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Abstract 

With advances in fetal magnetic resonance imaging (MRI), research in neonatal neuroscience 

has shifted to identify in utero brain-based biomarkers for outcome prediction in high-risk 

fetuses, particularly those impacted by growth restriction. Volumetric segmentation of the fetal 

brain can provide better understanding of the trajectories of brain development and may aid in 

predicting functional outcomes. The current thesis aimed to develop semi-automatic methods 

to target deep brain structures in the fetal brain identified on MR images in fetuses with and 

without growth restriction. In this study, pregnant women (35-39 weeks gestational age [n=9]) 

with growth appropriate (n=8) and growth restricted fetuses (n=1) were recruited. Fetal MRI 

was performed on 1.5 Tesla (T) and 3T MRI scanners and 2D stacks of T2-weighted images 

were acquired. A novel fetal whole brain segmentation algorithm developed for second 

trimester fetuses was applied to the T2-weighted MR images to reconstruct 2D volumes into 

3D images. To segment deep brain structures, an atlas of cortical and subcortical structures 

was registered to the 3D reconstructed images. Linear and nonlinear registration algorithms, 

with two types of similarity metrics (mutual information [MI], cross-correlation [CC]), were 

compared to determine the optimal strategy of segmenting subcortical structures. Dice 

similarity coefficients were calculated to validate the reliability of automatic methods and to 

compare the performance between the registration algorithms compared to manual 

segmentations. Comparing atlas-generated masks against manually segmented masks of the 

same brain structures, the median Dice similarity coefficients for linear registration using CC 

performed optimally. However, post hoc analyses indicated that linear MI and CC performed 

comparably. Overall, this semi-automatic subcortical segmentation method for third-trimester 

fetal brain images provides reliable performance. This segmentation pipeline can aid in 

identifying early predictors of brain dysmaturation to support clinical decision making for 

antenatal treatment strategies and promote optimal neurodevelopment in fetuses. 

 

Keywords 

Fetal neurodevelopment, Neurodevelopmental disorder, Fetal MRI, Fetal growth restriction, 

Fetal brain segmentation, Subcortical segmentation, Nonlinear registration, Linear registration. 
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Summary for a Lay Audience 

Each year, over 30 million pregnancies are impacted by growth restriction, which is associated 

with delayed brain development, and may place newborns at risk for the later development of 

childhood psychiatric disorders as well as movement disabilities. Brain growth is a key marker 

for growth restriction as well as other disorders that can influence brain development. Better 

tools are needed to measure the growth of the fetal brain to aid in diagnosing and predicting 

developmental outcomes. Magnetic resonance (MR) imaging is an emerging tool to study the 

developing brain in utero. Presently manual labeling of brain regions in MR images is time 

consuming and costly, and automated methods are needed to rapidly target brain regions for 

brain growth study. 

  

This thesis aimed to develop methods to facilitate the targeting of deep brain structures in the 

fetal brain identified on MR images in fetuses with and without growth restriction. To achieve 

this aim, a platform of novel algorithms that was designed to rebuild brain images corrupted 

by fetal motion, was evaluated. To study the brain growth, an atlas that labeled the brain 

regions was applied to the fetal images using an automated algorithm. To validate the atlas, 

two brain regions were manually outlined on the images. We compared the manually defined 

regions with five methods of automated segmentation. The different methods of automated 

segmentation varied in terms of the methods used to identify and align the features in the atlas 

with fetal images as well as their computing time. An automated method that uses a dense 

deformable image registration, where the goal is to identify corresponding areas between the 

atlas and fetal images, was as appropriate as a more computationally intensive method. 

 

This semi-automated platform can be applied to identify fetuses with delayed brain growth as 

well as track growth over time during the third trimester to provide an image-based marker of 

brain health. This method can be further validated in larger samples in fetuses impacted by 

growth restriction. Studying brain growth in the fetus may aid in informing medical decision 

making for clinicians as well as improve counseling for families. 
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1 Chapter One 

1.1 Introduction 

Magnetic resonance imaging (MRI) of the fetal brain for clinical purposes has advanced 

considerably in recent years due to its application in assessing atypical brain development, 

brain injury and potential utility to predict functional outcomes in high-risk fetuses. 

Additionally, research-based MRI studies of typical fetal brain development have provided 

important normative data for subsequent comparison with clinical populations. MRI methods 

for the characterization of fetal brain abnormalities are of key clinical relevance due to the 

high incidence of central nervous system malformations (i.e., anencephaly, ventriculomegaly, 

schizencephaly, callosal agenesis) in as many as 1/1000 fetuses (Werner et al., 2018). In 

particular, detection of delayed brain growth associated with fetal conditions such as 

intrauterine growth restriction (IUGR) or preterm birth offers new opportunities to identify 

objective biomarkers that can facilitate better understanding of fetal brain development as 

well as improved management of high-risk pregnancies (Rutherford et al., 2008; Wu et al., 

2020), and potentially early detection of neurodevelopmental disorders (Banović et al., 2014; 

Bonnet-Brilhault et al., 2018). Additionally longitudinal studies point to fetal brain 

abnormalities as an important contributor to later life neurodevelopmental and psychiatric 

disorders (Thomason, 2020). Delayed neonatal brain development is associated with 

neurodevelopmental disorders, such as autism spectrum disorder (Makropoulos et al., 2018). 

Better understanding of the trajectories of fetal brain development may aid in predicting fetal 

functional outcomes and later learning difficulties and neurodevelopmental disorders.  

 

Research in neonatal development has shifted to an earlier window of maturation, the 

fetal period, to identify in utero brain-based biomarkers. With advances in fetal MRI, 
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quantitative neuroimaging has been increasingly applied to study fetal brain growth and 

neurodevelopment. Segmentation of the fetal brain into its grey and white matter 

subcomponents can provide insight into fetal brain dysmaturation, attributed to maternal 

placental insufficiency and subsequent fetal growth restriction. Quantitative measurements of 

fetal brain and subcortical volumes can support characterizing normal brain development and 

identifying early predictors of brain dysmaturity, which is critical for developing antenatal 

treatment strategies to better support fetal neurodevelopment and neonatal outcomes 

(Rathbone et al., 2011;Boardman et al., 2010). However, the traditional manual segmentation 

of MR images is time consuming and requires high level expertise, thus it is impractical to 

implement these methods to large datasets. Therefore, reliable automatic segmentation 

methods for fetal MR images are needed in order to study typical and atypical fetal brain 

development.  

Automatic segmentation pipelines and routines developed for neonatal and child 

imaging protocols are not appropriate for the study of fetal brain tissue. Namely, the 

acquisition of fetal MR images is dependent upon rapid acquisition of high in-plane 

resolution images and must undergo reconstruction to develop a three-dimensional (3D) MR 

image. The 3D image can subsequently be segmented into its grey and white matter 

constituents parts using an age-appropriate atlas (Gholipour et al., 2017). 

  To segment the fetal brain, the newly published NiftyMIC automatic brain 

segmentation algorithm (Ebner et al., 2020), developed using second trimester MRI scans, 

will be applied to T2-weighted MR images acquired during the third trimester. The NiftyMIC 

algorithm relies on ‘stacks’ of 2D images acquired in the three image planes (i.e., axial, 

coronal, sagittal). The three sets of images can be acquired rapidly (Kuklisova-Murgasova et 

al., 2012). 
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To perform the regional segmentation of the cortex and subcortical areas in the fetal 

brain after the whole brain segmentation, we applied two atlas-based segmentation 

techniques, a linear and a nonlinear atlas registration algorithm. Atlas-based segmentation 

methods have been used to target deep brain structures in fetal MR images. Landmark-based 

rigid image transformation has been applied to fetal MR images to obtain volumetric and 

cortical measures with acceptable performance (Wu et al., 2020). However nonlinear 

registrations are more robust and may be able to more accurately segment subcortical 

structures in fetal MR images compared to linear registration. We examined whether more 

computationally intensive nonlinear image registration is needed for adequate subcortical 

segmentation performance compared to linear image registration. The goal of this research 

was to develop and implement a semi-automatic pipeline combining automatic fetal brain 

segmentation, volumetric reconstruction, and atlas registration algorithms for subcortical 

segmentation in fetal brains to extract and analyze subcortical volumes.   

1.2 Background 

1.2.1 Fetal brain development 

The development of the human brain begins in the embryonic stage, in the third week of 

gestation with the formation of the neural tube. Once the neural tube closes the embryo 

further develops the central nervous system by extensive progenitor cell proliferation, 

cellular migration, and expansion to form the cortical layers in a genetically predetermined 

pattern. During the first trimester of embryonic and fetal development, the cells which line 

the neural tube, the neuroepithelial cells, undergo symmetric division to further populate the 

pool of cells to form the developing nervous system (Figure 1-1). The neural epithelial cells 

extend and transform into radial glial cells. The radial glial cells are essential for cortical 

layering. These specialized cells form the scaffolding for the cortical layers.  By the end of 
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the first trimester, the radial glial cells generate neuroblasts, which are precursor cells that 

can become neurons and glial cells. The neurons form the cortical and subcortical grey 

matter, and the glial cells support the neurons and form the white matter of the brain. The 

cortical and subcortical grey matter is formed by progenitor cells in the neural tube. The 

progenitor cells later become the neurons and glia that form the foundation of central nervous 

system. The glial cells permit the developing neurons to migrate to genetically determined 

locations to form the cortical layers (Moffat et al., 2015). Neural and glial cells in the linings 

of the vesicles begin to organize and form the layers of the cortex. These vesicles that later 

form the telencephalon, begin to develop in the 5th week of gestation. This stage is referred to 

as the 5th vesicle stage. The five vesicles include the lateral ventricles, the third ventricle and 

the fourth ventricle. In this stage, the early beginnings of the telencephalon and diencephalon 

(cortex, white matter, basal ganglia and thalamus, hypothalamus), the mesencephalon 

(midbrain), the rhombencephalon (pons, cerebellum) begin to form. The telencephalon will 

later develop into the cerebral cortex while the rhombencephalon will later develop into the 

brainstem and cerebellum.  
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Figure 1-1: Timeline of early brain development. Brain development in the begins during 

embryogenesis at two to three weeks with the formation of the neural tube (neurulation). 

