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Selective phase transformation of layered
double hydroxides into mixed metal oxides
for catalytic CO oxidation
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SUMMARY

Phase transformation from layered double hydroxides (LDHs) into
mixed metal oxides (MMOs) has been widely used in various cata-
lytic applications owing to its numerous advantages over conven-
tional synthesis methods. Herein we report the results of selective
phase transformation of LDHs into spinels and delafossites for the
preparation of phase-pure MMO catalysts. Pure cuprous delafos-
sites and cupric spinels were selectively obtained through heat
treatment of Cu-based LDHs followed by post-treatments. This
enabled the study of the crystalline-phase-dependent CO oxidation
activity of the MMO catalysts and their physicochemical properties.
The spinel catalysts exhibited higher CO oxidation activities, in com-
parisonwith those of the delafossites, with greater redox properties
and improved active sites for CO adsorption. Although the crystal-
line phases were derived from the same LDH precursors, the cata-
lytic properties of the end product were greatly influenced by their
crystal structures.
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INTRODUCTION

Generally, different materials can be composed of the same elements and have the

same compositions. Despite this similarity, they can exhibit distinctly different phys-

icochemical properties depending on their crystal structures (phases).1,2 Therefore,

phase-selective synthesis is indispensable for developing materials with desired

functional properties. Noteworthy examples of materials that consist of the same el-

ements but have different crystal structures are spinels and delafossites. Both of

these materials can have the same cation as one of their structural components.

The spinel has a crystal structure with the general formula, AxB3-xO4, which is isotypic

with MgAl2O4.
3 As shown in Figure 1A, the divalent (A) and trivalent (B) cations

occupy the tetrahedral and octahedral sites, respectively, in an oxygen array of a

normal spinel (degree of inversion, g = 0). Further, the cations A and B can swap their

sites in a spinel, and their site preferences are affected primarily by their respective

cation sizes and the ligand field stabilization energy.4 An inverse spinel structure (g =

1) is formed when all the A cations occupy the octahedral sites and half of the B cat-

ions occupy the tetrahedral sites. The inverse and mixed spinels (0 < g < 1) exhibit

functional properties that are different from those of the normal spinels.5 Owing

to their unique features including cationic inversion ability, spinels have been used

in various fields, such as catalysis, magnetism, and energy conversion.6–8

The delafossite, another crystal structure with the general formula ABO2, has

garnered significant interest because of its unique electrical, magnetic, optical,

and catalytic properties.9–13 In particular, delafossite can have a wide range of
Cell Reports Physical Science 2, 100628, November 17, 2021 ª 2021 The Authors.
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Figure 1. Illustrations of the Crystal structures

(A) AB2O4 Spinel structures.

(B) ABO2 Delafossite structures.
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conductivities, from insulating to semimetallic depending on its constituent ele-

ments. Figure 1B shows the generic structure of a delafossite crystal. The monova-

lent cations are linearly coordinated to two oxygen anions in the A-sites. The triva-

lent metal cations are located in the centers of the distorted edge-sharing BO6

octahedrons (B-sites). An oxygen atom is located in a configuration of pseudo-tetra-

hedral coordination as B3AO. Only four types of cations, that is, the cations of Cu,

Ag, Pd, and Pt have been reportedly used as A-site cations in delafossite struc-

tures.14,15 Among them, Cu is earth-abundant, and its delafossite form (i.e., cuprous

delafossite) can exhibit p-type transparent conducting oxide (p-TCO) behaviors.16

Thus, components made of cuprous delafossites are promising candidates for devel-

oping electrochemical devices that can perform CO2 reduction, water splitting, gas

sensing, and solar energy conversion.17–21 Cu can possess monovalent as well as

divalent chemical valence states; hence, it can be a constituent cation in both spinel

and delafossite structures.

Layered double hydroxides (LDHs) have been widely used as the precursors for pro-

ducing mixed metal oxides (MMOs).22–26 LDHs, also known as hydrotalcite-like com-

pounds, are a class of materials that have lamellar structures with positively charged

host layers in which two or more types of metal cations are immobilized by the hy-

droxide anion arrays with uniform distribution.27 In general, it is relatively difficult

to precisely control the composition of the products in solution-based synthesis

methods as compared to physical vapor deposition techniques. However, owing

to their unique structures, we can tune the elemental constitution of LDHs while

readily synthesizing them by the solution-based synthesis methods.28,29 Therefore,

MMOs that are derived from the LDHs have precisely controlled elemental compo-

sitions as well as certain additional advantages, such as controllable phase sizes and

crystallographic orientations within the structures, which have tailored morphol-

ogies and particle sizes.30,31 However, to date, only spinel-based MMOs trans-

formed from LDHs have been reported, limiting their range of applications.

In this study we have achieved selective phase transformation of LDHs into delafos-

site- or spinel-based MMOs using rationally designed components that were gener-

ated during the heat treatment of the samples and their redox interactions. Initially,

we successfully synthesized pure Cu-based LDHs containing Al, Cr, or Ga cations by

a systematic parameter study including pH, aging temperature, and ionic size,
2 Cell Reports Physical Science 2, 100628, November 17, 2021



Figure 2. Influence of initial pH value on crystalline phases of final products

(A) X-ray diffraction patterns of CuAl-LDH samples prepared at different initial pH.

