
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DIGITAL PREDISTORTION OF WIDEBAND RADAR WAVEFORMS

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

RANDALL SUMMERS
Norman, Oklahoma

2021

DIGITAL PREDISTORTION OF WIDEBAND RADAR WAVEFORMS

A THESIS APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY THE COMMITTEE CONSISTING OF

Dr. Mark Yeary, Chair

Dr. Hjalti Sigmarsson

Dr. Jay McDaniel

© Copyright by RANDALL SUMMERS 2021

All Rights Reserved.

Acknowledgments

I want to thank my advisor, Dr. Mark Yeary, along with Dr. Hjalti Sigmarsson

and Dr. Jay McDaniel for their support throughout this project. Their guidance over

the last several years has been invaluable, and I have learnt a great deal from them

over the course of this project. I would also like to thank my friends and family for

all the moral support they’ve provided.

This work was partially supported by NASA Grant/Cooperative Agreement

Number: 80NSSC18M0032 P00002. Any opinions, findings, conclusions, or rec-

ommendations expressed in this material are those of the authors and do not neces-

sarily reflect those of NASA.

iv

Table of Contents

Acknowledgment iv

Table of Contents v

List of Tables vii

List of Figures viii

Abstract xii

1 Introduction 1

2 Background 6

2.1 Fundamentals of Digital Predistortion 6

2.2 The Memory Polynomial Model 7

2.3 Radar Waveform Performance Metrics 9

2.3.1 Range Resolution . 9

2.3.2 Effective Bandwidth . 10

2.3.3 Sidelobe Level Measurements 11

3 Predistortion of Wideband Radar Systems 12

3.1 Predistortion Using an Optimal Chebyshev Filter 12

3.2 Predistortion Using Transfer Function Windowing 16

v

4 FPGA Architecture Study 17

4.1 Architecture overview . 17

4.1.1 Internal FPGA Architecture 19

4.1.1.1 Networking Stack 20

4.1.1.2 FPGA-Data Converter Interface 21

4.1.2 Current Results . 23

5 SDR Testbench 26

6 Results 31

6.1 Time Domain Measurements . 31

6.2 Impact on Range Resolution and Sidelobe Level 36

6.2.1 Pulse Compression Using Extracted Pulses 47

6.3 Frequency Domain Performance 51

7 Conclusion and Future Work 57

References 59

A Testbench Code 64

B Summary of Acronyms 79

vi

List of Tables

4.1 Networking stack for sending and receiving data to and from the

FPGA. Reprinted from Summers et al. (2021) © 2021 IEEE. 21

4.2 Current resource utilization of the implemented FPGA design. Reprinted

from Summers et al. (2021) © 2021 IEEE. 25

6.1 Comparison of the approximate values of some important features

of the graphs of the pulse performance metrics that displayed con-

vergence to a steady state. 53

B.1 Acronyms used throughout this paper. 79

vii

List of Figures

1.1 Illustration of the basic predistortion task investigated in this work. . 2

2.1 Illustration of the memory polynomial model. Reprinted from Sum-

mers et al. (2020) © 2020 IEEE. 8

4.1 Block diagram of the main physical hardware components in a radar

test bench. Reprinted from Summers et al. (2021) © 2021 IEEE. . . 18

4.2 Block diagram of the FPGA system discussed for transmitting and

receiving radar waveforms. Reprinted from Summers et al. (2021)

© 2021 IEEE. 23

4.3 Timing diagrams of the LVDS data transfer interfaces for the DAC

and ADC used in this project. Reprinted from Summers et al.

(2021) © 2021 IEEE. 24

4.4 Current floorplan of the implemented FPGA design. Reprinted

from Summers et al. (2021) © 2021 IEEE. 25

5.1 Physical setup of the software defined radio testbench. 27

5.2 Flow diagram illustrating basic function of the software defined ra-

dio DPD testbench. 28

5.3 The ideal windowed chirp used in the predistortion testbench as the

goal waveform. 29

6.1 Magnitude of a transmitted chirp, seen before applying the optimal

Chebyshev predistortion algorithm. 32

viii

6.2 FIR filter taps obtained after the first iteration of the optimal Cheby-

shev predistortion algorithm. 32

6.3 FIR filter magnitude frequency response obtained after the first it-

eration of the optimal Chebyshev predistortion algorithm. 33

6.4 Magnitude of the transmitted chirp obtained after the first iteration

of the optimal Chebyshev predistortion algorithm. 33

6.5 Magnitude of a transmitted chirp obtained after the ninth iteration

of the optimal Chebyshev predistortion algorithm. 34

6.6 Magnitude of a transmitted chirp, seen before applying the win-

dowing predistortion algorithm. 35

6.7 Estimated frequency response, and corresponding corrective win-

dow designed at the first iteration of the windowing predistortion

algorithm. 35

6.8 Magnitude of a transmitted chirp seen after the first iteration of the

windowing predistortion algorithm. 36

6.9 Magnitude of a transmitted chirp seen after the ninth iteration of the

windowing predistortion algorithm. 37

6.10 Observed range resolution across iterations of the FIR filter based

predistortion algorithm. 38

6.11 Observed effective bandwidth across iterations of the FIR filter based

predistortion algorithm. 39

6.12 Observed peak sidelobe level across iterations of the FIR filter based

predistortion algorithm. 40

6.13 Observed integrated sidelobe ratio across iterations of the FIR filter

based predistortion algorithm. 41

6.14 Observed distribution of ISLR measurements with the FIR filter

based predistortion algorithm. 42

ix

6.15 Observed range resolution across iterations of the amplitude cor-

rection predistortion algorithm. 43

6.16 Observed effective bandwidth across iterations of the amplitude

correction predistortion algorithm. 44

6.17 Observed peak sidelobe level across iterations of the amplitude cor-

rection predistortion algorithm. 45

6.18 Observed integrated sidelobe ratio across iterations of the amplitude

correction predistortion algorithm. 46

6.19 Observed distribution of ISLR measurements with the amplitude

correction predistortion algorithm. 46

6.20 Observed range resolution across iterations of the FIR filter based

predistortion algorithm using extracted pulses for matched filtering. 48

6.21 Observed peak sidelobe level across iterations of the FIR filter based

predistortion algorithm using extracted pulses for matched filtering. 48

6.22 Observed integrated sidelobe ratio across iterations of the FIR filter

based predistortion algorithm using extracted pulses for matched

filtering. 49

6.23 Observed distribution of integrated sidelobe ratio measurements with

the FIR filter based predistortion algorithm using extracted pulses

for matched filtering. 49

6.24 Observed range resolution across iterations of the windowing pre-

distortion algorithm using extracted pulses for matched filtering. . . 50

6.25 Observed peak sidelobe level across iterations of the windowing

predistortion algorithm using extracted pulses for matched filtering. 51

6.26 Observed integrated sidelobe ratio across iterations of the window-

ing predistortion algorithm using extracted pulses for matched fil-

tering. 52

x

6.27 Observed distribution of integrated sidelobe ratio measurements with

the windowing predistortion algorithm using extracted pulses for

matched filtering. 52

6.28 Normalized estimated power spectral density of the transmitted chirps

from the FIR filter algorithm observations, along with the spectrum

of the ideal windowed chirp. 54

6.29 Normalized estimated power spectral density of the transmitted chirps

from the FIR filter algorithm observations, along with the estimated

spectrum of the ideal chirp combined with simulated white noise. . . 54

6.30 Normalized estimated power spectral density of the transmitted chirps

from the windowing algorithm observations, along with the esti-

mated spectrum of the ideal chirp combined with simulated white

noise. 56

xi

Abstract

As demands for increased radio frequency system performance have grown over

time, sufficiently mitigating the distortion introduced by high power amplifiers has

proven to be a major challenge to overcome. Digital predistortion is one technique

commonly used to reduce the distortion products seen at the output of amplifiers,

to great effect. While some of the most widely used predistortion algorithms to

date may seem most applicable to waveforms with properties most commonly seen

in wireless communication systems, it will be seen that with some specialization,

these methods can be quite applicable to linear frequency-modulated pulse radar

waveforms. In this thesis, a frequency-domain approach to parameter estimation is

presented, and a simple window-based approach to predistortion of wideband lin-

ear frequency-modulated pulses is also explored. To test the performance of these

predistortion algorithms, a modular radar signal processing FPGA testbench archi-

tecture is discussed. Finally, a software defined radio was used to measure the per-

formance of the algorithms discussed in this thesis, and a significant improvement

in the peak range sidelobe level was observed. These results enable the integra-

tion of digital predistortion into modern radar systems with minimal computational

overhead to correct radar pulse envelope distortion.

xii

Chapter 1

Introduction

In recent decades, the demand for capacity of wireless communications systems

has grown tremendously, and future projections indicate that this growth will con-

tinue. The proposed trends in increased data rates range from a growth of 10× to

1000× every 5-years [1,2]. As modulation schemes and data processing capabilities

keep increasing, the radio-frequency hardware presents a bottleneck due to inher-

ent bandwidth limitations, nonlinearities, and in general the cost, size, weight, and

power consumption (C-SWaP) of components and systems. High-power amplifiers

(HPAs) are key components for the functionality of the transmitter portion of any

system. The power consumed by the HPA is generally the bulk of the overall system

power consumption [3]. Therefore, optimizing amplifier power efficiency has been

a very active research topic. Multiple different amplifier configurations have been

proposed to improve the power efficiency. However, to date, most commercially

available HPAs are operating with less than 50% efficiency. Traditionally, the max-

imum efficiency of a power amplifier is reached when the amplifier is operated at

peak power [4]. The drawback of this operation is that it results in the introduction

of non-linear behavior to the system. However, with the increased processing flex-

ibility of modern digital transceivers, the nonlinearities can be mitigated by using

digital predistortion [5].

1

Figure 1.1: Illustration of the basic predistortion task investigated in this work.

Digital predistortion works by attempting to apply an inverse distortion to a

digital signal before being sent through a DAC and the remainder of the RF chain

that corrects for the nonlinearities present in the system, resulting in the desired

signal ultimately appearing at the system output, as illustrated in Figure 1.1. [6–

10]. As much of the demand for predistortion has historically stemmed from the

telecommunications industry, much of the research into predistortion algorithms

has been targeted towards communications applications and its particular set of

system requirements. One common aspect of many existing predistortion algo-

rithms is that they estimate the predistortion coefficients using techniques based

upon time-domain analysis. This has been done for a variety of reasons, not the

least of which being relatively low computational complexity. This approach is not

without its challenges, however. To accurately estimate the parameters using time-

domain techniques, it is required that the received signal be precisely aligned with

the corresponding samples of the transmitted signal. Additionally, many predistor-

tion techniques are designed to correct the system response over a range of envelope

levels, an aspect that may be useful for signals with varying amplitude, but is less

useful when working with a linear frequency modulated (LFM) pulsed radar system

in which the envelope voltage is constant (only) when transmitting.

For an LFM pulse radar system, it should therefore be apparent that there are

advantages to exploiting the structure of the transmit waveform to develop a predis-

2

tortion system with some tolerance for misalignment of the transmitted and received

waveforms and avoid computing predistortion coefficients for envelope amplitudes

that will not be used due to the constant-amplitude nature of the waveform [11].

As such, this thesis will focus on the design of predistortion algorithms that exploit

the properties of LFM radar waveforms to achieve improved performance while

minimizing computational complexity and numerical instability.

Of course, it is necessary to test the performance of a predistortion algorithm

prior to integration into a full radar system. To facilitate this process, two main

approaches were used. Firstly, the implementation of these predistortion algo-

rithms on an FPGA was investigated [12], as an FPGA is the logical place to im-

plement such algorithms in many modern radar systems such as SESAR [13, 14]

and EcoSAR [15, 16]. As is well known, there are three primary types of digi-

tal receiver technologies: heterodyne, direct sampling, and direct conversion. The

FPGA architecture described in this thesis is focused on direct sampling (i.e. the

analog-to-digital converter (ADC) is connected to the antenna with no analog fre-

quency translation circuits in between). With the advent of extremely high-speed

ADCs that offer a sufficient number of bits of resolution [17–19], direct sampling

is possible for radar systems that operate in the lower RF bands. For example,

time interleaved ADCs with low spurs are one of the technologies that have sig-

nificantly changed the landscape of ADC capabilities over the last ten years or so

(see [20–22]). This architecture study is specifically devoted to a system that oper-

ates in the P-band (specifically with a center frequency of 435 MHz), which is ideal

for direct conversion with modern data converters. Many details of this system are

discussed in a previous paper [14]. The FPGA architecture study contained in this

thesis concentrates on the firmware interface that is required to unite one of these

types of ADCs with a state-of-the-art field-programmable gate array (FPGA).

