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Abstract

We study the asymptotic linear stability of a two-parameter family of solitary
waves for the isothermal Euler–Poisson system. When the linearized equations
about the solitary waves are considered, the associated eigenvalue problem in L2

space has a zero eigenvalue embedded in the neutral spectrum, i.e., there is no
spectral gap. To resolve this issue, use is made of an exponentially weighted L2

norm so that the essential spectrum is strictly shifted into the left-half plane, and this
is closely related to the fact that solitary waves exist in the super-ion-sonic regime.
Furthermore, in a certain long-wavelength scaling, we show that the Evans function
for the Euler–Poisson system converges to that for the Korteweg–de Vries (KdV)
equation as an amplitude parameter tends to zero, from which we deduce that the
origin is the only eigenvalue on its natural domain with algebraic multiplicity two.
We also show that the solitary waves are spectrally stable in L2 space. Moreover,
we discuss (in)stability of large amplitude solitary waves.

1. Introduction

We consider the one-dimensional isothermal Euler–Poisson system in a non-
dimensional form:

⎧
⎨

⎩

∂t n + ∂s((1+ n)u) = 0,
∂t u + u∂su + K∂s log(1+ n) = −∂sφ,

−∂2s φ = (1+ n)− eφ, s ∈ R, t ≥ 0.
(1.1)

Here 1+ n, u and φ represent the ion density, the fluid velocity function for ions,
and the electric potential, respectively, and K = Ti/Te > 0 is a constant of the ratio
of the ion temperature to the electron temperature. The Euler–Poisson system is a
fundamental fluid model which describes the dynamics of ions in an electrostatic
plasma, and it is often employed to study phenomena of plasma such as plasma
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sheaths and double layers (see [6,9] for more physical background). In the one-
fluid model (1.1), the electron density ne is assumed to satisfy the Boltzmann
relation ne = eφ , which can be formally derived from the two-fluid model under
the massless electron assumption.1 A rigorous justification of this zero mass limit
is discussed in [16].

Among others, the emergence of solitary waves is one of the most interesting
phenomena in the dynamics of electrostatic plasma. In [45], it is shown that in a
plasma, a single pulse (soliton) traveling slightly faster than the ion sound speed
can propagate without change in shape. Motivated by physicists’ finding that the
KdV equation, originally derived to describe themotion of water waves, can be also
derived in the study of hydromagnetic waves in plasmas, see [17], plasma physicists
have sought formal connections between the Euler–Poisson system (pressureless
case K = 0 for the sake of simplicity of analysis) and the KdV equation; see
[45,49]. Later on, the phenomenon was also experimentally observed in [26].

Various analytical [3,21] and numerical [22,31] studies indicate that in certain
physical regime, the KdV equation is a good approximation of the Euler–Poisson
system (1.1). Moreover, as solutions of the KdV equation are dominated by their
solitary waves [4,5,18,19,30,34–36,42,52], this gives hope of a similar result for
the Euler–Poisson system with more general initial data.

This motivation naturally leads us to the study of stability of solitary waves for
the Euler–Poisson system.

In fact, it is shown in [8] that the Euler–Poisson system (1.1) with the far-field
condition

(n, u, φ) → (0, 0, 0) as s →±∞ (1.2)

admits a two-parameter family of traveling solitary wave solutions

(n, u, φ)(s, t) = (nc, uc, φc)(s − ct + γ ), c ∈ (
√

K + 1,
√

K + 1+ εK ) and γ ∈ R,

where εK > 0 is a critical value (see (2.6)) and
√
1+ K is called the ion sound

speed in the context of plasma physics.2 Furthermore, the authors of this paper
show in [3] that (nc, uc, φc) converges to the rescaled solitary wave solution of the
associated KdV equation as the amplitude parameter ε > 0 tends to zero. More
specifically, in the Gardner-Morikawa scaling (also called as the KdV scaling)

ξ := ε1/2x = ε1/2(s − ct), c = √1+ K + ε,

it is shown that

φc(ε
−1/2ξ)− ε�K dV (ξ) = O(ε2) as ε → 0,

1 The mass of ions is much heavier than that of electrons for plasma environments. Ad-
ditionally, it is assumed that (i) (isothermal) Ti and Te are constant, (ii) (electrostatic) the
time variation of the magnetic field is negligible, (iii) (plane wave) the dynamics of ions and
electrons occur only in one direction.
2 By letting c = −c′ and u = −u′, we obtain the traveling waves moving to the left

direction.
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where

�K dV (ξ) := 3√
1+ K

sech2
(√√

1+ K/2 ξ

)

, (1.3)

and it satisfies

−∂ξ�K dV +
√
1+ K�K dV ∂ξ�K dV + 1

2
√
1+ K

∂3ξ �K dV = 0. (1.4)

In this paper we investigate the linear stability of this family of small amplitude
solitary waves.

Due to the translation invariance and the fact that the traveling speed is a pa-
rameter, the linearized Euler–Poisson system around the solitary waves has two
linearly independent solutions which do not decay in time (we call these solutions
non-decaying modes). In light of this, we show that the family of solitary wave
solutions to the Euler–Poisson system (1.1)–(1.2) is linearly asymptotically sta-
ble modulo the non-decaying modes. More precisely, for the initial data having
no component of the non-decaying modes, the solution to the linearized Euler–
Poisson system exponentially decays to zero as t →+∞. The asymptotic stability
result is established in terms of strongly continuous semigroups on exponentially
weighted L2-spaces. Introduction of the weighted norm is closely related to the
fact that traveling solitary wave solutions exists in the super-ion-sonic regime, i.e.,
c >

√
1+ K .

We also prove that in the usual L2-space, the spectrumof the operator associated
with the linearized Euler–Poisson system is precisely the imaginary axis, and hence
the family of solitary waves are spectrally stable. Our stability results hold for small
amplitude solitary waves.

1.1. Main results

In the moving frame x = s − ct , the linearized system of (1.1) around the
solitary wave (nc, uc, φc)(x) is given by

⎧
⎪⎨

⎪⎩

∂t

(
ṅ
u̇

)

+ L∂x

(
ṅ
u̇

)

+ (∂x L)

(
ṅ
u̇

)

=
(

0
−∂x φ̇

)

, (1.5a)

−∂2x φ̇ = ṅ − eφc φ̇, (1.5b)

where L = L(x, ε) is the matrix defined by

L :=
(−c + uc 1+ nc

K
1+nc

−c + uc

)

. (1.6)

We define the exponentially weighted L2 space and the associated Sobolev
spaces

‖ f (x)‖L2
β (R) := ‖eβx f (x)‖L2(R) and ‖ f (x)‖Hs

β(R) := ‖eβx f (x)‖Hs (R),

(1.7)



J. Bae & B. Kwon

where Hs(R) is the usual L2-Sobolev norm, and β > 0, s > 0. We sometimes use
the notations L2

0 and Hs
0 for the unweighted L2 and Hs-spaces, respectively, with

no confusion.
For given ṅ ∈ L2

β(R), where β ∈ [0, 1), there exists a unique solution φ̇ =
φ̇(ṅ) = (−∂2x + eφc )−1(ṅ) in H2

β (R) to the linear Poisson equation (1.5b) since

0 < φc ∈ L∞(R). To show this, one can consider the change of variable (̃n, φ̃) :=
(ṅ, φ̇)eβx and apply the Lax-Milgram theorem. Hence, we may rewrite (1.5) in a
more compact (nonlocal) form:

(∂t − L)(ṅ, u̇)T = (0, 0)T , (1.8)

where

L
(

ṅ
u̇

)

:= −∂x

[

L

(
ṅ
u̇

)

+
(

0
(−∂2x + eφc )−1(ṅ)

)]

. (1.9)

The eigenvalue problem associated with (1.5) is given by

(λ− L)(ṅ, u̇)T = (0, 0)T . (1.10)

Let us clearly define some terminology.We say that λ ∈ C is in the resolvent set
if λ−L has the bounded inverse operator (λ−L)−1, which is called the resolvent.
We call the complement of the resolvent set the spectrum of L, denoted by σ(L),
which can be decomposed in terms of the Fredholm properties of the operator λ−L
as follows:

1. we say that λ ∈ σ(L) is in the point spectrum, σpt(L), if λ − L is Fredholm
with index zero, but it is not invertible;

2. σess(L) := σ(L) \ σpt(L) is called the essential spectrum of L.

We say that λ ∈ σ(L) is an eigenvalue of L if the kernel of λ − L is a nontrivial
subspace of the domain of L.

Due to the translation invariance and the fact that the speed c is a parameter,
λ = 0 is an L2-eigenvalue of the operator L with algebraic multiplicity at least
two. Indeed, we will see that

L∂x (nc, uc)
T = (0, 0)T , L∂c(nc, uc)

T = −∂x (nc, uc)
T . (1.11)

Thus

∂x (nc, uc)
T (x) and ∂c(nc, uc)

T (x)− t∂x (nc, uc)
T (x)

are non-decaying (in time) solutions to (1.5).
Since the solitarywaves exponentially decay to zero as |x | → +∞, the essential

spectrum of L in L2-space coincides with the imaginary axis in the complex plane,
and the zero eigenvalue is embedded in the essential spectrum. Moreover, the point
spectrum of L in L2-space is empty.

For a Hilbert space H, we denote H × H by (H)2. We present the result of
spectral stability by restating Proposition 3.10 (a).
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(a) Spectrum in L2 (b) Spectrum in L2
β

Fig. 1. The bold curves indicate the essential spectrums of L. In b, the zero eigenvalue of
L is isolated in L2

β for sufficiently small β > 0

Proposition 1.1. (Spectrum of L in L2-space) Consider the operator L : (L2)2 →
(L2)2 with dense domain (H1)2. Then, for all sufficiently small ε > 0, it holds that

σ(L) = σess(L) = {λ ∈ C : Re λ = 0}.
However, in terms of a standard semigroup approach, the spectral stability itself

is not sufficient to conclude the asymptotic linear stability. We resolve this issue
by employing the weighted space L2

β(R) defined in (1.7). For appropriately chosen
β > 0, the essential spectrum of L is strictly shifted into the open left-half plane,
while λ = 0 is still remains as the eigenvalue of L (see Fig. 1). Furthermore, λ = 0
is the only L2

β -eigenvalue of L on some closed set containing the closed right-half
plane, and its algebraic multiplicity is two. The corresponding eigenvector and the
generalized eigenvector are given by ∂x (nc, uc)

T and ∂c(nc, uc)
T , respectively. This

idea separating the essential spectrum and the embedded eigenvalue by employing
the weighted space was first introduced by [47] in the study of stability of traveling
waves of parabolic system, and it is successfully adopted later to the study of
stability of the KdV solitary waves in [42].

We first present some preliminary results for the linear asymptotic stability by
restating Proposition 3.10 (b), Proposition 5.4, and Lemma 6.1.

Proposition 1.2. Consider the operator L : (L2
β)2 → (L2

β)2 with dense domain

(H1
β )2. For any fixed c0 ∈ (0,

√

2
√
1+ K/3), let β = c0ε1/2. Then there exists

ε0 > 0 such that for all ε ∈ (0, ε0), the following holds:

(i) L generates a C0-semigroup, eLt .
(ii) λ = 0 is an isolated eigenvalue of L with algebraic multiplicity two.
(iii) σess(L) ⊂ {λ : Re λ < −ε3/2η(c0)} and σpt(L) ∩ {λ : Re λ � −ε3/2η(c0)} =

{0}, where η > 0 is a function of c0 defined in (3.24). In particular, σess(L) is
a union of two curves paramterized by

d±(ik − β) = (ik − β)

(

c ±
√

1

1− (ik − β)2
+ K

)

, k ∈ R.
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(iv) (λ−L)−1 is uniformly bounded on Re λ � 0, outside any small neighborhood
of the origin.

Our main result follows from Proposition 1.2 and the Gearhart-Prüss stabil-
ity theorem [44].3 Let P0 be the spectral projection associated with the isolated
eigenvalue λ = 0.

Theorem 1.3. (Asymptotic linear stability in weighted L2-spaces) Under the same
assumptions as in Proposition 1.2, the following statement holds: for any given
(n0, u0)

T ∈ (L2
β)2 satisfying P0(n0, u0)

T = 0, it holds that

‖eLt (n0, u0)
T ‖(L2

β)2 � C1e−C2t‖(n0, u0)
T ‖(L2

β)2 , ∀t � 0, (1.12)

for some constants C1, C2 > 0 depending on ε.

The semigroup estimate (1.12) holds for any solution to the linearized Euler–
Poisson system (1.5) with no component of the non-decaying modes.

The essential spectrum ofL in exponentially weighted spaces is shifted into the
left half plane since the end state of solitary wave solutions lies in a super-ion-sonic
regime, i.e., c >

√
1+ K . More precisely, the dispersion relation is

ω±(k) = −k

(

c ±
√

1

1+ k2
+ K

)

,

from which we find that the group velocities are strictly negative, i.e., ∂kω±(k) �
−ε, and we have for small β > 0,

Re d±(ik − β) ≈ ∂kω±(k)β.

In particular, the real part of the rightmost point of the essential spectrum of L is
−εβ < 0. In light of this, we see that the system is dissipative at the end state, i.e.,
near the tail part of solitary waves. However, the linearized system throughout the
wave does not have a definite sign, for which one cannot obtain the decay estimate
by a standard energy method.

It is worthwhile to remark that the energy method, successfully used to study
the stability and quasi-neutral limit of the solutions near the boundary layers rep-
resenting plasma sheaths for (1.1) in the weighted spaces under the supersonic
condition c >

√
1+ K (see [28,48]), does not work for our current problem since

our solitary waves are not small. More specifically, as the solitary wave amplitude
O(ε) gets smaller, the traveling speed c also gets closer to the ion sound speed in
O(ε) order, and vice versa. This leads to a smaller damping effect of order O(ε)

due to a combination of the weighted space and transport effect. Hence, rather than
a standard energy method, a more detailed spectral analysis is required to study the
asymptotic stability of traveling solitary waves.

3 A compact proof of the theorem can be found in Section 5.2 of [1] . We also refer to
Section 5.7 of [1] for a note on the theorem.
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One of the main tasks in our analysis is to characterize the eigenvalues ofL, for
which we employ the Evans function techniques. The Evans function is an analytic
function of the spectral parameter λ, and on the natural domain, the location and
order of zeroes of the Evans function coincide with those of eigenvalues of L. For
the associated eigenvalue problem (1.10), the natural domain of the Evans function
is {λ : Re λ > 0} in L2 space, and the natural domain can be extended to contain
{λ : Re λ � 0} in the exponentially weighted space L2

β . The Evans function was
first intoduced in [11–14], and successfully developed in the study of stability of
travelingwaves in various contexts, see [2,27,41,42,53] for their pioneeringworks.
We also refer to [46,50] and the references therein.

In general, an explicit form of the Evans function is not available except for a
few cases. To overcome this issue, we make use of a specific scale, related to the
Gardner-Morikawa transformation,

ξ = ε1/2x, λ = ε3/2
, (1.13)

and observe that as ε tends to zero, the rescaled eigenvalue problem for the Euler–
Poisson systemcanbe formally reduced to the eigenvalue problem for the associated
KdV equation (see Appendix 9.1)


ṅ∗ − ∂ξ ṅ∗ +
√
1+ K∂ξ (�K dV ṅ∗)+ 1

2
√
1+ K

∂3ξ ṅ∗ = 0, (ṅ∗(ξ) := ṅ(x)),

(1.14)

for which an explicit form of the Evans function DKdV(
) is established in [42];
it vanishes only at 
 = 0 with multiplicity of two. In light of this, we show that
in the scaling (1.13), the Evans function D(λ, ε) for the Euler–Poisson system
converges to that for the associated KdV equation as ε tends to zero, and that
the convergence is uniform on a domain containing the closed right-half plane
(Proposition 3.17). On the other hand, λ = 0 is a zero of D(λ, ε) with multiplicity
at least two (Proposition 3.12). From these together with Rouché’s theorem, we
deduce that λ = 0 is a zero of D(λ, ε) with multiplicity two, and there is no other
zero satisfying Re λ � −ε3/2η(c0) (Proposition 3.8). This is discussed in Section 3.
The relations between the Evans functions and the associated eigenvalue problems
are summarized in the following diagram:

dy
dx = A(x, λ, ε)y ⇔ dp

dξ
= A∗(ξ, 
, ε)p, → dp

dξ
= A∗(ξ, 
, 0)p ⇔ Eq. (1.14)

∣
∣
∣Prop.3.5

ξ=ε1/2 x,

λ=ε3/2


∣
∣
∣Prop.3.14 as ε → 0

∣
∣
∣Prop.3.14

∣
∣
∣Prop.3.13

D(λ, ε) =
Prop.3.15

D∗(
, ε) →
Prop.3.17

D∗(
, 0) =
Prop.3.15

DKdV(
)

⇓
0 = D(0, ε)
= ∂λ D(0, ε)

⇒ 0 �= ∂2λ D(0, ε),
0 �= D(λ, ε) for λ �= 0

⇐ 0 = DKdV(0) = ∂
 DKdV(0) �= ∂2
 DKdV(0),
0 �= DKdV(
) for 
 �= 0

Prop.3.12 Prop.3.8 Prop.3.13

Our strategy for studying the eigenvalue problem is borrowed from the work
of [43] concerning stability of solitary waves for some Boussinesq systems. We
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also refer to [24,32,37,40] for similar approaches for various water wave models
and [23] concerning the solitary waves for the pressureless (K = 0) Euler–Poisson
model.

Another key ingredient in the analysis of the linear asymptotic stability is es-
tablishing the uniform (in λ) boundedness of the resolvent operator (λ − L)−1,
restricted to the complementary spectral projection I −P0, on {λ : Re λ � 0} (see
[10], Chapter V, p. 304 for a counterexample), and it is a non-trivial task even in
the case of a scalar equation in general (see [50], Chapter 4.5 or [51] for instance).
To obtain the uniform resolvent bounds, we consider Green’s function for the first-
order ODE system associated with the eigenvalue problem for the Euler–Poisson
system and apply a perturbation argument involving the so-called roughness of ex-
ponential dichotomies (see [7]). We remark that the uniform resolvent bound for
the case K = 0 is obtained in [23] by considering a certain change of variables
in such a way that the transformed operator can be written as a sum of a constant
coefficient first-order operator and a small bounded operator in L2

β × H1
β space,

which is a suitable solution space for the case. However, such an approach is not
available in the case K > 0 since the small perturbation term is not bounded in
L2

β × L2
β space.

In the context of compressible fluid models of cold plasmas (also in the study
of sticky particles), the pressure term in the momentum equation is sometimes ig-
nored for the sake of simplicity. In a mathematical point of view, the absence of the
pressure term makes the system weakly coupled, so one can take an advantage of
its simpler structure to analyze some properties of the system. For instance, by a
simple ODE technique, the formation of singularity can be easily shown for (1.1)
with K = 0, see e.g., [33], while no comparable result is known for (1.1) with
K > 0. However, we remark that the pressureless Euler–Poisson system has quali-
tatively different properties from those of (1.1) with K > 0. One of the significant
differences is the emergence of delta shocks; provided that the initial data u0 has a
steep gradient at some point, one can easily show, by an ODE technique, that the
gradient of velocity blows up at finite time T∗ and it occurs in a non-integrable way
in time, see (8.3) in Section 8.2. From this together with the continuum equation,
we see that L∞ norm of density is unbounded as t approaches T∗. This is not the
case in the presence of the pressure, in general. We refer to Section 8 for a more de-
tailed discussion and some numerical experiments exhibiting this density blow-up
phenomena in terms of solitary waves for the case K = 0.

Another interesting point is that the appropriate solution spaces for the pres-
sureless system are different from those for (1.1) with K > 0; the latter is a
symmetrizable system. For the well-posedness for the case K = 0, the velocity
function is required to have one better differentiability than that of density due to
the structure of the equations. This causes different difficulties in the analysis such
as establishing the uniform resolvent bound as mentioned earlier.

