
Motor Control and Strategy Discovery for
Physically Simulated Characters

by

Zhiqi Yin

B.Sc., Simon Fraser University, 2020

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Computing Science

Faculty of Applied Science

© Zhiqi Yin 2021
SIMON FRASER UNIVERSITY

Summer 2021

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Zhiqi Yin

Degree: Master of Science

Thesis title: Motor Control and Strategy Discovery for
Physically Simulated Characters

Committee: Chair: Yasutaka Furukawa
Associate Professor, Computing Science

KangKang Yin
Supervisor
Associate Professor, Computing Science

Hang Ma
Committee Member
Assistant Professor, Computing Science

Mo Chen
Examiner
Assistant Professor, Computing Science

ii

Abstract

In physics-based character animation, motions are realized through control of simulated
characters along with their interactions with the virtual environment. In this thesis, we study
the problem of character control on two levels: joint-level motor control which transforms
control signals to joint torques, and high-level motion control which outputs joint-level
control signals given the current state of the character and the environment and the task
objective. We propose a Modified Articulated-Body Algorithm (MABA) which achieves
stable proportional-derivative (PD) low-level motor control with superior theoretical time
complexity, practical efficiency and stability than prior implementations. We further propose
a high-level motion control framework based on deep reinforcement learning (DRL) which
enables the discovery of appropriate motion strategies without human demonstrations to
complete a task objective. To facilitate the learning of realistic human motions, we propose
a Pose Variational Autoencoder (P-VAE) to constrain the DRL actions to a subspace of
natural poses. Our learning framework can be further combined with a sample-efficient
Bayesian Diversity Search (BDS) algorithm and novel policy seeking to discover diverse
strategies for tasks with multiple modes, such as various athletic jumping tasks.

Keywords: physics-based character animation; motor control; deep reinforcement learning;
Bayesian optimization; variational autoencoder; motion strategy; proportional derivative
control

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. KangKang Yin, who gave
me the opportunity to study and do research in Simon Fraser University. She provided me
with guidance and assisted me a lot throughout this research. Also, I would like to express
my deep gratefulness to my parents, who supported my pursuit of graduate studies.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 Linear Time Stable PD Motor Controllers 4
2.1 Overview . 4
2.2 Background and Related Work . 5

2.2.1 SPD Formulation for a Single DoF 5
2.2.2 SPD for Articulations . 6
2.2.3 Solving SPD by Matrix Factorization 6
2.2.4 Articulated-Body Forward Dynamics Algorithm 7

2.3 Modified Articulated-Body Algorithm . 8
2.3.1 ABA Preliminaries . 8
2.3.2 MABA Derivation . 10
2.3.3 Algorithm Complexity . 13
2.3.4 Practical Implementation . 13

2.4 Experiments . 13
2.4.1 Accuracy and Stability . 14
2.4.2 Simulation Performance . 16
2.4.3 DRL Training Performance . 17

2.5 Summary and Discussions . 18

3 Discover Diverse Athletic Jumping Strategies 19

v

3.1 Overview . 19
3.2 Related Work . 20

3.2.1 Character Animation . 20
3.2.2 Diversity Optimization . 21
3.2.3 Natural Pose Space . 22
3.2.4 History and Science of High Jump 23

3.3 System Description . 24
3.4 Learning Natural Strategies . 26

3.4.1 DRL Formulation . 26
3.4.2 Pose Variational Autoencoder . 28

3.5 Learning Diverse Strategies . 30
3.5.1 Stage 1: Initial States Exploration with Bayesian Diversity Search . 30
3.5.2 Stage 2: Novel Policy Seeking . 33

3.6 Task Setup and Implementation . 34
3.6.1 Task Setup . 34
3.6.2 Implementation . 37

3.7 Results . 38
3.7.1 Diverse Strategies . 38
3.7.2 Validation and Ablation Study . 42
3.7.3 Comparison and Variations . 43
3.7.4 Numerical Analysis . 45

3.8 Summary and Discussions . 45

4 Conclusion and Future Work 48

Bibliography 50

vi

List of Tables

Table 2.1 Model parameters: n is the degrees of freedom; and d is the maximum
number of DoFs from the root to the leaves. 14

Table 2.2 Simulation FPS (frames per second) of different SPD implementa-
tions: DF (dense factorization), PCG (preconditioned conjugate gradi-
ent with Jacobi preconditioning), SF (sparse factorization), and MABA. 16

Table 2.3 Percentage of extra time required by SPD computation over total sim-
ulation time. 16

Table 3.1 Curriculum parameters for learning jumping tasks. 35
Table 3.2 Model parameters of our virtual athlete and the mocap athlete. . . . 36
Table 3.3 Representative take-off state features for discovered high jumps. . . . 41
Table 3.4 Representative take-off state features for discovered obstacle jumps. . 41

vii

List of Figures

Figure 1.1 Performance comparison using a dog model tracking a canter motion
with different motor controllers. 2

Figure 1.2 Two of the eight high jump strategies discovered by our strategy
discovery framework, as achieved by physics-based control policies. 2

Figure 2.1 Illustration of a single body and an articulated body. 9
Figure 2.2 Articulated-body Tλ(i) with handle Lλ(i). 10
Figure 2.3 Character models used in our experiments. 14
Figure 2.4 SPD tracking errors measured at the right ankle of the humanoid

model in a running motion. 15
Figure 2.5 SPD tracking errors measured at the right front toe of the dog model

in a cantering motion. 15
Figure 2.6 DRL learning curves measured in wall-clock time using different SPD

implementations. 17

Figure 3.1 Overview of our strategy discovery framework. 24
Figure 3.2 Eight high jump strategies discovered by our learning framework,

ordered by their maximum cleared height. 39
Figure 3.3 Diverse strategies discovered in each stage of our framework. 39
Figure 3.4 Peak poses of discovered high jump strategies including look-up

views and look-down views, ordered by their maximum cleared height. 40
Figure 3.5 Eight obstacle jump strategies discovered by our learning framework. 42
Figure 3.6 Jumping strategies learned without P-VAE. Although the character

can still complete the tasks, the poses are less natural. 43
Figure 3.7 Comparison of our synthesized high jumps with those captured from

a human athlete. 44
Figure 3.8 High jump variations. 45
Figure 3.9 High jump policy trained on Mars with a lower gravity (g = 3.711m/s2),

given the initial state of the Fosbury Flop discovered on Earth. . . 45
Figure 3.10 DRL learning and curriculum scheduling curves for two high jump

strategies. 46

viii

Chapter 1

Introduction

Physics-based character animation has made significant progresses in recent years. High
quality controllers and skills can now be learned in real-time to generate motions that are
indistinguishable from motion capture data [130, 88, 8, 87, 122]. Comparing with kinematic
motion synthesis, physics-based methods achieve desired motions through control of sim-
ulated characters in virtual environments. Physically plausible responses to environmental
perturbations can therefore be automatically generated without the need to capture and
process additional motion data. However, the design of controllers for under-actuated char-
acters given certain objectives remains a key challenge in physics-based methods.

The challenge of controller design for physics-based characters is twofold. First, the sim-
ulation time for physics-based characters still remains one of the bottlenecks for efficient
controller learning. State-of-the-art Deep Reinforcement Learning (DRL) based algorithms
still require hours to days to learn motor skills successfully. For a fixed-duration motion
sequence, wall clock simulation time depends highly on the choice of joint-level controllers.
Vanilla Proportional-Derivative (PD) joint servos are widely adopted for conventional hand-
crafted or sampling-based full-body motion controllers like SIMBICON [127] and SAMCON
[73]. PD servos are simple to implement and induce negligible computational cost during
simulation. However, extremely small simulation time steps are usually required for control-
ling complex character models due to numerical instabilities of simple PD servos. Directly
controlling joint torques is another straightforward option but has been shown to degrade
learning performance and increase learning time for modern DRL-based motion controllers
[93]. Stable PD (SPD) controllers proposed in [115] has become the default choice for modern
physics-based character animation systems for its superior numerical stability that supports
significantly larger simulation time steps [88, 90, 89, 104, 87, 61, 10]. However, the stabil-
ity of existing SPD implementations comes with a cubic O(n3) computational cost in each
step, where n is the number of degrees of freedom of the character model. As a result, SPD
computation becomes the simulation bottleneck quickly as model complexity increases.

To mitigate this problem, we propose a fast and practical SPD computation algorithm for
articulations parameterized in generalized coordinates. In particular, we derive a Modified

1

(a) PD (b) Cubic-time SPD (c) Our linear-time SPD

Figure 1.1: Performance comparison using a dog model tracking a canter motion with dif-
ferent motor controllers.

(a) Fosbury Flop – max height=200cm (b) Western Roll – max height=195cm

Figure 1.2: Two of the eight high jump strategies discovered by our strategy discovery
framework, as achieved by physics-based control policies.

Articulated-Body Algorithm (MABA) based on Featherstone’s Articulated-Body Algorithm
(ABA) for forward dynamics [28]. The proposed algorithm computes SPD controls in worst
case O(n) time. As shown in Figure 1.1, our linear-time algorithm enables simulation and
control of many more characters than PD and cubic-time SPD. We detail the derivation of
MABA in Chapter 2 and demonstrate its performance advantage over conventional SPD
implementations. We further show that our algorithm provides superior stability for con-
trolling complex character models at large time steps, and improves the training speed and
quality of a modern DRL-based motor skill learning system.

Given a simulated character in a virtual environment and a task objective, another
long-standing challenge in physics-based character animation is to learn motion controllers
to complete the task with natural-looking movements. Most existing methods learn char-
acter motion controllers by leveraging motion capture examples, where a mocap imitation
objective is usually required during controller optimization to ensure high quality results.
For example, DeepMimic [88] learns physics-based skills in a DRL framework, where an
imitation reward and a task reward are combined together to learn skills. The learned con-
trollers can thus complete the task while being similar to specified motion capture clips.
Even though such imitation-based methods have demonstrated their effectiveness on achiev-
ing task-related goals, the imitation objective inherently restricts them from generalizing to
novel motion strategies fundamentally different from the reference.

In this thesis, we propose a framework for discovering motion strategies without motion
examples of the specific tasks. Our framework is based on DRL and takes the task goal
as its main objective. To facilitate the learning of realistic human motions, we propose a

2

Pose Variational Autoencoder (P-VAE) to constrain the actions to a subspace of natural
poses. We validate our learning framework on a set of athletic jumping tasks, including
Olympics high jumps, obstacle jumps, and long jumps. Through exploring a low-dimensional
feature space of take-off states, a diverse set of novel strategies can be discovered within a
proposed Bayesian Diversity Search (BDS) procedure. A second stage of optimization that
encourages novel policies can be further applied to enrich the unique strategies discovered.
Our framework discovers diverse set of athletic jump skills, such as the well-known Fosbury
Flop and Western Roll as shown in Figure 1.2. Comparing with previous works, our method
allows the discovery of diverse and novel strategies for athletic jumping tasks with no motion
examples and less reward engineering. We detail the implementation of our framework in
Chapter 3.

In summary, the contributions of this thesis include:

• A novel algorithm for computing stable PD motor control with superior efficiency and
stability, enabling efficient learning of high-level motion controllers.

• A system based on DRL and P-VAE for discovering novel and natural motion strate-
gies without references, as achieved by physics-based high-level motion controllers.

• The use of Bayesian diversity search and novel policy seeking for discovering diverse
strategies for the studied athletic jumping tasks.

The work in Chapter 2 is published at Computer Graphics Forum as [129]. The work in
Chapter 3 will appear at ACM Transactions on Graphics as [128].

3

Chapter 2

Linear Time Stable PD Motor
Controllers

2.1 Overview

In physics-based character animation, the choice of low-level motor controllers crucially af-
fects the simulation speed and the success of learning high-level character motion controllers.
Among all available options, Proportional-Derivative (PD) controllers are commonly used
for joint motor actuation in physics-based animation systems, especially for tracking-based
methods where kinematic reference motions are available [137, 127]. PD controllers are
simple to implement, and have been shown beneficial for improving quality and efficiency
of recent DRL-based motor skill learning systems [93]. However, numerical instability is
one of the major disadvantages of vanilla PD controllers. Extremely small simulation time
steps are required for accurate simulation of characters driven by PD servos resulting in
significant drop of simulation speed.

Stable Proportional-Derivative (SPD) controllers proposed by Tan et al. greatly im-
prove the numerical stability of traditional PD controllers by employing the idea of implicit
integration [115]. Instead of computing control forces based on the current state, SPD
formulates PD controls using the state at the next simulation time step. In practice, SPD
formulation allows for fairly high gains at large time steps. SPD controllers are usually im-
plemented for articulated rigid body systems in generalized coordinates [61, 10]. However,
these implementations compute SPD control by solving an n×n linear system in O(n3) time
based on dense matrix factorization, where n is the total number of Degrees of Freedom
(DoFs) in the articulation. We show in our experiments that cubic time SPD computations
significantly slow down the simulation when controlling complex articulated characters with
large DoFs.

In this chapter, we derive and validate Modified Articulated-Body Algorithm (MABA)
to compute SPD control for articulations parameterized in generalized coordinates. Our
algorithm is based on Featherstone’s Articulated-Body Algorithm (ABA) for forward dy-

4

namics [28]. The proposed algorithm computes SPD controls in worst case O(n) time and is
practically fast. In our experiments, we demonstrate the performance advantage of MABA
over the conventional dense matrix factorization based SPD implementation, as well as an
alternative method based on sparse matrix factorization. We report the simulation FPS
(frames per second) of an entire motion tracking system, and then the extra time required
for SPD computation. We show that our algorithm provides superior stability for control-
ling complex character models at large time steps. We further demonstrate that MABA
improves the training speed and quality of a DRL system for learning physics-based skills.

2.2 Background and Related Work

2.2.1 SPD Formulation for a Single DoF

Standard PD controllers calculate forces based on position and velocity errors at the current
time step. At time step n, we denote the position variable as qn, the target position as q̄n,
the velocity as q̇n, and the target velocity as ¯̇qn. Then the PD control force τn can be
calculated as:

τn = −kp(qn − q̄n)− kd(q̇n − ¯̇qn) (2.1)

where kp is the stiffness parameter and kd is the damping parameter. If no velocity tracking
is required, Equation 2.1 can be simplified to:

τn = −kp(qn − q̄n)− kdq̇n (2.2)

For notation simplicity, hereafter we will formulate different variations of SPD controllers
based on the PD control in Equation 2.2.

SPD computes control forces using state at the next time step instead of the current
state [115]:

τn = −kp(qn+1 − q̄n+1)− kdq̇n+1 (2.3)

Since future position qn+1 and velocity q̇n+1 at the next time step are unknown, they are
approximated by the first order Taylor expansion:

qn+1 = qn + ∆tq̇n

q̇n+1 = q̇n + ∆tq̈n

Equation 2.3 can then be reformulated as:

τn = −kp(qn + ∆tq̇n − q̄n+1)− kd(q̇n + ∆tq̈n) (2.4)

Equation 2.4 is the most popular SPD formulation. Other SPD formulations do exist. For
example, the PD formulation in [74, 71, 69] uses positions at the current time step but

5

velocities at the next time step. Such explicit-proportional implicit-derivative formulation
still achieves better stability than the conventional PD. In this paper, we focus on designing
and analyzing practical algorithms for SPD computation formulated as Equation 2.4.

2.2.2 SPD for Articulations

For an articulated rigid body system with n DoFs parameterized in generalized coordinates,
we use n dimensional vectors τ , q, q̇, q̈ to denote the generalized force, position, velocity,
and acceleration of the system. The equation of motion for the articulation can then be
expressed as:

Mq̈ = τ −C (2.5)

whereM is the generalized inertia matrix, andC is the bias force term including centrifugal,
Coriolis, and external forces.