Following neurulation is the development of new neurons (neurogenesis). New neurons are 

produced till just after birth. The formation of connections or synapses amongst neurons 

(synaptogenesis) occurs at 12 weeks. At 18 gestational weeks, programmed cell death 

(apoptosis) removes extra synapses and cells. This is to ensure proper development and 

synaptic connectivity in the developing brain. At 22 gestational weeks, specialized cells (glial 

cells) needed for neuronal migration to develop the cortex (gliogenesis). At 32 weeks, the 

glial cells also promote the formation of myelination of the neurons, which allows for 

efficient communication among neurons. This process of myelination to enhance brain 

connectivity continues well after the newborn period into the third decade of life. Adapted 

from Schnoll et al. 2021 (Open Access). 

 

1.2.2 Placental insufficiency and fetal growth restriction (FGR) 

Recent studies suggest that neurodevelopmental disorders, such as autism spectrum disorder 

(ASD), attention deficit hyperactive disorder (ADHD), and obsessive-compulsive disorder 

(OCD) have their origins in utero (Straughen et al., 2017). As such, there is a growing 

interest in exploring the role of the placenta and cerebral oxygen delivery from the mother to 

the fetus in the etiology of neurodevelopmental disorders.  

The placenta is located at the interface of the mother and fetus (Chen et al., 2020). 

During pregnancy, the placenta is an important source of nutrients, hormones, and 
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inflammatory factories in fetal circulations. Medical disorders of pregnancy can impact 

placental function and fetal outcomes. Impaired uteroplacental function, such as inadequate 

blood flow to the placenta causing the fetus to receive inadequate amount of nutrients and 

oxygen will result in slowing or even cessation of fetal growth, which is termed as placental 

insufficiency (Browne et al., 2015; Cetin & Antonazzo, 2009). 

Placental insufficient is a direct cause of fetal growth restriction (FGR). It contributes 

to up to 40% of FGR cases (Cetin & Antonazzo, 2009). FGR is a serious pregnancy 

complication affecting about 8% of pregnancies in the US (Damhuis et al., 2021). This 

number is even bigger in developing countries, such as Sub-Saharan Africa and Southeast 

Asia due to the unsustainable resource of nutrients during pregnancy (Black et al., 2017). For 

fetuses who have restricted growth, they can have abnormally small dimensions of their 

bodies and lower birth weights compared to growth-appropriate fetuses. The current 

Canadian clinical determination of FGR is an estimated fetal weight in the10th percentile or 

lower (Sharma et al., 2016). Some placental disorders that lead to restricted nutrient delivery 

are maternal obesity, pregestational diabetes, maternal depression, and maternal infection 

during pregnancy (Fleiss et al., 2019). 

 

1.2.3 FGR and placental function and neurodevelopmental disorders 

Evidence suggests that neurodevelopmental disorders are associated with medical disorders 

of pregnancy. Previous studies reported that preterm birth, FGR, and low birth weight are 

associated with varied structural and functional brain maturation, cognitive and behavioral 

deficits, and neurodevelopmental impairments (Nosarti et al., 2012; Sacchi et al., 2020). 

Specifically, for low-birthweight infants, they have a four-fold higher risk of perinatal death 
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and worse neurodevelopmental outcomes including alterations in brain volume (Miller et al., 

2016).  

Czarzasta and colleagues (Czarzasta et al., 2019; Czarzasta et al., 2020)  reported in 

preclinical rodent models, that maternal depression, which is often comorbid with 

cardiovascular disease, can cause also growth, neurodevelopmental and behavioral delays in 

offspring. There is an increased risk of neurodevelopmental disorders among growth 

restricted fetuses whose mothers have placental diseases. In a meta-analysis (Zauche et al. 

2017) it was demonstrated that advanced parental age at birth, bleeding during pregnancy, 

gestational diabetes, and prematurity were associated with an to an increase risk of later 

developing ASD. Also, maternal obesity, gestational diabetes, preeclampsia, placental 

insufficiency, low maternal education, young maternal age, and prematurity are associated 

with a higher risk of language and cognitive delays as well as ADHD. However, few studies 

were exploring whether there is significant brain injury or delayed brain development of 

fetuses during pregnancy. There also lacks quantitative analysis and methods of brain 

volumetric differences between fetuses with and without FGR.  

 

1.2.4 MRI of the fetal brain 

Fetal ultrasonography has been a primary tool for the clinical diagnosis of fetal brain 

abnormalities. Over the last two decades, significant headway has been made in fetal 

Magnetic Resonance Imaging (MRI) protocols that have enabled rapid advances in the 

characterization of typical and atypical brain development in utero. Over the last 2 decades 

research in fetal MRI protocols has increasingly been used to non-invasively study the 

functional, metabolic and structural origins of the fetal brain in vivo (Thomason et al., 2015; 
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Thomason et al., 2018; Wheelock et al., 2019; Pradhan et al., 2020; Turk et al., 2019); 

however, uncertainty remains about the extent of diagnostic and clinical impact of fetal MRI.  

Advances in structural MRI protocols to study grey and white matter development, 

and toolboxes have been developed for processing and analyzing volumetric data. These 

protocols and toolboxes have the potential to rapidly advance MRI as an adjunct clinical tool 

to improve diagnostic accuracy and to provide adequate counseling and prognostication. 

Furthermore, fetal MRI studies offer a unique window into second and third trimester brain 

development, which can be used as reference values for neonatal brain maturation in the case 

of preterm birth. Fetal brain imaging methodology is quickly advancing in terms of ultrafast 

imaging, motion-insensitive sequences and preprocessing tools to manage motion corrupted 

images. Technological advances in fetal MRI methods have the potential to identify image-

based biomarkers within this important developmental window, and in conjunction with 

other diagnostic imaging tools, fetal MRI holds the potential for precision health in the fetus.  

Numerous issues in fetal MRI set it apart from imaging studies with children or 

adults. The first MRI study of the fetus was reported in the early 1980s (Smith et al., 1983). 

Subsequent early MRI examinations focused on fetal and placenta structure and function in 

clinical settings. The increase in fetal MRI in recent years has shown that it is an important 

method in early identification, intervention, and treatment of developmental disorders and 

disease. For example, phase-contrast and T2-weighted MRI has demonstrated that fetal brain 

volume is significantly smaller in fetuses with congenital heart disease due to reduced 

cerebral oxygenation (Sun et al., 2015), which may underlie delayed brain maturation and the 

increased incidence of brain injury seen in this population (Barkhuizen et al., 2021). 

Motion is an issue in child and adult neuroimaging; however, child and adult head 

motions can be minimized through foam padding around the head and neck during MRI 
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scanning. The fetus depending on their gestational age and weight, can move significantly 

during the course of a single MRI acquisition for a number of reasons, including fetal head 

and limb movement as well maternal breathing and heart rate (Malamateniou., 2013). Motion 

during fetal MRI acquisition produces large artifacts in the data, impacting the ability to 

determine the differences in the grey and white matter tissue or even rendering the MRI data 

unusable (Ferrazzi et al., 2014).  

Methods and techniques have been developed in order to prevent, minimize, and 

correct fetal motion (Robinson & Ederies, 2018). A good method employed by several 

groups to reduce fetal motion is to aim to scan the fetus at a predicted time they will be 

asleep (Malamateniou et al., 2013; Robinson & Ederies, 2018). However, research is also 

equivocal on whether fetuses move less in the morning compared to the afternoon (Avitan et 

al., 2018; Patrick et al., 1978).  

Ensuring that the mother is comfortable in the scanner, as well as minimizing stress 

or feelings of claustrophobia in the mother can reduce fetal motion.  Coaching the mothers in 

advance on the necessity of staying still during the scan and practicing breath-holding 

methods are demonstrated techniques to minimize maternal and subsequent fetal movement, 

which can aid in reducing motion artifacts in the data. Maternal short-term fasting as well as 

minimizing caffeine intake prior to the scan can minimize fetal movement (Devoe et al., 

1986, 1993; Mirghani et al., 2003).  

Scanning at later gestational ages can also aid with minimizing fetal motion as the 

more weight the fetus puts on and turns head down in preparation for birth, the less likely the 

fetus will have space in the uterus to move (Koshida et al., 2019; Lockwood Estrin et al., 

2012; Pearson & Weaver, 1977; Sadovsky & Yaffe, 1973). However, some studies have 
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reported that third trimester fetuses move comparably to second trimester fetuses (Connors et 

al., 1988; Valentin & Marŝál, 1986).  

While there are few methods to prevent fetal motion that create distortions in the MR 

images, specific imaging protocols can be used to minimize the effect of motion on MR 

image quality. These protocols focus on reducing the time it takes to acquire an anatomical 

scan, as faster acquisitions provide less time for fetal motion to occur.  

The imaging protocol most commonly used in fetal MRI is fast spin echo (FSE). In a 

typical spin echo sequence, one echo is measured per repetition time (TR). In FSE, multiple 

echoes are measured per TR, reducing the number of TRs, and therefore the length of the 

scan, to collect a full volume that covers the fetus. In the case of fetal imaging, a full volume 

can be acquired in a single TR, in a sequence called HASTE (HAlf fourier Single-shot Turbo 

spin-Echo) or single-shot FSE (Prayer et al., 2004; Robinson & Ederies, 2018).  

