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Abstract

Densification and multi-band operation means inter-frequency handovers can be-

come a bottleneck for mobile user experience in emerging cellular networks. The

challenge is aggravated by the fact that there does not exist a method to optimize

key inter-frequency handover parameters namely A5 time-to-trigger, A5-threshold1

and A5-threshold2. This thesis presents a first study to analyze and optimize the

three A5 parameters for jointly maximizing three key performance indicators that

reflect mobile user experience: handover success rate (HOSR), reference signal re-

ceived power (RSRP), and signal-to-interference-plus-noise-ratio (SINR). As analyt-

ical modeling cannot capture the system-level complexity, we exploit a data-driven

approach. To minimize the training data generation time, we exploit shapley ad-

ditive explanations (SHAP) sensitivity analysis. The insights from SHAP analysis

allow the selective collection of the training data thereby enabling the easier imple-

mentation of the proposed solution in a real network. We show that joint RSRP,

SINR and HOSR optimization problem is non-convex and solve it using genetic algo-

rithm (GA). We then propose an intelligent mutation scheme for GA, which makes

the solution 5x times faster than the legacy GA and 21x faster than the brute

force search. This thesis thus presents first solution to implement computationally

efficient closed-loop self-optimization of inter-frequency mobility parameters.

viii



CHAPTER 1

Introduction

Spectrum scarcity means densification and operation at higher frequency bands

cannot be avoided in emerging and future networks [2]. In addition, operating at

higher frequency bands also requires reducing cell sizes and concurrent operation

at multiple frequency bands [3]. However, one caveat of dense BSs operating on

a motley of frequency ranges, is the increase in the complexity of the mobility

management as well as a more pronounced effect of sub-optimal mobility parameters

on user experience and resource efficiency. This is due to the proportional increase

in the number of handovers (HO), with the decrease in cell size. As discussed

in [4], a wide range of key performance indicators (KPIs) including user experience

(RSRP), throughput (SINR), HOSR as well as network signaling overhead hinge on

mobility management parameter configurations. A poor HO management leads to

the degradation in several KPIs including data rates, latency, retainability, and user

quality of experience (QoE). Optimal HO performance is also vital to support the

ultra-reliable low-latency communication (URLLC) use case in 5G and beyond [5].

The current industrial practice of optimizing mobility-related KPIs involves the

manual tuning of HO related configuration and optimization parameters (COPs) [6].

These COPs are tuned by leveraging human experience based hit and trial and

sometimes using vendor defined gold standards. These gold standards are based on

one-value-fits-all scenarios without considering varying network deployment, user

densities and mobility patterns. Hence, this manual tuning is often sub-optimal and

even degrades KPIs in some cases. Moreover, the human intervention based tuning

process is not suitable for rapidly changing network conditions. In addition to a large

number of BSs, an increase in the number of COPs per site in emerging networks
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compared to legacy networks makes the mobility COP optimization problem even

more complicated and expensive to manage manually. Therefore, the current hit

and trial based approach used in industry, is not viable for emerging (5G) and future

networks (6G).

State of the art self organizing network (SON) solutions do provide some automa-

tion in COP tuning and KPI optimization [7–9]. For instance, mobility robustness

optimization (MRO) is one of the SON functions, which deals with HO parameter

management [10]. MRO automatically adjusts HO related parameters based on the

past HO performance between two neighboring BSs. Though one step ahead of the

manual tuning, the current SON solutions do not meet the ambitious performance

requirements of emerging and future networks because of being reactive and relying

on only past observations instead of complete system behavior models [11]. In ad-

dition, current SON solutions use a very limited number of mobility COPs, i.e. cell

individual offset (CIO), event A3 related time to trigger (TTT), HO margin (HOM)

and hysteresis etc., to optimize the KPIs. An optimal and robust HO management

can only be devised if the COP-KPI relationship can be quantitatively modeled.

Despite the recent efforts on analytical modeling of HO process with certain as-

sumptions and limited COPs [12], [13], a tractable analytical COP-KPI model is

not feasible due to the system-level dynamics and complexity of the cellular network

involving mobile users. This calls for investigating the data-driven models instead.

Data-driven models can be leveraged to quantify the COP-KPI relationships. How-

ever, an efficient data-driven model needs training data with the following two

underlying conditions: 1) data should be sufficiently large and 2) data should be

representative. Although, massive data can be mined from a real network meet-

ing the first condition efficiently, the real challenge lies in the representativeness of

that data because operators cannot afford to try all possible combinations of COPs

on the live network due to the inherent risk of performance loss during the pro-
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cess. Secondly, such data cannot be shared with academia for privacy and business

protection reasons. Even if painstakingly gathered and shared, irrespective of the

volume, experience shows in case of cellular networks that real data alone is not

representative enough to train reliable models, and it has to be augmented with

authentic synthetic data anyway. To address the issue, in this study, we generate

and exploit reliable synthetic data to solve the important problem of key mobility

parameters optimization for inter-frequency HOs. We propose a framework to opti-

mize three COPs; threshold1, threshold2 and TTT, of HO event A5 which are the

most widely used inter-frequency HO management COPs in industry. The proposed

framework works in tandem with the current 3GPP standardized methods and does

not require new HO standardization efforts. This enables the swift uptake of the

proposed solution by network vendors and operators. Some of the major novelties in

the proposed framework includes: 1) the first framework to perform multi-objective

optimization of RSRP, SINR and HOSR as a function of relatively less explored

A5 inter-frequency HO parameters; 2) the framework addresses the training data

scarcity challenge by leveraging a reliable 3GPP compliant simulator [14]; 3) per-

formance improvement of machine learning (ML) algorithms utilizing SHAP based

smart COP sampling; and 4) SHAP based intelligent mutation scheme for GA

(IMGA) to accelerate convergence.

