N4O6), 

and pendant donor arm basicity.  

3.4. Conclusion & Future Work 

In chapter 3, two novel HOPO ligands (3.6 and 3.12) were synthesized and 

characterized via NMR, HPLC, MS, and UV-Vis. The ability to complex lanthanum 

(225Ac3+ closest non-radioactive surrogate) was examined, wherein both ligands illustrated 

complexation with multiple isomers present. A 1:1 metal:chelate ratio for the lanthanum 

complexes was studied via UV-Vis as a shift in 𝜆9:; from 323 nm to 314 nm for 3.6 and 

318 nm to 309 nm for 3.12. Initial radiolabeling of macropa and DOTA were consistent 

with reported data, while macropaquin shows great promise. Conversely, 3.6 was unable 
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to complex 225Ac under any conditions and due to limited radionuclide supply, 3.12 was 

not investigated.  

Future work for this project is intensive, including both non-radioactive and 

radioactive work. Specifically, fundamental characterization of 3.6 and 3.12 such as pKa 

determination, thermodynamic affinity for La3+, and DFT calculations are essential. When 
225Ac becomes available, 3.12 should be investigated for 225Ac complexation, utilizing the 

same condition as 3.6 radiolabeling. By directly comparing 3.6 and 3.12, the effect of 

pendant donor arm flexibility can be investigated. Furthermore, with promising initial 

radiolabeling for macropaquin, its kinetic inertness should be evaluated in vitro via a 

human serum assay. As two novel ligands, 3.6 and 3.12 should be screened for 

radionuclides with similar intrinsic properties as 225Ac3+. Particularly with 89Zr4+, a hard, 

oxophilic cation with proven complexation and excellent in vitro stability for an 

octadentate acyclic HOPO chelator87.  

3.5. Experimental   

3.5.1. Materials and Methods  

All solvents and reagents were purchased from commercial suppliers (TCI 

America, Fisher Scientific, Macrocyclic, and Sigma Aldrich). Solvents noted as “dry” were 

obtained following storage over 3 Å molecular sieves. 1H and 13C NMR spectra were 

referenced to the residual solvent peak and recorded at 25oC (unless noted otherwise) on 

Bruker AV400, AV500, or AV600 instruments. Deionized water (>18 MΩ cm) was used 

via Millipore-Direct (Milli-Q IQ 7000) purification systems. High-resolution electrospray-

ionization mass spectrometry (HR-ESI-MS) was performed on an Agilent 6210 time-of-

flight instrument (TOF). Semi-preparative and preparative HPLC were used for the 

purification of non-radioactive compounds. Semi-preparative purification was performed 

on an Agilent 1100 series consisting of a G1311A Quaternary Pump, G2260A autosampler, 

and G1315B variable wavelength absorbance detector. Semi-preparative purification was 

performed with a Kinetex semi-preparative C18 column, 5 µm, 100 Å, 150 x 10.0 mm at a 

flow rate of 3.0 mL/min unless otherwise noted. Preparative purification was performed on 

an Agilent 1100 series consisting of a G1361A Quaternary Pump, G2260A autosampler, 
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and G1365D variable wavelength absorbance detector. Preparative purification was 

performed with a Gemini-NX preparative C18 column, 5 µm, 110 Å, 100 x 30.0 mm at a 

flow rate of 15.0 mL/min unless otherwise noted. Gradient HPLC methods utilized a binary 

mobile phase that contained H2O with 0.1 % TFA (A) and CH3CN with 0.1 % TFA (B). 

HPLC methods: 

• 3A: 2 – 50% B (0 – 20 min), 50 – 100% B (20 – 22 min), 100% B (22 – 24 
min), 100 – 2% B (24 – 26 min), 2% B (26 – 30 min).  

• 3B: 2 – 50% B (0 – 10 min), 50 – 100% B (10 – 12 min), 100 – 10% B (12 – 
14 min), 10% B (14 – 15 min). 

• 3C: 5 – 15% B (0 – 20 min), 15 – 100% B (20 – 24 min), 100% B (24 – 26 
min), 100 – 2% B (26 – 28 min), 2% B (28 – 30 min). 

3.5.2. Synthesis Methodology 

 
1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxylic acid (1,2-HOPO-Acid, 3.2). 

Compound 3.2 was prepared as previously reported77. Peracetic acid (15 mL) was carefully 

added dropwise to a white suspension of 6-hydroxypicolinic acid (5.0 g, 36 mmol, 1 Eq) 

in glacial acetic acid (30 mL) while stirring. The flask was heated to 80°C for 12 hrs before 

the solid was filtered and washed with diethyl ether to yield 3.2 as a cream solid (4.50 g, 

yield = 80.6%). The 1H NMR data for the product was in good agreement with those 

previously reported in the literature; 1H NMR (400 MHz, DMSO-d6) δ 7.44 (dd, J = 9.0, 

7.0, Ar-H, 1H), 6.71 (dd, J = 9.0, 1.7, Ar-H, 1H), 6.66 (dd, J = 7.0, 1.7, Ar-H, 1H). 13C 

NMR (101 MHz, DMSO-d6), δ 161.9 (COOH), 157.1 (C=O), 138.8 (CCOOH), 136.5 (Ar-

C), 120.3 (Ar-C), 106.3 (Ar-C). HR-ESI-HRMS calcd. for [C6H5NO4 + H]+: 156.02913; 

found 156.0289 [M+H]+.  