3

Specifically, that portion of the thesis concentrates on creating a firmware in-

terface to data converters that is useful for the prototyping of signal processing

algorithms. In the course of developing radar signal processing algorithms, it is fre-

quently useful to be able to generate and measure radar waveforms on a hardware

platform as closely resembling the target system as possible. At the same time, it is

generally desirable for the system to be easily reconfigurable to enable quick testing

of various system and radar waveform parameters. In a modern context, this would

generally mean being able to easily reconfigure the testbench from a user’s general-

purpose computer. Secondary goals for such a radar testbench include leveraging

existing intellectual property (IP) to lower time-to-market and increase reliability,

and a modular design to reduce barriers to changes in the underlying hardware ar-

chitecture. In this thesis, one possible system architecture is proposed and discussed

for a high-bandwidth radar testbench.

While an FPGA is a practical place to implement real-time predistortion in many

modern radar systems, it is arguable that designing custom digital hardware to im-

plement predistortion algorithms is not an ideal approach for initial verification of

predistortion algorithms due to a relatively slow development cycle. Compared

to digital hardware design, implementing predistortion algorithms using computer

software can be expected to usually offer a much quicker development cycle. As

such, the use of a software defined radio (SDR) for verification of predistortion

algorithms was also investigated for this work.

Chapter 2 presents background information that is used to motivate the develop-

ment of two predistortion algorithms tailored to linear frequency modulated pulse

radar waveforms in Chapter 3. Chapter 4 discusses various aspects of the design

of a modular FPGA-based radar DSP algorithm testbench, and Chapter 5 discusses

the design and implementation of an SDR testbench which was used to test the al-

4

gorithms presented in Chapter 3. Finally, Chapter 6 presents the results of these

measurements and Chapter 7 concludes this thesis.

5

Chapter 2

Background

This chapter will focus on commonly used predistortion techniques, and some

inherent limitations and requirements. Additionally, this chapter will introduce

some figures of merit by which radar waveform predistortion algorithms can be

judged.

2.1 Fundamentals of Digital Predistortion

At its core, predistortion is basically the task of modelling the distortion intro-

duced by a system, and designing a new inverse system that mitigates the overall

system distortion when integrated with the original system. As a result, it is cru-

cial to understand the way distortion is often modelled in RF systems. As has been

discussed, RF power amplifiers are one of the largest contributors of distortion in

RF systems in many cases, and as a result much effort has been invested in finding

ways to model the distortion introduced by RF amplifiers. While there is much

interest in high efficiency amplifier topologies such as envelope tracking amplifiers

and switch mode power amplifiers, linear power amplifier architectures remain the

prototypical choice in RF systems. As a result, much of the literature concerning

digital predistortion is centered around the distortion introduced by linear power

6

amplifiers.

While there are many models of linear power amplifier distortion that have been

investigated, one of the most accurate is the discrete Volterra series

y[n] =
M∑
i=0

h1[i]x[n− i]

+
P∑

p=2

M∑
i1=0

· · ·
M∑

i2p−1=0

h2p−1(i1, · · · , i2p−1)
p∏

j=1

x[n− ij]
2p−1∏
k=p+1

x∗[n− ik].

This model is quite general, but it also has a few drawbacks. First, the number

of coefficients to estimate quickly explode as one attempts to model higher order

distortion. Additionally, some of the Volterra coefficients are coupled to each other,

complicating the estimation of model coefficients. As a result, many simplified

versions of the Volterra series have been developed to attempt to ameliorate these

issues [23] [24].

2.2 The Memory Polynomial Model

Of the various methods of pruning the Volterra series, one of the most popular

is the memory polynomial model [6, 7, 25]

yMP (n) =
K−1∑
k=0

M−1∑
m=0

akmx(n−m)|x(n−m)|k (2.1)

where x is the input to the model, yMP is the corresponding output, K is the en-

velope order, M is the memory order, and the akm are the model coefficients. This

model has proven itself useful for robustly modeling and compensating for the non-

linearities introduced by a wide variety of power amplifiers [6, 7, 25]. One way to

look at this model is as a bank of finite impulse response (FIR) filters, the input of

7

x|x|

x|x|2

x|x|K-1

x(n) y
MP
(n)

FIR
1

FIR
2

FIR
3

FIR
K

Figure 2.1: Illustration of the memory polynomial model. Reprinted from Summers
et al. (2020) © 2020 IEEE.

each separately weighted by the signal envelope’s magnitude, as shown in Figure

2.1.

One nice aspect of this model is the ease with which the model coefficients can

be estimated. Since the model is linear with respect to the coefficients akm, the

coefficients can be estimated using a simple least-squares process described in [7].

It should be noted that this process depends on comparing the discrepancy between

the transmitted waveform and the waveform that was supposed to be transmitted

in the time domain. As such, acquisition of these sample-synchronized waveforms

generally requires some level of time synchronization of the transmitter and re-

ceiver, however the final alignment of the waveforms can usually be accomplished

by cross correlation of the two signals, to account for the delay introduced by the

analog signal chain of the transceiver.

Another interesting feature of the coefficient estimation process is the relation-

ship between the waveforms used to estimate memory polynomial coefficients and

the quality of coefficient estimation. It is commonly accepted wisdom that the best

8

quality of coefficient estimation occurs when the signals used for coefficient esti-

mation resemble the signals that one ultimately wants to transmit. This may not

always be the case, however, since some signal varieties do not lend themselves

particularly well towards memory polynomial estimation. Specifically, it can be

seen from Equation 2.1 or Figure 2.1 that signals with little amplitude modulation

might result in matrices during the estimation process that are ill conditioned, and

possibly lead to erroneous results.

Finally, it should be noted that when predistortion is used to reduce spurious

emissions, the predistortion system’s ADC and DAC need to sample fast enough

to observe and correct for the spurious emissions, respectively [5]. As such, it is

unreasonable to expect predistortion to directly correct for spurious emissions when

applied to signals with a bandwidth that is large relative to the sampling rate of the

system’s DACs and ADCs.

2.3 Radar Waveform Performance Metrics

In order to judge the performance of a predistortion algorithm in the context

of a radar system, it is clear that the impact of the algorithm on the transmitted

waveform’s performance metrics should be inspected. In this thesis, four main

figures of merit are considered, namely the range resolution, effective bandwidth,

peak sidelobe level, and integrated sidelobe ratio. This section provides a brief

description of these metrics.

2.3.1 Range Resolution

As the acronym for radar suggests, one of the main functions of a radar system

is to measure the range to a target. As such, the ability of a radar to distinguish

9

adjacent targets is of much importance. While there are multiple considerations

that impact the ability of a radar to distinguish adjacent targets, one of the most

obvious is the width of a radar pulse after pulse compression. This width is called

the range resolution of the radar, and throughout the remainder of this thesis will be

measured 3 dB below the peak of the pulse compressed pulse. The range resolution

is nominally given by the equation

∆R =
c

2B
(2.2)

where c is the wave propagation velocity (usually in free space) and B is the band-

width of the radar waveform, however it must be calculated using numerical tech-

niques when it is desired to find the range resolution of a measured pulse.

2.3.2 Effective Bandwidth

The effective bandwidth of a waveform is the quantity β defined by the equation

β2 =

∫∞
−∞ (2πf)2|S(f)|2 df∫∞
−∞ |S(f)|2 df

(2.3)

where S(f) is the Fourier transform of the waveform in question [26]. From this

definition, it can be seen that the effective bandwidth is the root-mean-square de-

viation of the spectral power of the waveform from the mean (center) frequency.

This quantity is of interest due to being directly related to the accuracy of time

delay measurements in radar systems. Specifically, the root-mean-square error of

time-delay measurements, δTR is given by

δTR =
1

β(2E/N0)1/2
(2.4)

10

where E is the energy of the radar pulse and N0 is the noise power per unit band-

width [26].

2.3.3 Sidelobe Level Measurements

Yet another important aspect of a radar waveform is the height of the range

sidelobes. The peak sidelobe level is a fairly straightforward metric, being the peak

value of the pulsed compressed waveform outside the main lobe. While the peak

sidelobes will be the first to cause false target detection by strong targets, the total

energy contained in the sidelobes is also an important factor that impacts the quality

of radar measurements. This can be characterized by the ratio of the waveform

energy contained in the sidelobes to the energy contained in the main lobe, also

known as the integrated sidelobe ratio which is given by

ISLR = 10 log10

∫ a

−∞ |x(τ)|2 dτ +
∫∞
b
|x(τ)|2 dtau∫ b

a
|x(τ)|2 dtau

(2.5)

where x(τ) is the pulse compressed waveform, and a and b are the locations of the

beginning and end of the main lobe respectively.

This chapter has helped to explain the Volterra series and the memory polyno-

mial model in the context of digital predistortion. Additionally, several figures of

merit by which radar waveform predistortion algorithms can be judged. The next

chapter uses this background to define an optimization problem for determining

filter coefficients using the Chebyshev approximation.

11

Chapter 3

Predistortion of Wideband Radar Systems

In this chapter, the background information from Chapter 2 is used to moti-

vate the development of two predistortion algorithms applicable to wideband pulse-

Doppler radar systems. Both algorithms exploit the Fourier transform to estimate

system distortion, but the method of modifying the radar pulse to account for sys-

tem distortion differs. The first algorithm designs an optimal Chebyshev filter to

correct system distortion, while the second algorithm uses knowledge of the pulse’s

instantaneous frequency to design a window function that compensates for system

distortion.

3.1 Predistortion Using an Optimal Chebyshev Filter

As was mentioned in Chapter 2, the memory polynomial model provides a great

deal of flexibility for the predistortion of systems with a wide variety of input signal

statistics and nonlinear characteristics. This flexibility is however not an ideal use

of computational resources in an LFM pulse radar system with a mostly constant

signal amplitude. By setting the maximum envelope order K to 1, the memory

polynomial model reduces to a single FIR filter, indicating that a FIR filter with

appropriately chosen taps should be able to perform well for predistorting a system

12

with a constant amplitude signal.

Many implementations of the memory polynomial model rely on methods based

on least-squares optimization in the time-domain [7,27]. This works well when the

measured output waveform samples can be precisely aligned with the input wave-

form samples, but this can be surprisingly difficult to do without designing a system

with this objective in mind. On the other hand, it is almost trivial to align the output

of an LFM pulse radar system and the input in the frequency domain. To avoid

the issues surrounding alignment of transmitted and received waveforms in time,

it follows that the system transfer function can be estimated at a discrete number

of frequencies by taking the fast Fourier transform (FFT) of both transmitted and

received waveform and taking the ratio

H(ωk) =
Y (ωk)

X(ωk)
k = 1, ...,M (3.1)

where the ωk are the frequencies at which it is desired to optimize the frequency

response of the system. It should be noted that designing an equalizer within only a

narrow frequency band can sometimes result in undesirable effects on the edges of

a waveform. One strategy to combat this is to extrapolate the frequency response

outside the waveform bandwidth with linear phase, as is done for the simulations

presented in this paper. Given the frequency response of the system at a discrete

number of frequencies, an FIR filter can then be designed to approximate a desired

response.

If a flat, linear-phase frequency response is desired, a logical choice for the

target frequency response is a delay line

Hdes(ωk) = e−jDωk (3.2)

13

where D ∈ R+ is chosen so that the system is not attempting to create a smaller

delay than is present without the filter in the system. If the frequency response of

the FIR filter is denoted Hfir(ω), the overall system frequency response is given by

Hcas(ωk) = Hfir(ωk)H(ωk) (3.3)

It then remains to define the optimization problem that will be solved to de-

termine the FIR coefficients. One good choice is a variation of the Chebyshev

approximation problem:

minimize max
k=1,...,M

‖Hcas(ωk)−Hdes(ωk)‖2 (3.4)

where ‖·‖2 is the Euclidean norm. This problem can be rewritten as

minimize t

subject to ‖Hcas(ωk)−Hdes(ωk)‖2 ≤ t, (3.5)

k = 1, ...,M

Because the frequency response of an N -tap FIR filter with taps h(n) is given by

Hfir(ωk) =
N−1∑
n=0

h(n)e−jωkn (3.6)

14

or equivalently

Re{Hfir(ωk)}

Im{Hfir(ωk)}

 = B ∗



Re{h(0)}

Re{h(1)}
...