1.1 Related Work

A HO is triggered by pre-defined events called “Measurement Events”. 3GPP re-

lease 16 [15] has defined standard events for 5G NR, which can aid HO decisions.

Most of the existing studies optimize HO related parameters of event A3 to im-

prove certain KPIs [16–30]. A simulated model for LTE HOs was presented in [16],

which showed the variation in HO failures and HO frequency with varying mobility

parameters (offset, TTT and filter coefficient) and different user speed. However,
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this study lacked rigorous parameter optimization. Authors in [17] extended the

work by optimizing a weighted sum of three KPIs, HO failure ratio, ping pong HO

ratio and radio link failure (RLF) ratio, with two COPs, hysteresis and TTT. The

optimization algorithm performs an iterative search over hysteresis and TTT pairs

to find the optimal combination. However, the proposed optimization algorithm

has a high convergence time. The convergence time of this optimization algorithm

is improved in [18].

The impact of system load and the user speed with different TTT and HOM values

of A3 for long-term evolution (LTE) was studied in [19]. The study presented a

fuzzy logic controller that modifies HOM to optimize call dropping ratio and HO

ratio. Authors in [20] followed a different approach and categorized users based

on the speed and traffic type. They presented an algorithm to tune TTT and

HOM of A3 independently for each user category and optimized two KPIs, RLF

and ping-pongs. In contrast, users were categorized using clustering in [21]. This

study jointly optimized HO failure rate, ping pong rate, achievable data rate and

number of HOs and assigned a different TTT and offset of A3 for each cluster. A

different set of inputs was used in [22] and the study presented a fuzzy logic based

algorithm to determine hysteresis margin of A3. The fuzzy logic based algorithm

decides the value of hysteresis margin from the user velocity, RSRP and RSRQ.

The study showed improvement in number of handovers, RLF and ping-pongs. In

contrast to the previous studies, authors in [23] optimized energy efficiency and

SINR along with ping-pong ratio. They presented an algorithm which tunes TTT

and hysteresis margin of A3 to optimize KPIs.

CIO as COP was used to develop a context-aware MRO solution for reducing con-

nection failures using A3 in [24]. In contrast, authors in [25] used hysteresis and

TTT of A3 as COPs to develop a Q-learning based MRO solution and optimized

number of RLFs and ping-pongs. The idea was extended in [26] by using three
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COPs; TTT, offset of A3 and CIO, to develop a distributed MRO algorithm to

minimize RLF. The analysis was expanded to 5G settings in [27] and the study

used HOM and TTT as COPs while considering user speed and RSRP. The au-

thors proposed an auto-tuning algorithm to optimize the number of HOs and HO

failure ratio using A3. A study on the real network using A3 instead of simulations

was done in [28]. The authors tuned CIO as COP for each problematic cell-pair and

showed improvement in late HO rates, early HO rates and RLF rates. However,

this study did not consider any parameters of A3 for optimization.

While all the previous studies considered a trade-off between ping pong and RLF,

the authors in [29] extended the state of the art by proving that optimal settings of

A3 exist for minimizing both ping pong rate and RLF. In contrast to the previous

work, the implication of using the AHP-TOPSIS method from WiMax for target BS

selection in LTE-Advanced cellular networks was done in [30]. The authors used

Q-learning to find the optimal value of TTT and hysteresis of A3. Perhaps, the

only study which ventured beyond A3 was performed in [31]. In [31], a weighted

sum optimization of HO failure ratio, call drop ratio, and ping pong ratio using

reinforcement learning is done. The study considered TTT and HOM for events

A1, A2, A3, A4 and A5. However, this study considers the same TTT and HOM for

all the events instead of optimizing distinct values of TTT and HOM for different

events.

Several studies followed a different approach compared to the previously discussed

literature and proposed new methods for handovers in cellular networks. For in-

stance, authors in [32] proposed a proactive framework for handover timing opti-

mization and data rate degradation prediction for millimeter wave (mmWave) net-

works. The study utilized camera images and deep reinforcement learning to predict

obstacles that caused data rate degradation. Another study aimed to address the

beam forming and handover challenges in mmWave network [33]. The authors uti-
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Table 1.1: Use of Measurement Events for Inter-Frequency HO [1]

Function
Measurement

Event
Vendor

1
Vendor

2
Vendor

3

Inter-Frequency HO
A3 Yes No Yes
A4 No Yes No
A5 Yes Yes Yes

lized reinforcement learning to learn the optimal backup BS and show constant

rate and reliability with smaller number of handovers. Although these studies show

promising results, the proposed solutions require changes in the existing handover

standards hindering a swift industrial uptake.

The aforementioned studies investigate the intra-frequency HOs using event A3.

There is a second type of HO called inter-frequency HO, which happens between

cells operating on different frequencies. These HOs are more challenging to man-

age and lead to more signaling overhead and quality of experience issues due to

inter frequency cell discovery. Data collected from a leading operator in the United

States, operating with 6 frequency bands, show that there are around 60% more

inter-frequency HO attempts compared to intra-frequency HO [1]. This percent-

age is likely to increase as the number of bands being used increases e.g., due to

co-existence of 4G and 5G at different bands. This signifies the importance of

inter-frequency HO for current and future cellular networks. However, despite their

significance and associated open challenges, the performance optimization of the

inter-frequency HOs is not well explored in literature. Table 1.1 shows the allowed

use of each measurement event for inter-frequency HO by the three major telecom-

munication vendors. It is clear that all the three vendors support event A5 for

inter-frequency HO, making it the best choice for a self-optimization solution that

will work across all the vendors.

