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Abstract

There is evidence that common genetic variation in the gene NEDD9 is associated
with developing Alzheimer’s Disease (AD). In this project, we study the relationship
between brain-imaging biomarkers of AD and the gene NEDD9 while adjusting for the
effects of genetic population structure. The data used in this project, collected by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI), consists of magnetic resonance
imaging (MRI) measures of 56 brain regions of interest for 200 cognitively normal
people and genetic data on Single Nucleotide Polymorphisms (SNPs) obtained from
33 candidate genes for AD. The standard solution to such a multiple response problem
is separate simple linear regression models. Such an approach neglects correlations
between 56 brain areas and possible sparsity in the SNP effects. In this project we
review a sparse and covariance adjusted reduced-rank regression approach that can
select significant predictors and estimate covariance simultaneously, and extend the
approach to adjust for confounding variables. We apply the proposed algorithm to
the ADNI data, and also simulated data.

Keywords: Alzheimer’s Disease; Brain-imaging data; gene NEDD9; Principle Com-
ponent Analysis; Multiple-response problem; Confounder adjustment;

iii



Acknowledgements

I would like to express my heartfelt gratitude to my primary supervisor, Dr. Brad
McNeney, his patient guidance and enthusiastic encouragement guided me throughout
this project. My completion of this project could not have been accomplished without
the support of him. My grateful thanks are also extended to Mr.Pulindu Ratnasekera,
who helped me generate the genotypes data and gave me suggestions on my code.

Many thanks to all of my classmates for their kind support during my MSc study.

Lastly, thanks to my parents, for always being there for me. Thanks to my sister
and brother, for encouraging and supporting me whenever I needed them.

iv



Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 Methodology 3
2.1 Naive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Reduced-Rank Regression (RRR) . . . . . . . . . . . . . . . . . . . . 5
2.3 SRRR with Covariance Estimation . . . . . . . . . . . . . . . . . . . 7
2.4 Computational Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Results 12
3.1 Genetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Imaging Phenotype Data . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Tuning Process . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Estimated Coefficients . . . . . . . . . . . . . . . . . . . . . . 15
3.1.4 Estimated Precision Matrix . . . . . . . . . . . . . . . . . . . 16
3.1.5 Variable Importance . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.6 Confounder adjustment . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Simulated Data Study . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Tuning Process . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



3.2.3 Estimated Coefficients . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Estimated Precision Matrix . . . . . . . . . . . . . . . . . . . 22
3.2.5 Confounder adjustment . . . . . . . . . . . . . . . . . . . . . . 23

4 Conclusions 24

Bibliography 27

Appendix A Appendix: Proof of (2.4.5) 29

Appendix B Appendix: Functions 32

Appendix C Appendix: Genetic study 39

Appendix D Appendix: Simulated Data 44

vi



List of Tables

Table 3.1 Brain Imaging Phenotypes: IDs and descriptions of 28 brain re-
gions from each hemisphere, taken from Table 2.1 of Szefer (2014).
Baseline structural MRI measurements of a total of 56 (=28 × 2)
regions from left and right hemisphere were estimated . . . . . . 14

Table 3.2 Genetic data: summary of MSPE . . . . . . . . . . . . . . . . . 15
Table 3.3 Top 10 coefficients in the estimated A and their corresponding

brain ROIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 3.4 Simulated data: summary of MSPE . . . . . . . . . . . . . . . . 21
Table 3.5 Coefficients in the estimated A and their corresponding response

features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



List of Figures

Figure 3.1 Genetic Data: 3D surface of MSPEs; x-axis and y-axis are in
log scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 3.2 Estimated precision matrix: Heatmap . . . . . . . . . . . . . . 17
Figure 3.3 Cov-SRRR on residuals: Estimated precision matrix heatmap 18
Figure 3.4 Simulated data:PCA scree plot . . . . . . . . . . . . . . . . . 19
Figure 3.5 Simulated data:3D PCA plot . . . . . . . . . . . . . . . . . . 19
Figure 3.6 Simulated data:2D PCA plot . . . . . . . . . . . . . . . . . . 20
Figure 3.7 Simulated Data: 3D surface of MSPEs; x-axis and y-axis are in

log scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

viii



Chapter 1

Introduction

Alzheimer’s Disease (AD) is the most common cause of dementia and there is a
growing number of elderly people living with AD. Currently, treatment options for AD
are limited. Genetic variants are thought to affect a person’s risk of developing AD. For
example, Li et al. (2008) found that common genetic variants in gene NEDD9 (Neural
precursor cell expressed developmentally down-regulated protein 9) are associated
with developing AD. In this project we explore the relationship between brain-imaging
biomarkers of AD and genetic variants in NEDD9. The data used in this project was
collected by the researchers from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), which involves two different studies, called ADNI-1 and ADNI-GO/2. The
data contain magnetic resonance imaging (MRI) measurements of 56 brain regions of
interest for each of these subjects and their corresponding SNP genotypes obtained
from 33 candidate genes for AD. Our interest is in genetic variation that predicts
structural differences in the brain before subjects experience memory loss. Hence we
use data on cognitively normal subjects from ADNI. The brain-imaging phenotypes
will be the response variables in our model and the SNP genotypes from gene NEDD9
will be the explanatory variables.

Genetic variation in the human genome differs among individuals in different pop-
ulations due to genetic population structure. When such structure is correlated with
a phenotype, it can confound genetic associations with the phenotype. Thus, popu-
lation structure is an important confounding variable in genetic association studies.
Menozzi et al. (1978) established the use of Principle Component Analysis (PCA)
to summarize individual genetic variation across different regions/populations. PCA
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of a set of variables looks for linear combinations of these variables (PCs) that cap-
ture maximal variance. Thus, the PCs can help us characterize different populations.
Adding a number of important PCs to our model can mitigate the effect of population
structure.

Our goal of investigating associations between multiple response variables (brain
phenotypes) and multiple explanatory variables is an example of a multiple-response
problem. The naive approach, separate linear regression models, ignores possible inter-
relations between the response variables and the correlation among the errors [Chen
and Huang (2012)]. In this project, we hope to find SNPs that can help explain the
MRI measurements and also exploit the correlation between the nearby brain regions
of interest within a subject. We would also like to consider the effect of confounding
variables. Failing to control for confounders can distort the true relationship and lead
to misleading results.

In this project, we apply a multiple-response method called Sparse Reduced-Rank
Regression with Covariance Estimation (Cov-SRRR) to improve predictive power and
interpretability. The Cov-SRRR model improves the naive model in the sense that
it performs shrinkage and variable selection of predictors and covariances simultane-
ously, and exploits the correlation between the response variables.

The standard method for including confounding variables is to first adjust both
the response and predictor variables for the confounder, and then perform Cov-SRRR
on the adjusted variables. Here the adjusted response and predictor variables are
residuals from regressions on the confounding variables. The rationale for this ap-
proach is ordinary least squares, where such a residuals-on-residuals regression yields
the least squares estimates of the coefficients of the predictor variables (Weisberg
(2013)). However, in light of the shrinkage and variable selection of Cov-SRRR the
correspondence between an analysis of confounder-adjusted response and predictor
variables and direct modeling and adjustment for confounding variables is less clear.
In this project we extend Cov-SRRR to include direct modeling and adjustment for
potential confounding variables (Cov-Con-SRRR). We apply Cov-Con-SRRR to both
simulated and real data, and compare our results to those obtained from a standard
confounder-adjusted Cov-SRRR.
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Chapter 2

Methodology

In this chapter, we develop the model and algorithm for Cov-SRRR with adjustment
for confounders (Cov-Con-SRRR). For a sample of size n, let Y = {Y1, ..., Yq} be an
n × q matrix of q response variables on the n subjects, let X = {X1, ..., Xp} be an
n× p matrix of p explanatory variables, and let Z = {Z1, ..., Zh} be an n× h matrix
of h confounding variables.

2.1 Naive Approach

Consider the simple multiple-response linear regression:

Yj =
p∑

i=1
XiCij +

h∑
i=1

ZiDij + εj, (2.1.1)

where j=1,2,. . . , q, and Yj is the jth response vector for all n individuals. We
center the response variables, predictors, and the confounding variables to have mean
zero so that we can omit the intercept term. The error terms are denoted (ε1, ..., εq)T ;
we discuss their distribution below.

The model in the matrix form is:

Y = XC + ZD + E (2.1.2)
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where Y is the n × q response matrix, X is the n × p predictor matrix, Z is the
n × h confounder matrix, C and D are the p × q and h × q matrices of coefficients,
respectively, and E is the n × q error matrix. The rows of E are assumed to be
independent and identically distributed as a multivariate normal distribution with
mean zero and variance Σe.