(B) Relative amounts of crystalline phases of the samples prepared at different initial pH.
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although it is difficult to synthesize pure Cu-based LDHs owing to the formation of

distorted Cu2+ octahedrons induced by the Jahn–Teller effect. The as-prepared

pure Cu-based LDHs were transformed into delafossite- or spinel-based MMOs by

controlling the atmospheric conditions under an inert atmosphere or in air during

the heat treatment. Moreover, CuO and Cu2O as components of MMOs can be

selectively etched after acid treatment, leaving pure cuprous delafossites or cupric

spinels as the end products. These selectively prepared pure-phase MMOs aided

in a more precise study of the phase-dependent catalytic CO oxidation. CO oxida-

tion (2CO+O2 /2CO2) has been designed to control emissions from combustion

sources and it can be accomplished under mild reaction conditions with relatively

rare side-reactions.32–35 The CO oxidation reaction has been extensively studied

as a model reaction due to industrial applications such as automotive exhaust gas

treatment and CO removal in proton exchange membrane fuel cells. Basic studies

on the catalysts in these model reactions can advance catalyst development for

many catalytic processes. In addition, the principle underlying the difference in ac-

tivity based on the structural differences of materials can be suggested through

this model catalytic reaction. Thus, the structural effects of the selectively prepared

phases (the Cu-based delafossites and spinels) on catalytic CO oxidation were

further studied.

RESULTS AND DISCUSSION

Preparation and characterization of Cu-based layered double hydroxides

Preparation of pure LDHs as precursors are the prerequisites for selective phase

transformation. Thus, the effects of various parameters including initial pH, aging

temperature, and ionic size on the synthesis of LDHs were investigated. The param-

eter-based evaluation aided in the preparation of pure LDHs. Cu3Al1-LDHs were

chosen as the model Cu-based LDHs because they are one of the most widely stud-

ied and used Cu-based LDHs. A coprecipitation method was used for the synthesis

of CuAl-LDHs. The initial pH values of the synthesis solutions were varied to investi-

gate the influence of pH on the formation of the precipitates. X-ray diffraction (XRD)

patterns of the samples prepared with different initial pH are shown in Figure 2A. A

qualitative inspection of the diffraction patterns suggests that initial pH values signif-

icantly affect the phase purity of the precipitates. The relative amounts of the
Cell Reports Physical Science 2, 100628, November 17, 2021 3
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crystalline phases were estimated by integrating the areas of the reflections corre-

sponding to each pattern and dividing the obtained values by the total area of all

the reflections in the XRD patterns (Figure 2B).36 CuAl-LDHs (ICDD 00-046-0099)

were formed in the pH range of 8–11. In particular, CuAl-LDHs with no other crystal-

line phases were formed at pH 10. However, at a pH below 7, no LDH precipitation

occurred since the solubility of the LDHs increases gradually under more acidic

conditions.37,38

On the other hand, malachite was formed at a low pH regime. Since Cu2+ complexes

with octahedral coordination are subject to the Jahn–Teller effect, the distorted

Cu octahedrons can interact with the excess carbonate anions present in the

reaction solution, thereby forming copper hydroxy complexes, such as malachite

(Cu2(OH)2CO3, ICDD 00-001-0959). The formation of malachite phases is competi-

tive with the formation of LDHs because of the similar bond strengths of Cu2+-CO3
2�

and Cu2+-OH�.39,40 Owing to a relatively low concentration of OH�, the formation of

malachite can be dominant under low pH conditions following Equation (1). Like-

wise, an increase in the pH of the aqueous solution leads to the precipitation of

LDHs predominantly following Equation (2). However, a highly basic condition

(pH R 11) adversely affects the stability of the LDHs.41 Since the Jahn–Teller active

Cu2+ prefers square-planar coordination geometries, the resulting copper hydroxy

complexes are metastable and tend to transform into the more stable CuO (ICDD

01-089-5899) through dissolution and precipitation in an aqueous solution following

Equation (3).4,2 An excess of OH� accelerates the dissolution rates of the copper

hydroxy complexes.42 Consequently, CuO formation was dominant at a pH above

11 in our experiment.
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Pure LDHs were formed at an initial pH of 10 (0.12 M CO3
2�). However, the reaction

solutions contained various anions including OH�, NO3
�, and CO3

2�, which can

interact with the Jahn–Teller active Cu2+ octahedrons. Therefore, the concentrations

of such anions also have a strong influence on the formation of the LDHs. Figure S1

shows the XRD patterns of the precipitates prepared with different concentrations of

CO3
2�. The formation of malachite was dependent on the concentration of CO3

2�.
Thus, as the initial concentration of CO3

2� increased to 0.8M, a significant amount of

malachite was formed even at the initial pH of 10 (Figure S1A). On the other hand,

when the concentration of CO3
2� decreased to 0.06 M, CuAl-LDHs were formed pri-

marily at an initial pH of 9 (Figure S1B). Further decreasing the concentration of

CO3
2� to 0.03 M under the same initial pH condition (pH = 9) resulted in the forma-

tion of copper hydroxy nitrates Cu2(OH)3NO3 (ICDD 00-015-0014) along with small

amounts of LDHs (Figure S1C). However, in the absence of CO3
2� (and at the same

initial pH of 9), a nitrate-rich condition persisted, which led to the formation of

copper hydroxy nitrate predominantly (Figure S1D).Reaction temperatures also
4 Cell Reports Physical Science 2, 100628, November 17, 2021



Figure 3. Characterization of CuAl-LDHs

(A) XRD pattern of CuAl-LDHs.

(B and C) SEM images of CuAl-LDHs.