 

N
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1-(benzyloxy)-6-oxo-1,6-dihydropyridine-2-carboxylic acid (1,2-HOPO-OBn-Acid, 3.3). 

Benzyl bromide (1.10 ml, 9.3 mmol, 1.2 Eq) and potassium carbonate (2.1 g, 15.5 mmol, 

2 Eq) were added to a white suspension of 1,2-HOPO Acid 3.2 (1.2 g, 7.7 mmol, 1 Eq) in 

methanol (30 mL). The white suspension was refluxed at 75°C overnight (16 h), producing 

a dark green transparent solution after ~10 minutes followed by a brown solution with a 

grey precipitate after 16 h. The solution was filtered via a Büchner funnel, the solvent was 

removed under reduced pressure, and the resulting brown residue was dissolved in water. 

The addition of concentrated HCl dropwise formed a white precipitate which was filtered, 

washed with water, and dried under vacuum to yield 3.3 as a peach solid (1.52 g, yield = 

80.1%). 1H NMR (400 MHz, DMSO-d6) δ 7.49 (m, Ar-H, 3H), 7.44 (m, Ar-H, 3H), 6.74 

(dd, J = 9.3, 1.7, Ar-H, 1H), 6.56 (dd, J = 6.8. 1.7, Ar-H, 1H), 5.28 (s, OCH2C6H5, 2H). 
13C NMR (101 MHz, DMSO-d6), δ 161.6 (COOH), 157.6 (C=O), 140.5 (CCOOH), 138.6 

(Ar-C), 133.8 (OCH2CC5H5), 129.6 (Ar-C), 129.0 (Ar-C), 128.5 (Ar-C), 124.0 (Ar-C), 

105.9 (Ar-C), 77.9 (OCH2C6H5). HR-ESI-MS calcd. for [C13H11NO4 + H]+: 246.07608; 

found 246.0755 [M+H]+.  

 

 
2,5-dioxopyrrolidin-1-yl 1-(benzyloxy)-6-oxo-1,6-dihydropyridine-2-carboxylate (1,2-

HOPO-OBn-Succ, 3.4). N-hydroxysuccinimide (420 mg, 3.7 mmol, 1.2 Eq) and 1-ethyl-

3-(3-dimethylaminopropyl)carbodiimide (704 mg, 3.7 mmol, 1.2 Eq) were added to a 

solution of 3.3 (750 mg, 3.1 mmol, 1 Eq) in dry CH2Cl2 (70 mL). After stirring the reaction 

mixture for 12 h under argon, the peach suspension was washed with water (50 mL) and 
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brine (50 mL), the organic layer was dried over Na2SO4, filtered, and the solvent was 

removed under reduced pressure. The crude product was purified by silica column 

chromatography (using CH2Cl2:CH3CN 5:1 as eluent) to obtain a white crystalline solid 

(439 mg, yield = 41.9 %). 1H NMR (400 MHz, CDCl3), δ 7.56 (m, Ar-H, 2H), 7.36 (m, Ar-

H, 4H), 6.95 (m, Ar-H, 2H), 5.38 (s, OCH2C6H5, 2H), 2.92 (s, O=CCH2CH2C=O, 4H). 13C 

NMR (101 MHz, CDCl3), δ 168.5 (O=CCH2CH2C=O), 158.5 (C=OON), 155.2 (C=O), 

136.8 (Ar-C), 133.3 (Ar-C), 130.4 (Ar-C), 129.4 (Ar-C), 129.1 (Ar-C), 128.7 (Ar-C), 111.7 

(Ar-C), 79.0 (OCH2C6H5), 25.8 (O=CCH2CH2C=O). HR-ESI-MS calcd. for [C17H14N2O6 

+ H]+: 343.09246; found 343.0909 [M+H]+.  