We can combine the predictor matrix X and confounder matrix Z into one n ×
(p+ h) matrix F , so that the model becomes:

Y = FG + E

where G is a (p+ h)× q coefficient matrix. Specifically,

Y =


X11 . . . X1p Z11 . . . Z1h

... ... ... ... ... ...
Xn1 . . . Xnp Zn1 . . . Znh





C11 . . . C1q

... ... ...
Cp1 . . . Cpq

D11 . . . D1q

... ... ...
Dh1 . . . Dhq


+ E

An estimate of the coefficient matrix G is obtained by solving the following Or-
dinary Least Squares (OLS) problem:

min
G
‖Y− FG‖2 = min

G

q∑
j=1

n∑
i=1

Yij −
p∑

k=1
FikGkj

2

where‖·‖ denotes the Frobenius norm. Recall that for a matrix A, its Frobenius norm
‖A‖ =

√∑
i

∑
j a

2
ij =

√
tr(ATA). The OLS solution has the form:

ĜOLS =

ĈOLS

D̂OLS

 = (FTF)−1FTY (2.1.3)

We say the OLS estimates of the coefficients C and D are naive because they
ignore the fact that the response variables (Y1, . . . ,Yj) might correlate with each
other. What’s more, there does not exist unique solution when p is greater than n.
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In genetic studies, we may collect data on thousands of genetic markers. Thus, to
handle the dimensionality of the predictor matrix and take into account the possible
interrelationships between Yj’s, we will introduce an improved method known as
Reduced-Rank Regression (RRR) in the following section.

2.2 Reduced-Rank Regression (RRR)

Recall the model

Y = XC + ZD + E

with unknown parameters C, D and Σe, where Σe is the variance of the rows of E.
In order to conform with the general RRR model in matrix format, we rewrite the
above as:

Y− ZD = XC + E.

The negative log-likelihood function, up to a constant [Velu and Reinsel (2013)], is:

l(C, D,Σe) = −log|Σ−1
e |+

1
n

n∑
i=1

[(Yi − ZiDi −XiCi)T Σ−1
e (Yi − ZiDi −XiCi)]

= −log|Σ−1
e |+

1
n
tr[(Y - ZD - XC)Σ−1

e (Y - ZD - XC)T ],

where
∣∣∣Σ−1

e

∣∣∣ is the determinant of Σ−1
e . Let Ω = Σ−1

e be the precision matrix (inverse-
covariance matrix) . After substituting Ω and using the cyclic property of the trace,
the negative log-likelihood function of (C, D, Ω) in the RRR model is

1
n
tr[(Y - ZD−XC)T (Y - ZD−XC)Ω]− log |Ω| . (2.2.1)

The RRR model imposes a rank constraint on the matrix C in such a way that the
improved model has reduced the dimension with minimal loss of information [Izenman
(1975)].
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Suppose

rank(C) = r, where r ≤ min(p, q),

then there exists a q × r matrix A and a p× r matrix B such that:

C = BAT

Under this rank constraint the model becomes:

Y-ZD = (XB)AT + E. (2.2.2)

The negative log-likelihood function of (B, A, D, Ω) in (2.2.2) is:

1
n
tr[(Y - ZD−XBAT )T (Y - ZD−XBAT )Ω]− log |Ω| . (2.2.3)

XB can be viewed as a new predictor matrix with only r components, and AT as
the coefficient matrix. In other words, XB represents r linear combinations of the
predictor variables that help explain the variation in Y-ZD. Under this reduced-rank
setting, we decrease the number of free parameters in C from pq to (p+ q)r.

The coefficient matrices A and B are not unique. For any r× r invertible matrix
P, BAT = BPP−1AT =WQT = C, whereW = BP andQT = P−1AT are p×r and
r × q matrices, respectively. Thus, WQT = C is another decomposition of C [Ruan
(2019)]. Chen and Huang (2016) suggest to add the constraints that AT ΩA = Ir and
BTSxB is diagonal to ensure identifiability, where Sx is the sample covariance matrix
of the predictor X.

Assume r, D and Ω are known. Then the RRR optimization problem is:

min
A,B

1
n
tr[(Y-ZD−XBAT )T (Y-ZD−XBAT )Ω]

s.t. AT ΩA = Ir and BTSxB is diagonal
(2.2.4)

We do not impose a rank constraint on the confounder coefficient matrix D; we
include confounders in our model to ensure correct estimates of A and B, and do not
want to impose any shrinkage on D that could compromise estimation of A and B.
Estimation of D will be discussed in section (2.4).
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The RRR model helps achieve the goal of dimension reduction by introducing the
latent factors (XB) that explain the main variation in Y - ZD [Ruan (2019)], but it
does not support variable selection and covariance estimation. In the next section we
discuss an approach called Cov-SRRR that does.

2.3 SRRR with Covariance Estimation

Compared to the RRR model, the Cov-SRRR model brings in two regularization
penalties on the negative log-likelihood function. A row-wise penalty on the matrix
B ensures variable selection, while an element-wise LASSO penalty on the inverse-
covariance matrix Ω stabilizes covariance estimation.

To introduce sparsity, we replace the constraint on B with a row-wise penalty:

p∑
j=1

λj

√√√√ r∑
i=1

(Bj
i )2 =

p∑
j=1

λj

∥∥∥Bj
∥∥∥

2
(2.3.1)

where Bj is the jth row of the matrix B, λj is a tuning parameter for the jth row of
B, and‖·‖2 is the L2 norm of a row vector. For computational efficiency, we set all λ′js
to be equal. Thus, for fixed D and Ω, we consider the following objective function:

min
A,B

1
n
tr[(Y-ZD−XBAT )T (Y-ZD−XBAT )Ω] + λ1

p∑
j=1

∥∥∥Bj
∥∥∥

2
(2.3.2)

s.t. AT ΩA = Ir

By penalizing rows of the coefficient matrix B, we cause shrinkage of the coefficients
Bj towards zero. An all-zero vector is equivalent to excluding the corresponding pre-
dictor variable Xj [Chen and Huang (2012)].

The solution of A and B is unique up to an r × r orthogonal matrix [Chen
and Huang (2016)]. Specifically, for any orthogonal matrix W, WWT = Ir so that,
BAT = BWWTAT = B∗A∗T , where B∗ = BW and A∗ = AW.

For fixed A and B, the inverse covariance matrix Ω is estimated by penalized
maximum likelihood. We apply the following LASSO penalty on Ω [Chen and Huang
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(2016)]:

λ2
∑
j 6=j′

∣∣∣ωjj′

∣∣∣ (2.3.3)

where ωjj′ is the (j, j’) entry in Ω, j′ 6= j, λ2 is a tuning parameter and |·| denotes
absolute value. This penalty encourages sparsity by penalizing all the off-diagonal el-
ements of Ω. Thus, for fixed A, B and D we consider the following objective function:

min
Ω

tr(SeΩ)− log |Ω|+ λ2
∑
j 6=j′

∣∣∣ωjj′

∣∣∣ (2.3.4)

where Se = 1
n
(Y-ZD −XBAT )T (Y-ZD −XBAT ) is the sample covariance matrix

of E.

Combining the above two sparsity-inducing penalties (2.3.1) and (2.3.3) to the
RRR model, and considering D to be a free parameter, the penalized negative log-
likelihood function becomes:

min
A,B,D,Ω

1
n
tr[(Y - ZD−XBAT )T (Y - ZD−XBAT )Ω]

− log |Ω|+ λ1

p∑
j=1

∥∥∥Bj
∥∥∥

2
+ λ2

∑
j 6=j′

∣∣∣ωjj′

∣∣∣ ,
s.t.AT ΩA = Ir

(2.3.5)

2.4 Computational Algorithm

In order to solve the complex optimization problem in (2.3.5), we divide the objective
function into two parts, with just one penalty term in each part. To be more specific,
the Cov-Con-SRRR algorithm algorithm for minimizing the penalized negative log-
likelihood iterates between updating Ω for fixed (A, B, D) and updating (A, B, D)
for fixed Ω [Chen and Huang (2016)].

For fixed (A, B, D), the objective function for solving Ω is:

min
Ω

1
n
tr[(Y-ZD−XBAT )T (Y-ZD−XBAT )Ω]

− log |Ω|+ λ2
∑
j 6=j′

∣∣∣ωjj′

∣∣∣ (2.4.1)
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According to Chen and Huang (2016), the above problem can be solved by using
the dual-primal graphical LASSO (DP-GLASSO) algorithm [Mazumder and Hastie
(2012)]. However, the objective function in DP-GLASSO includes a penalty on all
elements of the precision matrix Ω, where as the penalty term in (2.4.1) indicates
that we are not supposed to penalize the diagonal elements of Ω. Furthermore, Halani
(2016) found that there exists convergence problems when we use the DP-GLASSO
algorithm. In this project, instead of the DP-GLASSO, we use a flexible R package
called CVXR that is designed for convex optimization problems, including GLASSO,
to solve the problem in (2.4.1).

