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Abstract: Three-dimensional human pose and shape estimation is an important problem in the
computer vision community, with numerous applications such as augmented reality, virtual reality,
human computer interaction, and so on. However, training accurate 3D human pose and shape
estimators based on deep learning approaches requires a large number of images and corresponding
3D ground-truth pose pairs, which are costly to collect. To relieve this constraint, various types of
weakly or self-supervised pose estimation approaches have been proposed. Nevertheless, these
methods still involve supervision signals, which require effort to collect, such as unpaired large-
scale 3D ground truth data, a small subset of 3D labeled data, video priors, and so on. Often,
they require installing equipment such as a calibrated multi-camera system to acquire strong multi-
view priors. In this paper, we propose a self-supervised learning framework for 3D human pose
and shape estimation that does not require other forms of supervision signals while using only
single 2D images. Our framework inputs single 2D images, estimates human 3D meshes in the
intermediate layers, and is trained to solve four types of self-supervision tasks (i.e., three image
manipulation tasks and one neural rendering task) whose ground-truths are all based on the single
2D images themselves. Through experiments, we demonstrate the effectiveness of our approach on
3D human pose benchmark datasets (i.e., Human3.6M, 3DPW, and LSP), where we present the new
state-of-the-art among weakly/self-supervised methods.

Keywords: deep learning; human body pose estimation; human body mesh estimation; neural
rendering; self-supervised learning

1. Introduction

Tremendous progress has been made on estimating 3D human poses and shapes
from a single image [1–12]. In this context, deep learning-based approaches have been
successful over the last decades [1–8]. It was initially decided to estimate the 2D/3D
skeletal representation of the human bodies [1–4]. The skeletal representation is efficient
to describe key characteristics of the human motions, although the shape information is
lacking. Recently, Kanazawa et al. [5] proposed the estimation of both poses and shapes of
the human bodies by incorporating a differentiable 3D mesh representation—i.e., a skinned
multi-person linear model (SMPL) [13]—in the deep learning framework. More recently,
several frameworks that improve the 3D mesh estimation network [5] have been proposed
to deal with temporal consistency [6], multi-person cases [7], domain differences [8], and
so on.

One of the fundamental issues in constructing pose estimation frameworks is that
they consume large numbers of 2D or 3D ground-truth poses (i.e., x, y, and z coordinate
values of the 3D human bodies) for a given 2D RGB (i.e., red, green, blue) or 2.5D depth
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input image to secure good accuracy in the mesh estimation task. Many researchers have
proposed million-scale data pairs to properly train such frameworks [14]. However, it is
challenging to acquire large-scale datasets containing diverse variations and quality 3D
annotations. Manually annotating such 3D coordinate values is non-trivial, and it takes
a great deal of time and manual effort. One team attempted to relieve the issue by using
synthetic datasets based on graphics engines [15,16]. However, the appearance of images
obtained from the graphics engines showed an observable gap to the real samples [17],
and it is well known that the models trained by pure synthetic datasets do not generalize
well to the real testing datasets [18].

In this paper, we attempted to relieve the issue of insufficient data by proposing
self-supervision losses to train the 3D human pose estimation framework without explicit
2D/3D skeletal ground-truths. Our self-supervision losses consist of four types of super-
vision whose ground-truths are defined based on single 2D images: jigsaw puzzling [19],
rotation prediction [20], image in-painting [21], and image projection [22] tasks (as illus-
trated in Figure 1). In the jigsaw puzzling task, the image is divided into the D× D tiles
and shuffled; then, the jigsaw puzzle solver is trained to estimate the order of the tiles.
In the rotation prediction task, the image is rotated and the rotation predictor is trained to
estimate the rotation degrees. In the image in-painting task, sub-patches of the image are
erased and the image in-painting decoder is learned to generate the erased patches with
the aid of the adversarial loss [23]. Lastly, in the image projection task, the neural 3D mesh
renderer is used to differentially generate the 2D images by projecting the estimated 3D
meshes. This task directly provides gradients to the estimated 3D meshes and updates the
parameters of the 3D mesh estimator, while the former three tasks indirectly enrich the
feature vector extracted from the 2D images via the feature extractor. Via the combination
of the proposed four losses, the 3D mesh estimator produces more accurate 3D human
meshes.

Via a series of experiments, we have observed that the proposed self-supervised
losses with additional image databases are able to enrich the pre-trained 3D human pose
estimator and achieve state-of-the-art accuracy among self/weakly/semi-supervised works.
The major contributions of this paper are summarized as follows:

• We construct a 3D human pose and shape estimation framework that could be trained
by 2D single image-level self-supervision without the use of other forms of supervision
signals, such as explicit 2D/3D skeletons, video-level, or multi-view priors;

• We propose four types of self-supervised losses based on the 2D single images them-
selves and introduce a method to effectively train the entire networks. In particular,
we investigate which are the most promising combinations of losses to effectively
achieve the 2D single image-level self-supervision for 3D human mesh reconstruction;

• The proposed method outperforms the competitive 3D human pose estimation algo-
rithms, proving that leveraging single 2D images could be used for strong supervision
to train networks for the 3D mesh reconstruction task.

We have made our code and data publicly available at https://github.com/JunukCha/
SSPSE accessed on October 13, 2021.

https://github.com/JunukCha/SSPSE
https://github.com/JunukCha/SSPSE
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Figure 1. Example image-level self-supervision: We applied three types of image manipulation and
one image projection task to train our human mesh estimation network. Each row shows examples
from the Human3.6M dataset, and each column corresponds to (a) input RGB images, (b) shuffled
patches used for the jigsaw puzzling task, (c) rotated RGB images used for rotation prediction task,
(d) output images from part inpainting task, and (e) neural rendered images from estimated 3D
meshes and textures, respectively.