 

 
6,6'-(1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-dicarbonyl)bis(1-

(benzyloxy)pyridin-2(1H)-one)(1,2-HOPO-OBn-crown, 3.5). 4,13-Diaza-18-crown-6-

ether (150 mg, 0.6 mmol, 1 Eq) was added to a solution of 3.4 (489 mg, 1.4 mmol, 2.5 Eq) 

in dry CH2Cl2 (8 mL). Triethylamine (TEA) was added at RT and the reaction was left 

stirring under argon for 24 hrs. The solvent was removed under reduced pressure yielding 

a brown oil. The residual was dissolved in CH2Cl2 (50 mL), washed with water and brine 

(2 x 50 mL), and the organic layer was dried over sodium sulfate. The solvent was removed 

under reduced pressure to yield a brown transparent solution. The crude product was 

purified via silica column chromatography (using CH2Cl2:MeOH 9:1 as the eluent) 

followed by another silica column (using CHCl3:MeOH 9:1 as the eluent) to yield a white 

solid (217 mg, yield = 52.9%). 1H NMR (600 MHz, CDCl3), δ 7.53 (m, Ar-H, 4H), 7.35 

(m, Ar-H, 8H), 6.71 (m, Ar-H, 2H), 6.07 (m, Ar-H, 2H), 5.65 (m, OCH2C6H5, 2H), 5.02 

(m, OCH2C6H5, 2H), 3.47 (m, C12N2O4H24, 24H). 13C NMR (151 MHz, CDCl3), δ 162.3 

(C12NO4H24NC=O), 158.5 (C=O), 143.2 (Ar-C), 138.5 (Ar-C), 138.4 (Ar-C), 133.7 (Ar-
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C), 130.5 (Ar-C), 130.5 (Ar-C), 129.4 (Ar-C), 129.4 (Ar-C), 128.6 (Ar-C), 123.1 (Ar-C), 

102.9 (Ar-C), 102.8 (Ar-C), 79.4 (OCH2C6H5), 70.6 (C12N2O4H24), 70.5 (C12N2O4H24), 

70.4 (C12N2O4H24), 70.4 (C12N2O4H24), 70.2 (C12N2O4H24), 69.8 (C12N2O4H24), 69.7 

(C12N2O4H24), 69.5 (C12N2O4H24), 69.4 (C12N2O4H24), 69.3 (C12N2O4H24), 69.2 

(C12N2O4H24), 69.0 (C12N2O4H24), 69.0 (C12N2O4H24), 49.5 (C12N2O4H24), 49.5 

(C12N2O4H24), 49.4 (C12N2O4H24), 46.3 (C12N2O4H24), 46.2 (C12N2O4H24), 46.2 

(C12N2O4H24), 46.1 (C12N2O4H24). HR-ESI-MS calcd. for [C38H44N4O + H]+ : 717.3130; 

found 717.3108 [M+H]+. 

 

 
6,6'-(1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-dicarbonyl)bis(1-

hydroxypyridin-2(1H)-one) (macrohopo, 3.6). Concentrated hydrochloric acid (3.2 mL) 

and glacial acetic acid (3.2 mL) (1:1v/v) was added to 1,2-HOPO-OBn-Crown 3.5 (100 

mg, 0.14 mmol). After heating the reaction at 50°C for 3d, the solvent was removed under 

reduced pressure. The brown crude residue was dissolved in H2O and purified via HPLC, 

using method 3A (preparative) or 3B (semipreparative) to yield a colourless oil (34.5 mg, 

yield = 56.1%). 1H NMR (600 MHz, D2O) δ 7.48 (td, J = 9.2, 7.0 Hz, Ar-H, 2H), 6.66 (m, 

Ar-H, 2H), 6.45 (ddd, J = 6.6, 4.6, 1.7 Hz, Ar-H, 2H), 3.76 – 3.38 (m, C12N2O4H24, 24H). 
13C NMR (151 MHz, D2O) δ 163.5, 163.5, 160.2, 140.6, 140.5, 139.8, 139.8, 120.2, 117.1, 

115.2, 106.4, 69.9, 69.9, 69.7, 69.7, 68.6, 68.5, 67.9, 67.8, 49.6, 49.6, 46.4, 46.4. HR-ESI-

MS calcd. for [C24H32N4O10 + H]+: 537.2191; found 537.2186 [M+H]+. Elemental 

Analysis: calcd. (found) for C24H32N4O10·1 TFA·2H2O: C, 45.48 (45.57); H 5.43 (5.11); N 

8.16 (7.95)%.  
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Methyl 1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxylate, (1,2-HOPO-methylester, 

3.7). Compound 3.7 was prepared as previously reported77. Thionyl chloride (5.8 mL, 78.0 

mmol, 4 Eq) was added dropwise to a white suspension of 3.2 (3.0 g, 19.3 mmol, 1 Eq) in 

dry methanol (38.5 mL) at 0°C. After the mixture was refluxed for 4 hours at 85°C, the 

orange solution was cooled to room temperature. The solvent was removed under reduced 

pressure yielding 3.7 as an orange solid (3.25 g, yield >99 %). The 1H NMR data for the 

product was in good agreement with those previously reported in the literature. 1H NMR 

(400 MHz, DMSO-d6), 7.44 (dd, J = 9.2, 6.8 Hz, Ar-H, 1H), 6.69 (dd, J = 9.1, 1.6 Hz, Ar-

H, 1H), 6.52 (dd, J = 6.9, 1.6 Hz, Ar-H, 1H), 3.87 (s, CO2CH3, 3H). 13C NMR (101 MHz, 

DMSO-d6) δ 161.3 (CO2CH3), 158.0 (C=O), 138.7 (Ar-C), 137.8 (Ar-C), 122.5 (Ar-C), 

105.7 (Ar-C), 53.7 (CO2CH3). HR-ESI-MS calcd. for [C7H7NO4 + H]+: 170.04478; found 

170.04448 [M+H]+. 