Given Ω, we update A, B and D by solving the following objective function:

min
A,B,D

1
n
tr[(Y - ZD−XBAT )T Ω(Y - ZD−XBAT )]

− log |Ω|+ λ1

p∑
j=1

∥∥∥Bj
∥∥∥

2

s.t.AT ΩA = Ir

(2.4.2)

Let Ã = Ω
1
2A, then the objective function becomes:

1
n
tr[((Y-ZD)Ω 1

2 −XBÃT )T ((Y-ZD)Ω 1
2 −XBÃT )] + λ1

p∑
j=1

∥∥∥Bj
∥∥∥

2

= 1
n

∥∥∥∥(Y-ZD)Ω 1
2 −XBÃT )

∥∥∥∥2
+ λ1

p∑
j=1

∥∥∥Bj
∥∥∥

2

= 1
n

∥∥∥∥(Ỹ− ZD̃)−XBÃT )
∥∥∥∥2

+ λ1

p∑
j=1

∥∥∥Bj
∥∥∥

2
,

where D̃ = DΩ
1
2 and Ỹ = YΩ

1
2 , and the constraint becomes ÃT Ã = Ir. Thus,

(2.4.2) becomes:

min
Ã,B,D̃

1
n

∥∥∥∥(Ỹ− ZD̃)−XBÃT )
∥∥∥∥2

+ λ1

p∑
j=1

∥∥∥Bj
∥∥∥

2

s.t.ÃT Ã = Ir

(2.4.3)

For fixed D, the above optimization problem is a standard SRRR of the residuals
Y - ZD on X and the solution can be obtained by iterating between solutions of Ã or
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B holding the other fixed. Extending this idea, the solution to (2.4.3) can be obtained
using a block-wise coordinate descent (BCD) algorithm[Nutini et al. (2017)]; that is
we update (Ã,B, D̃) one at a time while leaving the others unchanged.

First, update Ã for fixed (B, D̃). Equation (2.4.3) can be viewed as

min
Ã

∥∥∥∥(Ỹ− ZD̃)−XBÃT
∥∥∥∥2
,

s.t.ÃT Ã = Ir

(2.4.4)

and the above (2.4.4) optimization problem is known as a orthogonal Procrustes
problem with solution Ã = UVT , where U and V are from the singular-value de-
composition of (Y− ZD)TXB = UDVT [Ruan (2019)].

Second, update B for fixed Ã and D̃. Following Chen and Huang (2012), we show
in Appendix A that

∥∥∥∥(Ỹ− ZD̃)−XBÃT )
∥∥∥∥2

=
∥∥∥(Ỹ− ZD̃)Ã−XB

∥∥∥2
+K, (2.4.5)

for a term K that is constant in B. Inserting the above into equation (2.4.3) implies
that to update B for fixed (Ã, D̃) we solve:

min
B

∥∥∥(Ỹ− ZD̃)Ã−XB
∥∥∥2

+ λ1

p∑
j=1

∥∥∥Bj
∥∥∥

2
(2.4.6)

which is a standard convex optimization problem with unknown variable B. We are
searching for a penalized matrix B that trades off small differences between (Ỹ −
ZD̃)Ã and XB, with small values of the coefficients.

Lastly, we update D̃ for fixed (Ã and B). Equation in (2.4.3) can be written as

min
D̃

∥∥∥∥(Ỹ− ZD̃)−XBÃT
∥∥∥∥2

= min
D̃

∥∥∥∥(Ỹ−XBÃT )− ZD̃
∥∥∥∥2 (2.4.7)

which is an ordinary least-squares regression of Y − XBAT on Z with unknown
variable D̃. We are looking for a matrix D̃ that maximizes the linear association
between (Ỹ−XBÃT ) and Z.
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To summarize, the Cov-Con-SRRR algorithm estimates the precision matrix Ω
for fixed (A, B, D) by applying the GLASSO algorithm, and estimates (A, B, D)
for fixed Ω using a block-wise coordinate decent method that can be viewed as an
extension of the standard approach to solving the SRRR problem. The algorithm is
shown in Algorithm 1, below.

Algorithm 1: Sparse reduced-rank regression with covariance estimation
and confounders adjustment
Input: X, Y, Z, λ1, λ2, r
Output: A, B, D, Ω
initialization;
while objective function in (2.3.5) not converged do

For fixed (A, B, D), estimate Ω with objective function (2.4.1) via
GLASSO algorithm;
For fixed Ω, estimate (Ã,B, D̃) defined by the standard SRRR problem
(2.3.5), where Ã = Ω

1
2A and D̃ = DΩ

1
2 . Set A = Ω−

1
2 Ã and

D = D̃Ω−
1
2 ;

while objective function in (2.4.2) not converged do
For fixed (B, D̃), update Ã defined by the orthogonal Procrustes
problem (2.4.4);
For fixed (Ã, D̃), update B defined by the SRRR problem (2.4.6);
For fixed (Ã,B), update D̃ defined by the OLS problem (2.4.7);

end
end
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Chapter 3

Results

In this section, we set up two studies to test our Cov-Con-SRRR algorithm. Both
studies include the tuning parameter determination, estimation of the matrices of
coefficients and the precision matrix, variable importance, and comparisons between
the Cov-Con-SRRR and the Cov-SRRR on adjusted variables. Ruan (2019) found
that as rank increases, the computing cost associated with fitting the model also
increases. Thus, to limit computation, we decided to choose rank r = 1.

3.1 Genetic Data

The genetic data we used in this section is from ADNI-1 (http://adni.loni.usc.edu/study-
design/). We use the subset of 200 cognitively-normal (CN) subjects. We applied
PCA on SNP genotypes obtained from all 33 genes and used the top 10 PCs as our
confounding variable Z. The predictor variables X include 397 SNPs from the gene
NEDD9 and the response variables Y are 56 MRI measurements. For the predictor
matrix, we removed SNPs with more than 5% missing values, and then subjects with
more than 5% missing values. Unfortunately this left only 64 subjects and 360 SNPs
for our analysis.
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3.1.1 Imaging Phenotype Data

The response variables are 56 measures of volumes or cortical thicknesses from
28 brain regions of interest (ROIs) and both hemispheres. These measures were from
baseline MRI scans in the ADNI-1 study and were adjusted for covariates such as age,
gender, education level, handedness and baseline intracranial volume. Since handed-
ness and baseline intracranial volume could have a genetic basis and be confounders,
we might need to directly adjust those two covariates in future work. The following
table gives a brief description of each ROI.

Phenotype ID Measurement Cerebral region
1 AmygVol Volume Amygdala
2 CerebCtx Volume Cerebral cortex
3 CerebWM Volume Cerebral white matter
4 HippVol Volume Hippocampus
5 InfLatVent Volume Inferior lateral ventricle
6 LatVent Volume Lateral ventricle
7 EntCtx Thickness Entorhinal cortex
8 Fusiform Thickness Fusiform gyrus
9 InfParietal Thickness Inferior parietal gyrus
10 InfTemporal Thickness Inferior temporal gyrus
11 Midtemporal Thickness Middle temporal gyrus
12 Parahipp Thickness Parahippocampal gyrus
13 PostCing Thickness Posterior cingulate
14 Postcentral Thickness Postcentral gyrus
15 Precentral Thickness Precentral gyrus
16 Precuneus Thickness Precuneus
17 SupFrontal Thickness Superior frontal gyrus
18 SupParietal Thickness Superior parietal gyrus
19 SupTemporal Thickness Superiot temporal gyrus
20 Supramarg Thickness Supramarginal gyrus
21 TemporalPole Thickness Temporal pole

22 MeanCing Mean thickness Caudal anterior cingulate, isthmus cin-
gulate, posterior cingulate, and rostral
anterior cingulate
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23 MeanFront Mean thickness Caudal midfrontal, rostral midfrontal,
superior frontal, lateral orbitofrontal,
and medial orbitofrontal gyri and
frontal pole

24 MeanLatTemp Mean thickness Inferior temporal, middle temporal,
and superior temporal gyri

25 MeanMedTemp Mran thickness Fusiform, parahippocampal, and lin-
gual gyri, temporal pole and transverse
temporal pole

26 MeanPar Mean thickness Inferior and superior parietal gyri,
supramarginal gyrus, and precuneus

27 MeanSensMotor Mean thickness Precentral and postcentral gyri

28 MeanTemp Mean thickness Inferior temporal, middle temporal,
superior temporal, fusiform, parahip-
pocampal, and lingual gyri, temporal
pole and transverse temporal pole

Table 3.1: Brain Imaging Phenotypes: IDs and descriptions of 28 brain regions from
each hemisphere, taken from Table 2.1 of Szefer (2014). Baseline structural MRI
measurements of a total of 56 (=28 × 2) regions from left and right hemisphere were
estimated

3.1.2 Tuning Process

Considering the limited sample size, we set up a 4-fold cross-validation (CV) along
with a hyper grid of λ1 and λ2 to determine the optimal values of tuning parameters.
Thus, for the CV, we split the dataset into four equal folds and build the model based
on three folds. Then predict the response variable for the hold-out fold and compute
the mean square prediction error (MSPE). Repeat the above process for each fold
and calculate the average MSPE for each combination of λ1 and λ2. The one with
minimum average MSPE will be the final optimal values of λ1 and λ2. Notice that λ1

is the tuning parameter for the coefficient matrix B̂ and λ2 is the tuning parameter
for the precision matrix Ω̂.
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We set up a 7× 7 grid of λ1 and λ2 for tuning and both take the values from the
set {0.01, 0.1, 0.5, 1, 5, 50, 100}. Results are shown in Table 3.2 and Figure 3.1; we
see a minimum MSPE value of 1.206 at λ1 = 0.5 and λ2 = 0.1.