2. Related Works

In this section, we review the recent literature on 3D human pose estimation and 3D
human pose and shape estimation works. Then, we analyze recent weak/semi-supervised
approaches designed for 3D human pose and shape estimation that are closely related
to ours.

2.1. Three-Dimensional Human Pose Estimation

Many recent studies have focused on estimating 2D [11] or 3D keypoint locations
on the human body [12]. Normally, these keypoint locations include major body joints
such as the wrists, ankles, elbows, neck, shoulders, and knees. The architectures of 2D
pose detectors have been designed to map images into the 2D pose vector more accurately.
Wei et al. [2] proposed a sequential architecture composed of convolutional neural networks
(CNNs) with multiple sizes of receptive fields. Zhou et al. [3] proposed a method using
both a 3D geometric prior and temporal smoothness prior to treat considerable uncertainties
in 2D joint locations. Newell et al. [1] proposed stacked hourglass networks based on the
successive architecture, which is composed of pooling and upsampling layers. As we are
living in the 3D space, understanding poses in the 3D space is the natural extension to 2D
pose estimation. Three-dimensional pose estimation aims to locate the key 3D joints of
the human body from an image or a video, which are either in the single-view or multi-
view setting. Most approaches are based on the two-stage approaches that first predict
2D joint locations using 2D pose detectors [1–3,24] and then predict 3D joint locations
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from the 2D joints or features by performing regression [4,25–27] or model fitting [3,28–32].
Xu et al. [24] proposed a graph stacked hourglass network for 3D human pose estimation,
which consists of four stacked hourglasses. Estimated 2D joints are fed into the network,
and the 3D pose is predicted. Martinez et al. [4] proposed a simple framework composed
of fully connected layers to lift a 2D pose to a 3D angular pose. Moreno et al. [25] proposed
a framework composed of a 2D joint detector based on CNN and inferred 3D poses from
the detected 2D joints. These approaches have made great progress in improving the
performance of 3D human pose estimation.

2.2. Three-Dimensional Human Pose and Shape Estimation

Followed by progresses in the field of 3D human pose estimation, simultaneously estimat-
ing the human body pose and shape has become a recent trend [10,33–41]. There are two main
approaches for estimating 3D human poses and shapes (i.e., meshes): one is the optimization-
based methods [9,42,43], and the other is the regression-based methods [5–8,36,37]. SM-
PLify [9] is one of the representative optimization-based methods. It first estimates the
2D skeletons from the images and fits the graphical 3D body model (i.e., SMPL [13]) to
it using the optimization method. Kanazawa et al. [5] proposed the deep learning-based
regression framework. This is an end-to-end framework for reconstructing a 3D human
mesh from a single RGB image. Omran et al. [36] proposed neural body fitting. This
framework generates 12 semantic human body parts with a semantic segmentation CNN.
From these semantic human body parts, pose and shape parameters of SMPL are esti-
mated and a 3D human mesh is reconstructed. Pavlakos et al. [37] proposed a framework
that estimates heatmaps related to pose parameters of SMPL and silhouettes related to
shape parameters of SMPL simultaneously. Using these heatmaps and silhouettes, a 3D
human mesh is reconstructed. A method [44] has also been introduced that exploits the
merits of both optimization-based and regression-based methods for 3D mesh estimation.
The temporal dynamics of the human body and shape have also been incorporated in
the framework of [6]. The framework used to overcome the adaptation of a pre-trained
model of human mesh estimation to the out-of-domain field was proposed in [8]. In ad-
dition, non-parametric body mesh reconstruction methods have been proposed [38,45].
Tan et al. [38] proposed an encoder–decoder network: first, a decoder is trained to predict
a body silhouette from the SMPL parameter input; second, an encoder is trained on a
real image and corresponding silhouette pairs while the decoder is fixed. Lin et al. [45]
proposed end-to-end human pose and mesh reconstruction with a transformer [46].

2.3. Weakly/Semi-Supervised Learning in 3D Human Mesh Estimation

For most human pose estimation methods [36,37,43,47–50], supervised learning pre-
vails; however, securing the 3D mesh ground truth is non-trivial. Weakly or semi-supervised
methods are designed to solve the issue of the lack of quality annotation by using the
available easier annotations. In the context of the 3D human mesh estimation task, semi-
supervised learning uses 3D skeletons that are coarser than 3D meshes, while weakly-
supervised learning uses either 2D annotation [36,51,52] or pseudo-3D annotation [53–56].
In [36], 2D keypoint annotations are exploited to estimate SMPL body model parameters
from CNNs to recover human 3D meshes following predicted body part segmentation
masks. In [51], two anatomically inspired losses are proposed and used with a weakly
supervised learning framework to jointly learn from large-scale in-the-wild 2D and in-
door/synthetic 3D data. The authors of [52] suggest weakly-supervised solutions by
adopting multi-view consistency loss in 2.5D pose representations leveraged by inde-
pendent 2D annotated samples. In [53–56], multi-view geometry is used to resolve 3D
depth ambiguity. We developed our original methods in the self-supervised setting only
using the input 2D images; however, to compare with these weakly or semi-supervised
approaches, we extended our model to be additionally learned by 2D or 3D skeletons
if they are available. In this manner, we compared our method to the state-of-the-art
self/weakly/semi-supervised approaches.
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3. Method