 

 
Methyl-1-(allyloxy)-6-oxo-1,6-dihydropyridine-2-carboxylate (1,2-HOPO-allyl-

methylester, 3.8). Compound 3.8 was prepared as previously reported77. Allyl bromide (4.1 

mL, 47.80, 2.5 Eq) and potassium carbonate (6.60 g, 47.80 mmol, 2.5 Eq) were added to 

an orange suspension of 3.7 (3.24 g, 19.17 mmol, 1 Eq) in acetonitrile (42 mL). The flask 

was refluxed at 90°C, for 4 hrs before the mixture was filtered and the solvent was removed 

under reduced pressure. The residue was dissolved in toluene and the solvent was removed 

under reduced pressure to yield 3.8 as a pale orange solid (3.65 g, yield = 91.1%). The 1H 

NMR data for the product was in good agreement with those previously reported in the 

literature. 1H NMR (500 MHz, CDCl3) δ 7.30 (m, Ar-H, 1H), 6.80 (dd, J = 9.2, 1.6 Hz, Ar-

H, 1H), 6.52 (dd, J = 6.8, 1.6 Hz, Ar-H, 1H), 6.08 (m, OCH2CHCH2, 1H), 5.43 (m, 
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OCH2CHCH2, 2H), 4.90 (m, OCH2CHCH2, 2H), 3.93 (s, CH3, 3H). 13C NMR (126 MHz, 

CDCl3) δ 160.6 (CO2CH3), 158.9 (C=O), 138.7 (quart. C) 137.2 (Ar-C), 130.6 

(OCH2CHCH2), 126.0 (Ar-C), 122.0 (OCH2CHCH2), 108.0 (Ar-C), 78.1 (OCH2CHCH2), 

53.4 (CO2CH3). HR-ESI-MS calcd. for [C10H11NO4 +H]+: 210.0761; found 210.0766 

[M+H]+. 

 

 
1-(allyloxy)-6-(hydroxymethyl)pyridin-2(1H)-one (1,2-HOPO-allyl-hydroxide, 3.9). 

Compound 3.9 was prepared as previously reported77.  Sodium borohydride (4.09 g, 108.3 

mmol, 7 Eq) was added to a solution of 3.8 (3.24 g, 15.5 mmol, 1 Eq) in tetrahydrofuran 

(42 mL) at room temperature. The flask was refluxed at 80°C for 15 minutes before the 

dropwise addition of methanol (2.4 mL) over 2 hours. The solution was then cooled to 0°C 

and quenched by the addition of ammonium chloride (4.2 mL). After stirring for an 

additional 15 minutes, the solvents were removed under reduced pressure. The residue was 

extracted with CH2Cl2 until the aqueous layer was a colourless transparent solution. The 

combined organic layers were dried with sodium sulfate and the solvent was removed 

under reduced pressure to yield 3.9 as an off white solid (1.49 g, yield = 62.5 %). The 1H 

NMR data for the product was in good agreement with those previously reported in the 

literature. 1H NMR (500 MHz, CDCl3) δ 7.29 (dd, J = 9.2, 6.9 Hz, Ar-H, 1H), 6.57 (dd, J 

= 9.1, 1.7 Hz, Ar-H, 1H), 6.27 (dd, J = 6.9, 1.9, Ar-H, 1H), 6.04 (m, OCH2CHCH2, 1H), 

5.41 (m, OCH2CHCH2, 2H), 4.81 (d, J = 6.7, OCH2CHCH2, 2H), 4.68 (s, CH2OH, 2H), 

2.95 (s, CH2OH, 1H). 13C NMR (126 MHz, CDCl3) δ 159.5 (C=O), 148.4 (Ar-C), 138.5 

(Ar-C), 130.2 (OCH2CHCH2), 122.6 (OCH2CHCH2), 120.7 (Ar-C), 103.6 (Ar-C), 77.2 

(OCH2CHCH2), 59.6 (CH2OH). HR-ESI-MS calcd. for [C9H11NO3 + H]+: 182.0812; found 

182.0806 [M+H]+. 
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1-(allyloxy)-6-(chloromethyl)pyridin-2(1H)-one (1,2-HOPO-allyl-chloride, 3.10). 