Re{h(N − 1)}

Im{h(0)}

Im{h(1)}
...

Im{h(N − 1)}



(3.7)

where B is given by

[
1 cos(ωk) ... cos((N−1)ωk) 0 sin(ωk) ... sin((N−1)ωk)
0 − sin(ωk) ... − sin((N−1)ωk) 1 cos(ωk) ... cos((N−1)ωk)

]
(3.8)

the frequency response of the uncorrected system can be represented in matrix form

as

H(ωk) =

Re{H(ωk)} − Im{H(ωk)}

Im{H(ωk)} Re{H(ωk)}

 (3.9)

and the desired frequency response can be represented as

Hdes(ωk) =

Re{Hdes(ωk)}

Im{Hdes(ωk)}

 (3.10)

the optimization problem can be rewritten

minimize t (3.11)

subject to ‖Akh− bk‖2 ≤ t, k = 1, ...,m

15

which can be recognized as a canonical second-order cone program, a subset of con-

vex optimization problems, in h and t, and can therefore be solved using a variety

of standard methods such as the interior point method [28–30].

3.2 Predistortion Using Transfer Function Windowing

One nice property of linear frequency modulated chirps is the direct relationship

between time and instantaneous frequency. Since the optimal filter design approach

above can only be expected to correct for first-order distortion products, it seems

reasonable to diverge from the above approach after smoothing the estimated trans-

fer function, and instead of designing a filter to predistort the waveform, design a

windowing function to predistort the waveform using the correspondence between

instantaneous frequency and time. Specifically, at each point in time t of the pulse,

the window is defined such that

w(t) =
1

|H(ω(t))|
. (3.12)

where ω(t) is the instantaneous frequency of the chirp at time t. While this approach

does not have as much theoretical background to support it as linear filter design, its

performance seems comparable to the above approach, as will be seen in Chapter

6.

This chapter has discussed a convex optimization problem for finding filter co-

efficients for predistorting wideband radar waveforms. Additionally, a windowing

approach to create predistorted radar pulses is introduced. The next chapter will

discuss the design of a modular FPGA-based radar DSP algorithm testbench for the

validation of predistortion algorithms.

16

Chapter 4

FPGA Architecture Study

In the context of a full radar system, it would be desirable for the predistortion

algorithms discussed in Chapter 3 to run in real-time. To achieve this in many

modern radar architectures, it makes the most sense to implement the predistortion

algorithms on the FPGA controlling the DACs and ADCs of the radar system. Such

an implementation demands the consideration of a multitude of factors. As a result,

an architecture study discussing how one might go about implementing real-time

predistortion on an FPGA is presented in this chapter.

4.1 Architecture overview

Many high-bandwidth radar platforms, such as NASA’s Space Exploration Syn-

thetic Aperture Radar (SESAR) [13, 14] and Ecological Synthetic Aperture Radar

(EcoSAR) [15, 16], rely on FPGAs for low-level control of their data converters,

due to the high data rates and precise timing required by the system. Similarly, an

FPGA forms the heart of the proposed testbench, both to satisfy the same system

requirements present in full radar systems, and because performing digital signal

processing (DSP) on a system’s FPGA is an exciting avenue of research which the

proposed testbench seeks to enable. The major hardware components in the pro-

17

posed testbench are then connected as shown in Fig. 4.1. The analog sub-assembly

contains the filtering and amplification components required by the system, but does

not contain any frequency-translation components.

Figure 4.1: Block diagram of the main physical hardware components in a radar
test bench. Reprinted from Summers et al. (2021) © 2021 IEEE.

As data rates on modern data converters can exceed 1 GSPS [31], it is unrea-

sonable for the testbench to stream raw transmit and receive waveforms to and from

the personal computer (PC) in real-time. At the same time, the raw waveforms are

of significant interest in the development of DSP algorithms. To ameliorate this

issue, the controlling PC can send a waveform to the FPGA to be stored in memory

and transmitted repeatedly at some desired pulse repetition frequency. In the other

direction, the PC can send a request to the FPGA for the received waveform to be

recorded to memory for some specified length of time and then sent to the PC at a

slower data rate more appropriate for the peripherals commonly available.

18

4.1.1 Internal FPGA Architecture

Up to this point, the FPGA has been discussed as a black box, however, the

design of the FPGA hardware is clearly crucial to the functionality of the proposed

testbench. One of the most important design choices is the mechanism by which

the PC and FPGA will communicate. A wide variety of options exist for com-

munication – for example, a universal asynchronous receiver-transmitter (UART)

interface [32, 33] could be implemented on the FPGA to directly read and write to

and from a bank of control registers, and data could be transferred directly to/from

banks of waveform RAM. This approach suffers from a number of disadvantages.

First, UART is relatively slow and would make the transfer of large waveforms

cumbersome. Secondly, while this approach is relatively simple at first, as sys-

tem complexity increases, the control interface becomes complex and difficult to

modify.

Another popular approach is to implement a soft processor core (“PS”) on the

FPGA which handles communications between the PC and FPGA along with a vari-

ety of configuration and control tasks within the FPGA. The utilization of processor

cores within the FPGA considerably simplifies the implementation of more com-

plex communication and control schemes, and empirically seems to be a common

design choice in software-defined radios (SDRs). This soft processor core can run a

bare-metal program (i.e. a program running on the processor without an operating

system), or a full Linux operating system. Both options provide distinct advantages.

On one hand, bare-metal systems are somewhat simpler to implement, with a more

direct interface to underlying hardware systems. Bare-metal programs also tend to

run faster without the overhead of an operating system [34–36]. At the same time,

a full Linux operating system allows the use of robust and widely used libraries

19

such as the Linux networking stack and FFTW (a popular fast Fourier transform li-

brary) [37]. As a result, one might implement a bare-metal system during the initial

implementation of system drivers, and later run an embedded Linux distribution to

enable higher levels of abstraction and code reuse.

During initial driver development, the simplest route is likely to utilize a UART

transceiver for all PC-FPGA interaction. Later in the testbench development cy-

cle, a full Linux operating system would likely be more desirable, so the UART

will be utilized to provide a serial console with which the system can be controlled

through the Linux kernel. Due to the text-based nature of the Linux console neces-

sitating compatibility layers such as XMODEM to transfer binary data, along with

slow communication rates, the UART is likely not optimal to transfer waveform

recordings in the later testbench development stages. Rather, the FPGA’s Ethernet

interface can be connected to the PS core after initial driver development, enabling

faster binary data transfer in addition to the option of configuring the FPGA over

the network. As the PS will run Linux, the kernel’s networking libraries can be

utilized for robust and abstract network programming.

4.1.1.1 Networking Stack

It is desirable for the proposed testbench to interact with the PC over Ethernet

as much as possible. While many networked SDRs use the User Datagram Proto-

col (UDP) for data streaming, the non-real-time nature of the proposed testbench

means reliable data transmission is needed. As such, it is proposed that TCP be

used for the transport layer. At the application layer, the Hypertext Transfer Proto-

col (HTTP) provides a natural interface for the desired testbench behavior, as the

PC can easily post waveforms and configurations to the FPGA and send GET re-

quests for measurements. With a central processing unit (CPU) on both ends of

20

the communication link, JavaScript Object Notation (JSON) would provide a con-

venient, human-readable configuration format for the proposed testbench, and the

waveforms can be transported as “application/octet-stream” binary data files. Table

4.1 shows the proposed networking stack for sending/receiving data and controlling

the FPGA.

Table 4.1: Networking stack for sending and receiving data to and from the FPGA.
Reprinted from Summers et al. (2021) © 2021 IEEE.

Client application

PC
HTTP, TCP/IP libraries

Host OS drivers
Ethernet hardware

Ethernet Cable
Ethernet hardware

FPGA

FPGA PS core
Embedded Linux drivers
HTTP, TCP/IP libraries

DAQ Application
Data converter interface
Analog sub-assembly Analog hardware

4.1.1.2 FPGA-Data Converter Interface

Another important architectural choice is where to store transmit and receive

waveforms and how to move data between the storage location and data converters.

It is relatively straightforward to store and retrieve data in an FPGA’s block RAM,

however, these resources are typically limited. As it must handle large waveforms, it

will be preferable for the proposed testbench to store waveforms in external double

data rate synchronous dynamic random-access memory (DDR RAM). This choice,

however, complicates the storage and retrieval of data. A DDR memory converter

needs to be implemented along with interfaces to pull data from RAM and send a

data stream to the testbench’s digital-to-analog converter (DAC), and to write the

21

testbench’s ADC data stream to memory. The accepted solution for such problems

in Xilinx FPGAs seems to be the use of an Advanced eXtensible Interface direct

memory access (AXI DMA) core [38] which creates AXI-stream [39] interfaces to

RAM. It is worth noting that Xilinx does not seem to provide Linux drivers for their

DMA IP useable in user space. There do exist, however, some open source projects

to provide user space DMA drivers such as libaxidma [40]. An illustration of the

architecture is shown in Fig. 4.2.

The ADC and DAC data converters relevant to the testbench utilize low-voltage

differential signaling (LVDS) interfaces that are characterized by the two timing di-

agrams that are illustrated in Fig. 4.3. Each interface transfers data between the data

converters and FPGA. However, there is no reason a similar architecture could not

be used for data converters with different interfaces such as JESD204B. Regardless,

the remaining task is to convert the data streams to a format appropriate for the data

converter interfaces. If desired, real-time processing could be implemented in hard-

ware at this stage, for example filtering or mixing operations. Finally, most data

converters require setting control registers on startup to operate as desired. This can

easily be achieved by connecting the relevant serial interfaces to the PS, which can

then run the desired configuration steps whenever desired.

Fig. 4.3(a) deals with this project’s ADC. The converter has two data chan-

nels that send a new sample to the FPGA on each transition of DACLKP/N and

DBCLKP/N [41]. In brief, DACLKP and DBCLKP are differential clocks that the

ADC sends to the FPGA to coordinate timing with data samples. Fig. 4.3(b) is

related to this project’s DAC. The converter has four I/Q channels that are sent up-

dated values through D[15:0]P/N. The data for each channel (A, B, C, and D) is

sent to the data converter sequentially on each transition of DATACLKP/N before

the next sample is received. The data converter and FPGA synchronize the samples

22

Figure 4.2: Block diagram of the FPGA system discussed for transmitting and re-
ceiving radar waveforms. Reprinted from Summers et al. (2021) © 2021 IEEE.

and channel numbers through occasional transitions of SYNCP/N [31].

4.1.2 Current Results

Work has been done to verify this testbench architecture with a Virtex 7 FPGA

and two high-speed data converters. The resource utilization of the latest iteration

of the testbench is represented in Table 4.2 and Fig. 4.4. The specifications of these

resources are discussed in depth in [42,43], a summary of which is provided below:

• LUT are 6-input lookup tables.

• LUTRAM are distributed synchronous RAM resources suitable for small ar-

rays with low latency requirements.

• FF are flip-flops.

• BRAM are block RAM resources, suitable for larger arrays than LUTRAM.

23

(a) LVDS Interface for the ADS5402 ADC.

(b) LVDS Interface for the DAC3484 DAC.

Figure 4.3: Timing diagrams of the LVDS data transfer interfaces for the DAC and
ADC used in this project. Reprinted from Summers et al. (2021) © 2021 IEEE.

• DSP are “DSP48E1 slices” with dedicated hardware for various common

DSP functions such as multiplication, accumulation, and bit shifting.

• IO are the input and output pins.

• BUFG are global clock buffer resources.

• MMCM are mixed-mode clock managers.

• PLL are phase-locked loops.

This chapter has studied many aspects relevant to the design of a modular

FPGA-based radar DSP algorithm testbench. The next chapter will discuss the

design and implementation of a software defined radio testbench that enables com-

paratively rapid iteration in the design and validation of predistortion algorithms.

24

Figure 4.4: Current floorplan of the implemented FPGA design. Reprinted from
Summers et al. (2021) © 2021 IEEE.

Table 4.2: Current resource utilization of the implemented FPGA design. Reprinted
from Summers et al. (2021) © 2021 IEEE.