Before we close the introduction, we remark on some issues related to the non-
linear stability. To tackle the asymptotic nonlinear stability, we encounter several
obstacles to overcome.Among others, one of themost fundamental issues is to show
global existence of smooth solutions. As discussed earlier, the linear system has a
neutral spectrum, but the dispersion relation reveals the system is weakly disper-
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sive. To our best knowledge, no global existence result has been proved for the 1D
Euler–Poisson system (1.1). Since the system isweakly dispersive but strongly non-
linear, it is not expected that smooth solutions exist globally, in general. Regarding
the global existence of the Euler–Poisson system, there are a few positive results.
It is proved in [20] that curl-free small smooth solutions of the 3D Euler–Poisson
system near the constant state can exist globally in time. When the initial-boundary
value problem for the Euler–Poisson system is considered in the half space R

n+,
n ≥ 1, global smooth solutions near the boundary layer solutions (called plasma
sheaths) is proved to exist, in which no curl-free condition is required, see [28,48].
The authors establish the decay estimates by taking advantage of the exponentially
weighted space and the assumption that the flow is super-ion-sonic, referred to as
Bohm’s criterion, which is physically relevant to the formation of plasma sheath.
There are two reasons (even at the linear level) why similar estimates cannot be
drawn for our present problem: (i) the solitary waves we consider are not small and
(ii) the dissipativemechanism due to the boundary is absent. To our best knowledge,
the study of global existence is widely open, and it seems a challenging problem.
Some related issues specially for the one-dimensional pressureless Euler–Poisson
system is discussed in Section 8.

This paper is organized as follows. In Section 2, we summarize some key
properties of the solitary waves that are used for our stability analysis. Section 3
is devoted to classifying the spectrum of the linearized operator L by using the
Evans function. Throughout Sections 3.1–3.3, we specify the domain of the Evans
function D(λ, ε) for the Euler–Poisson system and characterize the eigenvalues of
the linear operator L as the zeros of D(λ, ε). After presenting the characterization
of the zeros of D (Proposition 3.8), we classify the spectrum of L in Section 3.4.
The proof of Proposition 3.8 is given throughout Sections 3.5–3.9. Some crucial
lemmas, such as the behaviors (in λ) of the matrix eigenvalues of the asymptotic
matrix for the associated first order ODE system, required to our analysis will be
proved throughout Sections 4 and 5. Due to the presence of the pressure, the form of
the generalized dispersion relation (3.19) of our model is different from the ones of
[23,32,43]. The splitting properties of matrix eigenvalues (Lemma 3.3 and Lemma
3.4) will be proved in Section 4. The behavior of the Evans function for the small
and large eigenvalue parameter as well as the uniform resolvent estimate will be
covered in Section 5. Summarizing all preliminary results, Theorem 1.3 will be
proved in Section 6.

Some additional topics will be discussed in Sections 7 and 8. In Section 7,
we present an L2-instability criterion, which is applicable to the Euler–Poisson
solitary waves with large amplitudes. According to our numerical tests, the insta-
bility criterion is inconclusive; this is in contrast to the numerical result found in
[23] for the pressureless case, see Section 8 for more details. We also discuss the
question of global existence vs. finite time singularity formation of the pressureless
Euler–Poisson system in Section 8.
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2. Solitary Waves for the Euler–Poisson System

In this section, we briefly discuss some key properties of the solitary waves
for (1.1). Plugging the traveling wave Ansatz (n, u, φ)(x), where x = s − ct , into
(1.1), we obtain

⎧
⎨

⎩

−c ∂x n + ∂x ((1+ n)u) = 0, (2.1a)

−c ∂x u + u∂x u + K∂x log(1+ n) = −∂xφ, (2.1b)

−∂2x φ = (1+ n)− eφ. (2.1c)

Integrating the first two equations of (2.1) in x , one obtains from the far-field
condition (1.2) that

⎧
⎨

⎩

(1+ n)(c − u) = c, (2.2a)

φ = H(n, c) := c2

2

(

1− 1

(1+ n)2

)

− K ln(1+ n), (2.2b)

where (2.2a) is used to get (2.2b). Hence, (2.1) can be reduced as the first order
ODE system for n and ∂xφ:

{
∂n H(n, c)∂x n = ∂xφ, (2.3a)

−∂2x φ = 1+ n − eH(n,c). (2.3b)

The first integral of (2.3) is given by

1

2
(∂xφ)2 = c2

1+ n
+ K (1+ n)+ eH(n) − c2 − K − 1 =: g(n, c). (2.4)

The existence of the solitarywave solutions is shown in [8] (see also [3]) through
a phase plane analysis of the reduced system (2.3). To be more precise, we define
a small amplitude parameter ε > 0 by

ε := c − V, (2.5)

where V := √1+ K is the ion-sound speed. We also define

εK :=
√

K ζ − V > 0, (2.6)

where ζ >
√

K + 1/
√

K is a root of the equation ζ K
[
K (ζ − 1)2 + 1

]

− exp
(
K
(
ζ 2 − 1

)
/2
) = 0. For each ε ∈ (0, εK ),4 the system of traveling wave

equations (2.1) admits a unique non-trivial smooth solution (n, u, φ) = (nc, uc, φc)

satisfying

(nc, uc, φc)(x) = (nc, uc, φc)(−x) for x ∈ R, and

∂x nc, ∂x uc, ∂xφc > 0 for x ∈ (−∞, 0).

4 This condition is also the necessary condition for the existence of non-trivial smooth
solutions. When ε = εK , the traveling wave solution is not differentiable at the peak. When
ε = 0, there is only a trivial solution. See [8].
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Moreover, it satisfies the far-field condition (1.2) and decays exponentially fast as
|x | → ∞. We also note that nc, uc, φc > 0 for x ∈ R.

The peak value n∗c := nc(0) is a unique zero of g defined in (2.4) on the interval
(0, ns), where ns = c/

√
K − 1 is a unique positive zero of

∂n H(n, c) = 1

1+ n

(
c2

(1+ n)2
− K

)

. (2.7)

Since ∂n H(n, c) is positive for n ∈ (0, ns), we have from (2.2a) that for all x ∈ R,

c2

(1+ nc)2
− K = (uc − c)2 − K > 0.

This positive function will be denoted by

J = J (x, ε) := (c − uc(x))2 − K > 0. (2.8)

One can check that nc(x) is differentiable in c ∈ (
√
1+ K ,

√
K ζ ), and ∂cnc(x)

decays to zero exponential as |x | → 0, and thus so do uc and φc. This will be
discussed in Remark 1.

For notational simplicity, we let

Yc(x) := (nc, uc)
T (x), Zc(x) := (uc, nc)(x). (2.9)

Differentiating the traveling wave equations (2.1) in x and c, respectively, one
obtains that

⎧
⎨

⎩

L∂x Yc = 0, L∗Zc = 0, (2.10a)

L∂cYc = −∂x Yc, L∗
(∫ x

−∞
∂c Zc(s) ds

)

= Zc, (2.10b)

whereL∗ is the adjoint operator ofLwith respect to the standard L2 inner product.
More precisely, this is given by

L∗Z := (∂x Z)L +
(
(−∂2x + eφc )−1(∂x Z2), 0

)
, Z = (Z1, Z2), (2.11)

and L is the matrix defined in (1.6).We note that Yc, ∂x Yc, and ∂cYc decay exponen-
tially to zero as |x | → +∞. On the other hand,

∫ x
∂c Zc ds decays exponentially

to zero as x →−∞, but it is merely bounded as x →+∞.
Lastly, we briefly discuss the result of [3] which will be used throughout this

paper.

Theorem 2.1. [3] For K > 0, let V and ε be as in (2.5), and ξ = ε1/2x. Let j be
any non-negative integer. Then there exist positive constants ε∗, C∗ and C j such
that for all ε ∈ (0, ε∗]
∣
∣
∣
∣∂

j
ξ

(
nc

ε
,

uc

ε
,
φc

ε

)

(ε−1/2ξ)− ∂
j
ξ (�KdV, V�KdV, �KdV)(ξ)

∣
∣
∣
∣ � εC j e

−C∗|ξ |,

(2.12)
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where �KdV(ξ), defined in (1.3), satisfies the KdV equation (1.4). Here, C∗ and C j

are independent of ε ∈ (0, ε∗] and ξ ∈ R. Moreover, in the variable of x, there
holds

|∂ j
x nc(x)| + |∂ j

x uc(x)| + |∂ j
x φc(x)| � ε1+ j/2C j e

−C∗ε1/2|x |. (2.13)

Remark 1. We remark that ∂cnc(x) decays exponentially fast as |x | → ∞. To see
this, we let Ec := −∂xφc and h(n, c) := ∂c H(n, c). Then, (nc, Ec) satisfies the
following ODE system (recall (2.3))

∂x

(
n
E

)

=
( −E/[h(n, c)]
1+ n − eH(n,c)

)

=: F(n, E, c), (n, E) = (nc, Ec).

Since the peak value of nc(x), denoted by n∗c , is differentiable in c, it is standard
([25]) that (nc, Ec)(x) is differentiable in c, and it satisfies the initial value problem
of the linear inhomogeneous system

∂x

(
∂cnc

∂c Ec

)

=[DF](n,E)=(nc,Ec)

(
∂cnc

∂c Ec

)

+ ∂c F(n, E, c)|(n,E)=(nc,Ec),

(∂cnc(0), ∂c Ec(0)) =
(
∂cn∗c , 0

)
,

(2.14)

where [DF] is the Jacobian matrix of F in (n, E) variable, i.e.,

[DF](n, E, c) =
( E∂nh

h2
− 1

h
1− eH h 0

)

.

The eigenvalues of the matrix

B(c) := DF(0, 0, c) =
(

0 1
K−c2

1+ K − c2 0

)

are λc :=
√

c2−1−K
c2−K

> 0 and −λc, and the associated right eigenvectors are

v± :=
(
1,±λc(K − c2)

)T
, respectively.Therefore, there is a projection P := v−vT−

vT−v−
such that

|eB(x−s) P| � Ce−λc(x−s) for x > s, |eB(x−s)(I − P)| � Ce−λc(s−x) for s > x .

(2.15)
Since (nc, Ec) exponentially decays to zero as |x | → 0, so does f where f is defined
by

f(x, c) := ([DF](n,E)=(nc,Ec) − [DF](n,E)=(0,0)
)
(

∂cnc
∂c Ec

)

+ ∂c F(n, E, c)(n,E)=(nc,Ec).
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By the variation of constants formula, we have that for x > 0,
(

∂cnc

∂c Ec

)

(x) = eBx
((

∂cn∗c
0

)

+
∫ ∞

0
e−Bs(I − P)f(s) ds

)

︸ ︷︷ ︸
=:I1

+
∫ x

0
eB(x−s) Pf(s) ds −

∫ ∞

x
eB(x−s)(I − P)f(s) ds

︸ ︷︷ ︸
=:I2

.

Using (2.15) and the fact that f exponentially decays to zero, we see that I2 expo-
nentially decays to zero as x → +∞. Moreover, (∂cnc, ∂c Ec)(x) is bounded in x
since (nc, Ec)(x) → (0, 0) as |x | → ∞ for all c ∈ (

√
1+ K ,

√
K ζ ). Therefore, I1

must be bounded in x > 0, and thus I1 exponentially decays to zero as x →+∞.
Since I1 and I2 both exponentially decay to zero as x → +∞, so does ∂cnc. By
the symmetry ∂cnc(x) = ∂cnc(−x), ∂cnc decays exponentially fast as x → −∞
as well.

3. Spectral Analysis of the Linearized Equations

In this section, we study the spectrum of the linear operator L defined in (1.9)
whose main results are summarized in Section 3.4. To this end, throughout Sections
3.1–3.3, we first define the Evans function for the associated eigenvalue problem
of the operator L (this function will be called as the Evans function for the Euler–
Poisson system), and discuss its properties. The remaining subsections are devoted
to studying the location and order of zeros of the associated Evans function (see
Proposition 3.8).

3.1. Definition and properties of the Evans function

Before we define the Evans function for the Euler–Poisson system, we briefly
review the definition of Evans function and its properties in a general setting by
mainly following [41].

We consider a first-order ODE system

dy
dx
= A(x, λ, ε)y. (3.1)

In the next subsection, we will see that the eigenvalue problem (1.10) can be written
in the form of (3.1) with y = (ṅ, u̇, φ̇, ∂x φ̇)T for which the coefficient matrix A is
defined in (3.13).

For each ε > 0, the Evans function for (3.1) is defined on a simply connected
domain �ε ⊂ C, where the following conditions hold true:

H1 A(x, λ, ε) is continuous in (x, λ) ∈ R × �ε and is analytic in λ ∈ �ε for
fixed x ∈ R.
H2 A(x, λ, ε) converges to A∞(λ, ε) as |x | → ∞, uniformly in λ on any
compact subset of �ε.
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H3 The integral
∫∞
−∞ |A(x, λ, ε)− A∞(λ, ε)| dx converges for all λ, uniformly

on any compact subset of �ε.
H4 For every λ ∈ �ε, the matrix eigenvalues μ j = μ j (λ, ε) of A∞ =
A∞(λ, ε) can be labelled so that

Reμ1 < μ∗ := min{Reμ j : j = 2, 3, 4}.
Under the assumptionH4, one can choose the right and left eigenvectors of A∞(λ, ε)

associated with a simple eigenvalue μ1, denoted by v1 = v1(λ, ε) and w1 =
w1(λ, ε) respectively, such that they are analytic in λ ∈ �ε and the normaliza-
tion w1v1 = 1 holds (see Chapter 2, Section 4.1 of [29]). Under the assumptions
H1–H4, (3.1) has a unique solution y+ = y+(x, λ, ε) satisfying

lim
x→+∞ e−μ1xy+ = v1, (3.2)

and the transposed ODE system

dz
dx
= −zA(x, λ, ε), (3.3)

where z is a row vector, has a unique solution z− = z−(x, λ, ε) satisfying

lim
x→−∞ eμ1xz− = w1. (3.4)

Here the solutions y+ and z− can be constructed so that they are analytic in λ ∈ �ε

for fixed x ∈ R.
Now the Evans function D(λ, ε) for (3.1) is defined by

D(λ, ε) := z−y+(x, λ, ε). (3.5)

Then D(λ, ε) is analytic in λ and is independent of x . Moreover, it is characterized
by

lim
x→−∞ e−μ1xy+ = D(λ, ε)v1. (3.6)

We will see that Reμ1 < 0 < μ∗ holds on the domain Re λ > 0. On this
domain, (3.2) and (3.6) imply that D(λ, ε) = 0 if and only if y+(x, λ, ε) is an
(L2)4-solution of (3.1). For the same reason, D(λ, ε) = 0 if and only if y+(x, λ, ε)

is an (L2
β)4-solution to (3.1), provided that β > 0 satisfies

Reμ1 + β < 0 < μ∗ + β. (3.7)

The domain�ε will be defined (see (3.24)) in such a way that it contains the closed
right-half plane and (3.7) holds for λ ∈ �ε.We also remark that the zeros of D(λ, ε)

are isolated since it is an analytic function in λ.
We summarize the characterizations of asymptotic behaviors of solutions of

(3.1) and (3.3), which will be crucially used in the following analysis.
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Proposition 3.1. [[41], Proposition 1.6] Suppose H1–H4 hold on �ε for each ε.
Let y+(x, λ, ε) and z−(x, λ, ε) be the solutions to (3.1) (resp. (3.3)) satisfying (3.2)
(resp. (3.4)). For λ ∈ �ε, the following statements hold true:

(a) The following are equivalent:
(i) D(λ, ε) = 0;
(ii) y+(x, λ, ε) = O(e(μ∗−θ)x ) as x →−∞ for 0 < θ < μ∗ − Reμ1.

(b) For any solution y(x, λ, ε) of (3.1), the following are equivalent:
(i) y(x, λ, ε) = O(eμ1x ) as x →+∞;
(ii) y(x, λ, ε) = αy+(x, λ, ε) for some constant α ∈ C;
(iii) y(x, λ, ε) = o(e(μ∗−θ)x ) as x →+∞ for 0 < θ < μ∗ − Reμ1.

(c) For any solution z(x, λ, ε) of (3.3), the following are equivalent:
(i) z(x, λ, ε) = αz−(x, λ, ε) for some constant α ∈ C

(ii) z(x, λ, ε) = o(e(−μ∗+θ)x ) as x →−∞ for 0 < θ < μ∗ − Reμ1.

Proposition 3.2. ([41], Proposition 1.21)Under the same assumptions as in Propo-
sition 3.1, the following statements hold.

(a) For all nonnegative integers j = 0, 1, 2, · · · , there holds that

∂
j
λy
+(x, λ, ε) = O(e(μ1+θ)x ) as x →+∞ and ∂

j
λz
− = O(e−(μ1+θ)x ) as x →−∞

(3.8)
for any small θ > 0.

(b) If 0 = D(λ, ε) = · · · = ∂k−1
λ D(λ, ε) �= ∂k

λ D(λ, ε), then we have that for
j = 0, 1, · · · , k − 1,

∂
j
λy
+(x, λ, ε) = O(eμ∗x−θx ) as x →−∞ (3.9)

for any small θ > 0, and that

lim
x→−∞ e−μ1x∂k

λy
+(x, λ, ε) = ∂k

λ D(λ, ε)v1. (3.10)

3.2. Reformulation of the eigenvalue problem

We rewrite the eigenvalue problem (1.10) as a first-order linear ODE system
(3.1). The matrix L defined in (1.6) is invertible since detL = J > 0 from (2.8).
Hence from (1.9) and (1.10), we have

(
0
0

)

= L−1 (λ− L)

(
ṅ
u̇

)

= ∂x

(
ṅ
u̇

)

+ L−1
[

(λ+ (∂x L))

(
ṅ
u̇

)

+
(

0
∂x φ̇

)]

.

(3.11)

We rewrite the Poisson equation (1.5b) as

∂x φ̇ =: ψ̇, ∂x ψ̇ = eφc φ̇ − ṅ. (3.12)
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By letting y := (ṅ, u̇, φ̇, ψ̇)T , we obtain the system (3.1) with the coefficient matrix

A = A(x, λ, ε) :=
(

L−1 0 0
0 0

0 0
0 0

1 0
0 1

)(
−λI2 − ∂x L

0 0
0 −1

0 0
−1 0

0 1
eφc 0

)

. (3.13)

Here A can be decomposed as A(x, λ, ε) = A1(x, ε)+ λA2(x, ε), where

A1 :=
⎛

⎜
⎝

(c−uc)∂x uc
J − K∂x nc

J (1+nc)
(c−uc)∂x nc

J + (1+nc)∂x uc
J 0 1+nc

J
K∂x uc

J (1+nc)
− K (c−uc)∂x nc

J (1+nc)2
K∂x nc

J (1+nc)
+ (c−uc)∂x uc

J 0 c−uc
J

0 0 0 1
−1 0 eφc 0

⎞

⎟
⎠ ,

A2 :=
(−L−1 02

02 02

)

= 1

J

(
c − uc 1+ nc

K

1+ nc
c − uc

02

02 02

)

(3.14a)

(3.14b)

and 02 is a 2× 2 zero matrix.
Now it is clear that for each β ∈ [0, 1), the mapping

(ṅ, u̇)T �→ (ṅ, u̇, φ̇, ψ̇)T ,

where (φ̇, ψ̇) is uniquely determined by the Poisson equation (3.12) for given ṅ ∈
L2

β , is an isomorphism between ker(λ−L) ⊂ (L2
β)2 and ker

(
d/dx−A(x, λ, ε)

) ⊂
(L2

β)4.

For any solution Z ∈ (L2−β)2, β ∈ [0, 1), to the eigenvalue problem for the
adjoint operator

(λ− L∗)Z = 0

(see (2.11)), it is straightforward to check that

Z �→ (Z L , φ̃, ψ̃),

where (φ̃, ψ̃) is a unique solution to the equations

(−∂2x + eφc )ψ̃ = −∂x

(
Z(0, 1)T

)
, φ̃ := −∂x ψ̃ + Z(0, 1)T , (3.15)

is an isomorphism between ker(λ−L∗) ⊂ (L2−β)2 and ker
(
d/dx + A(x, λ, ε)

) ⊂
(L2−β)4.

We denote the first two components of y+ and z− by Y+ and Z−, respectively.
Then, Y+ and Z− satisfy

(λ− L)Y+ = 0, (λ− L∗)
(

Z−L−1
)
= 0. (3.16)
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3.3. The Evans function for the Euler–Poisson system

In this subsection, we specify the domain of the Evans function D(λ, ε) for
the Euler–Poisson system, and show that the zeros of D(λ, ε) coincide with the
eigenvalues of the linearized operator L.