To the best of the authors’ knowledge, there does not exist a study in literature that

investigates the optimal configuration of A5 parameters for inter-frequency HO. In

addition, the main optimization KPIs in the discussed literature include RLF rate,
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Fig. 1.1: Closed loop self-optimization framework for cellular networks.

HO failure rate and ping pong rate while some studies also look at data rates and

energy efficiency. However, varying HO related COPs also impact core network

KPIs such as serving RSRP and SINR. This motivates a joint optimization of core

network KPIs in addition to HO related KPIs. Building on our prior work [34], we

jointly optimize coverage (RSRP), capacity (SINR) along with HOSR to provide a

holistic framework for inter-frequency HO management.

1.2 Contributions

Fig. 1.1 presents the proposed self-optimization framework for holistic mobility

management in cellular networks. In the absence of analytical models due to system-

level complexity, the framework leverages a data-driven approach to quantify the

COP-KPI relationship. To solve the training data scarcity challenge for data-driven

COP-KPI relationship, the framework exploits a realistic 3GPP compliant simula-

tor [14]. In addition, the framework utilizes a novel SHAP based smart sampling

approach to improve the performance of ML models. We also integrate an intelli-

gent mutation scheme for GA in the framework to accelerate convergence, which is

particularly useful in fast changing network conditions. The main contributions of
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this work are listed below:

1. This thesis is the first study to quantitatively investigate the impact of key

inter-frequency HO parameters namely A5 threshold1, threshold2 and TTT

on three major KPIs that dictate user experience namely RSRP, SINR and

HOSR. The analysis reveals three key insights: i) for a given network setting,

there exist optimal parameter values for each KPI; ii) these optimal values do

not necessarily belong to the current gold standard; iii) the optimal parameter

values for the three KPIs do not overlap. These insights call for a new method

to determine the optimal values of the three parameters.

2. We formulate and solve a multi-objective optimization problem to determine

the optimal values of threshold1, threshold2 and TTT. We design the objective

function such that it not only allows joint maximization of all three KPIs, i.e.,

RSRP, SINR and HOSR but also ensures fairness among KPIs while achieving

the desired operator defined goal for each KPI.

3. A key challenge in solving the said optimization problem is system level com-

plexity that prohibits derivation of an analytical model. We address the chal-

lenge by exploiting data-driven modeling [3]. As operators do not allow ex-

periments with A5 parameters outside the gold standard range, we generate

and exploit synthetic training data using a realistic 3GPP compliant system

level simulator [14]. Results show that the XGBoost based model outperforms

other state of the art machine learning algorithms. Small root mean square

error (RMSE) in predicting the KPI values for given COPs shows the ability

of the models to accurately capture the complex COP-KPI relationship.

4. A key challenge in using data-driven approach in real networks is the difficulty

of getting training data for a large number of COP combinations. To overcome

this challenge, we leverage SHAP based sensitivity analysis that determines
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the important ranges of every COP for all the three KPIs by examining their

rate of change. Drawing insights from SHAP analysis, we devise a smart

sampling in which we collect more samples within the important ranges and

only sparse samples in less important range. Results show that this sensitivity

aware data collection approach improves the accuracy of the model compared

to regular sampling.

5. We show that the joint optimization problem is non-convex and solve it using

genetic algorithm that reduces the computational time by 4x compared to

brute force based search. In addition, we exploit the SHAP sensitivity anal-

ysis in a novel way to improve the mutations of GA that leads to 5x faster

convergence time compared to state of the art GA. To the best of authors’

knowledge, this is the first study that exploits SHAP based sensitivity analysis

for improving the convergence time of GA.

6. This study thus presents first framework to enable closed loop self-optimization

of inter-frequency handover parameters for maximizing all three major KPIs

that dictate user experience. Fig. 1.1 presents the overall schematic of this

framework. The sensitivity analysis based training data optimization com-

bined with smart mutation based GA means this solution can be implemented

in real networks even with sparse training data and limited computational re-

sources.

1.3 Publications

1. Data Driven Optimization of Inter-Frequency Mobility Parameters for Emerging

Multi-band Networks

Muhammad Umar Bin Farooq, Marvin Manalastas, Waseem Raza, Aneeqa Ijaz,

Syed Muhammad Asad Zaid, Adnan Abu-Dayya, and Ali Imran

Published, 2020 IEEE Global Communication Conference (GLOBECOM).

9



2. A Data-Driven Self-Optimization Solution for Inter-Frequency Mobility Param-

eters in Emerging Networks

Muhammad Umar Bin Farooq, Marvin Manalastas, Waseem Raza, Syed Muham-

mad Asad Zaid, Ali Rizwan, Adnan Abu-Dayya, and Ali Imran

submitted to IEEE Transactions on Cognitive Communications and Networking.

1.4 Organization

Rest of the thesis is organized as follows: Chapter 2 describes the event A5 and

simulation setup along with the problem formulation; the qualitative impact of

inter-frequency COPs on KPIs is presented in Chapter 3; in Chapter 4, we discuss

the smart sampling approach to improve the data quality for ML training and

the performance of ML models in capturing the COP-KPI relationship; Chapter

5 presents the KPI optimization using the data-driven models while Chapter 6

concludes the thesis.

10



CHAPTER 2

System Model

This chapter describes the 3GPP defined measurement event A5 together with the

parameters to optimize the mean RSRP, mean SINR and HOSR. We then describe

the COP-KPI optimization problem followed by simulation setup.

