Proteomic studies of human embryonic stem cells in hypoxia

Amelia A. Nuhn

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Nuhn, Amelia A., "Proteomic studies of human embryonic stem cells in hypoxia" (2011). Digitized Theses. 3475.
https://ir.lib.uwo.ca/digitizedtheses/3475

This Thesis is brought to you for free and open access by the Digitized Special Collections at Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

Proteomic studies of human embryonic stem cells in hypoxia

 (Thesis format: Monograph)by
Amelia A. Nuhn
Graduate Program in Biochemistry

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

The University of Western Ontario
London, Ontario, Canada
© Amelia A. Nuhn, 2011

Abstract

Hypoxia has been shown to promote pluripotency in human embryonic stem cells (hESCs), but the mechanism by which this occurs in poorly understood. To gain insight into this mechanism, we used mass spectrometry to investigate changes in protein expression in hESCs cultured in hypoxia. hESCs in feeder free culture were incubated in 1% oxygen or 20% oxygen for 48 and 72 hours. The medium was not changed during this time to accelerate differentiation. Immunofluroescence localization of Oct-4 revealed that cultures incubated in hypoxia were less differentiated than cultures incubated in normoxia. Electrospray tandem mass spectrometry was performed to compare global protein expression of hESCs from each oxygen condition. Changes were observed in the expression of proteins involved in metabolism, chromatin modification, post-transcriptional modification, and regulation of the transcription factor, c-Myc. The results of this study will improve our understanding of the mechanism by which hypoxia maintains pluripotency of hESCs in vitro.

Keywords

Proteomics, human embryonic stem cells, hypoxia, pluripotency

Co-authorship

Chapter 1, Section 1.5

Hughes CS*, Nuhn AA*, Postovit LM, and Lajoie GA. Proteomics of human embryonic stem cells. Proteomics. 2011. 11(4): 675-90.
*co-first authors
Section 1.6 of this thesis was adapted from the above literature review. Chris Hughes and Amelia Nuhn wrote the initial draft of the manuscript and Lynne Postovit and Gilles Lajoie revised it.

Declaration

The hESC maintenance, sample preparation, and real-time RT-PCR, Western blotting, immunofluorescence, and mass spectrometry experiments described in Chapter 2 and Chapter 3 of this thesis were performed by Amelia Nuhn.

This work is dedicated to my family and to my roommates, Rainie, Steph and Tash. Thank you for always believing in me and being there for me when I need you. The past two years have been amazing, largely because of you. I love you all!

Acknowledgements

I am very appreciative of my supervisors, Dr. Gilles Lajoie and Dr. Lynne Postovit, for their wisdom, expertise and innovative ideas. I am especially grateful that they always believed in me and were encouraging, supportive, and optimistic.

I would like to sincerely thank my advisory committee, Dr. Lars Konermann, Dr. David Hess, and Dr. Cheryle Seguin. I was fortunate to work with amazing people who dedicated their time to teaching me lab techniques. Thank you to Paula Pittock and Chris Hughes for helping me with mass spectrometry, Lynne Postovit for teaching me how to culture embryonic stem cells and perform immunofluorescence, Cheryle Seguin for donating CA1 hESCs and for instructing me in how to culture them, Dylan DietersCastator for showing me how to do Western blots, and Guihua Zhang for training me in real time RT-PCR.