By (2.13), the coefficientmatrix A(x, λ, ε) in (3.13) converges to the asymptotic
matrix

A∞(λ, ε) :=
⎛

⎜
⎝

cλ

c2 − K

λ

c2 − K
0

1

c2 − K
Kλ

c2 − K

cλ

c2 − K
0

c

c2 − K
0 0 0 1
−1 0 1 0

⎞

⎟
⎠ (3.17)

exponentially fast as |x | → ∞. The matrix eigenvalues μ of A∞ are the zeros of
the characteristic polynomial

d(μ) = d(μ, λ, ε) := det
(
μI − A∞(λ, ε)

)

= (c2 − K )−1
(
(μ2 − 1)

[
(λ− cμ)2 − Kμ2

]
+ μ2

)
.

(3.18)

Since d(±1) �= 0 and c2 − K �= 0 for all ε � 0 and λ ∈ C, d(μ) = 0 is equivalent
to that μ satisfies one of the equations

d±(μ) = d±(μ, ε) := μ

(

c ±
√

1

1− μ2 + K

)

= λ. (3.19)

For each ε � 0 and λ ∈ C, d(μ) has four zerosμ j ( j = 1, 2, 3, 4) counted with
multiplicities. For a non-zero simple eigenvalue μ j of A∞, the corresponding right
and left eigenvectors, denoted by v j andw j , satisfying the normalizationw jv j = 1
can be chosen as follows:

v j :=
(

1,
cμ j − λ

μ j
,

1

1− μ2
j

,
μ j

1− μ2
j

)T

, w j := π j

π jv j
, (3.20)

where
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π j :=
((

cλ

μ j
− (c2 − K )

)

(1− μ2
j ), −λ

1− μ2
j

μ j
, 1, μ j

)

, (3.21a)

π jv j =
λ2(1− μ2

j )

μ2
j

− (c2 − K )(1− μ2
j )+

1+ μ2
j

1− μ2
j

. (3.21b)

We note that π jv j �= 0 when μ j is semi-simple.
The splitting properties of the matrix eigenvalues are summarized in the next

two lemmas, whose proofs will be given in Section 4.

Lemma 3.3. The zeros of d(μ) = d(μ, λ, ε) can be labelled so that the following
properties hold:
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(1) For ε > 0,

Reμ1 < 0 = Reμ2 = Reμ3 < Reμ4, when Re λ = 0,

Reμ1 < 0 < Reμ j , ( j = 2, 3, 4), when Re λ > 0.

(3.22a)

(3.22b)

(2) For ε = 0,

Reμ1 < 0 = Reμ2 = Reμ3 < Reμ4, when Re λ = 0 and λ �= 0,

Reμ1 < 0 < Reμ j , ( j = 2, 3, 4), when Re λ > 0.

(3.23a)

(3.23b)

For 0 < c0 <
√
2V, we let β := c0ε1/2, where ε > 0, and define a domain

�ε :=
{
λ : Re λ � −ε3/2η(c0)

}
, where η(c0) := c0

2

(

1− c20
2
√
1+ K

)

.

(3.24)

We note that �ε contains the closed right-half plane {λ : Re λ � 0} for any ε > 0
since η(c0) > 0 on (0,

√
2V).

Lemma 3.4. For 0 < c0 <
√
2V, let β = c0ε1/2, where ε > 0. Then there exists

ε′K < εK such that for all ε ∈ (0, ε′K ], the following hold:

(1) The two parametrized curves {d±(ik − β) : k ∈ R} (see (3.19)) lie on C \�ε.
(2) For all λ ∈ �ε, the zeros of d(μ) = d(μ, λ, ε) can be labeled such that they

satisfy

Reμ1 + β < 0 < Reμ j + β, ( j = 2, 3, 4). (3.25)

In each statement involving �ε and ε′K , the same setting as that of Lemma 3.4 is
assumed unless otherwise stated.

Now we show that the Evans function for the Euler–Poisson system is defined
on the region �ε.

Proposition 3.5. Let εK be as in (2.6). Then for each ε ∈ (0, εK ), the Evans
function D(λ, ε) for the system (3.1) associated with the eigenvalue problem (1.10)
is defined on the domain Re λ � 0. Furthermore, for each ε ∈ (0, ε′K ], D(λ, ε) is
analytically extended to �ε.

Proof. We verify H1–H4 in Section 3.1. From the form of A(x, λ, ε) and that A
converges to A∞ exponentially fast as |x | → ∞, it is easy to see that H1-H3 hold
on the domain C as long as the solitary wave (nc, uc, φc) exists, that is, for each
ε ∈ (0, εK ). From (3.22),H4 holds on Re � 0 for each ε > 0. This proves the first
assertion. The second assertion follows from Lemma 3.4. ��
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Remark 2. For ε = 0 and λ = 0, we have μ j = 0 for all j = 1, 2, 3, 4. Hence,
when ε = 0, D(λ) is not defined for λ = 0 since H4 is not satisfied. In this case,
D(λ) is defined on the domain �0 := {λ : Re λ � 0, λ �= 0}, and we have that
D(λ) = 1 for λ ∈ �0 by (3.6) since the coefficient matrix of the system (3.1) is
independent of x when ε = 0.

We characterize the eigenvalues ofL as the zeros of the Evans function D(λ, ε).

Proposition 3.6. (a) For each ε ∈ (0, εK ), the following holds: for λ ∈ C with
Re λ > 0, the eigenvalue problem (1.10) has a non-trivial solution in (L2)2 if
and only if D(λ, ε) = 0.

(b) For 0 < c0 <
√
2V, let β = c0ε1/2, where ε > 0. Then there exists ε′K > 0

such that for each ε ∈ (0, ε′K ], the following holds: for λ ∈ �ε, the eigenvalue
problem (1.10) has a non-trivial solution in (L2

β)2 if and only if D(λ, ε) = 0.

Proof. We first prove the first assertion. If D(λ, ε) = 0 for λ with Re λ > 0, then
y+(x, λ, ε) satisfying (3.2) is a non-trivial (L2)4-solution to the system (3.1) by
(3.22b) and Proposition 3.1(a). Hence, the first two components of y+ is a (L2)2-
solution to the eigenvalue problem (1.10). Conversely, if (1.10) has a non-trivial
(L2)2-solution for λ with Re λ > 0, then (3.1) has a non-trivial solution y(x, λ, ε),
which is bounded in x ∈ R since y ∈ H1. From (3.22b) and Proposition 3.1(b), we
see that y = αy+ for some constant α �= 0. Since y+ is bounded in x , we have that
y+ = o(eμ1x ) as x →−∞, equivalently, D(λ, ε) = 0 by (3.6).

We show the second assertion. Suppose that D(λ, ε) = 0 for λ ∈ �ε. By
Proposition 3.1(a), eβxy+ = O(eβx e(μ∗−θ)x ) as x → −∞, and thus eβxy+ expo-
nentially decays to zero as x → ±∞ by (3.25). Hence, the first two components
of y+ is a solution to the eigenvalue problem (1.10) in (L2

β)2. Conversely, suppose

that (1.10) has a nontrivial (L2
β)2 solution for λ ∈ �ε. Then (3.1) has a solution y

such that eβxy ∈ (L2)4. Since eβxy ∈ (H1)4, eβxy is bounded in x , and thus we
have

y = O(e−βx ) as |x | → ∞. (3.26)

Multiplying (3.26) by e−(μ∗−θ)x for sufficiently small θ > 0, we see that y =
o(e(μ∗−θ)x ) as x → +∞ by (3.25). By Proposition 3.1(b) and (3.26), this implies
that y+ = O(e−βx ) as x →−∞, which yields that y+ = o(eμ1x ) as x →−∞
by (3.25), equivalently, D(λ, ε) = 0. ��
Remark 3. If λ is an (L2)2-eigenvalue ofL, then so are λ and−λ by the symmetry
of the solitary wave, (nc, uc, φc)(x) = (nc, uc, φc)(−x). Indeed, if y(x, λ) is a
solution to (3.1), then we have

d

dx
y(x, λ) = (A1 + λA2)y(x, λ),

d

dx
ỹ = (A1 − λA2)̃y, (3.27)

where ỹ := (y1(−x, λ), y2(−x, λ), y3(−x, λ),−y4(−x, λ))T . We remark that on
the domain Re λ � 0, where Reμ1 < μ∗ � 0 holds, the zeros of the Evans function
is not related to the (L2)2- eigenvalues, in principle. For Re λ = 0, for instance, we
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have Reμ1 < 0 = μ∗, and hence y+ (an analytic continuation of y+ defined on the
domain Re λ > 0) may oscillate without decaying as x →−∞. The eigenfunction
ỹ corresponding to the eigenvalue −λ is not an analytic continuation of y+. The
zeros of the Evans function on Re λ � 0 correspond to the so-called resonance
poles [41,43,50].

Wehave the following relation between the algebraicmultiplicity of eigenvalues
of L and the order of zeros of D(λ, ε):

Proposition 3.7. For each ε ∈ (0, ε′K ), the following holds: for λ ∈ �ε with
D(λ, ε) = 0, the order of λ as a zero of D(λ, ε) coincides with the algebraic
multiplicity of λ as an (L2

β)2-eigenvalue of L.

Proof. By taking derivatives of (3.16) in λ, we have

(λ− L)Y+ = 0, (λ− L)∂
j+1
λ Y+ = −( j + 1)∂ j

λY+ for j = 0, 1, 2, · · · .

(3.28)

Suppose that D(λ) = · · · = ∂k−1
λ D(λ) = 0 and ∂k

λ D(λ) �= 0. From (3.8)–(3.9)

and (3.25), we have that eβx∂
j
λY+ ∈ (H1)2 for j = 0, 1, · · · , k − 1, that is, the

algebraic multiplicity of λ is at least k. We show the following assertions:

(i) (the geometricmultiplicity is one) every non-trivial (L2
β)2-solution to the eigen-

value problem (1.10) is a constant multiple of Y+(x, λ),
(ii) (the algebraic multiplicity is k) there is no (L2

β)2-function Ỹ (x, λ) satisfying

(λ− L)Ỹ = −k∂k−1
λ Y+. (3.29)

We already showed the assertion (i) in the proof of Proposition 3.6. To check (ii),
we suppose that there is a function Ỹ ∈ (H1

β )2 satisfying (3.29). Then eβx Ỹ is
bounded in x ∈ R, and thus we have

Ỹ = O(e−βx ) as x →±∞.

From (3.28) and (3.29), Y0(x, λ) := Ỹ − ∂k
λY+ satisfies

(λ− L)Y0 = (0, 0)T , Y0 = O(e−βx ) as x →+∞
since eβx∂k

λY+ is bounded in x > 0 from(3.8).Hence, from (3.25),Y0 = o(e(μ∗−θ)x )

as x → +∞ for sufficiently small θ > 0, and this implies that Y0 = α0Y+ for
some constant α0 �= 0 by Proposition 3.1(b). Now we obtain that

∂k
λY+ = Ỹ − α0Y+ = O(e−βx ) as x →−∞;

this is a contradiction, since Reμ1 < −β, but limx→−∞ e−μ1x∂k
λY+(x, λ) �= 0 by

(3.10).
This result also implies that if the algebraic multiplicity of λ is k, then the order

of λ as a zero of D(λ) must be k. ��
We now present the characterization of the zeros of the Evans function for the

Euler–Poisson system.
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Proposition 3.8. There exists ε0 < ε′K such that for ε ∈ (0, ε0], λ = 0 is the only
zero of D(λ, ε) on the region �ε. Moreover, the order of λ = 0 is exactly two.

Proposition 3.8 directly follows from Proposition 3.15 and Corollary 3.18. The
proofs of these results will be given throughout Sections 3.5–3.9.

3.4. Spectrum of the linearized operator

Using the results in the previous subsections, we classify the spectrum of the
operator L on (L2)2 and (L2

β)2. The proof of the next Lemma is given in Appendix
9.3.

Lemma 3.9. For each β ∈ [0, 1) and ε ∈ (0, εK ), consider the operators λ− L :
(H1

β )2 ⊂ (L2
β)2 → (L2

β)2 and d/dx − A(x, λ, ε) : (H1
β )4 ⊂ (L2

β)4 → (L2
β)4,

where L and A are defined in (1.9) and (3.13) respectively. For any non-negative
interger k, λ − L is Fredholm with index k if and only if d/dx − A(x, λ, ε) is
Fredholm with index k.

Proposition 3.10. There exists ε0 > 0 such that the following holds:

(a) For each ε ∈ (0, ε0], consider the operator L : (H1)2 ⊂ (L2)2 → (L2)2.
Then, σess(L) is the imaginary axis and the resolvent set of L is C \ σess(L).

(b) For each ε ∈ (0, ε0], consider the operator L : (H1
β )2 ⊂ (L2

β)2 → (L2
β)2.

Then,
(i) σess(L) is the union of two parametrized curves {d±(ik − β) : k ∈ R},

which lie in C \�ε,
(ii) σpt(L) ∩ �ε = {0}, in particular, λ = 0 is an isolated (L2

β)2-eigenvalue
with the algebraic multiplicity two,

(iii) the set �ε \ {0} is a subset of the resolvent set of L.

Proof of Proposition 3.10. For notational simplicity,we letA(λ) = d/dx−A(x, λ, ε).
From the characterization of the Fredholm properties of the operatorA(λ) in terms
of the existence of exponential dichotomies for the ODE (3.1) ([38,39]) and the
roughness of exponential dichotomies ([7]), the Fredholm properties of A(λ) are
determined by the hyperbolicity of the asymptotic matrices limx→±∞ A(x, λ, ε)

(see also [46]). First of all, either A(λ) is not Fredholm or A(λ) is Fredholm with
index zero since the asymptotic matrices are equal to A∞(λ). Hence, by Lemma
3.9, the essential spectrum of L consists of λ for which λ− L is not Fredholm.

Now we prove the first assertion. By the results of [7,38,39] mentioned above,
λ − L is not Fredholm on (L2)2 if and only if det(μ − A∞(λ)) = 0 for some
μ ∈ iR, which is precisely the case that λ lies in the imaginary axis by (3.22a).
Since the Evans function D(λ, ε) does not vanish on Re λ > 0 by Proposition 3.8,
the kernel of λ− L is trivial on Re λ > 0 by Proposition 3.6. By the symmetry of
the solitary waves, the kernel of λ− L is also trivial on Re λ < 0 (see Remark 3).
Since λ − L is Fredholm with index zero on the regions Re λ < 0 and Re λ > 0,
the union of these regions are precisely the resolvent set. This finishes the proof of
the first assertion.
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To prove the second assertion, we observe that studying the spectrum of the
operator A(λ) on (L2

β)4 is equivalent to studying the spectrum of the operator

eβxA(λ)e−βx := d

dx
− β − A(x, λ, ε)

on (L2)4.Hence,λ−L is not Fredholmon (L2
β)2 if andonly if det(μ−β−A∞(λ)) =

0 for some μ ∈ iR. The set of such λ is precisely the union of two parametrized
curves {d±(ik − β) : k ∈ R} ⊂ C \ �ε by Lemma 3.4. Combining Proposition
3.6 and Proposition 3.8, we see that λ−L has a non-trivial (L2

β)2-solution only at
λ = 0 on the region �ε. Moreover, the algebraic multiplicity of λ = 0 is two by
Proposition 3.7 and Proposition 3.8. Since λ − L is Fredholm with index zero on
the region �ε, the proof of the second assertion is completed. ��

3.5. Derivatives of D(λ) at λ = 0

We will show that D(λ, ε)|λ=0 = ∂λD(λ, ε)|λ=0 = 0 for ε ∈ (0, εK ). In other
words, λ = 0 is a zero of the Evans function for the Euler–Poisson system with
the order at least two. For later purposes, we also calculate ∂2λ D(λ, ε)|λ=0. We
remark that these results are valid as long as the non-trivial smooth solitary wave
(nc, uc, φc) exists. For notational simplicity, we suppress the ε-dependence in this
subsection.

When D(λ0) = 0, we have a simple derivative formula of the Evans function
(Theorem 1.11, [41]):

∂λD(λ)|λ=λ0 = −
∫ ∞

−∞
(z−∂λ Ay+)(x, λ)|λ=λ0 dx, (3.30)

in the sense of an improper integral. Furthermore, when D(λ0) = ∂λD(λ)|λ=λ0 =
0, we have

∂2λ D(λ)|λ=λ0 = −
∫ ∞

−∞

(
∂λz−∂λ Ay+ + z−∂2λ Ay+ + z−∂λ A∂λy+

)
|λ=λ0 dx .

(3.31)

Lemma 3.11. For each ε ∈ (0, εK ), it holds that

(a) There exists a constant α1 < 0 such that y+(x, λ, ε)|λ=0 = α1yc(x), where

yc(x) := (∂x nc, ∂x uc, ∂xφc, ∂
2
x φc)

T .

(b) There exists a constant α2 > 0 such that z−(x, λ, ε)|λ=0 = α2zc(x), where

zc(x) := ((uc, nc)L , ∂2x φc + nc,−∂xφc
)
.
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Proof. Recalling the reformulation of the eigenvalue problems to the associated
ODE systems (see Section 3.2) and that (∂x nc, ∂x uc)

T and (uc, nc) are the eigen-
functions of L and L∗ associated with λ = 0, respectively (see (2.10a)), it is easy
to check that yc and zc satisfy the system (3.1) and the transposed system (3.3) with
λ = 0, respectively.

Since yc and zc exponentially decay to zero as |x | → ∞, we have that for
sufficiently small θ > 0,

yc(x) = o(e−θx ) as x →+∞ and zc(x) = o(eθx ) as x →−∞.

By Proposition 3.1.(b) and (c), we have

y+|λ=0 = α1yc and z−|λ=0 = α2zc (3.32)

for some constants α1, α2 �= 0 since we have Reμ1 < 0 = μ∗ when λ = 0 by
(3.22a).

To complete the proof, it remains to check the signs of α1 and α2. From the first
equality of (3.32), we have that at λ = 0,

lim
x→+∞ e−Reμ1xα1∂x nc = 1,

where we have used (3.2) and (3.20), and the first component of yc is considered.
This implies that α1 < 0 since ∂x nc(x) < 0 for x > 0. In a similar fashion, from
the second equality of (3.32), we obtain that at λ = 0,

lim
x→−∞ eReμ1xα2(∂

2
x φc + nc) = 1

π1v1

∣
∣
∣
∣
λ=0

= c2 − 1− K + μ2
1(c

2 − K ) > 0,

where (3.4), (3.20) and (3.21) are used, and the third component of zc is considered
in the first equality. It is straightforward to check the second equality. This together
with the fact that ∂2x φc(x) + nc(x) > 0 for all x < 0 with sufficiently large |x |
implies that α2 > 0. We are done. ��

Lemma 3.11 together with the derivative formulas (3.30) and (3.31) yields the
following proposition:

Proposition 3.12. For each ε ∈ (0, εK ), it holds that

(a) D(λ, ε)|λ=0 = ∂λ D(λ, ε)|λ=0 = 0,
(b) sign ∂2λ D(λ, ε)|λ=0 = sign ∂c

∫∞
−∞(ncuc)(x) dx .

Proof. We first show the first assertion. From Lemma 3.11.(a), we see that y+|λ=0
decays to zero as x →−∞. Hence it follows that D(λ)|λ=0 = 0 from the charac-
terization of the Evans function (3.6) and that Reμ1 < 0 at λ = 0.

We let Z− and Y+ be the first two components of z− and y+, respectively. From
the form of the coefficient matrix A (see (3.13)), the derivative formula (3.30) is
reduced to

∂λ D(λ)|λ=0 =
∫ ∞

−∞
(Z−L−1Y+)|λ=0 dx .
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Using Lemma 3.11 and that ncuc tends to 0 as |x | → ∞, we obtain that

∂λD(λ)|λ=0 = α1α2

∫ ∞

−∞
(
(uc, nc)L

)
L−1(∂x nc, ∂x uc)

T dx

= α1α2

∫ ∞

−∞
∂x (ncuc) dx = 0.