Compound 3.10 was prepared as previously reported77. Thionyl chloride (3.6 mL, 49.6 

mmol, 6 Eq) was added dropwise to a yellow solution of 3.9 (1.5 g, 8.2 mmol, 1 Eq) in dry 

CH2Cl2 (36 mL) at room temperature. After refluxing at 50°C for 6 hours, the solution was 

then cooled to 0°C and quenched with the addition of ice water (30 mL). After stirring the 

biphasic reaction mixture for an additional 30 minutes, the phases were separated, and the 

aqueous phase was further extracted with CH2Cl2 (3 x 40 mL). The combined organic 

phases were dried with sodium sulfate and the solvent was removed under reduced pressure 

to yield 3.10 as a brown crystalline solid (1.59 g, yield = 97.0%). The 1H NMR data for the 

product was in good agreement with those previously reported in the literature. 1H NMR 

(500 MHz, CDCl3) δ 7.27 (d, J = 7.0 Hz, Ar-H, 1H), 6.66 (dd, J = 9.3, 1.7 Hz, Ar-H, 1H), 

6.25 (dd, J = 6.8, 1.7 Hz, Ar-H, 1H), 6.11 (m, OCH2CHCH2, 1H), 5.45 (m, OCH2CHCH2, 

2H), 4.93 (d, J = 6.6 Hz, OCH2CHCH2, 2H), 4.57 (s, CH2Cl, 2H). 13C NMR (126 MHz, 

CDCl3) δ 159.2 (C=O), 144.3 (Ar-C), 137.8 (Ar-C), 130.3 (OCH2CHCH2), 123.0 (Ar-C), 

122.4 (OCH2CHCH2), 106.3 (Ar-C), 77.4 (OCH2CHCH2), 39.4 (CH2Cl). HR-ESI-MS 

calcd. for [C9H10NO2Cl + H]+: 200.0463; found 200.0472 [M+H]+.  

 

 
6,6'-((1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diyl)bis(methylene))bis(1-

(allyloxy)pyridin-2(1H)-one) (1,2-HOPO-allyl-crown, 3.11). 4,13-Diaza-18-crown-6-

ether (287 mg, 1.1 mmol, 1 Eq) and potassium carbonate (605 mg, 4.4 mmol, 4 Eq) were 

added to a solution of 3.10 (547 mg, 2.7 mmol, 2.5 Eq) in dry acetonitrile (7.5 mL). The 

suspension was refluxed at 80 °C overnight. After the addition of water (10 mL), the 
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suspension was extract with CH2Cl2 (10 mL) and the combined organic fractions water 

dried with sodium sulfate. The solvent was removed under reduced pressure to yield a 

brown oil. The crude product was purified via silica column chromatography (using a 

gradient of CH2Cl2:MeOH 99:1 to CH2Cl2:MeOH 90:10 as the eluent). The solvent was 

removed under reduced pressure to yield 3.11 as a brown solid (550 mg, yield = 85.3%). 
1H NMR (MeOD, 600 MHz), δ7.47 (dd, J = 9.1, 7.0 Hz, Ar-H, 2H), 6.67 (dd, J = 7.01, 1.7 

Hz, Ar-H, 2H), 6.55 (dd, J = 9.1, 1.8 Hz, Ar-H, 2H), 6.14 (m, OCH2CHCH2, 2H) 5.47 (m, 

OCH2CHCH2, 2H), 5.38 (m, OCH2CHCH2, 2H), 4.82 (m, OCH2CHCH2, 4H), 3.89 (s, 

NCH2, 4H), 3.63 (t, J = 5.5 Hz, NCH2CH2O, 8H), 3.57 (s, OCH2CH2O, 8H), 2.89 (t, J = 

5.5 Hz, NCH2CH2O, 8H). 13C NMR (MeOD, 151 MHz), δ 162.1 (C=O), 150.4 (Ar-C), 

140.8 (Ar-C), 132.2 (OCH2CHCH2), 122.4 (OCH2CHCH2), 120.0 (Ar-C), 108.2(Ar-C), 

78.2 (OCH2CHCH2), 71.8 (OCH2CH2O), 71.0 (NCH2CH2O), 55.7 (NCH2 or NCH2CH2O), 

55.6 (NCH2 or NCH2CH2O). HR-ESI-MS calcd. for [C30H44N4O8 +H]+: 589.3232; found 

589.3243 [M+H]+.  

 

 
6,6'-((1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diyl)bis(methylene))bis(1-

hydroxypyridin-2(1H)-one) (macrohopo’, 3.12). Boron trichloride (1M in CH2Cl2, 1.8 

mL, 1.8 mmol, 7 Eq) was added dropwise to a brown solution of 3.11 (142.4 mg, 0.3 mmol, 

1 Eq) in dry CH2Cl2 (2 mL) at 0°C under argon. The solution was warmed to room 

temperature and allowed to stir overnight under argon. The solid precipitate was filtered 

and washed with CH2Cl2 and air dried to yield a yellow/white solid. The yellow solid was 

dissolved in H2O and purified via HPLC, using method 3A (preparative) or 3C 

(semipreparative) to yield a colourless oil (74.2 mg, yield = 56.2%). The 1H NMR data for 

the product is as followed: 1H NMR (600 MHz, DMSO) δ 7.40 (m, Ar-C, 2H), 6.62 (d, J 

= 9.1, Ar-C, 2H), 6.49 (d, J = 7.0, Ar-C, 2H), 4.49 (s, NCH2, 4H), 3.76 (t, J = 5.0 Hz, 

NCH2CH2O, 8H), 3.55 (s, OCH2CH2O, 8H), 3.37 (t, NCH2CH2O, 8H).13C NMR (151 

MHz, DMSO) δ 158.0 (C=O), 140.1 (Ar-C), 136.6 (Ar-C), 119.7 (Ar-C), 108.6 (Ar-C), 
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69.6 (OCH2CH2O), 65.0 (NCH2CH2O), 53.7 (NCH2CH2O), 53.2 (NCH2). HR-ESI-MS 

calcd. for [C24H36N4O8 + H]+: 509.2606; found 509.2591 [M+H]+. 