Fetal white matter is developing exponentially in the third trimester. In turn, the 

axons in the fetal brain are thinly myelinated and the white matter contains significantly more 

water than adult brains. Having a long echo time (TE) in T2-weighted sequences can best 

capture this contrast between the white and grey matter. Despite requiring a longer TE than 

T1-weighted sequences, they are still shorter than traditional 3D volumes acquired in 

children and adults, minimizing the time to complete a scan and therefore the possibility of 

motion corruption. One caveat however is that these images are captured in high resolution 

only in a single plane, with two low-resolution out-of-plane images. While the in-plane 

images are generally robust against motion corruption, the two out-of-plane images are 

particularly susceptible (Malamateniou et al., 2013). Once the MRI images have been 

collected, significant motion correction during the processing stages is often required.  
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1.2.5 Fetal brain segmentation and volumetric reconstruction algorithms 

Deep learning techniques has shown preferable performance in the field of image 

segmentation. The convolutional neural network (CNN) is one of the most implemented 

techniques among various deep learning algorithms. CNN has been applied for volumetric 

segmentation of many different medical images, such as 3D (three-dimensional) infant brain 

MR image segmentation (Zhang et al., 2015), skull stripping of 3D MR images among adult 

population (Carré et al., 2020; Kleesiek et al., 2016), blood vessel segmentation in retinal 

images, skin cancer segmentation, and lung lesion segmentation (Alom et al., 2019). 

However, the fetal MR image segmentation is considerably more challenging than image 

segmentation among more mature populations in terms of MR image acquisitions and 

morphological processing mainly because of inevitable fetal motion and possible maternal 

motion. The ideal imaging sequence for scanning fetuses is different, and the acquired fetal 

MR images were in the form of stacks of two-dimensional (2D) low resolution images. It is 

challenging to apply typical 3D CNN techniques for adult MR brain images on prenatal MR 

images for high fidelity fetal brain segmentation. Therefore, our dataset required a 

segmentation algorithm for 2D (in axial, sagittal, and coronal planes) images and volumetric 

reconstruction from 2D planes into 3D radiological anatomical planes, which is important for 

visualizing the white and grey matter for neuroradiological evaluation, and is critical for 

longitudinal comparison between typically-developing and growth restricted fetuses.  

Slice-to-volume reconstruction (SVR; Rousseau et al., 2006) is one technique in 

which multiple high-resolution 2D steady state FSE images are combined to form a single, 

high resolution 3D image, which can subsequently be registered with an age-appropriate atlas 

for volumetric segmentation. SVR is based on the assumption that all images are centered 

over a single organ (e.g., the brain), and that the three orthogonal directions (i.e., axial, 
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sagittal, and coronal) are covered. One low resolution image is used as a reference, and the 

remaining low-resolution images are aligned to form a single high-resolution 3D volume. 

Next, each slice is re-aligned to the high-resolution volume, forming a motion-corrected 3D 

volume.  

A newer technique that builds on SVR is Patch-to-Volume Reconstruction (PVR). 

While SVR is able to correct for rigid-body motion such as rotation and translation, PVR 

treats the data as having rigid patches, allowing for the correction of non-rigid tissue motion 

(Alansary et al., 2017). Freely-available automated toolboxes for each technique have been 

made available by several groups, including PVR (Alansary et al., 2017), SVR (Kuklisova-

Murgasova et al., 2012) and NiftyMIC (https://github.com/gift-surg/NiftyMIC; Ebner et al., 

2020). 

The newly developed novel fetal brain segmentation algorithm, NiftyMIC (Ebner et 

al., 2020) delivers a localization algorithm to target a box containing the fetal brain in the 

MR image in addition to the fetal brain segmentation and 3D volumetric reconstruction 

algorithms. This is important as the position and orientation of the fetus may vary among 

participants. Targeting a broad location in the fetal MR image aids in robustness for more 

challenging segmentation routines (Ebner et al., 2020) compared to segmentation methods 

without a fetal brain localization step (Rajchl et al., 2016; Salehi et al., 2018). This 

localization step uses a 2D CNN (P-Net by Want, 2018) to get an initial coarse fetal brain 

segmentation after down-sampling the input 2D slices to size of 96 by 96 pixels (Ebner et al., 

2020). The morphological closing and opening operations are applied. This is done to reduce 

the number of small blank pixels in the territory of the fetal brain. The final 3D bounding box 

is obtained from the processed coarse segmentation and upscaled into the original space 

(Ebner et al., 2020). 

https://github.com/gift-surg/NiftyMIC
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For the final fetal brain segmentation step, the same 2D CNN (P-Net) is trained with a 

multi-scale loss function that calculates the similarity between the prediction and the “ground 

truth”. The average similarity among a defined number of scales of the prediction against the 

group truth. The different scales for CNN layers are constructed by average pooling. The 

multi-scale loss function was developed by Ebner et al. (2020), which compared Dice loss 

and logistic loss functions, the relationship between adjacent pixels is additionally considered 

to increase the similarity across scales. The segmented stacks of 2D slices are then bias 

corrected. One of the low-resolution segmented stacks of 2D slices is randomly selected as 

the target stack. The remaining 2D stacks are intensity corrected according to and rigidly 

registered to the selected stack. The slices are applied with nearest neighbor sampling and 

Gaussian blurring operation for an initial reconstructed high-resolution 3D volume and mask. 

Then the volume and mask are updated by iteratively applying rigid registration to the stacks 

to align with the previously established high-resolution volume for motion correction. Lastly 

the reconstructed 3D volume is rigidly registered into the standard anatomical space of a 

spatiotemporal atlas of healthy brains.  

 

1.2.6 Registration-based subcortical segmentation 

In this work, we focused on exploring antenatal subcortical growth of deep brain structures 

including the cerebellum and thalamus. The cerebellum and thalamus are key deep brain 

structures related to alterations in neuro-cognition and motor behaviors that are typically seen 

in infants impacted by FGF as well as preterm birth. Early growth impairments or alterations 

in the trajectory of growth in the cerebellum have been found to be associated with an 

increased risk of autism (Beversdorf et al., 2005; Limperopoulos et al., 2007). Further, 

cerebellar lesions in adulthood can impair decision-making, working memory, and planning 



14 

 

 

(Clausi et al., 2015; Koziol et al., 2014). Deficits in linguistic abilities, anxiety, and impaired 

social behavior have also been associated with cerebellar lesions (Ramphal et al., 2021; 

Schmahmann, 2004). Early cerebellar lesions at the vermis area can produce impaired eye 

gaze, anxiety, and lack of mental flexibility such as stereotyped behaviour (Clausi et al., 

2015; Wells et al., 2008). The thalamus, is the primary relay station to the cortex and plays 

an important role in motor and cognitive functions (Dehghani & Wimmer, 2019). Atypical 

development of the thalamus is associated with impaired emotional processing, language, 

and social cognition in children and adult populations with neurodevelopmental disorders 

(Hardan et al., 2006). Volumetric segmentations of the cerebellum and thalamus can aid in 

morphological analysis of the growth of the two brain structures, which is beneficial to 

exploring the in utero origins of neurodevelopment disorders.  

To segment the subcortical structures, we used image normalization techniques to 

linearly and nonlinearly register an age-appropriate fetal atlas into native space to determine 

an optimal strategy to segment subcortical structures. The segmented labels for brain tissue 

and structure including subcortical gray matter were rotated, moved, sheared, and scaled 

towards the subject image by rigid and affine registrations. Since the fetal brain grows 

rapidly during the third trimester of pregnancy and inter-slice fetal motions can lead to 

drastic inter-subject shape and volumetric differences, the template labels were further 

aligned with the subject brain using nonlinear registration. The packaged image 

normalization tools we used were compared with the well-known FSL (the FMRIB Software 

Library) library of tools, a platform-independent software package (Jenkinson et al., 2012) 

and the more computational expensive ANTs (Advanced Normalization Tools) suite of 

image registration tools. The linear image registration algorithms used were FLIRT 

(FMRIB’s Linear Image Registration Tool) from the FSL platform and ANTs’ rigid and 
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affine transformations. The nonlinear image registration algorithm used was SyN (Symmetric 

Image Normalization) (Avants et al., 2008) from the ANTs platform. ANTs offers one of the 

top-ranked performing nonlinear image registration algorithms (Klein et al., 2009). Different 

similarity metrics, available within the ANTs suite of tools, affect the performance for inter- 

or intra-modality image registrations. The fetal brain template and the subject scans were 

both T2-weighted, however, the intensity signals of the subject images and the template 

differed considerably. Therefore, testing and comparing image registration using different 

similarity metrics, such as cross-correlation optimal for intra-modality registration and 

mutual information optimal for both intra- and inter-modality registration were performed to 

determine the optimal registration-based segmentation for our dataset.  

 

1.3 Rationale 

Few studies have assessed fetal brain development by analyzing the fetal brain volume 

during the third trimester of pregnancy, despite its clinical relevance. Fetal motion is a 

considerable issue when acquiring third trimester images. To mitigate motion artifacts, two 

dimensional (2D) images are acquired in rapid succession in the 3 planes (coronal, sagittal, 

axial). The NiftyMIC fetal brain reconstruction and segmentation algorithm that we 

employed in this study was originally trained and tested on 2D second trimester fetal MR 

images. Therefore, whether this deep-learning platform (NiftyMIC) can reliably segment 

more mature and complex fetal brain tissue seen in the third trimester needs to be evaluated.  