(D) HAADF image and corresponding EDS elemental maps of CuAl-LDHs.
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influence the formation and growth of various crystal structures, such as LDHs or ox-

ide derivatives.43 Separate nucleation and aging approaches have been widely used

for the synthesis of LDHs providing better crystallinities, higher aspect ratios, and

narrow crystal size distribution.44 To investigate the influence of aging temperature

on the formation and growth of LDHs, the reaction solutions were aged under

various temperatures ranging from 30�C to 200�C after coprecipitation at a constant

pH of 10. Subsequently, XRD and quantitative analysis of the final products were

conducted (Figure S2). At 30�C, pure CuAl-LDHs were formed. A higher aging tem-

perature (above 30�C) resulted in a slightly higher crystallinity with narrow full width

at half maximum (FWHM) in the XRD peaks. However, the formation of an additional

phase—CuO—was also detected by XRD. Generally, at high temperatures, most of

the divalent metal hydroxides or hydroxy salts undergo thermal decomposition in an

aqueous solution.45 Themetastable Cu hydroxy complexes that are derived from the

Jahn–Teller effect decompose even at a lower temperature as compared to the

other metal hydroxides, which are composed of stable brucite structures.46 As a

result, CuO and CuAl-LDHs were formed together in the temperature range of

45–90�C. Further, the relative amounts of CuO increased with the increasing aging

temperatures. On the contrary, the relative amounts of CuAl-LDHs decreased as the

aging temperatures were increased. At 150�C, the formation of CuO was dominant.

As aging temperatures were further increased above 200�C, AlOOH (ICDD 01-072-

0359) was formed together with CuO.

The XRD patterns, scanning electron microscopy (SEM) images, and energy disper-

sive spectroscopy (EDS) profiles of the CuAl-LDHs prepared at 30�C and initial pH of

10 are shown in Figure 3. In the XRD pattern, the diffraction peaks with 2q angles of

11.7�, 23.6�, 32.8�, 35.6�, 40.4�, 48.0�, 53.3�, 58.9�, and 60.7� correspond to (003),

(006), (101), (012), (015), (018), (1010), (110), and (113) reflections, respectively, for

CuAl-LDHs (Figure 3A). Homogeneous nanoparticles are visible in the SEM image

at low magnification (Figure 3B). At high magnification, two-dimensional hexagonal

nanoplatelets, which are a typical LDH morphology, are observed (Figure 3C). A

combination of high-angle annular dark field (HAADF) imaging and EDS elemental

mapping of CuAl-LDHs (Figure 3D) shows that Cu, Al, and O are highly dispersed
Cell Reports Physical Science 2, 100628, November 17, 2021 5
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in the LDH nanostructures. In addition, the observed atomic ratios are highly consis-

tent with those in the reaction solution prior to the reaction (Figure S3).

We further investigated the feasibility of applying the optimized synthetic conditions

to other elements and attempted to identify the particular conditions that should be

met for incorporating other elements into the LDH structure. The process of forma-

tion of a crystal structure is strongly affected by the size of the constituent cations

and anions. Following Pauling’s first rule, a metal hydroxide octahedron remains sta-

ble unless the radii of the cations is less than 55 pm, assuming that the ionic radius of

OH�with coordination number 3 is 133 pm.47 As the radii of cations increase beyond

98 pm, the cations gradually start preferring the higher coordination geometries

over the octahedral one. Cu-based LDHs consisting of Cu2+ and other cations

including Al3+, Cr3+, Ga3+, Zn2+, Co2+, Ni2+, and Mg2+, which satisfy the Pauling’s

rule, were formed without other crystalline phases under the optimized synthetic

condition (Figure S4). However, in the case of Sr, Y, La, and Bi, which have relatively

large ionic radii, other crystalline phases were formed under the synthetic condition

(Figure S5). A structure field map containing the ionic radii of various groups of ele-

ments is provided in Figure S6. The metal cations (possessing suitable ionic sizes),

which can be inserted in the hydroxide octahedrons following Pauling’s first rule,

are located in the shaded region. The cations marked in green or red indicate those

ions whose addition resulted in a successful or failed LDH synthesis, respectively.

Furthermore, the cations highlighted in blue were reported in literature (Table S1).

It is noteworthy that most of the cations that are mentioned in the structure map

obey Pauling’s first rule (Figure S6).

Selective phase transformation of layered double hydroxides into spinels and

delafossites

It is well known that the thermal treatment of LDHs at high temperatures leads to

their phase transformation into spinel-based composites owing to the presence of

both divalent and trivalent metal cations in the LDH structures. However, in the

case of Cu-based LDHs, the selective phase transformation into delafossites and spi-

nels is feasible for the following reasons. Both monovalent and divalent Cu cations

are stable; thus, divalent copper oxides can be decomposed into monovalent cop-

per oxides under inert or reducing conditions at high temperatures.48,49 The selec-

tive phase transformation mechanism of CuAl-LDHs into spinels or delafossites dur-

ing heat treatment in air or under inert conditions was evaluated using simultaneous

differential scanning calorimetry and thermogravimetric analysis (SDT) and ex situ

XRD analysis in the temperature range of 25�C–1000�C (Figure 4). The XRD patterns

were obtained at intervals of 50�C after the sample was held at the reaction temper-

ature for 1 h before the measurement. As shown in Figure 4A, the TG curve of CuAl-

LDHs in air exhibited three major weight losses. The first sharp weight loss region at

approximately 150�C corresponds to the evaporation of water from the interlayer of

LDH structures (Equation (4)).50 The removal of water from the interlayer region can

also be identified from the XRD patterns. At 150�C, the d003-spacing of CuAl-LDHs

decreased owing to the removal of water from the interlayer as shown in Figure 4C.

In the second broad weight loss region ranging from 150�C to 400�C, the weight loss

due to the decomposition of carbonate anions in the interlayer regions and that due

to the dehydroxylation of the host layers overlapped.51 No characteristic XRD pat-

terns of the LDHs were observed above 200�C, indicating the decomposition of

the LDH structures. After the decomposition of the LDH structure above 400�C,
the resultant products formed crystalline CuO as shown in Figure 4C [Equation (5)].

The Al species existed in the amorphous phase in the products without forming

crystalline phases such as Al2O3 owing to the high dispersion caused by the LDH
6 Cell Reports Physical Science 2, 100628, November 17, 2021



Figure 4. SDT and ex situ XRD patterns of CuAl-LDHs in air or under inert conditions

(A) SDT of CuAl-LDHs in air.

