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Abstract

Reinforcement learning is one of the major areas of artificial intelligence that has been
studied rigorously in recent years. Among numerous methodologies, Q-learning is one of the
most fundamental model-free reinforcement learning algorithms, and it has inspired many
researchers. Several studies have shown great results by approximating the action-value
function, one of the essential elements in Q-learning, using non-linear supervised learning
models such as deep neural networks. This combination has led to the surpassing human-
level performances in complex problems such as the Atari games and Go, which have been
difficult to solve with standard tabular Q-learning. However, both Q-learning and the deep
neural network typically used as the function approximator require very large computational
resources to train. We propose using the online random forest method as the function
approximator for the action-value function to mitigate this. We grow one online random
forest for each possible action in a Markov decision process (MDP) environment. Each forest
approximates the corresponding action-value function for that action, and the agent chooses
the action in the succeeding state according to the resulting approximated action-value
functions. When the agent executes an action, an observation consisting of the state, action,
reward, and the subsequent state is stored in an experience replay. Then, the observations are
randomly sampled to participate in the growth of the online random forests. The terminal
nodes of the trees in the random forests corresponding to each sample randomly generate
tests for the decision tree splits. Among them, the test that gives the lowest residual sum
of squares after splitting is selected. The trees of the online random forests grown in this
way age each time they take in a sample observation. One of the trees that is older than
a certain age is then selected at random and replaced by a new tree according to its out-
of-bag error. In our study, forest size plays an important role. Our algorithm constitutes
an adaptation of previously developed Online Random Forests to reinforcement learning.
To reduce computational costs, we first grow a small-sized forest and then expand them
after a certain period of episodes. We observed in our experiments that this forest size
expansion showed better performances in later episodes. Furthermore, we found that our
method outperformed some deep neural networks in simple MDP environments. We hope
that this study will be a medium to promote research on the combination of reinforcement
learning and tree-based methods.
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Chapter 1

Introduction

In reinforcement learning (RL), agents learn to make good decisions through interaction with
their environment. Such methods are used in object tracking, games, and recommendation
systems and often involve online learning with big data in which observations arrive with
volume and variety. Online random forests provide lightweight implementations suitable for
such data [26]. In Q-learning for RL [29], the action-value function may be approximated
by an arbitrary function. Variational methods [14], linear function approximation methods
including polynomial [2], Fourier basis [17], radial basis function approximation [24], and
non-linear methods such as tree-based methods [9] and neural networks [22] have long been
a standard for functional approximation in Q-learning [10]. In this work, we explore online
random forests (ORFs; [26]) for approximation of the Q-function. In order to operationalize
ORFs for approximation ofQ-functions, we solve two theoretical issues: 1) We bring methods
from multiple output random forests [9] to ORFs, and 2) Previous work in ORFs is limited
to categorical output, we extend this to regression trees so that the continuous Q-function
can be approximated. We also introduce an expanding trees method to the ORF cannon
wherein the number of trees used in random forest regression begins small when the first
data points come in, and is increased as more data comes in (the new trees are centred at
previously learned trees).

We apply our methods to several OpenAI gym environments [7]: blackjack, inverted
pendulum, and lunar lander compared to state-of-the-art Deep Q-Networks (DQNs) and
traditional discrete temporal difference (TD) learning. We show that our version of online
random forests (which we refer to as RL-ORF for reinforcement learning with online random
forests) can successfully approximate action-value functions for Q-learning in some gyms,
with performance exceeding DQNs in the blackjack gym. In Section 2, we describe related
work (including online random forests, and offline methods for tree based inference). In
Section 3, we describe our methods. In Section 4, we describe our experiments on OpenAI
RL gyms. In Section 5 and 6, we conclude and provide directions of future work.
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Chapter 2

Literature Review

We provide an overview of reinforcement learning to introduce the key elements and terms
of our work. Then, we discuss some recent work in function approximation methods for
Q-learning, such as approximation through offline tree-based methods and deep neural
networks, including experience replay. Lastly, we review online random forest methods and
general advances in RL that we adapt for our model, including online bagging and temporal
knowledge weighting.

2.1 Reinforcement Learning: Overview

Reinforcement learning (RL) is one of the three main machine learning paradigms [29]. RL
differs from the other two main paradigms (supervised learning, and unsupervised learning)
in that RL methods do not require pre-determined datasets from users. The RL agent learns
optimal action policy, which maximizes expected total rewards, by updating the policy using
data obtained from simultaneously interacting with the environment in a trial-and-error
style. RL problems are usually formalized by Markov decision processes (MDP), defined by
a tuple of 5 elements Mt = (S,A, P,R, γ) [29]. Here, S is the state that represents the status
of the environment at time t. A is the action that defines the possible actions available for
the agent to choose from. P is the transition distribution P (st, at, st+1) where s ∈ S, a ∈ A
that maps the action executed by the agent at state s at time t with the succeeding state.
R is the reward function that the agent receives as the immediate feedback for executing
action a at a given state st. If the agent progresses along a sequence of interactions with the
environment after time step t, the agent would receive corresponding rewards Rt+1, Rt+2, . . ..
Then, the total return the agent can expect at time step t can be computed as follows:

Gt = Rt +Rt+1 +Rt+2 + . . .+RT . (2.1)

Here T is the final time step at which an episode ends. T can be either a fixed integer or ∞
depending on the environment. In this thesis, we only consider finite horizon cases. In RL,
we make assumption that future rewards are discounted by a factor of γ at each time step
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[22]. The goal of which the agent tries to maximize is defined as return, which is denoted:

Gt = γ0Rt + γ1Rt+1 + γ2Rt+2 + . . . =
T∑
i=0

γiRt+i. (2.2)

γ ∈ [0, 1] is a discount factor determining how much impact a future reward has in the
present. For example, if γ = 0, the agent only learns to maximize the immediate reward.
However, if γ = 1, the agent becomes more far-sighted and takes the future rewards into
account more strongly when evaluating its actions [29]. For the agent to assess its perfor-
mance during learning, it needs to be able to evaluate the return for being at a given state
or executing an action at the state in terms of the expected reward. To do this, we use
what is called value functions [29]. There are two major kinds of value functions. Firstly,
the state-value function is defined as the expected return for the agent being at state s at
time step t:

vπ(s) = Eπ[Gt|St = s]. (2.3)

Here v(·) is the state-value function and π is the policy which refers to the probability
distribution over all possible actions at given states that the agent follows when selecting
an action [29]. Therefore, vπ(s) can be interpreted as the expected return when starting in
state s and the agent’s action selections are based on π. One of the most commonly used
policies in RL is ε-greedy policy. With this policy, the agent chooses a random action from
the action space with a probability of ε, ε being a small real number between 0 and 1.
The agent would select an action from the learned value-functions with a probability of 1-ε.
We use ε-greedy policy as π throughout this paper. Similar to the state-value function, we
can also determine the value of an action a taken at state s, which is referred to as the
action-value function:

qπ(s, a) = Eπ[Gt|St = s,At = a]. (2.4)

These value functions are the building blocks of reinforcement learning algorithms. In the fol-
lowing subsections, we briefly go over some fundamental methods that utilize value functions
for maximizing expected future returns. In subsection 2.1.1, we introduce a value iteration
method called temporal difference learning including SARSA (State–action–reward–state–action)
and Q-learning. Then, we move on to more complex state-of-the-art value function approxi-
mation methods such as linear function approximators, tree-based methods, andQ-networks
in Section 2.2 to Section 2.5.
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2.1.1 Temporal Difference Learning

By finding the optimal state-value function or action-value function, the agent can take an
optimal sequence of actions that yields maximum expected return. However, since we do not
know the true value functions, the agent must learn the value functions from experience.
Hence, most of the RL algorithms’ objective is to estimate the optimal value functions.
The problem of estimating the value function for a given policy π is called the prediction
problem. There are two most fundamental prediction methods in RL: Monte Carlo (MC)
methods and temporal difference learning [28]. In a simple MC prediction, value function
updates occur in the following manner:

V (St)← V (St) + α[Gt − V (St)]. (2.5)

Here, α ∈ [0, 1] is the learning rate. We use an estimate V for vπ since we do not know the
true vπ. The term in the brackets can be interpreted as the error term that the agent aims to
minimize. From Equation 2.8, it is noticeable that the MC method must wait until the end
of the episode to be able to compute Gt for determining the error term. This limitation can
be troublesome when the episode is long or when T = ∞. Unlike MC methods, temporal
difference learning does not need to wait for episodes to end before updating value function
estimates. Temporal difference learning (TD learning) was first introduced in 1988 by Sutton
et al. [28]. The algorithm uses a value function estimate from one step ahead to update the
current value function. TD algorithms get around the limitation of MC methods by utilizing
the following recurrence relation:

Gt = Rt + γRt+1 + γ2Rt+2 + . . . (2.6)

= Rt + γ(Rt+1 + γRt+2 + . . .) (2.7)

= Rt + γGt+1. (2.8)

When the agent takes an action at a given state, the state-value estimate can be updated:

V (St)← V (St) + α[rt + γGt+1 − V (St)]. (2.9)

The fact that V (St+1) is an estimate for Gt+1, we get the following TD-error at time t
defined as:

δt = Rt + γV (St+1)− V (St). (2.10)

This gives rise to the simplest TD method that, which is specified by the following update:

V (St)← V (St) + α[Rt + γV (St+1)− V (St)]. (2.11)

4



At each time step, the agent chooses an action and observes the successor state and cor-
responding reward, which is then immediately used to update the estimate of the current
state-value function. Because the value function estimate is updated at every step, this
method is often referred to as TD(0), or the one-step TD method [29]. Both MC and TD
methods are called bootstrapping methods since an estimate V (St+1) is used for updating
another estimate V (St). The full algorithm of the TD(0) prediction method is shown in
Algorithm 1.