λ1

λ2 0.01 0.1 0.5 1 5 50 100

0.01 4.227 1.461 2.328 4.723 3.172 3.158 3.16
0.1 3.213 1.273 1.594 1.724 1.506 1.487 1.485
0.5 1.213 1.206 1.226 1.336 1.259 1.258 1.258
1 1.213 1.215 1.207 1.241 1.213 1.213 1.213
5 1.213 1.213 1.213 1.213 1.213 1.213 1.213
50 1.213 1.213 1.213 1.213 1.213 1.213 1.213
100 1.213 1.213 1.213 1.213 1.213 1.213 1.213

Table 3.2: Genetic data: summary of MSPE

Figure 3.1: Genetic Data: 3D surface of MSPEs; x-axis and y-axis are in log scale

3.1.3 Estimated Coefficients

We set λ1 = 0.5 and λ2 = 0.1 based on the results above. With these values of
the tuning parameters, the estimated coefficient matrix B̂ has only one non-zero row,
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corresponding to SNP 34, rs149860773, which suggests that variation in the SNP
rs149860773 in gene NEDD9 is associated with differences in the brain ROIs.

Table 3.3 below shows the top 10 absolute value coefficients in the estimated Â and
the brain ROIs that they correspond to. SupParietal, Precuneus, InfParietal, Post-
central, MeanPar, Precentral, MeanSensMotor, Supramarg in the left-hemisphere and
Precuneus, SupParietal in the right-hemisphere are the top 10 ROIs that associated
with the SNP 34.

ROIs hemisphere measurements estimated A
SupParietal Left Thickness 0.7
Precuneus Left Thickness 0.69
InfParietal Left Thickness 0.68
Postcentral Left Thickness 0.66
MeanPar Left Mean thickness 0.63
Precentral Left Thickness 0.57

MeanSensMotor Left Mean thickness 0.54
Precuneus Right Thickness 0.54
SupParietal Right Thickness 0.53
Supramarg Left Thickness 0.52

Table 3.3: Top 10 coefficients in the estimated A and their corresponding brain ROIs

3.1.4 Estimated Precision Matrix

The estimated precision matrix Ω̂ has 1143 out of 1540 nonzero off-diagonal el-
ements. A heatmap of the estimated values is shown in Figure 3.2. The noticeable
banding of negative values on the off-diagonal (e.g., between response variables 1 and
29, 2 and 30, 3 and 31, etc.) correspond to positive covariances between left- and
right-hemisphere measures of the same brain ROIs.
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Figure 3.2: Estimated precision matrix: Heatmap

3.1.5 Variable Importance

We also generate 100 bootstrap samples to assess the variable importance for
SNP 34 (rs149860773 ). We fit 100 Cov-Con-SRRR models with λ1 = 0.5 and λ2 =
0.1. Seven of them failed to converge, while the remaining 93 models returned valid
coefficient matrices B̂. Recall from equation (2.3.2) that setting the row of B to zero
is equivalent to excluding the corresponding predictor variable X. We find that 19
out of 93 models select SNP 34, giving an importance probability 20.43%.

3.1.6 Confounder adjustment

Here we compare the results of our Cov-Con-SRRR to Cov-SRRR with adjusted
response and predictor variables. The adjustments to the response variables Y and
predictor variables X are as follows. We perform a regression of Y on Z and calculate
the residuals eY from this regression. These contain the information about the part
of Y not explained by Z. We then perform a regression of X on Z, and calculate the
residuals eX from this regression. These represent the part of X not explained by Z.

With the data from ADNI-1 we find that the Cov-SRRR of eY on eX gives an
estimated B with three non-zero rows, corresponding to SNPs 34, 314 and 349.
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The Cov-SRRR of eY on eX gives an estimated Ω that has similar pattern of
banding compared to the results of Cov-Con-SRRR. A heatmap of the estimated
values is shown in figure 3.3.

Figure 3.3: Cov-SRRR on residuals: Estimated precision matrix heatmap

3.2 Simulated Data Study

Following Chen and Huang (2016), we generate some simulated data to test the
Cov-Con-SRRR algorithm with q = 4 response variables. To ensure enough sample
size and high dimensional data, we set n = 400 subjects and p = 1000 predictor
variables. To limit computations, we again decided to choose rank r = 1.

3.2.1 Simulated Data

We suppose a source population that consists of four different sub-populations.
From each sub-population we sample 100 subjects and 10000 genome-wide SNPs
markers for each subject. SNP genotypes are simulated independently from population-
specific minor allele frequencies (MAFs) from the CDX (Chinese Dai in Xishuang-
banna, China), CHB (Han Chinese in Bejing, China), FIN (Iberian population in
Spain), and IBS (Finnish in Finland) populations in the 1000Genomes database.
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We apply PCA to the simulated genome-wide genotypes. The following plots show
that the top 3 PCs separate the four sub-populations. We choose the top 10 PCs as
our confounding variable Z, so that Z is a 400× 10 matrix.

Figure 3.4: Simulated data:PCA scree plot

Figure 3.5: Simulated data:3D PCA plot
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Figure 3.6: Simulated data:2D PCA plot

We next suppose that the target gene X consists of 1000 SNPs. Following [Chen
and Huang (2016)], we generate the error matrix E400×4 from N(0, σ2Σe), where

σ and Σe are 0.1 and


1 0.9 0 0

0.9 1 0 0
0 0 1 0.9
0 0 0.9 1

, respectively. For the coefficient matrix

B1000×1, the first five column were set to 1 and the remaining 1000 - 5 columns were
set to zero. The elements of the matrix A4×1 and D10×4 are set to 1.

We randomly select 1000 markers from the 10000 genome-wide SNP markers,
such that X is a 400 × 1000 predictor matrix. The simulated response variable can
be written as:

Y = XBAT + ZD + E

where Y is a 400× 4 matrix.

3.2.2 Tuning Process

Using a 5 fold-CV strategy, we set up a 8 × 8 grid of λ1 and λ2 for tuning and
both take the values from the set {0.001, 0.01, 0.1, 0.5, 1, 5, 50, 100}.

Results are shown in Table 3.4 and Figure 3.7; we see a minimum MSPE value of
0.134 at λ1 = 0.1 and λ2 = 5.
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λ1

λ2 0.001 0.01 0.1 0.5 1 5 50 100

0.001 7.801 1.028 0.554 0.274 0.267 0.179 0.173 0.173
0.01 14.648 0.688 0.170 0.259 0.238 0.172 0.174 0.167
0.1 4.497 3.013 1.001 0.159 0.136 0.134 0.134 0.236
0.5 3.531 3.416 2.508 0.219 0.174 0.182 0.182 0.165
1 4.381 4.359 4.114 1.668 0.499 0.476 0.476 0.476
5 4.390 4.390 4.390 4.390 4.390 4.390 4.390 4.390
50 4.390 4.390 4.390 4.390 4.390 4.390 4.390 4.390
100 4.390 4.390 4.390 4.390 4.390 4.390 4.390 4.390

Table 3.4: Simulated data: summary of MSPE

Figure 3.7: Simulated Data: 3D surface of MSPEs; x-axis and y-axis are in log scale

3.2.3 Estimated Coefficients

Based on the CV results from Section 3.2.2, we set λ1 = 0.1 and λ2 = 5. The
estimated coefficient matrix B̂ has 105 non-zero rows including the 5 truly associated
SNPs in B, which means that the 105 non-zero SNP markers are considered to be
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important and associated with the response variable Y. This is in contrast to the five
non-zero rows in the matrix B used to simulate the data.

We also generate 100 bootstrap samples to assess the variable importance of the 5
truly associated SNPs. We find that all 100 Cov-Con-SRRR models select the 5 truly
associated SNPs, giving an importance probability 100%.

Table 3.5 below shows the estimated coefficients in Â and the response features
that they correspond to. Recall from Chapter 2 that A is only unique up to an r× r
orthonormal matrix. In the case of r = 1 the orthonormal matrices are 1 and −1;
i.e., the results are unique up to a sign change. The elements of the matrix A used to
simulate the data are all equal to 1. The elements of Â are all smaller in magnitude.

Y estimated A
feature 1 -0.1709
feature 2 -0.1661
feature 3 -0.1684
feature 4 -0.1619

Table 3.5: Coefficients in the estimated A and their corresponding response features

Since the estimated B coefficients could compensate for the smaller Â, we decide
to compare the estimated BAT to true BAT . The mean squared difference between
the estimate Ĉ = B̂Â

T and the matrix C = BAT used to simulated the data is:

diff = 1
n

∑
(BAT − B̂Â

T )2 = 2.7026× 10−5

The mean squared difference between the matrix D used to simulate the data and
its estimate D̂ is:

diff = 1
n

∑
(D− D̂)2 = 3.2675× 10−6

3.2.4 Estimated Precision Matrix

The estimated precision matrix Ω̂ is diagonal. Off-diagonal elements equal to zero
means that all four response variables are conditionally independent from each other,

22



given all other variables. This is in contrast to the Ω used to simulate the data, which
included correlation between the Yi’s. Thus, the penalization in estimation of the
precision matrix appears to over-shrink the estimates to zero.