 

3.5.3. Non-radioactive metal complexation  

 
[La(macrohopo)][ClO4]. A solution of La(ClO4)3• 6H2O (17 mg, 31.3 µmol, 1.1 

Eq) in CH3OH (0.5 mL) was added to a solution of macrohopo (15 mg, 28 µmol, 1 Eq) in 

in CH3OH (0.5 mL) at room temperature upon which time a precipitate formed 

immediately. The white suspension was centrifuged (2 min, 14,800 rpm), removing the 

supernatant and washing the pelleted with CH3OH (2 x 0.5 mL) followed by (C2H5)2O (2 

x 0.5 mL). The pellet was then air-dried on filter paper to give the complex as a white solid 

(17.4 mg, yield = 77.9%). The 1H NMR data (600 MHz, DMSO) δ 7.31 (m, Ar-H, 2H), 

6.48 (m, Ar-H, 4H), 3.50 (m, C12N2O4H24, 33H). 13C NMR (151 MHz, DMSO) δ 163.8, 

162.4, 162.2, 142.8, 133.1 113.7, 106.7, 70.9, 70.4, 69.2, 68.5, 49.1, 47.5, 44.5, 40.5. ESI-

MS calcd. for [C24H30N4O10La]+: 673.1025; found 673.1 [M]+ 

 
[La(macrohopo’)][ClO4]. A solution of La(ClO4)3• 6H2O (24 mg, 43.3 µmol, 1.1 

Eq) in CH3OH (0.5 mL) was added to a solution of macrohopo’ (20 mg, 39.3 µmol, 1Eq) 

and triethylamine (22 µL, 0.2 mmol, 4 Eq) in CH3OH (0.5 mL) at room temperature. A 

precipitate formed immediately. The white suspension was centrifuged (2 min, 14,800 

rpm), removing the supernatant and washing the pelleted with CH3OH (2 x 0.5 mL) 

followed by (C2H5)2O (2 x 0.5 mL). The pellet was then air-dried on filter paper to give 

the complex as a white solid (20.3 mg, yield = 80.2%). The 1H NMR data (600 MHz, 
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DMSO) δ 7.27 (m, Ar-H, 1H), 7.16 (m, Ar-H, 2H), 6.76 (m, Ar-H, 1H), 6.54 (m, Ar-H, 

2H), 6.43 (m, Ar-H, 1H), 6.30 (m, Ar-H, 1H), 3.90 (s, 2H), 1.83 (s, 2H), 3.56 (m), 3.51 (s), 

3.47 (m), 3.16 (d, 1H), 2.90 (s, 5H), 2.78 (t, 4H), 2.67 (s, 3H). 13C NMR (151 MHz, DMSO) 

δ 162.4, 162.7, 147.9, 147.5, 147.2, 131.1, 132.1, 110.3, 110.1, 107.2, 107.1, 106.8, 105.6, 

99.5, 70.6, 69.9, 65.4, 54.9, 54.4, 53.8, 46.1 (extrapolated from 13C, HSQC, and HMBC). 

HR-ESI-MS calcd. for [C24H34N4O8La]+: 645.1440; found 645.1414 [M]+. 

 

3.5.4. UV-Vis 

Stock solutions of La(ClO4)3• 6H2O (1 x 10-3 M), 3.6 (1 x 10-3 M), and 3.12 (1 x 

10-3 M) were prepared in MQ H2O. Increasing amounts of La(ClO4)3 were added to a 

cuvette containing 50 µL of either i) 3.6 stock solution or i) 3.12 stock solution and a 

buffering solution (0.1 M KCl/0.1 M HEPES). The final concentration of 3.6 and 3.12 was 

2.5 x 10-5 M and 5.0 x 10-5 M respectively. The complexation of the metal ion was 

monitored by the shift in 𝜆9:; from 323 nm to 314 nm for 3.6 and 318 nm to 309 nm for 

3.12.  

3.5.5. 225Ac Sources  

All 225Ac used for Chapter 3 was produced from irradiated thorium (232Th(p,x) 

225/227Ac†), herein referred to as  225/227Ac†. Separation of  225/227Ac†  from irradiated thorium 

(232Th(p,x) 225/227Ac†) was performed as described in Chapter 2. 