The SPD formula for an articulation parameterized in generalized coordinates is a linear
equation relating the acceleration q̈ to the force τ , similar to Equation 2.4:

τ = −Kp(q + ∆tq̇ − q̄)−Kd(q̇ + ∆tq̈) (2.6)

Here Kp and Kd are the diagonal stiffness and damping matrices. The position q and
velocity q̇ can be obtained from the simulation state. The acceleration q̈ is unknown and
needs to be solved for by a forward dynamics algorithm that obeys Equation 2.5. Therefore,
we substitute τ in Equation 2.6 to Equation 2.5 to solve for the acceleration q̈ first:

(M +Kd∆t)q̈ = −C −Kp(q + ∆tq̇ − q̄)−Kdq̇ (2.7)

Then τ can be calculated by substituting q̈ into either Equation 2.5 or 2.6.

2.2.3 Solving SPD by Matrix Factorization

The key step in solving SPD is to solve the linear system in Equation 2.7. Conventionally,
it is solved directly by numerical methods which result in O(n3) running time in general.
We briefly review these implementations in this section.

The most straight forward SPD implementation uses direct matrix inversion to solve the
system [61, 104, 87]. This approach takes O(n3) time and may encounter numerical stability
issues. A better approach is to apply Cholesky factorization LDLT or LLT onM +Kd∆t.
Such factorization is applicable because the inertia matrixM is symmetric positive definite,
andKd∆t is a diagonal matrix with non-negative elements. This approach still takes O(n3)
time to compute because it treats M + Kd∆t as a dense matrix. We shall refer to this
approach as dense factorization (DF) hereafter. Due to its simplicity, the DF method is
widely adopted by both the research community and the industry [10, 88, 90, 89, 131].

6

To reduce the time complexity of the DF method, our first thought is to examine the
inertia matrix M . Featherstone’s dynamics formulation of articulated rigid body systems
results in branch-induced sparsity of M [28]. More specifically, for tree-like articulations
that contain no loops, Mij is non zero if and only if node i is an ancestor or a decedent
of node j. We thus can employ a topology dependent sparse LDLT or LLT factorization
algorithm [28] for M + Kd∆t, because again the additional diagonal matrix Kd∆t does
not change the sparsity of the inertia matrix M . We shall refer to this approach as sparse
factorization (SF) hereafter. The time complexity of the SF method is O(nd2), where d
is the maximum number of DoFs among all branches of the articulation tree. In the worst
case where the tree becomes a chain, SF degenerates into DF and requires O(n3) time as
well, as the inertia matrix is not sparse anymore. To the best of our knowledge, we are the
first to implement the sparse factorization method for SPD computation.

2.2.4 Articulated-Body Forward Dynamics Algorithm

Forward dynamics is the problem of solving accelerations from the equation of motion
indicated by Equation 2.5. From Equations 2.5 and 2.7 we can see that both forward dy-
namics and SPD control involve solving for the accelerations from a linear system. The
cubic time SPD computation can significantly slow down the performance for systems with
large DoFs, if linear time forward dynamics algorithms are used for simulation [28, 7]. One
well-known linear time forward dynamics algorithm from the robotics literature is Feather-
stone’s Articulated-Body Algorithm (ABA) [28]. This algorithm is sometimes abbreviated
as ABM (Articulated Body Method) [56], but we follow Featherstone’s original acronym.

ABA solves for the accelerations recursively in linear time without explicitly solving the
n × n closed-form linear system. Its efficiency comes from the use of recurrence relations.
A similar and more well known case is the Newton-Euler inverse dynamics algorithm: the
recursive Newton-Euler is much faster than its non-recursive predecessor. ABA calculates
the forward dynamics of a kinematic tree by three passes over the tree: an outward pass (root
to leaves) to calculate velocity and bias terms; an inward pass to calculate articulated-body
inertias and bias forces; and a second outward pass to calculate the accelerations.

ABA does not directly handle constraints such as collisions and joint limits. Additional
mechanisms, either ABA-based or independent, are required to impose penalty, impulse, or
constraint forces to enforce such constraints. For example, a modified version of ABA is used
to compute acceleration constraint matrices in [56]. Another ABA-based procedure is used
for computing and propagating impulse responses through articulated bodies [79]. In our
work, we solely modify ABA for the purpose of SPD computation, which is complementary
to other works that integrate other types of constraints into ABA-based algorithms. We will
discuss more ABA details in Section 2.3.1, and derive our linear time SPD implementation,
which is based on ABA, in Section 2.3.2 .

7

2.3 Modified Articulated-Body Algorithm

Since SPD computation has a similar structure as forward dynamics, we propose to solve
SPD in linear time by adapting the Articulated-Body Algorithm. The fundamental intuition
is that solving SPD accelerations is simply computing forward dynamics while enforcing the
SPD constraints on the control forces indicated by Equation 2.6. We name such a linear time
SPD algorithm as Modified Articulated-Body Algorithm (MABA). We will derive MABA
by enforcing the SPD control force constraints where necessary in the ABA derivation.
MABA shares the same algorithm structure as ABA, and therefore can be computed with
the same set of tree traversals as in ABA.

2.3.1 ABA Preliminaries

In this section, we review a few key concepts and the three tree traversal passes of ABA,
starting with necessary symbol definitions. We refer readers to [28] for more detailed expla-
nations. However, ABA was developed by roboticists and its original derivation as presented
in [28] is hard to understand for a typical graphics audience [7, 79]. We encourage readers
who do not have any knowledge on spatial notations to first follow these excellent tutorials
[26, 27]. Interested readers are further referred to an ABA derivation from basic principles
of rigid body dynamics[79], which should be easier to understand.

Let T be a kinematic tree with m links L1 to Lm, where L1 is the root. The subtree
rooted at Li is denoted as Ti. The set of link indices of Li’s children is denoted as µ(i). The
index of Li’s parent link is denoted as λ(i). The inbound joint of Li is denoted as Ji.

For each link Li, we denote its 6D spatial motion vector as vi, which includes both the
linear and angular motion of the rigid body. Similarly, we denote its 6D spatial force vector
as fi, which includes both the linear force and the angular torque. Spatial acceleration of
Li is denoted as ai. Generalized joint variables for joint Ji are denoted as qi, q̇i, q̈i and τi.
The motion subspace matrix Si relates the generalized coordinates to spatial quantities as
follows:

vJi = Siq̇i (2.8)

τi = STi fJi (2.9)

where vJi and fJi are the spatial velocity and spatial force of joint Ji.
Figure 2.1 illustrates the concept of a single body system and an articulated-body sys-

tem. When applying a spatial force f on a single rigid body B as shown in Figure 2.1a, the
acceleration a of body B is determined by the Newton-Euler equation:

f = Ia+ p (2.10)

where I is a 6× 6 single-body spatial inertia matrix including both the mass and moment
of inertia, and p is a bias force term including the centrifugal and Coriolis forces.

8

Bf

a

(a) a single body

Li

Jk

...
Lk

fi

ai

fJk

Ti

Tk

(b) an articulated body

Figure 2.1: Illustration of a single body and an articulated body.

An articulated body is a system of rigid bodies articulated by joints as shown in Fig-
ure 2.1b. When spatial force fi is applied on link Li, we cannot compute the acceleration
ai from Equation 2.10 anymore because of the unknown joint force fJk from the subtree
Tk. However, fi and ai still satisfy a linear equation

fi = IAi ai + pAi (2.11)

where unknowns IAi and pAi depend on the whole structure of the articulated body. IAi and
pAi are termed the articulated-body inertia and bias force of Ti. Li is called the handle of
the articulated-body system, as Equation 2.11 describes the acceleration response of body
Li jointed with all bodies in Ti. IAi and pAi have the following two properties that enable
the ABA implementation by three tree traversals:

1. IAi and pAi can be computed recursively from the leaves to the root. Specifically, IAi
and pAi can be computed from IAj and pAj where j ∈ µ(i).

2. Once we know IAi and pAi for each i, all joint and link accelerations can be computed
recursively from the root to the leaves.

ABA requires three passes of tree traversal of the articulation tree. These tree traversals
solve for the auxiliary variables and final accelerations following the topological order of the
tree:

• Pass 1 (top down): Compute auxiliaries including joint and link velocities, and single-
body centrifugal, Coriolis, and external forces, from the root to the leaves.

• Pass 2 (bottom up): Compute articulated-body inertias and bias forces based on
auxiliaries computed in Pass 1, from the leaves to the root.

• Pass 3 (top down): Compute joint and link accelerations based on the articulated-
body inertias and bias forces computed in Pass 2, from the root to the leaves.

9

Lλ(i)

...

...

Li

Ji

...Root

Ti

fJi

Tλ(i)

f

aλ(i)

Figure 2.2: Articulated-body Tλ(i) with handle Lλ(i).

2.3.2 MABA Derivation

Our MABA derivation is similar to the standard ABA derivation, which makes three traver-
sal passes of the kinematic tree. In particular, MABA shares the exact same Pass 1 as ABA,
for which we omit the details in this paper and refer the interested readers to [28]. Hereafter
we assume quantities computed by Pass 1 are known, including joint and link velocities,
and single-body bias forces. We will first derive Pass 3 then Pass 2, since derivation for
Pass 2 requires a relationship between joint accelerations and link accelerations derived in
Pass 3. For notation simplicity and ease of comprehension, we omit necessary coordinate
transformations in this section. For ease of reimplementation though, we list the complete
set of equations with proper coordinate transformations in Appendix A.

MABA Pass 3

Pass 3 of MABA does a similar job as Pass 3 of ABA, with additional SPD constraints
taken into account when accumulating accelerations from the root to the leaves. The root
link acceleration serves as the base case of the recursion. For fixed-base articulations, the
root acceleration is set to zero. For floating-base articulations, we treat the root link as
connected to a fixed base by a virtual 6-DoF joint. Now we derive recurrent formulas to
solve

• (Objective 1): ai based on aλ(i) and q̈i, and

• (Objective 2): q̈i based on aλ(i).

For Objective 1, we consider the articulated body Tλ(i) shown in Figure 2.2. The joint
velocity vJi is the relative spatial velocity of Li with respect to Lλ(i). From Equation 2.8
we have

vJi = vi − vλ(i) = Siq̇i. (2.12)

By differentiating the above equation, we get

ai − aλ(i) = Siq̈i + Ṡiq̇i. (2.13)

10

So the link acceleration ai can be computed from the parent link acceleration aλ(i) and the
inbound joint acceleration q̈i, achieving Objective 1 of Pass 3.

For Objective 2, we take the SPD constraints into consideration. After Pass 2, the
articulated-body inertia IAi and the bias force pAi for Ti are knowns that satisfy

fi = IAi ai + pAi (2.14)

where fi is the net external force acting on articulated body Ti through handle Li. Such
force comes only from joint Ji, therefore,

fi = fJi (2.15)

Now we expand Equation 2.9 by Equation 2.15, 2.14 and 2.13:

τi = STi fJi

= STi

(
IAi ai + pAi

)
= STi

(
IAi

(
aλ(i) + Siq̈i + Ṡiq̇i

)
+ pAi

) (2.16)

Equation 2.16 is a linear equation relating the generalized joint force τi and the generalized
joint acceleration q̈i. Here we must enforce that τi equals the SPD control force. Following
Equation 2.4, the SPD constraint for a single joint Ji can be written as

τi = −Kpi(qi + ∆tq̇i − q̄i)−Kdi(q̇i + ∆tq̈i) (2.17)

Combining Equation 2.16 and 2.17, we get

q̈i = (STi IAi Si +Ki)−1
(
Qi − STi

(
IAi (aλ(i) + Ṡiq̇i) + pAi

))
(2.18)

where we define
Ki = Kdi∆t, (2.19)

Qi = −Kpi(qi + ∆tq̇i − q̄i)−Kdiq̇i (2.20)

Equation 2.18 achieves Objective 2, as joint acceleration q̈i can be computed from the
parent link acceleration aλ(i). Since we have enforced the SPD constraint in the derivation,
accelerations computed by this algorithm strictly follow the SPD control. Now we have
completed the derivation of MABA Pass 3.

MABA Pass 2

Pass 2 of MABA recursively accumulates articulated-body inertias and bias forces from
the leaves to the root. All leaf links of the kinematic tree form the recursion base cases.

11

As leaf links have no children, their articulated-body inertia and bias force equal to their
single-body counterparts. Next we need to derive the recurrent formulas to solve for a link’s
articulated-body inertia and bias force from those of its children. We first consider the
case shown in Figure 2.2 where Lλ(i) has only one child Li. Later we will generalize the
computation for links with multiple children.

To compute IAλ(i) and pAλ(i) from IAi and pAi , the strategy is to derive an equation of the
form

f = Aaλ(i) + b (2.21)

where f is the net spatial force acting on Lλ(i) external to the articulated body Tλ(i). Then
the coefficients A and b will correspond to the desired quantities IAλ(i) and pAλ(i).

We first consider the spatial forces acting on the single body Lλ(i). Apart from f , there
is also a joint reaction force −fJi acting on Lλ(i). Then from the Newton-Euler equation
similar to Equation 2.10:

f − fJi = Iλ(i)aλ(i) + pλ(i) (2.22)

where Iλ(i) and pλ(i) are the single-body spatial inertia and bias force terms. Expanding
Equation 2.22 with Equations 2.15, 2.14, 2.13 and 2.18, we get:

f = Iλ(i)aλ(i) + pλ(i) + fJi
= Iλ(i)aλ(i) + pλ(i) + IAi ai + pAi
= Iλ(i)aλ(i) + pλ(i) + IAi (aλ(i) + Siq̈i + Ṡiq̇i) + pAi
= Iλ(i)aλ(i) + pλ(i) + IAi (aλ(i) + Si(STi IAi Si +Ki)−1(
Qi − STi

(
IAi (aλ(i) + Ṡiq̇i) + pAi

))
+ Ṡiq̇i) + pAi

(2.23)

By rearranging terms in the above equation, we can achieve the desired form in Equa-
tion 2.21. If we define

Iai = IAi − IAi Si(STi IAi Si +Ki)−1STi I
A
i , (2.24)

pai = pAi + Iai Ṡiq̇i + IAi Si(STi IAi Si +Ki)−1(Qi − STi pAi) (2.25)

then we can get the formulas for IAλ(i) and pAλ(i) as follows:

IAλ(i) = Iλ(i) + Iai , (2.26)

pAλ(i) = pλ(i) + pai (2.27)

Similarly, Equations 2.26 and 2.27 can be generalized for links with multiple children.
For an arbitrary link Li:

IAi = Ii +
∑
j∈µ(i)

Iaj , (2.28)

12

pAi = pi +
∑
j∈µ(i)

paj . (2.29)

We therefore use Equations 2.28 and 2.29 to compute the articulated-body inertias and bias
forces from the leaves to the root in MABA Pass 2. Again, a complete set of equations for
the whole algorithm is given in Appendix A.

2.3.3 Algorithm Complexity

MABA and ABA share most of their essential computations. The key difference is that
MABA requires the extra computation of Ki and Qi by Equation 2.19 and 2.20, which
takes at most O(n) time. Since ABA runs in worst case O(n) time, we conclude that MABA
runs in worst case O(n) time as well.

2.3.4 Practical Implementation

MABA can be directly implemented by modifying essentially just two lines of the original
ABA equations, for which more details are given in Appendix A. This makes it easy to embed
SPD control directly into simulation systems that already use ABA for forward dynamics,
such as PhysX [94], Bullet [10] and DART [61]. In such an embedded implementation,
forward dynamics accelerations are computed directly under constraints imposed by SPD,
without the actual control forces explicitly calculated. Such implementation is simple to
code on top of ABA, and incurs negligible cost as we will show in our experiments.

As MABA is simply ABA with SPD constraints satisfied, our embedded implementation
of MABA naturally works with additional constraint solvers, either ABA-based or indepen-
dent. Simulation engines with independent constraint solvers can call MABA instead of
ABA to solve forward dynamics with SPD controls [94]. ABA-based solvers just need to
incorporate our minor modifications into their algorithm to use SPD controllers [56]. For
our experiments done on PhysX, we do not need to do anything other than replacing the
original ABA code with our MABA code to incorporate contact and ground reaction forces
into the simulation, as PhysX handles these constraints independently of ABA.