3.2.5 Confounder adjustment

Here we compare the results of our Cov-Con-SRRR to Cov-SRRR on adjusted
response and predictor variables, where the adjusted variable are residuals from re-
gression on the confounding variables. Following the same procedure in the genetic
study, we perform Cov-SRRR on the residuals eY on eX from regressions on the con-
founder variables Z. The resulting estimated B̂ has 117 non-zero rows and the 5 truly
associated SNPs were included.
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Chapter 4

Conclusions

This project demonstrates an approach we call Cov-Con-SRRR for multiple-response
regression that incorporates shrinkage and variable selection of predictor variables and
covariances, and direct adjustment for confounder variables. Prior to this approach,
the only method for confounder adjustment was to perform Cov-SRRR on residual
response and predictor variables, where the residuals are from regressions on the
confounder variables.

We applied the algorithm to genetic data that includes 64 cognitively normal sub-
jects from the ADNI-1 study to explore the relationship between 56 brain imaging
measures and 360 SNPs from the gene NEDD9. To adjust for population structure we
included the top 10 PCs calculated from genome-wide SNPs as confounders. Tuning
parameters were determined by 4-fold CV over a 7× 7 hyper grid of λ1 and λ2. Our
Cov-Con-SRRR results suggest that a single SNP, rs149860773, in NEDD9 is asso-
ciated with the phenotypes. However, the variable importance of rs149860773 was
a relatively modest 20.43%. The estimated precision matrix Ω̂ is non-diagonal, with
correlations between left- and right-hemisphere measures of the same brain region.
Repeating the analysis as a standard Cov-SRRR on residual phenotypes and predic-
tors, adjusted for the confounders, suggested three SNPs with non-zero coefficients.

Choi et al. (2019) also studied associations between the 56 brain phenotypes and
SNPs in NEDD9. They found that the SNP rs16871157 is associated with measures
of cortical thickness. We were not able to replicate this finding because rs16871157
was removed during data cleaning. This, and the small sample size of 64 were conse-
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quences of excessive missing genetic data, despite efforts at data imputation. Thus,
an important area for future work is to revisit the imputation process in an attempt
to include more subjects and more SNPs in the analysis.

We also tested the algorithm on simulated data for 400 subjects, where the 400
individuals were generated from four different populations. After selection of the
tuning parameters we found 105 SNPs with non-zero coefficients. However, the true
coefficient matrix B has only 5 non-zero rows and all of them were included in the
105 SNPs. The 100 bootstrap samples also show that the variable importance of the
5 truly associated SNPs are 100%. Thus, shrinkage on the matrix B did not achieve
the same degree of sparsity as the truth. Unlike the results in the genetic study, the
estimated precision matrix Ω̂ in this simulated data study is diagonal, even though
the true precision matrix is non-diagonal. Thus, for estimation of the precision matrix,
penalization leads to over-shrinkage. Repeating the analysis as a standard Cov-SRRR
on residual phenotypes and predictors, adjusted for the confounders, suggested 117
SNPs with non-zero coefficients and the 5 truly associated SNPs were included.

We have to assign initial values for A, B, and D before applying the algorithm.
In this project, we choose to use the OLS solution of D in (2.1.3) as the initial start,
and there is an R function called rrr() that fits a reduced-rank regression and returns
the estimated coefficients of A and B. It is also possible to randomly assign the value
of A, B, and D. But under this situation, most of the time our algorithm fails to
converge as the initial points might be far away from the true value.

Cov-Con-SRRR incorporates confounding variables directly into the model and
model-fitting procedure, which could offer advantages over ad hoc adjustment for
confounders through Cov-SRRR analysis of residual phenotype and predictor vari-
ables. Cov-Con-SRRR incurs an extra computational cost over Cov-SRRR on residu-
als because estimation of the confounder effects is added to the block-wise coordinate
descent of the Cov-Con-SRRR algorithm. Our analyses of real and simulated data
show that Cov-Con-SRRR and Cov-SRRR on residuals give different results, but fur-
ther study is required to assess whether Cov-Con-SRRR is better, and whether any
improvements are worth the extra computational cost. Computational costs for both
Cov-Con-SRRR and Cov-SRRR are compounded by the need to run the algorithms
repeatedly to determine values of the shrinkage parameters. For example, with the
ADNI-1 data, it takes about eight hours to tune the regularization parameters λ1 and
λ2. The computing cost associated with fitting the model also increase as the rank r
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increases. Due to computational limits, we only examined the algorithm for r = 1.
Thus, an area for future work is to develop more computationally efficient methods
for selecting the shrinkage and rank parameters.
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Appendix A

Appendix: Proof of (2.4.5)

Recall, we have the Cov-Con-SRRR model:

Yn×q = Xn×pCp×q + Zn×10D10×q + En×q

= Xn×pBp×rAT
r×q + Zn×10D10×q + En×q

where rank(C) = r, r ≤ min(p, q). And for fixed Ω, the optimization problem in
(2.4.3) for solving (Ã,B, D̃) is:

min
Ã,B,D̃

1
n

∥∥∥∥(Ỹ− ZD̃)−XBÃT )
∥∥∥∥2

+ λ1

p∑
j=1

∥∥∥Bj
∥∥∥2

s.t.ÃT Ã = Ir

where Ã = Ω
1
2A, D̃ = DΩ

1
2 and Ỹ = YΩ

1
2 . We can conclude that the matrix Ã has

orthonormal columns as ÃT Ã = Ir.

Now consider the case that C = B∗p×(q−r)A
∗
(q−r)×q

T where rank(C) = q - r, and q - r
≤ min(p, q). Then, the optimization problem in (2.4.4) for solving A∗ can be written
as:

min
Ã∗

∥∥∥∥(Ỹ− ZD̃)−XB∗Ã∗T
∥∥∥∥2
,

s.t.Ã∗T Ã∗ = Iq−r

(A.0.1)
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Thus, matrixÃ∗q×(q−r) has orthonormal columns as (Ã∗)T Ã∗ = Iq−r. Combine matrix
Ãq×r and Ã∗q×(q−r) together, matrix (Ã, Ã∗)q×q is a orthogonal matrix as its columns
are orthonormal vector.

Rewrite the objective function in (A.1), we have:
∥∥∥∥(Ỹ− ZD̃)−XBÃT

∥∥∥∥2
=
∥∥∥∥((Ỹ− ZD̃)−XBÃT )(Ã, Ã∗)

∥∥∥∥2
(A.0.2)

=
∥∥∥∥((Ỹ− ZD̃)−XBÃT )Ã | ((Ỹ− ZD̃)−XBÃT )Ã∗

∥∥∥∥2

(A.0.3)

we partitioned the matrix in (A.2) into two parts, for the left hand side of the matrix,
((Ỹ− ZD̃)−XBÃT )Ã, we have:

((Ỹ− ZD̃)−XBÃT )Ã = (Ỹ− ZD̃)Ã−XBÃT Ã = (Ỹ− ZD̃)Ã−XB (A.0.4)

For the right hand side of the matrix, ((Ỹ− ZD̃)−XBÃT )Ã∗, we have:

((Ỹ− ZD̃)−XBÃT )Ã∗ = (Ỹ− ZD̃)Ã∗ −XBÃT Ã∗ = (Ỹ− ZD̃)Ã∗ (A.0.5)

Proof. (A.5)

Matrix (Ã, Ã∗)q×q =


Ã11 . . . Ã1r Ã∗11 . . . Ã∗1(q−r)
... ... ... ... ... ...
Ãq1 . . . Ãqr Ã∗q1 . . . Ã∗q(q−r)

 is a orthogonal matrix

with orthonormal column vectors,

Thus:

ÃT

r×q · Ã
∗
q×(q−r) =


Ã11 . . . Ã1r

... ... ...
Ãq1 . . . Ãqr


T

·


Ã∗11 . . . Ã∗1(q−r)
... ... ...
Ã∗q1 . . . Ã∗q(q−r)



=


Ã11 . . . Ãq1
... ... ...
Ã1r . . . Ãqr

 ·

Ã∗11 . . . Ã∗1(q−r)
... ... ...
Ã∗q1 . . . Ã∗q(q−r)


= 0
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Combine results (A.4) and (A.5), we have:
∥∥∥∥(Ỹ− ZD̃)−XBÃT

∥∥∥∥2

=
∥∥∥∥((Ỹ− ZD̃)−XBÃT )(Ã, Ã∗)

∥∥∥∥2

=
∥∥∥∥[((Ỹ− ZD̃)−XBÃT )Ã | ((Ỹ− ZD̃)−XBÃT )Ã∗]

∥∥∥∥2

=
∥∥∥[(Ỹ− ZD̃)Ã−XB | (Ỹ− ZD̃)Ã∗]