Now we prove the second assertion. We note that the derivative formula (3.31)
is reduced to

∂2λ D(λ)|λ=0 =
∫ ∞

−∞

(
∂λZ−L−1Y+ + Z−L−1∂λY+

)
|λ=0 dx . (3.33)

By taking ∂λ of (3.16), we obtain that at λ = 0,

⎧
⎨

⎩

L∂λY+ = Y+ = α1∂x Yc = −α1L∂cYc, (3.34a)

L∗
(
∂λZ−L−1

)
= Z−L−1 = α2Zc = α2L∗

(∫ x

−∞
∂c Zc ds

)

, (3.34b)

where we have used Lemma 3.11 in the second equality, and (equation.2.10b) in
the last equality (see (2.9) for the notations Yc and Zc). Since L and L∗ are linear,
we have from (3.34) that at λ = 0,

⎧
⎨

⎩

L(∂λY+ + α1∂cYc) = 0, (3.35a)

L∗
(

∂λZ−L−1 − α2

∫ x

−∞
∂c Zc ds

)

= 0. (3.35b)

From (3.8), ∂λY+|λ=0 and ∂λZ−|λ=0 exponentially decay to zero as x →+∞
and x → −∞, respectively. We also recall that ∂cYc and

∫ x
∂c Zc ds exponen-

tially decay to zero as x → +∞ and x → −∞, respectively. Hence, (3.35) and
Proposition 3.1 imply that for λ = 0,

⎧
⎨

⎩

∂λY+ + α1∂cYc = α′1Y+ = α1α
′
1∂x Yc, (3.36a)

∂λZ− − α2

(∫ x

−∞
∂c Zc ds

)

L = α′2Z− = α2α
′
2Zc L (3.36b)

for some constants α′1, α′2 �= 0, where we have used Lemma 3.11 in the second
equality.

Now applying Lemma 3.11.(b), (3.36a) and by integration by parts, we have
that for λ = 0,

∫ ∞

−∞
Z−L−1∂λY+ dx = α2

∫ ∞

−∞
Zc∂λY+ dx

= α1α2

∫ ∞

−∞
Zc
(−∂cYc + α′1∂x Yc,

)
dx

= −α1α2

∫ ∞

−∞
∂c(ncuc) dx .

(3.37)
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Applying Lemma 3.11.(a) and (3.36b) in a similar fashion, we obtain that, for
λ = 0,
∫ ∞

−∞
∂λZ−L−1Y+ dx = α1

∫ ∞

−∞
∂λZ−L−1∂x Yc dx

= α1α2

∫ ∞

−∞

(∫ x

−∞
∂c Zc(s) ds − α′2Zc

)

∂x Yc dx

= −α1α2

∫ ∞

−∞
∂c(ncuc) dx .

(3.38)

Combining (3.37), (3.38), and (3.33), we finally arrive at

∂2λ D(λ)|λ=0 = −2α1α2∂c

∫ ∞

−∞
ncuc dx .

Recalling that α1 < 0 and α2 > 0 (see Lemma 3.11), we finish the proof of the
second assertion. ��

3.6. The Evans function for the KdV equation

In the KdV scaling, we formally obtain (by letting ṅ∗ = p2 in (1.14)) the
eigenvalue problem of the KdV equation


p2 − ∂ξ p2 + V∂ξ (�KdV p2)+ (2V)−1∂3ξ p2 = 0. (3.39)

By the change of variables


 = (2V)1/2
̃, ξ̃ = (2V)1/2ξ, p̃(ξ̃ , 
̃) = p2(ξ,
), (3.40)

(3.39) becomes (see (1.3) for the form of �KdV)


̃ p̃ − ∂ξ̃ p̃ + ∂ξ̃ (�̃ p̃)+ ∂3
ξ̃

p̃ = 0, where �̃(ξ̃ ) := 3 sech2(ξ̃/2) = V�KdV(ξ).

(3.41)
TheEvans function for (3.41) is studied in [41,42].We briefly summarize the re-

sults, and apply those directly to the equation (3.39). The characteristic polynomial
associated with (3.41) is

d̃K dV (κ̃) = d̃K dV (κ̃, 
̃) := 
̃− κ̃ + κ̃3. (3.42)

For 
̃ ∈ �̃K dV := C \ (−∞,−2/(3√3)], the zeros κ̃ j of d̃K dV (κ̃) can be labelled
so that

Re κ̃1 < Re κ̃ j ( j = 2, 3), (3.43)

and in particular, Re κ̃1 < 0 (see Proposition 2.3 of [42]). The Evans function
D̃K dV (
̃) for (3.41) is defined on �̃K dV , and D̃K dV (
̃) is characterized by the
property

lim
ξ̃→−∞

e−κ̃1 ξ̃ p̃+(ξ̃ , 
̃) = D̃K dV (
̃), (3.44)
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where p̃+ is a unique solution to (3.41) satisfying

lim
ξ̃→+∞

e−κ̃1 ξ̃ p̃+(ξ̃ , 
̃) = 1. (3.45)

In particular, D̃K dV (
̃) is explicitly given by (Theorem 3.1 of [42])

D̃K dV (
̃) =
(

κ̃1 + 1

κ̃1 − 1

)2

. (3.46)

From (3.42) and (3.46), one can check that D̃K dV (
̃) vanishes only at 
̃ = 0 and
that the order of 
̃ = 0 is two as a zero of D̃K dV (
̃). Moreover, D̃K dV (
̃) → 1
as |
̃| → ∞.

Now we apply the above results to construct the Evans function for the KdV
equation (3.39). The characteristic polynomial associated with (3.39) is

dK dV (κ) = dK dV (κ,
) := 2V(
− κ + (2V)−1κ3). (3.47)

We note that the zeros κ j of dK dV (κ) are related to κ̃ j as

κ j = (2V)1/2κ̃ j . (3.48)

Hence, from the relations (3.40) and (3.48), we have for


 ∈ �K dV := C \
(
−∞,−(2

√
2V)/(3

√
3)
]
, (3.49)

κ j can be labelled so that

Re κ1 < Re κ j ( j = 2, 3), Re κ1 < 0. (3.50)

Proposition 3.13. (1) The Evans function DK dV (
) for the KdV equation (3.39)
is defined on the domain �K dV and satisfies

lim
ξ→−∞ e−κ1ξ p+2 (ξ,
) = DK dV (
), (3.51)

where κ1 is a unique zero of dK dV (κ) satisfying (3.50), and p+2 is a unique
solution to (3.39) satisfying

lim
ξ→+∞ e−κ1ξ p+2 (ξ,
) = 1. (3.52)

(2) DK dV (
) =
(

κ1+
√
2V

κ1−
√
2V

)2
.

(3) 
 = 0 is the only zero of DK dV (
), and its order is two.
(4) DK dV (
)→ 1 as |
| → ∞ with 
 ∈ �K dV .
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Proof. The first statement can be checked by reformulating the eigenvalue problem
(3.39) to the associated first-order ODE system (let p2 := (p2, ∂ξ p2, ∂2ξ p2)T ). We
omit the details.

To prove the last two assertions, it is enough to check that DK dV (
) =
D̃K dV (
̃) for 
 = (2V)1/2
̃. From the relations (3.40) and (3.48), we see that

κ̃1ξ̃ = κ1ξ, (3.53)

and that p̃+((2V)1/2ξ, (2V)−1/2
) satisfies (3.39). From (3.45), (3.52) and (3.53),
we have

p̃+((2V)1/2ξ, (2V)−1/2
) ∼ eκ1ξ as ξ →+∞.

Hence, we must have p̃+(ξ̃ , 
̃) = p+2 (ξ,
), and we conclude that DK dV (
) =
D̃K dV (
̃) from (3.45), (3.52) and (3.53). ��

3.7. The Evans function for the Euler–Poisson system in the KdV scaling

Motivated by the formal derivation of the linearized KdV equation, we consider
the transformation

ξ = ε1/2 x, λ = ε3/2
, (3.54a)
{

ṅ(x) = p2(ξ), u̇(x) = εp1(ξ)+ Vp2(ξ),

φ̇(x) = p2(ξ)+ εp4(ξ), ψ̇(x) = ε1/2 p3(ξ).
(3.54b)

It is easy to see that Sp = y, where p := (p1, p2, p3, p4)T and S is given by

S :=

⎛

⎜
⎜
⎝

0 1 0 0
ε V 0 0
0 1 0 ε

0 0 ε1/2 0

⎞

⎟
⎟
⎠ with its inverse S−1 =

⎛

⎜
⎜
⎝

−Vε−1 ε−1 0 0
1 0 0 0
0 0 0 ε−1/2

−ε−1 0 ε−1 0

⎞

⎟
⎟
⎠ ,

(3.55)

is a matrix for the transformation (3.54b). Then (3.1) becomes

dp
dξ
= A∗(ξ,
, ε)p, where A∗(ξ,
, ε) := 1√

ε
S−1A

(
ξ√
ε
, ε3/2
, ε

)

S.

(3.56)

(see Appendix 9.2 for the specific form of A∗.) Using (2.12), a straightforward
calculation shows that there is a uniform constantC > 0 such that for all ε ∈ [0, ε∗],

|A∗(ξ,
, ε)− A∞∗ (
, ε)| � Ce−C|ξ |, ξ ∈ R, (3.57)
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where A∞∗ (
, ε) := lim|ξ |→∞ A∗(ξ,
, ε), and for ε = 0,

A∗(ξ,
, 0) :=

⎛

⎜
⎜
⎝

0 −2V∂ξ�KdV −
 1− 2V�KdV 0
0 0 1 0
0 �KdV 0 1
0 −(2V2 + 1)∂ξ�KdV − 2V
 2V− (2V2 + 1)�KdV 0

⎞

⎟
⎟
⎠ .

(3.58)

For ε = 0, a set of the last three equations of (3.56) reduces to the KdV equation
(3.39).

The characteristic polynomial of the asymptotic matrix A∞∗ (
, ε) is given by

d∗(ν) = d∗(ν, 
, ε) := det
(

A∞∗ (
, ε)− ν I
) = ε−2det

(
A∞(ε3/2
, ε)−√ε ν I

)

= ε−2d(
√

ε ν, ε3/2
, ε)

=
ν dKdV(ν)− ε(
− ν)2 + εν2

[
ε
2 − 2c
ν + (2V+ ε)ν2

]

c2 − K
,

(3.59)

where d and dKdV are defined in (3.18) and (3.47), respectively.
In order to define the Evans function for the Euler–Poisson system in the KdV

scaling, we first shall inspect the zeros of the characteristic polynomial d∗(ν) and
check H4. From the scaling (3.54a) and the second line of (3.59), we see that for
ε > 0, the zeros ν j of d∗(ν) are related to the zeros μ j of d(μ) by

ν j = ε−1/2μ j . (3.60)

When ε = 0, the zeros of d∗(ν) are comprised of 0 and the three zeros κ j of
dK dV (κ). Together with (3.25) and (3.50), these yield that the zeros ν j of d∗(ν)

can be labelled so that they satisfy

Re ν1 < Re ν j ( j = 2, 3, 4), Re ν1 < 0 (3.61)

for all 
 such that ε3/2
 = λ ∈ �ε when ε ∈ (0, ε′K ) and for all 
 ∈ �K dV when
ε = 0.

For any fixed 0 < c0 <
√
2V, we define the domain

�∗ :=
{

 : Re
 � −η(c0)

}
, (3.62)

where η(c0) is a positive function of c0 defined in (3.24). Recalling the definition of
�ε (see (3.24)), we see that 
 ∈ �∗ if and only if λ ∈ �ε as long as ε3/2
 = λ for
ε > 0. One may check that {
 : Re
 � 0} ⊂ �∗ ⊂ �K dV for all 0 < c0 <

√
2V.

Hence, we conclude that H4 holds on the domain �∗.
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Proposition 3.14. For fixed 0 < c0 <
√
2V, there exists ε′K > 0 such that for each

ε ∈ [0, ε′K ], the Evans function D∗(
, ε) for (3.56) is defined on the domain �∗,
and it is analytic in 
 ∈ �∗. Moreover, D∗(
, ε) is characterized by

lim
ξ→−∞ e−ν1ξp+(ξ,
) = D∗(
, ε)v∗1, (3.63)

where p+(ξ,
) is a unique solution to (3.56) satisfying

lim
ξ→+∞ e−ν1ξp+(ξ,
) = v∗1 (3.64)

and v∗1 , a right eigenvector of A∞∗ associated with a nonzero simple eigenvalue ν1,
is given by

v∗1 :=
(

1− 


ν1
, 1,

ν1

1− εν21
,

ν21

1− εν21

)T

. (3.65)

Proof. H4 is verified from the above discussion. H1–H3 can be easily checked
from the structure of A∗ (see (3.55)–(3.58) and Appendix 9.2) and (2.12). It is clear
that S−1v1 is a right eigenvector of the asymptotic matrix A∞∗ associated with ν1.
From (3.54a), (3.60), and that c = V+ ε, we obtain that

S−1v1 =
(

−V
ε
+ c

ε
− λ

εμ j
, 1,

1√
ε

μ j

1− μ2
j

,−1

ε
+ 1

ε(1− μ2
j )

)T

= v∗1.

This completes the proof. ��

3.8. Relations among D(λ, ε), D∗(
, ε) and DK dV (
) and their continuities

Proposition 3.15. For each ε ∈ (0, ε′K ], D∗(
, ε) = D(λ, ε) for ε−3/2λ = 
 ∈
�∗. For ε = 0, D∗(
, 0) = DK dV (
) for 
 ∈ �∗.

Proof. Recalling the transform (3.54), we observe that Sp+(
√

εx, ε−3/2λ) is a
solution to (3.1), and that Sp+ = O(eμ1x ) as x → +∞ from (3.60) and (3.64).
Hence, by Proposition 3.1(b), Sp+(ξ,
) = αy+(x, λ) for some constant α �= 0,
and in particular, p+2 = αy+1 . On the other hand, the first component of v1 and the
second component of v∗1 are equal to 1. Thus, we see that p+2 = y+1 by (3.2) and
(3.64), and D(λ, ε) = D∗(
, ε) by (3.6) and (3.63). In a similar fashion, one can
obtain D∗(
, 0) = DK dV (
), for which we omit the details here. ��

Proposition 3.16. D(λ, ε) and D∗(
, ε) are jointly continuous on the sets {(λ, ε) :
λ ∈ �ε, ε ∈ [0, εK )} and {(
, ε) : 
 ∈ �∗, ε ∈ [0, ε′K ]}, respectively.

See Remark 2 for the discussion on the domain �0.
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Proof. We briefly sketch the proof omitting the details. It can be proved by a fixed
point iteration argument following Section 8 of [43] (see also Proposition 1.2 of
[41]).

By thedefinitionof D(λ, ε), it is enough to show thaty+(x, λ, ε) and z−(x, λ, ε),
the solutions to (3.1) and (3.3) respectively, are jointly continuous in (λ, ε) for each
x . Indeed, y+ is constructed as a fixed point θ+ = e−μ1xy+ of the operator

(Fθ)(x; λ, ε) = v1(λ, ε)−
∫ ∞

x
eB(λ,ε)(x−s)(A(s; λ, ε)− A∞(λ, ε)

)
θ(s; λ, ε) ds,

where B(λ, ε) = A∞(λ, ε) − μ1(λ, ε)I , on Cb([x0,∞)) for sufficiently large
x0 > 0. On any fixed compact subset of {(λ, ε) : λ ∈ �ε, ε ∈ [0, εK )}, we see
that A, A∞, μ1, and v1 are all jointly continuous in (λ, ε), |eBx | < C for all x < 0
since Reμ1 < μ∗ (see (3.25)) , and limx0→+∞

∫∞
x0
|A − A∞| ds = 0 uniformly

in (λ, ε). Hence, by a standard iteration argument, the fixed point θ+ (and thus
y+) is jointly continuous in (λ, ε) on any compact subset. The joint continuity of
D∗(
, ε) can be proved in a similar manner. ��

3.9. Absence of nonzero eigenvalues

This subsection is devoted to prove that D∗(
, ε) only vanishes at
 = 0 in the
domain �∗. To this end, we show that D∗(
, ε) converges to DK dV (
) as ε → 0
uniformly in 
 ∈ �∗.

Proposition 3.17. It holds that

sup

∈�∗

|D∗(
, ε)− DK dV (
)| → 0 as ε → 0.

From the convergence of D∗(
, ε), combined with the properties of DK dV (
)

(Proposition 3.13) and some results of previous subsections, we have the following:

Corollary 3.18. There exists ε0 > 0 such that for ε ∈ (0, ε0], 
 = 0 is the only
zero of D∗(
, ε) on the region �∗. Moreover, the order of 
 = 0 is exactly two.

We note that the characterization of the zeros of D(λ, ε) (Proposition 3.8) di-
rectly follows fromCorollary 3.18 and Proposition 3.15. Since the proof of Proposi-
tion 3.17 consists of several steps, we prove it after we present the proof of Corollary
3.18.

Proof of Corollary 3.18. For δ > 0, let �δ be the boundary of the region �∗ ∩ {
 :
|
| � δ−1}. Since DK dV (
) tends to 1 as |
| → ∞ (see Proposition 3.13), there
exists δ0 > 0 such that

inf

∈�∗,|
|�δ−1

|DK dV (
)| > 1

2
for all δ ∈ (0, δ0].
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Moreover, since DK dV (
) vanishes only at 
 = 0, there exists γ0 = γ0(δ0) > 0
such that

inf

∈�δ0

|DK dV (
)| > γ0.

We recall that �∗ is closed. Hence, the above two inequalities imply that for all
δ ∈ (0, δ0],

inf

∈�δ

|DK dV (
)| > min{1/2, γ0} =: γ ′0(δ0).

Combined with Proposition 3.17, this implies that there is ε0 > 0 such that for all
ε ∈ (0, ε0] and δ ∈ (0, δ0],

|DK dV (
)| > γ ′0(δ0) > |D∗(
, ε)− DK dV (
)| for 
 ∈ �δ. (3.66)

We recall that the order of
 = 0 as a zero of DK dV (
) is two, and there is no other
zero. Combining Propositions 3.12 and 3.15, 
 = 0 is a zero of D∗(
, ε) with the
order at least two. Now the proof is finished by applying Rouché’s theorem since
(3.66) is true for all δ ∈ (0, δ0]. ��

In order to prove Proposition 3.17, we divide the region �∗ as follows (see Fig.
2 and recall that 
 ∈ �∗ if and only if λ ∈ �ε as long as ε3/2
 = λ for ε > 0):

D1 := �∗ ∩ {
 : |
| � δ−1},
D2 := �ε ∩ {λ : ε3/2δ−1 < |λ| < δ},
D31 := {λ : Re λ � 0} ∩ {λ : δ � |λ| � δ−1},
D32 := {λ : −ε3/2η(c0) � Re λ � 0, δ/2 � | Im λ| � δ−1},
D4 := �ε ∩ {λ : δ−1 < |λ|},

where−ε3/2η(c0) is the boundary of the domain �ε (see (3.24)). It is clear that for
any fixed δ > 0, �∗ is a union of these regions for all sufficiently small ε > 0. In
fact, δ > 0 will be determined later.

On D1: We note that D(λ, ε) is singular at λ = 0 in the limit ε → 0. First of
all, D(λ, ε) is not defined at (λ, ε) = (0, 0). Moreover, we have D(λ, ε)|ε=0 = 1
for all λ ∈ �0 (see Remark 2), but D(λ, ε)|λ=0 = 0 for ε ∈ (0, εK ] by Proposition
3.12.(a). However, D∗(
, ε) is regular at 
 = 0 in the sense of Lemma 3.19.

Lemma 3.19. For any fixed constant δ > 0,

sup

∈D1

|D∗(
, ε)− DK dV (
)| → 0 as ε → 0. (3.68)

Proof. It is easy to see that sup
∈D1
|D∗(
, ε) − DK dV (
)| is continuous on

[0, ε′K ]. Indeed, D∗(
, ε) is uniformly continuous on a fixed compact set {(
, ε) :
ε ∈ [0, ε′K ],
 ∈ D1} since it is jointly continuous on the set (see Proposition
3.16). Now (3.68) follows from that D∗(
, 0) = DK dV (
) by Proposition 3.15. ��



J. Bae & B. Kwon

Fig. 2. Decomposition of �ε

On D2 and D4: On the region D2, λ is small, but not zero. The region D4 is
where λ is large. Since the proofs of Lemmas 3.20 and 3.21 are rather lengthy, they
will be proved in Section 5.