2.4 Experiments

In this section we validate the accuracy, stability, and performance of MABA in motion
tracking tasks and Deep Reinforcement Learning (DRL) tasks. We also compare MABA
with the dense factorization (DF) method and the sparse factorization (SF) method. The
DF method is implemented using the dense LLT factorization provided by the Eigen li-
brary [33]. The SF implementation strictly follows the pseudo-code for sparse LLT factor-
ization presented in [28].

Our experiments are performed on a Dell Precision 7920 Tower workstation with an
Intel Xeon Gold 6128 CPU (3.4 GHz, 12 threads) and a GeForce GTX 1080 Ti GPU.

13

(a) Humanoid (b) Dog

(c) Snake1 (d) Snake2

(e) Snake3

Figure 2.3: Character models used in our experiments.

Model Humanoid Dog Snake1 Snake2 Snake3
n 34 72 36 72 195
d 13 24 36 72 195

Table 2.1: Model parameters: n is the degrees of freedom; and d is the maximum number
of DoFs from the root to the leaves.

NVIDIA PhysX (version 2019.8) is used as our physics simulation engine. Five simulated
virtual character models of different complexity are studied in our experiments, including
a humanoid, a dog, and three snakes of different length. We visualize these models in
Figure 2.3 and list their important model parameters in Table 2.1. The humanoid model
and motions are obtained from Peng et al. [88]. The dog model and motions are obtained
from Zhang et al. [132].

2.4.1 Accuracy and Stability

We investigate the accuracy and stability of MABA through motion tracking tasks on the
humanoid and dog models. More specifically, we use SPD controllers to track both the root
and internal joints in predefined motion trajectories. As the root is controlled by external
“hand-of-God” forces, such tasks are quasi-static in nature and used purely for accessing
the tracking performance. Tracking accuracy is measured by end-effector to root errors
between the reference and simulated vectors. Here we use a fixed set of SPD parameters

14

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

10

20

30

40

50
Po

sit
io
na

le
rr
or

(c
m
)

∆t = 1/30
∆t = 1/60
∆t = 1/120
∆t = 1/300
∆t = 1/600

(a) Dense factorization method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

10

20

30

40

50

Po
sit

io
na

le
rr
or

(c
m
)

∆t = 1/30
∆t = 1/60
∆t = 1/120
∆t = 1/300
∆t = 1/600

(b) MABA

Figure 2.4: SPD tracking errors measured at the right ankle of the humanoid model in a
running motion.

0 1 2 3 4 5
Time (s)

0

5

10

15

20

25

30

35

40

Po
sit

io
na

le
rr
or

(c
m
)

∆t = 1/30
∆t = 1/60
∆t = 1/120
∆t = 1/300
∆t = 1/600

(a) Dense factorization method

0 1 2 3 4 5
Time (s)

0

5

10

15

20

25

30

35

40

Po
sit

io
na

le
rr
or

(c
m
)

∆t = 1/30
∆t = 1/60
∆t = 1/120
∆t = 1/300
∆t = 1/600

(b) MABA

Figure 2.5: SPD tracking errors measured at the right front toe of the dog model in a
cantering motion.

in our experiment: kp = 20000, kd = 2000 for the root, and kp = 75000, kd = 4000 for
all the internal joints. We show the tracking errors using different simulation time steps in
Figure 2.4 and 2.5. Figure 2.4 corresponds to the tracking errors measured by the right ankle
to root vector of the humanoid model during a running motion. Figure 2.5 corresponds to
the tracking errors measured by the right front toe to root vector of the dog model during
a cantering motion. We only compare the DF method and MABA here, as SF only differs
from DF in terms of efficiency, but not accuracy nor stability.

Figure 2.4 shows that MABA and the dense factorization method produce near identical
accuracy curves on the humanoid model. Both controllers are stable for time steps up to
∆t = 1/30 s. Figure 2.5 demonstrates that MABA achieves significantly better accuracy
and stability than DF on the dog model. MABA is stable for all tested time steps, while DF
diverges for ∆t ≥ 1/60 s. For ∆t = 1/120 s, although DF does not fail, it produces visibly
larger tracking errors than MABA. For small time steps ∆t ≤ 1/300 s, the two implemen-

15

Model Motion DF PCG SF MABA

Humanoid

walk 13,752 14,108 17,083 20,224
run 14,109 14,409 17,048 20,523

cartwheel 13,729 14,436 16,962 20,213
backflip 13,827 14,537 16,943 19,387

Dog
pace 6,572 4,838 8,764 11,804
trot 6,551 4,682 8,969 11,540

canter 6,498 4,553 8,738 11,700
Snake1 slither 11,897 11,935 12,259 16,444
Snake2 slither 5,099 5,069 3,979 8,334
Snake3 slither 1,036 944 417 3,036

Table 2.2: Simulation FPS (frames per second) of different SPD implementations: DF (dense
factorization), PCG (preconditioned conjugate gradient with Jacobi preconditioning), SF
(sparse factorization), and MABA.

Model DF(%) SF(%) MABA(%)
Humanoid 31.1 18.2 2.1

Dog 44.3 25.7 3.6
Snake1 28.0 28.3 1.7
Snake2 39.9 53.9 2.5
Snake3 64.4 86.3 3.7

Table 2.3: Percentage of extra time required by SPD computation over total simulation
time.

tations become comparable. Based on these experiments, we conclude that MABA delivers
better stability for complex models at large time steps. Even though different implemen-
tations solve the same SPD formulation, MABA generally produces less numerical errors
than matrix factorization due to its computational simplicity. Therefore MABA degrades
more gracefully than matrix factorization based methods for large integration time steps
and complex models, which tend to amplify the accumulated numerical errors.

2.4.2 Simulation Performance

We compare the runtime performance of different SPD implementations on four charac-
ter models of different complexity using the same motion tracking tasks described in Sec-
tion 2.4.1. Performance is measured by the number of simulated Frames Per Second (FPS)
on a single CPU thread. We set ∆t = 1/30 s for the humanoid and snake models. We
use ∆t = 1/240 s for the dog model, as factorization-based methods cannot achieve stable
simulation when using large time steps as shown in Figure 2.5.

We record the simulation FPS for different combinations of models, motions and SPD
implementations (DF, SF, and MABA). Table 2.2 shows that MABA is significantly more
efficient than DF, which is currently the only option in both research and industry to the

16

0 100 200 300 400 500
Wall clock time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

re
tu
rn

MABA
DF
SF

(a) Humanoid run

0 100 200 300 400 500 600 700
Wall clock time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

re
tu
rn

MABA
DF
SF

(b) Dog canter

Figure 2.6: DRL learning curves measured in wall-clock time using different SPD imple-
mentations.

best of our knowledge. MABA is also always faster than SF. SF achieves better performance
than DF when controlling models with low DoFs, or models with shallow tree structures.
However, SF is less efficient than DF for models with high DoFs or deep tree structures.
Our snake models correspond to the worst case scenario for SF, as their kinematic trees
degenerate to chains so the time complexity becomes O(n3) just as in DF. In fact, SF runs
slower than DF due to necessary overhead incurred for sparse factorization.

Iterative methods, such as Preconditioned Conjugate Gradient (PCG), can also be used
to solve this problem. However, as our matrix is neither very large nor sparse, PCG does
not provide any performance gain over Cholesky factorization. As shown in Table 2.2, PCG
results in comparable speed to DF. There is a better mechanism proposed in [119] that
uses PCG to achieve O(n2) performance. Our proposed MABA is much simpler and faster,
however, so we will not include PCG-based methods in further comparative studies.

We also report the percentages of extra time required for SPD computation over to-
tal simulation time for different methods. Table 2.3 shows that matrix factorization-based
methods can dominate the simulation process for complex models while MABA solves SPD
with consistently negligible cost. Therefore, we recommend MABA for SPD computation
wherever possible. We note that for Table 2.3, reported performances are averaged values
across all available motions for the humanoid and dog models.

2.4.3 DRL Training Performance

The motion tracking task that we have used for testing and comparison so far is only a quasi
physics-based method, as it tracks the root joint with a hand-of-God type control. In order
to see the effect of different solvers in true physics-based learning and control systems, where
only internal joint actuation and ground reaction forces are used for control of the full body,
we employ these SPD solvers within a state-of-the-art Deep Reinforcement Learning (DRL)
framework named DeepMimic [88]. DeepMimic employs both an imitation reward and a

17

task reward to encourage physics-based characters to learn high-quality motor skills. We
re-implement DeepMimic on NVIDIA PhysX and train several skills on our machine with 12
CPU threads in parallel and one GPU. We use exactly the same network architecture and
training parameters as those given in the original implementation [88]. Figure 2.6 reports the
learning curves in wall-clock time. As DeepMimic is non-deterministic, the curves we show
are the average of five training runs. The shaded region indicates the standard deviation.
Our results show that for both the humanoid and the dog model, MABA not only improves
the learning speed, but also helps DeepMimic converge to better solutions. This is because
first MABA saves training time by directly reducing the SPD computational cost; and
second DeepMimic requires less training samples when using MABA as its greater stability
helps reduce the learning difficulty.

2.5 Summary and Discussions

In this chapter, we have presented the Modified Articulated-Body Algorithm for SPD com-
putation of articulated rigid body systems parameterized in generalized coordinates. We
show that MABA runs in linear time, which is the theoretical minimum under the presented
SPD formulation. We demonstrate the performance and stability advantages of MABA for
physics-based character animation. Since SPD controllers are fundamental components in
many time-critical or time-consuming systems, such as computer games and DRL-based
algorithms, our proposed algorithm could potentially benefit a wide range of applications
and research.

Our current MABA implementation is embedded into an ABA forward dynamics solver
by directly modifying the ABA code in the PhysX simulation engine. A standalone imple-
mentation is necessary when the SPD control forces need to be computed explicitly. For
example, when the SPD control forces need to be monitored and tailored before being sent
to the forward dynamics simulation. The standalone implementation is roughly equivalent
to running a linear time forward dynamics solver twice at each simulation time step. The
theoretical time complexity is still O(n) but the speed and accuracy of the standalone
MABA implementation will be inferior to the embedded MABA, due to the two passes of
the ABA-type solver and error accumulations during this process. In our experiments, we
found that standalone MABA can be slower than dense factorization for small models such
as the humanoid, but still shows its scalability on complex models such as the snakes.

In the future, we plan to investigate linear time SPD controllers for articulations pa-
rameterized in full coordinates. Such an algorithm should be developed on top of a linear
forward dynamics algorithm in full coordinates, such as [7], to maximize the potential per-
formance gain. It is also interesting to explore parallel algorithms for solving SPD, so that
GPU acceleration can be utilized.

18

Chapter 3

Discover Diverse Athletic Jumping
Strategies

3.1 Overview

Given a simulated character in a virtual environment, we propose a framework for the dis-
covery of appropriate motion strategies for certain tasks. Given a task objective and an
initial character configuration, the combination of physics simulation and deep reinforce-
ment learning (DRL) provides a suitable starting point for automatic control policy training.
To facilitate the learning of realistic human motions, we propose a Pose Variational Au-
toencoder (P-VAE) to constrain the actions to a subspace of natural poses. Comparing with
prior work, our method requires no motion examples and less reward engineering.

We apply our learning framework to train take-off controllers for a set of athletic jumping
tasks especially for Olympics high jumps, since high jumps are highly technically complex
and strategically nuanced involving multiple strategies discovered throughout human his-
tory. In our work, we aim to discover as many of these strategies as possible without motion
examples. We first identify that the initial character state before the take-off, or the take-off
state for short, is a strong determinant of the learned strategy. We then apply a Bayesian
Diversity Search (BDS) algorithm to explore a low-dimensional feature space of the take-off
state, and maximize the diversity of the corresponding strategies. Given a desired take-off
state, we first train a run-up controller that imitates a single generic run-up motion capture
clip while also targeting the desired take-off state. The subsequent jump control policy is
trained with the help of P-VAE and a curriculum, but without any recourse to motion
capture data. Given a specific take-off state, we further enrich unique strategy variations
by a second optimization stage which reuses the take-off state and encourages novel control
policies.

In Section 3.4, we explain the implementation of our DRL framework and P-VAE for
learning natural strategies. In Section 3.5, we describe BDS and novel policy seeking tech-

19

niques for learning diverse strategies. The conceptual formulation and the actual implemen-
tation of BDS are provided by Zeshi Yang.

3.2 Related Work

We build on prior work from several areas, including character animation, diversity opti-
mization, human pose modeling, and high-jump analysis from biomechanics and kinesiology.

3.2.1 Character Animation

Synthesizing natural human motion is a long-standing challenge in computer animation. We
first briefly review kinematic methods, and then provide a more detailed review of physics-
based methods. To the best of our knowledge, there are no previous attempts to synthesize
athletic high jumps or obstacle jumps using either kinematic or physics-based approaches.
Both tasks require precise coordination and exhibit multiple strategies.

Kinematic Methods Data-driven kinematic methods have demonstrated their effective-
ness for synthesizing high-quality human motions based on captured examples. Such kine-
matic models have evolved from graph structures [58, 99], to Gaussian Processes [66, 126],
and recently deep neural networks [44, 132, 112, 113, 62, 67]. Non-parametric models that
store all example frames have limited capability of generalizing to new motions due to their
inherent nature of data interpolation [14]. Compact parametric models learn an underlying
low-dimensional motion manifold. Therefore they tend to generalize better as new motions
not in the training dataset can be synthesized by sampling in the learned latent space [45].
Completely novel motions and strategies, however, are still beyond their reach. Most funda-
mentally, kinematic models do not take into account physical realism, which is important
for athletic motions. We thus cannot directly apply kinematic methods to our problem of
discovering unseen strategies for highly dynamic motions. However, we do adopt a varia-
tional autoencoder (VAE) similar to the one in [67] as a means to improve the naturalness
of our learned motion strategies.

Physics-based Methods Physics-based control and simulation methods generate mo-
tions with physical realism and environmental interactions. The key challenge is the design
or learning of robust controllers. Conventional manually designed controllers have achieved
significant success for locomotion, e.g., [127, 120, 17, 121, 31, 64, 29, 48]. The seminal work
from Hodgins et al. demonstrated impressive controllers for athletic skills such as a hand-
spring vault, a standing broad jump, a vertical leap, somersaults to different directions,
and platform dives [43, 123]. Such handcrafted controllers are mostly designed with finite
state machines (FSM) and heuristic feedback rules, which require deep human insight and
domain knowledge, and tedious manual trial and error. Zhao and van de Panne [135] thus

20

proposed an interface to ease such a design process, and demonstrated controllers for div-
ing, skiing and snowboarding. Controls can also be designed using objectives and constraints
adapted to each motion phase, e.g., [48, 23], or developed using a methodology that mimics
human coaching [34]. In general, manually designed controllers remain hard to generalize
to different strategies or tasks.

With the wide availability of motion capture data, many research endeavors have been
focused on tracking-based controllers, which are capable of reproducing high-quality mo-
tions by imitating motion examples. Controllers for a wide range of skills have been demon-
strated through trajectory optimization [108, 21, 83, 63, 125, 64], sampling-based algorithms
[73, 72, 71], and deep reinforcement learning [90, 88, 92, 76, 70, 104]. Tracking controllers
have also been combined with kinematic motion generators to support interactive control of
simulated characters [8, 87, 122]. Even though tracking-based methods have demonstrated
their effectiveness on achieving task-related goals [88], the imitation objective inherently
restricts them from generalizing to novel motion strategies fundamentally different from the
reference. Most recently, style exploration has also been demonstrated within a physics-
based DRL framework using spacetime bounds [76]. However, these remain style variations
rather than strategy variations. Moreover, high jumping motion capture examples are diffi-
cult to find. We obtained captures of three high jump strategies, which we use to compare
our synthetic results to.

Our goal is to discover as many strategies as possible, so example-free methods are
most suitable in our case. Various tracking-free methods have been proposed via trajectory
optimization or deep reinforcement learning. Heess et al. [39] demonstrate a rich set of
locomotion behaviors emerging from just complex environment interactions. However, the
resulting motions show limited realism in the absence of effective motion quality regulariza-
tion. Better motion quality is achievable with sophisticated reward functions and domain
knowledge, such as sagittal symmetry, which do not directly generalize beyond locomotion
[130, 18, 124, 82, 80]. Synthesizing diverse physics-based skills without example motions
generally requires optimization with detailed cost functions that are engineered specifically
for each skill [4], and often only works for simplified physical models [81].