Resource Utilization Available Utilization %
LUT 25894 303600 8.53
LUTRAM 6005 130800 4.59
FF 26824 607200 4.42
BRAM 70 1030 6.80
DSP 4 2800 0.14
IO 181 700 25.86
BUFG 6 32 18.75
MMCM 2 14 14.29
PLL 1 14 7.14

25

Chapter 5

SDR Testbench

To measure the performance of the digital predistortion algorithms designed for

wideband radar waveforms described in Chapter 3, an SDR based testbench was

implemented using an Ettus X310 software defined radio. The radio was connected

to the testbench’s host PC using a 10 Gbit Ethernet interface, enabling sampling

rates of up to 200 MSPS at complex baseband. The particular radio used contained

an Ettus SBX400-4400 daughtercard, which allowed for a maximum signal band-

width of 120 MHz due to limitations of the analog components. To observe the

transmitted signal, the transmit port of channel 1 of the SDR was looped back to

the receive port of channel 1, with a 30 dB attenuator added in between to keep the

power input to the receive port below the maximum acceptable level. While there

were no external power amplifiers in the testbench, the discussion from Chapters

2 and 3 is still relevant due to the amplification elements internal to the SDR. The

physical setup of the testbench used is shown in Figure 5.1.

The software portion of the testbench relies on the SoapySDR SDR support

library to interface with the SDR hardware. The testbench’s control flow is con-

ceptually simple, repeatedly observing the system’s input and output and designing

new waveforms accordingly. The testbench starts with an ideal windowed chirp,

and observes the waveform that is actually transmitted. Then, one of the algorithms

26

Figure 5.1: Physical setup of the software defined radio testbench.

from Chapter 3 is applied, creating a predistorted waveform that should result in a

waveform closer to the ideal chirp being transmitted than before. The transmitted

signal is once again observed, a new predistorted signal is generated, and the cy-

cle repeats as such until the testbench has run as long as desired. This process is

illustrated in Figure 5.2.

As the goal of this testbench is to test the usefulness of the predistortion al-

gorithms of Chapter 3 for P-band radar systems with a relatively large percentage

27

Figure 5.2: Flow diagram illustrating basic function of the software defined radio
DPD testbench.

28

Figure 5.3: The ideal windowed chirp used in the predistortion testbench as the goal
waveform.

29

bandwidth, the Ettus X310 was set up to run at the full 200 MHz sample rate, and

the center frequency of the radio was set to 435 MHz. Due to the limitations of the

analog signal chain, the radar waveform used was a windowed 120 MHz linear fre-

quency modulated chirp, shown in Figure 5.3. The window used was a Tukey win-

dow with 10% of the waveform in the cosine tapered region, so as to control the rise-

and fall-time of the chirp. With a waveform to transmit, the testbench then creates

a thread that continuously transmits the radar waveform spaced apart at some con-

stant pulse repetition frequency using Python’s concurrent.futures module.

Once the transmit thread has been started, the testbench lets the transmitter

warm up for a small period of time to allow the transmitter to reach a steady state.

The testbench then records the loopback signal received by the SDR for several

pulse repetition periods. With knowledge of the pulse input to the transmitter and

observations of the transmitted signal, the testbench then extracts the transmitted

pulses from the larger signal. This was done by applying a matched filter to the

received waveforms and using the largest peaks to determine pulse locations.

Once the received pulses have been extracted, one of the algorithms from Chap-

ter 3 is applied to design a predistorted waveform. The system then starts trans-

mitting the new, predistorted waveform, and this cycle continues until the desired

stopping point. Finally, after all the desired data has been collected the testbench

goes through the saved waveforms and estimates the values of the figures of merit

of interest.

Using this testbench, many measurements of the performance of the algorithms

discussed in Chapter 3 were gathered. The next chapter will present the results of

those measurements.

30

Chapter 6

Results

Using the software defined radio testbench discussed in Chapter 5, the optimal

Chebyshev filter predistortion algorithm and frequency windowing predistortion

algorithm discussed in Chapter 3 were implemented, and their performance across

multiple iterations was measured. This chapter begins by looking at the effect of

the predistortion algorithms on the waveforms in the time domain before moving

on to quantifying the impact of the predistortion algorithms on the range resolution

and sidelobe level of the transmitted chirps. Finally, the spectral content of the

transmitted chirps is briefly investigated.

6.1 Time Domain Measurements

Figure 6.1 shows the envelope magnitude of a transmitted pulse when the ideal

chirp of Figure 5.3 is used as the input to the transmitter. It can be seen that there is

significant variation in the pulse envelope throughout the duration of the pulse.

Using this waveform, the optimal Chebyshev filter predistortion algorithm dis-

cussed in Chapter 3 was applied, resulting in an FIR filter with the impulse response

shown in Figure 6.2 and the frequency response shown in Figure 6.3.

Applying this correction to the ideal windowed chirp, the pulse output from the

31

Figure 6.1: Magnitude of a transmitted chirp, seen before applying the optimal
Chebyshev predistortion algorithm.

Figure 6.2: FIR filter taps obtained after the first iteration of the optimal Chebyshev
predistortion algorithm.

32

Figure 6.3: FIR filter magnitude frequency response obtained after the first iteration
of the optimal Chebyshev predistortion algorithm.

Figure 6.4: Magnitude of the transmitted chirp obtained after the first iteration of
the optimal Chebyshev predistortion algorithm.

33

Figure 6.5: Magnitude of a transmitted chirp obtained after the ninth iteration of
the optimal Chebyshev predistortion algorithm.

transmitter was that shown in Figure 6.4. It can be seen that there is still some

ripple in the envelope of the waveform, but it has been reduced compared to Figure

6.1. Additionally, the pulse amplitude is slightly lower than in Figure 6.1, which is

expected of most predistortion algorithms unless amplifier biasing is changed along

with the application of predistortion. As the predistortion algorithm goes through

successive iterations, the envelope magnitude becomes smoother, as can be seen in

Figure 6.5.

Figure 6.6 again shows the transmitter output corresponding to an uncorrected

pulse input. This pulse, however, was used as an input to the windowing predis-

tortion algorithm discussed in Chapter 3. The estimated transfer function, along

with the associated corrective window is shown in Figure 6.7, where the blue line is

the estimated system transfer function before smoothing, the orange line is the esti-

mated transfer function after smoothing, and the green line is the corrective window

34

Figure 6.6: Magnitude of a transmitted chirp, seen before applying the windowing
predistortion algorithm.

Figure 6.7: Estimated frequency response, and corresponding corrective window
designed at the first iteration of the windowing predistortion algorithm.

35

function.

Figure 6.8: Magnitude of a transmitted chirp seen after the first iteration of the
windowing predistortion algorithm.

After applying the corrective window from Figure 6.7, the observed output from

the transmitter was that shown in Figure 6.8. Empirically, it appears that the pulse

after this first iteration has a somewhat flatter envelope amplitude than after the first

iteration of the Chebyshev filter algorithm. As before, successive iterations of the

algorithm result in further improvements, as can be seen in Figure 6.9.

6.2 Impact on Range Resolution and Sidelobe Level

Having seen the effect of the predistortion algorithms discussed in Chapter 3 on

time-domain waveforms, the discussion turns towards attempting to quantify how

the radar waveforms may be improved. As was mentioned in Chapter 2, the main

metrics to be used to judge the performance of the predistortion algorithms herein

are the range resolution, effective bandwidth, integrated sidelobe ratio, and peak

36

Figure 6.9: Magnitude of a transmitted chirp seen after the ninth iteration of the
windowing predistortion algorithm.

sidelobe level of the transmitted waveform.

Measurements of these quantities from the SDR testbench running the opti-

mal Chebyshev filter predistortion algorithm over 100 iterations are shown in Fig-

ures 6.10 to 6.14. In the plots presented here as a time series, specifically Fig-

ures 6.10 to 6.13, the first point (iteration 0) corresponds to the transmitted wave-

form when the ideal windowed chirp was used as the input to the transmitter, and

the following points correspond to successive applications of the predistortion al-

gorithm.

When applying pulse compression to the received waveforms to calculate the

range resolution, peak sidelobe level, and integrated sidelobe ratio, there are two

obvious waveforms that could be used to form the matched filter. First, the ideal

chirp waveform could be used, which has the benefit of not containing noise and

being relatively easily to apply in real-time inside an FPGA. Alternatively, the ex-

37

tracted pulse could be used, which has the advantage of being closer to the true

matched filter (that is, the transmitted signal). Unfortunately, this waveform is em-

bedded in some level of noise, and this calculation is relatively difficult to perform

in real time on an FPGA. As such, pulse performance metrics will first be presented

using the ideal waveform to form the matched filter, followed by measurements

obtained using the extracted pulses for pulse compression.

Figure 6.10: Observed range resolution across iterations of the FIR filter based
predistortion algorithm.

Figure 6.10 shows the observed range resolution of the transmitted pulses across

iterations of the optimal Chebyshev filter predistortion algorithm. While there are

several ways to characterize the range resolution of a radar waveform in a pulse-

Doppler system, it is defined here to be the 3 dB width of the pulse compressed

transmit waveform, with the matched filter being derived from the ideal windowed

chirp. It can be seen here that the range resolution seems to be degraded as a

result of applying the predistortion algorithm. This is not, however, an entirely

38

unexpected result as the expected range resolution of an ideal 120 MHz LFM chirp

with a rectangular window is

∆R =
c

2B
≈ 1.25 m.

As a result, one interpretation of Figure 6.10 is that the range resolution is con-

verging to the theoretical value as a result of the application of the predistortion

algorithm. Convergence is used in this case, and throughout the remainder of this

chapter, to mean the observations may have some random fluctuations, but the ap-

parent mean value of the observations has reached an approximately constant value.

Figure 6.11: Observed effective bandwidth across iterations of the FIR filter based
predistortion algorithm.

The measured effective bandwidth of the transmitted pulses across iterations of

the optimal Chebyshev filter predistortion algorithm is shown in Figure 6.11. It can

be seen here that the effective bandwidth quickly converges to be near the ideal

windowed chirp’s theoretical effective bandwidth of 32.49 MHz. These numbers

39

may seem low at first for a waveform that spans 120 MHz of spectrum, however

they are quite reasonable when one considers that the effective bandwidth is the

root-mean-square deviation of the signal’s frequency from its center frequency, or

in other words, the signal’s standard deviation from the center frequency. LFM

chirps have their power evenly distributed across their bandwidth, and the standard

deviation of a uniform distribution from −60 MHz to 60 MHz happens to be

σ =

√
(120 MHz)2

12
≈ 34.64 MHz.

Since the windowed chirp is attenuated at the extremes of its frequency spectrum, it

is expected that the effective bandwidth of the windowed chirp will be slightly less

than an LFM chirp with no window applied, and the results of Figure 6.11 appear

quite reasonable.

Figure 6.12: Observed peak sidelobe level across iterations of the FIR filter based
predistortion algorithm.

Next, the peak sidelobe level of the transmitted pulses is shown across suc-

40

cessive iterations of the optimal Chebyshev filter predistortion algorithm in Figure

6.12. A notable improvement in the peak sidelobe level can be seen as a result of

application of the predistortion algorithm, with the peak sidelobe level going down

by about 0.7 dB after several iterations of the algorithm. As with the range reso-

lution and effective bandwidth, the improvement in peak sidelobe level seems to

reach a sort of asymptote after about 20 iterations.

Figure 6.13: Observed integrated sidelobe ratio across iterations of the FIR filter
based predistortion algorithm.

While the peak sidelobe level is of interest in judging the performance of radar

waveforms, another important figure of merit is the integrated sidelobe ratio, which

is shown for the optimal Chebyshev filter predistortion algorithm across iterations

of the waveform in Figure 6.13. In contrast to Figures 6.10 to 6.12, the ISLR

does not appear to have any correlation to how many iterations the predistortion

algorithm has gone through. Indeed, it is difficult to claim any improvement in

the ISLR. One interpretation of this fact is that while some power may be moved

41

from the peak sidelobes to the main lobe, a large portion of the improvement in

the peak sidelobe level might be a result of power being redistributed from the

primary sidelobes to smaller sidelobes. While this is not necessarily a bad thing, it

is certainly an interesting feature to note.

Figure 6.14: Observed distribution of ISLR measurements with the FIR filter based
predistortion algorithm.

To look for other trends in the integrated sidelobe ratio, a histogram of the ISLR

measurements from the optimal Chebyshev filter predistortion algorithm was cre-

ated, shown in Figure 6.14. This histogram appears to show the ISLR measure-

ments concentrated towards the lower end of the range of observed ISLR values.

