c

f AMERICAN
SOCIETY FOR
-

MICROBIOLOGY

ystems

RESEARCH ARTICLE

L)

Check for
updates

Building Natural Product Libraries Using Quantitative
Clade-Based and Chemical Clustering Strategies

Victoria M. Anderson,*< Karen L. Wendt,*“ Fares Z. Najar,¢

aNatural Products Discovery Group, University of Oklahoma, Norman, Oklahoma, USA

Laura-Isobel McCall,~*

Robert H. Cichewicz®<

bInstitute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma, USA

cDepartment of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
dChemistry and Biochemistry Bioinformatics Core, University of Oklahoma, Norman, Oklahoma, USA
eDepartment of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA

fLaboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, USA

ABSTRACT The success of natural product-based drug discovery is predicated on hav-
ing chemical collections that offer broad coverage of metabolite diversity. We propose
a simple set of tools combining genetic barcoding and metabolomics to help investiga-
tors build natural product libraries aimed at achieving predetermined levels of chemical
coverage. It was found that such tools aided in identifying overlooked pockets of
chemical diversity within taxa, which could be useful for refocusing collection strat-
egies. We have used fungal isolates identified as Alternaria from a citizen-science-based
soil collection to demonstrate the application of these tools for assessing and carrying
out predictive measurements of chemical diversity in a natural product collection.
Within Alternaria, different subclades were found to contain nonequivalent levels of
chemical diversity. It was also determined that a surprisingly modest number of isolates
(195 isolates) was sufficient to afford nearly 99% of Alternaria chemical features in the
data set. However, this result must be considered in the context that 17.9% of chemical
features appeared in single isolates, suggesting that fungi like Alternaria might be
engaged in an ongoing process of actively exploring nature’s metabolic landscape. Our
results demonstrate that combining modest investments in securing internal tran-
scribed spacer (ITS)-based sequence information (i.e., establishing gene-based clades)
with data from liquid chromatography-mass spectrometry (i.e., generating feature accu-
mulation curves) offers a useful route to obtaining actionable insights into chemical di-
versity coverage trends in a natural product library. It is anticipated that these out-
comes could be used to improve opportunities for accessing bioactive molecules that
serve as the cornerstone of natural product-based drug discovery.

IMPORTANCE Natural product drug discovery efforts rely on libraries of organisms
to provide access to diverse pools of compounds. Actionable strategies to ration-
ally maximize chemical diversity, rather than relying on serendipity, can add value
to such efforts. Readily implementable biological (i.e., ITS sequence analysis) and
chemical (i.e., mass spectrometry-based feature and scaffold measurements) diver-
sity assessment tools can be employed to monitor and adjust library development
tactics in real time. In summary, metabolomics-driven technologies and simple
gene-based specimen barcoding approaches have broad applicability to building
chemically diverse natural product libraries.

KEYWORDS natural products, LC-MS metabolomics, chemical diversity, drug discovery,
fungi, library design, metabolomics

rug discovery has changed tremendously during the last century, with the process
undergoing continuous reinvention to avail itself of new scientific methods and
trends. Numerous ideas and tools have been put into practice, resulting in the creation
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of many chemical collections used in modern drug screening and molecular probe de-
velopment throughout academia, industry, and government. Small-molecule libraries
based on organic compounds of various sizes (e.g., <900 Da for most synthetic libra-
ries but ranging up to around ~2,000 Da for some natural product collections) play a
dominant role in such efforts, with many collections accommodating a variety of
screening and discovery methodologies (e.g., fragment based, target focused, diversity
oriented, combinatorial, DNA encoded, repurposed, and virtual) (1-6).