Algorithm 1 One-step TD method for estimation of vπ
Require: Learning rate α ∈ (0, 1]
Require: Discount rate γ ∈ [0, 1]
Require: Initialize V(s) arbitrarily for all s ∈ S, except V (terminal) = 0

1: for episode 1:E do
2: Initialize S
3: for time step t in 1 : T do
4: Select action a ∈ A by some policy π for S
5: Execute action a, observe R,S′

6: V (S)← V (S) + α[R+ γV (S′)− V (S)]
7: S ← S′

8: end for
9: end for

As the updating progresses, δ converges to 0. The fact that TD methods do not require
the agent to reach the end of the episode to update the estimate allows the algorithm to be
implemented in an online, fully incremental fashion [28]. This characteristic is advantageous
in environments where the episode’s length is very long or in infinite horizon tasks with no
terminal state. Also, it has been proven that in discrete settings for any fixed policy π,
TD(0) converges to vπ if α is sufficiently small [28].

2.1.2 SARSA: On-policy TD Control

The goal of finding the optimal policy can be achieved by utilizing the predicted value func-
tion. The process of approximating optimal policies is referred to as the control problem.
There are two major types of TD-control methods: SARSA and Q-learning. In both meth-
ods, the action-value function (Q-function) is estimated directly rather than the state-value
function (V -function) for optimal policy approximation. With the V -function, the agent
must compute the V -function for all possible successor states before choosing the next ac-
tion. However, with the Q-function, the agent only needs to consider action values in the
current state and select an action through argmaxa∈AQ(s, a) without knowing anything
about possible successor states and their values [29]. SARSA is an on-policy TD-control
method. The term on-policy means the policy the agent is learning is the same policy that
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determines the agent’s next action. The name SARSA rose from the elements of the tuple
of events (St, At, Rt, St+1, At+1) that the algorithm uses to update the action-value function
estimate for the state-action pair (St, At) which is drawn in a similar way to Equation 2.14:

Q(St, At)← Q(St, At) + α[Rt + γQ(St+1, At+1)−Q(St, At)], (2.12)

which occurs after each state transition. If St+1 is the terminal state, then Q(St+1, At+1) is
zero. The full algorithm of SARSA is expressed in Algorithm 2 below.

Algorithm 2 SARSA: On-policy TD Control
Require: Learning rate α ∈ (0, 1]
Require: Discount rate γ ∈ [0, 1]
Require: Initialize Q(s, a) arbitrarily for all s ∈ S+, a ∈ A(s), except Q(terminal, ·) = 0

1: for episode 1 : E do
2: Initialize S
3: Choose A from S using policy derived from Q (e.g. ε-greedy)
4: for time step t in 1 : T do
5: Execute action A, observe R,S′

6: Choose A′ from S′ using policy derived from Q (e.g. ε-greedy)
7: Q(S,A)← Q(S,A) + α[R+ γQ(S′, A′)−Q(S,A)]
8: S ← S′, A← A′

9: end for
10: end for

In the discrete case, SARSA converges to an optimal policy with probability 1 given
that all state-action pairs are visited an infinite number of times, and the policy converges
in the limit to the greedy policy [29].

2.1.3 Q-learning: Off-policy TD Control

Q-learning is an off-policy TD learning algorithms proposed by Watkins et al. [32], which
can be defined as:

Q(St, At)← Q(St, At) + α[Rt + γmax
a∈A

Q(St+1, a)−Q(St, At)]. (2.13)

Here Q is the learned action-value function. Q-learning is off-policy because the policy the
agent is learning (i.e. target policy) is not the same as its behaviour policy. More specifically,
the target policy the agent updates is the absolute greedy policy argmaxaQ(st+1, a) at given
states and available actions. However, the agent uses a different policy as the behavior policy,
such as ε-greedy, to take action in the successor state. This off-policy attribute of Q-learning
has an advantage over on-policy methods such as SARSA.
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Algorithm 3 Q-learning: Off-policy TD control
Require: Learning rate α ∈ (0, 1]
Require: Discount rate γ ∈ [0, 1]
Require: Initialize Q(s, a) arbitrarily for all s ∈ S, a ∈ A(s), except Q(terminal, ·) = 0

1: for episode 1 : E do
2: Initialize S
3: for time step t in 1 : T do
4: Choose A from S using policy derived from Q (e.g. ε-greedy)
5: Execute action A, observe R,S′

6: Q(S,A)← Q(S,A) + α[R+ γmaxa∈AQ(S′, a)−Q(S,A)]
7: S ← S′, A← A′

8: end for
9: end for

Like SARSA, for discrete settings it has been proven that the estimated action-value
function converges to the optimal as every possible state-action pair (st, at) is visited in-
finitely many times during an episode [32].

2.2 Value-function approximation

The value iteration processes described in the above TD learning methods are called tabular
methods. They create an array to store all possible state-action pairs and corresponding
value functions, hence they suffer from the high computational cost (the curse of dimen-
sionality) if there are a large number of possible states and actions. Also, an update on an
estimate of a state value (or a state-action value) leaves the estimate values of all other
states unchanged [29]. Instead of tabular methods, we can utilize a model such that an in-
duction made on a state should return a function that is close to the target value function.
Also, updating the model would not only update the estimated value of one state but also
affect the estimated values of all (or many) other states [29]. This estimation gives rise to
a process referred to as function approximation which is one of the major breakthroughs in
TD learning [29]. Here, the updating process can be interpreted as an input-output relation-
ship: the input being the states, and the outputs being the value functions for those states.
This means any supervised learning algorithm can conceivably be utilized for learning and
producing value function estimates [29]. The supervised learning methods here are called
function approximators. The function approximators must be trained to minimize the dif-
ferences between the estimates and the value function computed from the observed rewards.
This training is done as the agent interacts with the environment. However, even the most
sophisticated supervised learning methods such as artificial neural networks (ANNs) and
tree-based methods are trained in batch data settings, and the distribution of the data is
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assumed to be static. In reinforcement learning, suitable supervised learning methods need
to be able to learn from incrementally acquired data and adapt to distribution shifts of the
target functions [29].

There are several studies that utilized different types of function approximators including
linear methods such as polynomials [2], Fourier basis [17] and radial basis [24], and non-linear
methods including tree-based methods [9] and artificial neural networks (ANNs; [22, 30]).
While the linear methods are fast and straightforward to implement and usually come with
better convergence guarantees, their performance depends on prior knowledge about the
features in the system. Another limitation of the linear approximators is that the interactions
between the features cannot be accounted for unless coded separately. For example, the
presence of feature i could be good only with the absence of another feature j. Considering
possible interactions between the features could be problematic when there are a large
number of features to consider. These shortcomings have directed recent focus to non-
linear function approximators. Here, we introduce tree-based methods [9], and deep neural
networks [22] in the following sections.

2.3 Tree-based Batch Mode Reinforcement Learning

One of the earlier attempts to utilize tree-based supervised learning methods in reinforce-
ment learning includes fitted Q-iteration introduced by Ernst et al. in 2005 [9]. For each
iteration, the algorithm builds a training set composed of observations obtained by ran-
domly exploring the environment for a certain number of episodes as inputs. The expected
reward function is induced by a supervised learning method trained using previous steps
as outputs. The model is then re-trained on a training set. Ernst et al. examined various
tree-based ensembles and showed that their approach is effective for extracting relevant
information from the observations [9]. However, an extensive training set size is required
to obtain good approximations, which lead to high computational costs and is not possible
in online settings. Furthermore, a tree-based ensemble must be re-built at each iteration,
confining the algorithm to batch scenarios [1].