 To examine regional subcortical organization of the fetal brain, MR images can be 

registered into standardized space and previously published fetal brain atlases can be applied 

to segment grey matter structures such as the thalamus and cerebellum. Atlas-based 

segmentation techniques have been used for targeting deep brain structures in fetal MR 
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images; however, manual or rigid based segmentation methods are often employed, which 

are impractical to analyze large datasets and may provide inaccurate results due to improper 

characterization of the fetal brain anatomy. In this study, affine and nonlinear registration 

algorithms were compared to determine the optimal strategy of segmenting subcortical 

structures in T2-weighted images acquired during the third trimester of pregnancy. The affine 

algorithms included FLIRT (FMRIB's Linear Image Registration Tool) and the linear version 

of Automatic Normalization Tools (ANTs). The nonlinear registration methods included 

ANTs that employed different similarity metrics. FLIRT is a multi-start, multiresolution 

method that employs global optimization in order to determine an optimal affine 

transformation to minimize the differences between the atlas image and the fetal images. 

ANTs is a dense deformable image registration method that aligns images on a voxel-by-

voxel basis. In general, dense deformable image registration is more computationally 

intensive. The decision to implement different methods (i.e., affine vs. nonlinear) for 

registration usually involves a trade-off between image registration quality and computation 

time. We therefore compared these different registration methods to determine the optimal 

registration strategy to apply a previously published fetal brain atlas to the individual fetal 

MRI scans in order to examine macrostructural development of subcortical structures.  

1.4 Objectives and hypothesis 

Following the workflow of the proposed automatic fetal subcortical segmentation, this study 

was separated into two aims. The first aim was to determine whether a deep-learning 

platform developed to reconstruct and segment the whole fetal brain in second-trimester fetal 

MR images can reliably segment images acquired in pregnant women during the third 

trimester. It was hypothesized that the deep-learning platform would reliably segment brain 

tissues in third-trimester MR images. The second aim was to determine whether an affine or 
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nonlinear registration produces optimal fetal subcortical segmentation. It was hypothesized 

that nonlinear registration of age-appropriate atlases of the fetal brain would result in more 

accurate segmentation of subcortical brain regions compared to linear registration methods.  
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2 Chapter Two 

2.1 Methods 

2.1.1 Participants  

A total of nine pregnant adult women participated in the MRI study. All participants were in 

the third trimester of ranging from 35 to 39 weeks of gestational age (GA). The average GA 

was 36.6 weeks with standard deviation of 1.2 weeks (Table 2-1). Mothers pregnant with 

singleton growth-appropriate or growth-restricted fetuses were recruited to the study. All 

participants self-identified as native English speakers and reported no history of psychiatric 

illness, neurological disorder, or hearing impairment. The study was approved by the Health 

Sciences Research Ethics Board (REB# 109515) from Western University. The letter of 

information was sent to participants in advance of the study and a member of the research 

team reviewed the protocol. All participants provided informed consent.  

 

Table 2-1: Median Maternal ages and fetal gestational ages 

 

Characteristic 
Total  

(n=9) 

Maternal Age, 

Median years (IQR) 
37.95 (34.30-41.2) 

Fetal gestational age, 

Median weeks (IQR) 
36.60 (36.10-37.30) 

Ages of the mothers (years) and fetuses (weeks’  

gestation), IQR, interquartile range (25%ile-75%ile) 

2.1.2 Procedure 

All participants were invited to attend the MRI suite 15-20 minutes in advance of the scan 

time in order to complete the screening form with the technologist, review all the safety 

procedures and were provided with surgical scrubs to wear during the scan. Participants were 

shown the MRI and the size of the scanning bore before entering the scanner. Participants 
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were informed about remaining still through the course of the experiment. Once participants 

were familiarized with all procedures, they were then given information about the length of 

the scanning protocol and the sounds they would be hearing. The MRI technologist and a 

member of the research team informed the participants that they could signal that the scan be 

stopped at any time by squeezing the alarm bell attached to the scanner bed. After all study 

procedures and the protocol was reviewed with the participants, they were instructed to lay 

on their left side on the scanner bed to minimize constriction of major arteries. All 

participants were scanned while lying on their left side with their feet inside the scanning 

bore. A body coil was placed over the participants before they were moved inside the scanner 

bore. 

 

2.1.3 MRI protocol 

Participants were scanned at two sites different sites and the study procedures were 

maintained at both scanning suites. Four participants were scanned on a 3T (General Electric 

[GE], Milwaukee, WI; MR7500) MRI with a 32-channel GE torso coil and a 60 cm bore at 

the Translational Imaging Research Facility at the Robarts Research Institute. The other five 

participants were scanned on a 1.5 T (GE, MR450w) MRI with a GEM posterior and anterior 

array coil with a 70 cm bore at London Health Research Science Center (LHSC-Victoria 

Hospital). To shorten the MR image acquisition time considering mitigating motion artifacts 

from fetal movements, the T2-weighted MR images were acquired using the single shot fast 

spin echo (SSFSE) sequence (repetition time [TR] > 1200 msec, echo time [TE]: 81.36-93.60 

msec, voxel size: 0.98*1.96*8 mm3 and 0.125*0.17*9 mm3). The fetal participants’ 

information including GA, volumes of subcortical regions of interest, and whole brain 

volumes is presented in Table 2-1. 
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2.1.4 Study workflow 

 

Figure 2-1: Study design flowchart. The study workflow included MR image acquisition, 

MR image preprocessing (registration, fetal deep brain structure segmentation) reliability 

testing and statistical analysis.  

 

The study workflow (Figure 2-1) consisted of MR image acquisition, fetal MR image 

preprocessing including registration and fetal deep brain structure segmentation, reliability 

testing, and statistical analysis. The fetal MR images were first processed using NiftyMIC for 

fetal brain location detection, fetal brain segmentation, and volumetric reconstruction. The 

segmented brain masks underwent skull-stripping using the 3dcalc command line tool from 

AFNI toolkit (RW, 1996; RW et al., 1997). The skull-stripped brain volumes were manually 

corrected for orientation tags using ITK-SNAP. Both linear and nonlinear image registration 

algorithms were applied to an age-appropriate atlas (Gholipour et al. 2017). The resulting 

transformation matrices produced by the linear and nonlinear image registration algorithms 

from the different toolkits (FLIRT and ANTs) to register the atlas to the fetal T2 weighted 

images, were also used to register the manually segmented masks to the fetal images. The 

aligned subcortical labels were than compared with the manually segmented subcortical 

masks by calculating Dice Similarity coefficients using the convert3d command line tool 

from ITK-SNAP toolkit (Paul et al., 2006). The registered and segmented brain structures’ 
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volumes were calculated and extracted using the fslstats command line tool from FSL 

platform. Each step will be described in detail in the next subsections.  

 

2.1.5 Fetal brain segmentation and volumetric reconstruction on MR images  

In this step, NiftyMIC was used for broad fetal brain localization, precise fetal brain 

segmentation, manual performance check and manually adjustment, manual orientation fix, 

and auto skull stripping. The location of the fetal brain varied significantly across 

participants, and the fetal brain represented only a small subsection of the 2D MR images, 

the placenta and umbilical cord surrounding the fetal brain created a large source of non-

interested contents (Figure 2-2). In turn, large unrelated contents in the images could have 

affected the robustness of the algorithm to differentiate the fetal brain from the rest of the 

organs in the MR image and reconstruct the 2D input slices into 3D brain volumes. 

Therefore, it was essential to first estimate the fetal brain location in the MR image such that 

a bounding box (Figure 2-3) was created to reduce both unrelated contents and image space, 

as well as the algorithm processing time for the later more precise fetal brain segmentation 

algorithm using 2D P-Net CNN (Yamashita et al., 2018). After the broad fetal brain 

localization, the input 2D MR images were segmented in three dimensions, the axial, 

coronal, and sagittal planes; however, the surrounding maternal grey and white tissue was 

still evident in the slices. The binary fetal brain masks (Figure 2-4), which served as input 

binary masks for the later volumetric reconstruction algorithm to build 3D fetal brain masks, 

were also automatically generated from the segmentation process. The automatically 

generated 2D fetal brain masks were not optimal for most of the subjects, resulting in over- 

and under-estimations of fetal brain tissue in the slices. The false 2D masks would result in 
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meaningless volumetric reconstruction, therefore quick manual adjustments of the 2D masks, 

such as filling and excluding pixels, were performed on all automatic 2D masks.  

 

Figure 2-2-2: The original T2-weighted acquisition of a fetal MR image in axial, 

sagittal, and coronal planes. T2-weighted images acquired separately in three separate 

image planes in the axial (left), sagittal (middle) and coronal (left) in a representative 

participant. The three image planes were subsequently used for the reconstruction of three-

dimensional images. 

 

 

Figure 2-3: The red boxes represent the broad localization of the fetal brain in the three 

different image planes. T2-weighted images acquired separately in three separate image 

planes in the axial (left), sagittal (middle) and coronal (left) in a representative participant 

with broad localization of the fetal brain (red boxes).  

 

After segmenting fetal brains in the 2D planes, the 2D slices were reconstructed into 

3D volumes and the 2D fetal brain segmentations were also reconstructed into 3D space. The 

2D MR image slices could be corrupted by bias field signals that are low-frequency to blur 
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the high-frequency contents, such as edges and contours. Intensity variance was also a 

consequence of existing bias field signals that the same tissue had uniformed pixel gray level 

in the images. Thus, the segmented 2D fetal brain slices were firstly bias field corrected. 

Secondly, the bias field corrected 2D slices were reconstructed into 3D volume by the slice-

to-volume process that rigidly registered the 2D slices to one randomly selected target slice 

from the fetal brain MR images so that all the slices were volumetrically aligned. The slice-

to-volume process also used linear regression to correct and match the slices voxel intensities 

to the target slice’s voxel intensity. Thirdly, volume-to-volume process was performed on the 

2D slices and previously segmented 2D masks to reconstruct into 3D volumes and 3D fetal 

brain masks in native space. Subsequently, the native-space 3D volumes were then rigidly 

registered to a spatiotemporal atlas developed from images from typically-developing fetuses 

to obtain the volumetric reconstruction in the standard anatomical planes of template space. 