Our self-supervised 3D human mesh estimation framework is detailed in this section
and illustrated in Figure 2. In this work, we used the network architecture of [5,6] as our
baseline 3D mesh reconstruction network, which uses the ResNet-50 [57] architecture as
the feature extractor and predicts SMPL [13] parameters using it. Our aim is to increase the
accuracy of the baseline 3D mesh reconstruction network using the single 2D image-level
self-supervised losses and its training strategy. In the remainder of this section, we explain
the process at a more detailed level. Prior to that, we begin the discussion by introducing
our network architectures.
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Figure 2. A schematic diagram of the proposed image-level self-supervised 3D human pose and
shape estimation framework. First, we prepared three types of images xjigsaw, xhole, and xrot from
the original image x. Second, we pre-trained four networks denoted as green boxes (i.e., f Jigsaw,
f Inp, f Rot, and f Tex) and a network in a purple box (i.e., f Disc) using five corresponding losses (i.e.,
Ljigsaw, Linp, Lrot, LRGB, and Ladv, respectively). Two networks f NMR and f r-cnn with pink boxes
were fixed after employing the implementation of [22] and initializing weights from [58], respectively.
Finally, in the mesh training stage, we trained f Feat and f Mesh in blue boxes, which were used to
infer the 3D human meshes from 2D images. The discriminator f Disc in the purple box was also
further trained during the mesh training stage. Blue, black, and green arrows denote routes used
for testing, training, and supervision signals, respectively. Optional loss Ljoints was not used for the
self-supervised setting (i.e., Ours (self-sup)); it was used via 2D skeletons for the weakly-supervised
setting (i.e., Ours (weakly-sup)) and was used via both 2D and 3D skeletons for the semi-supervised
setting (i.e., Ours (semi-sup)).

3.1. Network Architectures

Our feature extractor f Feat and mesh estimator f Mesh were taken from the previ-
ous mesh reconstruction method [5], and they were responsible for extracting features
and estimating the 3D human meshes. Three networks (jigsaw puzzle solver f Jigsaw,
rotation predictor f Rot, part in-painter f Inp) were additionally involved to develop the
self-supervision loss solving three different image manipulation tasks, and two additional
networks (texture network f Tex, neural mesh renderer f NMR) were involved to develop the
self-supervision loss solving the image projection task. Finally, the discriminator f Disc was
involved to capture the distribution of real 2D images containing human images. More
details on individual networks are described in the remainder of this subsection.

Feature extractor f Feat : X → F ⊂ R2048×1. Similar to recent human mesh recovery
works [5,6] that estimate 3D human mesh model (i.e., SMPL [13]) parameters from the
RGB images x ∈ X, we involved the ResNet-50 [57] architecture as our feature extractor. It
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generates 2048-dimensional feature vectors f ∈ F from the input image x, whose size is
resized to a 224× 224× 3 dimensional array.

Mesh estimator f Mesh : F → M ⊂ R6890×13,776. After extracting the feature vector f ∈ F,
we mapped it to the corresponding 85-dimensional SMPL [13] parameters h ∈ H ⊂
R85×1 (we used 3, 10, and 72-dimensional vectors as camera, shape, and pose parameters,
respectively, in the same manner as in [5]). These parameters were used to differentially
generate the corresponding human body meshes m ∈ M with 6890 vertices and 13,776 faces
using the SMPL layer (refer to [5,13] for more details).

Jigsaw puzzle solver f Jigsaw : F× F× F× F× F → O ⊂ RC×1. The jigsaw puzzle solver
was used to solve the first self-supervision task, called the jigsaw puzzling task. In this
task, we divided the input 2D image x into D× D tiles and permuted them to generate a
jigsaw puzzling image xjigsaw. Then, we input D2 tiles combined with the original image
into the feature extractor f Feat by resizing all images into 224× 224× 3 dimensional images.
The resultant features from five images were concatenated, retaining the permuted orders,
and mapped into the vector o ∈ O, whose entry denotes the probability for the permutation
order of the tiles in the whole images. The class number C = (D× D)! is equivalent to the
number of permutations for D× D tiles. We found that D = 2 best encodes the human
bodies, balancing it from the background regions (see Figure 1); thus, C = (2× 2)! = 24
was used throughout the experiment.

Rotation predictor f Rot : F → R ⊂ RR×1. The rotation predictor was used to solve the
second self-supervision task, called the rotation prediction task. In this task, we rotated the
input 2D image x with R fixed angles θ to generate a new image xrot. Humans are in the
upright position in images with 0 degrees. We first applied f Feat on the input image xrot to
obtain the feature vector f. Then, the rotation predictor f Rot was applied on f to predict the
vector r ∈ R, which contained the probability for R possible angles. In this work, we set
R = 4 by setting the rotation angles to 0, 90, 180, and 270 for simplicity; however, we were
able to achieve a meaningful accuracy improvement using this simple setting.

Part in-painter f Inp : F → P ⊂ RP×P×3. The part in-painter was used to solve the third self-
supervision task, called the part in-painting task. In this task, we erased a P× P× 3-sized
patch p from the center of an input image x, resulting in xhole. Then, the part in-painter
f Inp was responsible for predicting p̂ resembling p. We set P = 64 considering the patch
size compared to the size of the human bodies in images (Figure 1d describes the example
in-painted patches).

Neural mesh renderer f NMR : T × M → X × S ⊂ R224×224×3 × R224×224. The neural
mesh renderer [22] was employed to solve the last self-supervision task, called the image
projection task. In this task, 3D meshes were projected to the 2D images by an operation
similar to graphics rendering [22]. Either the RGB human images x ∈ X or a binary
segmentation mask s ∈ S could be generated from the 3D meshes m. To render RGB
images, an additional texture array t ∈ T was required that described RGB values for faces
of the 3D meshes. To infer the texture array, we additionally involved the texture network
f Tex, as explained below.

Texture network f Tex : F → T ⊂ R13,776×3. As there are 13, 776 faces in the SMPL [13]
model, the dimension of the texture array t is 13, 776× 3, as it represents RGB values
corresponding to each mesh face. Furthermore, we first inferred the 13, 776× 3 dimen-
sional array t from f Tex and differentially reshaped this towards a 13, 776× Z× Z× Z× 3
dimensional array. Z = 2 was used as the visual quality based on this minimum dimension,
which was sufficient for our purpose.

Discriminator f Disc : x→ [0, 1]. The discriminator was involved to capture the distribution
of the real human images and give gradients to the networks to make the realistic images,
in a similar manner to [23]. The discriminator f Disc played a crucial role, especially when



Appl. Sci. 2021, 11, 9724 7 of 19

training the part in-painter f Inp and texture network f Tex, as these tasks require training
networks to generate the realistic patches or textured images.