2.3.1 Fitted Q-Iteration

At each iteration of fitted Q-iteration, a training set composed of the full set of four-tuples
(St, At, Rt, St+1) is compiled. The data is obtained by the agent randomly exploring the
environment for a given number of episodes, along with the action-value functions approx-
imated at the previous step. A regression algorithm then uses this training set to update
the action-value functions [9]. We provide pseudocode for fitted Q-iteration in Algorithm 4
below.
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Algorithm 4 Fitted Q-Iteration
Require: Training set size: N
Require: Initialize Q̂n = 0 for all s ∈ S and a ∈ A(s)

1: Set n = 0
2: il = (slt, alt), ol = rlt

3: while Stopping condition not met do
4: n+ = 1
5: Build training set(=TS) = {(il, ol), l = 1, ..., N} based on Q̂n−1

6: ol ← rlt + γmaxa′∈A Q̂n−1(Slt+1, a
′)

7: Induce Q̂n = Fit(i, o)
8: end while

Here il indicates the input data, and ol the output data for training set index l. At
the first iteration, input/output pairs composed of the state-action pair and the observed
rewards are used to approximate action-value functions. In the subsequent iterations, only
the output values of the training set are updated based on the Q̂-functions computed at
the preceding steps [9]. The authors state that the supervised learning processes in the
iterating sequences are independent, and therefore the learned model can reach the best
bias/variance trade-off at each step. The user determines the stopping conditions. For ex-
ample, one option is to stop when the distance between Q̂n and Q̂n−1 falls below a certain
value. However, the authors state that for some supervised learning methods, there is no
guarantee that Q̂n would converge. When the iteration ends, the optimal control policy is
derived by π̂n(s) = argmaxa∈A Q̂n(s, a). In [9] Ernst et al. incorporated a fitted Q-learning
framework with various tree-based methods including KD-Tree [3], CART [6], Tree Bagging
[4], Extra-Trees [12], and Totally Randomized Trees [12]. They found that while Tree Bag-
ging and Extra-Trees performed better than the other methods, Extra-Tree’s performance
significantly surpassed others. There are several advantages of the fitted Q-iteration frame-
work combined with the tree-based methods. It is computationally efficient, effective in high
dimensional problems and low dimensional problems with small sample size, and is robust
to noise [1, 9]. On the other hand, since the framework is a grid-based process like standard
Q-learning, it shares similar limitations to standard Q-learning, involving increases in com-
puting time and memory requirements with larger state and action spaces. Also, a large
training set size is crucial in order to obtain good approximations, which also adds further
to the computational costs. Furthermore, in the fitted Q-iteration framework, a supervised
learning model must be built and updated at each iteration, confining the algorithm to the
batch scenario [1].
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2.3.2 Adapting to different action spaces

In their experiments, Ernst et al. [9] suggested several methods for coping with varying types
of action spaces. For discrete action spaces, they suggested splitting the training samples
according to each a ∈ A, and then train regression models based on each training set. Then,
the action for the following state is selected by argmaxa∈A Q̂n(s, a) [9]. For continuous action
space, the authors stated that since Q̂n(s, a) is a piecewise-constant function over the action
a with a fixed state s, it is sufficient for a single regression tree to compute the value of
Q̂n(s, a) for a finite number of values of A, one in each hyperrectangle delimited by the values
of split thresholds in the tree [9]. However, for ensembles of trees, the computational intensity
for following the same scheme for every tree in the ensembles might become inefficient as
the number of the split thresholds might be much higher [9].

2.4 Deep Q-learning

2.4.1 Q-network: Non-linear Q-function approximator

Artificial neural networks (ANNs) have been one of the most widely used non-linear function
approximators [28]. Deeply-layered ANNs led breakthroughs in a variety of fields including
computer vision [18, 27] and speech recognition [8, 13]. In reinforcement learning, ANNs
that approximate Q-functions are refer to as Q-networks [22]. Q-networks are trained by
minimizing a sequence of loss functions Li(θi) that changes at each iteration i [22]:

Li(θi) = Es,a∼π(·)[(yi −Q(s, a; θi))2]. (2.14)

Here θ is the weights of the network, π is the behaviour policy distribution, and yi =
Es′∼π[r+γmaxa′∈AQ(s′, a′; θi−1)|s, a], which is the action-value function obtained from the
behaviour distribution. Differentiating the loss function with respect to the weights, we get
the following gradient:

∇θi
Li(θi) = Es,a∼π;s′ [(R+ γmax

a′
Q(s′, a′; θi−1)−Q(s, a; θi))∇θi

Q(s, a; θi)]. (2.15)

which can then be optimized using gradient descent methods. In practice, a ε-greedy policy
is often selected as the behaviour distribution which selects a random action with probability
ε, and the greedy strategy from the target policy with probability 1− ε [22].

One of the earlier successful attempts to incorporate ANNs into RL is TD-gammon
by Gerald Tesauro in 1995 [30]. Utilizing a multilayer perceptron with one hidden layer
as the value-function approximator for a model-free RL algorithm similar to Q-learning
enabled the machine to play backgammon at a super-human level [22]. However, the same
schematics did not work well in chess, Go, or checkers. Additionally, it was found that Q-
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learning with Q-networks sometimes result in divergence of the network [31]. More recent
work to implement deep learning in reinforcement learning includes neural fitted Q-learning
algorithms (NFQ) developed by Riedmiller et al. [25]. NFQ updates the Q-networks’ weights
by optimizing the sequence of loss functions in Equation 2.14 using a RPROP algorithm
(resilient backpropagation; [22]). The algorithm successfully solved simple tasks including
pole balancing and car-on-the-hill [25]. However, like in Fitted Q-learning [9], this algorithm
utilizes a batch of observations to update the Q-network, which has a computational cost
proportional to the data size [22]. Mnih et al. adopt stochastic gradient descent, which has
a lower cost per iteration and allows lightweight updates on large-scale data [22], a process
which they named deep Q-learning [22]. In this thesis, we compare our methods with deep
Q-learning.

2.4.2 Experience replay

Attempts to applying ANNs directly to RL algorithms encounter several issues [22]. Firstly,
many successful ANN architectures assume learning from a large amount of pre-labeled
data is relatively balanced. However, for RL, the networks must be able to learn from
sparse and noisy data. Also, the training data in RL often comprises of sequences of highly
correlated states, and the distribution of the data constantly changes as the agent learns
new behaviours [22]. Another breakthrough in deep Q-learning is experience replay [19], and
this is where the method used in [22] differs from TD-gammon [30] or NFQ [25]. At each
time step t, the agent interacts with the environment and outputs a tuple of experience
et = (st, at, rt, st+1), and this is stored in a dataset D = e1, e2, . . . , eN referred to as replay
memory [22]. Replay memory only stores the most recent N observations. When updating
the Q-values, we use a fixed-sized minibatch drawn at uniform random e ∼ D. Then, the
agent chooses the next action to execute by an ε-greedy policy from Q(st+1, A). Utiliza-
tion of experience replay has several advantages over learning directly from the most recent
experience only. The method is more data-efficient since each observation participates in
updating the Q-network multiple times instead of being thrown away after being used only
once. Also, using randomly drawn samples mitigates correlation between the consecutive
observations, reducing the prediction variance of the Q-network during Q-value updates.
Finally, experience replay prevents the behaviour policy from shifting to one side and get-
ting stuck. For instance, without experience replay, if the agent selects an action to move to
the left at a state, then the samples gathered from the consecutive time steps would consist
mostly of the information about the left side of the environment, and almost no informa-
tion about the right side of the environment. This phenomenon can cause the parameters
of the Q-network to plateau or even diverge [22]. Mnih et al. combined deep Q-learning
with experience replay. The combined process is named deep reinforcement learning, a full
algorithm of which is expressed in 12.
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Algorithm 5 Deep reinforcement learning: Deep Q-learning with experience replay
Require: Initialize replay memory D to capacity N
Require: Initialize action-value function Q with random weights
Require: Initialize environment with random beginning state

1: for episode in 1 : E do
2: Initialize sequence s1 and preprocessed sequence φ1 = φ(s1)
3: for t in 1:T do

4: Select at =

argmaxa∈AQ(φ(st), a; θ) with probability 1− ε

random action with probability ε
5: Execute action at, observe reward rt and st+1

6: Set st+1 = st, and preprocess φt+1 = φ(st+1)
7: Store transition (φt, at, rt, φt+1) in D
8: Sample random minibatch of transitions (φ`, a`, r`, φ`+1) from D

9: Set y` =

r` for terminal φ`+1

r` + γmaxa′ Q(φj+1, a
′; θ) for non-terminal φ`+1

10: Perform gradient descent on (y` −Q(φ`, a`; θ))2

11: end for
12: end for

Here φ is a function that modifies a state into a user-defined format. For example, the
authors in [22] converted a given state of size 210x160 with three color channels (red, green,
blue) to a greyscale image with a size of 84x84. The authors produced the input data to the
Q-function by applying the preprocessing step to the last 4 frames of history and stacking
them, making a representation of size 84x84x4. In this thesis, when we compare to the
DQN, we use the values of the states directly instead of an image representation of the
environment (i.e., without rendering the environment as an image). We describe the details
of the state values for each environment in Chapter 4 (Experiments).