Lemma 3.20. There exist constants C2, δ2, ε2 > 0 such that for all ε ∈ [0, ε2] and
δ ∈ (0, δ2], there holds

sup
λ∈D2

|D(λ, ε)− 1| < C2δ
1/3. (3.69)

Here C2 is independent of ε and δ.

Lemma 3.21. There exist constants C4, δ4, ε4 > 0 such that for all ε ∈ [0, ε4] and
δ ∈ (0, δ4],

sup
λ∈D4

|D(λ, ε)− 1| < C4ε
1/2. (3.70)

Here C4 is independent of ε and δ.

On D31 and D32: We note that these regions do not contain λ = 0, which is a
singular point of D(λ, ε) in the limit ε → 0. We recall that the coefficient matrix
of the system (3.1) is independent of x when ε = 0.

Lemma 3.22. For any fixed constant δ > 0, it holds that

sup
λ∈D31

|D(λ, ε)− 1| → 0 as ε → 0,

sup
λ∈D32

|D(λ, ε)− 1| → 0 as ε → 0.

(3.71a)

(3.71b)
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Proof. From that D(λ, ε) is jointly continuous on a fixed compact set {(λ, ε) : λ ∈
D31, ε ∈ [0, εK ]} and that D(λ, 0) = 1 for λ ∈ D31, (3.71a) can be obtained in a
similar manner as in the proof of Lemma 3.19.

Even though the regionD32 depends on ε, onemay extend D(λ, ε) to a function
DεK (λ, ε), jointly continuous on a fixed compact set

{(λ, ε) : −ε
3/2
K η(c0) � Re λ � 0, δ/2 � | Im λ| � δ−1, ε ∈ [0, εK ]}

by defining

DεK (λ, ε) :=

⎧
⎪⎨

⎪⎩

D(λ, ε) on {(λ, ε) : λ ∈ D32, ε ∈ [0, εK ]},
D(−ε3/2η(c0)+ i Im λ, ε) on

{

(λ, ε) : −ε
3/2
K η(c0) � Re λ < −ε3/2η(c0),

δ/2 � | Im λ| � δ−1, ε ∈ [0, εK ]

}

.

Hence,

sup
−ε

3/2
K η(c0)�Re λ�0,

δ/2�| Im λ|�δ−1

|DεK (λ, ε)− 1| = sup
λ∈D32

|D(λ, ε)− 1|

is continuous in ε ∈ [0, εK ], and we obtain (3.71b). ��
By using (3.68)–(3.71), we now prove Proposition 3.17.

Proof of Proposition 3.17. Let γ > 0 is given. From the property of DK dV , (3.69),
and (3.70), there exist constants δγ , εγ > 0 such that for all ε ∈ (0, εγ ] and
δ ∈ (0, δγ ], it holds that

sup
|
|�δ−1γ

|DK dV (
)− 1| < γ

2
, (3.72)

sup
λ∈D2

|D(λ, ε)− 1| < γ

2
, sup

λ∈D4

|D(λ, ε)− 1| < γ

2
. (3.73)

From (3.71), there is a constant ε3 > 0 such that for all ε ∈ (0, ε3],
sup

λ∈�ε,δγ �|λ|�δ−1γ

|D(λ, ε)− 1| < γ

2
. (3.74)

Since D(λ, ε) = D∗(
, ε), it follows from (3.72), (3.73) and (3.74) that

sup
|
|�δ−1γ

|D∗(
, ε)− DK dV (
)| < γ. (3.75)

From (3.68), there exists ε1 > 0 such that for all ε ∈ (0, ε1],
sup

|
|�δ−1γ

|D∗(
, ε)− DK dV (
)| < γ. (3.76)

From (3.75) and (3.76), we conclude that there is ε0 := min{εγ , ε1, ε3} such that
for all ε ∈ (0, ε0],

sup

∈�∗

|D∗(
, ε)− DK dV (
)| < γ.

This finishes the proof. ��
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4. Splitting of Matrix Eigenvalues

In this section, we prove Lemmas 3.3 and 3.4: the splitting properties of the
roots of the characteristic polynomial d(μ). We first present some preliminary
observations.

We recall that d(μ) = 0 is equivalent to that μ satisfies one of the equations
(see (3.18)–(3.19))

d±(μ) = μ

(

c ±
√

1

1− μ2 + K

)

= λ.

Here d±(μ) are analytic in μ ∈ C except the branch cut (−∞,−1] ∪ [1,+∞),
since we may write

√
1

1− μ2 + K = √K

√√

1+ 1
K + μ ·

√√

1+ 1
K − μ

√
1+ μ · √1− μ

.

By inspection, we have

∂μd±(μ) = c ± 1+ K (1− μ2)2

(1− μ2)2
√

1
1−μ2 + K

, ∂2μd±(μ) = ±μ(−Kμ4 − 2Kμ2 + 3K + 3)

(1− μ2)4
(

1
1−μ2 + K

)3/2 .

(4.1)

Plugging λ = −iω and μ = ik for ω, k ∈ R into λ = d±(μ), we obtain

ω = ω±(k) := i · d±(ik) = −k

(

c ±
√

1

1+ k2
+ K

)

. (4.2)

By inspection, we see that

∂kω±(k) = −
⎛

⎝c ± 1+ K (1+ k2)2

(1+ k2)2
√

1
1+k2

+ K

⎞

⎠ , ∂2k ω−(k) = k(K k4 − 2K k2 − 3K − 3)

(1+ k2)4
(

1
1+k2

+ K
)3/2 .

Hence,

∂kω±|k=0 = −(c ±√1+ K ), lim
k→±∞ ∂kω± = −(c ±√K ).

Furthermore, one can check that ∂kω− decreases on the interval (0, k−) and in-

creases on the interval (k−,∞), where k− :=
√

K+√4K 2+3K
K . These observations

yield that (see Fig. 3) for ε � 0, where ε = c −√1+ K ,

∂kω+(k) � −c for k ∈ R, ∂kω−(k) < 0 for k ∈ R \ {0}, ∂kω−(k)|k=0 = −ε

(4.3)
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Fig. 3. The graphs of ∂kω±(k)

since ∂kω± are symmetric about k = 0. Lastly, we see that for any positive constant
δ > 0, there is a constant C(δ) > 0 (independent of ε) such that

sup
|k|∈[δ,∞)

∂kω−(k) < max{∂kω−(δ),−(c −√K )} < −C(δ). (4.4)

Proof of Lemma 3.3. We only consider the case ε > 0 since the case ε = 0 can be
checked in a similar manner. We first prove (3.22a): for ε > 0,

Reμ1 < 0 = Reμ2 = Reμ3 < Reμ4 when Re λ = 0.

By (4.2)–(4.3), the mappings

k ∈ R �→ d±(ik) = −iω±(k) ∈ iR (4.5)

are one-to-one and onto. Hence for each λ with Re λ = 0, there exist exactly
two zeros μ2 = μ2(λ, ε) and μ3 = μ3(λ, ε) of d(μ) satisfying d+(μ2) = λ,
d−(μ3) = λ, and

Reμ2 = Reμ3 = 0. (4.6)

We let μ1 = μ1(λ, ε) and μ4 = μ4(λ, ε) be the other two branches of solutions to
d−(μ) = λ satisfying

−
√

c2 − K − 1

c2 − K
= μ1 < 0 < μ4 =

√

c2 − K − 1

c2 − K
at λ = 0. (4.7)

Now we claim that μ1 satisfies Reμ1 < 0 without crossing the imaginary axis
as long as Re λ = 0. Suppose that for some λ0 with Re λ0 = 0, there is k0 ∈ R such
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that μ1 = ik0 at λ = λ0. Then, since the mappings (4.5) are one-to-one and onto,
one must have μ1 = μ2 or μ1 = μ3 at λ = λ0. In other words, λ0 = d+(μ) =
(μ−μ1)

2d̃+(μ) for some d̃+ with d̃+(μ1) �= 0, or λ0 = d−(μ) = (μ−μ1)
2d̃−(μ)

for some d̃− with d̃−(μ1) �= 0 at λ = λ0. This contradicts to (4.3) since by the
chain rule,

0 = ∂μd±(μ)|μ=μ1(λ0)=ik0 = −i∂kd±(ik)|k=k0 = −∂kω±(k)|k=k0 �= 0.

For the same reason, we have 0 < Reμ4 as long as Re λ = 0. Hence (3.22a) is
true.

Next we prove (3.22b): for ε > 0,

Reμ1 < 0 < Reμ j when Re λ > 0 ( j = 2, 3, 4).

From (4.5), we see that any solutions μ of d±(μ) = λ with Re λ �= 0 cannot lie in
the imaginary axis. Combinedwith the continuity, this further implies the consistent
splitting property: as long as Re λ > 0,

the number of zeros of d(μ) lying on the left (resp. right) half-plane does not change.

Hence it is enough to check that the inequality (3.22b) holds for some sufficiently
small λ > 0.

First of all, it is true that Reμ1 < 0 < Reμ4 for all sufficiently small λ > 0
by (4.7) and the continuity. Since μ2 = μ3 = 0 at λ = 0, expanding d±(μ) around
μ = 0, we have that for sufficiently small λ > 0,

0 < λ = d+(μ2) = (c +√1+ K )μ2 ·
(
1+ O(|μ2|2)

)
,

0 < λ = d−(μ3) = (c −√1+ K )μ3 ·
(
1+ O(|μ3|2)

)
.

(4.8a)

(4.8b)

Since c −√1+ K = ε > 0, (4.8) implies that Reμ2,Reμ3 > 0 for sufficiently
small λ > 0. Hence (3.22b) is true. ��
Proof of Lemma 3.4. Since d±(−μ) = −d±(μ) forμ ∈ C\{(−∞,−1]∪[1,∞)},
we obtain

Re

(

d±(ik − β)− (c ±√1+ K )(ik − β)− ±(ik − β)3

2
√
1+ K

)

= Re

⎛

⎝
∑

n�5, n is odd

∂n
μd±(μ)|μ=0(ik − β)n

⎞

⎠

=: R1,

for all μ = ik − β close to the origin. Since ∂n
μd±(0) is real-valued for all non-

negative integers n, there exists a constant C1 > 0, uniform in sufficiently small
k, β, ε, such that

|R1| � C1β|ik − β|4 = C1(k
4β + 2k2β3 + β5). (4.9)
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For any fixed 0 < c0 <
√
2
√
1+ K , let β = c0ε1/2. Then we may choose

sufficiently small ε1(c0) > 0 and δ > 0 (independent of ε) such that for all
0 < ε < ε1 and |k| � δ, (4.9) holds and

Re d−(ik − β) = −β(c −√1+ K )+ β3

2
√
1+ K

− 3k2β

2
√
1+ K

+R1

= −εβ

(

1− c20
2
√
1+ K

)

− 3k2β

2
√
1+ K

+R1

< −εβ

2

(

1− c20
2
√
1+ K

)

− 3k2β

4
√
1+ K

< −εβ

2

(

1− c20
2
√
1+ K

)

,

(4.10)

where we have used (4.9) in the first inequality. Hence, for all 0 < ε < ε1(c0), we
obtain that

sup
|k|�δ

Re d−(ik − β) � −εβ

2

(

1− c20
2
√
1+ K

)

. (4.11)

We fix δ > 0. By the Taylor theorem and the chain rule, for all k ∈ R and
sufficiently small β > 0, we have that

Re d±(ik − β) = Re d±(ik)+ ∂βRe d±(ik − β)|β=0β + ∂2βRe d±(ik − β)

∣
∣
∣
β=βk

β2

= ∂kω±(k)β + Re ∂2μd±(μ)|μ=ik−βk β
2

(4.12)

for some βk ∈ (0, β). From (4.1), we have that

sup
k∈R,β∈[0,1/2]

∣
∣
∣∂

2
μd±(μ)|μ=ik−β

∣
∣
∣ � C2 (4.13)

for some constant C2 > 0 (independent of ε). From (4.12) and (4.13), there exists
ε2 > 0 such that for all 0 < ε � ε2,

sup
|k|∈[δ,∞)

Re d−(ik − β) < sup
|k|∈[δ,∞)

∂kω−(k)β + C2β
2

< −C(δ)β + C2β
2

< −εβ

2

(

1− c20
2
√

V

)

.

(4.14)

where we have used (4.4) in the second inequality and β = c0ε1/2 in the last
inequality. Combining (4.11) and (4.14), we obtain that for all sufficiently small
ε > 0,

sup
k∈R

Re d±(ik − β) < −εβ

2

(

1− c20
2
√

V

)

, (4.15)
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where the bound for Re d+ easily follows from (4.12) and (4.13) using (4.3). There-
fore, we have

{d±(ik − β) : k ∈ R} ⊂ C \�ε = {λ ∈ C : Re λ < −ε3/2η(c0)} (4.16)

and finish the proof of the first assertion.
To prove the second assertion, we let μ = μ′ − β and consider the zeros of

d(μ′ − β). By (4.16), any solutions μ′ of d±(μ′ − β) = λ with λ ∈ �ε cannot
lie in the imaginary axis. This implies that as long as λ ∈ �ε, the number of zeros
of d(μ′ − β) lying on the left (resp. right) half-plane does not change. Hence, it
suffices to consider the point λ = 0 ∈ �ε.

We choose ε′K > 0 such that for all ε ∈ (0, ε′K ], (4.15) holds and the solutions
of d±(μ′ − β) = 0 can be labeled such that

μ′1 = β −
√

c2 − 1− K

c2 − K
< 0 < μ′2 = μ′3 = β < μ′4 = β +

√

c2 − 1− K

c2 − K

(recall that β = c0ε1/2, 0 < c0 <
√
2V, and c = √1+ K + ε). Now we conclude

that as long as λ ∈ �ε, the zeros of d(μ) can be labeled so that

Reμ1 + β < 0 < Reμ j + β ( j = 2, 3, 4).

This finishes the proof of the second assertion. ��

5. Estimates Uniform in Eigenvalue Parameters

The first goal of this section is to prove Lemmas 3.20 and 3.21 (the estimates
of D(λ, ε) on the regions D2 and D4), and these lemmas will be proved in Sec-
tions 5.2–5.3, respectively. The second goal is to show Proposition 1.2.(iv), the
uniform boundedness of the resolvent operator, which is a crucial ingredient for
the asymptotic linear stability result. This will be covered in Section 5.4.

As a preliminary step, we start with studying the asymptotic behaviors of char-
acteristic roots for non-zero small |λ| and large |λ| in Section 5.1.

5.1. Asymptotic behaviors of characteristic roots

By employing a perturbation argument, we investigate the behavior of the roots
of the characteristic polynomial d(μ) on the region D2, in which |λ| is small, but
is non-zero.

Proposition 5.1. (1) There exists δ′2 > 0 such that as long as (λ, ε, δ) satisfies

ε3/2δ−1 < |λ| < δ, 0 � ε � εK , 0 < δ � δ′2, (5.1)

the solutions of d−(μ) = λ can be labeled so that they satisfy

μ j = (−2√1+ K λ)1/3e2π i j/3(1+ O(δ2/3)), ( j = 1, 2, 3),

as δ → 0 uniformly in ε.
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(2) There exists δ′′2 > 0 such that as long as (λ, ε, δ) satisfies

0 < |λ| < δ, 0 � ε � εK , 0 < δ � δ′′2 ,

the solution of d+(μ) = λ (say μ4) satisfies

μ4 = λ

c +√1+ K
(1+ O(δ2))

as δ → 0 uniformly in ε.

Proof. By expanding d−(μ) around μ = 0 and using that c = √1+ K + ε, we
see that d−(μ) = λ is equivalent to

μ3

2
√
1+ K

+ λ = εμ+ μ5R−(μ). (5.2)

Here,R−(μ) is analytic nearμ = 0 and independent of ε, and it satisfiesR−(μ) =
O(1) as μ tends to 0. We let μ̃ j = (−2√1+ Kλ)1/3e2π i j/3 for j = 1, 2, 3, and
then plug the Ansatz μ = μ̃ j (1−R j )

1/3 into (5.2). Then we obtain

R j = εμ̃ j

λ
(1−R j )

1/3 + μ̃5
j (1−R j )

5/3

λ
R−

(
μ̃ j (1−R j )

1/3
)

. (5.3)

We observe that as long as ε3/2δ−1 < |λ| < δ,

|εμ̃ j |
|λ| = (2

√
1+ K )1/3ε|λ|−2/3 � (2

√
1+ K )1/3δ2/3,

|μ̃5
j |

|λ| = (2
√
1+ K )5/3|λ|2/3 � (2

√
1+ K )5/3δ2/3,

|μ̃ j | � (2
√
1+ K )1/3δ1/3.

(5.4a)

(5.4b)

(5.4c)

Hence, by a fixed point argument, there exists small δ′2 > 0 such that the solution
R j to (5.3) exists as long as (5.1) holds. Furthermore, R j = O(δ2/3) as δ → 0
uniformly in ε. This completes the proof of the first assertion.

We prove the second assertion. By expanding d+(μ) around μ = 0, we obtain
that

λ = μ

(

(c +√1+ K )+ μ2

2
√
1+ K

+ μ4R+(μ)

)

=: μR̃+. (5.5)

Since μ is small as long as |λ| < δ for small δ, we see that μ = O(δ) as δ → 0
uniformly in ε. By dividing (5.5) by R̃+, we finish the proof. ��

Next we study the asymptotic behavior of the roots of characteristic polynomial
d(μ) for large |λ|. The proof is based on a perturbation argument using Rouché’s
theorem in a similar fashion as Lemma 1.20 of [41].
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Proposition 5.2. The roots of the characteristic polynomial d(μ) can be labelled
so that they satisfy

μ1 = −1+ O(|λ|−2), μ4 = 1+ O(|λ|−2),

μ2 = cλ−√Kλ2 − c2 + K

c2 − K
+ O(|λ|−3), μ3 = cλ+√Kλ2 − c2 + K

c2 − K
+ O(|λ|−3),

as |λ| → ∞ uniformly in ε ∈ [0, εK ].
Proof. We consider the decomposition (c2 − K )d(μ) = d̃(μ)+ d̃R(μ), where

d̃(μ) = d̃(μ, λ, ε) = (μ2 − 1)((λ− cμ)2 − Kμ2 + 1) and d̃R(μ) = 1.

We note that d̃(μ) has four simple zeros

μ̃1 = −1, μ̃4 = 1, μ̃2 = cλ−
√

Kλ2 − c2 + K

c2 − K
, μ̃3 = cλ+

√
Kλ2 − c2 + K

c2 − K

(5.7)

for all λ with sufficiently large |λ| and ε ∈ [0, εK ]. Since the derivative of d̃(μ) in
μ is

∂μd̃(μ) = 2μ((λ− cμ)2 − Kμ2 + 1)+ 2(μ2 − 1)(−cλ+ (c2 − K )μ),

we obtain that

∂μd̃(μ̃1) = −2((λ+ c)2 − K + 1), ∂μd̃(μ̃4) = 2((λ− c)2 − K + 1),

∂μd̃(μ̃2) = −2(μ̃2
2 − 1)

√
Kλ2 − c2 + K , ∂μd̃(μ̃3) = 2(μ̃2

3 − 1)
√

Kλ2 − c2 + K .

Combined with (5.7), this implies that we may take some constant ρ0 > 1 (inde-
pendent of ε and λ) and positive functions ρ j (λ) (uniform in ε ∈ [0, εK ]) such that
the following hold:

ρ j (λ) = O(|λ|−2) for j = 1, 4, ρ j (λ) = O(|λ|−3) for j = 2, 3, (5.9)

as |λ| → ∞ uniformly in ε ∈ [0, εK ], and for j = 1, 2, 3, 4,

ρ j (λ) > ρ0
1

|∂μd̃(μ̃ j )|
(5.10)

for all sufficiently large |λ|.
By the Taylor theorem, we have that on each circle |μ− μ̃ j | = ρ j ,

|d̃(μ)| = |∂μd̃(μ̃ j )||μ− μ̃ j |
∣
∣1+ O(|μ− μ̃ j |)

∣
∣

= ρ j |∂μd̃(μ̃ j )||1+ O(ρ j )|
> ρ0|1+ O(ρ j )|
> 1 = |d̃R(μ)|

for all λ with sufficiently large |λ| and ε ∈ [0, εK ], where we have used (5.10)
in the first inequality, (5.9) and ρ0 > 1 in the second inequality. Now Rouché’s
theorem implies that for j = 1, 2, 3, 4, there is exactly one simple root μ j of
d̃(μ)+ d̃R(μ) (equivalently, of d(μ)) such that |μ j − μ̃ j | < ρ j , which finishes the
proof combined with (5.7) and (5.9). ��
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5.2. Estimates of the Evans function for non-zero small eigenvalue parameter

In this subsection, we prove Lemma 3.20.
(Statement of Lemma 3.20) There exist constants C2, δ2, ε2 > 0 such that for

all ε ∈ [0, ε2] and δ ∈ (0, δ2],
sup

λ∈D2

|D(λ, ε)− 1| < C2δ
1/3.