Tables 1–3 present the detailed structure of our network architectures. For f r-cnn,
f NMR, and f Feat, we employed the implementation and weights from [5,22,58], respectively.
For the mesh estimator f Mesh as explained in Table 4, we involved the SMPL layer of [5],
which can output the SMPL human body meshes from its estimated pose (72), shape (10),
and camera (3) parameters.

Table 1. Architecture of jigsaw puzzle solver f Jigsaw. Inputs are concatenated feature maps of four
tiles of xjigsaw and an original image x, obtained from f Feat.

Layer Operation Kernel Dimensionality

Input: Feature map - 10,240 × 1

1 Linear + ReLU + Dropout (0.5) - 2048× 1
2 Linear - 24× 1

Table 2. Architecture of rotation predictor f Rot. Input is a feature map of the rotated image from
f Feat(xrot).

Layer Operation Kernel Dimensionality

Input: Feature map - 10,240 × 1

1 Linear + ReLU + Dropout(0.5) - 2048× 1
2 Linear - 24× 1

Table 3. Architecture of part in-painter f Inp. Input is a feature map of the center hole image from
f Feat(xhole).

Layer Operation Kernel Dimensionality

Input: Feature map - 2048× 1

1 ConvT. + B.N. + ReLU 4× 4 4× 4× 512
2 ConvT. + B.N. + ReLU 4× 4 8× 8× 256
3 ConvT. + B.N. + ReLU 4× 4 16× 16× 128
4 ConvT. + B.N. + ReLU 4× 4 32× 32× 64
5 ConvT. + Tanh 4× 4 64× 64× 3

Table 4. Architecture of mesh estimator f Mesh.

Layer Operation Kernel Dimensionality

Input: Feature map - 2205+ Pose, Shape, Camera param.

1 Linear + Dropout (0.5) - 1024
2 Linear + Dropout (0.5) - 1024

3-1 Linear - 72
3-2 Linear - 10
3-3 Linear - 3

4 SMPL layer [5] - 6890× 3

3.2. Training Method

Our aim during the training stage was to enrich both feature extractor f Feat and
mesh estimator f Mesh, which were responsible for estimating 3D meshes. Our losses were
proposed to improve the two networks (i.e. feature extractor f Feat and mesh estimator
f Mesh) based on the 2D single image-level self-supervised losses, which were designed
to solve three image manipulation tasks (i.e., jigsaw puzzle, rotation prediction, and part
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in-painting) and one image projection task. In this subsection, we explain the entire training
strategy and introduce the individual losses that we used.

3.2.1. Summary of the Entire Training Process.

The entire training process was divided into two stages: (1) pre-training stage and (2)
mesh training stage.

At the (1) pre-training stage, five networks (i.e. jigsaw puzzle solver f Jigsaw, rotation
predictor f Rot, part in-painter f Inp, discriminator f Disc, and texture network f Tex) were
pre-trained using the corresponding losses defined in Equations (2)–(6), respectively. We
pre-trained these networks to constitute them for the self-supervision losses used in the
subsequent mesh training stage.

Then, at the (2) mesh training stage, we trained the feature extractor f Feat and mesh
estimator f Mesh, which were responsible for the 3D mesh estimation using the loss L
defined as follows:

L( f Feat, f Mesh, f Disc) = LIM( f Feat) + LNR( f Feat, f Mesh, f Disc) (1)

where the image manipulation loss LIM and neural rendering loss LNR are defined in
Equations (7) and (9), respectively. The actual improvement of the 3D mesh reconstruction
was obtained during this stage. Furthermore, the discriminator f Disc was further trained
by discriminating between real and generated images to provide richer supervision.

The entire training process is summarized in the Algorithm 1.

3.2.2. Pre-Training Stage

The aim of this stage was to train five different networks ( f Jigsaw, f Rot, f Inp, f Disc,
and f Tex) that were used to constitute the losses in the subsequent “mesh training” stage.
We trained the networks by running T1 = 10 epochs of training with the Adam optimizer
on the losses Ljigsaw, Lrot, Linp, Ladv and LRGB (Equations (2)–(6)) with learning rates of 0.01,
5× 10−4, 1× 10−4, and 1× 10−4, and 0.01, respectively.

Jigsaw puzzle loss Ljigsaw. As in [19], the jigsaw puzzling task could be formulated as the
standard classification task. We applied the cross-entropy loss Ljigsaw for the jigsaw puzzle
solver f Jigsaw to make its output close to the permutation order:

Ljigsaw( f Jigsaw|x, xjigsaw) = −
C

∑
c=1

yc, jigsaw log(ôc) (2)

where yc, jigsaw is the c-th dimensional element of the one-hot encoded vector from the
permutation ground-truth, and ôc is the c-th dimensional response of the f Jigsaw net-
work’s output.

Rotation prediction loss Lrot. The rotation prediction could be also formulated as the
standard classification task as in [20]. Images were rotated with four possible angles θ, 0,
90, 180, and 270, and then mapped to the classification label set {1, 2, 3, 4}. To achieve this,
the cross-entropy loss Lrot was applied on the output of the rotation predictor f Rot:

Lrot( f Rot|xrot) = −
4

∑
c=1

yc,rot log(r̂c) (3)

where yc,rot is the c-th dimensional element of the one-hot encoded vector from the rotation
ground-truth, and r̂c is the c-th dimensional response of the f Rot network’s output.
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Algorithm 1: The summary of our entire training process
Input:

–Training data D = [DH36M, DCOCO, DMPII, DLSP, DYoutube, DMPI-INF-3DHP] whose size is N.
–RGB image of training data;
–Hyper-parameters: number T1, T2 of epochs, size N′ of mini-batch;

Output:
–Jigsaw puzzle solver output ôc;
–Rotation predictor output r̂c;
–Part in-painter output p̂;
–Rendered RGB image x̂render.