It might then be hypothesized that the optimal Chebyshev filter predistortion algo-

rithm results in lower ISLR values on average, but will somewhat randomly gener-

ate waveforms that have a relatively large ISLR. However, it is likely not possible

to draw this conclusion based on these observations alone, and this work makes

no claim that there is a theoretical framework that might satisfyingly explain these

42

observations, as such an endeavor is beyond the scope of this work.

Figure 6.15: Observed range resolution across iterations of the amplitude correction
predistortion algorithm.

Similar to Figure 6.10, Figure 6.15 shows the observed range resolution of the

transmitted pulses across iterations of the windowing predistortion algorithm. As

with the optimal Chebyshev filter predistortion algorithm, the range resolution ini-

tially experiences some degradation as a result of the predistortion algorithm, but

quickly reaches a sort of steady-state asymptote. As with the Chebyshev filter al-

gorithm, the range resolution gets closer to, but does not degrade to become wider

than the theoretical resolution of the ideal chirp waveform. Compared to the FIR

approach, it appears that the windowing approach has a similar steady-state range

of range resolution observations. As before, iteration 0 corresponds to the observa-

tion of the non-predistorted chirp waveform in the time series plots of Figures 6.15

to 6.18.

Figure 6.16 shows the observed effective bandwidth across iterations of the am-

43

Figure 6.16: Observed effective bandwidth across iterations of the amplitude cor-
rection predistortion algorithm.

plitude correction predistortion algorithm. Similar to the optimal Chebyshev filter

predistortion algorithm, the effective bandwidth quickly converges to the theoreti-

cal effective bandwidth of the ideal windowed chirp. Comparing Figures 6.11 and

6.16, it appears that the amplitude correction algorithm converges to the theoreti-

cal effective bandwidth somewhat quicker than the optimal Chebyshev filter design

algorithm.

Figure 6.17 is the compliment to Figure 6.12, showing the peak sidelobe level

of the observed transmitted waveform as a function of waveform iterations of the

amplitude correction predistortion algorithm. As with the optimal Chebyshev filter

predistortion algorithm we see the peak sidelobe level quickly decrease before it

reaches a steady state where there is some fluctuation in the peak sidelobe level, but

the observations remain within a relatively narrow range of values. Compared to

the optimal FIR approach, the amplitude correction algorithm once again seems to

44

Figure 6.17: Observed peak sidelobe level across iterations of the amplitude cor-
rection predistortion algorithm.

converge somewhat faster.

The integrated sidelobe level of the amplitude correction predistortion algorithm

is plotted as a function of waveform iteration in Figure 6.18. Similar to the optimal

Chebyshev filter design algorithm, there does not appear to be much correlation

between the observed integrated sidelobe ratio and the running of the predistortion

algorithm. As was done earlier, a histogram of the observed integrated sidelobe

ratios was created, shown in Figure 6.19. The distribution observed here seems to

show the observed ISLR being concentrated in the center of the range in contrast

to what was seen in Figure 6.14. It should also be noted that the range of the

ISLR measurements are similar for both algorithms, ranging from approximately

−7.5 dB to −8.5 dB.

In this chapter, many measurements of the algorithms discussed in Chapter 3

were presented. The changes in the waveforms over time were observed, and it

45

Figure 6.18: Observed integrated sidelobe ratio across iterations of the amplitude
correction predistortion algorithm.

Figure 6.19: Observed distribution of ISLR measurements with the amplitude cor-
rection predistortion algorithm.

46

was seen that the envelope amplitude was smoothed as a result of predistortion.

Additionally, the impact of predistortion on several important radar waveform per-

formance metrics was observed. Having discussed these results, the next chapter

will conclude this work.

6.2.1 Pulse Compression Using Extracted Pulses

This section presents measurements of pulse performance across iterations of

the FIR filter and windowing predistortion algorithms, with the extracted pulses

used to form the matched filter used for pulse compression rather than the ideal

windowed chirp. It will be seen that this pulse compression approach causes the

range resolution and peak sidelobe level to trend towards theoretical levels. Effec-

tive bandwidth is not revisited in this section, as the calculation of effective band-

width does not use the pulse compressed waveform. Keeping with the convention

so far, iteration 0 in Figures 6.20 to 6.22 and Figures 6.24 to 6.26 corresponds to

the observation of a pulse input to the transmitter with no correction applied.

Figure 6.20 shows the observed range resolution across iterations of the FIR

filter based predistortion algorithm using extracted pulses for matched filtering. The

behavior observed in Figure 6.20 is similar to that seen in Figure 6.10, however the

steady state mean in this case is near the theoretical mean of 1.178 m.

Figure 6.21 shows the observed peak sidelobe level across iterations of the FIR

filter based predistortion algorithm using extracted pulses for matched filtering. As

with the range resolution, the overall behavior of the graph resembles that of the

other pulse compression approach, however once again the steady state mean is

near the theoretical level of −13.29 dB.

Figures 6.22 and 6.23 show the observed integrated sidelobe ratio across iter-

47

Figure 6.20: Observed range resolution across iterations of the FIR filter based
predistortion algorithm using extracted pulses for matched filtering.

Figure 6.21: Observed peak sidelobe level across iterations of the FIR filter based
predistortion algorithm using extracted pulses for matched filtering.

48

Figure 6.22: Observed integrated sidelobe ratio across iterations of the FIR filter
based predistortion algorithm using extracted pulses for matched filtering.

Figure 6.23: Observed distribution of integrated sidelobe ratio measurements with
the FIR filter based predistortion algorithm using extracted pulses for matched fil-
tering.

49

ations of the FIR filter based predistortion algorithm and the corresponding distri-

bution of ISLR measurements, respectively. As was seen with the measurements

using the ideal chirp as the matched filter, there is no notable correlation between

iterations of the predistortion algorithm and the observed integrated sidelobe ratio.

Figure 6.24: Observed range resolution across iterations of the windowing predis-
tortion algorithm using extracted pulses for matched filtering.

Figure 6.24 shows the observed range resolution across iterations of the win-

dowing predistortion algorithm using extracted pulses for matched filtering. As was

seen when using the ideal chirp in the pulse compression process, the windowing

algorithm reaches its steady state faster than the FIR filter algorithm. Once again,

the use of extracted pulses to apply pulse compression results in a steady state mean

near the theoretical range resolution of 1.178 m.

Figure 6.25 shows the observed peak sidelobe level across iterations of the win-

dowing predistortion algorithm using extracted pulses for the matched filtering pro-

cess. Compared to Figure 6.17, the most notable difference is that the observed

50

Figure 6.25: Observed peak sidelobe level across iterations of the windowing pre-
distortion algorithm using extracted pulses for matched filtering.

peak sidelobe level has a steady state mean near the theoretical value of−13.29 dB.

Figures 6.26 and 6.27 show the observed integrated sidelobe ratio across itera-

tions of the windowing predistortion algorithm and the distribution of these ISLR

measurements respectively. As was seen in Figures 6.18 and 6.19, there is no no-

table correlation between the observed integrated sidelobe ratio and iterations of the

windowing predistortion algorithm.

To enable better comparison of the performance of the two predistortion al-

gorithms, the approximate value of some interesting features of the above pulse

performance graphs were estimated and summarized in Table 6.1.

6.3 Frequency Domain Performance

To observe the effect of the FIR filter based predistortion algorithm on the spec-

tral content of the transmitted waveforms, the normalized power spectral density

51

Figure 6.26: Observed integrated sidelobe ratio across iterations of the windowing
predistortion algorithm using extracted pulses for matched filtering.

Figure 6.27: Observed distribution of integrated sidelobe ratio measurements with
the windowing predistortion algorithm using extracted pulses for matched filtering.

52

FIR Filter Algorithm, Ideal Pulse Matched Filter
Measurement Starting

value
Iterations Before

Steady State
Steady State

Mean
Range Resolution (m) 1.165 8 1.193
Effective Bandwidth

(MHz)
33.9 8 32.5

Peak Sidelobe Level
(dB)

-8.25 8 -9.1

Windowing Algorithm, Ideal Pulse Matched Filter
Measurement Starting

value
Iterations Before

Steady State
Steady State

Mean
Range Resolution (m) 1.165 3 1.193
Effective Bandwidth

(MHz)
33.8 3 32.5

Peak Sidelobe Level
(dB)

-8.3 3 -9.1

FIR Filter Algorithm, Extracted Pulse Matched Filter
Measurement Starting

value
Iterations Before

Steady State
Steady State

Mean
Range Resolution (m) 1.127 7 1.18
Effective Bandwidth

(MHz)
33.9 8 32.5

Peak Sidelobe Level
(dB)

-10.8 8 -13.3

Windowing Algorithm, Extracted Pulse Matched Filter
Measurement Starting

value
Iterations Before

Steady State
Steady State

Mean
Range Resolution (m) 1.13 3 1.178
Effective Bandwidth

(MHz)
33.8 3 32.5

Peak Sidelobe Level
(dB)

-10.9 3 -13.3

Table 6.1: Comparison of the approximate values of some important features of
the graphs of the pulse performance metrics that displayed convergence to a steady
state.

53

Figure 6.28: Normalized estimated power spectral density of the transmitted chirps
from the FIR filter algorithm observations, along with the spectrum of the ideal
windowed chirp.

Figure 6.29: Normalized estimated power spectral density of the transmitted chirps
from the FIR filter algorithm observations, along with the estimated spectrum of the
ideal chirp combined with simulated white noise.

54

of the transmitted waveforms before any predistortion and after 100 iterations of

the algorithm was estimated, and is shown in Figure 6.28. It can be seen that the

out-of-band spectral content is similar for both measured waveforms, and is over

75 dB higher than that calculated for an ideal windowed chirp. This comparison

does not, however, account for the impact of additive white noise in the system.

As such, the noise level was estimated using a testbench recording with nothing

being transmitted, and simulated noise waveforms were created and added to the

ideal waveform. The result is compared to the measured power spectral density in

Figure 6.29, from which it can be seen that much of the discrepancy between the

ideal spectrum and measured spectrum is due to the impact of white noise. Figure

6.29 still shows about 10 dB of spectral regrowth near the chirp spectrum above

the noise floor, which does not seem to be significantly impacted by the predistor-

tion algorithm. This is the expected result, as the predistortion algorithms were not

designed to directly compensate for spectral regrowth due to the chirps occupying

most of the data converter bandwidth.

Similarly, the normalized estimated power spectral density of the transmitted

waveform before any chirp correction and after the 100th iteration of the windowing

predistortion algorithm is shown in Figure 6.30 along with the spectrum of the ideal

waveform combined with simulated noise. As with the FIR filter based algorithm,

it can be seen that much of the out-of-band spectral content is accounted for by

the noise present in the system, but there is about 10 dB of spectral regrowth in the

transmitted waveforms above the noise floor that is apparently unaffected by the

windowing algorithm. As with the FIR filter approach, this is expected due to the

design of the algorithm.

55

Figure 6.30: Normalized estimated power spectral density of the transmitted chirps
from the windowing algorithm observations, along with the estimated spectrum of
the ideal chirp combined with simulated white noise.

56

Chapter 7

Conclusion and Future Work

This work began by analyzing the requirements for predistortion systems de-

manded by LRM pulse radars and looking at existing predistortion algorithms in the

context of radar applications. The specialization of the memory polynomial model

to better suit radar applications was discussed, along with a windowing method

to further reduce computational complexity and potentially result in faster conver-

gence. To reduce the dependence of parameter estimation on time alignment, a

frequency domain approach to parameter estimation was explored.

Additionally, the high-bandwidth data streams seen in modern digital radar ar-

chitectures and some challenges encountered as a result were discussed. This dis-

cussion is used as motivation for the development of a modular FPGA-based radar

data acquisition testbench for the validation of real-time radar DSP algorithms. A

proposed design for the implementation of such a system was discussed, including

networking aspects and the hardware internal to the FPGA. This design has the po-

tential to enable the rapid testing of digital radar signal processing algorithms with

real data using commercial off-the-shelf components.

Using an SDR based testbench, the predistortion algorithms discussed in Chap-

ter 3 tailored to LFM pulse radar systems were tested. It was seen that these algo-

rithms resulted in reduced distortion of the transmitted waveform, and in exchange

57

for a marginal decrease of effective bandwidth, the peak range sidelobe level was

significantly reduced by both algorithms. Overall, the radar waveform performance

trended towards theoretical levels in several metrics, enabling more predictable and

precise radar measurements.