2.5 Online random forests

The methods we develop in Chapter 3 make reference to previous work in online random
forests. These methods work well when there is a small correlation between the base learners
[12]. Online random forests developed by Saffari et al. in 2009 by combining online bagging
with extremely randomized forests [26]. The trees in the online random forest start with a
single terminal node. When new data is observed, each tree takes in new data according
to a random integer drawn from the Poisson distribution. The terminal node of the tree
performs splits only when the statistics computed from a series of new data exceeds a certain
threshold. Trees are replaced by a new tree based on their out-of-bag errors (OOBEs). In
the following subsections, we discuss the key elements of online random forests including
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extremely randomized trees [12], online bagging [23] and temporal knowledge weighting [26].
The full algorithm for online random forests by Saffari et al. [26] is shown in Algorithm 6

Algorithm 6 Online Random Forests
Require: Sequential training example 〈x, y〉
Require: The size of the forest: M
Require: The minimum number of samples that a tree has to observe: η
Require: The minimum gain a test must achieve to split: β
Require: The temporal knowledge weighting rate: ϕ

1: for each tree m in 1:M do
2: Draw c ∼ Poisson(1)
3: if c > 0 then
4: for iin1 : c do
5: agem += 1
6: j = findLeaf(x) # locate the node where the new input x belongs to
7: updateNode(j, 〈x, y〉) # According to Algorithm 8
8: end for
9: else

10: updateOOBEm(〈x, y〉) # According to Algorithm 9
11: end if
12: end for
13: TemporalKnowledgeWeighting(M) # According to Algorithm 10

2.5.1 Extremely randomized trees

Ensemble methods work well when there is a small correlation between the base learners that
have low biases [5]. The expected mean squared prediction error (MSPE) of the ensembles
can be expressed as:

E(MSPE) = σ2
(
ρ+ (1− ρ)

M

)
. (2.16)

Here E(MSPE) is the expected mean squared prediction error, σ2 is the variance of the
prediction errors, ρ is the correlation between the errors from base models, and |M | is the
number of base models in an ensemble M . In the original random forest methods proposed
by Breiman et al. (2001) [5], k variables from a total ofK explanatory variables are chosen at
random with replacement, where usually k =

√
K for classification, and k = K/3 for regres-

sion (but tuning is recommended). The cut-point at each variable is selected by examining
them with one of the quality measurements such as Gini index or entropy for classification
[6]. Each tree is grown using a bootstrapped training sample of size N . The randomness
from the bootstrapping reduces the correlation between the trees because the splits in the
trees become less similar to each other [5]. In the extremely randomized trees proposed by
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Guerts et al. (2006) [12], the authors aim to further decrease the correlation between the
learners by injecting more randomness into the splitting process. Along with the random
selection of explanatory variables, the cut-points at the variables are also selected at random
rather than by optimal quality measurements. To be more specific, each node in each tree
creates its own set of k < K randomly generated tests H = {(g1, θ1), (g2, θ2), . . . , (gk, θk)}.
Here, each g is a randomly selected explanatory variable, and each θ is a split location.
Then, each test is evaluated with respect to one of the quality measurement methods such
as the Gini index or the entropy:

Gini impurity: L(Dj) =
K∑
i=1

pji (1− p
j
i ), Entropy: L(Dj) = −

K∑
i=1

pji log(pji ). (2.17)

Here Dj denotes a set of data in node j, and pji is the probability of class i in node j, and
K is the number of classes. Each node j computes the count of each label i denoted by pj =
[pj1, p

j
2, . . . , p

j
K ], and also collects pjrh = [pjrh1 , pjrh2 , . . . , pjrhK ], and pjlh = [pjlh1 , pjlh2 , . . . , pjlhK ],

where {jlh} and {jrh} indicate the left (l) and right (r) partitions created by a test h at
node j. Thus, the information gain resulting from a test h is:

∆L(Dj , h) = L(Dj)−
|Djlh|
|Dj |

L(Djlh)− |Djrh|
|Dj |

L(Djrh). (2.18)

Here Rjlh and Rjrh are the left (l) and right (r) child nodes created by a test h at node j,
and | · | denotes the number of samples in that node. The higher the gain lower the impurity
in the children nodes. Thus, the test with the highest gain is selected as the decisive test
for that node. Guerts et al. [12] claim that this further injection of randomness along with
the averaging via ensemble contributes to reducing variance in the prediction errors more
strongly than the weakly randomized methods.

2.5.2 Online bagging

Suppose we have training data of sizeN , and a number of treesM in a forest. In the standard
bagging methods developed by Breiman in 1996 [4], each tree m is trained on a bootstrap
sample of size N from the original training set. The number of times an observation in the
initial training set is included in the bootstrapped sample can be expressed as a binomial
distribution parameterized by the probability 1

N : [26]:

P (C = c) =
(
N

c

)( 1
N

)c (
1− 1

N

)N−c
. (2.19)

As N →∞, the distribution of C tends to a Poisson distribution with a mean of 1. In [26],
online bagging is utilized to grow ExtraTrees in a non-recursive manner. As we observe a
new training data 〈x, y〉, where x is a vector of values of the explanatory variables, and y
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is the corresponding response, choose the data c times for each tree, and update the trees
accordingly. This process is done independently for each tree.

2.5.3 Online decision trees

In the online setting, the label proportions at each terminal node are collected over time.
The node needs to know when to perform a split. For this, two things need to be specified.
1) Sample size that each terminal node needs to observe to produce a robust set of statistics
2) A threshold for the information gain that produces a split that makes a good prediction.
Saffari et al. [26] propose two new parameters: The number of samples a terminal node
has to observe (η), and the threshold of gain that a split has to achieve (β) before a split
proceeds. Let |Dj | be the number of observations that a node j has observed so far. A split
proceeds only if |Dj | > η, and ∃h ∈ H : ∆L(Dj , h) > β. After splitting, pjlh and pjrh are
passed on to the newly generated left and right children nodes, allowing the new terminal
nodes to participate in making predictions immediately using the inherited statistics. The
algorithms from Saffari et al. for creating and updating nodes are shown in Algorithms 7
and 8.

Algorithm 7 createChild(pj.hsplit
)

Require: Node index: j + 1
Require: Statistic from the parent node j: pj.h
Require: User-defined number of tests: k

1: Set pj+1 = pj.h # Inherit the statistic from the parent node.
2: Select k variables {g1, . . . , gk} at random from {z1, . . . , zK}
3: Select k split points {θ1, . . . , θk}

where θi ∼ Uniform(min(gi),max(gi))∀i = 1, . . . , k.
4: Construct a set of tests Hj = {h1, . . . , hk} where hi = {gi, θi}∀i = 1, . . . , k
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Algorithm 8 updateNode(j, 〈x, y〉)
Require: Node index: j
Require: Training example: 〈x, y〉
Require: A subset of training dataset in node j: Dj

Require: Number of training samples observed: |Dj |
Require: The minimum number of training samples a tree has to observe to split: η
Require: The minimum gain a test must achieve to split: β
Require: A set of randomly created tests in node j: Hj

1: |Dj |+ = 1
2: Update pj = {p1, . . . , pk} where pi = (Number of times the label i appeared in j) /
|Dj |

3: Update pjlh and pjrh∀hj ∈ Hj

4: Compute ∆L(Dj)
5: if |Dj | > η and ∃hj ∈ Hj : ∆L(Dj , hj) > β then
6: hsplit = argmaxh∈H∆L(Dj , h)
7: createChild(pjlhsplit

) # create left child node
8: createChild(pjrhsplit

) # create right child node
9: end if

2.5.4 Temporal knowledge weighting

For trees that are not updated with a new observation 〈x, y〉, in other words, for trees with
c equal to 0, the observation is used for unlearning old information. Since c is the number
of times observation is included in a bootstrapped sample, an observation with c equal to 0
can be interpreted as out-of-bag data. Temporal knowledge weighting, developed by Saffari
et al. [26] uses this to estimate trees’ out-of-bag errors (OOBEs), and discards trees with
large OOBEs. To prevent trees from being discarded in their early stages of growth, Saffari
et al. employ another parameter φ; the temporal knowledge weighting rate. Only trees with
agem > 1