3.2.2 Diversity Optimization

Diversity Optimization is a problem of great interest in artificial intelligence [38, 117, 111, 15,
95, 65]. It is formulated as searching for a set of configurations such that the corresponding
outcomes have a large diversity while satisfying a given objective. Diversity optimization
has also been utilized in computer graphics applications [78, 3]. For example, a variety
of 2D and simple 3D skills have been achieved through jointly optimizing task objectives
and a diversity metric within a trajectory optimization framework [3]. Such methods are
computationally prohibitive for our case as learning the athletic tasks involve expensive
DRL training through non-differentiable simulations, e.g., a single strategy takes six hours

21

to learn even on a high-end desktop. We propose a diversity optimization algorithm based
on the successful Bayesian Optimization (BO) philosophy for sample efficient black-box
function optimization.

In Bayesian Optimization, objective functions are optimized purely through function
evaluations as no derivative information is available. A Bayesian statistical surrogate model,
usually a Gaussian Process (GP) [98], is maintained to estimate the value of the objec-
tive function along with the uncertainty of the estimation. An acquisition function is then
repeatedly maximized for fast decisions on where to sample next for the actual expen-
sive function evaluation. The next sample needs to be promising in terms of maximizing
the objective function predicted by the surrogate model, and also informative in terms
of reducing the uncertainty in less explored regions of the surrogate model [50, 30, 110].
BO has been widely adopted in machine learning for parameter and hyperparameter op-
timizations [107, 55, 52, 53, 57, 106]. Recently BO has also seen applications in computer
graphics [60, 59], such as parameter tuning for fluid animation systems [9].

We propose a novel acquisition function to encourage discovery of diverse motion strate-
gies. We also decouple the exploration from the maximization for more robust and efficient
strategy discovery. We name this algorithm Bayesian Diversity Search (BDS). The BDS
algorithm searches for diverse strategies by exploring a low-dimensional initial state space
defined at the take-off moment. Initial states exploration has been applied to find appro-
priate initial conditions for desired landing controllers [35]. In the context of DRL learning,
initial states are usually treated as hyperparameters rather than being explored.

Recently a variety of DRL-based learning methods have been proposed to discover di-
verse control policies in machine learning, e.g., [25, 133, 114, 1, 105, 36, 16, 46, 41, 101].
These methods mainly encourage exploration of unseen states or actions by jointly optimiz-
ing the task and novelty objectives [133], or optimizing intrinsic rewards such as heuristically
defined curiosity terms [25, 105]. We adopt a similar idea for novelty seeking in Stage 2 of
our framework after BDS, but with a novelty metric and reward structure more suitable
for our goal. Coupled with the Stage 1 BDS, we are able to learn a rich set of strategies for
challenging tasks such as athletic high jumping.

3.2.3 Natural Pose Space

In biomechanics and neuroscience, it is well known that muscle synergies, or muscle co-
activations, serve as motor primitives for the central nervous system to simplify movement
control of the underlying complex neuromusculoskeletal systems [86, 134]. In character
animation, human-like character models are much simplified, but are still parameterized
by 30+ DoFs. Yet the natural human pose manifold learned from motion capture databases
is of much lower dimension [45]. The movement of joints are highly correlated as typically
they are strategically coordinated and co-activated. Such correlations have been modelled

22

through traditional dimensionality reduction techniques such as PCA [11], or more recently,
Variational AutoEncoders (VAE) [37, 67].

We rely on a VAE learned from mocap databases to produce natural target poses for
our DRL-based policy network. Searching behaviors in low dimensional spaces has been
employed in physics-based character animation to both accelerate the nonlinear optimiza-
tion and improve the motion quality [100]. Throwing motions based on muscle synergies
extracted from human experiments have been synthesized on a musculoskeletal model [20].
Recent DRL methods either directly imitate mocap examples [88, 122], which makes strat-
egy discovery hard if possible; or adopt a de novo approach with no example at all [40],
which often results in extremely unnatural motions for human like characters. Close in
spirit to our work is [97], where a low-dimensional PCA space learned from a single mocap
trajectory is used as the action space of DeepMimic for tracking-based control. We aim to
discover new strategies without tracking, and we use a large set of generic motions to de-
duce a task-and-strategy-independent natural pose space. We also add action offsets to the
P-VAE output poses so that large joint activation can be achieved for powerful take-offs.

Reduced or latent parameter spaces based on statistical analysis of poses have been
used for grasping control [13, 5, 85]. A Trajectory Generator (TG) can provide a compact
parameterization that can enable learning of reactive policies for complex behaviors [47].
Motion primitives can also be learned from mocap and then be composed to learn new
behaviors [91].

3.2.4 History and Science of High Jump

The high jump is one of the most technically complex, strategically nuanced, and physio-
logically demanding sports among all track and field events [24]. Over the past 100 years,
high jump has evolved dramatically in the Olympics. Here we summarize the well-known
variations [51, 24], and we refer readers to our supplemental video for more visual illustra-
tions.

• The Hurdle: the jumper runs straight-on to the bar, raises one leg up to the bar, and
quickly raises the other one over the bar once the first has cleared. The body clears
the bar upright.

• Scissor Kick: the jumper approaches the bar diagonally, throws first the inside leg and
then the other over the bar in a scissoring motion. The body clears the bar upright.

• Eastern Cutoff: the jumper takes off like the scissor kick, but extends his back and
flattens out over the bar.

• Western Roll:the jumper also approaches the bar diagonally, but the inner leg is used
for the take-off, while the outer leg is thrust up to lead the body sideways over the
bar.

23

Figure 3.1: Overview of our strategy discovery framework.

• The Straddle: similar to Western Roll, but the jumper clears the bar face-down.

• Fosbury Flop: The jumper approaches the bar on a curved path and leans away from
the bar at the take-off point to convert horizontal velocity into vertical velocity and
angular momentum. In flight, the jumper progressively arches their shoulders, back,
and legs in a rolling motion, and lands on their neck and back. The jumper’s Center
of Mass (CoM) can pass under the bar while the body arches and slide above the bar.
It has been the favored high jump technique in Olympic competitions since used by
Dick Fosbury in the 1968 Summer Olympics. It was concurrently developed by Debbie
Brill.

In biomechanics, kinesiology, and physical education, high jumps have been analyzed to
a limited extent. We adopt the force limits reported in [84] in our simulations. Dapena simu-
lated a higher jump by making small changes to a recorded jump [22]. Mathematical models
of the Center of Mass (CoM) movement have been developed to offer recommendations to
increase the effectiveness of high jumps [2].

3.3 System Description

We now give a high-level description of our learning framework as illustrated in Figure 3.1.
Our framework splits athletic jumps into two phases: a run-up phase and a jump phase. The

24

take-off state marks the transition between these two phases, and consists of a time instant
midway through the last support phase before becoming airborne. The take-off state is key
to our exploration strategy, as it is a strong determinant of the resulting jump strategy.
We characterize the take-off state by a feature vector that captures key aspects of the
state, such as the net angular velocity and body orientation. This defines a low-dimensional
take-off feature space that we can sample in order to explore and evaluate a variety of
motion strategies. While random sampling of take-off state features is straightforward, it is
computationally impractical as evaluating one sample involves an expensive DRL learning
process that takes hours even on modern machines. Therefore, we introduce a sample-
efficient Bayesian Diversity Search (BDS) algorithm as a key part of our Stage 1 optimization
process.

Given a specific sampled take-off state, we then need to produce an optimized run-
up controller and a jump controller that result in the best possible corresponding jumps.
This process has several steps. We first train a run-up controller, using deep reinforcement
learning, that imitates a single generic run-up motion capture clip while also targeting the
desired take-off state. For simplicity, the run-up controller and its training are not shown in
Figure 3.1. These are discussed in Section 3.6.1. The main challenge lies with the synthesis
of the actual jump controller which governs the remainder of the motion, and for which we
wish to discover strategies without any recourse to known solutions.

The jump controller begins from the take-off state and needs to control the body during
take-off, over the bar, and to prepare for landing. This poses a challenging learning problem
because of the demanding nature of the task, the sparse fail/success rewards, and the
difficulty of also achieving natural human-like movement. We apply two key insights to
make this task learnable using deep reinforcement learning. First, we employ an action
space defined by a subspace of natural human poses as modeled with a Pose Variational
Autoencoder (P-VAE). Given an action parameterized as a target body pose, individual
joint torques are then realized using PD-controllers. We additionally allow for regularized
offset PD-targets that are added to the P-VAE targets to enable strong takeoff forces.
Second, we employ a curriculum that progressively increases the task difficulty, i.e., the
height of the bar, based on current performance.

A diverse set of strategies can already emerge after the Stage 1 BDS optimization. To
achieve further strategy variations, we reuse the take-off states of the existing discovered
strategies for another stage of optimization. The diversity is explicitly incentivized during
this Stage 2 optimization via a novelty reward, which is focused specifically on features of
the body pose at the peak height of the jump. As shown in Figure 3.1, Stage 2 makes use
of the same overall DRL learning procedure as in Stage 1, albeit with a slightly different
reward structure.

25

3.4 Learning Natural Strategies

Given a character model, an environment, and a task objective, we aim to learn feasible
natural-looking motion strategies using deep reinforcement learning. We first describe our
DRL formulation in Section 3.4.1. To improve the learned motion quality, we propose a
Pose Variational Autoencoder (P-VAE) to constrain the policy actions in Section 3.4.2.

3.4.1 DRL Formulation

Our strategy learning task is formulated as a standard reinforcement learning problem,
where the character interacts with the environment to learn a control policy which maxi-
mizes a long-term reward. The control policy πθ(a|s) parameterized by θ models the condi-
tional distribution over action a ∈ A given the character state s ∈ S. At each time step t,
the character interacts with the environment with action at sampled from π(a|s) based on
the current state st. The environment then responds with a new state st+1 according to the
transition dynamics p(st+1|st, at), along with a reward signal rt. The goal of reinforcement
learning is to learn the optimal policy parameters θ∗ which maximizes the expected return
defined as

J(θ) = Eτ∼pθ(τ)

[
T∑
t=0

γtrt

]
, (3.1)

where T is the episode length, γ ≤ 1 is a discount factor, and pθ(τ) is the probability of
observing trajectory τ = {s0, a0, s1, ..., aT−1, sT } given the current policy πθ(a|s).

States The state s describes the character configuration. We use a similar set of pose
and velocity features as those proposed in DeepMimic [88], including relative positions of
each link with respect to the root, their rotations parameterized in quaternions, along with
their linear and angular velocities. Different from DeepMimic, our features are computed
directly in the global frame without direction-invariant transformations for the studied
jump tasks. The justification is that input features should distinguish states with different
relative transformations between the character and the environment obstacle such as the
crossbar. In principle, we could also use direction-invariant features as in DeepMimic, and
include the relative transformation to the obstacle into the feature set. However, as proved
in [75], there are no direction-invariant features that are always singularity free. Direction-
invariant features change wildly whenever the character’s facing direction approaches the
chosen motion direction, which is usually the global up-direction or the Y -axis. For high
jump techniques such as the Fosbury flop, singularities are frequently encountered as the
athlete clears the bar facing upward. Therefore, we opt to use global features for simplicity
and robustness. Another difference from DeepMimic is that time-dependent phase variables
are not included in our feature set. Actions are chosen purely based on the dynamic state
of the character.

26

Initial States The initial state s0 is the state in which an agent begins each episode in
DRL training. We explore a chosen low-dimensional feature space (3 ∼ 4D) of the take-off
states for learning diverse jumping strategies. As shown by previous work [76], the take-off
moment is a critical point of jumping motions, where the volume of the feasible region of
the dynamic skill is the smallest. In another word, bad initial states will fail fast, which in
a way help our exploration framework to find good ones quicker. Alternatively, we could
place the agent in a fixed initial pose to start with, such as a static pose before the run-up.
This is problematic for several reasons. First, different jumping strategies need different
length for the run-up. The planar position and facing direction of the root is still a three
dimensional space to be explored. Second, the run-up strategies and the jumping strategies
do not correlate in a one-to-one fashion. Visually, the run-up strategies do not look as
diverse as the jumping strategies. Lastly, starting the jumps from a static pose lengthens
the learning horizon, and makes our learning framework based on DRL training even more
costly. Therefore we choose to focus on just the jumping part of the jumps in this work,
and leave the run-up control learning to DeepMimic, which is one of the state-of-the-art
imitation-based DRL learning methods. More details are given in Section 3.6.1.

Actions The action a is a target pose described by internal joint rotations. We param-
eterize 1D revolute joint rotations by scalar angles, and 3D spherical joint rotations by
exponential maps [32]. Given a target pose and the current character state, joint torques
are computed through the Stable Proportional Derivative (SPD) controllers [115]. Our con-
trol frequency fcontrol ranges from 10 Hz to 30 Hz depending on both the task and the
curriculum. For challenging tasks like high jumps, it helps to quickly improve initial poli-
cies through stochastic evaluations at early training stages. A low-frequency policy enables
faster learning by reducing the needed control steps, or in another word, the dimensionality
and complexity of the actions (a0, ..., aT). This is in spirit similar to the 10 Hz control frag-
ments used in SAMCON-type controllers [71]. Successful low-frequency policies can then
be gradually transferred to high-frequency ones according to a curriculum to achieve finer
controls and thus smoother motions. We discuss the choice of control frequency in more
detail in Section 3.6.1.

Reward We use a reward function consisting of the product of two terms for all our
strategy discovery tasks as follows:

r = rtask · rnaturalness (3.2)

where rtask is the task objective and rnaturalness is a naturalness reward term computed from
the P-VAE to be described in Section 3.4.2. For diverse strategy discovery, a simple rtask
which precisely captures the task objective is preferred. For example in high jumping, the
agent receives a sparse reward signal at the end of the jump after it successfully clears

27

the bar. In principle, we could transform the sparse reward into a dense reward to reduce
the learning difficulty, such as to reward CoM positions higher than a parabolic trajectory
estimated from the bar height. However in practice, such dense guidance reward can mislead
the training to a bad local optimum, where the character learns to jump high in place rather
than clears the bar in a coordinated fashion. Moreover, the CoM height and the bar height
may not correlate in a simple way. For example, the CoM passes underneath the crossbar in
Fosbury flops. As a result, a shaped dense reward function could harm the diversity of the
learned strategies. We will discuss reward function settings for each task in more details in
Section 3.6.1.

Policy Representation We use a fully-connected neural network parameterized by θ

to represent the control policy πθ(a|s). Similar to the settings in [88], the network has
two hidden layers with 1024 and 512 units respectively. ReLU activations are applied for
all hidden units. Our policy maps a given state s to a Gaussian distribution over actions
a = N (µ(s),Σ). The mean µ(s) is determined by the network output. The covariance matrix
Σ = σI is diagonal, where I is the identity matrix and σ is a scalar variable measuring the
action noise. We apply an annealing strategy to linearly decrease σ from 0.5 to 0.1 in the
first 1.0 × 107 simulation steps, to encourage more exploration in early training and more
exploitation in late training.

Training We train our policies with the Proximal Policy Optimization (PPO) method
[103]. PPO involves training both a policy network and a value function network. The value
network architecture is similar to the policy network, except that there is only one single lin-
ear unit in the output layer. We train the value network with TD(λ) multi-step returns. We
estimate the advantage of the PPO policy gradient by the Generalized Advantage Estimator
GAE(λ) [102].

3.4.2 Pose Variational Autoencoder

The dimension of natural human poses is usually much lower than the true degrees of
freedom of the character model. We propose a generative model to produce natural PD
target poses at each control step. More specifically, we train a Pose Variational Autoencoder
(P-VAE) from captured natural human poses, and then sample its latent space to produce
desired PD target poses for control. Here a pose only encodes internal joint rotations without
the global root transformations. We use publicly available human motion capture databases
to train our P-VAE. Note that none of these databases consist of high jumps or obstacle
jumps specifically, but they already provide enough poses for us to learn the natural human
pose manifold successfully.