Table of Contents

Certificate of Examination ii
Abstract and Keywords iii
Co-authorship iv
Declaration iv
Dedication v
Acknowledgements vi
Table of Contents. vii
List of Tables x
List of Figures. xi
List of Appendices xii
List of Abbreviations xiii
Chapter 1: Introduction 1
1.1 Human embryonic stem cells 1
1.2 Maintenance of hESCs in vitro 3
1.3 Hypoxia and human embryonic stem cells 5
1.3.1 Hypoxia inducible factors 6
1.3.2 Hypoxia promotes pluripotency of stem cells 7
1.3.3 Hypoxia can improve differentiation of stem cells 13
1.4 Fundamentals of mass spectrometry 13
1.4.1 Peptide sequencing by tandem mass spectrometry. 15
1.4.2 Sample preparation for MS analysis 15
1.4.3 Quantitative proteomics 17
1.4.4 Bioinformatic analysis of MS spectra 19
1.5 Mass spectrometry analysis of the hESC proteome 21
1.6 Objectives of this thesis 25
Chapter 2: Experimental Procedures 26
2.1 Maintenance of hESC cultures 26
2.2 Culture of hESCs in different oxygen conditions 27
2.3 Protein extraction and quantification 28
2.4 RNA extraction and quantification 28
2.5 Immunofluorescence 30
2.6 Western blotting 31
2.7 Real-time RT-PCR 32
2.8 Fractionation and tryptic digestion of proteins for MS analysis 33
2.9 Iterative exclusion tandem mass spectrometry analysis 34
2.10 Bioinformatic analysis 36
Chapter 3: Results 39
3.1 Hypoxia promotes pluripotency in our experimental system 39
3.1.1 Immunofluorescence localization of Oct-4 39
3.2 Real-time RT-PCR analysis of pluripotency associated genes in hypoxia 44
3.3 HIF-1a protein expression in hESCs cultured in hypoxia and normoxia 44
3.4 Numerous proteins were up- or down-regulated in hypoxia 50
3.4.1 Hypoxia influenced the expression of some metabolic proteins 51
3.4.2 Proteins involved in cell signaling were expressed differently in hypoxia 54
3.4.3 Enzymes involved in steroid biosynthesis were up-regulated in hypoxia 60
3.4.4 Transcriptional regulatory proteins were expressed differently in hypoxia 60
3.4.5 Proteins involved in RNA processing were expressed differently in hypoxia 61
3.4.6 Protein-processing enzymes were differentially expressed in hypoxia 61
3.4.7 Proteins involved in cell trafficking were expressed differently in hypoxia 62
3.4.8 Proteins involved in epigenetics were expressed differently in hypoxia 63
3.4.9 Some procollagen hydroxylases were up-regulated in hypoxia 64
3.4.10 Proteins involved in proliferation or mitosis were differentially expressed 64
3.4.11 Proteins involved in apoptosis were expressed differently in hypoxia. 65
3.4.12 Proteins involved in autophagy were expressed differently 66
3.4.13 Proteins involved in translation were down-regulated in hypoxia. 66
3.4.14 Proteins associated with cytoskeleton were up-regulated in hypoxia 67
3.4.15 Proteasomal proteins were down-regulated in hypoxia. 67
Chapter 4: Discussion 68
4.1 Establishment of a model to study the effects of oxygen in the regulation of pluripotency 68
4.2 Hypoxia influenced the expression of some metabolic proteins 70
4.3 Hypoxia influenced the expression of some proteins involved in chromatin Modification 75
4.4 Some proteins that regulate c-Myc expression or activity were up-regulated in hypoxia 76
4.5 Proteins involved in post-trancriptional modification were differentially expressed in hypoxia 77
4.6 Some proteins that require oxygen as a substrate were differentially expressed in hypoxia 80
4.7 Proteins associated with proliferation and apoptosis were differentially expressed in hypoxia 81
4.8 Suggestions for future experiments 83
4.9 Conclusion 86
References 87
Appendix A 100
Appendix B 101
Appendix C 103
Appendix D 104
Appendix E 105
Appendix F 125
Curriculum Vitae 150

List of Tables

Table 1 Proteins Up-regulated in Hypoxia After 48 Hours 55
Table 2 Proteins Down-regulated in Hypoxia After 48 Hours. 56
Table 3 Proteins Up-regulated in Hypoxia After 72 Hours 58
Table 4 Proteins Down-regulated in Hypoxia After 72 Hours. 59

List of Figures

Figure 1 Derivation of hESCs 2
Figure 2 HIFs translate changes in oxygen concentration to changes in protein expression 8
Figure 3 Liquid-chromatography tandem mass spectrometry 16
Figure 4 Overview of a general proteomics workflow 18
Figure 5 Stable isotope labeling of amino acids in culture 20
Figure 6 Modified Bradford assay setup 29
Figure 7 Proteomic analysis of hESCs cultured in hypoxia 35
Figure 8 Iterative exclusion tandem mass spectrometry 38
Figure 9 hESC morphology after 48 or 72 hours of culture in 1% or 20% oxygen 40
Figure 10 Immunofluorescent detection of Oct-4 in hESCs cultured in 1% or 20% oxygen for 48 or 72 hours 42
Figure 11 Percentage of colonies with areas of differentiation for hESCs cultured in 1% or 20% oxygen, as determined by immuno- fluorescent detection of Oct-4 43
Figure 12 Real-time RT-PCR analysis of Oct-4 mRNA in hESCs cultured in hypoxia and normoxia 45
Figure 13 Real-time RT-PCR analysis of Nanog mRNA in hESCs cultured in hypoxia and normoxia 46
Figure 14 Real-time RT-PCR analysis of Nodal mRNA in hESCs cultured in hypoxia and normoxia 47
Figure 15 Real-time RT-PCR analysis of HIF-1 α mRNA in hESCs cultured in hypoxia and normoxia 48
Figure 16 Expression of HIF-1 α in hESCs cultured in hypoxia and normoxia 49
Figure 17 Fractionation of the hESC proteome by 1D gel electrophoresis. 52
Figure 18 Number of proteins consistently identified by MS in hypoxic and normoxic hESC samples 53
Figure 19 Metabolic proteins that were differentially expressed in hypoxia. 72
Figure 20 Hypoxic up-regulation of proteins involved in steroid biosynthesis 74