Initialization:
–Pre-train f Feat, f Mesh based on [5];
–Initialize f r-cnn from [58];
–Implement f NMR from [22];
–Randomize (parameters) of f Jigsaw, f Rot, f Inp, f Disc, f Tex.

for t = 1, . . . , T1 + T2 do
for n = 1, . . . , N/N′ do

if t <= T1 then
For each data RGB image x in the mini-batch Dn, output ôc, r̂c, and p̂;
Calculate gradient ∇Ljigsaw, ∇Lrot, ∇Linp and ∇Ladv (Equations (2)–(5)) with respect to (the weights

of) f Jigsaw, f Rot, f Inp and f Disc on Dn, and update f Jigsaw, f Rot, f Inp and f Disc;
Calculate gradient ∇LRGB (Equation (6)) with respect to (the weights of) f Tex on Dn, and update f Tex;

end
if t > T1 then

For each data RGB image x in the mini-batch Dn, output ôc, r̂c, p̂, and generate x̂render;
Calculate gradient ∇L (Equation (1)) with respect to (the weights of) f Feat, f Mesh and f Disc on Dn,

and update f Feat, f Mesh, and f Disc;
end

end
end

Part in-painting loss Linp. The part in-painting task could be framed as the image genera-
tion task as in [21]. We erased a patch p from the center of the RGB images x to make an
image with a hole xhole. The image xhole was inputted to the f Inp( f Feat(xhole)), and the part
in-painter f Inp was trained to reconstruct the output p̂ = f Inp( f Feat(xhole)). We trained the
network using both the mean square error (MSE) loss and the GAN-type adversarial loss
by the discriminator f Disc to reconstruct a realistic patch p̂. The MSE loss was enforced
to make the reconstructed patch p̂ look similar to the original patch p, and GAN-type
adversarial loss was enforced to make the reconstructed image x̂inp that combined xhole

and p̂ look more realistic. f Inp was pre-trained using the following rules:

Linp( f Inp|xhole) = λinp‖p− p̂‖2
2 + λdisc‖ f Disc(x̂inp))− 1‖2

2 (4)

where x̂inp is the in-painted image that fills the hole in xhole with the estimated p̂, and λinp
and λdisc are set at 0.999 and 0.001, respectively.

Adversarial loss Ladv. The discriminator f Disc was trained to discriminate original images
x from images x̂inp—that is, the combination of xhole and p̂—outputted from the f Inp using
the LSGAN [23] objective, as follows:

Ladv( f Disc|x, x̂inp) = ‖ f Disc(x))− 1‖2
2 + ‖ f Disc(x̂inp)− 0‖2

2. (5)
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RGB rendering loss LRGB. When projecting 3D meshes into the RGB images, RGB values
for each vertex of 3D mesh were required. The texture network f Tex was pre-trained to
infer such RGB values using the loss, defined as follows:

LRGB( f Tex|x) = ‖x̂render − xrender‖2
2 (6)

where xrender and x̂render denote the pseudo ground-truth obtained from f r-cnn(x)� x and
rendered meshes f NMR( f Mesh( f Feat(x)), f Tex(x)), respectively. The operation � denotes
the pixel-wise multiplication and f r-cnn denotes the pre-trained Mask-RCNN [58] network.
The rationale behind the use of the Mask-RCNN [58] for obtaining the pseudo ground-
truth xrender is that 3D mesh reconstruction is more challenging than the 2D segmentation
mask prediction.

3.2.3. Mesh Training Stage

At this stage, we trained the feature extractor f Feat, mesh estimator f Mesh, and the
discriminator f Disc with the aid of pre-trained networks obtained from the pre-training
stage. We ran the training for T2 = 10 epochs using the loss L (Equation (1)) with a learning
rate of 5× 10−6. The learning rate was decreased using the exponential learning rate decay,
whose decay rate was set to 0.99 for each epoch. In the remainder of this subsection, we
elaborate the sub-loss of the loss L: LIM and LNR.

Image manipulation loss LIM. This loss consisted of sub-losses reflecting three self-
supervision tasks (i.e., solving jigsaw puzzling, rotation prediction and part in-painting
tasks). To enrich the feature extractor f Feat using jigsaw puzzling, rotation prediction,
and part in-painting tasks, we used the loss LIM that combined losses defined in Equations
(2)–(4). We used the same form of losses as Equations (2)–(4) while changing the target
training network to f Feat:

LIM( f Feat) = Ljigsaw( f Feat|x, xjigsaw)

+Lrot( f Feat|xrot)

+Linp( f Feat|xhole). (7)

Neural rendering loss LNR. This loss reflected the last self-supervision task (i.e., solving
image projection task). Given a 2D image x, 3D human meshes are estimated by the
sequential combination of f Mesh and f Feat: f Mesh( f Feat(x)). Then, we can render estimated
3D meshes m to images x̂render and segmentation masks x̂mask using the neural mesh
renderer f NMR. LRGB and Lmask are responsible for making two rendered images (i.e., x̂render
and x̂mask) close to their original inputs, respectively. Additional losses Ldisc and Lreal are
defined to train the discriminator and obtain more realistic images. The combination of
four sub-losses is called the neural rendering loss LNR:

LNR( f Feat, f Mesh, f Disc) = LRGB( f Feat, f Mesh|x)
+Lreal( f Feat, f Mesh|x)
+Lmask( f Feat, f Mesh|x) (8)

+Ldisc( f Disc|x, x̂render,bg, x̂inp)

where x̂render,bg is the image that combines the rendered image x̂render and a random back-
ground image xbg. LRGB( f Feat, f Mesh|x) is in the same form as LRGB( f Tex|x) in Equation (6);
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however, the target training network is changed to f Feat and f Mesh. Lmask( f Feat, f Mesh|x),
Lreal( f Feat, f Mesh|x), and Ldisc( f Disc|x, x̂render, x̂inp) are newly defined as follows:

Lreal( f Feat, f Mesh|x) = ‖ f Disc(x̂render,bg)− 1‖2
2, (9)

Lmask( f Feat, f Mesh|x) = ‖xmask − x̂mask‖2
2, (10)

Ldisc( f Disc|x, x̂render, x̂inp) = ‖ f Disc(x))− 1‖2
2

+‖ f Disc(x̂render,bg)‖2
2

+‖ f Disc(x̂inp)‖2
2 (11)

where xmask is the binary mask estimated from the Mask-RCNN [58]. Using Equation (11),
the discriminator f Disc is trained to discriminate the original images x as real while the
rendered images x̂rendered and in-painted images x̂inp are determined as fakes.