The NiftyMIC platform offers two automatic frameworks: 

niftymic_segment_fetal_brains and niftymic_run_reconstruction_pipeline for straightforward 

command line calls. We used niftymic_segment_fetal_brains for automatic fetal brain 

segmentation that can generate 2D fetal brain masks and 

niftymic_run_reconstruction_pipeline for the automatic volumetric reconstruction, including 

bias field correction, slice-to-volume, and volume-to-volume reconstruction steps that 

generated 3D fetal brain volumes in standard anatomical planes and corresponding 3D fetal 

brain masks. These two frameworks both used default parameters for the CNN and 

morphological processing algorithms. 
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2.1.6 Registration-based subcortical segmentation 

The reconstructed 3D fetal brain masks were applied onto the reconstructed 3D brain 

volumes for fetal brain skull stripping (Figure 2-4). The 3D brain volumes were segmented 

with the binary masks for fetal brain-only MR images, which was a prerequisite for later 

subcortical segmentation utilizing image registration since image registration for tissue 

alignment assumes the target object and the moving object are the same tissue with similar 

shapes. Registering the skull-stripped fetal brain template to subject fetal brain excluding 

maternal matters would aid in reducing unrelated contents for meaningful registration result. 

The skull stripping step was performed using 3dcalc from AFNI toolkit that multiplied the 

reconstructed 3D fetal brain image with the binary 3D masks. Then the orientation tags of the 

skull-stripped MR images were manually adjusted according to the orientation age-

appropriate fetal brain template using the ITK-SNAP GUI (graphical user interface). 
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Figure 2-4: Fetal brain segmentation. Row (a) includes the volumetrically reconstructed 

fetal brains in three planes. The red areas are the manually segmented fetal brain binary 

masks. Row (b) includes the orientation-corrected and skull-stripped (using the binary masks 

in red) fetal brain volumes in three planes. 

 

Two different types of automatic registration tools, affine and nonlinear atlas 

registration algorithms, were applied to the reconstructed images and compared to determine 

an optimal fetal subcortical segmentation strategy. Nonlinear atlas registration was 

performed using ANTs (Avants et al., 2008) using the well-known SyN (symmetric image 

normalization) method (Avants et al., 2008) and linear (affine) atlas registration was 

performed using FLIRT (Jenkinson et al., 2001 & 2002). The fetal brain atlas (Figure 2-5) is 

an averaged template from fetuses imaged at 36 weeks gestational age with predefined labels 

of vital deep brain structures including the thalamus and cerebellum. The atlas was 

nonlinearly and linearly registered into the native participant 3D MRI space. The 
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transformation matrix was saved and applied onto the atlas mask to warp the tissue labels 

into subject space. The transformed atlas labels were used as thalamus and cerebellum masks 

(Figure 2-6) and were compared with manual masks by calculating Dice similarity 

coefficients for the reliability test. 

Figure 2-5: The average 36-weeks GA fetal brain template including cerebellum and 

thalamus labels. The axial, sagittal, coronal, and 3D rendered views of the age-appropriate 

fetal brain atlas whereby deep brain tissues are colour-coded.  

 

 
Figure 2-6: The registered template label into the subject space. This figure shows the 

linearly registered left cerebellum label using ANTs. The reconstructed 3D fetal brain 

volumes were skull-stripped. The orientations were transformed into the same image 

orientation of the fetal brain atlas as the original acquisitions of the MRI scans were oriented 

based on the position of mothers’ bodies in the scanner. The manual and automatic 

cerebellum and thalamus segmentations were then performed on the processed reconstructed 

3D volumes.  

 

The applied FLIRT registration tool implemented the correlation ratio similarity metric for 

linear (affine) registration as the default parameters. The ANTs registration tool used a 
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mutual information similarity metric for both linear (rigid and affine) registration and 

nonlinear (SyN, Symmetric Image Normalization) registration in the 

antsRegistrationSyNQuick.sh script as the default. Different combinations of similarity 

metrics for both linear and nonlinear image registration of ANTs were also applied and 

compared to find the more suitable image registration method for our MR image data. The 

selected fetal brain template and our acquired fetal brain were both T2-weighted images, in 

which case the grayscale signals of the same tissue in the target image and the moving image 

were theoretically similar, where similarity metrics such as cross correlation are beneficial 

for measuring pixel intensity differences. Hence, the cross-correlation similarity metric that 

was provided in the ANTs toolbox that is sufficient for intra-modality registration was used 

for rigid, affine, and SyN registration algorithms. Although the template and the participant 

images were in the same modality, there existed considerable differences in image intensities 

in the voxels. The image intensity information of the atlas and that of the MR images from 

the individual subjects were considerably different. The atlas intensities ranged from 0 to 

3484 and the individual subject MR image intensities ranged up to 32767. The mean 

intensity of non-zero pixels in a random volumetrically reconstructed fetal brain MR image 

was approximately 11433 and that in the template was approximately 1742. The tissue 

contour in the atlas had higher contrast compared to that in the individual subject images. In 

this case, it was worth testing and comparing the impact of using similarity metrics that 

predict the pixels of interest in the moving image given the pixel intensities in the target 

image that does not require the tissue boundary signals to be similar. Therefore, mutual 

information similarity metric provided by the ANTs toolkit was used for all three 

registrations (rigid, affine, and SyN).  
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The FLIRT linear image registration was performed using the flirt command line tool 

with the DOF (degree of freedom) option set at 12. The ANTs linear image registration (12 

DOF) was performed using the antsRegistration command line tool by defining the rigid and 

affine transformations. The ANTs nonlinear registration (millions of DOF) algorithm using 

the mutual information metric was performed using the provided default 

antsRegistraionSyNQuick.sh script. Keeping every other parameter the same as 

antsRegistraionSyNQuick.sh script, the ANTs nonlinear registration using the cross 

correlation metric was also performed using the antsRegistration command line tool by 

adding the SyN transformation definition upon the linear registration parameters. To apply 

the transformation matrices to the atlas masks, the FLIRT command line tool was defined 

with the applyxfm option and the ANTs command line tool was antsApplyTransformations. 

The fetal whole brain volumes and cerebellum and thalamus volumes were computed 

from the skull-stripped fetal brain masks and the subcortical masks. The command line tool 

used for this step was fslstats from FSL that outputs the image voxel and tissue volume in 

unit of mm3. 

2.1.7 Manual subcortical segmentation 

Anonymized with respect to gestational age at birth and all other functional outcome 

measures, the left and right thalamus and cerebellum were delineated in all 10 reconstructed 

T2-weighted images. The 3D reconstructed T2-weighted images were visualized and 

segmented using ITK SNAP. The displays provided simultaneous coronal, sagittal and axial 

views of the brain and created a 3D image of the thalamus and cerebellum.  Thalamus and 

cerebellum masks were created through the visual identification and tracing of these brain 

regions in each slice. A three-step segmentation protocol was applied to each of the images in 

order to segment both the cerebella and thalami. The thalamus was segmented first, followed 
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by the cerebellum. The thalamus was present in approximately 40 slices, whereas the 

cerebellum was present in approximately 50 slices. Segmentations were based on the 

intensity differences between the white matter and gray matter.   

Step 1: Segmentation of the Cerebellum and Thalamus. Dependent on the 

participants and the resolution of the images, the rater segmenting the images manually 

composed segmentations through all three viewpoints (sagittal, coronal and axial) to ensure 

that the masks were accurate in all viewpoints. The initial segmentations that were completed 

were verified in the other views and any incorrectly identified areas were omitted and 

revised. 

Step 2: Inspection of the 3D Surface. The segmented cerebellum and thalamus 

masks were represented in a 3-D display through ITK-SNAP. It is expected that the surface 

of both the cerebellum and thalamus is smooth throughout, so any areas on the masks that 

protruded excessively were trimmed through a smoothing feature on ITK-SNAP.  

Step 3: Segmentation of Left and Right Hemispheres. Once segmentations were 

complete, cerebellum and thalami masks were segmented into left and right hemispheres. By 

identifying the midline of the brain, each mask was segmented and split into the left and right 

hemispheres. These segmentations were verified across all three viewpoints to ensure 

accuracy and to revise original segmentations.  

 

2.1.8 Protocol reliability testing 

Three fetal MR images (33%) were randomly selected and re-segmented by the same rater to 

assess the reliability of the 3-step manual segmentation protocol. The re-segmentations of 

both the left and right thalami and cerebelli in the fetal MR images were performed 6 months 

after the original segmentations to ensure that the rater’s memory would not unduly influence 
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the results. This type of test-retest metric, intra-rater reliability, can be used as an upper 

bound metric to assess the accuracy of the segmentations of the thalamus and cerebellum. 

The reliability of the protocol was measured using Dice Similarity metric, which evaluates 

the spatial and volumetric overlap of the original and re-segmented label volumes.  

 

2.1.9 Manually adjusting automatically generated masks from NiftyMIC 

Anonymized with respect to gestational age at birth and all other functional outcome 

measures, whole brain masks were manually segmented in all nine fetal brain scans. A three-

step segmentation protocol (described below) was applied to each of the images in order to 

segment the whole brain masks. The whole brain was present in approximately 90 slices.  

Step 1: Automatic Segmentation. Whole brain masks were generated automatically 

for each subject using NiftyMIC software.  

Step 2: Manual Segmentation. Brain masks generated automatically through 

NiftyMIC were contrasted against the original brain scan for each subject on ITK-SNAP. 