φ are subjected to being discarded. Here, aget is the number of samples a tree m
has observed. The tree to be discarded is then randomly chosen and replaced by a new tree
with just one node (a stump). While the influence of discarding one tree in an ensemble is
relatively low, continually replacing the trees allows the ensemble to adapt to the changes
in the sample distribution throughout time [26]. The algorithms for updating OOBEs of the
trees and temporal knowledge are explained in Algorithms 9 and 10. The full algorithm for
online random forests is shown in Algorithm 6.
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Algorithm 9 updateOOBE(〈x, y〉)
Require: Tree index: m
Require: Training example: 〈x, y〉
Require: Number of training samples the tree has observed: agem

1: ypred = m(x)
2: if y 6= ypred then
3: errorm+ = 1
4: OOBEm = errorm/agem

5: end if

Algorithm 10 TemporalKnowledgeWeighting(M)
Require: Ensemble of on-line trees: M
Require: Temporal knowledge weighting rate: ϕ
Select a tree m randomly from M that satisfies {m|m ∈M,agem > 1/ϕ}
if OOBEm > c ∼ Uniform(0, 1) then
m = newTree() # replace the tree with a new tree with just one node

end if

2.5.5 Summary

This chapter outlined some of the fundamental ideas of reinforcement learning, including
value-functions, value iteration processes, and value-function approximation. Function ap-
proximation methods have advantages over tabular methods such as SARSA or Q-learning.
They train supervised learning models from the agent’s experience that can estimate value
functions in a generalized manner without the need to store all possible action-value func-
tions. We pointed out that for Q-learning with function approximation, the approximator
needs to be able to update its parameters incrementally. Q-networks used in deep Q-learning
along with experience replay have been the most notable example of online function approx-
imators. Finally, we introduced online random forests. They start with one terminal node
(a stump), which incrementally splits after observing a user-defined number of samples.
Temporal knowledge weighting algorithm allows un-learning of trees by replacing a tree
with a large out-of-bag error with a new tree. In the following chapter, we discuss how we
incorporate these ideas to develop our novel methods for reinforcement learning with online
random forests: We extend the online random forest algorithms presented in this chapter,
along with experience replay and the action selection methods for discrete action spaces.
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Chapter 3

Methods

Our method makes use of the advantages of online random forests. Their ability to learn
and unlearn in real-time allows them to easily adapt to changes in the distribution of
the agent’s experience, making the online random forest a suitable function approximator
for Q-learning. Moreover, combined with the method described in the following sections,
our function approximator can approximate multiple action-value functions in a regression
setting (Section 3.1 and 3.2) and make full use of available information gained from the
environment (Section 3.3). Furthermore, we found that starting with a small number of
trees and expanding it in a later episode can enhance the agent’s performance while saving
computational costs. The summarized version of our method is as follows: at each time
step, an action is taken by the agent, and the corresponding four-tuple (st, at, rt, st+1) is
observed from the environment. This tuple is saved in the replay memory. Replay memory
is described in Section 2.4.2 of Chapter 2. The ensembles are used for making action-value
estimates. Each tree in the ensemble updates either its terminal node or out-of-bag-error
(OOBE) depending on an integer drawn from a Poisson distribution. The OOBE we use
is described in the next subsection. When trees’ ages reach 1/ϕ, they become subject to
replacement according to their OOBEs. At episode ζ, the tree with the lowest OOBE is
duplicated several times so that the ensemble size is expanded to |Mmax|. The episode
terminates when the agent reaches the terminal state of the environment. An overview of
our method is given in Figure 3.1. This algorithm makes use of the algorithms findLeaf,
updateNode, updateOOBE, and expandTrees which are discussed later in this Chapter. The
pseudo-code for the overall algorithm is provided in Algorithm 11. Here, ζ and ϕ are positive
real numbers (parameters) for our model. Throughout our experiments, we used ζ = 100
and ϕ = 1/5, 000.

3.1 Online random forest in regression setting

In the original online random forest in [26], Saffari et al. focus on classification. However, we
need online trees with regression in order to specify approximators of action-value functions
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Figure 3.1: Schematics ofQ-learning with online trees. Transitions from interactions with the
environments are stored in replay memory. Random mini-batches of the transitions sequen-
tially update the online trees, which approximate action-value functions for the succeeding
state-action pairs. The behaviour policy chooses the action with the largest Q-function with
the probability of 1− ε, or a random action with ε. See Algorithm 11 for detail.

(as expected rewards are continuous). Transition to regression can be done by replacing
the objective of splits from maximizing the information gains to maximizing the change in
residual sum of squares (RSS) shown in (3.3), as done in offline tree methods.

RSSj =
|Dj |∑
i=1

(yi − ȳj)2 (3.1)

RSSjh =
|Djlh|∑
i=1

(yilh − ȳjlh)2 +
|Djrh|∑
i=1

(yirh − ȳjrh)2 (3.2)

∆L(h) = RSSj −RSSjh. (3.3)

In addition, the computation of out-of-bag errors of the trees must be done differently. In
classification, OOBE of a tree m is simply the fraction of the new observation’s label yu for
some u ∈ k in node j:

OOBEm =
∑|Dj |
i=1 1(yi 6= yu)
|Dj |

. (3.4)

which falls between 0 and 1. However, for RL problems, OOBEs must be computed in a
regression manner. For this, we adopt the mean absolute error to assess OOBEs of the
trees that are computed base on λ most recent observations that the terminal nodes have
observed.
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Algorithm 11 Q-Learning with online trees
Require: Replay memory to capacity Nmem
Require: Minibatch size: Nmin
Require: Temporal knowledge weighting rate: ϕ
Require: Episode at which ensemble size expansion occurs: ζ
Require: Maximum ensemble size: |Mmax|

1: for episode i in 1 : E do
2: for time step t in 1 : T do
3: Select at = nextAction(st) # According to Algorithm 12.
4: Execute at and obtain tuple et = (st, at, rt, st+1), store it in the memory
5: Randomly sample minibatch of (s`, a`, r`, s`+1) from the memory

6: Set y` =
{
r` + γ ∗maxaQ̂(s`+1, a`) if s`+1 is not terminal
r` if s`+1 is terminal

7: for tree m in 1 : Maj do
8: Draw c ∼ Poisson(1)
9: if c > 0 then

10: for k in 1 : c do
11: Set agem+ = 1
12: Set j = findLeaf(s`) # Find the terminal node j to which s` belongs
13: updateNode (j, 〈s`, y`〉) # According to Algorithm 13.
14: end for
15: else
16: updateOOBEm # According to Equation 3.5
17: end if
18: end for
19: # Perform temporal knowledge weighting on ensemble Ma`

20: Randomly select m from Ma`
such that agem > 1/ϕ

21: if OOBEm > c ∼ Uniform(0, 1) then
22: Replace the tree with a new tree with just one node
23: end if
24: end for
25: if i = ζ then
26: expandTrees (M, |Mmax|) # According to Algorithm 14
27: end if
28: end for

OOBEreg. = 1
λ

λ∑
i=1

min
(
abs

(
yi −m(xi)
yi + µ

)
, 1
)
. (3.5)

Here, m(x) is a predicted value from a tree m, and µ is a small arbitrary real number that
prevents division by zero. The term in the function min(·) tells us how much the predicted
value is off from the true response. OOBEs computed this way also falls between 0 and 1.

20



3.2 Computing maxa∈AQ̂(S, a) when |A| > 1

In reinforcement learning, there is typically more than one possible action available at any
given non-terminal state. In order for agents to determine which action to choose, each
action needs its own action-value. This gives rise to a need for function approximators to
be able to produce a number of outputs equal to the number of available actions for the
iteration process described in Equation 2.12. Deep neural networks naturally solve this
issue by having the corresponding number of output nodes in the output layer. However,
the online random forest from [26] can approximate only one output at a time. To resolve
this, we adopt an idea suggested by Ernst et al. [9] for handling discrete action spaces. In
our method, we grow one forest for each action available in the given reinforcement learning
environment. Each ensemble starts with just one node and grows independently on sample
observations from experience replay. Each forest approximates the corresponding action-
value function, and then the largest among them is returned. For a fixed state s and action
a at time step t, the Q-learning iteration requires a computation

Q̂(st, at)← Q̂(st, at) + α[rt + γmax
a∈A

Q̂(st+1, a)], (3.6)

assuming α=1. Using our method, the term after γ in the brackets can be expressed as:

max
a∈A

Q̂(st+1, a) = max(Q̂1(st+1, a1), Q̂2(st+1, a2), ..., Q̂|A|(st+1, a|A|)). (3.7)

Here, Q̂(·) is the function approximator, and Q̂i(st+1, ai) = Mi(st+1)∀i = 1, . . . , |A| where
M(·) denotes prediction by the ensemble. An equivalent method is also applied for action
selections: with probability ε, the agent chooses its consecutive action by taking the largest
action-value among the approximations induced from the ensembles. This is encoded in
Algorithm 12 below.