Joint loss Ljoints. When 2D or 3D skeleton joints are available, this loss is used to close
the keypoints regressed from 3D mesh vertices to their ground-truth locations (in the
SMPL [13] model, the model that geometrically regresses 3D skeletons from mesh vertices
is accompanied). This is an optional loss that is not used for the self-supervised setting
(i.e., Ours (self-sup)); however, we used this loss for the weakly-supervised setting (i.e., ours
(weakly-sup)); or for the semi-supervised setting (i.e., ours (semi-sup)), in which either of 2D
or 3D skeletons are available, respectively.

Incorporation of different human images. As we constituted our framework with a self-
supervised loss that did not require any 2D/3D skeleton annotations, we were able to train
our network with any RGB human images outside of our training dataset. We additionally
involved 2D images from the MPI-INF-3DHP [59], MPII [60], COCO [61], and LSP [62]
datasets, which have been involved in the weakly/semi-supervised settings, plus our own
collections of wild YouTube data. When detecting the humans in the images, we used the
Mask-RCNN network [58] to inspect if there was a human bounding box or not. The results
in Table 5 using “Full w/o Y” (row 4) and “Full” (row 5) datasets can be compared to see
the performance improvement by the incorporation of human images, where “Full” and
“Full w/o Y” denote the model trained by datasets with and without our own collections of
wild YouTube images, respectively. We could observe that the accuracy was improved by
the incorporation of human images.

Table 5. Ablation study on Human3.6M to analyze the effectiveness of the objective functions (first
2 rows) and results of weakly-supervised and semi-supervised approaches (last 2 rows). We also
conducted an ablation study depending on the different training dataset compositions: “Full” denotes
the full training dataset that we described in Section 4.1. Rows 3–4 show the ablation results using
different training datasets, where “H36M” and “Full w/o Y” denote the Human3.6M dataset and full
datasets without the collection of wild YouTube data, respectively. We use protocol-2 for “H36M”.

Methods Dataset MPJPE(↓) PA-MPJPE(↓)

Ours (self-sup)—Lreal—Lmask Full 96.8 62.1
Ours (self-sup)—Lreal Full 95.7 60.3

Ours (self-sup) H36M 90.4 55.4
Ours (self-sup) Full w/o Y 86.5 54.9

Ours (self-sup) Full 84.2 54.4

Ours (weakly-sup) Full 80.7 52.7
Ours (semi-sup) Full 65.8 44.9

4. Experiments

In this section, we explain the datasets and evaluation method and then analyze the
obtained results in a qualitative and quantitative manner. We also provide ablation results
by varying the parameters of our framework.
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4.1. Dataset

We trained our model using the following datasets: Human3.6M [14], MPI-INF-
3DHP [59], MPII [60], COCO [61], LSP [62], and a collection of wild YouTube data consisting
of 62k, 96k, 14k, 28k, 1k, and 3k data entities, respectively. We tested using the following
datasets: Human3.6M [14], 3DPW [63], and LSP [62].

The Human3.6M dataset is a widely used dataset with paired images and 2D/3D pose
annotations. This is an in-studio dataset and consists of four multi-view images; however,
we did not use multi-view images for training. Like [5], we used subjects S1, S5, S6, S7,
S8 for training and S9 and S11 for testing. We computed the mean per joint position error
(MPJPE) and Procrustes analysis-MPJPE (PA-MPJPE) on the Human3.6M test dataset to
evaluate the 3D pose estimation results.

MPI-INF-3DHP has 2D images and corresponding 2D/3D skeleton annotation pairs.
This is an in-studio dataset and consists of eight multi-view images; however, we did not
use multi-view images for training. The MPII dataset and COCO dataset consist of indoor
and outdoor images with only 2D annotations.

The LSP dataset is a wild athletic dataset that consists of wild images with 2D anno-
tations. This dataset is used for evaluation, with their (part-)segmentation ground truths
secured by [43]. The 3DPW dataset is an in-the-wild outdoor dataset and is used only for
evaluation purposes. We further collected images from YouTube of jogging or dancing
motions, with diverse backgrounds and viewpoints (the dataset is available in our Github
repository).

4.2. Evaluation Method

We used two approaches to evaluate the estimated 3D poses: MPJPE and PA-MPJPE.
MPJPE is the mean Euclidean distance between the ground truth and prediction for a joint.
PA-MPJPE is Procrustes analysis-MPJPE, which aligns the estimated 3D poses to their
ground-truths by a similarity transformation called Procrustes analysis before computing
the MPJPE. We also used two approaches to evaluate the estimated 3D shapes: accuracy
and F1 score for FG-BG and part-segmentation masks. We measured their accuracy and F1
score by a pixel-wise comparison between estimated masks and their ground truths.