28

P-VAE Architecture and Training Our P-VAE adopts the standard Beta Variational
Autoencoder (β-VAE) architecture [42]. The encoder maps an input feature x to a low-
dimensional latent space, parameterized by a Gaussian distribution with a mean µx and
a diagonal covariance Σx. The decoder maps a latent vector sampled from the Gaussian
distribution back to the original feature space as x′. The training objective is to minimize
the following loss function:

L = LMSE(x, x′) + β ·KL(N (µx,Σx),N (0, I)), (3.3)

where the first term is the MSE (Mean Squared Error) reconstruction loss, and the second
term shapes the latent variable distribution to a standard Gaussian by measuring their
Kulback-Leibler divergence. We set β = 1.0 × 10−5 in our experiments, so that the two
terms in the loss function are within the same order of magnitude numerically.

We train the P-VAE on a dataset consisting of roughly 20, 000 poses obtained from
the CMU and SFU motion capture databases. We include a large variety of motion skills,
including walking, running, jumping, breakdancing, cartwheels, flips, kicks, martial arts,
etc. The input features consist of all link and joint positions relative to the root in the local
root frames, and all joint rotations with respect to their parents. We parameterize joint
rotations by a 6D representation for better continuity, as described in [136, 67].

We model both the encoder and the decoder as fully connected neural networks with
two hidden layers, each having 256 units with tanh activation. We perform PCA (Principal
Component Analysis) on the training data and choose dlatent = 13 to cover 85% of the
training data variance, where dlatent is the dimension of the latent variable. We use the
Adam optimizer to update network weights [54], with the learning rate set to 1.0 × 10−4.
Using a mini-batch size of 128, the training takes 80 epochs within 2 minutes on an NVIDIA
GeForce GTX 1080 GPU and an Intel i7-8700k CPU. We use this single pre-trained P-VAE
for all our strategy discovery tasks to be described.

Composite PD Targets PD controllers provide actuation based on positional errors. So
in order to reach the desired pose, the actual target pose needs to be offset by a certain
amount. Such offsets are usually small to just counter-act the gravity for free limbs. However,
for joints that interact with the environment, such as the lower body joints for weight
support and ground takeoff, large offsets are needed to generate powerful ground reaction
forces to propel the body forward or into the air. Such complementary offsets combined with
the default P-VAE targets help realize natural poses during physics-based simulations. Our
action space A is therefore dlatent + doffset dimensional, where dlatent is the dimension of the
P-VAE latent space, and doffset is the dimension of the DoFs that we wish to apply offsets
for. We simply apply offsets to all internal joints in this work. Given a = (alatent, aoffset) ∈ A
sampled from the policy πθ(a|s), where alatent and aoffset correspond to the latent and offset

29

part of a respectively, the final PD target is computed byDpose(alatent)+aoffset. HereDpose(·)
is a function that decodes the latent vector alatent to full-body joint rotations. We minimize
the usage of rotation offsets by a penalty term as follows:

rnaturalness = 1− Clip
((||aoffset||1

coffset

)2
, 0, 1

)
, (3.4)

where coffset is the maximum offset allowed. For tasks with only a sparse reward signal at
the end, ||aoffset||1 in Equation 3.4 is replaced by the average offset norm 1

T

∑T
t=0 ||a

(t)
offset||1

across the entire episode. We use L1-norm rather than the commonly adopted L2-norm to
encourage sparse solutions with fewer non-zero components [116, 12], as our goal is to only
apply offsets to essential joints to complete the task while staying close to the natural pose
manifold prescribed by the P-VAE.

3.5 Learning Diverse Strategies

Given a virtual environment and a task objective, we would like to discover as many strate-
gies as possible to complete the task at hand. Without human insights and demonstrations,
this is a challenging task. To this end, we propose a two-stage framework to enable stochastic
DRL to discover solution modes such as the Fosbury flop.

The first stage focuses on strategy discovery by exploring the space of initial states.
For example in high jump, the Fosbury flop technique and the straddle technique require
completely different initial states at take-off, in terms of the approaching angle with respect
to the bar, the take-off velocities, and the choice of inner or outer leg as the take-off leg.
A fixed initial state may lead to success of one particular strategy, but can miss other
drastically different ones. We systematically explore the initial state space through a novel
sample-efficient Bayesian Diversity Search (BDS) algorithm to be described in Section 3.5.1.

The output of Stage 1 is a set of diverse motion strategies and their corresponding initial
states. Taken such a successful initial state as input, we then apply another pass of DRL
learning to further explore more motion variations permitted by the same initial state. The
intuition is to explore different local optima while maximizing the novelty of the current
policy, compared to previously found ones. We describe our detailed settings for the Stage
2 novel policy seeking algorithm in Section 3.5.2.

3.5.1 Stage 1: Initial States Exploration with Bayesian Diversity Search

In Stage 1, we perform diverse strategy discovery by exploring initial state variations, such
as pose and velocity variations, at the take-off moment. We first extract a feature vector
f from a motion trajectory to characterize and differentiate between different strategies.
A straightforward way is to compute the Euclidean distance between time-aligned motion
trajectories, but we hand pick a low-dimensional visually-salient feature set as detailed in

30

Section 3.6.1. We also define a low-dimensional exploration space X for initial states, as
exploring the full state space is computationally prohibitive. Our goal is to search for a
set of representatives Xn = {x1, x2, ..., xn|xi ∈ X}, such that the corresponding feature set
Fn = {f1, f2, ..., fn|fi ∈ F} has a large diversity. Note that as DRL training and physics-
based simulation are involved in producing the motion trajectories from an initial state, the
computation of fi = g(xi) is a stochastic and expensive black-box function. We therefore
design a sample-efficient Bayesian Optimization (BO) algorithm to optimize for motion
diversity in a guided fashion.

Our BDS (Bayesian Diversity Search) algorithm iteratively selects the next sample to
evaluate from X , given the current set of observations Xt = {x1, x2, ..., xt} and Ft =
{f1, f2, ..., ft}. More specifically, the next point xt+1 is selected based on an acquisition
function a(xt+1) to maximize the diversity in Ft+1 = Ft ∪ {ft+1}. We choose to maximize
the minimum distance between ft+1 and all fi ∈ Ft:

a(xt+1) = min
fi∈Ft

||ft+1 − fi||. (3.5)

Since evaluating ft+1 through g(·) is expensive, we employ a surrogate model to quickly
estimate ft+1, so that the most promising sample to evaluate next can be efficiently found
through Equation 3.5.

We maintain the surrogate statistical model of g(·) using a Gaussian Process (GP) [98],
similar to standard BO methods. A GP contains a prior meanm(x) encoding the prior belief
of the function value, and a kernel function k(x, x′) measuring the correlation between g(x)
and g(x′). More details of our specific m(x) and k(x, x′) are given in Section 3.6.1. Hereafter
we assume a one-dimensional feature space F . Generalization to a multi-dimensional fea-
ture space is straightforward as multi-output Gaussian Process implementations are readily
available, such as [118]. Given m(·), k(·, ·), and current observations {Xt, Ft}, posterior es-
timation of g(x) for an arbitrary x is given by a Gaussian distribution with mean µt and
variance σ2

t computed in closed forms:

µt(x) = k(Xt, x)T (K + η2I)−1 (Ft −m(x)) +m(x),

σ2
t (x) = k(x, x) + η2 − k(Xt, x)T (K + η2I)−1k(Xt, x),

(3.6)

where I is the identity matrix, η is the standard deviation of the observation noise, Xt ∈
Rt×dim(X), Ft ∈ Rt,K ∈ Rt×t,Ki,j = k(xi, xj), and k(Xt, x) = [k(x, x1), k(x, x2), ...k(x, xt)]T .
Equation 3.5 can then be approximated by

â(xt+1) = Ef̂t+1∼N (µt(xt+1),σ2
t (xt+1))

[
min
fi∈Ft

||f̂t+1 − fi||
]
. (3.7)

Equation 3.7 can be computed analytically for one-dimensional features, but gets more
and more complicated to compute analytically as the feature dimension grows, or when

31

the feature space is non-Euclidean as in our case with rotational features. Therefore, we
compute Equation 3.7 numerically with Monte-Carlo integration for simplicity.

The surrogate model is just an approximation to the true function, and has large un-
certainty where observations are lacking. Rather than only maximizing the function value
when picking the next sample, BO methods usually also take into consideration the esti-
mated uncertainty to avoid being overly greedy. For example, GP-UCB (Gaussian Process
Upper Confidence Bound), one of the most popular BO algorithms, adds a variance term
into its acquisition function. Similarly, we could adopt a composite acquisition function as
follows:

a′(xt+1) = â(xt+1) + βσt(xt+1), (3.8)

where σt(xt+1) is the heuristic term favoring candidates with large uncertainty, and β is a
hyperparameter trading off exploration and exploitation (diversity optimization in our case).
Theoretically well justified choice of β exists for GP-UCB, which guarantees optimization
convergence with high probability [110]. However in our context, no such guarantees hold as
we are not optimizing f but rather the diversity of f , the tuning of the hyperparameter β
is thus not trivial, especially when the strategy evaluation function g(·) is extremely costly.
To mitigate this problem, we decouple the two terms and alternate between exploration and
exploitation following a similar idea proposed in [109]. During exploration, our acquisition
function becomes:

aexp(xt+1) = σt(xt+1). (3.9)

The sample with the largest posterior standard deviation is chosen as xt+1 to be evaluated
next:

xt+1 = arg max
x

σt(x). (3.10)

Under the condition that g(·) is a sample from GP function distribution GP(m(·), k(·, ·)),
Equation 3.10 can be shown to maximize the Information Gain I on function g(·):

xt+1 = arg max
x

I (Xt ∪ {x}, Ft ∪ {g(x)}; g) , (3.11)

where I(A;B) = H(A)−H(A|B), and H(·) = E [− log p(·)] is the Shannon entropy [19].
We summarize our BDS algorithm in Algorithm 1. The alternation of exploration and

diversity optimization involves two extra hyperparameters Nexp and Nopt, corresponding to
the number of samples allocated for exploration and diversity optimization in each round.
Compared to β in Equation 3.8, Nexp and Nopt are much more intuitive to tune. We also
found that empirically the algorithm performance is insensitive to the specific values of
Nexp and Nopt. The exploitation stage directly maximizes the diversity of motion strategies.
We optimize â(·) with a sampling-based method DIRECT (Dividing Rectangle) [49], since
derivative information may not be accurate in the presence of function noise due to the
Monte-Carlo integration. This optimization does not have to be perfectly accurate, since

32

Algorithm 1: Bayesian Diversity Search
Input: Strategy evaluation function g(·), exploration count Nexp and diversity

optimization count Nopt, total sample count n.
Output: Initial states Xn = {x1, x2, ..., xn} for diverse strategies.

1 t = 0; X0 ← ∅; F0 ← ∅;
2 Initialize GP surrogate model with random samples;
3 while t < n do
4 if t%(Nexp +Nopt) < Nexp then
5 xt+1 ← arg max aexp(·) by L-BFGS; // Equation 3.9
6 else
7 xt+1 ← arg max â(·) by DIRECT; // Equation 3.7
8 end
9 ft+1 ← g(xt+1);

10 Xt+1 ← Xt ∪ {xt+1}; Ft+1 ← Ft ∪ {ft+1};
11 Update GP surrogate model with Xt+1, Ft+1; // Equation 3.6
12 t← t+ 1;
13 end
14 return Xn

the surrogate model is an approximation in the first place. The exploration stage facilitates
the discovery of diverse strategies by avoiding repeated queries on well-sampled regions. We
optimize aexp(·) using a simple gradient-based method L-BFGS [68].

3.5.2 Stage 2: Novel Policy Seeking

In Stage 2 of our diverse strategy discovery framework, we explore potential strategy varia-
tions given a fixed initial state discovered in Stage 1. Formally, given an initial state x and
a set of discovered policies Π = {π1, π2, ..., πn}, we aim to learn a new policy πn+1 which is
different from all existing πi ∈ Π. This can be achieved with an additional policy novelty
reward to be jointly optimized with the task reward during DRL training. We measure
the novelty of policy πi with respect to πj by their corresponding motion feature distance
||fi − fj ||. The novelty reward function is then given by

rnovelty(f) = Clip
(minπi∈Π ||fi − f ||

dthreshold
, 0.01, 1

)
, (3.12)

which rewards simulation rollouts showing different strategies to the ones presented in the
existing policy set. dthreshold is a hyperparameter measuring the desired policy novelty to
be learned next. Note that the feature representation f here in Stage 2 can be the same as
or different from the one used in Stage 1 for initial states exploration.

Our novel policy search is in principle similar to the idea of [133, 114]. However, there are
two key differences. First, in machine learning, policy novelty metrics have been designed
and validated only on low-dimensional control tasks. For example in [133], the policy novelty

33

is measured by the reconstruction error between states from the current rollout and previous
rollouts encapsulated as a deep autoencoder. In our case of high-dimensional 3D character
control tasks, however, novel state sequences do not necessarily correspond to novel motion
strategies. We therefore opt to design discriminative strategy features whose distances are
incorporated into the DRL training reward.

Second, we multiply the novelty reward with the task reward as the training reward, and
adopt a standard gradient-based method PPO to train the policy. Additional optimization
techniques are not required for learning novel strategies, such as the Task-Novelty Bisector
method proposed in [133] that modifies the policy gradients to encourage novelty learning.
Our novel policy seeking procedure always discovers novel policies since the character is
forced to perform a different strategy. However, the novel policies may exhibit unnatural
and awkward movements, when the given initial state is not capable of multiple natural
strategies.

3.6 Task Setup and Implementation

We demonstrate diverse strategy discovery for two challenging motor tasks: high jumping
and obstacle jumping. We also tackle several variations of these tasks. We describe task
specific settings in Section 3.6.1, and implementation details in Section 3.6.2.

3.6.1 Task Setup

The high jump task follows the Olympics rules, where the simulated athlete takes off with
one leg, clears the crossbar, and lands on a crash mat. We model the landing area as a rigid
block for simplicity. The crossbar is modeled as a rigid wall vertically extending from the
ground to the target height to prevent the character from cheating during early training,
i.e., passing through beneath the bar. A rollout is considered successful and terminated
when the character lands on the rigid box with all body parts at least 20 cm away from
the wall. A rollout is considered as a failure and terminated immediately, if any body part
touches the wall, or any body part other than the take-off foot touches the ground, or if the
jump does not succeed within two seconds after the take-off.

The obstacle jump shares most of the settings of the high jump. The character takes
off with one leg, clears a box-shaped obstacle of 50 cm in height with variable widths, then
lands on a crash mat. The character is required to complete the task within two seconds as
well, and not allowed to touch the obstacle with any body part.