Algorithm 12 nextAction(st)
Require: State at time step t+ 1: st+1

Require: Probability of taking a random action: ε
Require: Ensemble of trees: M
Require: Number of possible actions: |A|

1: Draw c ∼ Uniform(0, 1)
2: if c < ε then
3: return at+1 = random action from A
4: else
5: return at+1 = argmax

(
M1(st+1),M2(st+1), . . . ,M|A|(st+1)

)
6: end if
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3.3 Partial randomness in split point selection

In reinforcement learning, function approximators must be able to use as much information
from the environment as possible. However, In the standard online random forest, each
node selects a small subset of features at random [26]. This aspect of online random forest
may prevent the function approximators from utilizing important information from the
given state, leading to sub-optimal splits. Since the impact of each split is severe on the
ensembles’ performances, the nodes must utilize as much information from the state as
possible. Instead of choosing a small subset, we let all the state features be included in the
split tests. In other words, we remove randomness in the split variable selection. However,
the split points for each test are still chosen at random. We express the procedure in the
following algorithm.

Algorithm 13 createChild(pj·h)
Require: Node index of the child node: j + 1
Require: Statistic from the parent node j: pj·h
Require: The number of explanatory variables: K
Require: State variables: {z1, . . . , zK}

1: Set pj+1 = pj·h # Inherit the statistic from the parent node.
# Apply partial randomness in split point selection.

2: Select K split points {θ1, . . . , θK}, where θi ∼ Uniform (min(zi) ,max(zi)) ∀i
3: Construct a set of tests H = { h1, . . . , hK }, where hi = (zi, θi) ∀i

3.4 Expanding ensemble size

Growing a large number of trees in each forest can be computationally intensive. In the early
stages of learning, the amount of information learned may be expressed using only a small
number of trees. We propose training a small number of trees for a certain period and then
duplicating the best tree a large number of times later on in the learning process. These
duplicated trees are then further grown and updated as more data come in. Our method
begins the learning process with just 100 trees (a default value) in each forest and, when the
episode reaches ζ, expands the number of trees up to a value specified by a hyperparameter
|Mmax| according to the following algorithm.
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Algorithm 14 expandTrees(M , |Mmax|)
Require: Ensemble of trees: M ,
Require: Initial size of ensemble: |Minit|,
Require: Maximum size of ensemble: |Mmax|.

1: mbest = {m|m ∈M,OOBEm = minm∈MOOBEm}
2: for i in |Minit|+ 1 : |Mmax| do
3: M = append(M , mbest)
4: end for
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Chapter 4

Experiments and results

We apply the RL-ORF model to the following OpenAI gyms: blackjack (Blackjack-v1),
inverted pendulum (CartPole-v1), and lunar lander (LunarLander-v2). OpenAI gyms pro-
vide a variety of simulated environments that are widely used as benchmarks in the rein-
forcement learning literature [7]. In each case, we compare our methods to DQNs (deep
Q-networks; [22]). For both DQN and RL-ORF, we used γ = 1.0, ε = 0.5, and ε-decay rate
= 0.99 with the minimum ε = 0.01. The replay memory size was fixed at 10,000 in all ex-
periments, and the minibatch size was fixed at 32. For DQN, the neural networks comprised
two hidden layers. In each experiment, we compared performances of different hidden layer
sizes and learning rates with the Adam optimizer [16]. The input and output layer sizes
differed depending on the gym. For instance, there are 4 elements in the state space in the
inverted pendulum gym and 2 in the action space, which resulted in 4 input nodes and 2
output nodes. For RL-ORF, we tested different values of η and modulated whether or not
to expand the ensemble size using expandTrees. All trees were fully grown without pruning,
along with default parameters β = 0.01, ϕ = 1/5, 000, |Minit| = 100, and |Mmax| = 200.
The ensemble size was expanded (if set to do so) at episode 100, meaning ζ = 100. For each
experiment, we do 100 random restarts and 1,000 episodes for each run.

In supervised learning, the performance of models can be measured by training the
models on the training datasets and assess their accuracy on the validation sets. However,
such a paradigm cannot be applied in reinforcement learning since learning and assessing
occur simultaneously in an online fashion. Therefore, we used the average total reward per
episode that the agent had scored during training to measure performance evaluations. Each
epoch consisted of 1,000 episodes, and the total rewards were averaged over 100 epochs.

All experiments were conducted on Intel i7-8565U 1.8GHz CPU and 16GB RAM with
python version 3.7.8. The DQNs were trained using PyTorch version 1.8.1. The code for
our experiments is available under an open-source license. Portions of our codebase use
a modified version of the open-source python code from [20] and [33]. The DQN method
is ∼103 times faster than our method, and the total compute for all experiments was

24



approximately 10 CPU years. We report significant results for nominally significant p-values
(0.05).

4.1 Blackjack

In OpenAI’s blackjack environment, the state is a tuple containing three elements: the
agent’s hand, the dealer’s hand, and whether or not the agent holds an ace. The ace can be
treated as either one point or eleven. The agent starts with two cards in hand, whereas the
dealer starts with only one. The player draws a card by choosing to hit. Suppose the player’s
hand exceeds 21, the player busts and loses the game immediately. The player can choose
to end the turn before bust by choosing to stay. Subsequently, the dealer begins drawing
cards. The dealer keeps drawing until the hand reaches 17 or higher or busts. If the dealer
busts, the player wins the game. If neither the player nor the dealer busts, the hands are
compared and the one with a higher hand wins. If the hands are equal, the result is a draw,
and the game ends. The deck is reshuffled in each game. The reward is awarded given as
win (+1), draw (0), and lose (-1). For more details, see [7].

4.1.1 Blackjack: Results

We first illustrate our results on the performances obtained by implementing DQN and
RL-ORF as function approximators in Q-learning. For blackjack only, the results are shown
in terms of average cumulative reward per 100 episodes. For example, an average cumula-
tive reward of -21.1 at the 200th episode means the agent’s total reward won between 101
and 200 episodes was -21.1 (i.e., the agent lost 21.1 more times on average than it won).
We discovered that our method outperformed the DQN settings we had carried out (Fig-
ure 4.4). Before comparing the methods, we report the performances of DQN and RL-ORF
in different parameter settings.

In Figure 4.1, we compared the performance of DQN with different hidden layer sizes
and learning rates. We varied the parameters of the DQN extensively but found that the
settings did not modulate the performance. Figure4.1 (d) shows that the best performance
at episode 1,000 was achieved by implementing DQN with hidden node size 32x32 and the
learning rate 0.01.

25



(a) (b)

(c) (d)

Figure 4.1: Blackjack: Average rewards obtained using DQN as the Q-function approximator
with different hidden node sizes and learning rates. (d) presents that DQN with hidden node
size = 32x32 and α = 0.01 performed the best at episode 1,000 among the combinations.

We show RL-ORF results with various η values and modulation of ensemble size ex-
pansion in Figure 4.2. As illustrated in Figure 4.2 (a), (b), (c), we observed that varying
η had created more recognizable differences in the average cumulative rewards the agent
received than the ensemble size expansion. The ensemble size expansion did not boost the
performance of the function approximator with a fixed η. The best RL-ORF had settings
η = 32 and ensemble size expansion from 100 to 200 at episode 100 as depicted in (d).
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(a) (b)

(c) (d)

Figure 4.2: Blackjack: Average rewards obtained from ORF with different η and whether
ensemble size is expanded at episode 100. (d) shows that RL-ORF with η=32 and the
ensemble expansion gives the best performance among the examined parameter sets.

The error regions of the best DQN (hidden layer size=32x32, α=0.01) and RL-ORF
(|Mmax| = 200 with ensemble size expansion) shown in Figure 4.3 illustrates that no one
method has noticeably larger or smaller variability than the other. Here, the error regions
are ± 1 standard deviation across the 100 restarts from the mean. The RL-ORF performed
significantly better for this gym than the DQN, as seen in Figure 4.4. The best RL-ORF
parameters showed a mean cumulative reward of -6.51 with a standard deviation of 10.97 at
episode 1,000, and the best DQN had a mean of -15.18 with a standard deviation of 10.10.
We provide the results of statistical tests to support our findings in Table 4.1 and Table 4.2.
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(a) (b)

Figure 4.3: Blackjack: Average cumulative reward per 100 episodes from the best ones of (a)
DQN and (b) RL-ORF with the error regions. Neither of the two methods showed noticeably
larger or smaller performance fluctuations compared to the other.