Each mask was manually edited to ensure that the mask fit the image. Dependent on the 

subject and the clarity of the image, the individual segmenting the images manually worked 

through all three viewpoints (sagittal, coronal, and axial) to ensure that the masks were 

accurate in all viewpoints. The initial segmentations that were completed were verified in the 

other views and any incorrectly identified areas were omitted and revised. Any area of the 

mask that protruded excessively outside of the brain region was removed. Additionally, any 

areas of the brain that were not covered by the mask were filled in appropriately.  

Step 3: Segmentation of Left and Right Hemispheres. Once the segmentations 

were complete, the whole brain masks were segmented into left and right hemispheres. By 

identifying the midline of the brain, each mask was segmented and split into the 
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corresponding hemisphere. These segmentations were verified across all three viewpoints to 

ensure accuracy and to revise the original segmentations.  

 

2.1.10 Statistical analysis 

The robustness of the entire automatic fetal deep brain structure segmentation workflow was 

tested by comparing the automatically segmented masks and manually segmented masks by 

calculating the Dice Similarity coefficient of the common areas covered. The Dice Similarity 

coefficient was calculated using the formula 𝐷 =
2(𝐴∩𝐵)

𝐴+𝐵
 , where A and B represent the 

automatic mask and the manual mask, that computes the ratio of two times of the common 

area to the sum of two areas. Statistical analyses were performed using SPSS (version 26, 

Armonk, NY). The resulting Dice similarity coefficients were non-normally distributed. 

Therefore, a nonparametric Friedman’s test for paired data was applied to the Dice similarity 

coefficients. An alpha level of p<0.05 was selected. According to the typical guidelines of 

the Dice Similarity coefficients interpretation (Cohen, 1960), this automatic segmentation 

method is considered reliable when the coefficient is greater than 0.8.  

To calculate the Dice similarity coefficients, the regions of interest (ROI): right 

cerebellum, left cerebellum, right thalamus, and left thalamus were firstly extracted from the 

registration-based subcortical masks using the combination of 3dcalc and 3dcluster command 

line tools from AFNI. The reason for this step is that the manually drawn subcortical masks 

of one subject were traced separately for the four ROI described above. The Dice similarity 

coefficients were then calculated by overlay the extracted automatic ROI with the 

corresponding manual ROI using the c3d -overlay command line tool of convert3d package 

from ITK-SNAP. The c3d command line tool printed the Dice similarity coefficients in 
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terminal by default that was not ideal for data organization, therefore we redirected the 

output numbers to print into text files. Then an in-house Python script was developed to read 

and write the Dice similarity coefficients from the text files into csv format.  

 

2.1.11 Software installation and operating system decency 

The computer used in this study was built with the 10th generation of intel i7 CPU (central 

processing unit) with 8 cores and 16 threads, 32GB of RAM (random access memory). The 

operating system used for this study was Ubuntu 18.04. ITK-SNAP (version 3.6.0), AFNI 

(version 20.3.01), convert3d package (version 1.0.0), FSL package (version 6.0.4) including 

FLIRT was installed locally from source. ANTs was provided by and installed on the SciNet 

supercomputer center at the University of Toronto (i.e., Compute Canada). NiftyMIC was 

installed with the provided Docker image.   
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3 Chapter Three 

3.1 Results 

3.1.1 2D fetal brain segmentation and 3D volumetric reconstruction 

The 2D fetal brain masks of the stacks of the original fetal brain MR images were 

automatically segmented using NiftyMIC in the axial, coronal, and sagittal image planes. For 

the NiftyMIC volumetric reconstruction algorithm to perform optimally, the 2D auto-masks 

were manually adjusted using ITK-SNAP for the over- and under-estimations of fetal brain 

tissue by the NiftyMIC segmentation algorithm. The volumetric reconstruction process was 

performed on all nine subjects. Eight 2D masks (89%) were successfully reconstructed into 

3D space (Figure 3-1), and one participant’s data (ID 2) was rejected due to a complete 

failure of the fetal brain segmentation and volumetric reconstruction routine.  
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Figure 3-1: Segmented and volumetrically reconstructed fetal brain image using 

NiftyMIC. The original 2D slices of fetal MR images were automatically segmented and 

manually adjusted for fetal brain 2D masks. Then the 2D slices and 2D brain masks were 

reconstructed into 3D volumes and 3D masks with motion correction. This figure shows and 

example of the skull-stripped, orientation-adjusted 3D fetal brain volumes in axial, sagittal, 

coronal, and 3D rendered views.  

 

Skull stripping and orientation tags correction were successfully applied on the 

reconstructed 3D volumes. Based on the skull-stripped automatically reconstructed 3D fetal 

brain MR images, manual segmentations of thalamus and cerebellum on both left and right 

sides were successfully performed. The median volumes of the subcortical regions of interest 

and whole brain volumes are presented in Table 3-1 along with the interquartile ranges 

(IQR).  
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Table 3-1: Fetal brain volumes 

Characteristic Total (n=8) 

Cerebellum, 

Median volumes 

mm3 (IQR) 

14756 (14373-17794) 

Thalamus, 

Median volumes 

mm3 (IQR) 

5907 (4952-6994) 

Whole Brain, 

Median volumes 

mm3 (IQR) 

410224 (386297-464227) 

GA, Median 

weeks, (IQR) 
36.6 (36.1-37.3) 

Gestational age (weeks), IQR, interquartile range (25%ile-75%ile) 

 

The volumes of the averaged left and right thalamus and cerebellum were plotted against 

gestational age (Figure 3-2). Both the cerebellum (r=0.7, p=0.035) and the total cerebral 

volumes (r=0.8, p=0.01) were positively associated with gestational age, indicative of larger 

volumes at older gestational ages. The thalamus showed no association with gestational age 

(r=-.1, p=0.7). 
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Figure 3-2: Fetal volumes (y-axis) plotted in relation to gestational age (x-

axis). Fetal thalamus (top, left), whole brain (top, right) and cerebellum (bottom, left) 

volumes plotted in relation to gestational age in weeks. The cerebellum and total cerebral 

volumes showed a positive linear association with gestational age (both, p<0.05). (Bottom, 

right) The colour-coded fetal atlas overlaid on a template MRI demonstrating the location of 

the thalamus (orang/purple) and the cerebellum (grey). 

3.1.2 Manual segmentation protocol validation: intra-reliability test 

Three (37.5%) fetal images were randomly selected from the 8 processed participants. The 

thalamus and cerebellum were re-segmented to assess the consistency of the 3-step manual 

segmentation protocol. Re-segmentations of both the left and right thalami and cerebelli in 

these images were performed at least 6 months after the original segmentations were 

performed. The intra-reliability test results were listed in Table 3-2. The IQR of the median 

Dice similarity coefficients of cerebellar and thalamic segmentations were 0.83 and 0.68 

respectively. The overall median Dice similarity coefficients was approximately 0.77.  
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Table 3-2: Intra-reliability test – Dice similarity coefficients 

  Dice Similarity Coefficients 

Cerebellum 0.83 (0.83-0.83) 

Thalamus 0.68 (0.67-0.70) 

Overall 0.77 (0.68-0.83) 

The median Dice similarity coefficients for cerebellum segmentation,  

thalamus segmentation, and both segmentations combined. IQR,  

interquartile range (25%ile-75%ile) 

3.1.3 Registration-based segmentation reliability test: comparisons of Dice similarity 

coefficients 

The nonlinear and linear registrations of the 36-week GA fetal brain atlas into the native 

spaces of the individual fetal MR images were successfully processed using FLIRT and 

ANTs. The median Dice similarity coefficients comparing the five image registration 

methods to the manual segmentation method, which were: (1) FLIRT linear registration 

(affine) using the correlation ratio similarity metric, (2) ANTs linear registration (rigid and 

affine) using the mutual information (MI) similarity metric (ANTs Lin MI), (3) ANTs linear 

registration using the cross-correlation (CC) similarity metric (ANTs Lin CC), (4) ANTs 

nonlinear registration (rigid, affine, and SyN) using the MI similarity metric (ANTs NL MI), 

and (5) ANTs nonlinear registration using the CC similarity metric (ANTs NL CC) for left 

and right cerebellum and thalamus segmentations were listed in Figure 3-4 to Figure 3-7. The 

left-sided cerebellar masks produced by the five registration methods using different 

similarity metrics were shown in Figure 3-3.  
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Figure 3-3: Left cerebellar masks: registration-based segmentation (red) vs manual 

segmentation (yellow). The masks are shown in axial, coronal, and sagittal planes from left 

to right. Row (a) ANTs linear registration (MI); (b) ANTs linear registration (CC); (c) ANTs 

nonlinear registration (CC); (d) ANTs nonlinear registration (MI); (e) FLIRT linear 

registration. 

 

The median Dice similarity coefficients of the five registration methods for the 

cerebellum segmentation, thalamus segmentation, and both segmentations were listed in 

Table 3-2. Overall, the FLIRT linear registration resulted in non-optimal estimation with 

gross misalignment of the masks on the fetal MR image. Overall, the ANTs linear 

registration (CC) had the highest median Dice Similarity index, and ANTs linear registration 
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(MI) had nearly identical performance. The ANTs nonlinear registration (MI and CC) had 

comparable results. 

 

Figure 3-4: Median Dice similarity coefficients of the left cerebellum segmentations 

using 5 methods. The ANTs-based registration methods produced similar results while the 

FLIRT registration produced the lowest Dice Similarity value. Error bars are the interquartile 

ranges (25th%ile-75th%ile). 