Despite the vast amounts of time, money, and energy poured into building small-
molecule screening collections, the answers to many basic questions about their design
and development, such as optimal collection sizes, are largely driven by adherence to
dogma or convenience rather than evidence-based reasoning. Such questions grow
increasingly relevant, as opinions influencing the last 4 decades of library design have
shifted tremendously, with the large collections of the 1980s and 1990s (e.g., combinato-
rial chemistry [7]) being replaced by smaller tailored collections in the early 2000s (e.g.,
“focused” collections [8, 9]) and moving toward megascale libraries in recent years (e.g.,
DNA encoded libraries [10-15]).

While such trends are strongly linked to the creation of synthetic chemical collec-
tions, a similar set of concerns applies to the construction of libraries assembled from
natural sources (e.g., microorganisms and plants). Many ideas have emerged related to
best practices for building natural product libraries, with extracts, fractions, and pure
compounds defining the three dominant types of chemical complexity encountered in
screening collections (16-19). Despite the tremendous ingenuity and effort that have
gone into assessing these and other methods of building natural product libraries,
comparatively less consideration has been given to identifying optimal sample sizes
needed to construct nature-based screening collections. Answering such questions is
important since the degree of chemical diversity in a screening collection is considered
a key contributor to the success (or failure) of bioassay screening endeavors (20, 21).

A possible reason for neglecting this problem may stem from the fact that as
opposed to synthetic libraries, natural products are encountered not as single mole-
cules but as compound sets (e.g., metabolomes) representing the total metabolic out-
put of each organism. Given the degree to which natural product biosynthetic gene
clusters and their molecular controlling factors are swapped, recombined, and other-
wise altered within host organisms, even the metabolomes of low-ranking monophy-
letic clades (e.g., a species or genera) can exhibit divergent chemical profiles (22, 23).
These factors can make the rational design of natural product libraries challenging.
Therefore, methods to perform chemical diversity measurements have the potential to
aid and inform the design of natural product drug screening collections.

Two examples help illustrate the practical need for solving this problem. In an in-
triguing opinion piece offered by Baltz, various scenarios were offered to overcome
the global slowing of antibiotic discovery from actinomycetes (order: Actinomycetales
Buchanan, 1917) (24). Based on that analysis, it was concluded that using traditional
bioassay-guided antibacterial discovery alone would require testing >107 actinomy-
cetes to identify the next, major new class of antibiotic. Although this estimate was
highly theoretical and based on the use of standard bioassay-driven screening proce-
dures, it provided a compelling starting point for considering how the integration of
compound diversity measurements into bioassay screening could help serve as a
chemically focused approach to assessing real and presumed barriers to natural prod-
uct discovery. In another case, Letzel and colleagues carried out a survey of natural
product biosynthetic gene cluster diversity represented in 119 Salinispora sp. genomes
(25). A key takeaway from the study was that despite high levels of global gene conser-
vation among Salinispora isolates, roughly half of all the biosynthetic gene clusters
detected were found in two or fewer isolates. Thus, deep sampling of this genus was
expected to continue yielding new families of natural products. With no end in sight
for the sustained emergence of new natural products (26), questions surrounding how
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to define, measure, and construct optimally sized natural product-based chemical libra-
ries take on critical importance.

Fungi epitomize many of the challenges inherent in sourcing natural products and
thus serve as a useful starting point for establishing a quantitative approach to natural
product library design. Topmost among the difficulties working with fungi are the com-
plex, and in many cases poorly resolved, taxonomic relationships exhibited by these
organisms. For example, many fungi adopt different sexual states that are metabolically
and morphologically distinct. Historically, such cases have resulted in fungal isolates that
exhibit gene-level equivalencies being assigned different binomial names (27). In other
instances, the high degree of genetic diversity within certain fungal clades has created
taxonomic quagmires that have left some fungi loosely classified into poorly defined spe-
cies complexes, polyphyletic clades, and paraphyletic groups (28, 29). Complicating these
matters, the regional variation and global distribution of most fungal taxa remain poorly
defined, which has given rise to unresolved questions about the true extent of biological
and chemical diversity throughout the fungal kingdom. Here, we present a set of guiding
principles for combining, quantifying, and assessing chemical and source organism diver-
sity during the construction of natural product libraries. Our efforts focused on Alternaria
Ness, which is a cosmopolitan and taxonomically perplexing fungal genus (30, 31) known
to produce many types of metabolites (32-37). Although these experiments concentrated
on fungi, we expect that the procedures laid out here will be generally applicable to the
evaluation of natural products from other source organisms.