Run-up Learning

A full high jump or obstacle jump consists of three phases: run-up, take-off and landing.
Our framework described so far can discover good initial states at take-off that lead to
diverse jumping strategies. What is lacking is the matching run-up control policies that can

34

Task zmin(cm) zmax(cm) ∆z(cm) RT
High jump 50 200 1 30

Obstacle jump 5 250 5 50

Table 3.1: Curriculum parameters for learning jumping tasks.

prepare the character to reach these good take-off states at the end of the run. We train
the run-up controllers with DeepMimic [88], where the DRL learning reward consists of
a task reward and an imitation reward. The task reward encourages the end state of the
run-up to match the desired take-off state of the jump. The imitation reward guides the
simulation to match the style of the reference run. We use a curved sprint as the reference
run-up for high jump, and a straight sprint for the obstacle jump run-up. For high jump,
the explored initial state space is four-dimensional: the desired approach angle α, the X
and Z components of the root angular velocity ω, and the magnitude of the Z component
of the root linear velocity vz in a facing-direction invariant frame. We fix the desired root
Y angular velocity to 3rad/s, which is taken from the reference curved sprint. In summary,
the task reward rG for the run-up control of a high jump is defined as

rG = exp
(
−1

3 · ||ω − ω̄||1 − 0.7 · (vz − v̄z)2
)
, (3.13)

where ω̄ and v̄z are the corresponding targets for ω and vz. α does not appear in the reward
function as we simply rotate the high jump suite in the environment to realize different
approach angles. For the obstacle jump, we explore a three-dimensional take-off state space
consisting of the root angular velocities along all axes. Therefore the run-up control task
reward rG is given by

rG = exp(−1
3 · ||ω − ω̄||1). (3.14)

Reward Function

We use the same reward function structure for both high jumps and obstacle jumps, where
the character gets a sparse reward only when it successfully completes the task. The full
reward function is defined as in Equation 3.2 for Stage 1. For Stage 2, the novelty bonus
rnovelty as discussed in Section 3.5.2 is added:

r = rtask · rnaturalness · rnovelty. (3.15)

rnaturalness is the motion naturalness term discussed in Section 3.4.2. For both stages, the
task reward consists of three terms:

rtask = rcomplete · rω · rsafety. (3.16)

35

Parameter Simulated Athlete Mocap Athlete
Weight (kg) 60 70
Height (cm) 170 191

hip height (cm) 95 107
knee height (cm) 46 54

Table 3.2: Model parameters of our virtual athlete and the mocap athlete.

rcomplete is a binary reward precisely corresponding to task completion. rω = exp(−0.02||ω||)
penalizes excessive root rotations where ||ω|| is the average magnitude of the root angular
velocities across the episode. rsafety is a term to penalize unsafe head-first landings. We set
it to 0.7 for unsafe landings and 1.0 otherwise. rsafety can also be further engineered to
generate more landing styles, such as a landing on feet as shown in Figure 3.8.

Curriculum and Scheduling

The high jump is a challenging motor skill that requires years of training even for profes-
sional athletes. We therefore adopt curriculum-based learning to gradually increase the task
difficulty z, defined as the crossbar height in high jumps or the obstacle width in obstacle
jumps. Detailed curriculum settings are given in Table 3.1, where zmin and zmax specify the
range of z, and ∆z is the increment when moving to a higher difficulty level.

We adaptively schedule the curriculum to increase the task difficulty according to the
DRL training performance. At each training iteration, the average sample reward is added
to a reward accumulator. We increase z by ∆z whenever the accumulated reward exceeds
a threshold RT , and then reset the reward accumulator. Detailed settings for ∆z and RT
are listed in Table 3.1. The curriculum could also be scheduled following a simpler scheme
adopted in [124], where task difficulty is increased when the average sample reward in each
iteration exceeds a threshold. We found that for athletic motions, such average sample
reward threshold is hard to define uniformly for different strategies in different training
stages.

Throughout training, the control frequency fcontrol and the P-VAE offset penalty co-
efficient coffset in Equation 3.4 are also scheduled according to the task difficulty, in or-
der to encourage exploration and accelerate training in early stages. We set fcontrol =
10 + 20 · Clip(ρ, 0, 1) and coffset = 48 − 33 · Clip(ρ, 0, 1), where ρ = 2z − 1 for high jumps
and ρ = z for obstacle jumps. We find that in practice the training performance does not
depend sensitively on these hyperparameters.

Strategy Features

We choose low-dimensional and visually discriminate features f of learned strategies for
effective diversity measurement of discovered strategies. In the sports literature, high jump
techniques are usually characterized by the body orientation when the athlete clears the bar

36

at his peak position. The rest of the body limbs are then coordinated in the optimal way to
clear the bar as high as possible. Therefore we use the root orientation when the character’s
CoM lies in the vertical crossbar plane as f . This three-dimensional root orientation serves
well as a Stage 2 feature for high jumps. For Stage 1, this feature can be further reduced
to one dimension, as we will show in Section 3.7.1. More specifically, we only measure the
angle between the character’s root direction and the global up vector, which corresponds to
whether the character clears the bar facing upward or downward. Such a feature does not
require a non-Euclidean GP output space that we need to handle in Stage 1. We use the
same set of features for obstacle jumps, except that root orientations are measured when
the character’s CoM lies in the center vertical plane of the obstacle.

Note that it is not necessary to train to completion, i.e., the maximum task difficulty, to
evaluate the feature diversity, since the overall jumping strategy usually remains unchanged
after a given level of difficulty, which we denote by zfreeze. Based on empirical observations,
we terminate the training after reaching zfreeze = 100cm for both high jump and obstacle
jump tasks for strategy discovery.

GP Priors and Kernels

We set GP prior m(·) and kernel k(·, ·) for BDS based on common practices in the Bayesian
optimization literature. Without any knowledge on the strategy feature distribution, we
set the prior mean m(·) to be the mean of the value range of a feature. Among the many
common choices for kernel functions, we adopt the Matérn5/2 kernel [77, 55], defined as:

k5/2(x, x′) = θ(1 +
√

5dλ(x, x′) + 5
3d

2
λ(x, x′))e−

√
5dλ(x,x′) (3.17)

where θ and λ are learnable parameters of the GP. dλ(x, x′) = (x− x′)T diag(λ)(x− x′) is
the Mahalanobis distance.

3.6.2 Implementation

We implemented our system in PyTorch [96] and PyBullet [18]. The simulated athlete has
28 internal DoFs and 34 DoFs in total. We run the simulation at 600 Hz. Torque limits for
the hips, knees and ankles are taken from Biomechanics estimations for a human athlete
performing a Fosbury flop [84]. Torque limits for other joints are kept the same as [88].
Joint angle limits are implemented by penalty forces. We captured three standard high
jumps from a university athlete, whose body measurements are given in Table 3.2. For
comparison, we also list these measurements for our virtual athlete.

For DRL training, we set λ = 0.95 for both TD(λ) and GAE(λ). We set the discounter
factor γ = 1.0 since our tasks have short horizon and sparse rewards. The PPO clip threshold
is set to 0.02. The learning rate is 2.5× 10−5 for the policy network and 1.0× 10−2 for the
value network. In each training iteration, we sample 4096 state-action tuples in parallel

37

and perform five policy updates with a mini-batch size of 256. For Stage 1 diverse strategy
discovery, we implement BDS using GPFlow [118] with both Nexp and Nopt set to three.
dthreshold in Stage 2 novel policy seeking is set to π/2. Our experiments are performed on a
Dell Precision 7920 Tower workstation, with dual Intel Xeon Gold 6248R CPUs (3.0 GHz,
48 cores) and an Nvidia Quadro RTX 6000 GPU. Simulations are run on the CPUs. One
strategy evaluation for a single initial state, i.e. Line 9 in Algorithm 1, typically takes about
six hours. Network updates are performed on the GPU.

3.7 Results

We demonstrate multiple strategies discovered through our framework for high jumping
and obstacle jumping in Section 3.7.1. We validate the effectiveness of BDS and P-VAE
in Section 3.7.2. Comparison with motion capture examples, and interesting variations of
learned policies are given in Section 3.7.3. All results are best seen in the supplementary
videos in order to judge the quality of the synthesized motions.

3.7.1 Diverse Strategies

High Jumps

In our experiments, six different high jump strategies are discovered during the Stage 1
initial state exploration within the first ten BDS samples: Fosbury Flop, Western Roll (facing
up), Straddle, Front Kick, Side Jump, Side Dive. The first three are high jump techniques
standard in the sports literature. The last three strategies are not commonly used in sporting
events, but still physically valid so we name them according to their visual characteristics.
The other four samples generated either repetitions or failures. Strategy repetitions are
generally not avoidable due to model errors and large flat regions in the motion space.
Since the evaluation of one BDS sample takes about six hours, the Stage 1 exploration
takes about 60 hours in total. The discovered distinct strategies at zfreeze = 100cm are
further optimized separately to reach their maximum difficulty level, which takes another
20 hours. Representative take-off state feature values of the discovered strategies can be
found in Table 3.3. Note that the approach angle α for high jumps is defined as the wall
orientation in a facing-direction invariant frame. The orientation of the wall is given by the
line xsinα− zcosα = 0.

In Stage 2, we perform novel policy search for five DRL iterations from each good
initial state of Stage 1. Training is warm started with the associated Stage 1 policy for
efficient learning. The total time required for Stage 2 is roughly 60 hours. More strategies
are discovered in Stage 2, but most are repetitions and only two of them are novel strategies
not discovered in Stage 1: Western Roll (facing sideways) and Scissor Kick. Western Roll
(sideways) shares the same initial state with Western Roll (up). Scissor Kick shares the
same initial state with Front Kick. The strategies discovered in each stage are summarized

38

(a) Fosbury Flop – max height=200cm (b) Western Roll Side – max height=195cm

(c) Straddle – max height=190cm (d) Front Kick – max height=180cm

(e) Western Roll Up – max height=160cm (f) Scissor Kick – max height=150cm

(g) Side Dive – max height=130cm (h) Side Jump – max height=110cm

Figure 3.2: Eight high jump strategies discovered by our learning framework, ordered by
their maximum cleared height.

Figure 3.3: Diverse strategies discovered in each stage of our framework.

39

(a) Fosbury Flop (b) Western Roll (c) Straddle (d) Front Kick

(e) Western Roll* (f) Scissor (g) Side Dive (h) Side Jump

Figure 3.4: Peak poses of discovered high jump strategies including look-up views and look-
down views, ordered by their maximum cleared height.

40

Strategy vz ωx ωz α

Fosbury Flop -2.40 -3.00 1.00 -0.05
Western Roll (up) -0.50 1.00 -1.00 2.09

Straddle -2.21 1.00 0.88 1.65
Front Kick -0.52 1.00 -0.26 0.45
Side Dive -1.83 -2.78 -0.32 1.18
Side Jump -1.99 -1.44 0.44 0.70

Table 3.3: Representative take-off state features for discovered high jumps.

Strategy ωx ωy ωz
Front Kick 1.15 -1.11 3.89
Side Kick 3.00 3.00 -2.00

Twist Jump (c) -1.50 1.50 -2.00
Straddle 0.00 0.00 1.00

Twist Jump (cc) -2.67 0.00 -1.44
Dive Turn -0.74 -2.15 -0.41

Table 3.4: Representative take-off state features for discovered obstacle jumps.

in Figure 3.3. We visualize all eight distinct strategies in Figure 3.2. We also visualize their
peak poses in Figure 3.4. Note that Western Roll (facing up) and Scissor Kick differ in the
choice of inner or outer leg as the take-off leg. The Western Roll (facing sideways) and the
Scissor Kick are learned in Stage 2. All other strategies are discovered in Stage 1.

While the final learned control policies are stochastic in nature, the majority of the
results shown in our supplementary video are the deterministic version of those policies,
i.e., using the mean of the learned policy action distributions. In the video we further show
multiple simulations from the final stochastic policies, to help give insight into the true final
endpoint of the optimization. As one might expect for a difficult task such as a maximal-
height high jump, these stochastic control policies will also fail for many of the runs, similar
to a professional athlete.

Obstacle Jumps

Figure 3.5 shows the eight different obstacle jump strategies discovered by our learning
framework. The first six strategies are discovered in Stage 1 within the first 17 BDS samples:
Front Kick, Side Kick, Twist Jump (clockwise), Twist Jump (counterclockwise), Straddle
and Dive Turn. The last two strategies are the novel ones discovered in Stage 2: Western Roll
and Twist Turn. Western Roll shares the initial state with Twist Jump (clockwise). Twist
Turn shares the initial state with Dive Turn. For some of the strategies, the obstacle is split
into two parts connected with dashed lines to enable better visualization of the poses over
the obstacle. The two stages together take about 180 hours. Representative take-off state

41

(a) Front Kick – max width=150cm (b) Side Kick – max width=150cm

(c) Twist Jump (c) – max width=150cm (d) Straddle – max width=215cm

(e) Twist Jump (cc) – max width=250cm (f) Dive Turn – max width=250cm

(g) Twist Turn – max width=250cm (h) Western Roll – max width=250cm

Figure 3.5: Eight obstacle jump strategies discovered by our learning framework.

feature values of the discovered strategies can be found in Table 3.4. We encourage readers
to watch the supplementary video for better visual perception of the learned strategies.

Although our obstacle jump task is not an Olympic event, it is analogous to a long jump
in that it seeks to jump a maximum-length jumped. Setting the obstacle height to zero yields
a standard long jump task. The framework discovers several strategies, including one similar
to the standard long jump adopted in competitive events, with the strong caveat that the
distance achieved is limited by the speed of the run up. Please refer to the supplementary
video for the long jump results.

3.7.2 Validation and Ablation Study

BDS vs. Random Search

We validate the sample efficiency of BDS compared with a random search baseline. Within
the first ten samples of initial states exploration in the high jump task, BDS discovered six
distinct strategies as discussed in Section 3.7.1. Given the same computational budget, ran-
dom search only discovered three distinct strategies: Straddle, Side Jump, and one strategy
similar to Scissor Kick. Most samples result in repetitions of these three strategies, due to

42

(a) High jumps trained without P-VAE, given the initial state of Fosbury Flop and Straddle re-
spectively. Please compare with Figure 3.2a and Figure 3.2c.

(b) Obstacle jumps trained without P-VAE, given the initial state of Straddle and Twist Jump (cc)
respectively. Please compare with Figure 3.5d and Figure 3.5e.

Figure 3.6: Jumping strategies learned without P-VAE. Although the character can still
complete the tasks, the poses are less natural.

the presence of large flat regions in the strategy space where different initial states lead
to the same strategy. In contrast, BDS largely avoids sampling the flat regions thanks to
the acquisition function for diversity optimization and guided exploration of the surrogate
model.

Motion Quality with/without P-VAE

We justify the usage of P-VAE for improving motion naturalness with results shown in
Figure 3.6. Without P-VAE, the character can still learn physically valid skills to complete
the tasks successfully, but the resulting motions usually exhibit unnatural behavior. In the
absence of a natural action space constrained by the P-VAE, the character can freely explore
any arbitrary pose during the course of the motion to complete the task, which is unlikely
to be within the natural pose manifold all the time.

3.7.3 Comparison and Variations

Synthesized High Jumps vs. Motion Capture

We capture motion capture examples from a university athlete in a commercial motion
capture studio for three well-known high jump strategies: Scissor Kick, Straddle, and Fos-
bury Flop. We retarget the mocap examples onto our virtual athlete, which is shorter than
the real athlete as shown in Table 3.2. We visualize keyframes sampled from our simulated
jumps and the retargeted mocap jumps in Figure 3.7. Note that the bar heights are set
to the maximum heights achievable by our trained policies, while the bar heights for the
mocap examples are just the bar heights used at the actual capture session. We did not set

43

(a) Fosbury Flop. First row: synthesized – max height=200cm; Second row: motion capture – capture
height=130cm.

(b) Straddle. First row: synthesized – max height=195cm; Second row: motion capture – capture
height=130cm.

Figure 3.7: Comparison of our synthesized high jumps with those captured from a human
athlete.

the mocap bar heights at the athlete’s personal record height, as we wanted to ensure his
safety and comfort while jumping in a tight mocap suit with a lot of markers on.

High Jump Variations

In addition to discovering multiple motion strategies, our framework can easily support
physically valid motion variations. We show four high jump variations generated from our
framework in Figure 3.8. We generate the first three variations by taking the initial state
of the Fosbury Flop strategy discovered in Stage 1, and retrain the jumping policy with
additional constraints starting from a random initial policy. Figure 3.8a shows a jump
with a weaker take-off leg, where the torque limits are reduced to 60% of its original values.
Figure 3.8b shows a character jumping with a spine that does not permit backward arching.
Figure 3.8c shows a character jumping with a fixed knee joint. All these variations clear lower
maximum heights, and are visually different from the original Fosbury Flop in Figure 3.2a.
For the jump in Figure 3.8d, we take the initial state of the Front Kick, and train with an
additional constraint that requires landing on feet. In Figure 3.9 we also show a high jump
trained on Mars, where the gravity g = 3.711m/s2 is lower, from the initial state of the
Fosbury flop discovered on Earth.

44

(a) Fosbury Flop performed by a character with
a weaker take-off leg – max height=160cm.

(b) Fosbury Flop performed by a character with
an inflexible spine – max height=150cm.