∥∥∥2

(A.0.6)

Let W denotes (Ỹ−ZD̃)Ã−XB and let V denotes (Ỹ−ZD̃)Ã∗. Hence, (A.6) can
be written as:∥∥∥∥(Ỹ− ZD̃)−XBÃT

∥∥∥∥2
=
∥∥∥∥[W V

]∥∥∥∥2
=
√
tr(
[
W V

]T [
W V

]
)

=
√
tr(WTW) + tr(VTV) ≤

√
tr(WTW) +

√
tr(VTV) =‖W‖2 +‖V‖2

(A.0.7)

Thus, updating B for fixed Ω,A and D, we have to solve the following minimization
problem:

min
B

1
n

∥∥∥∥(Ỹ− ZD̃)−XBÃT )
∥∥∥∥2

+ λ1

p∑
j=1

∥∥∥Bj
∥∥∥

2

= min
B

∥∥∥[(Ỹ− ZD̃)Ã−XB | (Ỹ− ZD̃)Ã∗]
∥∥∥

2
+ λ1

p∑
j=1

∥∥∥Bj
∥∥∥

2

≤ min
B

[∥∥∥(Ỹ− ZD̃)Ã−XB
∥∥∥2

+
∥∥∥(Ỹ− ZD̃)Ã∗]

∥∥∥2
]

+ λ1

p∑
j=1

∥∥∥Bj
∥∥∥

2

Overall, the optimization problem for solving B for fixed Ω,A and D, up to a con-
stant, can be written as:

min
B

∥∥∥(Ỹ− ZD̃)Ã−XB
∥∥∥2

+ λ1

p∑
j=1

∥∥∥Bj
∥∥∥

2
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Appendix B

Appendix: Functions

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Chen and Huang (2016) a l gor i thm 1 as coded by Kha l i f
#updated by p ro f e s s o r Jinko Graham , Simon Fraser Un i v e r s i t y
#updated by Gloria , f o r a d j u s t i n g the confounding v a r i a b l e
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Algorithm_1 = function (Y,X, Z ,D, l1 , l2 , r ,max_i t e r =1000 ,

max_best=5, verbose=FALSE){
Y_s t a r <− Y − Z%∗%D

# I n i t i a l i z e O as a d iagona l matrix o f i n v e r s e var iances
Yvariances <− apply (Y_s tar , 2 , var ) ; O = diag (1/Yvariances )

#I n i t i a l i z e A and B as a SRRR assuming independent e r ro r s
# us ing the s r r r ( ) f unc t i on from the package rrpack .
#ab<−rrpack : : s r r r (Y_s tar ,X, nrank=r , modstr= l i s t ( lamA=l2 ))
# re turns SVD of C=BA^T
#A<− ab$V; B <− ab$U %∗% ab$D

#I n i t i a l i z e A and B as a RRR
ab<−r r r : : r r r (X, Y_s tar , type = " i d e n t i t y " , rank=1, k=.1)
A <− as .matrix ( ab$A, ncol=1)
B <− t ( as .matrix ( ab$B) )

#I n i t i a l i z e : randomly genera te A and B
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#A <− matrix ( data = rnorm( nco l (Y) , mean = 5 , sd=1) ,
# nco l = 1)

#B <− matrix ( data = rnorm( nco l (X) ) , nco l = 1)

# − I n i t i a l i z e convergence c r i t e r i o n va l u e s
# to a r b i t r a r y l a r g e numbers
obj_best <− obj_va l <− obj_di f f <− 1e10
# − I n i t i a l i z e i t e r a t i o n counters to 1
i t e r a <− 1 # main i t e r a t i o n counter
i t e r b <− 1 # number o f i t e r a t i o n s

# with curren t b e s t va lue o f ob j . func .
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# While not converged , i t e r a t e between es t ima t i on
# of O by GLASSO and (A,B) by SRRR.
while ( obj_dif f >0.001&&i t e r a <max_i t e r&&i t e rb<max_best ){

# 1. GLASSO to es t imate O fo r f i x e d A,B,D.
Sigma_R = crossprod (Y_s tar−X%∗%B%∗%t (A) )/nrow(Y_s t a r )
O = GLASSO(Sigma_R, l 2 )

# 2. SRRR on Yt i l d e=Y O^{1/2} and X to
# es t imate At i lde , B and D
Yt i lde <− Y %∗% chol (O)
Dt i lde <− D %∗% chol (O)

s s<−SRRR( Yti lde ,X, r , l1 ,max_i t e r ,max_best ,B, Dti lde , Z ,O)
B <− s s$B
A <− solve ( chol (O) ) %∗% s s$A
# At i l d e=O^{1/2}A, so A=O^{−1/2} At i l d e
D<− s s$D %∗% solve ( chol (O) )

#check whether o b j e c t i v e f unc t i on has converged
#(Chen & Huang (2016) , eqn . 4)
obj_newval = obj_fun_4(Y,X,A,B,O, l1 , l2 ,D, Z)
obj_di f f = abs ( obj_va l − obj_newval )
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obj_va l = obj_newval
i f ( verbose )
{cat ( " i t e r a t i o n ␣ " , i t e r a ,
" ␣ ob j e c t i v e ␣ func . ␣ " , obj_val , " \n " )}
# Check whether o b j e c t i v e f unc t i on has improved
i f ( i t e r a > 1 & obj_va l < obj_best ) {

obj_best <− obj_va l
i t e r_best <− i t e r a
O_best <− O; B_best <− B;
A_best <− A; D_best <− D
i t e r b <− 1

} else {
i t e r b <− i t e r b + 1

}
i t e r a = i t e r a+1

}
i f ( i t e r a==max_i t e r )

warning ( " did ␣not␣ converge ␣ a f t e r " ,max_i t e r , " i t e r a t i o n s \n " )
return ( l i s t (A = A_best ,B = B_best ,
D = D_best , O = O_best , i t e r=i t e r a , obj=obj_best ) )

}

# Khal i f ’ s f unc t i on to e va l ua t e o b j e c t i v e f unc t i on 4
# ( the nega t i v e o f the p ena l i z e d log− l i k e l i h o o d )
# from CH. This i s used to monitor convergence .

obj_fun_4 = function (Y,X,A,B,O, l1 , l2 ,D, Z){
n = nrow(Y)
Y_s t a r <− Y−Z%∗%D
Sigma_R = crossprod (Y_s tar−X%∗%B%∗%t (A) )/n
t1 <− sum(diag ( Sigma_R%∗%O))
t2 <− −log ( det (O) )
#t1+t2 = nega t i v e log− l i k e l i h o o d func .
t3 <− l 2∗sum(abs (O[ row(O) !=col (O) ] ) )
#element−wise LASSO pena l t y on Omega
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t4 <− l 1∗sum( sqrt ( rowSums(B^2)) )
#row−wise s pa r s i t y −induc ing pena l t y on B
return ( t1+t2+t3+t4 )

}

## GLASSO Update to $\Omega$
GLASSO <− function ( Sigma_R, l 2 ){

l ibrary (CVXR)
p <− nrow( Sigma_R)
O<− Var iab le (c (p , p ) , PSD=TRUE)
# Semide f i n i t e p∗p p r e c i s i on matrix to op t imize over
obj <− matrix_trace ( Sigma_R%∗%O) − log_det (O) +

l2∗p_norm(O−diag (diag (O) ) , p=1) #ob j e c t i v e func .
prob <− Problem (Minimize ( obj ) ) # de f i n e problem
r e s u l t <− solve ( prob ) # so l v e problem
as .matrix ( r e s u l t $getValue (O) )

}

# Implementation o f GLASSO using t o o l s from CVXR.
# Note : The pena l t y term inc l ud e s the d iagona l matrix d iag (O)
# whose d iagona l e lements are those o f O.
# In R, you need to c a l l d iag tw ice to ge t such a matrix ,
# once to e x t r a c t the vec t o r o f d iagona l terms from O and
# a second time to make a d iagona l matrix out o f t h i s v e c t o r .