4.3. Results

For the Human3.6M dataset, we compare our method to recent fully/semi/weakly-
/self-supervised methods [5,36,37,43,47–50,64] that output the 3D human poses by protocol-
2 in Table 6. Our method outperformed previous methods in all three types of supervision
settings (i.e., self/weakly/semi-supervised). Kundu et al. [64]’s method is the competitive
self-supervised learning framework using the video priors; however, our method outper-
formed it even without any video priors. Li et al. [54]’s method is the only baseline that
outperforms our method and uses the self-supervised setting. However, the work is not
directly comparable to ours, as its setting is easier as it estimates only skeletal joints and
using multi-view priors. We provide full 3D meshes inferring both pose and shape and use
only 2D images as the supervision signals.

To show the generalization ability of our method, we evaluated it on 3DPW, the data
of which were never seen in our training process. For the 3DPW dataset, we compared
the accuracy of our method to those of recent state-of-the-art approaches [4,5,9,47,51,64] in
Table 7. For the LSP dataset, as the dataset does not contain 3D pose annotations, we only
measured the accuracy and F1 score of FG-BG segmentation and six-part segmentation,
respectively, for comparison with other algorithms. We compared our method to state-of-
the-art optimized-based methods [9,37,65] and regression-based methods [5,49,50,64] in
Table 8. Optimization-based methods tend to have better performance on segmentation
tasks than regression-based methods; however, our method outperformed most of them
even in the self-supervised setting (i.e., Ours (self-sup)); our approach was also recorded as
the best when involving more supervisions (i.e., Ours (weakly-sup) and Ours (semi-sup)).
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Table 6. Evaluation with Human3.6M(Protocol-2). Methods in the first 10 rows use equivalent 2D
and 3D pose supervision. Methods in rows 11–14 and rows 15–18 are weakly-supervised and self-
supervised approaches, respectively. * indicates methods that output only 3D joints, not 3D meshes.

Methods PA-MPJPE(↓)

Fully-supervised & Semi-supervised

Lassner et al. [43] 93.9
Pavlakos et al. [37] 75.9
Omran et al. [36] 59.9
HMR [5] 56.8
Temporal-HMR [47] 56.9
Arnab et al. [48] 54.3
Kolotouros et al. [49] 50.1
TexturePose [50] 49.7
Kundu et al. [64] 48.1
Ours (semi-sup) 44.9

Weakly-supervised

HMR unpaired [5] 66.5
Kundu et al. [64] 58.2
Iqbal et al. [52] 54.5
Ours (weakly-sup) 52.7

Self-supervised

Kundu et al. [64] 90.5
* Chang et al. [66] (multi-view-sup) 77.0
Kundu et al. [64] (multi-view-sup) 74.1
Ours (self-sup) 54.4

* Li et al. [54] (multi-view-sup) 45.7

Table 7. Evaluation with wild 3DPW dataset in a fully-unseen setting. Unlike Temporal-HMR, we
do not use any temporal supervision. Methods in the first seven rows use equivalent 2D and 3D
pose supervision.

Methods MPJPE(↓) PA-MPJPE(↓)

Martinez et al. [4] - 157.0
SMPLify [9] 199.2 106.1
TP-NET [51] 163.7 92.3
HMR [5] 130.0 76.7
Temporal-HMR [47] 127.1 80.1
Kundu et al. [64] (semi-sup) 125.8 78.2
Ours (semi-sup) 106.0 66.0

Kundu et al. [64] (weakly-sup) 153.4 89.8
Ours (weakly-sup) 107.4 69.1

Kundu et al. [64] (self-sup) 187.1 102.7
Ours (self-sup) 124.7 88.5

In Figure 3, we visualized qualitative examples of our method on Human3.6M, 3DPW,
and LSP datasets. We overlaid predicted meshes, joints, part-segmentation masks, and neu-
ral rendered images on the input images. Even though our purpose was not to estimate
textures at the testing stage; we could observe that our method faithfully estimates textures
for unseen testing images.
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Table 8. Evaluation of FG-BG and six-part segmentation with LSP test set. First 4 rows: optimization-
based methods. Last 10 rows: regression-based methods.

Methods FG-BG Seg. Part Seg.

Acc. (↑) F1 (↑) Acc. (↑) F1 (↑)

Optimization-based

SMPLify oracle [9] 92.17 0.88 88.82 0.67
SMPLify [9] 91.89 0.88 87.71 0.64
SMPLify on [37] 92.17 0.88 88.24 0.64
Bodynet [65] 92.75 0.84 - -

Fully-supervised & Semi-supervised

HMR [5] 91.67 0.87 87.12 0.60
Kolotouros et al. [49] 91.46 0.87 88.69 0.66
TexturePose [50] 91.82 0.87 89.00 0.67
Kundu et al. [64] 91.84 0.87 89.08 0.67
Ours (semi-sup) 93.28 0.90 89.90 0.70

Weakly-supervised

HMR unpaired [5] 91.30 0.86 87.00 0.59
Kundu et al. [64] 91.70 0.87 87.12 0.60
Ours (weakly-sup) 93.31 0.90 89.86 0.70

Self-supervised

Kundu et al. [64] 91.46 0.86 87.26 0.64
Ours (self-sup) 92.62 0.89 87.72 0.63

4.4. Ablation Study

To analyze the effectiveness of our entire training objective (Equation (1)), we con-
ducted ablation experiments on our losses, as presented in Table 5. In our initial experiment,
we used the combination of three images’ manipulation task losses (i.e., jigsaw puzzling,
rotation prediction, and part in-painting) and one RGB rendering loss LRGB for the “mesh
training stage”. However, given only these four types of losses, we observed that 3D
meshes were trained in the wrong way, inferring camera scale parameters to be very small,
as this might be an easier way to reduce the RGB rendering loss LRGB. To relieve this, we
proposed the addition of more constraints in our loss by the segmentation mask loss Lmask,
defined in Equation (10): we observed that the uses of loss Lmask and the discriminator loss
Ladv are helpful for preventing this phenomenon. In Table 5, by comparing results from
“Ours (self-sup)-Lreal-Lmask”, “Ours (self-sup)-Lreal”, and “Ours (self-sup)”, we could conclude
that results improved as more supervision was used. The corresponding qualitative results
are also shown in Figure 4. Furthermore, we experimented on different configurations of
datasets for training in the same table (Table 5): Rows 3–4 of Table 5 show the accuracy
using fewer datasets for training where “H36M” and “Full w/o Y” denote the Human3.6M
dataset and full datasets without the collection of wild YouTube data, respectively. “Full”
denotes the full training data that we described in Section 4.1, including the collection of
wild YouTube data compared to “Full w/o Y”. We can see that involving more image data
results in improved accuracy.
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A. Results on Human3.6M dataset (in-studio)