(c) Scissor Kick learned by a character with a cast
on its take-off leg – max height=130cm.

(d) Front Kick with an additional constraint re-
quiring landing on feet – max height=120cm.

Figure 3.8: High jump variations.

Figure 3.9: High jump policy trained on Mars with a lower gravity (g = 3.711m/s2), given
the initial state of the Fosbury Flop discovered on Earth.

3.7.4 Numerical Analysis

We plot Stage 1 DRL learning and curriculum scheduling curves for two high jump strategies
in Figure 3.10. As DRL learning is stochastic, the curves shown are the average of five
training runs. The shaded regions indicates the standard deviation. An initial solution for
the starting bar height 0.5m can be learned relatively quickly. After a certain bar height
has been reached (around 1.4m), the return starts to drop because larger action offsets are
needed to jump higher, which decreases the rnaturalness in Equation 3.4 and therefore the
overall return in Equation 3.2. Subjectively speaking, the learned motions remain as natural
for high crossbars, as the lower return is due to the penalty on action offsets.

3.8 Summary and Discussions

In this chapter, we have presented a framework for discovering and learning multiple natural
and distinct strategies for highly challenging athletic jumping motions. A key insight is to
explore the take-off state, which is a strong determinant of the jump strategy that follows
once airborne. In a second phase, we additionally use explicit rewards for novel motions.
Another crucial aspect is to constrain the action space inside the natural human pose mani-
fold. With the proposed two-stage framework and the pose variational autoencoder, natural
and physically-nuanced jumping strategies emerge automatically without any reference to

45

0 1 2 3 4
Simulation Steps ×107

0.0

0.2

0.4

0.6

0.8
R
et
ur
n

Fosbury flop
Western Roll

1 2 3 4
Simulation Steps ×107

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ba
r
H
ei
gh

t

Fosbury flop
Western Roll

Figure 3.10: DRL learning and curriculum scheduling curves for two high jump strategies.

human demonstrations. Within the proposed framework, the take-off state exploration is
specific to jumping tasks, while the diversity search algorithms in both stages and the P-VAE
are task independent. We leave further adaptation of the proposed framework to additional
motor skills as future work. We believe this work demonstrates a significant advance by
being able to learn a highly-technical skill such as high-jumping.

The run-up phase of both jump tasks imitates reference motions, one single curved run
for all the high jumps and one single straight run for all the obstacle jumps. The quality
of the two reference runs affect the quality of not only the run-up controllers, but also
the learned jump controllers. This is because the jump controllers couple with the run-up
controllers through the take-off states, for which we only explore a low-dimensional feature
space. The remaining dimensions of the take-off states stay the same as in the original
reference run. As a result, the run-up controllers for our obstacle jumps remain in medium
speed, and the swing leg has to kick backward sometimes in order for the body to dive
forward. If we were to use a faster sprint with more forward leaning as the reference run,
the discovered jumps could potentially be more natural and more capable to clear wider
obstacles. Similarly, we did not find the Hurdle strategy for high jumping, likely due to
the reference run being curved rather than straight. In both reference runs, there is a
low in-place jump after the last running step. We found this jumping intention successfully
embedded into the take-off states, which helped both jump controllers to jump up naturally.
Using reference runs that anticipate the intended skills is definitely recommended, although
retraining the run-up controller and the jump controller together in a post-processing stage
may be helpful as well.

We were able to discover most well-known high-jump strategies, and some lesser-known
variations. There remains a rich space of further parameters to consider for optimization,
with our current choices being a good fit for our available computational budget. It would be
exciting to discover a better strategy than the Fosbury flop, but a better strategy may not
exist. We note that Stage 1 can discover most of the strategies shown in Figure 3.3. Stage
2 is only used to search for additional unique strategies and not to fine tune the strategies

46

already learned in Stage 1. We also experimented with simply running Stage 1 longer with
three times more samples for the BDS. However, this could not discover any new strategies
that can be discovered by Stage 2. In summary, Stage 2 is not absolutely necessary for our
framework to work, but it complements Stage 1 in terms of discovering additional visually
distinctive strategies. We also note that our Stage 2 search for novel policies is similar in
spirit to the algorithm proposed in [133]. An advantage of our approach is its simplicity
and the demonstration of its scalability to the discovery of visually distinct strategies for
athletic skills.

There are many directions for further improving our system. First, we have only focused
on strategy discovery for the take-off and airborne parts of jumping tasks. For landing, we
only required not to land on head first. We did not model get-ups at all. How to seamlessly
incorporate landing and get-ups into our framework is a worthy problem for future studies.
Second, there is still room to further improve the quality of our synthesized motions. The
P-VAE only constrains naturalness at a pose level, while ideally we need a mechanism to
guarantee naturalness on a motion level. This is especially helpful for under-constrained mo-
tor tasks such as crawling, where feasible regions of the tasks are large and system dynamics
cannot help prune a large portion of the state space as for the jumping tasks. Lastly, our
strategy discovery is computationally expensive. We are only able to explore initial states
in a four dimensional space, limited by our computational resources. If more dimensions
could be explored, more strategies might be discovered. Parallel implementation is trivial
for Stage 2 since searches for novel policies for different initial states are independent. For
Stage 1, batched BDS where multiple points are queried together, similar to the idea of [6],
may be worth exploring. The key challenge of such an approach is how to find a set of good
candidates to query simultaneously.

47

Chapter 4

Conclusion and Future Work

In this thesis, we studied the problem of designing high-quality controllers for physically
simulated characters. We studied the problem on two levels, joint-level motor controls and
high-level character motion controls. We have presented a linear time Modified Articulated-
Body Algorithm for stable PD motor control. MABA enables efficient learning of high-level
motion controllers for its superior run-time complexity and stability. We further studied the
problem of designing high-level motion controllers for the discovery of motion strategies in
a DRL framework given a task objective. We have demonstrated a diverse set of natural-
looking athletic jumping strategies discovered through our framework with the help of P-
VAE, BDS and novel policy seeking.

There are two major avenues for future research endeavors. First, the proposed stable
PD motor control algorithm and the strategy discovery system both assume that the char-
acters are modeled with articulated rigid bodies. This simplification enables efficient model
construction, simulation and control, but also bounds the performance and realism of the
learned motions. For example, in our system for discovering diverse high jumps, we simplify
the athlete’s feet and specialized high jump shoes as rigid rectangular boxes, which reduces
the maximum heights the virtual athlete can clear. We model the high jump crossbar as a
wall at training time and as a rigid bar at run time, while real bars are made from more elas-
tic materials such as fiberglass. We use a rigid box as the landing surface, while real-world
landing cushions protect the athlete from breaking his neck and back, and also help him
roll and get up in a fluid fashion. A more accurate modeling of the character and the en-
vironment could potentially lead to significant improvement to motion realism. Characters
based on a muscle-skeletal-tendon system and soft-tissue simulation are worth exploring.
However, the challenge is that muscle-skeletal-tendon systems and soft bodies cannot be effi-
ciently simulated based on currently available algorithms and implementations. DRL-based
motion learning frameworks are therefore impractical for such complicated systems due to
the huge amount of simulation samples required for learning motion controllers successfully.
Improving simulation efficiency of advanced character models and sample efficiency of DRL
learning systems could be the key problem to be investigated in future research.

48

Synthesizing natural motion strategies without mocap demonstration is still hard to
achieve for some motor tasks within our proposed learning system. Given a task objective,
our learning system finds the best strategy to complete the task within the search region. The
learned strategy is not guaranteed to match the expected ones from a human’s perspective.
For example, given an initial state for crawling and an objective to move forward with a
desired velocity, the character usually learns a nice natural-looking rolling motion rather
than crawling. The underlying reason is that rolling is easier than crawling given a simple
reward function requiring it to maintain a certain speed. To synthesize a desired motion
exactly, reward shaping and additional constraints are likely required and could be tedious
for certain tasks. For example, to synthesize the desired crawling motion, we may need
to add contact constraints and adjust the reward function to take body orientation into
consideration. One potential approach to this problem worth exploring in future research
is to decouple strategy discovery and full-body motion learning, where strategy discovery
is performed first on a simplified character model, and the full-body motion is then learned
with P-VAE to follow the discovered strategy on simplified models. Nonetheless, we believe
that our work opens the door to efficiently synthesizing natural-looking human motions
which can be hard or expensive to capture, and discovering novel strategies for certain
tasks with less human insights.

49

Bibliography

[1] Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational
option discovery algorithms. arXiv preprint arXiv:1807.10299, 2018.

[2] V.M. Adashevskiy, S.S. Iermakov, and A.A. Marchenko. Biomechanics aspects of
technique of high jump. Physical Education of Students, 17(2):11–17, 2013.

[3] Shailen Agrawal, Shuo Shen, and Michiel van de Panne. Diverse motion varia-
tions for physics-based character animation. In Proceedings of the 12th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 37–44, 2013.

[4] Mazen Al Borno, Martin de Lasa, and Aaron Hertzmann. Trajectory optimization for
full-body movements with complex contacts. TVCG, 19(8):1405–1414, 2013.

[5] Sheldon Andrews and Paul G. Kry. Goal directed multi-finger manipulation: Control
policies and analysis. Computers & Graphics, 37(7):830 – 839, 2013.

[6] Javad Azimi, Alan Fern, and Xiaoli Z Fern. Batch bayesian optimization via simula-
tion matching. In Advances in Neural Information Processing Systems, pages 109–117.
Citeseer, 2010.

[7] David Baraff. Linear-time dynamics using lagrange multipliers. In SIGGRAPH, pages
137–146, 1996.

[8] Kevin Bergamin, Simon Clavet, Daniel Holden, and James Forbes. DReCon: data-
driven responsive control of physics-based characters. ACM Transctions on Graphics,
38(6), 2019.

[9] Eric Brochu, Abhijeet Ghosh, and Nando de Freitas. Preference galleries for material
design. SIGGRAPH Posters, 105(10.1145):1280720–1280834, 2007.

[10] Bullet. Bullet physics library, 2015. http://bulletphysics.org.

[11] Jinxiang Chai and Jessica K. Hodgins. Performance animation from low-dimensional
control signals. In ACM SIGGRAPH 2005 Papers. Association for Computing Ma-
chinery, New York, NY, USA, 2005.

[12] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decompo-
sition by basis pursuit. SIAM review, 43(1):129–159, 2001.

[13] Matei Ciocarlie. Low-Dimensional Robotic Grasping: Eigengrasp Subspaces and Op-
timized Underactuation. PhD thesis, Columbia University, 2010.

50

[14] Simon Clavet. Motion matching and the road to next-gen animation. In GCD, 2016.

[15] Alexandra Coman and Hector Munoz-Avila. Generating diverse plans using quanti-
tative and qualitative plan distance metrics. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 25, 2011.

[16] Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth
Stanley, and Jeff Clune. Improving exploration in evolution strategies for deep rein-
forcement learning via a population of novelty-seeking agents. In Advances in neural
information processing systems, pages 5027–5038, 2018.

[17] Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. Generalized biped
walking control. ACM Transctions on Graphics, 29(4):Article 130, 2010.

[18] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation
for games, robotics and machine learning. http://pybullet.org, 2016–2019.

[19] Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

[20] Ana Lucia Cruz Ruiz, Charles Pontonnier, Jonathan Levy, and Georges Dumont. A
synergy-based control solution for overactuated characters: Application to throwing.
Computer Animation and Virtual Worlds, 28(6):e1743, 2017.

[21] Marco da Silva, Yeuhi Abe, and Jovan Popović. Interactive simulation of stylized
human locomotion. In ACM SIGGRAPH 2008 papers, pages 1–10. Association for
Computing Machinery, 2008.

[22] Jesus Dapena. The evolution of high jumping technique: Biomechanical analysis. In
20th Internat. Symp. Biomech. Sports, 2002.

[23] Martin de Lasa, Igor Mordatch, and Aaron Hertzmann. Feature-based locomotion
controllers. In ACM Transactions on Graphics (TOG), volume 29, page 131. ACM,
2010.

[24] Sean Donnelly. An Introduction to the High Jump. unknown, 2014.

[25] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is
all you need: Learning skills without a reward function. In ICLR, 2019.

[26] Roy Featherstone. A beginner’s guide to 6-D vectors (part 1). IEEE Robotics &
Automation, 17(3):83–94, 2010.

[27] Roy Featherstone. A beginner’s guide to 6-D vectors (part 2). IEEE Robotics &
Automation, 17(4):88–99, 2010.

[28] Roy Featherstone. Rigid body dynamics algorithms. Springer, 2014.

[29] Martin L Felis and Katja Mombaur. Synthesis of full-body 3d human gait using
optimal control methods. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 1560–1566. IEEE, 2016.

[30] Peter Frazier, Warren Powell, and Savas Dayanik. The knowledge-gradient policy for
correlated normal beliefs. INFORMS journal on Computing, 21(4):599–613, 2009.

51

http://pybullet.org

[31] Thomas Geijtenbeek, Michiel Van De Panne, and A Frank Van Der Stappen. Flex-
ible muscle-based locomotion for bipedal creatures. ACM Transactions on Graphics
(TOG), 32(6):1–11, 2013.

[32] F Sebastian Grassia. Practical parameterization of rotations using the exponential
map. Journal of graphics tools, 3(3):29–48, 1998.

[33] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3, 2010.

[34] Sehoon Ha and C Karen Liu. Iterative training of dynamic skills inspired by human
coaching techniques. ACM Transactions on Graphics (TOG), 34(1):1–11, 2014.

[35] Sehoon Ha, Yuting Ye, and C Karen Liu. Falling and landing motion control for
character animation. ACM Transactions on Graphics (TOG), 31(6):1–9, 2012.

[36] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
arXiv preprint arXiv:1801.01290, 2018.

[37] Ikhsanul Habibie, Daniel Holden, Jonathan Schwarz, Joe Yearsley, and Taku Komura.
A recurrent variational autoencoder for human motion synthesis. In 28th British
Machine Vision Conference, 2017.

[38] Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby Walsh. Finding di-
verse and similar solutions in constraint programming. In AAAI, volume 5, pages
372–377, 2005.

[39] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne,
Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of locomotion
behaviours in rich environments. ArXiv, abs/1707.02286, 2017.

[40] Nicolas Heess, Gregory Wayne, David Silver, Tim Lillicrap, Tom Erez, and Yuval
Tassa. Learning continuous control policies by stochastic value gradients. In Advances
in Neural Information Processing Systems, pages 2944–2952, 2015.

[41] Todd Hester and Peter Stone. Intrinsically motivated model learning for developing
curious robots. Artificial Intelligence, 247:170–186, 2017.

[42] Irina Higgins, Loïc Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual
concepts with a constrained variational framework. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

[43] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien. Animating human
athletics. In Proceedings of SIGGRAPH 1995, pages 71–78, 1995.

[44] Daniel Holden, Taku Komura, and Jun Saito. Phase-functioned neural networks for
character control. ACM Transctions on Graphics, 36(4), 2017.

[45] Daniel Holden, Jun Saito, and Taku Komura. A deep learning framework for character
motion synthesis and editing. ACM Transctions on Graphics, 35(4):Article 138, 2016.

52

[46] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter
Abbeel. Vime: Variational information maximizing exploration. Advances in neural
information processing systems, 29:1109–1117, 2016.

[47] Atil Iscen, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sind-
hwani, and Vincent Vanhoucke. Policies modulating trajectory generators. In Pro-
ceedings of The 2nd Conference on Robot Learning, pages PMLR 87:916–926, 2018.

[48] Sumit Jain, Yuting Ye, and C Karen Liu. Optimization-based interactive motion
synthesis. ACM Transactions on Graphics (TOG), 28(1):1–12, 2009.

[49] Donald R. Jones. Direct global optimization algorithmDirect Global Optimization Al-
gorithm, pages 431–440. Springer US, Boston, MA, 2001.

[50] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimiza-
tion of expensive black-box functions. Journal of Global optimization, 13(4):455–492,
1998.

[51] Teen Jumper. 7 classic high jump styles, 2020.