(B) ex situ XRD patterns of CuAl-LDHs in air.

(C) SDT of CuAl-LDHs under inert condition.

(D) ex situ XRD patterns of CuAl-LDHs under inert condition.
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precursor. When the CuAl-LDHs were treated at higher temperatures over 400�C,
the crystallinity of the Al-doped CuO increased with a narrower FWHM as the treat-

ment temperature increased. The third weight loss was due to the aggregation of

the Al-doped CuO, as the Tamman temperature of CuO is reported to be over

550�C.52 When the crystallite of Al-doped CuO sufficiently grew, the phase separa-

tion of Al-doped CuO into cupric spinel and CuO occurred following Equation (6).

The XRD patterns of the CuAl2O4 spinel structure became observable when the

CuAl-LDHs underwent heat treatment at 750�C and the crystallinity increased with

even higher temperatures as shown in Figure 4C.

Cu0:75Al0:25 OHð Þ2 CO3½ �0:125$mH2O sð Þ
/Cu0:75Al0:25 OHð Þ2 CO3½ �0:125 sð Þ+mH2O gð Þ (4)
8Cu0:75Al0:25ðOHÞ2½CO3�0:125ðsÞ/ 8Cu0:75Al0:25O1:125ðsÞ+CO2 ðgÞ+ 8H2O ðgÞ (5)
8Cu0:75Al0:25O1:125ðsÞ /CuAl2O4 ðsÞ+ 5CuO ðsÞ (6)

The phase transformation under inert conditions was also investigated as shown in

Figures 4B and 4D. The TG curve of the CuAl-LDHs under inert conditions demon-

strated a similar tendency to that of the TG curve treated in air except for an addi-

tional weight loss in the range of 750�C–850�C. The additional weight loss corre-

sponds to the deoxygenation process due to the decomposition of divalent
Cell Reports Physical Science 2, 100628, November 17, 2021 7
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copper oxides into monovalent copper oxides under inert conditions following

Equation (7). In this stage, CuAl2O4 spinels were also decomposed into CuAlO2 de-

lafossites. Furthermore, when CuO co-exists in the cupric spinel composites, the

decomposition rate of the spinel is accelerated under inert conditions, because

Equation (8) is energetically preferred to Equation (9) under inert conditions.49,53

The resultant products from thermal treatment of Cu-based LDHs are complex

MMOs, which contain an excess of copper oxides (CuO and Cu2O) as well as spinels.

Thus, the excess amount of CuO enables the fast decomposition of spinels into de-

lafossites under inert conditions. Consequently, the process of formation and

decomposition of spinels can occur simultaneously under inert conditions, and

hence, selective phase transformation fromCu-based LDHs into spinels and delafos-

sites can be achieved by simply adjusting the atmospheric conditions. The XRD pat-

terns of the CuAlO2 delafossite structures were observable from temperatures of

750�C onward, and the crystallinity sufficiently increased at temperatures over

850�C to be distinguishable under inert conditions, as shown in Figures 4B and

4D. Therefore, the temperature required for the selective preparation of spinels

and delafossites should be at least 850�C or higher.

2CuO ðsÞ/Cu2O ðsÞ+ 1

2
O2ðgÞ (7)
CuO ðsÞ + CuAl2O4 ðsÞ/2CuAlO2 ðsÞ+ 1

2
O2 ðgÞ (8)
2CuAl2O4 ðsÞ/ 2CuAlO2 ðsÞ+Al2O3 ðsÞ+ 1

2
O2 ðgÞ (9)

Among the seven types of the as-prepared Cu-based LDHs, three types of bimetallic

LDHs containing Al3+, Cr3+, or Ga3+ were chosen and heat-treated under an inert at-

mosphere or in air for selective phase transformation into delafossite- or spinel-

based composites. CuAl-, CuCr-, and CuGa-LDHs were heat-treated at 850�C,
700�C, and 1000�C, respectively, under air or inert atmosphere. Consequently,

three types of Cu-based LDHs were selectively phase transformed into crystalline

spinel composites and delafossite composites under air and inert atmosphere,

respectively, as shown in Figure S7. Subsequently, an acid treatment was performed

to dissolve the other phases, such as copper oxides (CuO and Cu2O). Based on the

chemical composition of Cu and Al in the MMOs determined using inductively

coupled plasma optical emission spectroscopy (ICP-OES) before and after etching

(Table S2), it is evident that the acid treatment selectively removed the copper ox-

ides from the spinel and delafossite composites. As a result, we successfully pre-

pared: (1) pure cuprous delafossites, including CuAlO2 (ICDD 00-035-1401), CuCrO2

(ICDD 00-074-0983), and CuGaO2 (ICDD 00-041-0255) by heat treating the LDHs

under inert conditions (Figures 5A–5C); and (2) cupric spinels, including CuAl2O4

(ICDD 01-076-2295), CuCr2O4 (ICDD 01-087-0432), and CuGa2O4 (ICDD 01-078-

0172), by heat treating the LDHs in air (Figures 5D–5F). The microstructure and

morphology of the fabricated pure cuprous delafossites and cupric spinels are de-

picted in Figure S8.

X-ray photoelectron spectroscopy (XPS) was performed to investigate the chemical

valence states of the delafossite and spinel structures. The Cu 2p core-level spectra

of the delafossites and spinels are shown in Figure 6. The intense Cu 2p1/2 and 2p3/2

peaks at 952 and 932 eV (G0.2 eV), respectively (Figures 6A, 6B, and 6C), indicate

that the Cu has an oxidation state of +1 in the delafossite structures. On the other

hand, the major oxidation state of Cu is +2 in the spinel structures (Figures 6D,
8 Cell Reports Physical Science 2, 100628, November 17, 2021



Figure 5. XRD patterns of Cu-based delafossites and spinels

(A) CuAl-delafossites.