Here D2 = �ε ∩ {λ : ε3/2δ−1 < |λ| < δ}, and C2 is independent of ε and δ.
We use the following lemma:

Lemma 5.3. Assume that the coefficient matrix of the system (3.1) satisfies the
hypotheses H1–H4, and that A∞(λ, ε) is diagonalizable. For the left eigenvector
w j and the right eigenvector v j associated with the eigenvalue μ j of A∞ satisfying
w jv j = 1, ( j = 1, 2, 3, 4), let V and W be the matrices whose j-th column is v j

and j-th row is w j , respectively. Let R := A(x, λ, ε)− A∞(λ, ε). Then, there exist
positive constants δ0 ∈ (0, 1) and C0 such that if

∫∞
−∞ |W RV | dx � δ0, we have

|D(λ, ε)− 1| � C0

∫ ∞

−∞
|W RV | dx .

We omit the proof of Lemma 5.3 since it can be easily shown following the proofs
of Lemma 10.1 and Corollary 10.2 of [43] (or the proofs of Proposition 1.17 and
Corollary 1.18 of [41]). Instead, we will present a variation of the proof of Lemma
5.3 in the next subsection.

Proof of Lemma 3.20. Wenote that Proposition5.1 implies in particular thatμ j (λ, ε)

are all distinct for λ ∈ D2. Hence the matrix A∞(λ, ε) is diagonalizable. For v j

and w j , given in (3.20) and (3.21), we let V and W be the matrices whose j-
th column is v j and j-th row is w j , respectively, where j = 1, 2, 3, 4. We let
R = A(x, λ, ε) − A∞(λ, ε) (see (3.14) and (3.17)). We may apply Lemma 5.3
provided that the desired estimate for

∫
W RV dx holds true.

Let R jk be the ( j, k)-entry of the matrix R. Using (2.13), it is straightforward
to check that

|R jk | � Cεe−Cε1/2|x |E jk, ( j, k = 1, 2, 3, 4), (5.11)

where C is some positive constant uniform in ε, and E jk is the ( j, k)-entry of the
matrix

E :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ε1/2 + |λ| ε1/2 + |λ| 0 1

ε1/2 + |λ| ε1/2 + |λ| 0 1

0 0 0 0

0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5.12)

Let v jl and w jl be the l-th component of v j and w j , respectively. Then, the ( j, k)-
entry of the matrix W RV is given by



J. Bae & B. Kwon

(W RV ) jk =
∑

l=1,2
w jl (Rl1vk1 + Rl2vk2 + Rl4vk4)+ w j4R43vk3, ( j, k = 1, 2, 3, 4).

(5.13)

Combining (5.11)–(5.13), one can obtain from (3.20) and (3.21) that

|(W RV ) jk | � Cεe−Cε1/2|x |G jk, ( j, k = 1, 2, 3, 4), (5.14)

where

G jk

:=

[

(ε1/2 + |λ|)
(
1+ |cμk−λ|

|μk |
)
+ |μk |
|1−μ2

k |

] [
(|c| + 1) |λ||μ j | + |c2 − K |

]
|1− μ2

j | + |μ j |
|1−μ2

k |
|π jv j | .

(5.15)

Since

ε1/2
∫ ∞

−∞
e−Cε1/2|x | dx = 2

C
for any ε > 0, (5.16)

it is enough to show that there are positive constants C ′2, ε2 and δ2 such that, for all
ε ∈ (0, ε2] and δ ∈ (0, δ2], it holds that as long as λ ∈ D2,

ε1/2G jk � C ′2δ1/3, ( j, k = 1, 2, 3, 4), (5.17)

where C ′2 is uniform in δ, ε, and λ. Then Lemma 3.20 will follow from (5.14),
(5.16) and (5.17), together with Lemma 5.3.

It is clear that as long as λ ∈ D2 = �ε∩{λ : ε3/2δ−1 < |λ| < δ}, the following
holds:

ε1/2 < |λ|1/3δ1/3,
|λ| < δ.

(5.18a)

(5.18b)

From Proposition 5.1, we have

for j = 1, 2, 3, for j = 4,

|μ j | = (2V|λ|)1/3 (1+ o(1)) , μ4 = λ

(
1

c + V
+ o(1)

)

,

|1− μ2
j | = 1+ o(1), |1− μ2

4| = 1+ o(1),

|cμ j − λ|
|μ j | = c (1+ o(1)) ,

|cμ4 − λ|
|μ4| = V+ o(1),

(5.19a)

(5.19b)

(5.19c)
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as δ → 0 uniformly in ε. Applying (5.18a) and (5.19), we obtain that for all
j, k = 1, 2, 3, 4,

G jk � C |λ|1/3 (1+ o(1))

|π jv j | as δ → 0 uniformly in ε. (5.20)

To estimate |π jv j |−1, we recall that (see (3.21b))

π jv j =
λ2(1− μ2

j )

μ2
j

− (c2 − K )(1− μ2
j )+

1+ μ2
j

1− μ2
j

, ( j = 1, 2, 3, 4).

Using (5.19a) for j = 4, it is easy to check that

π4v4 = 2V2 + 2cV+ o(1) as δ → 0 uniformly in ε. (5.21)

On the other hand, estimating |π jv j |−1 for j = 1, 2, 3 is not so trivial. We first
observe that

π jv j =
μ2

j

1−μ2
j

(
λ2(1−μ2

j )
2

μ4
j

− (c2 − K )(1− μ2
j )
2 1

μ2
j
+ 1

μ2
j
+ 1

)

= μ2
j

1−μ2
j

(
λ2(1−μ2

j )
2

μ4
j

− 1
μ2

j

[
c2 − K − 1− 2(c2 − K )μ2

j + (c2 − K )μ4
j

]
+ 1

)

= μ2
j

1−μ2
j

(
λ2(1−μ2

j )
2

μ4
j

− 1
μ2

j

[
2ε
√
1+ K + ε2 − 2(c2 − K )μ2

j + (c2 − K )μ4
j

]
+ 1

)

,

(5.22)

where we have used c = √1+ K+ε in the last equality. From (5.18a) and (5.19a),
we see that, for j = 1, 2, 3,

ε

|μ2
j |

<
|λ|2/3δ2/3
|μ2

j |
= δ2/3

(2V)2/3(1+ o(1))
= o(1) as δ → 0 uniformly in ε.

(5.23)

Applying (5.19) and (5.23), we obtain from (5.22) that for j = 1, 2, 3,

|π jv j | = (2(c2 − K )+ 1)(2V|λ|)2/3(1+ o(1)) as δ → 0 uniformly in ε.

(5.24)
Now combining (5.20) and (5.21), and using (5.18b), we have that for k =

1, 2, 3, 4,

ε1/2G4k � ε1/2
Cδ1/3(1+ o(1))

2V2 + 2cV + o(1)
as δ → 0 uniformly in ε. (5.25)
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Combining (5.20), (5.24), and using (5.18a), we have that for j = 1, 2, 3, and
k = 1, 2, 3, 4,

ε1/2G jk � Cε1/2|λ|1/3(1+ o(1))

(2(c2 − K )+ 1)(2V|λ|)2/3(1+ o(1))

� Cδ1/3(1+ o(1))

(2(c2 − K )+ 1)(2V)2/3(1+ o(1))
as δ → 0 uniformly in ε.

(5.26)

From (5.25) and (5.26), we may choose sufficiently small δ2 and ε2 such that
(5.17) holds for some positive constant C ′2, which is uniform in ε, δ, and λ. This
finishes the proof. ��

5.3. Estimates of the Evans function for large eigenvalue parameter

The goal of this subsection is to prove Lemma 3.21.
(Statement of Lemma 3.21) There exist constants C4, δ4, ε4 > 0 such that for

all ε ∈ [0, ε4] and δ ∈ (0, δ4],
sup

λ∈D4

|D(λ, ε)− 1| < C4ε
1/2.

Here D4 = �ε ∩ {λ : δ−1 < |λ|}, and C4 is independent of ε and δ.
From Proposition 5.2, we have

for j = 1, 4, for j = 2, 3,

μ j = (−1) j + O(|λ|−2), μ j = λ

c + (−1) j
√

K

(
1+ O(|λ|−2)

)
, (5.27a)

cμ j − λ

μ j
= (−1) j+1λ

(
1+ O(|λ|−1)

)
,

cμ j − λ

μ j
= (−1) j+1√K

(
1+ O(|λ|−2)

)
,

(5.27b)

1− μ2
j = λ−2

(
1+ O(|λ|−1)

)
, 1− μ2

j =
−λ2

(c + (−1) j
√

K )2

(
1+ O(|λ|−2)

)
,

(5.27c)

π jv j = 2λ2
(
1+ O(|λ|−1)

)
, π jv j = −λ2

(
2(−1) j

√
K

(c + (−1) j
√

K )
+ O(|λ|−1)

)

(5.27d)

as |λ| → ∞ uniformly in ε. Here to obtain (5.27c) for j = 1, 4, we have used that
d(μ j ) = 0, that is,

1

1− μ2
j

= (λ− cμ j )
2 − Kμ2

j

μ2
j

rather than use (5.27a) directly.
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Although it is true from (5.27a) that μ j are all distinct as long as λ ∈ D4 for
all sufficiently small δ > 0 and ε > 0, Lemma 5.3 cannot be directly applied as
the previous analysis on the domain D2. Indeed, by applying (5.27) to (5.15), we
have, for large |λ|,

|G jk | � C, ( j = 1, 4, k = 1, 4), |G jk | � C |λ|−2, ( j = 1, 4, k = 2, 3),

|G jk | � C |λ|, ( j = 2, 3, k = 2, 3), |G jk | � C |λ|2, ( j = 2, 3, k = 1, 4).

Hence, we need amore delicate approach to prove Lemma 3.21.We remark that the
linear growth bound ofG jk for ( j = 2, 3, k = 2, 3) is due toλ, the coefficient of A2
(see (3.14)). Themain contribution of the bounds for ( j = 1, 4, k = 2, 3) and ( j =
2, 3, k = 1, 4) comes from the term

|1−μ2
j |

|1−μ2
k |
(see (5.15) and (5.27c)). These terms

arise due to the transport term and the Poisson equation of the linearized Euler–
Poisson system.Taking these into account,wewill consider a suitable compensating
factor so that the uniform bounds corresponding to the cases of ( j = 1, 4, k = 2, 3)
and ( j = 2, 3, k = 1, 4) are obtained, and at the same time, the term which leads
the linear growth in λ can be controlled.

We first present some preliminary steps, and then finish the proof of Lemma
3.21 by employing a variation of the proof of Lemma 5.3 as promised in the last
subsection.

Step 1: Decomposition and compensating factor. We write

A(x, λ, ε)− A∞(λ, ε) = λR(1)(x, ε)+ R(2)(x, ε),

where (see (3.14))

R(1) = R(1)(x, ε) := A2(x, ε)− lim|x |→∞ A2(x, ε),

R(2) = R(2)(x, ε) := A1(x, ε)− lim|x |→∞ A1(x, ε).
(5.29)

Then using (2.13), we see that the ( j, k)-entry of R(2) satisfies

|R(2)
jk | � Cεe−Cε1/2|x |E (2)

jk , (5.30)

where E (2)
jk is the ( j, k)-entry of E (2) defined by (compare (5.31) with (5.12))

E (2) :=

⎛

⎜
⎜
⎝

ε1/2 ε1/2 0 1
ε1/2 ε1/2 0 1
0 0 0 0
0 0 1 0

⎞

⎟
⎟
⎠ . (5.31)

We define the factor

m j = m j (λ, ε) := (c + (−1) j
√

K )|1− μ2
j |

1
2 , ( j = 1, 2, 3, 4). (5.32)
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Using (5.27c), it is straightforward to check that

mk

m j
= O (1) , ( j, k = 1, 4),

mk

m j
= O

(
|λ|2
)

, ( j = 1, 4, k = 2, 3),

mk

m j
= 1+ O

(
|λ|−1

)
, ( j, k = 2, 3),

mk

m j
= O

(
|λ|−2

)
, ( j = 2, 3, k = 1, 4),

(5.33a)

(5.33b)

as |λ| → ∞ uniformly in ε. We note that the leading order term of mk/m j for
( j = 2, 3, k = 2, 3) is 1.5 For V and W , the matrices whose j-th column is v j and
j-th row is w j , respectively, we define the matrices Ṽ and W̃ as follows:

Ṽ := V diag(m1, m2, m3, m4), W̃ := diag(m1, m2, m3, m4)
−1W. (5.34)

It is clear that
W̃ Ṽ = I, W̃ A∞Ṽ = diag(μ1, μ2, μ3, μ4), (5.35)

and
W̃
(

A − A∞
)

Ṽ = λW̃ R(1)Ṽ + W̃ R(2)Ṽ . (5.36)

Step2: Estimate of W̃ R(2)Ṽ . Let v jl and w jl be the l-th component of v j and
w j , respectively. From (5.34), the ( j, k)-entry of the matrix W̃ R(2)Ṽ is given by

(W̃ R(2)Ṽ ) jk = mk

m j

⎛

⎝
∑

l=1,2
w jl

(
R(2)

l1 vk1 + R(2)
l2 vk2 + R(2)

l4 vk4

)
+ w j4R(2)

43 vk3

⎞

⎠ .

From (3.20), (3.21), (5.30) and (5.31), we obtain

|(W̃ R(2)Ṽ ) jk | � Cεe−Cε1/2|x |G(2)
jk , (5.37)

where (compare G(2)
jk with G jk in (5.15))

G(2)
jk :=

mk

m j

1

|π jv j |

×
{[

ε1/2
(

1+ |cμk − λ|
|μk |

)

+ |μk |
|1− μ2

k |

][

(|c| + 1)
|λ|
|μ j | + |c

2 − K |
]

|1− μ2
j | +

|μ j |
|1− μ2

k |

}

.

Using (5.27) and (5.33), it is straightforward to check that

|G(2)
jk | � C for j, k = 1, 2, 3, 4, (5.38)

uniformly in ε and |λ| � δ−1 for sufficiently small δ. From (5.37) and (5.38), we
obtain the bound

|W̃ R(2)(x)Ṽ | � Cεe−Cε1/2|x |, (5.39)

5 This is why (c+ (−1) j
√

K ) is considered in (5.32). Its purpose is to obtain the decom-
position (5.41), where the matrix S1 is symmetric.



Linear Stability of Solitary Waves

where the constant C is uniform in ε and λ with |λ| � δ−1 for sufficiently small δ.
Step 3: Estimate of λW̃ R(1)Ṽ . The ( j, k)-entry of thematrix λW̃ R(1)Ṽ is given

by

(λW̃ R(1)Ṽ ) jk = mk

m j

⎛

⎝
∑

l=1,2
λw jl

[
R(1)

l1 vk1 + R(1)
l2 vk2

]
⎞

⎠

= mk

m j

λ

π jv j

(
1− μ2

j

μ j

)

×
[

(cλ− μ j (c
2 − K ))

(

R(1)
11 +

cμk − λ

μk
R(1)
12

)

− λ

(

R(1)
21 +

cμk − λ

μk
R(1)
22

)]

,

where R(1)
jk is the ( j, k)-entry of R(1). On the other hand, we have from (5.27) that

for j = 1, 4, for j = 2, 3,

λ(1− μ2
j )

π jv j μ j
= O

(
|λ|−3

)
,

λ(1− μ2
j )

π jv j μ j
= 1

2(−1) j
√

K

(
1+ O

(
|λ|−1

))
,

cλ− μ j (c
2 − K ) = O(|λ|), cλ− μ j (c

2 − K ) = (−1) j
√

Kλ
(
1+ O

(
|λ|−1

))
.

(5.40a)

(5.40b)
Using (5.27c), (5.33) and (5.40), a direct calculation yields a decomposition

λW̃ R(1)Ṽ = λ

2
√

K
S1 + R̃(1), (5.41)

where S1 = S1(x, ε) is a symmetric matrix defined by

S1 :=

⎛

⎜
⎜
⎝

0 0 0 0
0 2
√

K R(1)
11 − K R(1)

12 − R(1)
21 K R(1)

12 − R(1)
21 0

0 K R(1)
12 − R(1)

21 2
√

K R(1)
11 + K R(1)

12 + R(1)
21 0

0 0 0 0

⎞

⎟
⎟
⎠ (5.42)

and R̃(1) is a matrix whose the ( j, k)-entry satisfies

|(R̃(1)) jk | � Cεe−Cε1/2|x |, (5.43)

where the constant C > 0 is uniform in small ε > 0 and |λ| � δ−1 for sufficiently
small δ. The symmetric matrix S1 is positive semi-definite (or non-negative) for all
sufficiently small ε (see Appendix 9.4). Now we are ready to prove Lemma 3.21.

Proof of Lemma 3.21. From (5.35), (5.36), and (5.41), we have

W̃ (A − μ1 I )Ṽ = W̃ (A∞ − μ1 I )Ṽ + W̃ (A − A∞)Ṽ

= B̃ + F̃,
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where F̃(x, λ, ε) := R̃(1) + W̃ R(2)Ṽ and

B̃(x, λ, ε) := diag(0, μ2 − μ1, μ3 − μ1, μ4 − μ1)+ λ

2
√

K
S1. (5.44)

Using (5.39) and (5.43), we see that
∫ ∞

−∞
|F̃(x, λ, ε)| dx � Cε1/2, (5.45)

where the constant C is uniform in ε and |λ| � δ−1.
We let

ẽ1 :=
(

m−11 , 0, 0, 0
)T

, ẽ∗1 := (m1, 0, 0, 0) .

Changing variables ỹ(x) = e−μ1x W̃y(x)− ẽ1, we have

dỹ
dx
= B̃(x; )̃y+ F̃(x; )(̃e1 + ỹ). (5.46)

With a particular choice of y+, we know that ỹ+(x) := e−μ1x W̃y+(x) − ẽ1 is a
solution of (5.46) satisfying limx→+∞ ỹ+(x) = 0 from the definition of W̃ and
(3.2).

Let �(x; s) be the fundamental matrix of the ODE system with the coefficient
matrix (5.44). In Lemma 5.5, we will show that |�(x; s)| � 1 for x � s. Using this
fact and (5.45), one may apply an iteration argument to show that there is a solution
ỹ+� of (5.46) satisfying limx→+∞ ỹ+� (x) = 0 as a fixed point of the bounded linear

operator T̃ on Cb([0,∞)) defined by

(
T̃ ỹ
)
(x) := −

∫ ∞

x
�(x; s)

[
F̃(s)(̃e1 + ỹ(s))

]
ds.

Since ỹ+� and ỹ+ tend to 0 as x → +∞, we have ỹ+� = ỹ+. To see this, one may

directly use Proposition 3.1 by considering the asymptotic behavior of y+� and y+

as x → +∞, where y+� , defined by ỹ+� = e−μ1x W̃y+� − ẽ1, is a solution of the

ODE (3.1). Indeed, we have e−μ1xy+� (x) → Ṽ ẽ1 = v1 and e−μ1xy+(x) → v1 as

x →+∞. Hence, from the definition of T̃ and (5.45), we obtain

sup
x∈[0,∞)

|̃y+(x)| � Cε1/2.

In a similar fashion, one can obtain that

sup
x∈(−∞,0]

|̃z−(x)| � Cε1/2,

where z̃−(x) := z−(x)eμ1x Ṽ − ẽ∗1. Since D(λ, ε) = z−y+ = (̃z− + ẽ∗1)(̃y+ + ẽ1),
these two estimates yield that

|D(λ, ε)− 1| � Cε1/2.