Figure 4.4: Blackjack: Comparison of the average cumulative rewards per 100 episodes
between the best DQN, RL-ORF, and standard Q-learning. RL-ORF has a larger average
cumulative reward than DQN at episode 1,000. Statistical evidence is provided in Table 4.2.

4.1.2 Blackjack: Statistical tests

We performed various tests to find statistical evidence of whether one method outperforms
the other. Before comparing the means, we first tested the normality of the average cumu-
lative rewards from DQN and RL-ORF. Large p-values from Shapiro-Wilk tests (Table 4.1)
provided no evidence that the distributions of the performances were not normal with the
significance level of 0.05. Thus we proceed to compare the two means using a t-test. One-
sided t-tests for the difference in the means at episode 300 yields the p-value 0.665, which
does not reject the null hypothesis that the performances were equal. However, at episode
1,000, the was p-value 2.271E-5 rejecting the null hypothesis that the performances were
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equal (i.e., the RL-ORF has higher mean performance). Details of these statistical tests are
provided in Table 4.2.

Shapiro-Wilk Test

Approx. Parameters Episode Statistic P-value Conclusion

DQN size=32x32, α=0.01 300 0.970 0.886 Cannot reject H0

DQN size=32x32, α=0.01 1,000 0.921 0.330 Cannot reject H0

RL-ORF η=32, |Mmax|=200, exp 300 0.979 0.113 Cannot reject H0

RL-ORF η=32, |Mmax|=200, exp 1,000 0.976 0.060 Cannot reject H0

Table 4.1: Blackjack: Results of Shapiro-Wilk test for the normality of the average rewards
data at episodes 300 and 1,000 obtained by DQN and RL-ORF. In all cases, we cannot
reject the null hypothesis that the data is normally distributed.

T-Test

Episode Statistic P-value Conclusion

300 -0.428 0.665 Cannot reject H0

1,000 4.249 2.271 ∗ 10−5 Reject H0

Table 4.2: Blackjack: Results of one-sided T-test between the mean average cumulative
rewards from DQN and RL-ORF. There is a statistical evidence that the mean from RL-
ORF is greater than the mean from DQN at episode 1,000 with p-value of 2.272E-5.

Note that the formulation of blackjack by OpenAI reshuffles the deck after every hand,
and ties are not in favour of the agent. This means that the game is stacked against the agent,
and it is impossible to achieve an average reward larger than zero (as indicated by Figure
4.4). For the blackjack experiment, there was no evidence of catastrophic forgetting in the
DQN. Catastrophic forgetting, also known as catastrophic interference is a phenomenon that
occurs when ANNs lose learned information after learning from new experience [21]. Once
the neural network becomes good at solving the problem, the new incoming experience that
the agent gets is only good cases, leading to a depletion of unsuccessful cases in the expe-
rience memory. The function approximator would start to generate high Q-function values
for every state-action pair, which degenerates the accuracy of the network. In Figure 4.1,
the DQNs show no sign of catastrophic forgetting as the average rewards do not decay over
time. In this experiment, there was no evidence that the expanding trees method improved
performance of the RL-ORF as depicted in Figure 4.2. Evidence recommending expanding
trees arises in the following experiment. We also apply standard Q-learning (discrete TD
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learning) to the blackjack gym, and this method performed worse than both the DQN and
the RL-ORF methods, with a mean reward of -28.93 and a standard deviation of 12.97.

4.2 Inverted pendulum

For inverted pendulum by OpenAI’s CartPole-v1, the agent’s objective is to maintain the
pole standing on the cart without falling as long as possible. The state-space tuple consists
of 4 elements: cart position, cart velocity, pole angle, and pole angular velocity. There are
two possible actions: move the cart to the left (0) or right (1). The agent gets a +1 reward
for every step taken, including the termination step. See [7] for more details. We modified
the reward function for both DQN and RL-ORF with a heavier penalty to enhance the
learning speed. In the altered setting, the agent gets -1,000 points for falling. We tested
hidden layer sizes: 32x32, 64x64, 128x128, and learning rates: 0.01, 0.005 for DQN. For
RL-ORF, different values of η: 32, 64, 128, and whether to expand the ensemble size from
100 to 200.

4.2.1 Inverted pendulum: Results

We show the average rewards per episode for the varying parameter values of DQN in Fig-
ure 4.5. (a), (b), and (c) illustrate that the lower learning rate returned better performances
than when α=0.01 in all hidden layer sizes. However, like in Blackjack, a larger number of
hidden nodes did not noticeably improve the overall performance throughout the episodes.

30



(a) (b)

(c) (d)

Figure 4.5: Inverted Pendulum: Average rewards per episode obtained by DQN with different
hidden node sizes and learning rates. (d) shows that the best DQN has hidden node size
128x128 and α = 0.005.

For RL-ORf Figure 4.6 (a), (b) and (c), we noticed that the forest size expansion resulted
in better performances in all three schematics. We observed a decrease in the average reward
at the point of the expansion, which quickly recovered. The negative impact of the ensemble
expansion was more severe with smaller η, although varying the η itself did not show notable
differences in the performance of the agent. Figure 4.6 (d) shows that the best performing
RL-ORF at episode 1,000 had η = 256 with ensemble size expansion with the mean average
reward of 157.0, outperforming the other two schematics (145.32 for η = 512, and 139.26
for η = 1, 024).
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(a) (b)

(c) (d)

Figure 4.6: Inverted Pendulum: Average rewards per episode obtained by RL-ORF with
varying sizes of η and whether ensemble size is expanded. In all (a), (b), and (c), expanding
the ensemble size produces the best performance at episode 1,000. The best RL-ORF has
η = 256 and the ensemble size expanded from 100 to 200 at episode 100.

4.2.2 Inverted pendulum: Statistical tests

We performed statistical tests to investigate whether there is any evidence of performance
improvements by forest size expansion. The cases compared were: η=256 with forest ex-
pansion and η=256 without forest expansion. The results with p-values less than the sig-
nificance level 0.05 rejected the null hypothesis that the average rewards at episodes 300
and 1,000 in both cases were normally distributed. See Table 4.3 for details. We used the
Mann-Whitney U test to compare the two independent data that are not normally dis-
tributed. The test showed that at episode 300, there is no evidence that the probability
of the mean average reward from RL-ORF with ensemble size expansion exceeds that of
RL-ORF without the size expansion. At episode 1,000, however, the p-value was less than
0.05, providing enough evidence to reject the null hypothesis (that the accuracy of RL-ORF
without expansion was the same as the accuracy of RL-ORF with expansion; or specifically
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that Pr(accuracy of RL-ORF with expansion > accuracy of RL-ORF without expansion)
= Pr(accuracy of RL-ORF without expansion> accuracy of RL-ORF with expansion)). De-
tails of the test is reported in Table 4.4.

Shapiro-Wilk Test
Approx. Parameters Episode Statistic P-value Conclusion

RL-ORF η=256, |Mmax|=200, Exp 300 0.803 2.97 ∗ 10−10 Reject H0

RL-ORF η=256, |Mmax|=200, Exp 1,000 0.809 4.68 ∗ 10−10 Reject H0

RL-ORF η=256, |Mmax|=200, no Exp 300 0.794 1.89 ∗ 10−10 Reject H0

RL-ORF η=256, |Mmax|=200, no Exp 1,000 0.788 1.26 ∗ 10−10 Reject H0

Table 4.3: Inverted Pendulum: Results from Shapiro-Wilk tests for normality of the average
rewards generated by RL-ORF with and without ensemble size expansion. With the p-
values smaller than the significance level, we provide statistical evidence that the data is
not normally distributed in all cases.

Mann-Whitney U Test

Episode Statistic P-value Conclusion

300 5,557.0 0.068 Cannot reject H0

1,000 5,654.0 0.042 Reject H0

Table 4.4: Inverted Pendulum: Results on Mann-Whitney U test for comparison between
the means of RL-ORF with ensemble size expansion and without expansion. We provide
evidence that RL-ORF with ensemble size expansion outperforms the one without the ex-
pansion at episode 1,000.