[52] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and
Eric P Xing. Neural architecture search with bayesian optimisation and optimal
transport. In Advances in neural information processing systems, pages 2016–2025,
2018.

[53] Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria,
Christopher R Collins, Jeff Schneider, Barnabas Poczos, and Eric P Xing. Tuning
hyperparameters without grad students: Scalable and robust bayesian optimisation
with dragonfly. Journal of Machine Learning Research, 21(81):1–27, 2020.

[54] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[55] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast
bayesian optimization of machine learning hyperparameters on large datasets. In
Artificial Intelligence and Statistics, pages 528–536. PMLR, 2017.

[56] Evangelos Kokkevis. Practical physics for articulated characters. In Game Developers
Conference, volume 2004, 2004.

[57] Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas
Poczos, Jeff Schneider, and Eric Xing. Chembo: Bayesian optimization of small or-
ganic molecules with synthesizable recommendations. In International Conference on
Artificial Intelligence and Statistics, pages 3393–3403. PMLR, 2020.

[58] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs. ACM Transctions
on Graphics, 21(3):473–482, 2002.

[59] Yuki Koyama, Issei Sato, and Masataka Goto. Sequential gallery for interactive visual
design optimization. ACM Transactions on Graphics, 39(4), Jul 2020.

53

[60] Yuki Koyama, Issei Sato, Daisuke Sakamoto, and Takeo Igarashi. Sequential line
search for efficient visual design optimization by crowds. ACM Transactions on Graph-
ics (TOG), 36(4):1–11, 2017.

[61] Jeongseok Lee, Michael Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye, Sid-
dhartha Srinivasa, Mike Stilman, and Chuanjian Liu. Dart: Dynamic animation and
robotics toolkit. Journal of Open Source Software, 3(22):500, 2018.

[62] Kyungho Lee, Seyoung Lee, and Jehee Lee. Interactive character animation by learn-
ing multi-objective control. ACM Transactions on Graphics (TOG), 37(6):1–10, 2018.

[63] Yoonsang Lee, Sungeun Kim, and Jehee Lee. Data-driven biped control. In ACM
SIGGRAPH 2010 papers, pages 1–8. Association for Computing Machinery, 2010.

[64] Yoonsang Lee, Moon Seok Park, Taesoo Kwon, and Jehee Lee. Locomotion control for
many-muscle humanoids. ACM Transactions on Graphics (TOG), 33(6):1–11, 2014.

[65] Joel Lehman and Kenneth O Stanley. Novelty search and the problem with objectives.
In Genetic programming theory and practice IX, pages 37–56. Springer, 2011.

[66] Sergey Levine, Jack M Wang, Alexis Haraux, Zoran Popović, and Vladlen Koltun.
Continuous character control with low-dimensional embeddings. ACM Transactions
on Graphics (TOG), 31(4):1–10, 2012.

[67] Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel van de Panne. Character
controllers using motion vaes. ACM Trans. Graph., 39(4), 2020.

[68] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale
optimization. Mathematical programming, 45(1-3):503–528, 1989.

[69] Libin Liu and Jessica Hodgins. Learning to schedule control fragments for physics-
based characters using deep q-learning. ACM Transactions on Graphics (TOG),
36(3):1–14, 2017.

[70] Libin Liu and Jessica Hodgins. Learning basketball dribbling skills using trajectory
optimization and deep reinforcement learning. ACM Transactions on Graphics, 37(4),
August 2018.

[71] Libin Liu, Michiel van de Panne, and KangKang Yin. Guided learning of control
graphs for physics-based characters. ACM Transctions on Graphics, 35(3):Article 29,
2016.

[72] Libin Liu, KangKang Yin, and Baining Guo. Improving sampling-based motion con-
trol. Computer Graphics Forum, 34(2):415–423, 2015.

[73] Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei Xu.
Sampling-based contact-rich motion control. ACM Transctions on Graphics, 29(4),
2010.

[74] Libin Liu, KangKang Yin, Bin Wang, and Baining Guo. Simulation and control of
skeleton-driven soft body characters. ACM Transactions on Graphics (TOG), 32(6):1–
8, 2013.

54

[75] Li-Ke Ma, Zeshi Yang, Baining Guo, and KangKang Yin. Towards robust direction
invariance in character animation. Computer Graphics Forum, 38(7):1–8, 2019.

[76] Li-ke Ma, Zeshi Yang, Xin Tong, Baining Guo, and Kangkang Yin. Learning and
exploring motor skills with spacetime bounds. Computer Graphics Forum, 2021.

[77] B Matérn. Spatial variation: Meddelanden fran statens skogsforskningsinstitut. Lec-
ture Notes in Statistics, 36:21, 1960.

[78] Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala, and Vladlen Koltun.
Interactive furniture layout using interior design guidelines. ACM transactions on
graphics (TOG), 30(4):1–10, 2011.

[79] Brian Vincent Mirtich. Impulse-based dynamic simulation of rigid body systems. Uni-
versity of California, Berkeley, 1996.

[80] Igor Mordatch, Kendall Lowrey, Galen Andrew, Zoran Popovic, and Emanuel V
Todorov. Interactive control of diverse complex characters with neural networks.
Advances in neural information processing systems, 28:3132–3140, 2015.

[81] Igor Mordatch, Emanuel Todorov, and Zoran Popović. Discovery of complex behaviors
through contact-invariant optimization. ACM SIGGRAPH, 31(4):Article 43, 2012.

[82] Igor Mordatch, Jack M Wang, Emanuel Todorov, and Vladlen Koltun. Animating hu-
man lower limbs using contact-invariant optimization. ACM Transactions on Graphics
(TOG), 32(6):1–8, 2013.

[83] Uldarico Muico, Yongjoon Lee, Jovan Popović, and Zoran Popović. Contact-aware
nonlinear control of dynamic characters. In ACM SIGGRAPH 2009 papers, pages
1–9. Association for Computing Machinery, 2009.

[84] K. Okuyama, M. Ae, and T. Yokozawa. Three dimensional joint torque of the takeoff
leg in the fosbury flop style. In Proceedings of the XIXth Congress of the International
Society of the Biomechanics (CD-ROM), 2003.

[85] T. Osa, J. Peters, and G. Neumann. Hierarchical reinforcement learning of multiple
grasping strategies with human instructions. Advanced Robotics, 32:955–968, 2018.

[86] SA Overduin, A d’Avella, J. Roh, JM Carmena, and E. Bizzi. Representation of
muscle synergies in the primate brain. Journal of Neuroscience, 37, 2015.

[87] Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee Lee. Learning
predict-and-simulate policies from unorganized human motion data. ACM Transctions
on Graphics, 38(6), 2019.

[88] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. DeepMimic:
Example-guided deep reinforcement learning of physics-based character skills. ACM
Transctions on Graphics, 37(4), 2018.

[89] Xue Bin Peng, Glen Berseth, and Michiel Van de Panne. Terrain-adaptive locomotion
skills using deep reinforcement learning. ACM Transactions on Graphics (TOG),
35(4):1–12, 2016.

55

[90] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne. DeepLoco:
Dynamic locomotion skills using hierarchical deep reinforcement learning. ACM
Transactions on Graphics (Proc. SIGGRAPH 2017), 36(4), 2017.

[91] Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. Mcp:
Learning composable hierarchical control with multiplicative compositional policies.
In Advances in Neural Information Processing Systems 32, pages 3681–3692. Curran
Associates, Inc., 2019.

[92] Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine.
SFV: Reinforcement learning of physical skills from videos. ACM Transctions on
Graphics, 37(6), 2018.

[93] Xue Bin Peng and Michiel van de Panne. Learning locomotion skills using DeepRL:
Does the choice of action space matter? CoRR, abs/1611.01055, 2016.

[94] PhysX. NVIDIA PhysX SDK, 2019. https://github.com/NVIDIAGameWorks/PhysX.

[95] Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. Quality diversity: A new
frontier for evolutionary computation. Frontiers in Robotics and AI, 3:40, 2016.

[96] PyTorch. Pytorch, 2018. https://pytorch.org/.

[97] Avinash Ranganath, Pei Xu, Ioannis Karamouzas, and Victor Zordan. Low dimen-
sional motor skill learning using coactivation. In Motion, Interaction and Games,
pages 1–10. Association for Computing Machinery, 2019.

[98] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School
on Machine Learning, pages 63–71. Springer, 2003.

[99] Alla Safonova and Jessica K. Hodgins. Construction and optimal search of interpolated
motion graphs. ACM Transctions on Graphics, 26(3):106–es, 2007.

[100] Alla Safonova, Jessica K Hodgins, and Nancy S Pollard. Synthesizing physically
realistic human motion in low-dimensional, behavior-specific spaces. ACM Transctions
on Graphics, 23(3):514–521, 2004.

[101] Jürgen Schmidhuber. Curious model-building control systems. In Proc. international
joint conference on neural networks, pages 1458–1463, 1991.

[102] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation. In Pro-
ceedings of the International Conference on Learning Representations (ICLR), 2016.

[103] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[104] Moonseok Park Seunghwan Lee, Kyoungmin Lee and Jehee Lee. Scalable muscle-
actuated human simulation and control. ACM Transactions on Graphics (Proc. SIG-
GRAPH 2019), 38(4), 2019.

56

[105] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman.
Dynamics-aware unsupervised discovery of skills. arXiv preprint arXiv:1907.01657,
2019.

[106] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization
of machine learning algorithms. In Advances in neural information processing systems,
pages 2951–2959, 2012.

[107] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan
Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian opti-
mization using deep neural networks. In International conference on machine learning,
pages 2171–2180, 2015.

[108] Kwang Won Sok, Manmyung Kim, and Jehee Lee. Simulating biped behaviors from
human motion data. In ACM SIGGRAPH 2007 papers, pages 107–es. Association for
Computing Machinery, 2007.

[109] Jialin Song, Yuxin Chen, and Yisong Yue. A general framework for multi-fidelity
bayesian optimization with gaussian processes. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 3158–3167. PMLR, 2019.

[110] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian
process optimization in the bandit setting: No regret and experimental design. In
Proceedings of the 27th International Conference on International Conference on Ma-
chine Learning, ICML’10, page 1015–1022, Madison, WI, USA, 2010. Omnipress.

[111] Biplav Srivastava, Tuan Anh Nguyen, Alfonso Gerevini, Subbarao Kambhampati,
Minh Binh Do, and Ivan Serina. Domain independent approaches for finding diverse
plans. In IJCAI, pages 2016–2022, 2007.

[112] Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. Neural state machine for
character-scene interactions. ACM Trans. Graph., 38(6):209–1, 2019.

[113] Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. Local motion phases
for learning multi-contact character movements. ACM Transactions on Graphics
(TOG), 39(4):54–1, 2020.

[114] Hao Sun, Zhenghao Peng, Bo Dai, Jian Guo, Dahua Lin, and Bolei Zhou. Novel policy
seeking with constrained optimization, 2020.

[115] Jie Tan, Karen Liu, and Greg Turk. Stable proportional-derivative controllers. IEEE
Computer Graphics and Applications, 31(4):34–44, 2011.

[116] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[117] Rasmus K Ursem. Diversity-guided evolutionary algorithms. In International Con-
ference on Parallel Problem Solving from Nature, pages 462–471. Springer, 2002.

[118] Mark van der Wilk, Vincent Dutordoir, ST John, Artem Artemev, Vincent Adam, and
James Hensman. A framework for interdomain and multioutput Gaussian processes.
arXiv:2003.01115, 2020.

57

[119] M. W. Walker and D. E. Orin. Efficient Dynamic Computer Simulation of Robotic
Mechanisms. Journal of Dynamic Systems, Measurement, and Control, 104(3):205–
211, 09 1982.

[120] Jack M Wang, David J Fleet, and Aaron Hertzmann. Optimizing walking controllers.
In ACM SIGGRAPH Asia 2009 papers, pages 1–8. Association for Computing Ma-
chinery, 2009.

[121] Jack M Wang, Samuel R Hamner, Scott L Delp, and Vladlen Koltun. Optimizing
locomotion controllers using biologically-based actuators and objectives. ACM Trans-
actions on Graphics (TOG), 31(4):1–11, 2012.

[122] JungdamWon, Deepak Gopinath, and Jessica Hodgins. A scalable approach to control
diverse behaviors for physically simulated characters. ACM Transactions on Graphics
(TOG), 39(4):Article 33, 2020.

[123] Wayne Lewis Wooten. Simulation of Leaping, Tumbling, Landing, and Balancing
Humans. PhD thesis, Georgia Institute of Technology, USA, 1998. AAI9827367.

[124] Zhaoming Xie, Hung Yu Ling, Nam Hee Kim, and Michiel van de Panne. Allsteps:
Curriculum-driven learning of stepping stone skills. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2020.

[125] Yuting Ye and C Karen Liu. Optimal feedback control for character animation using
an abstract model. In ACM SIGGRAPH 2010 papers, pages 1–9. Association for
Computing Machinery, 2010.

[126] Yuting Ye and C Karen Liu. Synthesis of responsive motion using a dynamic model.
In Computer Graphics Forum, volume 29, pages 555–562. Wiley Online Library, 2010.

[127] KangKang Yin, Kevin Loken, and Michiel van de Panne. SIMBICON: Simple biped
locomotion control. ACM Transctions on Graphics, 26(3):Article 105, 2007.

[128] Zhiqi Yin, Zeshi Yang, Michiel van de Panne, and KangKang Yin. Discovering di-
verse athletic jumping strategies. ACM Transactions on Graphics (Proc. SIGGRAPH
2021), 40(4), 2021.

[129] Zhiqi Yin and KangKang Yin. Linear time stable pd controllers for physics-based
character animation. Computer Graphics Forum, 39(8):191–200, 2020.

[130] Wenhao Yu, Greg Turk, and C Karen Liu. Learning symmetric and low-energy loco-
motion. ACM Transactions on Graphics, 37(4), 2018.

[131] Ye Yuan and Kris Kitani. Ego-pose estimation and forecasting as real-time PD con-
trol. In Proceedings of the IEEE International Conference on Computer Vision, pages
10082–10092, 2019.

[132] He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. Mode-adaptive neural
networks for quadruped motion control. ACM Transctions on Graphics, 37(4), 2018.

[133] Yunbo Zhang, Wenhao Yu, and Greg Turk. Learning novel policies for tasks. arXiv
preprint arXiv:1905.05252, 2019.

58

[134] K. Zhao, Z. Zhang, H. Wen, Z. Wang, and J. Wu. Modular organization of muscle
synergies to achieve movement behaviors. Journal of Healthcare Engineering, 2019.

[135] Peng Zhao and Michiel van de Panne. User interfaces for interactive control of physics-
based 3d characters. In I3D: ACM SIGGRAPH 2005 Symposium on Interactive 3D
Graphics and Games, 2005.

[136] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of
rotation representations in neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5745–5753, 2019.

[137] Victor B. Zordan and Jessica K. Hodgins. Motion capture driven simulations that hit
and react. In SCA, pages 89–96, 2002.

59

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Linear Time Stable PD Motor Controllers
	Overview
	Background and Related Work
	SPD Formulation for a Single DoF
	SPD for Articulations
	Solving SPD by Matrix Factorization
	Articulated-Body Forward Dynamics Algorithm

	Modified Articulated-Body Algorithm
	ABA Preliminaries
	MABA Derivation
	Algorithm Complexity
	Practical Implementation

	Experiments
	Accuracy and Stability
	Simulation Performance
	DRL Training Performance

	Summary and Discussions

	Discover Diverse Athletic Jumping Strategies
	Overview
	Related Work
	Character Animation
	Diversity Optimization
	Natural Pose Space
	History and Science of High Jump

	System Description
	Learning Natural Strategies
	DRL Formulation
	Pose Variational Autoencoder

	Learning Diverse Strategies
	Stage 1: Initial States Exploration with Bayesian Diversity Search
	Stage 2: Novel Policy Seeking

	Task Setup and Implementation
	Task Setup
	Implementation

	Results
	Diverse Strategies
	Validation and Ablation Study
	Comparison and Variations
	Numerical Analysis

	Summary and Discussions

	Conclusion and Future Work
	Bibliography