RESULTS AND DISCUSSION

Basis for a bifunctional analysis tool to assess Alternaria ITS barcode and chemical
diversity. The Alternaria isolates used in this study were obtained through the
University of Oklahoma, Citizen Science Soil Collection Program (38, 39), which to date
has received 9,670 soil samples from across the United States, yielding 78,581 fungal
isolates identified by single-read internal transcribed spacer (ITS) sequencing data. A
query performed on the ITS barcode data yielded an initial set of 219 candidate
Alternaria isolates, which was refined to a subset of 198 samples having >90% ITS
sequence similarity (40-42) to Alternaria type strain data available in GenBank and
defined by Woudenberg et al. (31). Upon plating, all strains exhibited colony morphol-
ogies consistent with the genus sensu stricto.

Alternaria exemplifies many of the practical problems and limitations that researchers
face when developing natural product libraries. Specifically, Alternaria is a taxon in flux,
having undergone revisions as mycologists have striven to consider morphological char-
acteristics, telemorphic states, various marker genes, and more to delineate this group
and its allied genera (28, 31, 43). While the outcomes of those efforts have differed, result-
ing in proposals supporting various combinations of monophyletic species groups and
species complexes, they have found agreement on the grounds that Alternaria exhibits
tremendous morphological and genetic plasticity. Recognizing that these problems are
common throughout the microbial world, we adopted a hybrid method of library con-
struction focused on assessing the prospective taxonomic affinity of each isolate (prefera-
bly to a genus-level taxon using ITS barcode sequence results) in combination with liquid
chromatography-mass spectrometry (LC-MS) metabolome profiling data. This bifunctional
approach offered insights into the relationship between phylogeny and chemistry, which
enabled (i) assessment of natural product chemical diversity within species complexes, (ii)
identification of prospective pools of under- and oversampled secondary-metabolite scaf-
folds, and (iii) application of quantitative metrics to establish and track goals concerning
chemical diversity in an existing or growing natural product collection. Whereas numer-
ous tactics have been reported for guiding natural product library development (44-46),
we view our approach as a departure from prior schemes, considering its quantitative
aspects that we now explore.

Characterizing ITS barcode (clades) and metabolome (clusters) based groups in
Alternaria. While achieving a state of perfect knowledge about the evolutionally his-
tories of microorganisms is nearly impossible, we can use certain low-cost and
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minimally intensive tools to gain functional insights concerning their phylogenetic
relationships. For fungi, the ITS barcode system serves as one such tool, offering an effi-
cient way to establish a working set of phylogenetic associations among environmen-
tal isolates (29). The phylogenetic analysis of Alternaria ITS data revealed five
sequence-based clades (clades U, V, W, X, and Y). Whereas further taxonomic resolution
might be achievable using additional genetic markers, ITS provides a reasonable
method to identify isolates and draw attention to potential points of evolutionary
divergence (27, 29).

Principal-coordinate analysis (PCoA) was performed on the Alternaria metabolomics
data. The components detected in Alternaria metabolomes were treated as chemical
features based on a combination of their LC retention times and mass-to-charge ratio.
Those efforts resulted in a model that supported the presence of six chemical clusters
(clusters 1, 2, 3,4, 5, and 6) among the Alternaria isolates (see Fig. S1 in the supplemen-
tal material).