Some possible interesting future work might involve implementing the algo-

rithms of Chapter 3 in an FPGA as discussed in Chapter 4. Additionally, it seems

that the SDR used for algorithm verification in this work supports time-stamped

data streams, potentially allowing sample synchronization, and therefore the testing

of predistortion algorithms with stronger dependence on sample synchronization.

58

References

[1] G. P. Fettweis, “A 5G wireless communications vision,” Microwave Journal,
vol. 55, no. 12, pp. 24–36, 2012.

[2] L. Dai, B. Wang, Y. Yuan, S. Han, C. I, and Z. Wang, “Non-orthogonal mul-
tiple access for 5G: solutions, challenges, opportunities, and future research
trends,” IEEE Communications Magazine, vol. 53, no. 9, pp. 74–81, sep 2015.

[3] C. Desset, B. Debaillie, V. Giannini, A. Fehske, G. Auer, H. Holtkamp,
W. Wajda, D. Sabella, F. Richter, M. J. Gonzalez, H. Klessig, I. Godor, M. Ols-
son, M. A. Imran, A. Ambrosy, and O. Blume, “Flexible power modeling of
LTE base stations,” in 2012 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, apr 2012.

[4] A. Banerjee, R. Hezar, and L. Ding, “Efficiency improvement techniques for
RF power amplifiers in deep submicron CMOS,” in 2015 IEEE Custom Inte-
grated Circuits Conference (CICC), Sep. 2015, pp. 1–4.

[5] R. N. Braithwaite and F. Luo, “General principles and design overview of
digital predistortion,” Digital Processing for Front End in Wireless Communi-
cation and Broadcasting, pp. 143–191, 2011.

[6] J. Kim and K. Konstantinou, “Digital predistortion of wideband signals based
on power amplifier model with memory,” Electronics Letters, vol. 37, no. 23,
p. 1417, 2001.

[7] L. Ding, G. Zhou, D. Morgan, Z. Ma, J. Kenney, J. Kim, and C. Giardina, “A
robust digital baseband predistorter constructed using memory polynomials,”
IEEE Transactions on Communications, vol. 52, no. 1, pp. 159–165, jan 2004.

[8] D. Morgan, Z. Ma, J. Kim, M. Zierdt, and J. Pastalan, “A generalized mem-
ory polynomial model for digital predistortion of RF power amplifiers,” IEEE
Transactions on Signal Processing, vol. 54, no. 10, pp. 3852–3860, oct 2006.

[9] C. Fager, T. Eriksson, F. Barradas, K. Hausmair, T. Cunha, and J. C. Pedro,
“Linearity and efficiency in 5G transmitters: New techniques for analyzing
efficiency, linearity, and linearization in a 5G active antenna transmitter con-
text,” IEEE Microwave Magazine, vol. 20, no. 5, pp. 35–49, may 2019.

59

[10] P. L. Gilabert, G. Montoro, D. Vegas, N. Ruiz, and J. A. Garcia, “Digi-
tal predistorters go multidimensional: DPD for concurrent multiband enve-
lope tracking and outphasing power amplifiers,” IEEE Microwave Magazine,
vol. 20, no. 5, pp. 50–61, may 2019.

[11] R. Summers, M. Yeary, H. Sigmarsson, and R. Rincon, “Adaptive Digital Pre-
distortion for Radar Applications using Convex Optimization,” in 2020 IEEE
International Radar Conference (RADAR), 2020, pp. 816–820.

[12] ——, “Architecture Study for a Bare-Metal Direct Conversion Radar FPGA
Testbench,” in 2021 IEEE Radar Conference (RadarConf21), 2021, pp. 1–5.

[13] R. Rincon, L. Carter, D. Lu, C. D. Toit, M. Perrine, D. M. Hollibaugh-Baker,
and C. D. Neish, “Space Exploration Synthetic Aperture Radar (SESAR),”
in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing
Symposium. Yokohama, Japan: IEEE, Jul. 2019, pp. 8320–8323.

[14] M. L. Perrine, R. Rincon, S. Van Nostrand, H. Nguyen, M. A. Moe, H. H.
Sigmarsson, and M. B. Yeary, “Miniaturized P-band beamforming synthetic
aperture radar transceiver,” in 2018 IEEE Radar Conference (RadarConf18).
Oklahoma City, OK: IEEE, Apr. 2018, pp. 1533–1536.

[15] R. F. Rincon, T. Fatoyinbo, G. Sun, K. J. Ranson, M. Perrine, M. Deshapnde,
and Q. Bonds, “The EcoSAR P-band synthetic aperture radar,” in 2011 IEEE
International Geoscience and Remote Sensing Symposium. IEEE, Jul. 2011.

[16] T. Fatoyinbo, R. F. Rincon, G. Sun, and K. J. Ranson, “EcoSAR: A P-band
digital beamforming polarimetric interferometric SAR instrument to measure
ecosystem structure and biomass,” in 2011 IEEE International Geoscience
and Remote Sensing Symposium. IEEE, Jul. 2011.

[17] M. Brandolini et al., “A 5 GS/s 150 mW 10 b SHA-less pipelined/SAR hybrid
ADC for direct-sampling systems in 28 nm CMOS,” IEEE Journal of Solid-
State Circuits, vol. 50, no. 12, pp. 2922–2934, 2015.

[18] T. Chalvatzis, E. Gagnon, M. Repeta, and S. P. Voinigescu, “A Low-Noise
40-GS/s Continuous-Time Bandpass ∆Σ ADC Centered at 2 GHz for Direct
Sampling Receivers,” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp.
1065–1075, May 2007.

[19] R. Gomez, “Theoretical comparison of direct-sampling versus heterodyne RF
receivers,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 63, no. 8, pp. 1276–1282, 2016.

60

[20] J. Fang, S. Thirunakkarasu, X. Yu, F. Silva-Rivas, C. Zhang, F. Singor,
and J. Abraham, “A 5-GS/s 10-b 76-mW time-interleaved SAR ADC in 28
nm CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 64, no. 7, pp. 1673–1683, 2017.

[21] M. Guo, J. Mao, S.-W. Sin, H. Wei, and R. P. Martins, “A 5 GS/s 29 mW
interleaved SAR ADC with 48.5 dB SNDR using digital-mixing background
timing-skew calibration for direct sampling applications,” IEEE Access, vol. 8,
pp. 138 944–138 954, 2020.

[22] L. Kull, D. Luu, C. Menolfi, M. Braendli, P. A. Francese, T. Morf, M. Kos-
sel, A. Cevrero, I. Ozkaya, and T. Toifl, “A 24–72-GS/s 8-b time-interleaved
SAR ADC with 2.0–3.3-pJ/conversion and 30 dB SNDR at Nyquist in 14-nm
CMOS FinFET,” IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp.
3508–3516, 2018.

[23] M. Schetzen, The Volterra and Wiener theories of nonlinear systems / Martin
Schetzen. New York: Wiley, 1980.

[24] A. Zhu, “Behavioral modeling for digital predistortion of RF power ampli-
fiers: from Volterra series to CPWL functions,” in 2016 IEEE Topical Confer-
ence on Power Amplifiers for Wireless and Radio Applications (PAWR), 2016,
pp. 1–4.

[25] Z. Dunn, M. Yeary, C. Fulton, and N. Goodman, “Wideband digital predis-
tortion of solid-state radar amplifiers,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 52, no. 5, pp. 2452–2466, 2016.

[26] M. I. M. I. Skolnik, Introduction to radar systems / Merrill I. Skolnik., 3rd ed.
Boston: McGraw Hill, 2001.

[27] Z. Dunn, M. Yeary, C. Fulton, and N. Goodman, “Memory polynomial model
for digital predistortion of broadband solid-state radar amplifiers,” in 2015
IEEE Radar Conference (RadarCon). IEEE, may 2015.

[28] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, Mar. 2004.

[29] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of
second-order cone programming,” Linear Algebra and its Applications, vol.
284, no. 1-3, pp. 193–228, nov 1998.

[30] F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Mathemat-
ical Programming, vol. 95, no. 1, pp. 3–51, jan 2003.

61

[31] Texas Instruments, “DAC3484 data sheet, product information and support.”
[Online]. Available: https://www.ti.com/product/DAC3484

[32] F. Azam, A. Karwankar, and G. Isola, “Generating timing and control sig-
nals for C-band T/R module using FPGA,” in 2018 3rd IEEE International
Conference on Recent Trends in Electronics, Information & Communication
Technology (RTEICT). IEEE, 2018, pp. 1052–1055.

[33] M. B. Yeary, W. Zhang, O. Alkhouli, and K. Wong-Hagen, “Design of an
FPGA-based RF link for data and power transfer,” IEEE Transactions on In-
strumentation and Measurement, vol. 55, no. 6, pp. 2313–2319, 2006.

[34] R. F. Molanes, J. J. Rodrı́guez-Andina, and J. Farina, “Performance charac-
terization and design guidelines for efficient processor–FPGA communication
in Cyclone V FPSoCs,” IEEE Transactions on Industrial Electronics, vol. 65,
no. 5, pp. 4368–4377, 2017.

[35] R. F. Molanes, L. Costas, J. J. Rodriguez-Andina, and J. Farina, “Compara-
tive analysis of processor-FPGA communication performance in low-cost FP-
SoCs,” IEEE Transactions on Industrial Informatics, 2020.

[36] M. Petri and M. Ehrig, “A SoC-based SDR platform for ultra-high data rate
broadband communication, radar and localization systems,” in 2019 Wireless
Days (WD). IEEE, 2019, pp. 1–4.

[37] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,”
Proceedings of the IEEE, vol. 93, no. 2, p. 16, 2005.

[38] Xilinx, “AXI DMA v7.1 LogiCORE IP Product Guide,” 2019. [Online].
Available: https://www.xilinx.com/support/documentation/ip documentation/
axi dma/v7 1/pg021 axi dma.pdf

[39] ARM, “AMBA 4 AXI4-Stream Protocol Specification.” [Online]. Available:
https://developer.arm.com/documentation/ihi0051/latest

[40] B. Perez, “Bperez77/xilinx axidma.” [Online]. Available: https://github.com/
bperez77/xilinx axidma

[41] Texas Instruments, “ADS5402 data sheet, product information and support
— TI.com.” [Online]. Available: https://www.ti.com/product/ADS5402

[42] Xilinx, “7 Series FPGAs Configurable Logic Block User Guide (UG474),”
2016. [Online]. Available: https://www.xilinx.com/support/documentation/
user guides/ug474 7Series CLB.pdf

62

https://www.ti.com/product/DAC3484
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://developer.arm.com/documentation/ihi0051/latest
https://github.com/bperez77/xilinx_axidma
https://github.com/bperez77/xilinx_axidma
https://www.ti.com/product/ADS5402
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf

[43] ——, “7 Series FPGAs Clocking Resources User Guide (UG472),”
2018. [Online]. Available: https://www.xilinx.com/support/documentation/
user guides/ug472 7Series Clocking.pdf

63

https://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf
https://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf

Appendix A

Testbench Code

This appendix contains interesting selections of the Python code used to imple-
ment the software defined radio based predistortion testbench.