(B) CuCr-delafossites.

(C) CuGa-delafossites.

(D) CuAl-spinels.

(E) CuCr-spinels.

(F) CuGa-spinels.
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6E, and 6F). The Cu 2p1/2 and 2p3/2 peaks at 954.4 and 934.6 eV (G0.1 eV), respec-

tively, are assigned to Cu2+; further, the strong satellite peaks observed at approx-

imately 961.6, 943.3, and 940.8 eV indicate the presence of an unfilled 3d9 shell in

the Cu2+ species.54–56 Therefore, the XPS results reveal that for all Cu-based oxides,

the monovalent state is dominant in the delafossite structures and the divalent state

is dominant in the spinel structures. On the contrary, all B-site atoms, including Al,

Cr, and Ga, have trivalent states in the delafossites and spinels (Figure S9).57–59

Thus, on the basis of the combined XRD and XPS analysis, it is verified that the se-

lective preparation of pure delafossites and spinels employing phase transformation

of LDHs was achieved.
Relationship between crystal structure and catalytic activity for CO oxidation

Catalytic CO oxidation was performed as a model reaction to investigate the struc-

tural effect of the Cu-based delafossites and spinels. Copper oxide is well known to

be active in CO oxidation by itself or in combination with a support oxide, such as

CeO2.
60 The oxidation state of copper oxide is a crucial factor in catalytic activity

owing to its distinct redox behavior.61,62 Figure 7A shows the catalytic activities of

the Cu-based delafossites and spinels in CO oxidation. Cu-based spinel structures

exhibit higher activities than the corresponding delafossite structures. In particular,

based on the temperatures at which the CO conversion of the catalyst reaches 50%
Cell Reports Physical Science 2, 100628, November 17, 2021 9



Figure 6. XPS profiles (Cu 2p) of Cu-based delafossites and spinels

(A) CuAl- delafossites.

(B) CuCr- delafossites.

(C) CuGa-delafossites.

(D) CuAl-spinels.

(E) CuCr-spinels.

(F) CuGa-spinels.
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(T50), the maximum activity gap is observed in the CuGa-based catalysts (T50 =

235�C and 450�C for spinel and delafossite, respectively). The T50 values of the cat-

alysts are shown with error bars in Figure 7B. To investigate the effect of B-site atoms

(Al, Cr, and Ga) on the catalytic properties of the cuprous delafossites and cupric spi-

nels, Cu-free defective spinel-type structures63 with octahedral coordinated cations

were synthesized, including Al2O3, Cr2O3, and Ga2O3. For a precise comparison, all

Cu-free samples and their corresponding Cu-based spinels were prepared under

equivalent conditions. As shown in Figure S10, each Cu-free hydroxy complex pre-

cursor was synthesized without any impurities under conditions same as that for the

Cu-based LDH synthesis (Figures S10A–S10C), followed by calcination at the same

temperatures for the formation of the corresponding Cu-based spinel structures

(Figures S10D–S10F). We observed negligible catalytic activities in Al2O3 and

Ga2O3 and less than 20% CO conversion in Cr2O3 up to 450�C (Figure S11). This

indicates that Al, Cr, and Ga are nonredox entities having negligible effect on the

catalytic activities. Further, the Cu species in the delafossites and spinels are the

active sites determining the catalytic performances (Figure 6).64,65

The redox properties have a decisive influence on the catalytic CO oxidation of Cu-

based catalysts operating under a redox-type catalytic mechanism, wherein the

reactant CO and O2 act as the reductant and oxidant, respectively.66–68 Therefore,

the redox behaviors of the Cu-based delafossites and spinels were investigated
10 Cell Reports Physical Science 2, 100628, November 17, 2021



Figure 7. CO oxidation results of the Cu-based delafossites and spinels

(A) CO conversion in the temperature range of 50‒450�C.
(B) Temperatures at which the CO conversion of the catalyst reached 50%. Error bars were

determined by repeating the measurements thrice.
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through temperature-programmed reduction (TPR) with H2 flow (H2-TPR) by

measuring their H2 consumption (Figure 8) and in situ XRD analysis under H2 atmo-

sphere (Figures S12–S14). The reduction peaks of all the spinel oxides appeared at

much lower temperatures than the delafossite peaks (Figure 8). The Cu-based spi-

nels show two characteristic peaks: a and b. The first peak (a) indicates a reduction

from Cu2+ to Cu+ in the temperature range of 200�C‒300�C.69 The reduction tem-

peratures assigned to the a peaks between 200�C and 300�C are consistent with

the reaction temperatures of the spinels (Figure 7A). The enhanced catalytic activ-

ities of the spinels in CO oxidation originate from the additional reduction steps.

Qi et al. demonstrated that the presence of an additional reduction step of Cu2+

to Cu1+ stimulates an easier reduction of CuO as compared to Cu2O.70 The second

peak (b) originates from the reduction of Cu from Cu+ to Cu0. On the other hand,

since the oxidation states of Cu in the Cu-based delafossites are monovalent, they

show only a single characteristic peak, d, which indicates a reduction from Cu+ to

Cu0. According to the in situ XRD results (Figures S12–S14), the cuprous delafossites

and cupric spinels decompose into metallic Cu (ICDD 00-001-1241) while retaining

their Cu-deficient characteristics under the H2 conditions. The additional peak (d) is

also observed in the H2-TPR result of the CuCr-spinels. Unlike the other Cu-based

spinels (Al and Ga), CuCr-spinels undergo phase transformation to yield CuCr-

delafossites under reducing conditions (Figure S13), resulting in the additional

d peak. Interestingly, the reduction temperature corresponding to the d peak in
Cell Reports Physical Science 2, 100628, November 17, 2021 11



Figure 8. H2-TPR spectra of Cu-

based delafossites and spinels

(A) CuAl- delafossites and spinels.