2.1 Handover Event A5

Event A5 is triggered when the RSRP to a user u from its serving BS decreases

below a threshold, i.e., threshold1, and the RSRP to the same user from a target BS

increases above another threshold, i.e., threshold2. These conditions are formally

described in the following equations.

ηus + A5hyst < A5th1

ηut +Os,t − A5hyst > A5th2

(2.1)

where ηus is the RSRP of the user u with serving BS s, ηut is the RSRP of the user

with target BS t, Os,t is the cell-specific offset also known as CIO from the serving

to target BS, A5hyst, A5th1 and A5th2 are the hysteresis, threshold1 and threshold2

for event A5, respectively. HO using A5 is triggered when these conditions remain

satisfied for a certain time, called time to trigger, TTT. On the other hand, a user

will exit event A5 if either of the following conditions are met:

ηus − A5hyst > A5th1

ηut +Os,t + A5hyst < A5th2

(2.2)

11



2.2 Problem Formulation

RSRP of the user is an important performance metric because it gives an estimate

of the link strength between user and the serving BS. The downlink RSRP ηus for a

user u connected to the serving BS s is given by:

ηus = Psd
u
s (2.3)

where Ps is the transmit power of serving BS s and dus is the path loss dependent

component of the user u with the serving BS s. The pathloss dependent component

also contains antenna gains as well as the shadowing for the user, which is modeled

as a gaussian random variable. The mean RSRP η of all the users in the network

can be described as:

η =

∑
∀i∈U

ηis

|U |
(2.4)

where U is a set of all the users in the network.

Signal to interference and noise ratio (SINR) is also an important KPI, which gives

an estimate of the network capacity. SINR γu
s,j on a physical resource block (PRB)

j which has been allocated to a user u from BS s can be written as following:

γu
s,j =

Ps,jd
u
s,j

K +
∑

∀i∈Bf

Pi,jdui,j
(2.5)

where Ps,j is the transmit power of serving cell s at PRB j, dus,j is the path loss

dependent component of user u with the serving cell s at PRB j and K is the

thermal noise. Pi,j is the transmit power of interferer i at PRB j, dui,j is the pathloss

dependent component of user u with the interferer i at PRB j and the set Bf

contains all the interfering BS using the same frequency band as the user u. The

SINR γu
s for user u connected to BS s can be obtained by averaging the SINR on

all the PRBs allocated to the user. γu
s can be written as:

12



γu
s =

∑
∀j∈Ru

γu
s,j

|Ru|
(2.6)

where set Ru contains all the PRBs allocated to the user u. The mean SINR γ of

all the users can be written as:

γ =

∑
∀i∈U

γi
s

|U |
(2.7)

HOSR is another important KPI that captures the effectiveness of the HO related

parameter settings. Poor HOSR can become a key bottleneck for URLLC in 5G

and beyond, particularly for applications such as intelligent transport systems and

autonomous cars. HOSR ξ can be described as:

ξ =
HOS

HOS +HOF
× 100% (2.8)

where HOS and HOF are the number of successful and failed handovers, respec-

tively, in the network.

min
A5TTT,A5th1,A5th2

√
α[(η − ηt)2]norm + β[(γ − γt)2]norm + (1− α− β)[(ξ − ξt)2]norm;

subject to T1min ≤ A5th1 ≤ T1max

T2min ≤ A5th2 ≤ T2max

A5TTT ∈ T

α + β ≤ 1

(2.9)

Mean RSRP, mean SINR and HOSR for the network can be optimized jointly. We

formulate a multi-objective optimization problem to minimize the difference of η, γ

and ξ with the target values of each KPI using A5 related COPs. The formulation is

given in (2.9). ηt, γt and ξt are the target values of RSRP, SINR and HOSR. α and β

are the operator-defined weights that can be used to adjust the relative importance

of RSRP, SINR and HOSR, respectively. The normalization shown in the subscript
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removes the bias towards large values of KPI and confirms that the importance of

each KPI is only defined by their respective weights. T1, T2 are the ranges of A5th1

and A5th2, respectively, with the subscript showing the minimum and maximum

values and T is a set containing all the values of A5TTT. The optimization variables

are A5TTT, A5th1 and A5th2. The first three constraints in (2.9) limit the values

of the optimization variables i.e., COPs in the 3GPP defined ranges. The fourth

constraint states that the sum of the three weights is equal to one.

Solving this problem using the analytical method is not a viable approach as

tractable system level models for RSRP, SINR and particularly HOSR as a function

of the three COPs is very difficult, if not impossible to derive. Even if abstract math-

ematical models are created [12], [13], they cannot capture the dynamics caused by

the mobility of the users. Therefore, to enable practical self-optimization solutions,

as originally proposed in [3], data-driven modeling is a more viable approach to

solve (2.9).

2.3 Simulation Setup and Data Generation

Collecting all the needed data from a live network though plausible in theory, is

impractical in practice due to sparse and non-representative real data in addition

to the privacy and business protection concerns of operators.

In this backdrop, to generate the data, we exploit a state of the art 3GPP-compliant

system level simulator named SyntheticNET [14]. This is the first simulator to

model 5G mobility parameters in detail needed for this study. As shown in [14],

this simulator has been calibrated against real network measurements to ensure the

authenticity of the data generated through it.