The results generated from the ITS barcode and metabolomics data sets were overlaid,
demonstrating a high degree of consensus between the two models (Fig. 1). The data
indicated that clade U was composed primarily of chemical cluster 1, clade W was com-
posed of chemical cluster 2, clade X was composed primarily of chemical cluster 6, and
clade Y was composed of chemical cluster 3. Notably, clade V contained both clusters 4
and 5. This underscored the value of layering chemical data (clusters) on top of genetic
data (clades) to reveal otherwise unexpected pockets of chemical divergence within
genetic groups. A few cases were noted in the principal-coordinate analysis, revealing
that some members of chemical cluster 2 were embedded in clades U, V, and X.
Although the reasons behind these cases are uncertain, we speculate that it may be due
to culture-dependent effects on metabolite production (47) and/or genomic/epigenome-
scale events that resulted in the loss of chemical scaffolds (48, 49), which served to differ-
entiate clusters 1, 3, 4, 5, and 6 from cluster 2. Analyses in this report were conducted in
parallel on both clade and cluster models, with the chemical cluster model generating
results similar to those of the clade model (Fig. S2B and C and Fig. S3, S5, and S7).

Considering the geographic scope of the collection, the genetic clade and chemical
cluster data were evaluated to determine if their distributions might be limited to certain
geographical regions (Fig. 2). Given the number of samples tested over such a large land
mass, we are cautious in interpreting our results; however, we did note that cluster 5 was
detected only in the far western portion of the United States. Additionally, clusters 3 and
4 were absent from the southeastern portion of the United States. Both observations
served to fuel speculation that the occurrence of some Alternaria chemical features might
be limited to circumscribed geographical ranges. Further investigation will be required to
determine if these are veritable patterns or sampling artifacts.

Chemical feature production among genetic clades. Before proceeding, it is worth
noting that in the comparisons presented here and in subsequent sections, the discus-
sion could have been structured around evaluating Alternaria isolates according to ITS
clades (genetics) or chemical features (metabolomics). Apart from clade V, our tests
demonstrated rather strong agreement between the two models, which indicated that
both clustering mechanisms worked well to organize data along seemingly natural
divisions. Knowing that taxonomically driven strategies continue to play prominent
roles in natural product collection efforts, we have opted to analyze the chemical diver-
sity findings in the context of ITS clades (Fig. 1). However, we see no reason why a
chemistry-centric grouping could not be used, and several examples of parallel tests
based on chemical clusters are provided in the supplemental material.

Median numbers of detected chemical features differed significantly between ITS-
based clades (P < 0.0001), with clades U and Y containing isolates that produced the
greatest total numbers of chemical features (Fig. 3A). This observation held true (P <
0.0001) after subsampling of the clades to alleviate potential errors introduced due to
sample size nonequivalence (Fig. S2A). Relatively few outliers were detected within the
genetic clades, indicating high levels of consistency for the metabolic output of the
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FIG 1 Genetic and chemical clustering of Alternaria. ITS phylogeny of Alternaria isolates is shown. Inner ring indicates the clade, while color-coded stars
represent the chemical cluster. The clades and clusters show remarkable overlap but also reveal a hidden chemical cluster within clade V. Numbers indicate
type strain data from GenBank (Table S2).

isolates in each group. Clades V, W, and X were found to have significantly fewer fea-
tures than clade U (Tukey’s honestly significant difference [HSD] of analysis of variance
[ANOVA], P < 0.0001 in all cases), suggesting that clade U is chemically more diverse
than the other clades.

Only 1.9% of features (205) were detected in all clades, comprising the core metabo-
lome of the Alternaria isolates (Fig. 3B). While up to 40% of chemistry is shared between
two or more clades, we found that the bulk of features were limited in occurrence to just
a single clade. Progressing from the smallest to the largest number of clade-specific fea-
tures, 2.4% of features (261) were found only in clade X, 5.9% of features (644) were pres-
ent only in clade V, 7.2% of features (790) were detected only in clade W, 10.1% of
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FIG 2 Chemical and geographical distribution of Alternaria. Shown is the geographical distribution of isolates by chemical cluster. Whereas clusters 1, 2,

and 6 are well distributed throughout the study area, clusters 3, 4, and 5 occupy more limited ranges.

features (1,111) were observed only in clade Y, and 36.2% of features (3,976) were identi-
fied only in clade U. These results demonstrate that high levels of chemical diversity exist
even within the traditionally recognized boundaries that define Alternaria.