## SRRR Update to $A$ , $B$ and $D$
SRRR <− function ( Yti lde ,X, r , l1 ,max_i t e r ,

max_best ,B, Dti lde , Z ,O) {
i t e r a <− i t e r b <− 1
obj_va l <− 1e10 ; obj_best <− 1e10
obj_di f f <− 10000
while (abs ( obj_di f f )>0.001&&

i t e r a < max_i t e r&&i t e r b < max_best ){

# 1. Update A fo r f i x e d B, D
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Y <− Yt i lde %∗% solve ( chol (O) )
D<− Dti lde %∗% solve ( chol (O) )

Y_s t a r <− Yti lde− Z%∗%Dti lde
svd_r e s u l t s = svd ( t (Y − Z %∗% D)%∗%X%∗%B, nu=r , nv=r )
A = svd_r e s u l t s $u%∗%t (svd_r e s u l t s $v )

# 2. Update B fo r f i x e d A, D
# using the op t imi ze r from the CVXR package
n <− nrow(Y_s t a r ) ; p <− ncol (X) ; q <− ncol (Y)
BB <− Var iab le ( rows=p , c o l s=r )
# Var iab l e to op t imize over

obj <− sum( ( ( Yt i lde − Z%∗%Dti lde )%∗%A − X%∗%BB)^2)/n +
l1∗sum(p_norm(BB, p=2,axis=1))
# SRRR o b j e c t i v e f unc t i on

prob <− Problem (Minimize ( obj ) ) # de f i n e problem
r e s u l t <− solve ( prob ) # so l v e problem
B <− matrix ( r e s u l t $getValue (BB) ,

ncol=r ,nrow=p) # ex t r a c t s o l u t i o n

# 3. Update D fo r f i x e d A, B
# using the op t imi ze r from the CVXR package
n <− nrow(Y) ; q <− ncol (Y)
DD<− Var iab le ( rows=nrow(D) , c o l s=q)
# Variab l e to op t imize over , 10 PCs

obj <− sum( ( Yt i lde − X%∗%B%∗%t (A)−Z%∗%DD)^2)/n +
l1∗sum(p_norm(B, p=2,axis=1))
# SRRR o b j e c t i v e f unc t i on

prob <− Problem (Minimize ( obj ) ) # de f i n e problem
r e s u l t <− solve ( prob ) # so l v e problem
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Dti lde <− matrix ( r e s u l t $getValue (DD) ,
ncol=q ,nrow=nrow(D) ) # ex t r a c t s o l u t i o n

#check whether o b j e c t i v e f unc t i on has converged
obj_newval = r e s u l t $value
obj_di f f = ( obj_va l − obj_newval )
obj_va l = obj_newval
# Check f o r improvement , i f i t e r a > 1
i f ( i t e r a > 1 & obj_va l < obj_best ) {

obj_best <− obj_va l
i t e r_best <− i t e r a
A_best <− A
D_best <− Dti lde
B_best <− B
i t e r b <− 1

} else {
i t e r b <− i t e r b + 1

}
i t e r a = i t e r a+1

}
return ( l i s t (A=A_best ,B=B_best , D=D_best ) )

}

## Cross Va l i da t i on

∗ The f o l l ow i n g i s code for
c r o s s v a l i d a t i o n taken from [ @Halani2016 ] .

do_cv = function ( params ,Y,X, Z ,D,num_f o l d s ){
l 1 = params [ 1 ] #tuning f o r matrix B
l 2 = params [ 2 ] #tuning f o r matrix O
i f ( length ( params)==3){
r = params [ 3 ]
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} else {
r = 1 #se t d e f a u l t f o r r=1
}
f o l d_s i z e = nrow(Y)/num_f o l d s

f o l d_e r r = numeric ( length = num_f o l d s )
for ( k in 1 :num_f o l d s ){
Y_in = Y[−c ( ( ( k−1)∗ f o l d_s i z e +1):( k∗ f o l d_s i z e ) ) , ]
X_in = X[−c ( ( ( k−1)∗ f o l d_s i z e +1):( k∗ f o l d_s i z e ) ) , ]
Z_in = Z[−c ( ( ( k−1)∗ f o l d_s i z e +1):( k∗ f o l d_s i z e ) ) , ]

Y_out = Y[ c ( ( ( k−1)∗ f o l d_s i z e +1):( k∗ f o l d_s i z e ) ) , ]
X_out = X[ c ( ( ( k−1)∗ f o l d_s i z e +1):( k∗ f o l d_s i z e ) ) , ]
Z_out = Z [ c ( ( ( k−1)∗ f o l d_s i z e +1):( k∗ f o l d_s i z e ) ) , ]

r e s = Algorithm_1(Y_in ,X_in , Z_in ,D, l1 , l2 , r )

f o l d_e r r [ k ] = pred_e r r (Y_out ,X_out , Z_out ,
r e s$A, r e s$B, r e s$D)
#de f ined pred_err ( ) be low as mse

message (paste (k , " f o l d s ␣done ! " ) )
}
mean_e r r = mean( f o l d_e r r )
print (paste ( "MSE: " ,mean_e r r ) )
return (mean_e r r )
}

pred_e r r = function (Y_out , X_out , Z_out , A, B, D){
Yhat = X_out %∗% B %∗% t (A) + Z_out%∗%D
mse = sum( (Y_out − Yhat )^2) / ( length (Yhat ) )
return (mse )
}
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Appendix C

Appendix: Genetic study

## Imaging data − MRI ( from ADNI−1, ADNIGO/2)
mri <− read . csv ( "MRI_ALL_MERGE. csv " )
mri <− mri [ , −1]

## Confounders
a l l c h r <− read . table ( "ADNI1_f i n a l_pca . e i genvec " )
colnames ( a l l c h r ) [ 3 : 1 2 ] <− c ( "PC1" , "PC2" , "PC3" , "PC4" ,

"PC5" , "PC6" , "PC7" , "PC8" , "PC9" , "PC10" )
row .names( a l l c h r ) <− a l l c h r [ , 1 ]
a l l c h r <− a l l c h r [ ,−c ( 1 , 2 ) ]

#e i g enva l u e s
a l l c h r . va l <− read . table ( "ADNI1_f i n a l_pca . e i g enva l " )
rownames( a l l c h r . va l ) <− c ( "PC1" , "PC2" , "PC3" , "PC4" , "PC5" ,

"PC6" , "PC7" , "PC8" , "PC9" , "PC10" )

#change the i n d i v i d u a l ID
pattern3 <− row .names( a l l c h r )
sub_id <− s t r sp l i t ( pattern3 , "_" )
sample_id_temp <− NULL
sample_id <− NULL
for ( i in 1 :691){ #sample s i z e 691 in ADNI1
sample_id_temp [ i ] <− as .numeric (sub_id [ [ i ] ] [ 3 ] )

}
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sample_id <− paste (sample_id_temp , " b l " , sep = "_" )
rownames( a l l c h r ) <− sample_id

## ADNI1 1 − chr 6 ; gene NEDD9;
po s i t i o n : 11 ,183 ,298 −11 ,232 ,668

l ibrary ( gen io )
#chr6 <− read_bim ("ADNI1_chr_6 . bim ")
#ADNI1_NEDD9_ l i s t <− chr6 [ chr6$pos >= 11183298

& chr6$pos <= 11232668 , ]
#wr i t e . t a b l e (ADNI1_NEDD9_ l i s t $ id ,
"ADNI1_NEDD9_gene_l i s t . txt " ,row .names = F,

sep = " \ t " , quote = F)
#go back and run PLINK,
#e x t r a c t gene NEDD9 based on the SNPs l i s t

adni1_nedd9 <− read_p l ink ( "ADNI1_gene_NEDD9" )
colnames ( adni1_nedd9$X) <− adni1_nedd9$fam$fam

#Orig ina l data , t o t a l 397 f ea tu r e s ,
#691 s u b j e c t s ( wi th a l o t NA)
nedd9_adni1 <− as . data . frame ( t ( adni1_nedd9$X))

## CN su b j e c t
xx <− read . del im ( " genosCN . dat " , header=T, sep=" ␣ " )
yy <− read . del im ( " phenosCN . dat " , header = T, sep=" ␣ " )
xx . sub j e c t <− row .names( xx )

CN<− nedd9_adni1 [rownames( nedd9_adni1)%in% xx . subject , ]
#178 sub j e c t s , 397 f e a t u r e s
#Overa l l miss ing v a r i b l e p l o t
l ibrary ( naniar )
v i s_miss (CN, show_perc_col = T)

#miss ing in row or column , percentage
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missing_in_row <− NULL
for ( i in 1 :nrow(CN) ) {

missing_in_row [ i ] <− (sum( i s .na(CN[ i , ] ) ) /397)∗100
}

missing_in_col <− NULL
for ( j in 1 : ncol (CN)){

missing_in_col [ j ] <− (sum( i s .na(CN[ , j ] ) ) /178)∗100
}

row_missing <− data . frame ( x=missing_in_row , y=c ( 1 : 1 7 8 ) )
col_missing <− data . frame ( x=missing_in_col , y=c ( 1 : 3 9 7 ) )

hist (row_missing$x , breaks = 100 ,
xlab = "NA␣value ␣ in ␣row␣(%) " )

hist ( col_missing$x , breaks = 100 ,
xlab = "NA␣value ␣ in ␣column␣(%) " )

#f i l t e r out miss ing data
#i f row has over 5% missing , then d e l e t e
#i f column has over 5% missing , then d e l e t e
f i l t e r_missing <− CN[missing_in_row < 5 ,missing_in_col < 5 ]
#172 sub j e c t s , 360 f e a t u r e s
v i s_miss ( f i l t e r_missing )

#clean a l l rows t ha t conta in miss ing va lue
na_count <− NULL
f i l t e r_nedd9 <− NULL
for ( i in 1 :nrow( f i l t e r_missing ) ) {
na_count <− sum( i s .na( f i l t e r_missing [ i , ] ) )
f i l t e r_nedd9 <− c ( f i l t e r_nedd9 ,

i f e l s e (na_count <= 0 , i , NA) )
}

#cleaned data
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#64 sub j e c t s , 360 f e a t u r e s
nedd9_adni1_f i l t e r <− f i l t e r_missing [na . omit ( f i l t e r_nedd9 ) , ]