A network with an area of size 2km×2km is used for the data generation. We

consider a three-tier heterogeneous network, where each layer operates at different
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Table 2.1: Description of Simulation Parameters

Parameter Description Value
Simulation area 4km2

Number of for 1.7GHz macro transmitters 6
Number of 2.1GHz macro transmitters 6
Number of 3.5GHz small cells 2
Macro cell height 30m
Small cell height 20m
Macro cell transmit power 30dBm
Small cell transmit power 30dBm
Total bandwidth for 1.7, 2.1 and 3.5 GHz 10, 15 and 20 MHz
Total PRBs for 1.7, 2.1 and 3.5 GHz 52, 78, 106
Pathloss exponent 3
Shadowing standard seviation 4
Active user density λu 15 per km2

Speed vector V [3, 60, 120, 240] km/h
Transmission time interval (TTI) 1 ms

band. Two layers are composed of macro cells and the remaining layer is composed

of small cells. Each macro cell has three sectors and each sector operates at two

frequency bands, 1.7GHz and 2.1GHz. Small cells have omni-directional antenna

operating at a frequency band of 3.5GHz. The initial deployment of the users in

the network follows a uniform distribution with user density λu. Each user can

move in the network with speed vu chosen from a set V . All elements of the set

V are equally probable and the speed value remains constant for a user. The user

mobility type is a random way point. The network level simulation parameters are

summarized in Table 2.1.

In addition to the optimization parameters of interest, the mobility related param-

eters of different events also need to be defined to generate realistic data. Event A2

is used to trigger the measurement gap (MG) for inter-frequency cell discovery as

inter-frequency HOs can only happen when MG is triggered. The values of TTT,

threshold, and hysteresis for event A2 are set to 64ms, -90dBm and 1dB, respec-

tively. Table 2.2 shows the ranges of event A5 related COPs used to generate the

data. A wide range for A5th1 and A5th2 are chosen to cover the effect of hysteresis
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Table 2.2: Description of COPs to generate the KPIs

COPs Values
A5TTT [64, 128, 256, 320, 512] ms
A5th1 [-90 to -120] dBm
A5th2 [-90 to -120] dBm

for making event A5 parameters optimization more robust. A step size of 1dBm is

used for both A5th1 and A5th2.
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CHAPTER 3

Impact of Inter-Frequency Handover Parameters on KPIs

To date, the effect of changing the values of A5 related COPs on the KPIs such as

RSRP and HOSR is not fully understood, even in academic literature [4]. Industry

practice, on the other hand, is to use gold standard fixed values recommended by

the vendors for A5 parameter settings without any consideration of their optimality.

Qualitative and quantitative insights into how A5 parameter values affect the KPIs

are essential to optimize these parameters. This chapter presents the analysis to

harness these insights. These insights are also used to establish the structure of

(2.9) to see whether or not it is a convex optimization problem so an appropriate

solution approach can be adapted.

3.1 Impact on Mean RSRP and Mean SINR

We begin by analyzing the impact of A5TTT, A5th1, and A5th2 on mean RSRP by

changing their values and logging resultant mean RSRP. Result in Fig. 3.1 shows

that the mean RSRP decreases for very high and very low values of A5th2. This

happens because very high values of A5th2 trigger late HO as users are unable to

transfer to the target BS with better RSRP. This ultimately results in a longer stay

of users under the coverage of a BS with poorer RSRP. Similarly, lower values of

A5th2 result in the too early HO to BS with bad coverage lowering the overall RSRP.

An opposite effect is observed for variations in the values of A5th1. Unlike in A5th2,

very low values of A5th1 cause too late HO as event A5 is triggered when the serving

RSRP is already very poor. Meanwhile, very high values of A5th1 result in too early

HO. In terms of variations in A5TTT, it is observed that different A5TTT values shift

17



Fig. 3.1: Impact of A5 thresholds and TTT on mean RSRP.

the high RSRP area. As A5TTT increases, the concentration of higher RSRP goes

towards lower A5th2 and higher values of A5th1. This observation provides insight

that if larger A5TTT is used (e.g. in dense urban area where mobility is slow), to

maintain good RSRP for the users, a higher value of A5th1 and a lower value of

A5th2 should be used.

Fig. 3.2: Impact of A5 thresholds and TTT on mean SINR.

The impact of A5 thresholds and TTT on SINR is shown in Fig. 3.2. SINR follows
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a similar trend as RSRP with poor SINR observed for extreme values of A5th1 and

A5th2. This happens because extreme values of thresholds result in too early and

too late HO connecting the user to a serving cell with poor signal strength. It also

increases the interference from the neighboring cells with better signal conditions

and hence poor SINR of the user. Although a similar tend is observed for RSRP

and SINR, different COP combinations maximize RSRP and SINR. This observation

provides additional rationale to include both RSRP and SINR in the optimization

problem.

Fig. 3.3: Comparison of gold standard and simulation results. Red box represents the
range of threshold values recommended by the gold standard used in industry. Blue box is
the area of high mean RSRP, for analyzed network scenario. This finding can be insightful

for the industry.

Fig. 3.3 shows a 2D plot of mean RSRP versus A5th1 and A5th2 for A5TTT of 64ms

and 512ms. In this figure, we highlight with a red box, the A5 parameter values

used as gold standards (GS) by one of the leading operators in the United States.

We have also highlighted the blue area where the highest average RSRP has been

observed for the analyzed scenario. This comparison shows a significant overlap

between the GS and our values of A5th1 and A5th2 for A5TTT of 64ms. However, the

location of the blue box changes when A5TTT is 512ms i.e., optimal values of A5

thresholds change. Therefore, the current GS based fixed value setting approach is

not optimal and hence the need for self-optimization solution as proposed in this

study.
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Fig. 3.4: Impact of A5 thresholds and TTT on HOSR.

3.2 Impact on HOSR

The impact of different A5 thresholds and TTT setting on HOSR is shown in Fig.