(B) CuCr- delafossites and spinels.

(C) CuGa-delafossites and spinels.
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the delafossites is significantly higher than that of the b peak in the spinels. This

higher reduction temperature implies that spinels have greater redox properties

than those of delafossites.71 The differing redox behaviors are also confirmed by

the in situ XRD results, which exhibit a higher reduction temperature corresponding

to Cu0 in the delafossite structures (Figures S12–S14). The reduction from Cu2+ to

Cu0 is thermodynamically more favorable than that from Cu+ to Cu0.72 In addition,

the delafossite structures exhibit higher stability than the spinel structures under

reducing conditions.73 Therefore, spinels have much higher redox properties than

delafossites, and as a result, show enhanced catalytic CO oxidation activities.

Further probe behavior differences during adsorption using probe molecule IR spec-

troscopy demonstrate the reaction pathway for the catalytic reactions. The CO

stretching characteristics distinguish the adsorption site for the COoxidation reaction

by identifying structure-dependent active sites.74,75 In addition to the previous CO

conversion and redox properties, CO adsorption behavior was compared in spinel

and delafossite structures through diffuse reflectance infrared Fourier transform spec-

troscopy (DRIFTS) analysis. DRIFTS was conducted by varying the sequential gas flow

conditions of CO adsorption, He purging, and CO desorption by increasing the

temperature under an O2 atmosphere (Figure S15). In the case of cupric spinels

(CuGa-spinel and CuAl-spinel), the CO adsorption peak at 2130�2140 cm�1 re-

mained after Hepurging, indicating theCOchemical adsorptiononto the spinel struc-

ture. The resulting CO vibration exhibited a peak shift in the spinel composites,76 and

this significant adsorption peak diminished after O2 treatment. However, CuCr-spinel

exhibits a strong absorption of the IR beam, making it difficult to analyze DRIFTS.

Nevertheless, no significant adsorption peak remained after He purging in the

cuprous delafossite structures. These results suggest that a larger number of CO

adsorption sites are secured in the spinel structure than those in the delafossite struc-

ture, suggesting a high CO oxidation activity in the spinel structure.
12 Cell Reports Physical Science 2, 100628, November 17, 2021
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In addition to the redox properties and active sites for CO adsorption, the size-

dependent catalytic CO oxidation activities have been often reported in Cu-based

MMO catalysts.77–79 Therefore, the particle sizes, crystallite sizes, and surface areas

of the catalysts were determined, as presented in Table S3. The particle sizes of the

catalysts were calculated using ‘‘Image J software’’ from Figure S8.79 The SEM im-

ages of cuprous delafossites and cupric spinels (Figure S8) exhibited similar mor-

phologies and particle sizes for each cation combination owing to the topological

phase transformation of the LDHs. Brunauer–Emmett–Teller (BET) surface areas of

the catalysts were measured by performing N2 adsorption experiments (Figure S16).

The results show that the BET surface area of each type of spinel is slightly higher

than that of the corresponding delafossite. In addition, the average crystallite sizes

were calculated from Figure 4 using Scherrer’s equation with a constant shape factor

(K) of 0.9. The average crystallite size of each type of spinel is smaller than its dela-

fossite counterpart. This observation is consistent with the corresponding BET re-

sults. Generally, delafossite crystals grow larger than spinels under identical growth

conditions,36 as they require higher formation energy as compared to spinels.48

However, the size differences between the corresponding delafossites and spinels

are insignificant and the surface areas of both structures are not large (less than

100 m2g�1) to produce significant change in their catalytic activities. From these re-

sults, we can infer that the variations in the catalytic activities emerged mainly from

the hugely different redox properties of the delafossite and spinel structures, as

evident from the H2-TPR spectra shown in Figure 8.

In summary, pure Cu-based LDHs were synthesized and examined by a systematic

parameter study. Subsequently, selective phase transformations into a set of

cuprous delafossites and cupric spinels were achieved by heat treating the fabri-

cated LDHs under different atmospheric conditions. This phase transformation

step was followed by a selective etching of the impurities. The purity of the synthe-

sized delafossites and spinels was verified by a combined XRD and XPS analysis. The

evaluation of the structure–catalytic activity relation revealed that spinels exhibit

higher CO oxidation activities as compared to the delafossites regardless of the na-

ture of the B-site atoms. The redox properties, catalytic active sites, and sizes of the

catalysts, which have a significant influence on the catalytic activities, were thor-

oughly investigated by H2-TPR, CO-DRIFTS, and calculating the particle sizes, crys-

tallite sizes, and BET surface areas. Consequently, the greater redox properties, and

more active sites for CO adsorption of cupric spinel catalysts in comparison with

those of the cuprous delafossite catalysts resulted in greater CO oxidation activities.

The phase-selective synthesis process highlights the dependency of structures on

their respective physicochemical properties by minimizing the extrinsic variabilities.

Furthermore, such phase-selective transformations of the precursors may provide a

new avenue for fabricating advancedmaterials imbued with tunable functional prop-

erties for various applications.
EXPERIMENTAL PROCEDURES

Resource availability
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Further information and requests for resources and reagents should be directed to

and will be fulfilled by the lead contact, Seungho Cho (scho@unist.ac.kr).

Materials availability

All of the materials generated in this study are available from the lead contact

without restriction.
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Data and code availability

The authors declare that data supporting the results of this study are available in the

main text and supplemental information. Further information and requests for addi-

tional data should be directed to the Lead Contact.