Making informed library building decisions based on chemical feature diversity.
To monitor and better understand how feature diversity could be used to make
informed decisions about constructing natural product libraries, feature accumulation
curves were constructed from the metabolomics data (Fig. 4A). The results show that
despite a large degree of ascribed taxonomic diversity in Alternaria, a surprisingly lim-
ited number of isolates are required to provide broad chemical coverage of the genus.
Indeed, random sampling of the Alternaria data found that on average, a set consisting
of as few as 23 isolates was expected to provide 50% of the total pool of Alternaria fea-
tures. Expanding on these findings, randomly selected subsets consisting of 57, 104,
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142, and 195 isolates were anticipated to provide 75%, 90%, 95%, and 99%, respec-
tively, of Alternaria features (Fig. 4A). Thus, it was determined that feature accumula-
tion data could serve as a useful tool for estimating levels of chemical feature coverage
within taxonomic groups.

Whereas the genus-based amalgamation of feature data provided useful insights into
the chemical diversity of Alternaria, a more granular exploration of feature accumulation
results by subgenus clades has the potential to afford a complementary perspective for
library design. Clade-based feature accumulation curves (Fig. 4B) showed that feature cov-
erage levels of 99% were achievable in clades U (contained the most feature-rich isolates
[Fig. 2A]) and X (contained the most feature-poor isolates [Fig. 2Al), with 170 and 51 total
isolates, respectively. In contrast to the rank order of the median numbers of features per
isolate, the point at which 99% feature saturation occurred followed a different pattern
for clades V, W, and Y. Clade Y, which contained the second highest level of features per
isolate (Fig. 2A), was found to require the lowest number of isolates (39 isolates) to
achieve a level of 99% feature coverage. Clade V contained the third highest level of fea-
tures per isolate (Fig. 2A), while also needing the second highest number of isolates (141
isolates) to achieve a level of 99% feature accumulation. These results are likely due to
the presence of two chemical clusters being embedded in clade V. Clade W con-
tained the second lowest number of features per isolate (Fig. 2A) but was predicted
to require the third highest number of isolates (66 isolates) to achieve a level of 99%
feature accumulation. Thus, feature accumulation curves utilizing ITS-based clades
offer a useful method for identifying and monitoring genetically defined groups of
organisms that are likely to require increased efforts (i.e.,, more isolates) to achieve
prespecified levels of feature accumulation coverage. Related to these efforts, rare-
faction curve slopes were plotted in relationship to the number of samples represent-
ing each clade (Fig. S4). The results of that analysis revealed that an inverse relationship
existed between the slopes of interpolated rarefaction curves and the number of samples
surveyed within a clade, supporting the idea that in this data set, the larger ITS-based
clades tended to approach saturation of feature coverage.

Probing of chemical scaffold distribution and diversity in Alternaria. Whereas
the analysis of chemical features offers a straightforward approach to comparing LC-
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MS data from different natural product sources, such results can be prone to misrepre-
senting underlying chemical diversity trends. Specifically, the output from natural
product biosynthetic pathways tends to occur as assemblages of structurally related
metabolites rather than as single products due to several factors related to the in situ
formation of natural products, including substrate promiscuity, competing actions of
multifarious tailoring enzymes, and more (47, 50, 51). Consolidating chemical features
that share underlying structural similarities into groups referred to as scaffolds is one
approach to account for this phenomenon. Molecular networking (52-55) is a method
that has gained widespread use to build scaffold-level relationships in the field of natu-
ral products (56-59).