The segment below shows how a pulse transmit thread was started:

Create a function to transmit the radar waveform
def transmit_waveform(sdr, tx_stream, waveform,

tx_stop_event):
while not tx_stop_event.is_set():

rc = sdr.writeStream(tx_stream, [waveform], len(
waveform))

if rc.ret != len(waveform):
print('TX Error {}: {}'.format(rc.ret, errToStr(rc.

ret)))

Start transmitting
tx = concurrent.futures.ThreadPoolExecutor(max_workers=1)
tx_stop_event = threading.Event()
tx_task = tx.submit(transmit_waveform, sdr, tx_stream,

waveform, tx_stop_event)

The segment below shows the loop used to gather recordings of the transmitted
waveform:

for idx in range(recording_periods):
try:

while True:
if idx < num_warmup_recordings:

sr = sdr.readStream(rx_stream, [rx_buff],
rx_sample_count)

print(f"RX Period {idx} - Num Samples: {sr.ret},
Flags: {sr.flags}, Timestamp {sr.timeNs}")

else:
rx_buff = rx_save_buff[:,(idx-

num_warmup_recordings)]

64

sr = sdr.readStream(rx_stream, [rx_buff],
rx_sample_count)

print(f"RX Period {idx} - Num Samples: {sr.ret},
Flags: {sr.flags}, Timestamp {sr.timeNs}")

if sr.ret == rx_sample_count:
break

except KeyboardInterrupt:
tx_stop_event.set()
tx_task.result(timeout=1.0)
break

The segment below shows the process used to extract individual pulses from the
larger waveform:

rx_pcmag = np.abs(signal.correlate(rx_waveform, chirp))

buff_size = round(pri_sample_count * 0.7)
max_locations = []
current_max = 0
current_max_location = 0
for idx in range(rx_pcmag.size):

if rx_pcmag[idx] > current_max:
current_max_location = idx
current_max = rx_pcmag[idx]

if (idx - current_max_location) > buff_size:
max_locations.append(current_max_location)
current_max = 0

pc_maxima = rx_pcmag[max_locations]
pc_smaller_maxima = pc_maxima
pc_biggest_maxima_indices = []
for idx in range(num_pulses_to_use):

biggest_idx = np.where(rx_pcmag == max(pc_smaller_maxima)
)

pc_biggest_maxima_indices.append(biggest_idx[0][0])
pc_smaller_maxima = np.delete(pc_smaller_maxima, np.where

(pc_smaller_maxima == rx_pcmag[biggest_idx]))

max_locations -= chirp_sample_count
pc_biggest_maxima_indices -= chirp_sample_count

for idx in range(num_pulses_to_use):
start_idx = pc_biggest_maxima_indices[idx]
end_idx = start_idx + chirp_sample_count
chirp = rx_waveform[start_idx:end_idx]
np.save(f"data/rx-chirps/{outprefix}chirp_{idx}.npy",

65

chirp)

The segment below shows the code used to implement the optimal Chebyshev
FIR filter predistortion algorithm:

import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
from scipy import interpolate
from scipy.fftpack import fft, fftshift, fftfreq
import argparse
from pathlib import Path
import cvxpy as cp
import seaborn as sns

sns.set_theme(context="paper", style="whitegrid")

def dbode(h, prefix, idx):
w = np.linspace(-np.pi, np.pi, 1024)
_, H = signal.freqz(h, worN=w)
plt.figure()
plt.plot(w, 20 * np.log10(np.abs(H)))
plt.xlabel("Angular Frequency (rad/sample)")
plt.ylabel("Amplitude")
plt.savefig(f"plots/{prefix}filter_tf_{idx}")

def relu(x):
return np.maximum(0, x)

def extrap_mag(mag, mag_freqs, freqs, first_freq_idx,
last_freq_idx):
new_mag = np.zeros(freqs.shape)
new_mag[first_freq_idx:last_freq_idx] = mag
lower_zero_freq = mag_freqs[0] * 1.1
upper_zero_freq = mag_freqs[-1] * 1.1
lower_coeffs = np.polyfit([lower_zero_freq, mag_freqs

[0]], [0, mag[0]], 1)
upper_coeffs = np.polyfit([upper_zero_freq, mag_freqs

[-1]], [0, mag[-1]], 1)
lower_poly = np.poly1d(lower_coeffs)
upper_poly = np.poly1d(upper_coeffs)
for idx in range(freqs.size):

if freqs[idx] < mag_freqs[0] and freqs[idx] >
lower_zero_freq:
Lower end extrapolation
new_mag[idx] = lower_poly(freqs[idx])

66

continue
elif freqs[idx] > mag_freqs[-1] and freqs[idx] <

upper_zero_freq:
Upper end extrapolation
new_mag[idx] = upper_poly(freqs[idx])
continue

return new_mag

Ntaps = 128

parser = argparse.ArgumentParser(description='Create a
predistorted waveform.')

parser.add_argument('--txwave', help="File with waveform
that was ideally transmitted")

parser.add_argument('--rxwave', help="File with waveform
that was recieved")

parser.add_argument('--goalwave', help="The waveform that we
want to transmit")

parser.add_argument('--outprefix', help="Prefix for output
files")

args = parser.parse_args()

tx_wave_dfile = Path("data", args.txwave)
rx_wave_dfile = Path("data", args.rxwave)
goal_wave_dfile = Path("data", args.goalwave)

outprefix = ""
if args.outprefix is not None:

outprefix = str(args.outprefix)

wave_data = np.load(tx_wave_dfile)
chirp = wave_data["chirp"]
waveform = wave_data["waveform"]
sample_times = wave_data["sample_times"]
chirp_bw = wave_data["chirp_bw"]
chirp_sample_count = wave_data["chirp_sample_count"]
pri_sample_count = wave_data["pri_sample_count"]
required_transfer_units = wave_data["required_transfer_units

"]
sample_rate = wave_data["sample_rate"]
instantaneous_freq = wave_data["instantaneous_freq"]
wave_data.close()

goal_data = np.load(goal_wave_dfile)

67

ideal_chirp = goal_data["chirp"]
goal_data.close()

print("Calculating TX chirp DFT")
chirp_dft = fftshift(fft(chirp))
chirp_freq = fftshift(fftfreq(chirp_dft.size, 1/sample_rate)

)
chirp_freq_norm = fftshift(fftfreq(chirp_dft.size))
chirp_freq_angular_norm = chirp_freq_norm * 2 * np.pi

dft_matrix = np.vander(np.exp(-1j * chirp_freq_angular_norm)
, N=Ntaps)

chirp_first_freq_idx = np.argmax(chirp_freq >= -chirp_bw / 2

* 0.95)
chirp_last_freq_idx = np.argmax(chirp_freq >= chirp_bw / 2 *

0.95)

chirp_dft_in_bw = chirp_dft[chirp_first_freq_idx:
chirp_last_freq_idx]

chirp_freq_in_bw = chirp_freq[chirp_first_freq_idx:
chirp_last_freq_idx]

num_pulses_to_use = 1

for idx in range(num_pulses_to_use):
rx_chirp = np.load(f"data/rx-chirps/{outprefix}chirp_{idx

}.npy")

plt.figure()
plt.plot(range(chirp_sample_count), rx_chirp.real, label

="Real")
plt.plot(range(chirp_sample_count), rx_chirp.imag, label

="Imaginary")
plt.xlabel("Sample index")
plt.ylabel("Amplitude")
plt.legend(loc="upper right")
plt.savefig(f"plots/{outprefix}cvx_rx_chirp_{idx}.png")

plt.figure()
plt.plot(range(chirp_sample_count), np.abs(rx_chirp))
plt.xlabel("Sample index")
plt.ylabel("Amplitude")
plt.savefig(f"plots/{outprefix}cvx_rx_chirp_mag_{idx}.png

")

68

rx_chirp_dft = fftshift(fft(rx_chirp))
rx_chirp_dft_in_bw = rx_chirp_dft[chirp_first_freq_idx:

chirp_last_freq_idx]
tf_est = rx_chirp_dft_in_bw / chirp_dft_in_bw
tf_est = tf_est / np.mean(np.abs(tf_est))
tf_est_db = 20 * np.log10(np.abs(tf_est))
knots = np.array([-0.7, -0.3, -0.12, 0.12, 0.3, 0.7]) *

chirp_freq_in_bw[-1]
spline = interpolate.LSQUnivariateSpline(chirp_freq_in_bw

, tf_est_db, knots)
spline_pts = spline(chirp_freq_in_bw)

extended_spline = extrap_mag(spline_pts, chirp_freq_in_bw
, chirp_freq, chirp_first_freq_idx,
chirp_last_freq_idx)

tf_mag = np.power(10, extended_spline / 20)
angular_freq = 2 * np.pi * fftshift(fftfreq(chirp_dft.

size))
system_delay = 0
tf_est = 100 * tf_mag * np.exp(-1j * angular_freq *

system_delay)

K = Ntaps / 2
tf_des = 100 * np.exp(-1j * angular_freq * (system_delay

+ K))

x = cp.Variable(Ntaps, complex=True)
Hfir = dft_matrix @ x
Hcas = cp.multiply(tf_est, Hfir)
Herr = cp.abs(Hcas - tf_des)
objective = cp.Minimize(cp.max(Herr))
problem = cp.Problem(objective)
problem.solve()

h = x.value

dbode(h, outprefix, idx)

predistorted_chirp = (ideal_chirp *
chirp_correction_window).astype(np.complex64)

predistorted_chirp = signal.convolve(ideal_chirp, h, "
same").astype(np.complex64)

predistorted_waveform = np.array([0]*waveform.size, np.

69

complex64)
predistorted_waveform[0:chirp_sample_count] =

predistorted_chirp
plt.figure()
fig, (ax1, ax2) = plt.subplots(2, 1)
ax1.stem(np.abs(h))
ax1.set_xlabel("Tap Index n")
ax1.set_ylabel("|h[n]|")
ax2.stem(np.angle(h))
ax2.set_xlabel("Tap Index n")
ax2.set_ylabel("arg\{h[n]\}")
plt.savefig(f"plots/{outprefix}cvx_taps_{idx}.png")

plt.figure()
plt.plot(predistorted_chirp.real, label="Real")
plt.plot(predistorted_chirp.imag, label="Imaginary")
plt.xlabel("Sample index")
plt.ylabel("Amplitude")
plt.legend(loc="upper right")
plt.savefig(f"plots/{outprefix}cvx_predistorted_chirp_{

idx}.png")
np.savez(f"data/predistorted_waveform_{idx}.npz",

chirp=predistorted_chirp,
waveform=predistorted_waveform,
sample_times=sample_times,
chirp_bw=chirp_bw,
chirp_sample_count=chirp_sample_count,
pri_sample_count=pri_sample_count,
required_transfer_units=required_transfer_units,
sample_rate=sample_rate,
instantaneous_freq=instantaneous_freq)

The segment below shows the code used to implement the windowing predis-
tortion algorithm:

import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
from scipy import interpolate
from scipy.fftpack import fft, fftshift, fftfreq
import argparse
from pathlib import Path
import seaborn as sns

sns.set_theme(context="paper", style="whitegrid")

70

parser = argparse.ArgumentParser(description='Create a
predistorted waveform.')

parser.add_argument('--txwave', help="File with waveform
that was ideally transmitted")

parser.add_argument('--rxwave', help="File with waveform
that was recieved")

parser.add_argument('--goalwave', help="The waveform that we
want to transmit")

parser.add_argument('--outprefix', help="Prefix for output
files")

args = parser.parse_args()

tx_wave_dfile = Path("data", args.txwave)
rx_wave_dfile = Path("data", args.rxwave)
goal_wave_dfile = Path("data", args.goalwave)

outprefix = ""
if args.outprefix is not None:

outprefix = str(args.outprefix)

wave_data = np.load(tx_wave_dfile)
chirp = wave_data["chirp"]
waveform = wave_data["waveform"]
sample_times = wave_data["sample_times"]
chirp_bw = wave_data["chirp_bw"]
chirp_sample_count = wave_data["chirp_sample_count"]
pri_sample_count = wave_data["pri_sample_count"]
required_transfer_units = wave_data["required_transfer_units

"]
sample_rate = wave_data["sample_rate"]
instantaneous_freq = wave_data["instantaneous_freq"]
wave_data.close()

goal_data = np.load(goal_wave_dfile)
ideal_chirp = goal_data["chirp"]
goal_data.close()

print("Calculating TX chirp DFT")
chirp_dft = fftshift(fft(chirp))
chirp_freq = fftshift(fftfreq(chirp_dft.size, 1/sample_rate)

)

chirp_first_freq_idx = np.argmax(chirp_freq >= -chirp_bw / 2

* 0.95)

71

chirp_last_freq_idx = np.argmax(chirp_freq >= chirp_bw / 2 *
0.95)

chirp_dft_in_bw = chirp_dft[chirp_first_freq_idx:
chirp_last_freq_idx]

chirp_freq_in_bw = chirp_freq[chirp_first_freq_idx:
chirp_last_freq_idx]

num_pulses_to_use = 3

for idx in range(num_pulses_to_use):
rx_chirp = np.load(f"data/rx-chirps/{outprefix}chirp_{idx