B. Results on 3DPW dataset (in-the-wild)

C. Results on LSP dataset (in-the-wild)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 4. Qualitative examples on 3 databases (Human3.6M, 3DPW, and LSP). (a) input image, (b-d), (e-g), and (h-j) denote our results obtained
from self-/weakly- and semi-supervised models, respectively. (b, e, h) shows images with joints and 3D meshes, (c, f, i) shows images with
part-segmentation masks, and (d, g, j) shows neural mesh rendered images, respectively.

To show the generalization ability of our method, we evaluated it on 3DPW, whose data351

were never seen in our training process. For the 3DPW dataset, we compared the accuracy of our352

method to those of recent state-of-the-arts [4,5,9,47,51,64] in Table 8. For the LSP dataset, as353

Figure 3. Qualitative examples of three databases (Human3.6M, 3DPW, and LSP). (a) Input im-
age; (b–d), (e–g), and (h–j) denote our results obtained from self/weakly and semi-supervised
models, respectively. (b,e,h) show images with joints and 3D meshes, (c,f,i) show images with
part-segmentation masks, and (d,g,j) show neural mesh rendered images, respectively.

(a) (b) (c) (d)

Figure 4. Qualitative examples depending on losses: (a) input, (b) results from ‘Ours (self-sup)-Lreal-
Lmask’, (c) results from ‘Ours (self-sup)-Lreal’, and (d) results from ‘Ours (self-sup)’. Results become
better involving more supervision.
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We further analyzed the effectiveness of the individual image-level supervision (i.e.,
Ljigsaw, Lrot, and Linp) in the Table 9. We conducted the experiment by applying one of our
self-supervision losses for our self/weakly and semi-supervised baselines. For example,
"Ours (self-sup)-Lrot-Linp", "Ours (self-sup)-Ljigsaw-Linp", and "Ours (self-sup)-Lrot-Ljigsaw"
denote the network trained without a rotation prediction loss Lrot and a part in-painting
loss Linp, the network trained without a jigsaw puzzle loss Ljigsaw and a part in-painting
loss Linp, and the network trained without a rotation prediction loss Lrot and a jigsaw
puzzle loss Ljigsaw for our self-supervision setting, respectively. From these experiments,
we can see that (1) none of three losses clearly prevail over the other remaining, and (2)
applying all the losses consistently outperforms the results when applying one of the losses.
Thus, we need to combine three image-level self-supervisions (i.e., Ljigsaw, Lrot, and Linp)
together in our main experiments.

Table 9. Ablation study on Human3.6M, 3DPW, and LSP to analyze the effectiveness of image
manipulation task losses.

Methods
Human3.6M 3DPW LSP

BG-FG Seg. Part Seg.

MPJPE (↓) PA-MPJPE (↓) MPJPE (↓) PA-MPJPE (↓) Acc. (↑) Acc. (↑)

Ours (self-sup) - Lrot - Linp 90.1 55.5 126.7 89.5 92.80 88.15
Ours (self-sup) - Ljigsaw - Linp 93.1 60.0 137.5 98.4 92.86 88.06
Ours (self-sup) - Lrot - Ljigsaw 91.2 58.2 135.9 98.7 92.76 87.70

Ours (self-sup) 84.2 54.4 124.7 88. 92.62 87.72

Ours (weakly-sup) - Lrot - Linp 83.7 53.0 112.1 69.3 93.39 89.78
Ours (weakly-sup) - Ljigsaw - Linp 86.3 54.7 110.5 68.2 93.37 89.76
Ours (weakly-sup) - Lrot - Ljigsaw 84.1 53.9 109.6 68.2 93.45 89.88

Ours (weakly-sup) 80.7 52.7 107.4 69.1 93.31 89.86

Ours (semi-sup) - Lrot - Linp 67.7 46.0 105.8 64.9 93.18 89.84
Ours (semi-sup) - Ljigsaw - Linp 68.4 45.9 108.0 65.7 93.23 89.79
Ours (semi-sup) - Lrot - Ljigsaw 67.6 46.5 106.9 65.0 93.22 89.88

Ours (semi-sup) 65.8 44.9 106.0 66.0 93.28 89.90

5. Conclusions

In this paper, we present a self-supervised learning framework for recovering human
3D meshes from a single RGB image. We proposed the use of the combination of three image
manipulation task losses and one neural rendering loss to enrich the feature space and boost
the mesh reconstruction accuracy. We also find that the combination of RGB rendering,
mask rendering, and adversarial losses is essential to properly achieve image-level self-
supervision without using video or multi-view priors. Experiments were conducted
on three popular benchmarks, and our algorithm achieved the best accuracy among
competitive self/weakly/semi and fully-supervised algorithms. Via these results, we could
conclude that single 2D image-level supervision could be a strong supervision method
for training 3D human pose and shape estimation. While we showed promising results
using the proposed 2D single image-level self-supervision losses, avoiding the effort of
collecting other types of supervision signals, some small inconvenience remains in our
framework in terms of manually setting hyper-parameters. Future work should explore the
possibilities of developing a fully automatic pipeline that resolves this inconvenience by
including schemes to select the optimal hyper-parameters for our losses (e.g., tile number
in jigsaw puzzle loss, rotation angles for rotation prediction loss and etc.).
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