3.4. At first glance, these results give the impression that 100% HOSR can be

achieved using higher values of A5th2 (i.e., greater than -100dBm). However, this

does not necessarily mean higher A5th2 is the optimal setting. As HO conditions

using higher A5th2 are more challenging to achieve, very few HOs will occur, leading

to extremely poor RSRP and SINR, as seen in Fig. 3.1. In fact, using extreme

thresholds and TTT values result in no HO at all. Although these settings result

in lower HO failure, the users are forced to stay under inadequate RSRP and SINR

conditions for a long period leading to poor throughput and increased chances of

RLF. This can also be validated from Fig. 3.1 and Fig. 3.2, showing the worst

mean RSRP and SINR in the same area where the HOSR is the highest. Fig. 3.4

also shows that most HO failures occur when lower A5th1 is used. This result is

expected as poor RSRP of the serving BS is one of the main reasons for HO failure.

The conflicting trend of Fig. 3.4 compared to Fig. 3.1 and Fig. 3.2 shows a trade-

off between optimizing RSRP and SINR while optimizing HOSR, necessitating the
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joint optimization of the three KPIs together as proposed in this thesis.
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CHAPTER 4

Improved Machine Learning Models for COP-KPI Relationship

Leveraging SHAP

This chapter presents the performance of machine learning algorithms modeling the

COP-KPI relationship. The goal is to build a model that can predict mean RSRP,

mean SINR and HOSR as a function of A5th1, A5th2, and A5TTT. To solve the

challenge of rapid and representative data generation, we first present a training

data improvement technique using sensitivity analysis on the initial data described

in section 2.3. The performance of ML models on the initial data and improved

data is also discussed.

4.1 Data Improvement using Sensitivity Analysis

Sensitivity analysis is usually used to explain the black-box nature of data-driven

models [35], [36]. In addition, sensitivity analysis can provide the importance of

each feature and is also used for feature selection when there are a high number

of input features [37]. Different from these conventional use cases of sensitivity

analysis, we have used sensitivity analysis to improve our data. We not only use

sensitivity analysis to find important COPs but also to identify the range of the

COPs, which produces the maximum change in KPI. A lower step size (higher

sampling rate) can be used in this important range to enrich the data and ultimately

training the machine learning model on a more representative data for each KPI.

Hence, the model can learn the rapidly changing behavior of KPI. SHAP [38] is

a recent sensitivity analysis tool based on shapley values [39], a cooperative game

theory concept in which the impact of each player is calculated on the output of the
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collaborative game. We leverage the SHAP analysis to study the impact of each

COP on the three KPIs and the inter-relation between the COPs. The insights

drawn from this analysis pave way for faster generation of a representative data set.

4.1.1 Sensitivity Analysis for RSRP

Fig. 4.1 shows the mean SHAP values and their distribution for RSRP. It is evident

from Fig. 4.1(a) that A5th2 has the highest impact on RSRP while A5th1 and

A5TTT have lesser and almost the same impact on RSRP. Fig. 4.1(b) gives more

detailed insights with color indicating the COP (feature) value. The horizontal axis

specifies the SHAP value for each data point and the vertical thickness indicates

the data point density. The vertical thickness at the extremes for A5th2 implies

that a large fraction of A5th2 value range (data points) has an extremely positive

or negative impact on RSRP. On the other hand, the thickness around zero for

A5th1 and A5TTT shows that most of values for these two parameters have minimal

impact on RSRP. It can also be seen that purple color, which corresponds to the

mid values of thresholds has the highest positive impact on RSRP for both A5th2

and A5th1. This gives the insight that RSRP maximizes when A5th2 and A5th1 are

not set to extremely high or low values. In addition, extremely high values of A5th2

(red color) while extremely low values of A5th1 (blue color) have the most negative

impact on RSRP and hence should be avoided when tuning the COPs for optimizing

the RSRP. In addition, it is also evident that lower values of A5TTT (blue color)

have the most positive impact on RSRP as shorter values of A5TTT ensures faster

HO to a BS with better RSRP.

The inter-dependency of the three COPs is shown in Fig. 4.2 using the SHAP

dependency plots. The horizontal axis shows the variation in one COP and the

vertical axis indicates the impact on the output. The color bar shows another

COP which produces the highest change in the SHAP value of the first COP under
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(a) Mean SHAP value (b) SHAP value distribution

Fig. 4.1: Impact of each input parameter on RSRP

(a) (b) (c)

Fig. 4.2: Impact of each parameter on RSRP and their inter-dependence

consideration. Each colored point represents a data point with corresponding two

COPs and the SHAP value.

Fig. 4.2(a) shows that, starting from -120dBm, increasing the values of A5th1 im-

pacts RSRP positively until it reaches around -105dBm and then the impact starts

to decrease. It can be seen that the rate of change in RSRP is highest when A5th1 is

in the range of -120dBm to -114dBm. The rate of change in RSRP is lower outside

this range of A5th1. In addition, A5th1 interacts the most with A5th2. The trend

of SHAP values for A5th2 follows a similar trend as that of A5th1 as shown in Fig.