From Figure 4.5 and 4.6, we select the best DQN and RL-ORF to compare the two
mean average rewards: DQN with hidden layer size=128x128 and learning rate=0.005, and
RL-ORF with η = 256 and ensemble size expansion. In Figure 4.7, we plot the two cases
with their error regions. The error regions are ± 1 standard deviation from the mean, as in
the blackjack case. The error regions indicate that neither of the two methods has noticeably
larger performance variability in later episodes. At episode 1,000, the best DQN had a mean
average reward of 120.0 and a standard deviation of 92.0, whereas the best RL-ORF had a
mean average reward of 157.0 with a standard deviation of 88.8.
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(a) (b)

Figure 4.7: Inverted Pendulum: Average rewards per episode from the best of (a) DQN and
(b) RL-ORF with error regions. The figures show that neither of the two has recognizably
smaller performance fluctuations compared to the other.

Figure 4.8: Inverted Pendulum: Comparison between the RL-ORF and DQN in average
rewards per episode. The statistical test shown in Table 4.5 shows that our method outper-
forms the DQN.

As depicted in Figure 4.7 and Figure 4.8, we observed that the average rewards for
both methods slowly decreases over the episode, indicating that they both suffered from
catastrophic forgetting. In Figure 4.8, RL-ORF seems to have a larger mean average reward
per episode than DQN. We performed statistical tests to obtain evidence to support our
findings. Shapiro-Wilk normality test for the average rewards from DQN and RL-ORF at
episodes 300 and 1,000 failed to reject the null hypothesis that each data was normally
distributed, as represented in Table 4.5.
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Shapiro-Wilk Test
Approx. Parameters Episode Statistic P-value Conclusion

DQN size=128x128, α=0.005 300 0.813 6.53 ∗ 10−10 Reject H0

DQN size=128x128, α=0.005 1,000 0.877 1.34 ∗ 10−7 Reject H0

RL-ORF η=256, |Mmax|=200, exp 300 0.803 2.97 ∗ 10−10 Reject H0

RL-ORF η=256, |Mmax|=200, exp 1,000 0.809 4.68 ∗ 10−10 Reject H0

Table 4.5: Inverted Pendulum: Results from the Shapiro-Wilk normality test on the average
rewards per episode at episodes 300 and 1,000 generated by the best performing RL-ORF
and DQN. The results reports that we have enough evidence to reject the null hypothesis
that the data is normally distributed in all four cases.

Since the normality of the data was not guaranteed, we compared the mean average
rewards of the best performing DQN and RL-ORF at episodes 300 and 1,000 using the
Mann-Whitney U test. The results showed that at 95% significance level, we have enough
evidence to reject the null hypothesis that the probability of RL-ORF’s mean average re-
wards is equal to that of the DQN’s at episode 300 and 1,000 with p-values 0.0002 and
0.009, respectively. See Table 4.6 for details.

Mann-Whitney U Test

Episode Statistic P-value Conclusion

300 6,464.5 0.0002 Reject H0

1,000 5,965.0 0.009 Reject H0

Table 4.6: Inverted pendulum: Results from the Mann-Whitney U test comparing the means
of DQN and RL-ORF at episodes 300 and 1,000. Small p-values indicate that RL-ORF
outperforms DQN in both cases.

4.3 Lunar lander

For the ‘lunar lander’ gym, the agent tries to land on the landing pad located at coordi-
nates (0, 0). The state-space tuple consists of 8 elements: x-coordinate, y-coordinate, hori-
zontal and vertical velocity, lander angle, angular velocity, right-leg grounded, and left-leg
grounded. The agent gets -0.3 points for each frame it fires the main engine, -0.03 for each
side engine. If the lander reaches the ground too fast (speed > 0), the lander crashes and re-
ceives -100. A successful landing (velocity = 0) anywhere awards +100 points, an additional
+100 are given for landing on the landing pad. Each leg with ground contact is +10 points.
An episode terminates when the lander either crashes or comes to rest [7]. We demonstrate
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our results for DQN with hidden layer size 32x32 with learning rate 0.01, and for RL-ORF
with η = 256 and expand ensemble sizes to |Mmax| = 200.

(a) (b)

Figure 4.9: Lunar lander: Average rewards per episode obtained by (a) DQN and (b) RL-
ORF. Neither one of the function approximators performs well within 1,000 episodes.

As seen in Figure 4.9, neither of the two methods were able to reach the average total
reward per episode above 0 within 1,000, with RL-ORF performing significantly worse than
DQN. However, this problem is not unsolvable. It was solved in several studies, including
[15, 11]. They solved it by implementing a larger network size, lower learning rate, along
with an adjustment in the updating frequency [15], and letting the agent learn on a large
number of iterations [11]. Both methods used more powerful computational resources than
we did. Gadgil et al. [11] mentioned that training 128x128 hidden layers with a learning
rate of 0.001 took approximately 8 hours to train, whereas it took around 40 hours for our
DQN with size 32x32 and learning rate 0.005 to be trained.
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Chapter 5

Discussion

We found in our experiment that the online tree method can be used as an action-value
function approximator in Q-learning. By applying our methods in OpenAI’s blackjack and
inverted pendulum gyms, we discovered that the online tree method could outperform some
deep neural networks in terms of average total reward. In the process, we identified several
factors that can affect the performance of the online tree method. First, we found that
starting the forest size with a small number of trees and then expanding the forest size
after the set episode performed better in later episodes than maintaining the initial forest
size. This may be because the deterioration of performance, which can inevitably appear
in the process of discarding a tree with relatively large out-of-bag error and growing a new
tree, has a more significant impact in a ‘no expansion’ environment. When the forest size is
expanded, more than half of the trees temporarily show relatively high performance, which
could cancel out the performance degradation due to the correlations between trees and
tree re-growth. Furthermore, tree expansion causes a drop in performance at the moment
of forest size expansion. However, as shown in our experiment, the impact decreases as η
increases and later disappears as the episodes progress. These findings indicate that the
ensemble becomes more robust to changes in its structure with larger η. However, online
tree methods did not perform well in other environments. In Lunar Lander environment
of OpenAI, while the average total reward for the Deep Q-network increased during 1,000
episodes, the online tree method did not show an increasing learning curve. We believe it
would be worth investigating what makes it difficult for the online tree methods to solve
those problems. Another limitation is that our online tree method has as many user-defined
parameters as the deep neural network. In particular, in our experiment, we demonstrated
that η has a significant influence on the agent’s performance, and optimal η values may
not be known a priori. Lastly, Ernst et al. suggest that pruning is necessary even in the
ensemble of tree method in a highly stochastic environment [9]. However, in our experiment,
all trees were fully grown until they reached a significant difference in RSS without pruning
like in [26]. Development of online pruning methods and investigating how it affects the
performance of the online tree ensembles could be a subject for future work.
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Chapter 6

Conclusion

In our study, we have developed an online random forest method for reinforcement learn-
ing. First, we adopted an idea from Ernst et al. [9] to grow an independent ensemble for
each action in the discrete action space. In a given state, each ensemble approximates the
action-value function for the corresponding state-action pair. The agent selects the action
in a greedy manner: choosing the action that returns the largest action-value function. In
addition, each tree is subject to termination according to its out-of-bag error after it has
gone through a user-defined number of updates. To develop this method, we presented a
novel calculation of the out-of-bag error in the regression setting. Next, we proposed ensem-
ble size expansion as a way to save computational costs and boost performance. Lastly, we
applied partial-randomness in split point selection to let the ensemble make the most use
out of each state. This method is general, and we apply it to gyms without any hand-crafted
aspects, without transfer learning, and without building specific representations of the gym.
Our experiments demonstrate that we outperform state-of-the-art DQNs and standard TD
learning for blackjack, and we outperform DQNs in the inverted pendulum.

In blackjack and the inverted pendulum problem, we found that the number of samples
that each terminal node should observe before splitting affects the agent’s performance. In
addition, rather than fixing the forest size throughout the episodes, we found that expanding
the forest size by duplicating the best-performing tree after a particular episode alleviates
the performance drop in the long term. Furthermore, we showed that our method could
outperform Q-learning with deep neural network if the parameters for our online random
forest are appropriately selected.

These gains come at a cost: our method is significantly slower than DQNs (however,
our DQN implementation uses PyTorch, and we did not attempt to optimize our code with
a C implementation matching PyTorch optimization techniques). Finally, we found that
the lunar lander gym is quite difficult, and neither DQN nor our method performs well
within 1,000 episodes for that gym. The lunar lander gym would likely be easier with visual
representation and convolution or hand-crafted representations, as is done in standard DQN
work. In addition to providing the novel RL-ORF (reinforcement learning online random
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forest), our work shows some limitations on the complexity of problems that can be solved
with representation-free reinforcement learning.
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Appendix A

List of Parameters

α learning rate
β minimum gain a split must achieve
γ discount factor
ε probability of choosing a random action
ζ episode at which the number of trees is expanded
η number of observations a node must observe before splitting
λ number of observations used to compute OOBE of trees
ϕ temporal knowledge weighting rate
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