This finishes the proof. ��
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5.4. Uniform resolvent estimates

We aim to prove the uniform boundedness of the resolvent operator, Proposition
1.2.(iv). The following proposition is its restatement:

Proposition 5.4. Consider the operator L : (L2
β)2 → (L2

β)2 with dense domain

(H1
β )2. For any fixed c0 ∈ (0,

√

2
√
1+ K/3), let β = c0ε1/2. Then there exists

ε0 > 0 such that for each ε ∈ (0, ε0], the resolvent operator (λ−L)−1 is uniformly
bounded on Re λ � 0, outside any small neighborhood of the origin.

Proof. It is enough to show that

sup
λ∈D4,Re λ�0

‖(λ− L)−1‖(L2
β)2 � M

for each small ε since the resolvent operator is analytic in λ on the resolvent set.
(Recall that �ε \ {0} is a subset of the resolvent set; see Proposition 3.10.)

For given eβx ( f1, f2)T ∈ (L2)2,we consider the solutionyβ = eβx (ṅ, u̇, φ̇, ψ̇)T

to the inhomogeneous ODE system

(∂x − β)yβ = A(x, λ, ε)yβ + diag(L−1, 1, 1)fβ, fβ := eβx ( f1, f2, 0, 0)
T

(5.47)
on the regionD4 ∩ {λ : Re λ � 0}. Indeed, the solution yβ ∈ (L2)2 exists. First of
all, we see that

P(λ, ε) := 1

D(λ, ε)
y+(x, λ, ε)z−(x, λ, ε)|x=0

is the projection onto the space of initial conditions at x = 0 of solutions to the
system (3.1) satisfying O(eμ1x ) as x → +∞. The range of the complementary
projection I − P is the space of initial conditions at x = 0 of solutions to (3.1)
satisfying O(e(μ∗−θ)x ) as x →−∞.We let�(x) = �(x, λ, ε) be the fundamental
matrix solution of (3.1) satisfying�(0) = I . Then the Green function Gβ(x, x ′) =
Gβ(x, x ′, λ, ε) of the system (5.47) with fβ = 0 is given by

Gβ(x, x ′) =
{

eβ(x−x ′)�(x)P�(x ′)−1 x > x ′,
−eβ(x−x ′)�(x)(I − P)�(x ′)−1 x ′ > x,

It is easy to check that Gβ satisfies

(∂x − β)Gβ = A(x, λ, ε)Gβ for x �= x ′, Gβ(x ′ + 0, x ′)− Gβ(x ′ − 0, x ′) = I.

Our goal is to show that there is a constant M ′ > 0, independent of λ ∈ D4∩{λ :
Re λ � 0}, such that for j, k = 1, 2,

sup
x∈R

∫ ∞

−∞
|(Gβ) jk(x, x ′)| dx ′ + sup

x ′∈R

∫ ∞

−∞
|(Gβ) jk(x, x ′)| dx < M ′. (5.48)

Then, by the generalized Young’s inequality, we obtain the desired uniform (in λ)
bound
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‖(ṅ, u̇)T ‖(L2
β )2 = ‖eβx (ṅ, u̇)T ‖(L2)2 � 4M ′‖eβx L−1( f1, f2)

T ‖(L2)2 � M‖( f1, f2)
T ‖(L2

β )2 .

Step 1: To make the situation simpler, we first consider some diagonalization.
We let ỹβ := Ṽ−1yβ , where Ṽ is defined in (5.34). Then the system (5.47) with
fβ = 0 becomes

∂x ỹβ = diag(β + μi )̃yβ + W̃ (A − A∞)Ṽ ỹβ. (5.49)

The Green function G̃β(x, x ′) of (5.49) is then given by

G̃β(x, x ′) = W̃ Gβ(x, x ′)Ṽ

=
{

�̃β(x)Pβ(�̃β)−1(x ′) x > x ′,
−�̃β(x)(I − Pβ)(�̃β)−1(x ′) x ′ > x,

(5.50)

where �̃β(x) := W̃ eβx�(x)Ṽ is the fundamental solution of (5.49) with �β(0) =
I and Pβ := W̃ PṼ = (Pβ)2 is a projection.

On the other hand, one may check that by term by term computation using
(5.27) and (5.33),

|(Ṽ ) jl ||(W̃ )mk | � C for j, k = 1, 2 and l, m = 1, 2, 3, 4

uniformly in λ ∈ D4. Hence, for j, k = 1, 2, we obtain that

|(Gβ) jk | = |(Ṽ G̃β W̃ ) jk | � 64C
∑

l,m=1,2,3,4
|(G̃β)lm |. (5.51)

In the next step, we show that there exists constants ε0, C0, α0 > 0, independent
of λ, such that for all (ε, λ) ∈ (0, ε0] ×D4 with Re λ � 0, there holds that

|�̃β(x)Pβ(�̃β)−1(x ′)| � C0e−α0(x−x ′), x > x ′,

|�̃β(x)(I − Pβ)(�̃β)−1(x ′)| � C0e−α0(x ′−x), x ′ > x .

(5.52a)

(5.52b)

Then (5.48) will follow from (5.50)–(5.52).
Step 2: We recall that from (5.36) and (5.41),

W̃ (A − A∞)Ṽ = λ

2
√

K
S1 + R̃(1) + W̃ R(2)Ṽ .

Here, from (5.39) and (5.43), there holds that

|R̃(1) + W̃ R(2)Ṽ | � Cεe−Cε1/2|x | (5.53)

uniformly in λ ∈ D4.
Now we consider the simpler equation

da
dx
= diag(μ1 + β,μ2 + β,μ3 + β,μ4 + β)a + λ

2
√

K
S1a (5.54)
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and show that (5.54) has an exponential dichotomy on R with some uniform con-
stants. Then, together with the estimate (5.53), the roughness of exponential di-
chotomies (Proposition 1, Chapter 4 of [7]) implies that the system (5.49) has
an exponential dichotomy (5.52) on R with some uniform constants C0 and α0
for all sufficiently small ε > 0. We remark that the projection of the exponential
dichotomy (5.52) on R is unique (see the last paragraph of p.19, [7]).

Let�(x) be the fundamental solution of (5.54) satisfying�(0) = I . Let P1 :=
e1eT

1 , where e1 := (1, 0, 0, 0)T . Then, the Green function of (5.54) is given by

G̃(x, x ′) :=
{

�(x)P1�
−1(x ′) for x > x ′,

−�(x)(I − P1)�
−1(x ′) for x ′ > x,

=
{
diag(e(Reμ1+β)(x−x ′), 0, 0, 0) for x > x ′,
diag(0, �̃(x)�̃−1(x ′), e(Reμ4+β)(x−x ′)) for x ′ > x,

(5.55)

where we have used (5.63) of Lemma 5.5 in the second line. On the other hand, we
have from (5.27a) that for all sufficiently small δ > 0 and ε > 0,

Reμ1 + β < −1/2 and Reμ4 + β > 1/2 for λ ∈ D4. (5.56)

Combining (5.55) and (5.56) together with (5.62) of Lemma 5.5, we obtain that
there exist positive constants δ0 and ε0 such that for all (ε, λ) ∈ (0, ε0] ×D4 with
Re λ � 0, there holds that

{
|�(x)P1�

−1(x ′)| � e− 1
2 (x−x ′) for x > x ′,

|�(x)(I − P1)�
−1(x ′)| � e− 1

2 (x ′−x) for x ′ > x .
(5.57)

Hence, the system (5.54) possesses an exponential dichotomy on R with the pro-
jection P1 and uniform constants. This completes the proof. ��

5.5. Fundamental solutions for large eigenvalue parameter

Lemma 5.5. For the symmetric matrix S1 defined in (5.42), which is non-negative
for all small ε > 0, the following holds true:

(1) Let �(x; x0) ∈ C
4×4 be the fundamental matrix of

da
dx
= diag (0, μ2 − μ1, μ3 − μ1, μ4 − μ1)a + λ

2
√

K
S1a (5.58)

satisfying �(x0; x0) = I . Then, if ε > 0 and δ > 0 are sufficiently small, we
have that for all λ ∈ D4,

|�(x; x0)a0| � |a0| for all x � x0 and a0 ∈ C
4. (5.59)
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(2) Let �̃(x; x0) ∈ C
2×2 be the fundamental matrix of

d ã
dx
= diag(μ2 + β,μ3 + β)̃a + λ

2
√

K
S̃1 ã (5.60)

satisfying �̃(x; x0) = I , where S̃1 is the largest submatrix of S1 with non-zero
entries given by

S̃1 :=
(
2
√

K R(1)
11 − K R(1)

12 − R(1)
21 K R(1)

12 − R(1)
21

K R(1)
12 − R(1)

21 2
√

K R(1)
11 + K R(1)

12 + R(1)
21

)

. (5.61)

Then for all sufficiently small ε > 0, we have that on the region Re λ � 0,

|�̃(x; x0 )̃a0| � e2β(x−x0) |̃a0| for all x � x0 and ã0 ∈ C
2. (5.62)

Furthermore, �(x; x0) ∈ C
4×4, the fundamental matrix of (5.54) satisfying

�(x; x0) = I , is given by

�(x; x0) = diag(e(Reμ1+β)(x−x0), �̃(x; x0), e(Reμ4+β)(x−x0)). (5.63)

Proof. We suppress the (λ, ε)-dependence of the fundamental solutions. We first
prove (5.59). We let (a1, a2, a3, a4)T (x) := �(x; x0)a0. From the structure of the
equation (5.58), we observe that

da1
dx

= 0,
da4
dx

= (μ4 − μ1)a4.

From (5.27a), we have that μ4 − μ1 = 2+ O(|λ|−2) as |λ| → ∞ uniformly in ε.
Hence, for all sufficiently small ε > 0 and δ > 0, we have that for all λ ∈ D4,

a1(x) = a1(x0) and |a4(x)| = |e(μ4−μ1)(x−x0)a4(x)| � |a4(x0)| for x � x0.

(5.64)
On the other hand, (a2, a3)T (x) satisfies

d

dx

(
a2
a3

)

=
(

μ2 − μ1 0
0 μ3 − μ1

)(
a2
a3

)

+ λ

2
√

K
S̃1

(
a2
a3

)

, (5.65)

where S̃1 is given in (5.61). Multiplying (5.65) by the complex conjugate (a2, a3),
we get that

1

2

d

dx
|(a2, a3)|2(x) � min

j=2,3 Re(μ j − μ1)|(a2, a3)|2 + Re λ

2
√

K
(a2, a3)S̃1

(
a2
a3

)

.

(5.66)

From (5.27a), we have that for all sufficiently large |λ| and small ε,

min
j=2,3 Re (μ j − μ1)

{
> 0 if Re λ � 0,
= Re λ

c−√K
+ 1+ O(|λ|−1) if Re λ < 0. (5.67)
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Since S̃1 is non-negative, we obtain from (5.66) and (5.67) that for all sufficiently
large |λ| and small ε,

1

2

d

dx
|(a2, a3)|2 >

{
0 if Re λ � 0,
1
2 |(a2, a3)|2 if − ε3/2η(c0) � Re λ < 0,

(5.68)

where −ε3/2η(c0) is the real part of the (left) boundary of the domain �ε (see
(3.24)). Integrating (5.68) over [x, x0], we have that for all sufficiently small ε > 0
and δ > 0,

|(a2, a3)|(x) � |(a2, a3)|(x0) for x � x0 (5.69)

holds for λ ∈ D4. Now (5.59) follows from (5.64) and (5.68).
Now we prove (5.62). Multiplying (5.60) by the complex conjugate of ãT ,

1

2

d

dx
|̃a|2(x) � min

j=2,3 Re(μ j + β)|̃a|2 + Re λ

2
√

K
ãT S̃1 ã

Since Reμ2,Reμ3 � 0 when Re λ � 0 (see (3.22)) and S̃1 is non-negative, we
obtain

d

dx
|̃a|2(x) � 2β |̃a|2(x),

which leads (5.62).
We omit the proof of (5.63) since it easily follows from the structure of the

equation (5.54). ��

6. Linear Asymptotic Stability in Weighted Spaces

6.1. Semigroup generation

In the following lemma, we show that L generates a C0-semigroup on (L2
β)2,

which is the assertion of (i) in Proposition 1.2:

Lemma 6.1. Consider the operatorL : (L2
β)2 → (L2

β)2 with dense domain (H1
β )2.

For each ε ∈ (0, εK ), L generates a C0-semigroup on (L2
β)2.

Proof. For notational simplicity, we let u = (u1,u2) := (ṅ, u̇)T . Considering the
change of variable uβ := eβxu, we show that the operator Lβ := eβxLe−βx , given
by

Lβuβ = −(L(∂x − β)+ (∂x L))uβ −
(

0
(∂x − β)(−(∂x − β)2 + eφc )−1(uβ

1 )

)

,

(6.1)

generates a C0-semigroup eLβ t on (L2)2. This implies that eLt := e−βx eLβ t eβx

is a C0-semigroup generated by L on (L2
β)2. Since Lβ can be seen as a bounded



J. Bae & B. Kwon

perturbation of −L∂x , it is enough to check that −L∂x generates a C0-semigroup
on (L2)2 (see [10]).

We observe that the matrix L is symmetrizable. In the variable ũ := L1/2
0 uβ ,

where L1/2
0 := diag(

√
K√

1+nc
,
√
1+ nc) is the positive square root of the sym-

metrizer, the coefficient of the operator ∂x in the transformed operator L̃ :=
L1/2
0 (−L∂x )L−1/20 , given by

L̃ũ = L1/2
0 (−L)L−1/20 ∂x ũ+ L1/2

0 (−L)∂x (L−1/20 )̃u,

is a real-valued symmetric matrix. Note that if L̃ generates a C0-semigroup eL̃t ,
then e−L∂x t := L−1/20 eL̃t L1/2

0 is a C0-semigroup with generator−L∂x . Therefore,

it suffices to show that L̃ generates a C0-semigroup eL̃t . To this end, we let S0 :=
L1/2
0 (−L)L−1/20 . For sufficiently large a > 0, integration by parts yields that

Re〈(S0∂x − aI )̃u, ũ〉 = −1

2
Re〈(∂x S0)̃u, ũ〉 − a‖̃u‖2L2 < 0,

that is, S0∂x − aI is dissipative. By the Lumer-Phillips Generation Theorem (see
[10]), S0∂x−aI generates aC0-(contraction)semigroup, and hence L̃ also generates
a C0-semigroup as a boundedly perturbed operator of S0∂x − aI . This completes
the proof. ��

6.2. Linear asymptotic stability

From Proposition 1.2, we deduce our main result on the asymptotic linear
stability (Theorem 1.3).

Proof of Theorem 1.3. Since λ = 0 is an isolated eigenvalue, we can define the
spectral projection

P0 = 1

2π i

∫

�0

(λ− L)−1 dλ,

where �0 is a positively oriented circle with sufficiently small radius enclosing
no other spectrum except λ = 0. The range of P0, denoted by RanP0, is a two-
dimensional subspace of (L2

β)2. Note that RanP0 and Ran(I − P0) = KerP0 are
invariant subspaces under L, thus they are also invariant under the C0-semigroups
generated by the restricted operators L|RanP0 and L|Ran(I−P0), respectively. We
have the spectral decomposition of the operator L as follows (see [29]):

σ
(
L|RanP0

) = {0} = σpt(L), σ
(
L|Ran(I−P0)

) = σess (L) ⊂ C \�ε.

The resolvent of L|Ran(I−P0) is analytic on �ε, and thus it is uniformly (in
λ) bounded on the region Re λ � 0. By the Gearhart-Prüss stability theorem, we
conclude that the C0-semigroup generated by L|Ran(I−P0), which coincides with
eLt restricted on Ran(I − P0), satisfies the estimate (1.12). ��
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7. Instability Criterion for Large Amplitude Solitary Waves

In this section, we derive an instability criterion for large amplitude solitary
wave solutions to the isothermal Euler–Poisson system (1.1).

First of all, the Evans function D(λ, ε) defined in (3.5) is also real whenever
λ is real-valued (see [41], Proposition 1.10). From Proposition 3.12, we have that
D(λ, ε)|λ=0 = ∂λ D(λ, ε)|λ=0 = 0. Now we claim that if

∂2λ D(0, εu) < 0

for some εu ∈ (0, εK ), then L has a positive L2-eigenvalue for some ε′u ∈ (0, εu].
Since D(λ, εu) is concave down near λ = 0, we have the following scenarios:

for δ4 > 0 in Lemma 3.21, either

(i) D(λu, εu) = 0 for some λu ∈ (0, δ−14 ], or
(ii) D(λ, εu) < 0 for all λ ∈ (0, δ−14 ]. In this case, either

(a) D(λu, εu) = 0 for some λu ∈ (δ−14 ,+∞), or
(b) D(λ, εu) < 0 for all λ ∈ (δ−14 ,+∞).

In the cases of (i) and (ii)(a), L has a positive L2-eigenvalue λu . On the other
hand, the case (ii)(b) implies by Lemma 3.21 that there must exist ε′u ∈ (0, εu)

and λ′u ∈ (δ−14 ,+∞) such that D(λ′u, ε′u) = 0 since D(λ, ε) > 1/2 for all λ ∈
(δ−14 ,+∞) and sufficiently small ε.

From this observation, together with Proposition 3.12.(b), we obtain the fol-
lowing instability criterion.

Proposition 7.1. Let

Q(c) :=
∫ ∞

−∞
(ncuc)(x) dx . (7.1)

If ∂c Q(c) < 0 for some εu ∈ (0, εK ), the operator L on (L2)2 has a positive
eigenvalue for some ε′u ∈ (0, εu]. Furthermore, for all ε ∈ (0, εK ) there holds that

Q(c) =
∫ n∗c

0

√
2cn2∂n H(n, c)

(1+ n)
√

g(n, c)
dn, (7.2)

where H and g are the functions defined in (2.4) and (2.2b), respectively, and n∗c
is the maximum value of nc(x).

Notice that only the maximum value of nc(x), n∗c , is involved in the different
form of Q(c) given in (7.2). Some numerical evaluations for the integral (7.2) are
presented in the next section.
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Proof. It suffices to check that (7.2) holds true. Since nc and uc are symmetric
about x = 0 and are strictly increasing on (−∞, 0), we have

∫ ∞

−∞
ncuc dx = 2

∫ 0

−∞
cn2

c

1+ nc
dx

= 2
∫ 0

−∞
cn2

c

1+ nc

∂n H(nc, c)∂x nc

∂xφc
dx

= √2
∫ 0

−∞
cn2

c

1+ nc

∂n H(nc, c)∂x nc√
g(nc, c)

dx

= √2
∫ n∗c

0

cn2

1+ n

∂n H(n, c)√
g(n, c)

dn,

where we have used (2.2a), (2.3a) and (2.4) for the first, second and third lines,
respectively, and we have used dn = ∂x nc(x) dx for the last equality. We are done.
��

8. Some Remarks and Open Questions

For the sake of simplicity, in some of the literature on plasma physics, the Euler–
Poisson system (1.1) is often assumed to have no pressure term (i.e., (1.1) with K =
0) in accordance with the physical assumption of cold ions. From a mathematical
point of view, the absence of the pressure term makes the system weakly coupled,
so it enables to analyze certain properties of the system significantly easier. These
include, for instance, the finite time singularity formation and the existence of
solitary waves. However, we remark that the pressureless Euler–Poisson system
exhibits qualitatively different behaviors in the solutions, from the ones with the
pressure. To be more specific, we shall discuss some properties (shape of profiles
and stability) of the solitary wave solutions to the isothermal and the pressureless
models.

For further discussions, we remark that a smooth non-trivial solitary wave solu-
tion to (2.1) with K = 0 satisfying (1.2) exists if and only if 1 < c < ζ0 ≈ 1.5852,
where ζ0 is a unique positive solution to

z2 + 1 = exp(z2/2)

(see [31,45]). Indeed, the Eq. (2.1) with K = 0 can be reduced to a second-order
ODE

∂2x φ = eφ − c
√

c2 − 2φ
,

for which the associated first integral of the ODE is given by

1

2
(∂xφ)2 = eφ + c

√
c2 − 2φ − 1− c2 =: U (φ). (8.1)

Here, for later use, we let ε∗0 := ζ0 − 1, and denote the peak value of nc, uc and φc

by n∗c , u∗c and φ∗c , respectively. Let c = √1+ K + ε for K � 0.