## corresponding Response Var iab l e
#change the i n d i v i d u a l id
pattern2 <− row .names( nedd9_adni1_f i l t e r )
sub_id <− s t r sp l i t ( pattern2 , "_" )
sample_id_temp <− NULL
sample_id <− NULL
for ( i in 1 :nrow( nedd9_adni1_f i l t e r ) ){ #sample s i z e 64
sample_id_temp [ i ] <− as .numeric (sub_id [ [ i ] ] [ 3 ] )

}
sample_id <− paste (sample_id_temp , " b l " , sep = "_" )
rownames( nedd9_adni1_f i l t e r ) <− sample_id

#f ind the corresponding response v a r i a b l e Y
#( by s u b j e c t ID)
l ibrary ( dplyr )
Y1 .MRI <− NULL
for ( i in 1 :nrow( nedd9_adni1_f i l t e r ) ) {

Y1 .MRI <−rbind (Y1 .MRI, mri [ mri$ID %in%
row .names( nedd9_adni1_f i l t e r ) [ i ] , ] )

}

## corresponding Confounders ( f i l t e r )
Z <− NULL
for ( i in 1 :nrow( nedd9_adni1_f i l t e r ) ) {

Z <−rbind (Z , a l l c h r [ row .names( a l l c h r ) %in%
row .names( nedd9_adni1_f i l t e r ) [ i ] , ] )

}

#Naive approach
Y <− scale (Y1 .MRI[ , −1 ] ) # q=56, n=64
X <− apply ( nedd9_adni1_f i l t e r , 2 , function ( y ) ( y −
mean( y ) )/sd ( y)^as . log ica l ( sd ( y ) ) )
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Z <− as .matrix ( scale (Z ) )

FF <− as .matrix (cbind (X, Z) )

#mu l t i v a r i a t e l i n e a r r e g r e s s i on
naive_model <− lm( Y ~ FF −1 )
GG<− naive_model$coef f ic ients
C_o l s <− GG[1 : 3 6 0 , ] #360 f e a t u r e c o e f f i c i e n t s
D_o l s <− GG[ 3 6 1 : 3 7 0 , ] #10 PCs c o e f f i c i e n t s
D<− round(D_o l s , 2 ) #i n i t i a l i z e D

## Try Cross−v a l i d a t i o n to choose lambda 1 and lambda 2

mygrid1 = c ( 0 . 075 , 0 . 1 , 0 . 25 , 0 . 5 , 0 . 75 ) #tuning f o r B, l 1
mygrid2 = c ( 0 . 075 , 0 . 1 , 0 . 25 , 0 . 5 , 0 . 75 ) #tuning f o r o , l 2

r <− 1
c v r e s u l t s=matrix (NA,nrow=length (mygrid1 ) , ncol=length (mygrid2 ) )
for ( i in 1 : length (mygrid1 ) )

for ( j in 1 : length (mygrid2 ) ) {
cat (paste ( " lambda1 " , i , " ␣␣lambda2 " , j , " \n " ) )
# In case the f i t t i n g in the CV f a i l s ,
# wrap c a l l to do_cv ( ) in t r y ( )
system . time ({
tem <− try (do_cv (c (mygrid1 [ i ] , mygrid2 [ j ] , r ) , Y, X, Z , D,
num_f o l d s =3))
})
c v r e s u l t s [ i , j ]= i f e l s e ( class ( tem)==" try−e r r o r " ,NA, tem)

}

rownames( c v r e s u l t s ) <− paste ( " lambda1=" , mygrid1 )
colnames ( c v r e s u l t s ) <− paste ( " lambda2=" , mygrid2 )
c v r e s u l t s
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Appendix D

Appendix: Simulated Data

## Simulate da t a s e t
#coded by Pulindu Ratnasekera , pratnase@sfu . ca
#Generate genotypes based on MAF ca l c u l a t e d from 1000G data

setwd ( "/Users/g l o r i ayang/Desktop/Cov−SRRR_Glor ia " )
source ( " aim . gen_1kG.R" )

# Sub−popu la t i on s p e c i f i c minor a l l e l e f r e q u enc i e s
# from 1000G data − chr 9 − 344575 markers
# CDX: Chinese Dai in Xishuangbanna , China
# CHB: Han Chinese in Bejing , China
# IBS : I b e r i an popu la t i on in Spain
# FIN : Finnish in Finland

# rs4621895 − row 79789 o f . f r q f i l e s
CDX<− read . table ( f i l e=’/Users/g l o r i ayang/Desktop
/Cov−SRRR_Glor ia/CDX_chr9 . f r q ’ , header=T)
CDX_f r e q <− CDX$MAF
CHB<− read . table ( f i l e=’/Users/g l o r i ayang/Desktop
/Cov−SRRR_Glor ia/CHB_chr9 . f r q ’ , header=T)
CHB_f r e q <− CHB$MAF
FIN <− read . table ( f i l e=’/Users/g l o r i ayang/Desktop
/Cov−SRRR_Glor ia/FIN_chr9 . f r q ’ , header=T)
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FIN_f r e q <− FIN$MAF
IBS <− read . table ( f i l e=’/Users/g l o r i ayang/Desktop
/Cov−SRRR_Glor ia/IBS_chr9 . f r q ’ , header=T)
IBS_f r e q <− IBS$MAF

# Ret r i e v ing Sub−popu la t i on s p e c i f i c
#minor a l l e l e f r e qu en c i e s from 1000G data
#− chr 9 − 212313 markers (maf>0.05)
CDXind=CHBind=FINind=IBSind=rep (NA, length (CDX_f r e q ) )

for ( i in 1 : length (CDX_f r e q ) )
{

i f (CDX_f r e q [ i ] >0.05){CDXind [ i ]=1} else {CDXind [ i ]=0}
i f (CHB_f r e q [ i ] >0.05){CHBind [ i ]=1} else {CHBind [ i ]=0}
i f (FIN_f r e q [ i ] >0.05){ FINind [ i ]=1} else {FINind [ i ]=0}
i f ( IBS_f r e q [ i ] >0.05){ IBSind [ i ]=1} else {IBSind [ i ]=0}

}

sum_ind <− CDXind + CHBind + FINind + IBSind
ind <− which(sum_ind==4)

CDX_f r e q <− CDX_f r e q [ ind ]
CHB_f r e q <− CHB_f r e q [ ind ]
FIN_f r e q <− FIN_f r e q [ ind ]
IBS_f r e q <− IBS_f r e q [ ind ]

# Simulated aims f o r g iven the number o f makers
nm <− 10000 # number o f markers
# nAIMs : number o f markers to be s imu la ted
# S_s i z e : number o f i n d i v i d u a l s in each sub−popu la t i on
# f r e q : minor a l l e l e f requency at each marker
CDX_aim <− aim . gen (nAIMs=nm, S_s i z e =100 , f r e q=CDX_f r e q [ 1 :nm] )
CHB_aim <− aim . gen (nAIMs=nm, S_s i z e =100 , f r e q=CHB_f r e q [ 1 :nm] )
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IBS_aim <− aim . gen (nAIMs=nm, S_s i z e =100 , f r e q=IBS_f r e q [ 1 :nm] )
FIN_aim <− aim . gen (nAIMs=nm, S_s i z e =100 , f r e q=FIN_f r e q [ 1 :nm] )

aims <− rbind (CDX_aim , CHB_aim , IBS_aim , FIN_aim )
#dim( aims ) : 400 sub j . x 10000 SNPs

## Confounders
l ibrary ( f a c t o ex t r a )
pca_z <− prcomp ( aims , c en t e r = T)
f v i z_e i g ( pca_z )
Z <− pca_z$x [ , 1 : 1 0 ] #dim(Z) :400 sub j . x 10 PCs

## Pred i c t o r s
set . seed (1 )
X <− aims [ , sample (1 : 10000 , 1000 , replace = F) ]
#dim(X) : 400 sub j . x 1000 SNPs

## Simulated response
l ibrary (mvtnorm)
n <− 400 ; p <− 1000 ; q <− 4 ; r <− 1
#genera te A,B,D,E to ge t Y
B<−round(c ( rep ( 1 , 5 ) , rep (0 , p−5)) ,2) #B i s p∗r=p∗1
A<−round(matrix ( rep ( 0 . 4 ,q ) ) , 2 ) #A i s q∗r=q∗1
C<− B %∗% t (A)
D<− round(matrix ( rep (1 , ncol (Z)∗q ) ,

nrow = ncol (Z) , ncol = q ) , 2 )
SigE<−matrix (c ( 1 , . 9 , 0 , 0 , . 9 , 1 , 0 , 0 ,

0 , 0 , 1 , . 9 , 0 , 0 , . 9 , 1 ) , nrow=q , byrow=T)
E<−rmvnorm(n , sigma=.1∗SigE )

Y <− X %∗% B %∗% t (A) + Z %∗% D + E
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