Synthesis of Cu-based LDHs

Cu(NO3)2$3H2O, Al(NO3)3$9H2O, Cr(NO3)3$9H2O, Ga(NO3)3$xH2O, Zn(NO3)2$6H2O,

Mg(NO3)2$6H2O, Co(NO3)2$6H2O, Ni(NO3)2$6H2O, Na2CO3, and NaOH solution (2

N) (Sigma-Aldrich) along with nitric acid (65%) and ammonia solution (28�30%) (Sam-

chun Chemicals) were used in the form delivered by the manufacturer without any

further purification. Deionized (DI) water, for preparing the metal precursor solutions,

was obtained by triple distillation and purification using a Millipore filtration system.

The synthesis of the CuAl-LDHs that was investigated in this study was performed using

the co-precipitation method at a constant pH. In detail, 18 mmol Cu(NO3)2$3H2O,

12 mmol Na2CO3, and 6 mmol Al(NO3)3$9H2O were dissolved in the DI water

(100mL) while stirring the solution at 500 rpmat 22�C.NaOH solutionwas addeddrop-

wise to the mixture until the pH value reaches 10 (G0.1). The mixture was aged in an

oven at 30�C for 24 h. After the reaction, the resulting suspension was separated using

a centrifuge at 5000 rpm for 3 min and subsequently washed thrice with DI water and

ethanol. The separated slurry was dried in an oven at 60�C for 12 h. In case of synthesis

of CuCr-LDHs or CuGa-LDHs, Al(NO3)3$9H2O were replaced by Cr(NO3)3$9H2O or

Ga(NO3)3$xH2O in the equivalent conditions.

Synthesis of cupric spinel and cuprous delafossite

2 g of Cu-based LDHs were heated using a tube furnace (SH scientific SH-FU-50TH)

for 1 h at a heating rate of 10�C min-1 to the desired reaction temperatures under an

inert atmosphere for producing delafossites or in the air for developing spinels fol-

lowed by slowly cooling the samples to room temperature. To maintain an inert at-

mosphere, the tube furnace was continuously filled with Ar gas at a flow rate of

100 mL$min-1 throughout the reaction. A mass flow controller (ICDS FM-30VP) was

used for precisely controlling the Ar flow rate. For the selective dissolution of the

copper oxides, the MMOs were added to and stirred for 30 min in an acidic solution

prepared by mixing nitric acid (7 mL) and DI water (3 mL). This solution was filtered to

obtain the resulting powder, which was dried at 60�C for 12 h.

Characterization

XRD measurements were performed using a Bruker AXS D8 ADVANCE X-ray diffrac-

tometer, which is equipped with Cu Ka radiation (1.5406 Å). The data were collected

in the angular range 10� % 2q % 80� with an irradiation time and a step increment of

0.25 s and 0.02�, respectively. The SEM images of the samples were taken with a Hita-

chi S-4800 system. Further, the TEM images and EDS data were obtained using an FEI

Tecnai G2 F20 X-Twin system. XPS profiles of theMMOswere recordedwith a Thermo-

Fisher K-alpha system, which has a monochromatic Al Ka (8.339 Å) X-ray source. The

spectra of binding energies were calibrated with the C 1 s peak at 284.8 eV as the in-

ternal standard, and the multiple peaks were fitted and deconvoluted via Gaussian

fitting. Thermal analysis was investigated at a heating rate of 10�C min�1 from room

temperature to 1000�C using SDT (TA Q600). Under inert conditions, thermal analysis

was conducted under N2 flow at a flow rate of 100 mL∙min�1. H2-TPR was conducted

using a BELCAT II catalyst analyzer. The catalyst (50mg) was pretreated at 100�C under

Ar flow (30mLmin–1) for 1 h. After cooling, the temperature was increased under 5%H2

and 95% Ar flow (30 mL min–1) to 800�C at a heating rate of 10�C min–1. H2 consump-

tion was monitored by a thermal conductivity detector (TCD).
14 Cell Reports Physical Science 2, 100628, November 17, 2021
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Catalyst testing

The catalytic CO oxidation was carried out in a quartz fixed-bed reactor with 50 mg of

catalyst mixed with 100 mg of quartz powder (to avoid mass and heat transfer limita-

tions). The temperature was measured by a thermocouple located close to the reactor.

Prior to the measurements, the catalyst was pretreated at 100�C under Ar flow for 1 h.

CO oxidation was performed with a feed stream consisting of 2% CO and 2% O2,

balanced with Ar. The total flow rate was 50 mL min–1 and the heating rate was 5�C
min–1. The catalyst was maintained at each temperature for 10 min in a continuous

feed flow to reach a steady state before the actual analysis. The products were detected

by aGC (YL-6500) systemequippedwith aCarboxen 1000 column (Supelco) and a TCD.
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disorder and Néel temperature in ZnFe2O4

nanoparticles. J. Magn. Magn. Mater. 196–197,
191–192.

8. Zhu, X., Guijarro, N., Liu, Y., Schouwink, P.,
Wells, R.A., Le Formal, F., Sun, S., Gao, C., and
Sivula, K. (2018). Spinel structural disorder
influences solar-water-splitting performance of
ZnFe2O4 nanorod photoanodes. Adv. Mater.
30, 1801612.

9. Marquardt, M.A., Ashmore, N.A., and Cann,
D.P. (2006). Crystal chemistry and electrical
properties of the delafossite structure. Thin
Solid Films 496, 146–156.
ical Science 2, 100628, November 17, 2021 15

https://doi.org/10.1016/j.xcrp.2021.100628
https://doi.org/10.1016/j.xcrp.2021.100628
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref1
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref1
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref1
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref1
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref1
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref2
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref2
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref2
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref3
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref3
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref4
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref4
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref4
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref4
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref5
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref5
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref5
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref5
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref5
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref5
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref6
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref6
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref6
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref6
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref6
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref6
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref7
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref7
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref7
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref7
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref7
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref8
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref8
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref8
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref8
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref8
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref8
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref8
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref8
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref8
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref8
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref9
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref9
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref9
http://refhub.elsevier.com/S2666-3864(21)00346-5/sref9


ll
OPEN ACCESS Article
10. Putzke, C., Bachmann, M.D., McGuinness, P.,
Zhakina, E., Sunko, V., Konczykowski, M., Oka,
T., Moessner, R., Stern, A., König, M., et al.
(2020). h/e oscillations in interlayer transport of
delafossites. Science 368, 1234–1238.