Linear Stability of Solitary Waves

8.1. Numerical computations of instability criterion for large amplitude solitary
waves

A criterion for the instability of the large amplitude solitary waves has been
derived in Proposition 7.1. Seeking unstable solitary waves of large amplitude in
accordance with this criterion, we numerically evaluate the integral Q(c) defined
in (7.1), and the results are presented in Fig. 4 for the case K > 0. We have used
the form in (7.2) and the numerical integration has been taken over the interval
[10−4, n∗c − 10−10]. In fact, it turns out that the instability criterion (Proposition
7.1) is inconclusive.More precisely, our numerical data show that Q(c) is strictly in-
creasing, so one cannot conclude that there is a positive eigenvalue. This is contrary
to the numerical result found in [23] for the pressureless Euler–Poisson system.

More specifically, it was numerically found in [23] that there is a critical value
ccrit ≈ 1.52603 such that the solitary waves are unstable for ccrit < c < ζ0 ≈
1.5852.Making use of an instability criterion similar to Proposition 7.1, the authors
numerically compute the integral

Q0(c) :=
∫ φ∗c

0

√
2(c −√c2 − 2φ)2
√

c2 − 2φ
√

U (φ)
dφ, (8.2)

where U (φ) is defined in (8.1). According to our further investigation, however,
we suspect that their result is due to the lack of numerical accuracy and that the
inaccuracy is caused by a premature cut-off of the integration interval near the
singularity of the integrand at φ∗c . In fact, φ∗c is a singular point of the integrand of
(8.2) since φ∗c satisfies U (φ∗c ) = 0.

Our numerical evaluations of Q0(c) are carried out with two different integra-
tion intervals Ia := [10−4, φ∗c − 10−4] (Fig. 5a) and Ib := [10−4, φ∗c − 10−10]
(Fig. 5b).6 The numerical evaluation of (8.2) with Ia gives a consistent result with
the one in [23], i.e., ∂c Q0 < 0 for some large ε < 0.585, whereas the one with Ib

gives a completely different result, i.e., ∂c Q0 > 0 for all ε < 0.585. We believe
that the latter is correct since Ia ⊂ Ib ⊂ [0, φ∗c ], and hence one may conclude that
the instability criterion does not give a definite conclusion even for the pressureless
case. The questions regarding instability will be further investigated in a future
study.

8.2. Large amplitude solitary wave profiles of the Euler–Poisson system

One of the remarkable differences between the pressureless and the isothermal
Euler–Poisson systems lies in their density profiles of large amplitude solitary wave
solutions.

6 We have used the “integral” command in MATLAB, which uses the adaptive quadrature
rule based onGauss-Kronrod quadrature formula. In general, the adaptive quadraturemethod
is known to be effective and efficient for badly behaving integrands.
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For the case K = 0, n∗c approaches to infinity as ε ↗ ε∗0 . In contrast, for the case
K > 0, n∗c remains bounded above. More precisely, from the proof of existence of
the solitary waves in [3], we obtain

n∗c < ns := c√
K
− 1 <

√
1+ K + εK −

√
K√

K
,

where ns is the unique positive zero of (2.7). Several numerical experiments for the
large amplitude solitary waves are presented in Figs. 6, 7, and Table 1. For K = 0,
the feature of L∞-blow-up of density profile can be closely related to the fact that
the pressureless Euler–Poisson system can develop the delta shock in finite time
when the initial data u0 has a steep gradient at some point. Specifically, if the initial
data (n0, u0)(x) satisfies

∂x u0(x) ≤ −√2(1+ n0(x))

at some point x ∈ R, then the maximal existence time of the smooth solution is
finite, see [33]. For the singularity formation at finite time T∗, one can further show,
by a simple comparison technique for ODE, that the gradient of velocity blows up
in a non-integrable way in time, i.e.,

−∂x u � (T∗ − t)−1 as t ↗ T∗. (8.3)

From this, together with the continuum equation,

n(x(t), t) = n0(x0) exp

{

−
∫ t

0
∂x u(x(τ ), τ )dτ

}

,

andwe see that L∞ norm of density becomes unbounded as t ↗ T∗. Here x(t) is the
characteristic curve issuing from x0 at which the infimum of ∂x u0(x)/

√
1+ n0(x)

is attained, i.e., ∂x u0(x0)/
√
1+ n0(x0) = infx ∂x u0(x)/

√
1+ n0(x) < −√2. This

non-physical singular behavior emerges since the pressure term is artificially ig-
nored. As we discussed earlier, this is not the case in the presence of the pressure, in
general. We suspect that it would be due to this singular behavior if large amplitude
solitary waves are unstable for the pressureless case.

8.3. Global existence of the pressureless Euler–Poisson system near solitary
waves

Wediscuss some issues regarding the global existence of the pressureless Euler–
Poisson system near the solitary wave solutions.

A sufficient condition for the initial data which leads to the finite-time singular-
ity formation for the pressureless Euler–Poisson system ((1.1)–(1.2) with K = 0)
is studied in [33]: if the initial data (n0, u0)(x) satisfies

∂x u0(x) ≤ −√2(1+ n0(x)) (8.4)
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Table 1. Peak values of nc, uc, and φc

ε n∗c u∗c φ∗c
(A) K = 0, ε∗0 ≈ 0.5852
0.01 0.0305 0.0299 0.0298
0.03 0.0950 0.0893 0.0880
0.40 3.8463 1.1111 0.9383
0.584 870.5859 1.5822 1.2545
0.5845 1.492e+03 1.5834 1.2553
0.585 5.209e+03 1.5847 1.2561
ε ns n∗c u∗c φ∗c
(B) K = 0.001, εK ≈ 0.5475
.01 30.95 0.0305 0.0299 0.0298
.03 31.58 0.0949 0.0893 0.0880
.40 43.28 3.8569 1.1121 0.9375
.5465 47.92 38.6476 1.5080 1.1922
.5470 47.93 41.2877 1.5109 1.1930
.5474 47.94 45.3119 1.5145 1.1936
ε ns n∗c u∗c φ∗c
(C) K = 1, εK ≈ 0.1553
.002 .4162 .0043 .0060 .0042
.070 .4842 .1690 .2146 .1393
.1550 .5692 .5529 .5587 .2805
.1552 .5694 .5611 .5641 .2808
ε ns n∗c u∗c φ∗c
(D) K = 10, εK ≈ 0.0524
.002 .0494 .0018 .0060 .0018
.030 .0583 .0295 .0958 .0256
.0522 .0653 .0634 .2009 .0417
.0523 .0653 .0642 .2033 .0418

at some point x ∈ R, then the maximal existence time of the smooth solution is
finite. Interestingly, our numerical experiments demonstrate that

inf
x∈R(∂x uc/

√
1+ nc) ↘ −√2 as ε ↗ ε∗0 ≈ 0.5852. (8.5)

See Fig. 8 for the numerical plot of ∂x uc/
√
1+ nc with ε = 0.585 < ε∗0 . From

this numerical experiment together with the above mentioned study of [33], we
expect that there may be a certain critical threshold phenomena in the pressureless
Euler–Poisson system. More precicely, our conjecture is as follows:

The pressureless Euler–Poisson system (1.1)–(1.2) with K = 0 admits a global
smooth solution if and only if the initial data satisfies

∂x u0(x) > −√2(1+ n0(x)) (8.6)

for all x ∈ R.

We note that as pointed out in [33], the condition (8.4) is the same as the critical
threshold (see [11]) for a different type of the pressureless Euler–Poisson system
with repulsive force.

We also remark that if our conjecture is proved, the global existence of smooth
solutions near the solitary waves is guaranteed, which will be a first step to study
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Fig. 8. The graph (solid) of ∂x uc(x)/
√
1+ nc(x) for ε = 0.585 < ε∗0 . The horizontal

(dashed) line represents −√2

the nonlinear stability. For the isothermal case K > 0, the related questions such
as global existence of smooth solutions and finite-time singularity formation are
widely open.
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9. Appendix

9.1. Eigenvalue problems of the Euler–Poisson system and the KdV equation

We present a formal reduction of the eigenvalue problem of the Euler–Poisson
system (1.10) to the eigenvalue problem of the KdV equation. By intoducing the
scaling

ξ := ε1/2x, λ := ε3/2
, (n∗, u∗, φ∗)(ξ) := ε−1(nc, uc, φc)(x),

(ṅ∗, u̇∗, φ̇∗)(ξ) := (ṅ, u̇, φ̇)(x),

(1.10) becomes (letting (ṅ∗, u̇∗, φ̇∗) = (n, u, φ) for notational simplicity)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε
n − c∂ξ n + ∂ξ u + ∂ξ (εn∗u + εu∗n) = 0, (9.1a)

ε
u − c∂ξ u + K∂ξ

(
n

1+ εn∗

)

+ ∂ξ (εu∗u) = −∂ξφ, (9.1b)

−ε∂2ξ φ = n − eεφ∗φ. (9.1c)
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By integrating (9.1)a–(9.1)b in ξ ,we formally obtain that (recall that c = √1+ K+
ε)

⎧
⎪⎨

⎪⎩

−√1+ K n + u = O(ε), (9.2a)

K n −√1+ K u + φ = O(ε), (9.2b)

n − φ = O(ε). (9.2c)

Taking derivative of (9.1)c in ξ , and then subtracting the resulting equation from
(9.1)b, −∂ξφ term in the RHS of (9.1)b is canceled. Then, by applying the Taylor
expansion, we obtain

ε
u − (
√
1+ K + ε)∂ξ u + (K + 1)∂ξ n − K∂ξ (εn∗n)+ ∂ξ (εu∗u)

+ε∂3ξ φ − ∂ξ (εφ∗φ) = O(ε2). (9.3)

Multiplying (9.1)a byV = √1+ K and then adding the resulting equation to (9.3),
we see that the terms−√1+ K ∂ξ u and (1+ K )∂ξ n in (9.3) are canceled, and we
have

V
n − V∂ξ n + V∂ξ (n∗u + u∗n)

+
u − ∂ξ u − K∂ξ (n∗n)+ ∂ξ (u∗u)+ ∂3ξ φ − ∂ξ (φ∗φ) = O(ε).
(9.4)

Using the relation (9.2) and Theorem 2.1, we obtain from (9.4) that


n − ∂ξ n + V∂ξ (�Kn)+ 1

2V
∂3ξ n = O(ε). (9.5)

9.2. Specific form of A∗(ξ,
, ε)

We denote ∂ξ by ′ for simplicity. We let A1∗(ξ, ε) := A1(x, ε), A2∗(ξ, ε) :=
A2(x, ε), and (n∗, u∗, φ∗)(ξ) := ε−1(nc, uc, φc)(x) for ξ = ε1/2x . Then from
(3.14) and (2.12), we have

A1∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(c−εu∗)ε3/2u′∗
J − K ε3/2n′∗

J (1+εn∗)
(c−εu∗)ε3/2n′∗

J + (1+εn∗)ε3/2u′∗
J 0 1+εn∗

J

K ε3/2u′∗
J (1+εn∗) −

K (c−εu∗)ε3/2n′∗
J (1+εn∗)2

K ε3/2n′∗
J (1+εn∗) +

(c−εu∗)ε3/2u′∗
J 0 (c−εu∗)

J

0 0 0 1

−1 0 eεφ∗ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

1√
ε

S−1A1∗S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a22 − Va12
ε1/2

a21+Va22−Va11−V2a12
ε3/2

a24 − Va14
ε

0

ε1/2 a12
a11 + Va12

ε1/2
a14 0

0
eεφ∗ − 1

ε
0 eεφ∗

−a12
ε1/2

−a11 + Va12
ε3/2

1− a14
ε

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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ε3/2
√
ε

S−1A2∗S = 


J

⎛

⎜
⎝

ε((c − εu∗)− V(1+ εn∗)) K
1+εn∗ − V2(1+ εn∗) 0 0

ε2(1+ εn∗) ε(c − εu∗)+ εV(1+ εn∗) 0 0
0 0 0 0

−ε(1+ εn∗) −(c − εu∗)− V(1+ εn∗) 0 0

⎞

⎟
⎠ ,

where a jk is the ( j, k)-entry of the matrix A1∗. Here, we note that

1− a14
ε

= (c − εu∗)2 − K − (1+ εn∗)
εJ

= 2
√
1+ K + ε − 2cu∗ + εu∗ − n∗

J
.

Hence, wemay define A∗(ξ,
, ε) for all ε ∈ [0, ε∗], and using (2.12), it is straight-
forward to check that we have (3.58) at ε = 0.

9.3. Proof of Lemma 3.9

Let A(λ) := d/dx − A(x, λ, ε). For a closed subspace Ran(λ − L) of a Hilbert
space H, we have

H = Ran(λ− L)⊕ Ran(λ− L)⊥ = Ran(λ− L)⊕ Ker (λ− L)∗ ( ∗ := Hermitian adjoint)

and a similar decomposition holds for a closed subspace RanA(λ). We claim that

C1. Ran(λ− L) is closed if and only if Ran(A(λ)) is closed;
C2. Ker(λ− L) is isomorphic to Ker(A(λ)) ;
C3. Ker (λ− L)∗ is isomorphic to Ker(A(λ)∗).
Then, Lemma 3.9 follows by the definition of the Fredholm index of an operator.
C2 and C3 are already checked in Section 3.2.7 We only prove the right direction
of C1 since the converse is easier to check. Also, we only consider the case of the
unweighted L2-space for simplicity.
We suppose that Ran(λ− L) is closed. For a sequence f j = ( f 1j , f 2j , f 3j , f 4j )T ∈
Ran(A(λ)) such that f j → f = ( f 1, f 2, f 3, f 4)T in (L2)4 as j → ∞, let
y j := (n j , u j , φ j , ψ j )

T ∈ (H1)4 be a solution of A(λ)y j = f j for each j ∈ Z.
We may decompose the last two components of A(λ)y j = f j (corresponding to
the Poisson equation (3.12)) into two parts:
{

∂xφ
f
j − ψ

f
j = f 3j ,

∂xψ
f
j − eφcφ

f
j = f 4j ,

{
∂x (φ j − φ

f
j )− (ψ j − ψ

f
j ) = 0,

∂x (ψ j − ψ
f
j )− eφc (φ j − φ

f
j )+ n j = 0.

(9.6)

Using the energy estimate, one can check that the solution (φ
f
j , ψ

f
j ) ∈ (H1)2 to the

LHS of (9.6) exists for all ( f 3j , f 4j ) ∈ (L2)2, and (φ
f
j , ψ

f
j ) converges to (φ f , ψ f )

in (H1)2, where (φ f , ψ f ) ∈ (H1)2 satisfies

∂xφ
f − ψ = f 3, ∂xψ

f − eφcφ = f 4. (9.7)

7 Note that A(λ)∗ = −d/dx − A(x, λ, ε)
T = −d/dx − AT (x, λ, ε) from the form of

the matrix A.
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We rewrite the first system of (9.6) and the system (9.7) as

A(λ)

⎛

⎜
⎜
⎜
⎝

0
0

φ
f
j

ψ
f
j

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

L−1
(

0
ψ

f
j

)

f 3j
f 4j

⎞

⎟
⎟
⎟
⎠

and A(λ)

⎛

⎜
⎜
⎝

0
0

φ f

ψ f

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

L−1
(

0
ψ f

)

f 3

f 4

⎞

⎟
⎟
⎠ , (9.8)

respectively. Subtracting the LHS of (9.8) from A(λ)y j = f j , we have

A(λ)

⎛

⎜
⎜
⎜
⎝

n j

u j

φ j − φ
f
j

ψ j − ψ
f
j

⎞

⎟
⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎝

(
f 1j
f 2j

)

− L−1
(

0
ψ

f
j

)

0
0

⎞

⎟
⎟
⎟
⎠

,

which implies that

(λ− L)

(
n j

u j

)

= L

((
f 1j
f 2j

)

− L−1
(

0
ψ

f
j

))

.

Since Ran(λ− L) is closed, there is (n, u) ∈ (H1)2 such that

(λ− L)

(
n
u

)

= L

((
f 1

f 2

)

− L−1
(

0
ψ f

))

,

and this implies that

A(λ)

⎛

⎜
⎜
⎝

n
u
φ̃

ψ̃

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

(
f 1

f 2

)

− L−1
(

0
ψ f

)

0
0

⎞

⎟
⎟
⎠ , (9.9)

where (φ̃, ψ̃) satisfies ∂x φ̃ = ψ̃ and ∂x ψ̃ = eφc φ̃ − n. Now adding (9.9) and the
RHS of (9.8), we conclude that Ran(A(λ)) is closed.

9.4. Non-negativity of the matrix S1

We show that the symmetric matrix S1(x, ε) defined in (5.42) is non-negative for
all sufficiently small ε > 0.
Since S1 is symmetric, it is enough to show that the eigenvalues of S1,

0, 0, 2
√

K R(1)
11 ±

√

2K 2(R(1)
12 )2 + 2(R(1)

21 )2,

are non-negative. Recalling the definition of the matrix R(1) (see (5.29)), R(1)
11 is

positive since

R(1)
11 =

c − uc

J
− c

c2 − K

= (c − uc)(c2 − K )− c[(uc − c)2 − K ]
J (c2 − K )

= uc[c(c − uc)+ K ]
J (c2 − K )

> 0,
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where we have used the solitary wave identity (2.2a) for the inequality.

We check that 2
√

K R(1)
11 −

√

2K 2(R(1)
12 )2 + 2(R(1)

21 )2 is positive. Since R(1)
11 > 0,

it is enough to show that

4K (R(1)
11 )2 − 2K 2(R(1)

12 )2 − 2(R(1)
21 )2

= 2K

J1

⎡

⎢
⎢
⎢
⎣
2
(
(c − uc)(c

2 − K )− cJ
)2

(1+ nc)
2

︸ ︷︷ ︸

=:I1=2(R(1)
11 )2 J1

−K
(
(c2 − K )(1+ nc)− J

)2
(1+ nc)

2

︸ ︷︷ ︸
=:I2

−K
(

c2 − K − (1+ nc)J
)2

︸ ︷︷ ︸
=:I3

⎤

⎥
⎥
⎦

is positive, where J1 := J 2(c2 − K )2(1 + nc)
2 > 0. Using the solitary wave

identity (2.2a) and the definition of J = (c − uc)
2 − K (see (2.8)), we have

I1 = 2
(
(c − uc)(c

2 − K )− c
(
(c − uc)

2 − K
))2

(1+ nc)
2

= 2
(

c(c2 − K )− c (c(c − uc)− K (1+ nc))
)2

= 2c2(cuc + K nc)
2,

I2 = −K
(
(c2 − K )(1+ nc)−

(
(c − uc)

2 − K
) )2

(1+ nc)
2

= −K
(
(c2 − K )(1+ nc)

2 − (c(c − uc)− K (1+ nc)
))2

= −K
(

nc(c
2 − K )(2+ nc)+ (cuc + K nc)

)2

= −K (cuc + K nc)
2 − K n2

c(c
2 − K )2(2+ nc)

2 − 2K nc(c
2 − K )(2+ nc) (cuc + K nc)

= −K (cuc + K nc)
2 − 4K n2

c(c
2 − K )2 − 4K nc(c

2 − K ) (cuc + K nc)

+ O
(|nc|3 + |nc|2|uc|

)
,

I3 = −K
(

c2 − K − (1+ nc)
(
(c − uc)

2 − K
))2

= −K (cuc + K nc)
2 .

Hence,

I1 + I2 + I3 = 2(c2 − K )(cuc + K nc)
2 − 4K n2

c(c
2 − K )2 − 4K nc(c

2 − K ) (cuc + K nc)

+ O
(|nc|3 + |nc|2|uc|

)

= 2(c2 − K )(cuc + K nc) (cuc − K nc)− 4K n2
c(c

2 − K )2

+ O
(|nc|3 + |nc|2|uc|

)

= 2(c2 − K )(c2u2
c + K 2n2

c − 2K c2n2
c)+ O

(|nc|3 + |nc|2|uc|
)
.

Since cnc
1+nc

= uc from (2.2a), we obtain that

c2u2
c + K 2n2

c − 2K c2n2
c = (c2 − K )2n2

c

(
1+ O(|nc|)

)
.
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Therefore, we conclude that I1 + I2 + I3 > 0 for all sufficiently small ε > 0.
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