Using molecular networking to identify structurally related metabolites from Alternaria,
the 10,991 molecular features were combined into 5,754 scaffolds (Fig. 5A). Upon remov-
ing singleton scaffolds (4,193) from the data set, 17.2% of the scaffolds (285) were found
to be shared by all five ITS-based clades (Fig. 5B). These shared scaffolds represented the
core metabolome of the Alternaria encountered in this study. We also found that 32.5%
(539) of the nonsingleton scaffolds were detected in just a single clade. Clade U contained
the largest number of unique chemical scaffolds (19.6% [326 unique scaffolds]), followed
by clades Y (5.1% [84 unique scaffolds]), W (3.6% [59 unique scaffolds]), V (2.9% [48 unique
scaffolds]), and X (1.3% [22 unique scaffolds]). The rank order of the scaffolds detected in a
clade mirrored the respective levels of chemical features observed in each group (Fig. 2A).
Thus, we speculate that the relative quantities of chemical features detected within taxa
might serve as a surrogate measure for predicting their comparative levels of relative scaf-
fold diversity, although further analysis will be necessary to explore this. These results also
highlighted the need to differentiate scaffold versus feature diversity goals when estab-
lishing parameters for natural product library design, since 17.2% of scaffolds were found
to be shared by all clades of Alternaria, but only 1.9% of features were shared by all clades.
Furthermore, 61.7% of chemical features were found to be unique to a single clade, but
this held true for only 32.5% of scaffolds, which indicates that many chemical scaffolds are
conserved among Alternaria isolates.

Applying clade and cluster data to assess progress toward goals for natural
product library coverage. Considering the entwined functions that phylogeny and
chemistry have in natural product library development, we explored how less abun-
dant taxa might contribute to the overall chemical diversity within a screening library.
Such models could be useful for understanding how rigorous efforts to include less
abundant taxa, or purposeful endeavors to exclude highly abundant groups of organ-
isms, might impact the representation of chemical scaffolds in a collection. We first
examined how forming a library by exclusively focusing on only the most abundant
taxon, clade U, would affect the chemical diversity outcome of a collection (Fig. 6A and
Fig. S6). The accumulation curves revealed that the 111 isolates in clade U could pro-
vide access to 80.1% of all Alternaria scaffolds, while the remaining, less abundant
clades V, W, X, and Y added just 7.0%, 5.4%, 1.7%, and 5.7%, respectively, of additional
chemical families (note that the order in which clades V, W, X, and Y were added was
arbitrarily chosen). In contrast, when the scaffold accumulation data were examined
with the focus placed on sampling just the less abundant taxa, it was found that the 87
isolates representing clades V, W, X, and Y afforded access to 78.3% of all scaffolds
encountered from Alternaria (Fig. 6B). This result was unanticipated with near-equiva-
lent percentages of unique scaffolds afforded via these contrasting approaches. We re-
alize that most real-world library-building efforts are unlikely to engage in such restric-
tive collection practices; however, these results could have practical implications for
cases in which searching out less abundant (i.e., rare taxa) or difficult-to-culture organ-
isms may add undue cost or time to building a natural product drug screening library.
Thus, modeling scaffold (or chemical feature) accumulation can help researchers focus
on achieving desired levels of chemical coverage in natural product libraries, as well as
monitoring whether collection efforts have led to oversaturation or undersampling of
the theoretical chemical diversity within a given taxon.
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Putting the pieces together to create natural product chemical collections. It is
our opinion that many efforts to construct natural product libraries have been based
largely on opportunism and subjective reasoning rather than founded on data-driven
goals and assessment. Whereas tremendous room exists to plot customized paths for
building collections of secondary metabolites based on different parameters (e.g.,
genetic clades versus chemical clusters or features versus scaffolds), the best routes are
likely to rely upon well-balanced sample collection strategies that combine appropriate
amounts of chemical breadth in the resultant libraries. The purpose of our effort to
measure natural product diversity was to afford researchers opportunities to establish
library development goals and provide the means for assessing progress toward those
targets. However, such goals should also be considered in the context of bioactive
compound discovery, which in many ways is a heroic game of chance. To this point,
we noted that within the Alternaria isolates studied, 17.9% of metabolite features were
found in only a single isolate. Thus, overly stringent measures aimed at simply captur-
ing only the core metabolome of genetic clades or chemical clusters risk missing out-
standing pools of unique chemical matter that may prove critical for the success of a
drug discovery program. We hope that these methods will help researchers set library
building goals that are not only economical but also well poised to deliver the chemi-
cal matter needed to drive fruitful drug discovery operations.