 

 

Figure 3-5: Median Dice similarity coefficients of the right cerebellum segmentations 

using 5 methods.  ANTs Lin MI and CC produced the highest Dice similarity coefficients 

while the ANTs nonlinear registration had comparable results. FLIRT registration had the 

lowest Dice Similarity value. Error bars are the interquartile ranges (25th%ile-75th%ile). 
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Figure 3-6: Median Dice similarity coefficients of the left thalamus segmentations using 

5 methods. The median Dice similarity coefficients of thalamus segmentations were lower 

with higher IQR than that of cerebellum segmentations of all 5 registration methods. For left 

thalamus segmentations, the Dice similarity coefficients of ANTs-based registration methods 

were similar and higher than that of FLIRT registration. Error bars are the interquartile 

ranges (25th%ile-75th%ile). 

 

 

Figure 3-7: Median Dice similarity coefficients of the right thalamus segmentations 

using 5 methods. For right thalamus segmentations, the Dice similarity coefficients were 

comparable for all 5 registration methods while FLIRT produced sub 0.5 Dice Similarity 

value. Error bars are the interquartile ranges (25th%ile-75th%ile). 
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Table 3-3: Median Dice Similarity Coefficients 

Registration Method Both Cerebellum  Thalamus  

ANTs Lin CC 0.78 0.83 0.55 

ANTs Lin MI 0.79 0.83 0.56 

ANTs NL MI 0.75 0.83 0.56 

ANTs NL CC 0.76 0.82 0.54 

FLIRT 0.66 0.73 0.52 

The median Dice Similarity coefficients of cerebellum, thalamus, and both subcortical 

segmentations using 5 registration methods. 

 

The median Dice similarity coefficients of both subcortical segmentations revealed 

that ANTs Lin CC and MI were the highest while the nonlinear registrations were 

comparable while the FLIRT was the lowest. The Dice similarity coefficients for the linear 

(i.e., ANTs rigid and affine, and FLIRT affine) and nonlinear (i.e., ANTs nonlinear with MI 

and CC similarity metrics) methods for the thalamus and cerebellum segmentations were 

compared using Friedman’s tests. The cerebellar Dice similarity coefficients were compared 

and were significantly different from one another (Figure 3-8, n=16, df=4, test 

statistic=38.75, p<0.001).  

  



42 

 

 

 

 

Figure 3-8. Results of a Friedman’s test comparing the Dice similarity coefficients 

amongst linear and nonlinear registration algorithms for the fetal cerebellum 

segmentations. The Friedman’s test of cerebellum segmentations indicated that the ANTs 

Lin MI (blue) and CC (coral) had the highest rank among all methods while the FLIRT 

registration methods (brown) had the lowest rank. Both ANTs linear registration methods 

had the lowest variance from the manual segmentation and FLIRT had the highest variance.  
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Table 3-4: Post hoc comparisons: Dice similarity coefficients for the fetal cerebellar 

segmentations.  

Sample 1-Sample 2 
Std. Test 

Statistic 
p value* 

FLIRT - ANTs NL CC 3.02 0.025 

FLIRT - ANTs NL MI  4.36 <0.001 

FLIRT - ANTs Lin CC 5.14 <0.001 

FLIRT - ANTs Lin MI 5.37 <0.001 

ANTs NL CC - ANTs NL MI  1.34 0.99 

ANTs NL CC - ANTs Lin CC  -2.12 0.336 

ANTs NL CC - ANTs Lin MI 2.35 0.189 

ANTs NL MI - ANTs Lin CC -0.78 0.99 

ANTS NL MI - ANTs Lin MI -1.01 0.99 

ANTs Lin CC - ANTs Lin MI 0.22 0.99 

Results of a Dunn's pairwise post hoc tests on the Dice similarity coefficients. A Dunn’s test 

for post hoc testing revealed that the ANTs-based registration algorithms outperformed the 

FLIRT linear registration algorithm (all, p<0.05). The ANTs Lin CC registration algorithm 

on the cerebellum segmentations performed the best while all other ANTs-based registration 

algorithms demonstrated comparable performance to the ANTs Lin CC registration algorithm 

(p=0.99). *Bonferroni corrected for multiple comparisons 

 

Subsequently, the Dice similarity coefficients produces by the linear and nonlinear 

registrations algorithms compared to the manual segmentations, were examined for the 

thalamic segmentations and were also found to be significantly different (Figure 3-9, n=16, 

df=4, test statistic=19.55, p<0.001). 
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Figure 3-9. Results of a Friedman’s test examining the Dice similarity coefficients 

amongst affine and nonlinear registration values for the fetal thalamus segmentations. 

The Friedman’s test of thalamus indicated that the ANTs-based linear and nonlinear 

registrations had similar ranks, which were significantly higher than that of the FLIRT 

registration methods. This revealed that ANTs-based registration methods generally had 

notable higher agreement with manual segmentation results than the FLIRT registration 

method. 
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Table 3-5: Post hoc comparisons: Dice Similarity Coefficients for the fetal thalamic 

segmentations. 

 

Sample 1-Sample 2 
Std. Test 

Statistic 
p value* 

FLIRT - ANTs NL CC 3.47 0.005 

FLIRT - ANTs NL MI  3.47 0.005 

FLIRT - ANTs Lin CC 3.47 0.005 

FLIRT - ANTs Lin MI 3.58 0.003 

ANTs NL CC - ANTs NL MI  0.00 0.99 

ANTs NL CC - ANTs Lin CC  0.11 0.99 

ANTs NL CC - ANTs Lin MI 0.11 0.99 

ANTs NL MI - ANTs Lin CC 0.00 0.99 

ANTS NL MI - ANTs Lin MI 0.11 0.99 

ANTs Lin CC - ANTs Lin MI 0.00 0.99 

Results of a Dunn's pairwise post hoc tests on the Dice similarity coefficients post-hoc testing 

revealed that the Dice similarity coefficients affine-based FLIRT transformations were 

significantly lower than those calculated using ANTs (all, p<0.05). Additionally, no 

statistically significant differences in the Dice similarity coefficients for the ANTs-based 

linear and nonlinear registration algorithms were evident. *Bonferroni corrected for multiple 

comparisons. 

3.1.4 Atlas-based segmentation of the fetal brain: subcortical volumes 

The fetal atlas was linearly registered to the individual 3D reconstructed images using ANTs 

Lin MI. The subcortical volumes were extracted and plotted in relation to gestational age. 

The volumes of the amygdala, caudate nucleus, putamen, globus pallidus and hippocampus 

are plotted in relation to gestational age in Figure 3-10. Overall, each brain structure showed 

a positive linear association with age; however, none of the brain regions were significantly 

associated with age (all, p>0.05) based on bivariate correlations. The results were maintained 

when adjusting for total cerebral volumes. 
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Figure 3-10. Atlas-based subcortical volumes (y-axis) plotted in relation to gestational 

age (x-axis). The volumes for the amygdala, caudate nucleus, putamen, globus pallidus, and 

hippocampus all demonstrated a non-significant linear association with fetal GA (all, 

p>0.05).  
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4 Chapter 4 

4.1 Conclusions and future directions  

 

Fetal MRI represents one of the next frontiers in clinical, translational and basic 

science research, not only to improve our understanding of the developing fetal brain, but to 

aid in early diagnosis, particularly for fetuses who are at-risk for adverse neurodevelopmental 

outcomes. The study of the brain and other organs in the fetus has been limited to primarily 

non-invasive ultrasound technology. While ultrasound offers many advantages due to its low 

cost and ease of use in hospital settings, it is limited in terms of its spatial resolution to study 

fetal brain structure. MRI of the fetal brain offers superior 3D image resolution and can be 

used to study brain volumetric development. The goal of this thesis was to develop a semi-

automatic pipeline to segment fetal brain volumes acquired in third trimester images. A 

recently developed deep learning algorithm to mask the fetal brain and reconstruct MR 

images in second trimester fetuses was employed. Analyzing fetal MR images using typical 

brain segmentation toolkits designed for adult populations is impractical due to the presence 

of motion artifacts from fetal movements.  

This study aimed to overcome this obstacle in fetal MRI by applying segmentation, 

volumetric reconstruction, and image normalization toolkits to build a semi-automated 

process for fetal brain subcortical segmentation in T2-weighted fetal MR images that were 

acquired during the third trimester of pregnancy. In the first step, the fetal brain was masked 

in three anatomical 2D planes (axial, sagittal, and coronal planes). Then the segmented 2D 

fetal brains and brain masks in three planes were reconstructed into 3D brain volumes and 

masks. After skull-stripping and orientation tag correction, linear and nonlinear image 

registration methods were evaluated in terms of their accuracy in segmenting cortical and 

subcortical structures by applying an age-appropriate MRI atlas. In turn, the subcortical 
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labels of the chosen template were aligned with the individual fetal MR images using two 

different image registration toolkits (ANTs, FLIRT) using linear (ANTs Lin MI/CC, FLIRT) 

and nonlinear registration methods (ANTs NL MI/CC). The optimal cortical and subcortical 

segmentation performance was determined by applying and comparing two image 

registration toolkits for both nonlinear and linear image registration algorithms with different 

configurations of similarity metrics. The aligned subcortical labels were then compared with 

manually segmented subcortical masks of the thalamus and cerebellum. The manually 

labeled masks were considered as ground truth for later comparison with the atlas-based 

registration. A linear registration method (ANTs Lin MI/CC) provided improved results 

compared to a linear transformation (FLIRT). The ANTs MI and CC similarity metrics are 

optimized in terms of translation, rotation, scaling and shearing during registration of the 

images. Nonlinear registration methods, while computationally more intensive, may be more 

suitable for small samples of fetal brain images acquired during the third-trimester in order to 

have higher quality results. However, overall our findings indicated that linear registration 

methods using the CC similarity metric performed adequately and may be more practical for 

processing larger datasets to reduce computational processing time.  