4.2(b). The impact increases with increasing values of A5th2 increases up to the

maximum SHAP value and then starts to decrease. However, it can be seen that

the rate of change of RSRP is maximum when A5th2 is in the range of -108dBm

to -98 dBm. Using these insights from SHAP analysis, we have devised a smart

data improvement approach. Since we know that the rate of change of RSRP is

higher from -120dBm to -114dBm and -108dBm to -98dBm for A5th1 and A5th2,

respectively, we have sampled more values of both COPs in this important range to
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Table 4.1: Ranges of COPs with the maximum rate of change in the KPIs

KPI A5th1 (dBm) A5th2 (dBm)
RSRP [-120 to -114] [-108 to -98]
SINR [-120 to -110] [-118 to -97]
HOSR [-120 to -110] [-106 to -97]

Total Range [-120 to -110] [-118 to -97]

capture the rapidly changing behavior of RSRP. Fig. 4.2(c) shows that the impact

on RSRP becomes negative with increasing A5TTT and A5th2 interacts the most

with A5TTT.

A similar sensitivity analysis for SINR and HOSR reveals a range of COPs which

produces a higher rate of change in the KPIs. This range of A5th1 and A5th2 for

all the three KPIs is shown in Table 4.1. A lower step size of 0.5dBm is used in

this range for the two COPs. This intelligent variation in step size based on the

relative rate of change of the three KPIs improves the training data. This improved

data contains more information where the KPIs are rapidly varying and hence the

machine learning algorithms trained on this data are expected to better predict the

KPI behavior. We have not over sampled A5TTT because there are fixed 3GPP

defined values of A5TTT and hence a data sample outside these values cannot be

implemented in a practical cellular system. In addition, A5TTT has the least impact

on all the three KPIs, which indicates that more samples of A5TTT may not improve

the data-driven models significantly.

4.2 Performance Comparison of Machine Learning Models

The performance of different machine learning algorithms with uniform and vari-

able COP sampling is presented in this sub-section. A 80%-20% train-test data

split is used and the performance of six different regression techniques is evaluated.

Table 4.2 shows the performance of linear, polynomial, support vector, decision

tree, random forest and XGBoost regression algorithm in terms of RMSE. Due to
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Table 4.2: RMSE comparison of different machine learning algorithms for RSRP, SINR
and HOSR prediction with fixed and variable sampling size.

ML Models
RSRP (dBm) SINR (dB) HOSR (%)
Fixed Variable Fixed Variable Fixed Variable

Linear 0.4615 0.4381 0.4339 0.4338 5.89 6.58
Polynomial 0.1821 0.1728 0.2662 0.2689 5.17 5.66

Support Vector 0.1172 0.1091 0.2409 0.2359 5.31 5.46
Decision Tree 0.0926 0.0814 0.2791 0.2683 4.47 3.99
Random Forest 0.0764 0.0639 0.2078 0.2125 3.32 3.05

XGBoost 0.0699 0.0635 0.2035 0.1995 3.12 2.99

the complex non-linear relationship between COPs and KPIs, linear regression is

not able to capture the relationship leading to a high RMSE of all the three KPIs

with fixed sampling size. Similarly, the fourth order polynomial and support vector

regression techniques also failed to capture the COP-KPI relationship displaying

higher RMSE compared to other algorithms. Results also show that tree-based al-

gorithms exhibit promising results in predicting the KPIs. Top 3 algorithms with

lowest RMSE for RSRP, SINR and HOSR are all tree-based with XGBoost being

the best showing RMSE of only 0.0699dBm, 0.2035dB and 3.12% for mean RSRP,

mean SINR and HOSR, respectively with a fixed sampling size.

The performance of each technique is also shown for improved data after variable

sampling of A5th1 and A5th2 as described in chapter 4.1. It can be seen that the

RMSE of XGBoost improved by 0.0064dBm, 0.004dB and 0.13% for mean RSRP,

mean SINR and HOSR, respectively. This corresponds to an improvement of almost

9%, 2% and 4% for mean RSRP, mean SINR and HOSR, respectively with variable

data sampling as compared to the fixed one. A small improvement of 2% for SINR

shows that it is a difficult KPI to predict even with more data. This happens

due to high variation in SINR because of randomness in interference at each PRB.

The RMSE might not improve for some of the regression models with variable

sampling because the SHAP analysis was done for the best performing ML model,

which is XGBoost. SHAP analysis for XGBoost model highlighted the important
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range of A5th1 and A5th2, but the important range of the two COPs will vary

from one ML model to another. The reason is the different underlying learning

behavior of each ML technique. The RMSE is decreased for RSRP in all the ML

techniques indicating similar important range of the two COPs. The RMSE of

polynomial regression and random forest increased for SINR while it decreased for

all other techniques. This shows that the important range of the two COPs is

different for polynomial regression and random forest as compared to XGBoost for

predicting SINR. The RMSE of linear regression, polynomial regression and support

vector machine increased for HOSR with variable sampling highlighting a different

important range of the two COPs. The improved XGBoost model has learned the

COP-KPI relationships with lower errors and can be used for KPI optimization in

the absence of a tractable analytical model.
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CHAPTER 5

Objective Function Optimization

The data-driven model developed in the previous chapter can be used to find the

optimal value of the objective function defined in eq. (2.9). The COP combination

producing the optimal value of objective function can be used by network operators.

The solution thus can replace the current manual and hit and trail based COP

tuning with a self-optimization system.

(a) A5TTT=64ms (b) A5th2=-110dBm (c) A5th1=-110dBm

Fig. 5.1: Objective function defined in eq. (2.9) with α = 0.33, β = 0.33

Fig. 5.1 shows the plot of the objective function defined in eq. (2.9) with 0.33 value

of both α and β (equal importance for all three KPIs). Fig. 5.1(a), 5.1(b) and

5.1(c) shows how the objective function varies with fixed A5TTT, fixed A5th1 and

fixed A5th2, respectively. As shown in the plots, the objective function has several

minima for all the different COP combination, making eq. (2.9) a non-convex op-

timization problem. This non-convex problem can be solved either through brute

force search or heuristic solutions. We compare the performance of the brute force

method for optimization with well-defined heuristic approach, genetic algorithm.