MATERIALS AND METHODS

General sample selection and culture. A cohort of 198 fungal isolates from the University of
Oklahoma, Citizen Science Soil Collection, that had been identified as Alternaria were used in this study
(Table S1). The map illustrating the sites where the isolates were obtained (Fig. 2) was generated in qGIS
v3.10. The fungal isolates were identified based on BLASTN (60) comparisons of their ITS sequence data
to the sequences of Alternaria type strains deposited in GenBank (60). When cultured on petri plates
containing a modified potato dextrose agar, all isolates were determined to be consistent with the gross
morphological features of Alternaria spp. For metabolomics experiments, the isolates were cultured for
3 weeks in duplicate, on a solid-state medium composed of Cheerios breakfast cereal supplemented
with a 0.3% sucrose solution containing 0.005% chloramphenicol (61).

PCR and phylogenetic tree building. Fungal cell lysates were prepared by removing fresh myce-
lium from each isolate and placing the samples in microcentrifuge tubes containing 200 ul of Tris-EDTA
buffer (10 mM Tris-HCl, 1 mM disodium EDTA [pH 8.0]) and a 1:1 mixture of 1-mm and 0.5-mm zirconium
oxide beads. Samples were homogenized using a BulletBlender (Next Advantage) set at maximum speed

September/October 2021 Volume 6 Issue5 e00644-21

msystems.asm.org

10

Downloaded from https://journals.asm.org/journal/msystems on 06 December 2021 by 68.97.19.234.


https://msystems.asm.org

Quantitative Approach to Natural Product Libraries

for 5 min. The 5.85-ITS region was amplified by PCR using primers ITST (5'-TCCGTAGGTGAACCTGCGG-
3’) and ITS4 (5'-TCCTCCGCTTATTGATATGC-3') (62). Amplification and confirmation of PCR product for-
mation were performed using a LightCycler 480 Instrument Il (Roche) operated under the following con-
ditions: 1 cycle of denaturation at 94°C for 2 min followed by 40 cycles of denaturation at 94°C for 1 min,
annealing at 50°C for 1 min, and extension at 72°C for 1 min. Samples were submitted to Genewiz for
Sanger sequencing with forward and reverse reads assembled using PhredPhrap (release 29) (minimum
phred score: 50) (63, 64). Sequences were prepared for phylogenetic analysis using MEGA-X (65). ITS
sequences for Alternaria type strains were obtained from the NCBI database (Table S2) (60). An outgroup
consisting of five Penicillium spp. and five Clonostachys species isolates retrieved from the University of
Oklahoma, Citizen Science Soil Collection, were used for tree rooting. Sequences were aligned using
Clustal W in Mega X. Neighbor-joining tree analysis was carried out with 500 bootstraps using the
Kimura2+G algorithm (65, 66).

Metabolite sample preparation. Samples for fungal metabolome analysis were prepared on an
automated platform that combined both extraction and partitioning steps. Fungal cultures prepared in
16- by 100-mm borosilicate tubes were placed on a Tecan Freedom EVO platform and 3 ml of ethyl ace-
tate was added to each sample. After extraction for 4 h, 3 ml of water was added to each tube to facili-
tate the partitioning process. Aliquots consisting of 2 ml of the upper ethyl acetate layers were trans-
ferred to deep-well 96-well plates. While the ethyl acetate was being removed from the samples in
vacuo, the fungal culture tubes were each charged with an additional 3 ml of ethyl acetate to continue
the partitioning process. The plates were returned to the liquid handler platform, at which point a sec-
ond set of 2-ml aliquots of ethyl acetate was removed from the tubes and deposited into the deep-well
96-well plates. The organic solvent was removed in vacuo and the remaining organic residues were
stored at —20°C for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis.