}.npy")

plt.figure()
plt.plot(range(chirp_sample_count), rx_chirp.real, label

="Real")
plt.plot(range(chirp_sample_count), rx_chirp.imag, label

="Imaginary")
plt.legend(loc="upper right")
plt.xlabel("Sample index")
plt.ylabel("Amplitude")
plt.savefig(f"plots/{outprefix}rx_chirp_{idx}.jpg")

plt.figure()
plt.plot(range(chirp_sample_count), np.abs(rx_chirp))
plt.xlabel("Sample index")
plt.ylabel("Amplitude")
plt.savefig(f"plots/{outprefix}rx_chirp_mag_{idx}.jpg")

rx_chirp_dft = fftshift(fft(rx_chirp))
rx_chirp_dft_in_bw = rx_chirp_dft[chirp_first_freq_idx:

chirp_last_freq_idx]
tf_est = rx_chirp_dft_in_bw / chirp_dft_in_bw
tf_est = tf_est / np.mean(np.abs(tf_est))
tf_est_db = 20 * np.log10(np.abs(tf_est))
knots = np.array([-0.7, -0.3, -0.12, 0.12, 0.3, 0.7]) *

chirp_freq_in_bw[-1]
spline = interpolate.LSQUnivariateSpline(chirp_freq_in_bw

, tf_est_db, knots)
spline_pts = spline(chirp_freq_in_bw)
plt.figure()
plt.plot(chirp_freq_in_bw / 1e6, 20*np.log10(np.abs(

tf_est)))
plt.plot(chirp_freq_in_bw / 1e6, spline_pts)

72

plt.plot(chirp_freq_in_bw / 1e6, -spline_pts)
plt.xlabel("Frequency (MHz)")
plt.ylabel("Amplitude")
plt.savefig(f"plots/{outprefix}tf_and_splines_{idx}.jpg")
chirp_correction_window = np.power(10, -spline(

instantaneous_freq) / 20)
chirp_correction_window_in_bw = np.power(10, -spline(

chirp_freq_in_bw) / 20)
np.clip(chirp_correction_window,

chirp_correction_window_in_bw.min(),
chirp_correction_window_in_bw.max(), out=
chirp_correction_window)

plt.figure()
plt.plot(chirp_correction_window)
plt.xlabel("Sample index")
plt.ylabel("Amplitude")
plt.savefig(f"plots/{outprefix}chirp_correction_window_{

idx}.jpg")
chirp_correction_window = chirp_correction_window /

chirp_correction_window.max()
predistorted_chirp = (ideal_chirp *

chirp_correction_window).astype(np.complex64)
predistorted_waveform = np.array([0]*waveform.size, np.

complex64)
predistorted_waveform[0:chirp_sample_count] =

predistorted_chirp
np.savez(f"data/predistorted_waveform_{idx}.npz",

chirp=predistorted_chirp,
waveform=predistorted_waveform,
sample_times=sample_times,
chirp_bw=chirp_bw,
chirp_sample_count=chirp_sample_count,
pri_sample_count=pri_sample_count,
required_transfer_units=required_transfer_units,
sample_rate=sample_rate,
instantaneous_freq=instantaneous_freq)

The segment below shows the code used to calculate the figures of merit of
interest in this thesis:

def nextpow2(x):
return ceil(log2(abs(x)))

def lfm_chirp(bandwidth, duration, center_frequency=0,
sample_spacing=1):
chirp_sample_count = ceil(duration / sample_spacing)

73

time = np.arange(0, chirp_sample_count) * sample_spacing
chirp_rate = bandwidth / duration
start_frequency = center_frequency - bandwidth / 2
chirp_phase = 2 * np.pi * (chirp_rate / 2 * time**2 +

start_frequency * time)
return np.exp(1j * chirp_phase)

def effective_bandwidth(waveform, sample_spacing):
waveform_dft = fftshift(fft(waveform))
waveform_freq = fftshift(fftfreq(waveform_dft.size,

sample_spacing))
waveform_dft_power = np.abs(waveform_dft)**2
moment_integrand = (2 * np.pi * waveform_freq)**2 *

waveform_dft_power
second_moment = np.trapz(moment_integrand, waveform_freq)
waveform_energy = np.trapz(waveform_dft_power,

waveform_freq)
return np.sqrt(second_moment / waveform_energy)

def estimate_sidelobe_level(waveform, ideal_waveform=None,
sample_spacing=1, Nresampled=None, make_plots=False):
if ideal_waveform is None:

waveform_corr = np.correlate(waveform, waveform, "full
")

else:
waveform_corr = np.correlate(waveform, ideal_waveform,

"full")

time = np.arange(waveform_corr.size) * sample_spacing

if Nresampled is None:
Nresampled = 2**nextpow2(waveform_corr.size * 10)

resampled_corr, resampled_time = signal.resample(
waveform_corr, Nresampled, t=time)

resampled_mag = np.abs(resampled_corr)
resampled_mag /= resampled_mag.max()
resampled_db = 20 * np.log10(resampled_mag)

Identify the peaks in the pulsed compressed waveform,
using the magnitude

in dB.
peaks, _ = signal.find_peaks(resampled_db, height=-40,

prominence=5)
peak_heights = resampled_db[peaks]

74

Sort the peaks by height, and identify the main lobe's
location.

sorted_peaks = np.flip(np.argsort(peak_heights))
main_lobe_idx = peaks[sorted_peaks[0]]

Identify the 1st sidelobe in either direction.
sorted_sidelobes = sorted_peaks[1:]
for idx in sorted_sidelobes:

if peaks[idx] < main_lobe_idx:
first_left_sidelobe_idx = peaks[idx]
break

for idx in sorted_sidelobes:
if peaks[idx] > main_lobe_idx:

first_right_sidelobe_idx = peaks[idx]
break

Identify the location of the null on each side of the
main lobe.

main_lobe_left_bound = np.argmin(resampled_db[
first_left_sidelobe_idx:main_lobe_idx]) +
first_left_sidelobe_idx

main_lobe_right_bound = np.argmin(resampled_db[
main_lobe_idx:first_right_sidelobe_idx]) +
main_lobe_idx

Calculate the power in the sidelobes and main lobe.
resampled_power = resampled_mag**2
left_sidelobe_power = np.trapz(resampled_power[0:

main_lobe_left_bound], resampled_time[0:
main_lobe_left_bound])

right_sidelobe_power = np.trapz(resampled_power[
main_lobe_right_bound:], resampled_time[
main_lobe_right_bound:])

main_lobe_power = np.trapz(resampled_power[
main_lobe_left_bound:main_lobe_right_bound],
resampled_time[main_lobe_left_bound:
main_lobe_right_bound])

sidelobe_power = left_sidelobe_power +
right_sidelobe_power

islr = 10 * np.log10(sidelobe_power / main_lobe_power)

Identify the peak sidelobe level
peak_sll = np.sort(peak_heights)[-2]

75

if make_plots:
plt.plot(resampled_time, resampled_db)
plt.scatter(resampled_time[main_lobe_idx],

resampled_db[main_lobe_idx])
plt.scatter(resampled_time[first_left_sidelobe_idx],

resampled_db[first_left_sidelobe_idx])
plt.scatter(resampled_time[first_right_sidelobe_idx],

resampled_db[first_right_sidelobe_idx])
plt.scatter(resampled_time[main_lobe_left_bound],

resampled_db[main_lobe_left_bound])
plt.scatter(resampled_time[main_lobe_right_bound],

resampled_db[main_lobe_right_bound])
plt.show()

return peak_sll, islr

def estimate_main_lobe_width(waveform, ideal_waveform=None,
sample_spacing=1, cutoff_level=-3, Nresampled=None,
make_plots=False):
if ideal_waveform is None:

waveform_corr = np.correlate(waveform, waveform, "full
")

else:
waveform_corr = np.correlate(waveform, ideal_waveform,

"full")

time = np.arange(waveform_corr.size) * sample_spacing

if Nresampled is None:
Nresampled = 2**nextpow2(waveform_corr.size * 10)

resampled_corr, resampled_time = signal.resample(
waveform_corr, Nresampled, t=time)

resampled_mag = np.abs(resampled_corr)
resampled_db = 20 * np.log10(resampled_mag)
resampled_db -= resampled_db.max()

zero_crossings = np.where(np.diff(np.signbit(resampled_db
- cutoff_level)))[0]

idx = zero_crossings[0]
func = interpolate.interp1d([resampled_time[idx],

resampled_time[idx+1]], [resampled_db[idx] -
cutoff_level, resampled_db[idx+1] - cutoff_level],
fill_value="extrapolate")

lobe_start = optimize.fsolve(func, resampled_time[idx])

76

idx = zero_crossings[1]
func = interpolate.interp1d([resampled_time[idx],

resampled_time[idx+1]], [resampled_db[idx] -
cutoff_level, resampled_db[idx+1] - cutoff_level],
fill_value="extrapolate")

lobe_stop = optimize.fsolve(func, resampled_time[idx])

beamwidth = lobe_stop - lobe_start

if make_plots:
plt.figure()
plt.plot(resampled_time, resampled_db)
plt.vlines([lobe_start, lobe_stop], -40, 0)
plt.scatter(resampled_time[zero_crossings],

resampled_db[zero_crossings])
plt.show()

return beamwidth

speed_of_light = 2.998e8

parser = argparse.ArgumentParser(description='')
parser.add_argument('--chirpcount', help="number of chirps

to process")
args = parser.parse_args()

beamwidths = []
sidelobe_levels = []

effective_bandwidths = []
peak_slls = []
islrs = []

tx_wave_dfile = Path(data_dir, "waveform.npz")

wave_data = np.load(tx_wave_dfile)
chirp = wave_data["chirp"]
waveform = wave_data["waveform"]
sample_times = wave_data["sample_times"]
chirp_bw = wave_data["chirp_bw"]
chirp_sample_count = wave_data["chirp_sample_count"]
pri_sample_count = wave_data["pri_sample_count"]
required_transfer_units = wave_data["required_transfer_units

"]
sample_rate = wave_data["sample_rate"]

77

instantaneous_freq = wave_data["instantaneous_freq"]
wave_data.close()

sample_spacing = 1/sample_rate

for chirp_num in range(int(args.chirpcount)):
goal_wave_dfile = Path(data_dir, "waveform.npz")
rx_wave_dfile = Path(data_dir, "rx-chirps", f"iter{

chirp_num}_chirp_0.npy")

goal_data = np.load(goal_wave_dfile)
ideal_chirp = goal_data["chirp"]
goal_data.close()

rx_chirp = np.load(rx_wave_dfile)
pc_chirp = signal.correlate(rx_chirp, ideal_chirp)

lobe_width = estimate_main_lobe_width(rx_chirp,
ideal_chirp, sample_spacing)

eff_bw = effective_bandwidth(rx_chirp, sample_spacing)
peak_sll, islr = estimate_sidelobe_level(rx_chirp,

ideal_chirp, sample_spacing)

beamwidths.append(speed_of_light * lobe_width / 2)
effective_bandwidths.append(eff_bw / (2 * np.pi) / 1e6)
peak_slls.append(peak_sll)
islrs.append(islr)

78

Appendix B

Summary of Acronyms

A summary of acronyms used in this work is provided in Table B.1.

Table B.1: Acronyms used throughout this paper.

Acronym Meaning
ADC Analog-to-digital converter
AXI Advanced eXtensible Interface
CPU Central processing unit

C-SWaP Cost, size, weight, and power consumption
DAC Digital-to-analog converter

DDR (RAM) Double Data Rate Synchronous Dynamic Random-Access Mem-
ory

DMA Direct memory access
DSP Digital signal processing

EcoSAR Ecological Synthetic Aperture Radar
FFT Fast Fourier transform
FIR Finite impulse response

FPGA Field-programmable gate array
HPA High-power amplifier

HTTP Hypertext Transfer Protocol
JEDEC A semiconductor industry group that provides many widely

adopted standards
JESD204B A high-speed data converter interface standardized by the

JEDEC committee
JSON JavaScript Object Notation
LVDS Low-voltage differential signaling
NASA National Aeronautics and Space Administration

PC Personal computer
SDR Software-defined radio

SESAR Space Exploration Synthetic Aperture Radar
UART Universal asynchronous receiver-transmitter

79

Acronym Meaning
UDP User Datagram Protocol

80

	Acknowledgment
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Background
	Fundamentals of Digital Predistortion
	The Memory Polynomial Model
	Radar Waveform Performance Metrics
	Range Resolution
	Effective Bandwidth
	Sidelobe Level Measurements

	Predistortion of Wideband Radar Systems
	Predistortion Using an Optimal Chebyshev Filter
	Predistortion Using Transfer Function Windowing

	FPGA Architecture Study
	Architecture overview
	Internal FPGA Architecture
	Networking Stack
	FPGA-Data Converter Interface

	Current Results

	SDR Testbench
	Results
	Time Domain Measurements
	Impact on Range Resolution and Sidelobe Level
	Pulse Compression Using Extracted Pulses

	Frequency Domain Performance

	Conclusion and Future Work
	References
	Testbench Code
	Summary of Acronyms