4.1.1 Semi-automatic registration-based fetal subcortical segmentation 

This research utilized machine learning-based segmentation algorithm from NiftyMIC toolkit 

(Ebner et al., 2020) to significantly mitigate motion artifacts, to segment the fetal brain 

images acquired during the third trimester in 2D, and to reconstruct 2D images in three 

planes into 3D volumes. The NiftyMIC toolkit is an open-source toolkit, Python-based 

software for research within the Guided Instrumentation for Fetal Therapy and Surgery 

(GIFT-Surg) project, which is an international research consortium focussed on developing 

technology, tools and training to facilitate fetal surgery (Joyeux et al., 2018). The software 



49 

 

 

can reconstruct an isotropic, high-resolution brain volume from multiple low-resolution 2D 

image slices acquired in fetuses. The NiftyMIC 2D segmentation that was originally trained 

and developed for second-trimester fetal MR images. However, in the current study, when 

NiftyMIC was applied to third trimester images, and only 8 of the 9 fetal brains were 

estimated reliably, demonstrating reasonable performance. This masking step is essential for 

the remaining work-flow steps. Each fetal mask required visual inspected and manual editing 

to aid in performance of the automatically generated labels. With the adequate 2D fetal brain 

masks serving as input, NiftyMIC volumetric reconstruction process performed smoothly. Of 

note, the one fetal scan that NiftyMIC segmented accurately without need for further manual 

segmentation was from a fetus who was diagnosed growth restriction. In turn, the immaturity 

of the fetal brain in this particular participant may have contributed to the performance of the 

NiftyMIC algorithm. The algorithm was designed for less mature fetal brain images acquired 

in the second trimester. As only one mother with a fetus with growth restriction was recruited 

to our study, it is not possible to evaluate whether the immaturity of the cortex contributed to 

the results and further studies with larger samples of growth appropriate and growth 

restricted fetal MRI scans are needed. Overall, NiftyMIC performed well on the majority of 

the images and the performance was comparable to what was previously published in second 

trimester images. 

The linear registration algorithms and nonlinear registration algorithms paired with 

various similarity metrics were successfully applied to register the labeled atlas into native 

space for cortical and subcortical segmentation of the MRI scans acquired in third-trimester 

fetuses.  The use of different similarity metrics applied to fetal deep-brain segmentation was 

explored. The registered thalamic and cerebellar masks were compared to manually 

segmented masks. The ANTs linear registration tool using either the mutual information or 
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the cross-correlation similarity metric reliably segmented deep brain structures of fetal brains 

on MR images. The Dice similarity coefficients of ANTs Lin CC indicated a strong 

agreement between the atlas-based segmentations and the manual segmentations. The ANTs 

Lin MI registration had nearly identical Dice similarity coefficients for both thalamic and 

cerebellar segmentations. According to the guidelines for the interpretation of Dice Similarity 

coefficients (Cohen, 1960), the median Dice Similarity coefficients of ANTs Lin MI and CC 

indicated a substantial agreement between the registration-based semi-automatic 

segmentation and manual segmentation for estimating fetal deep brain structures. However, 

there was a notable performance difference between thalamic and cerebellar segmentations 

using all five registration methods. The median Dice similarity coefficients of the thalamic 

segmentations were lower than that of the cerebellar segmentations, which indicated 

excellent agreement (>0.8) and an only moderate agreement (0.5~0.6) between the 

registration-based and manual thalamic segmentations using ANTs Lin MI and CC. Findings 

indicated that ANTs-based nonlinear image registration did not outperform ANTs-based 

linear image registration for segmenting fetal deep brain structures. ANTs-based linear image 

registration outperformed the linear transformation in FLIRT. The cross-correlation 

similarity metric, suitable for intra-modality MR image normalization, was sufficient for our 

fetal MRI data. The additional calculations involving histogram matching from the mutual 

information metric did not substantially improve the image registration quality. Therefore, 

using the cross-correlation metric, that required less computation time to register the data, is 

sufficient for processing datasets with larger sample sizes.  

4.1.2 Limitations and future improvements 

Machine learning algorithms are known to theoretically perform well to learn and predict 

data patterns when the process is trained with enough data. This is dependent on the 
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complexity of the problem and the sophistication of the machine learning algorithm. The 

NiftyMIC 2D brain segmentation of third trimester fetal MR images specifically did not 

perform reliably. The NiftyMIC (niftymic_segment_fetal_brains) machine learning algorithm 

was originally trained with MR images of second-trimester healthy fetuses and fetuses 

diagnosed with spina bifida. Exponential growth of the fetal brain from the second to the 

third trimester results in significant cortical and subcortical morphology changes. 

Additionally, during the third trimester the fetal brain becomes increasingly myelinated. 

Structural MR images weighted by T1 or T2 relaxation times have different water and fat 

content in the fetal brain compared to that seen in adults. This results in different signal 

intensities in the voxels of MR images of the fetal brain, which can vary in fetuses even 

compared to 6-month infants due to the rapid changes in both overall growth as well as 

myelination changes (Dubois et al., 2014). Less is known about tissue intensity changes 

between second trimester and third trimester fetuses; however, in relation to the current work 

the image intensity of the voxels of the grey and white matter tissues of the training data used 

for NiftyMIC may have been quite different from that of our third-trimester data. These 

factors could have notably influenced the machine learning algorithm’s performance. 

Overall, each segmentation and fetal mask produced by NiftyMIC needed to be visually 

inspected and sometimes manually edited. However, 8 of the 9 images that were tested were 

able to be segmented and reconstructed using NiftyMIC, indicating comparable performance 

to that published in second trimester images. 

During this study, it has been challenging to acquire data from many patients due to 

the COVID-19 pandemic restrictions. From March 2020 till August 2021, we were limited to 

recruit only Western University staff and students at the University scanning site. Thus, we 

had minimal training data to re-train the NiftyMIC machine learning algorithm for 2D fetal 



52 

 

 

brain segmentation. Having more data would be ideal to construct a fully automatic pipeline. 

Recruitment and scanning of participants is still ongoing and more data will offer the 

opportunity to re-train the machine learning model and automate the 2D fetal brain 

segmentation processes. On a larger dataset, the performance test of the fetal brain 

segmentation and the registration-based subcortical segmentation can be more accurately 

assessed. 

 Among all five configurations of linear and nonlinear image registration methods, 

overall, the atlas-based cerebellar segmentations were notably more accurate, compared to 

the gold-standard manual segmentations, compared to thalamic segmentations using the same 

methods. The Dice similarity coefficients for thalamic segmentations using ANTs Lin MI 

and CC were in the moderate range (e.g., 0.5-0.6) while that for the cerebellar segmentations 

was in the excellent range (e.g., 0.8-0.9). This outcome reflects lower agreement between the 

fetal brain atlas and the manual rater. The intra-rater reliability was assessed, and the re-

segmented labels were found to show good overlap with the original segmentations. 

However, the over- or under-estimations that may have occurred during our manual 

segmentation protocol against the atlas was not specifically assessed in this study.  

4.1.3 Implications 

This semi-automatic fetal subcortical segmentation method may be very beneficial for future 

studies of fetal neurodevelopment. The in-utero origin of neurodevelopmental delay reflected 

in smaller cortical and subcortical volumes can be studied by applying this methodology to a 

larger fetal MR image dataset that has the potential for significant savings in terms of time 

and labour devoted to manual segmentations. The whole brain volume and deep brain 

structures such as the hippocampus are important for learning and memory processes and can 

be segmented from the MR images for comparison, analysis and developmental outcome 
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prediction. The proposed methodology could also be utilized for the study of second 

trimester fetal volumetric development. The fetal neurodevelopment from the second to third 

trimester could be monitored by segmenting and calculating subcortical and brain growth of 

in high-risk groups. This method could potentially reveal when the variations in brain 

morphology occurs to aid in the early diagnosis of fetal brain abnormalities in clinical 

settings.  

 ANTs-based linear image registration performed slightly better than ANTS-based 

nonlinear image registration for aligning the fetal brain atlas to the native MR image space of 

our dataset. However, this difference was not evident statistically. The amount of 

deformation of the image when warping the atlas might have been minimal given that the 

difference in the shape of the fetal brain of the atlas and our acquired fetal MR images was 

comparable in terms of the anatomy. Linear mis-localization of the fetal brains between the 

atlas image and the target image contributed to spatial differences. As a result, linear 

transformations of the atlas fetal brain with only few degrees of freedom resulted in a 

substantial result compared to nonlinear transformation which utilizes millions of degrees of 

freedom. The ANTs based linear registration is less time-consuming than nonlinear 

registration with lower requirement of computation abilities while providing reliable 

subcortical segmentation performance. Thus, a linear registration method may be more 

applicable for processing fetal brain MR images when processing large dataset.  

4.1.4 Conclusions 

Antenatal development of the fetal cortex and subcortical structures is a complex 

neurophysiological process. The development of the nervous occurs through genetically 

predetermined events including cellular proliferation, neuronal migration, and differentiation 

of cells into specialized subtypes followed by synaptogenesis that provides the formation of 
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cortical and subcortical circuitry. Environmental influences such as maternal diet and even 

stress can alter these processes and in more severe cases can led to growth restriction of the 

fetus. The study of fetal brain development using volumetric MRI provides a window into 

the development of the cortex and subcortical structures in both typical and atypically 

developing fetuses. In this work, a semi-automatic pipeline to segment the cortex and 

subcortical structures in third trimester images was developed and evaluated. A novel deep 

learning-based algorithm was used to segment and reconstruct 3D MR images of the entire 

fetal brain. An atlas to segment cortical and subcortical structures was aligned to the fetal 

brain images. Five registration algorithms were evaluated and compared to gold-standard 

manual segmentations of subcortical structures. 

Overall a linear registration algorithm using cross correlation metric provided optimal 

performance to segment the cortical structures, but a linear registration method provided 

comparable results and may be favourable to for large datasets or for use in low resource 

settings without access to high throughput computational facilities. 
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