LC-MS/MS analysis. Extracts were resuspended in 135 ul of 9:1 methanol-water spiked with 0.5 uM
sulfadimethoxine, which served as an internal standard. Samples were analyzed on a Thermo Fisher
Scientific Vanquish Flex Binary LC system, coupled to a Thermo Fisher Q Exactive Plus hybrid quadru-
pole-orbitrap mass spectrometer, using a C,; LC column (Kinetex, 50 by 2.1 mm, 1.7-um particle size,
100-A pore size; Phenomenex, Torrance, CA). The mobile phase consisted of LC-MS-grade acetonitrile
and water (Fisher Optima; both eluents contained 0.1% formic acid). Sample elution was performed
using a gradient system starting with 5% acetonitrile (held for 1 min), which was increased to 100% ace-
tonitrile over 8 min and held at 100% acetonitrile for 2 min. Between samples, the eluent was returned
to 5% acetonitrile over 30 s and held for 1 min before the next injection occurred. The column compart-
ment and autosampler were held at 40°C and 10°C, respectively, for the duration of the analysis. Sample
injection volumes of 5 ul were used, and samples were introduced in random order. Blanks and pooled
quality control samples were interspersed throughout the analysis after every 12 samples. Electrospray
conditions and data acquisition parameters are provided in Table S3 (part A).

Data processing and analyses. Data were processed using MZmine v2.33 with the parameters pro-
vided in Table S3 (part B) (67). Data for the aligned peaks were exported from MZmine. All features iden-
tified as occurring in controls (blanks) and test samples were removed, and the remaining features were
normalized to the total ion current (TIC) in the R statistical package. Principal-coordinate analysis (PCoA)
and hierarchical clustering were performed on normalized tabulated data with QIIME1 (68) using a Bray-
Curtis distance metric (69). The selection of 6 clusters was determined to be optimal based on a silhou-
ette plot. Results were visualized using Emperor (70). Feature accumulation curves were made in vegan
using binarized tabulated data (71), and plots were generated using a standard x axis representing the
whole data set. Extrapolated rarefaction curves were generated in iNEXT with an endpoint of 500 dupli-
cates (72, 73). Alpha diversity (observed chemical richness) was calculated using the Python package
Scikit-Bio (version 0.2.0 [http://scikit-bio.org]) and analyzed using a one-way ANOVA and Tukey’s HSD
test in R (74). To ensure that the differences in sample size did not skew analyses, balanced sets of ran-
domly generated sample were analyzed for alpha diversity. Venn analyses were conducted using http://
bioinformatics.psb.ugent.be/webtools/Venn/ and InteractiVenn (75). Global Natural Products Social
Molecular Networking (GNPS) feature-based molecular networking was performed (52, 53) using output
from MZmine2 (67) with the parameters described in Table S3 (part C).

Data availability. LC-MS/MS data were deposited in MassIVE under accession number MSV000083002.
The feature-based molecular networking method is accessible at https://gnps.ucsd.edu/ProteoSAFe/status
Jsp?task=f0608e9f1e0f4f3cb4d67bf16308e897. Sequencing data were deposited in GenBank under acces-
sion numbers MW729050 to MW729257. Codes for other analysis methods can be accessed on GitHub at
https://github.com/NPDG/Alternaria.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 0.8 MB.

FIG S2, TIF file, 1.5 MB.

FIG S3, TIF file, 2 MB.

FIG S4, TIF file, 0.6 MB.

FIG S5, TIF file, 1.9 MB.

FIG S6, TIF file, 0.5 MB.

FIG S7, TIF file, 1.2 MB.
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