3.5.6. 225Ac Radiolabeling Studies  

Stock solutions (1x 10-2 & 1x 10-3  M) of macropa (3.15), DOTA, macrohopo (3.6), 

macropaquin (3.15), and macropaquin-SO3 (3.13) were made with ultra-pure deionised 

water. Serial dilutions were used to prepare initial ligand solutions of 10-4 M, 10-5 M, 10-6 

M, and 10-7 M with ultra-pure water. Concentration-dependent radiolabeling studies were 

performed by the addition of 225/227Ac† (20 – 40 kBq) to a solution containing ligand sock 

(10 µL; or deionized water for negative controls) in a variety of buffers. The actinium 

reaction mixtures were gently agitated using a vortex mixer and the pH was confirmed to 
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be between 5 - 11 by spotting a portion (1 - 2 µL) of the reaction mixture on pH paper. The 

radiochemical yield (RCY) was analyzed after 5, 60, and/or 120 minutes at room 

temperature/elevated temperatures. TLC imaging was performed using an AR-2000 

imaging scanner equipped with PD-10 gas, and analysis of RCYs was carried out using 

WinScan V3_14 software. iTLC plate systems are as followed: 

• Method A - aluminum backed silica with citrate buffer (0.4 M, pH 4.0). Free 
225Ac migrates with the solvent front (Rf = 1) while 225Ac-ligand complexes will 

remain at the baseline (Rf = 0).  

• Method B – paper backed iTLC-silicic acid with EDTA (50 mM, pH 7) as mobile 

phase. Free 225Ac migrates with the solvent front (Rf = 1) while 225Ac-ligand 

complexes will remain at the baseline (Rf = 0) 

 
TLC radio-chromatograms of the initial radiolabeling (positive control, labeling, 

and a negative control) can be found in the Appendix. Measurements were done in 

triplicates. 
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Appendix   
 

1H & 13C NMR Spectra 

 
Figure A1: 1H NMR (400 MHz, DMSO-d6) of 1-hydroxy-6-oxo-1,6-

dihydropyridine-2-carboxylic acid (1,2-HOPO-Acid, 3.2) 
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Figure A2: 13C NMR (101 MHz, DMSO-d6) of 1-hydroxy-6-oxo-1,6-

dihydropyridine-2-carboxylic acid (1,2-HOPO-Acid, 3.2) 
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Figure A3: 1H NMR (400 MHz, DMSO-d6) of 1-(benzyloxy)-6-oxo-1,6-

dihydropyridine-2-carboxylic acid (1,2-HOPO-OBn-Acid, 3.3)  

 
Figure A4: 13C NMR (101 MHz, DMSO-d6) of 1-(benzyloxy)-6-oxo-1,6-

dihydropyridine-2-carboxylic acid (1,2-HOPO-OBn-Acid, 3.3) 
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Figure A5: 1H NMR (400 MHz, CDCl3) of 2,5-dioxopyrrolidin-1-yl 1-(benzyloxy)-

6-oxo-1,6-dihydropyridine-2-carboxylate (1,2-HOPO-OBn-Succ, 3.4) 

 
Figure A6: 13C NMR (101 MHz, CDCl3) of 2,5-dioxopyrrolidin-1-yl 1-(benzyloxy)-

6-oxo-1,6-dihydropyridine-2-carboxylate (1,2-HOPO-OBn-Succ, 3.4) 
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Figure A7: 1H NMR (600 MHz, CDCl3) of 6,6'-(1,4,10,13-tetraoxa-7,16-

diazacyclooctadecane-7,16-dicarbonyl)bis(1-(benzyloxy)pyridin-2  
(1H)-one)(1,2-HOPO-OBn-crown, 3.5) 
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Figure A8: 13C NMR (151 MHz, CDCl3) of 6,6'-(1,4,10,13-tetraoxa-7,16-

diazacyclooctadecane-7,16-dicarbonyl)bis(1-(benzyloxy)pyridin-2  
(1H)-one)(1,2-HOPO-OBn-crown, 3.5) 
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Figure A9: 1H NMR (600 MHz, D2O) of 6,6'-(1,4,10,13-tetraoxa-7,16-

diazacyclooctadecane-7,16-dicarbonyl)bis(1-hydroxypyridin-2(1H)-
one) (macrohopo, 3.6) 
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Figure A10: 13C NMR (151 MHz, D2O) of 6,6'-(1,4,10,13-tetraoxa-7,16-

diazacyclooctadecane-7,16-dicarbonyl)bis(1-hydroxypyridin-2(1H)-
one) (macrohopo, 3.6) 
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Figure A11: 1H NMR (400 MHz, DMSO-d6) of methyl 1-hydroxy-6-oxo-1,6-

dihydropyridine-2-carboxylate, (1,2-HOPO-methylester, 3.7) 