11. Liu, Q.-L., Zhao, Z.-Y., and Yi, J.-H. (2020).
Excess Oxygen in Delafossite CuFeO2+d:
Synthesis, Characterization, and Applications
in Solar Energy Conversion. Chem. Eng. J. 396,
125290.

12. Koumoto, K., Koduka, H., and Seo, W.-S.
(2001). Thermoelectric properties of single
crystal CuAlO2 with a layered structure.
J. Mater. Chem. 11, 251–252.

13. Zhang, H., Wang, H., Chen, W., and Jen, A.K.Y.
(2017). CuGaO2: A promising inorganic
hole-transporting material for highly efficient
and stable perovskite solar cells. Adv. Mater.
29, 1604984.

14. Nagarajan, R., Duan, N., Jayaraj, M.K., Li, J.,
Vanaja, K.A., Yokochi, A., Draeseke, A., Tate, J.,
and Sleight, A.W. (2001). p-Type conductivity in
the delafossite structure. Int. J. Inorg. Mater. 3,
265–270.

15. Shannon, R.D., Rogers, D.B., and Prewitt, C.T.
(1971). Chemistry of noble metal oxides. I.
Syntheses and properties of ABO2 delafossite
compounds. Inorg. Chem. 10, 713–718.

16. Jang, Y.J., and Lee, J.S. (2019).
Photoelectrochemical Water Splitting with
p-Type Metal Oxide Semiconductor
Photocathodes. ChemSusChem 12, 1835–
1845.

17. Sivula, K., and Van De Krol, R. (2016).
Semiconducting materials for
photoelectrochemical energy conversion. Nat.
Rev. Mater. 1, 15010.

18. Prévot, M.S., Guijarro, N., and Sivula, K. (2015).
Enhancing the Performance of a robust sol-gel-
processed p-type delafossite CuFeO2

photocathode for solar water reduction.
ChemSusChem 8, 1359–1367.

19. Gu, J., Wuttig, A., Krizan, J.W., Hu, Y.,
Detweiler, Z.M., Cava, R.J., and Bocarsly, A.B.
(2013). Mg-doped CuFeO2 photocathodes for
photoelectrochemical reduction of carbon
dioxide. J. Phys. Chem. C 117, 12415–12422.

20. Tong, B., Deng, Z., Xu, B., Meng, G., Shao, J.,
Liu, H., Dai, T., Shan, X., Dong, W., Wang, S.,
et al. (2018). Oxygen vacancy defects boosted
high performance p-type delafossite CuCrO2

gas sensors. ACS Appl. Mater. Interfaces 10,
34727–34734.

21. Crespo, C.T. (2018). Potentiality of CuFeO2-
delafossite as a solar energy converter. Sol.
Energy 163, 162–166.

22. Clause, O., Rebours, B., Merlen, E., Trifiro, F.,
and Vaccari, A. (1992). Preparation and
characterization of nickel-aluminum mixed
oxides obtained by thermal decomposition of
hydrotalcite-type precursors. J. Catal. 133,
231–246.

23. Li, M., Yin, Y.-X., Li, C., Zhang, F., Wan, L.-J., Xu,
S., and Evans, D.G. (2012). Well-dispersed bi-
component-active CoO/CoFe2O4

nanocomposites with tunable performances as
anode materials for lithium-ion batteries.
Chem. Commun. (Camb.) 48, 410–412.
16 Cell Reports Physical Science 2, 100628, Nove
24. Cho, S., Jang, J.W., Kong, K.j., Kim, E.S., Lee,
K.H., and Lee, J.S. (2013). Anion-doped mixed
metal oxide nanostructures derived from
layered double hydroxide as visible light
photocatalysts. Adv. Funct. Mater. 23, 2348–
2356.

25. Li, C., Wei, M., Evans, D.G., and Duan, X. (2014).
Layered double hydroxide-based
nanomaterials as highly efficient catalysts and
adsorbents. Small 10, 4469–4486.

26. Fu, J., DeSantis, C.J., Weiner, R.G., and
Skrabalak, S.E. (2015). Aerosol-assisted
synthesis of shape-controlled CoFe2O4:
Topotactic versus direct melt crystallization.
Chem. Mater. 27, 1863–1868.

27. Rives, V. (2001). Layered double hydroxides:
present and future (Nova Publishers).

28. Sideris, P.J., Nielsen, U.G., Gan, Z., and Grey,
C.P. (2008). Mg/Al ordering in layered double
hydroxides revealed by multinuclear NMR
spectroscopy. Science 321, 113–117.

29. Bellotto, M., Rebours, B., Clause, O., Lynch, J.,
Bazin, D., and Elkaı̈m, E. (1996). A
reexamination of hydrotalcite crystal chemistry.
J. Phys. Chem. 100, 8527–8534.

30. Kobayashi, Y., Ke, X., Hata, H., Schiffer, P., and
Mallouk, T.E. (2008). Soft chemical conversion
of layered double hydroxides to
superparamagnetic spinel platelets. Chem.
Mater. 20, 2374–2381.

31. Jeong, I.R., Lee, J.H., Song, J., Oh, Y.S., and
Cho, S. (2020). Control of structural disorder in
spinel ceramics derived from layered double
hydroxides. Ceram. Int. 46, 6594–6599.
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