The choice of genetic algorithm as a heuristic tool is based on its effectiveness in

solving complex optimization problems of cellular networks [40, 41]. We also com-

pare the performance with current industrial practice of using gold standards. The
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objective function value reported for GS is very optimistic because we have con-

sidered all the 225 combinations from GS. However, gathering data even for 225

different combinations from live network is a long shot for most network operators.

Table 5.1 shows the optimal objective function and the corresponding value of COPs

for different weights of the three KPIs, mean RSRP, mean SINR and HOSR. It can

be seen that the presented solution, GA combined with XGBoost, offers signifi-

cant improvement in objective function values compared to GS. GA with XGBoost

converges to the same optimal solution returned by brute force for same weight of

all KPIs and for high weight of HOSR. In addition, GA converges almost 4 times

faster compared to the brute force method as shown in Fig. 5.3. In the following

sub-section, we present a SHAP sensitivity analysis inspired novel IMGA that can

further reduce the convergence time.

Table 5.1: Comparison between Gold Standard, Genetic Algorithm and Brute Force

α β
Optimization

Solution
Objective
Function

Optimal COP
Values

[A5TTT, A5th1, A5th2]

0.33 0.33
Gold Standard 0.4138 [512, -109, -112]
GA + XGBoost 0.3136 [256, -113, -117]
Brute Force 0.3136 [256, -113, -117]

0.5 0.25
Gold Standard 0.4197 [512, -104, -111]
GA + XGBoost 0.3575 [128, -115, -120]
Brute Force 0.3447 [256, -113, -117]

0.25 0.5
Gold Standard 0.4060 [512, -112, -112]
GA + XGBoost 0.3022 [256, -113, -118]
Brute Force 0.2940 [128, -115, -113]

0.25 0.25
Gold Standard 0.3629 [512, -109, -112]
GA + XGBoost 0.2965 [256, -113, -117]
Brute Force 0.2965 [256, -113, -117]

5.1 Intelligent Mutations in Genetic Algorithm

It has already been observed in chapter 4 that A5th1 and A5th2 have the highest

impact on all the three KPIs. The dependence SHAP analysis of the utility function
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for the two COPs is shown in Fig. 5.2 and can give insightful information that can

be exploited to improve convergence time of the GA. As the optimization problem in

(2.9) aims at minimizing the utility function, the values of the two COPs producing

the negative impact on the utility should be chosen. Horizontal lines with green,

yellow and brown color in Fig. 5.2 highlight cutoffs on SHAP values of 0, -0.05

and -0.10, respectively. All the values of A5th1 and A5th2 below the green have

a negative impact on the utility and hence, should produce the minimum utility

function. Similarly, the points below the yellow and brown lines have more negative

values narrowing down the two COPs. We leverage this information for intelligent

mutations in A5th1 and A5th2. The mutations of the two COPs are restricted to the

values below each line to expedite the finding of the fittest offspring.

(a) (b)

Fig. 5.2: Dependence plot of A5th1 and A5th2 for the utility function with α = 0.33 and
β = 0.33

The convergence time along with the corresponding objective function value and

optimal COPs for GA with intelligent mutations of A5th1 and A5th2 is shown in Fig.

5.3. It can be seen that lowering the cutoff of SHAP values for restricted mutations

improves the convergence time of IMGA. The convergence time of IMGA for SHAP

cutoff at 0, -0.05 and -0.10 improves by 4.2, 6.8 and 21.6 times, respectively, com-

pared to brute force while GA without intelligent mutation is only 4 times faster.

The faster convergence of IMGA comes without any degradation in the objective

function compared to that returned by the GA without intelligent mutations when
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Fig. 5.3: Convergence time and objective function comparison between brute force, GA
and intelligently mutated GA with different SHAP value cutoff.

the cutoff is 0 and -0.05. However, a slight degradation of 0.0155 in the objective

function is observed when the cutoff is -0.10. The fast convergence time can make

the solution agile especially for fast changing network conditions. Compared to gold

standard such self-optimization can improve the KPIs like RSRP, SINR and HOSR

substantially.
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CHAPTER 6

Conclusion

In the wake of densification and multi-band operation envisioned for emerging and

future cellular networks, inter-frequency handovers can become a major bottleneck

in user experience. This thesis presents the first solution to systematically analyze

and optimize three key mobility management COPs that dictate inter-frequency

handover: A5th1, A5th2 and A5TTT. The proposed optimization solution jointly

optimizes three KPIs that contribute to user experience: RSRP, SINR and HOSR.

As analytical modeling is not viable for such system level problem, we leverage

data driven approach. The insights from SHAP sensitivity analysis are used to

address the training data scarcity problem and improve the training data through

selective over-sampling in important range and under-sampling in less important

range. SHAP sensitivity analysis shows that A5th2 has the highest impact on RSRP,

SINR and HOSR followed by A5th1 and A5TTT. State of the art machine learning

techniques are used to develop a COP-KPI model. Results show XGBoost performs

the best with RMSE of 0.0635dBm, 0.1995dB and 2.99% in predicting mean RSRP,

mean SINR and HOSR, respectively. After showing that the joint RSRP, SINR

and HOSR optimization problem is non-convex, we solve it with GA that converges

4 times faster than the brute force. We propose and utilize SHAP analysis based

intelligent mutation scheme in GA. Results show that proposed scheme can lead to

21 times faster convergence in GA compared to brute force search at the cost of

slightly sub-optimal objective function.
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