  
Figure A12: 13C NMR (101 MHz, DMSO-d6) of methyl 1-hydroxy-6-oxo-1,6-

dihydropyridine-2-carboxylate, (1,2-HOPO-methylester, 3.7) 
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Figure A13: 1H NMR (500 MHz, CDCl3) of methyl-1-(allyloxy)-6-oxo-1,6-

dihydropyridine-2-carboxylate (1,2-HOPO-allyl-methylester, 3.8) 

 
Figure A14: 13C NMR (126 MHz, CDCl3) of methyl-1-(allyloxy)-6-oxo-1,6-

dihydropyridine-2-carboxylate (1,2-HOPO-allyl-methylester, 3.8) 



82 

 
Figure A15: 1H NMR (500 MHz, CDCl3) of 1-(allyloxy)-6-(hydroxymethyl)pyridin-

2(1H)-one (1,2-HOPO-allyl-hydroxide, 3.9) 

 
Figure A16: 13C NMR (126 MHz, CDCl3) of 1-(allyloxy)-6-

(hydroxymethyl)pyridin-2(1H)-one (1,2-HOPO-allyl-hydroxide, 3.9) 
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Figure A17: 1H NMR (500 MHz, CDCl3) of 1-(allyloxy)-6-(chloromethyl)pyridin-

2(1H)-one (1,2-HOPO-allyl-chloride, 3.10) 

 
Figure A18: 13C NMR (126 MHz, CDCl3) of 1-(allyloxy)-6-(chloromethyl)pyridin-

2(1H)-one (1,2-HOPO-allyl-chloride, 3.10) 



84 

 
Figure A19: 1H NMR (600 MHz, MeOD) of 6,6'-((1,4,10,13-tetraoxa-7,16-

diazacyclooctadecane-7,16-diyl)bis(methylene))bis(1-
(allyloxy)pyridin-2(1H)-one) (1,2-HOPO-allyl-crown, 3.11) 



85 

 
Figure A20: 13C NMR (151 MHz, MeOD) of 6,6'-((1,4,10,13-tetraoxa-7,16-

diazacyclooctadecane-7,16-diyl)bis(methylene))bis(1-
(allyloxy)pyridin-2(1H)-one) (1,2-HOPO-allyl-crown, 3.11) 
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Figure A21: 1H NMR (600 MHz, DMSO-d6) of 6,6'-((1,4,10,13-tetraoxa-7,16-

diazacyclooctadecane-7,16-diyl)bis(methylene))bis(1-hydroxypyridin-
2(1H)-one) (macrohopo’, 3.12) 
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Figure A22: 13C NMR (151 MHz, DMSO-d6) of 6,6'-((1,4,10,13-tetraoxa-7,16-

diazacyclooctadecane-7,16-diyl)bis(methylene))bis(1-hydroxypyridin-
2(1H)-one) (macrohopo’, 3.12) 
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Figure A23:  1H NMR (600 MHz, DMSO-d6) of [La(macrohopo)][ClO4] 

 
Figure A24:  13C NMR (151 MHz, DMSO-d6) of [La(macrohopo)][ClO4] 
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Figure A25:  1H NMR (600 MHz, DMSO-d6) of [La(macrohopo’)][ClO4] 

 
Figure A26:  13C NMR (151 MHz, DMSO-d6) of [La(macrohopo’)][ClO4] 



90 

Additional NMR 

 
Figure A27:  1H-1H COSY NMR (600 MHz, DMSO-d6) of [La(macrohopo’)][ClO4] 

 
Figure A28:  1H-1H  COSY NMR (600 MHz, DMSO-d6) of [La(macrohopo’)][ClO4] 

in pendant donor arm region 
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Variable Temperature NMR 

  
Figure A29: 1H Varaible Temperature NMR (600 MHz, D2O) of 6,6'-(1,4,10,13-

tetraoxa-7,16-diazacyclooctadecane-7,16-dicarbonyl)bis(1-
hydroxypyridin-2(1H)-one) (macrohopo, 3.6) 
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Figure A30: 1H Varaible Temperature NMR (600 MHz, D2O) of 

[La(macrohopo)][ClO4] 
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Figure A31: 1H Varaible Temperature NMR (600 MHz, D2O) of 

[La(macrohopo’)][ClO4] 

 

Protonation Constants  

Table A1: Protonation Constants of macropa, macropaquin and macroquin-SO3 determined 
by pH potentiometry  

 Macropa Macropaquin Macroquin-SO3 
Log Ka1 7.41 10.33 9.34 
Log Ka2 6.89 7.15 9.43 
Log Ka3 3.32 6.97 6.75 
Log Ka4 2.36 3.24 6.62 
Log Ka5 1.69   

All data was obtained from Thiele et al.,80 
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iTLC  

 
Figure A32: Represent the positive control iTLC radio-chromatogram for 225Ac 

radiolabeling  

  
Figure A33: Represent the negative control iTLC radio-chromatogram for 225Ac 

radiolabeling  
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Figure A34: Represent a chelator with ~ 50% RCY iTLC radio-chromatogram for 

225Ac radiolabeling  