List of Appendices

Appendix A Proteins down-regulated in hypoxia at 72 hours 101
Appendix B Proteins down-regulated in hypoxia at 72 hours 102
Appendix C Proteins down-regulated in hypoxia at 72 hours 104
Appendix D Proteins down-regulated in hypoxia at 72 hours 105
Appendix E All proteins identified at 48 hours in hypoxia 106
Appendix F All proteins identified at 72 hours in hypoxia 126

List of Abbreviations, Symbols, Nomenclature

ACN - acetonitrile
ARNT - aryl hydrocarbon receptor nuclear translocator
bFGF - basic fibroblast growth factor
BMP - bone morphogenic protein
BSA - bovine serum albumin
CAK - cdk activating kinase
cAMP - cyclic adenosine monophosphate
CDK - cyclin dependent kinase
CID - collision induced dissociation
CM - conditioned medium
coA - coenzyme A
CT - cycle threshold
DDA - data dependent acquisition
DTT - dithiothreitol
EB - embryoid body
ECM - extracellular matrix
EDTA - ethylenediaminetetraacetic acid
EndRB - endothelin receptor type B
ERK - extracellular signal-related kinase
ESI - electrospray
ETC - electron transport chain
ETD - electron transfer dissociation
FA - formic acid
FT ICR - Fourier transform ion-cyclotron-resonance
hCG - human chorionic gonadotrophin
hDF - human dermal fibroblast
hESC - human embryonic stem cell

HIF - hypoxia inducible factor
HPRT1 - hypoxanthine phosphoribosyltransferase 1
HRE - hypoxia response element
HRP - horseradish peroxidase
HSC - hematopoietic stem cells
ICM - inner cell mass
IDA - iodoacetamide
IE - iterative exclusion
IGF - insulin-like growth factor
iPSC - induced pluripotent stem cell
IT - ion trap
iTRAQ - isobaric tags for relative and absolute quantitation
LC - liquid chromatography
LIF - leukemia inhibitory factor
MALDI - matrix assisted laser desorption ionization
MAPK - mitogen activated protein kinase
MEF - mouse embryonic fibroblast
MEF-CM - mouse embryonic fibroblast conditioned medium
mESC - mouse embryonic stem cell
MM - MEF medium
mPER - mammalian protein extraction reagent
MS - mass spectrometry
MS/MS - tandem mass spectrometry
MSC - mesenchymal stem cell
m / z - mass-to-charge ratio
NO - nitric oxide
NSC - neural stem cell
OCT - octamer binding protein
OMSSA - open mass spectrometry search algorithm

PAGE - polyacrylamide gel electrophoresis
PBS - phosphate buffered saline
PEDF - pigment epithelium-derived factor
PHD - prolyl-hydroxylase domain
PKM - pyruvate kinase muscle
PP2A - protein phosphatase 2A
PTM - post-translational modification
PVDF - polyvinlyidene difluoride
Q-ToF - quadrupole time-of-flight
ROS - reactive oxygen species
RP - reversed phase
RT-PCR - reverse transcription polymerase chain reaction
SAX - strong anion exchange
SCID - severe combined immunodeficient
SCX - strong cation exchange
SDS - sodium dodecyl sulfate
SILAC - stable isotope labelling with amino acids in cell culture
SM - stem cell medium
SRM - selected reaction monitoring
SSEA - stage-specific embryonic antigen
TBS-T - tris-buffered saline with tween
TGF- β - transforming growth factor β
VEGF - vascular endothelial growth factor
XaXa - two active X chromosomes
$\mathrm{XCl}-\mathrm{X}$ chromosome inactivation
*see Tables 1-4 for a list of abbreviations of the proteins identified in this study

Chapter 1: Introduction

1.1 Human embryonic stem cells

The successful derivation of human embryonic stem cells (hESCs) was a tremendous advancement in medical science, as these cells have exciting potential in a remarkable variety of research and clinical applications [1]. hESCs offer promise in regenerative medicine for the treatment of many diseases including cancer, Alzheimer's and Parkinson's disease [2-5]. They have invaluable potential for use in tissue replacement therapies and provide unique insight into early human development [6-8]. Controlled differentiation of hESCs that possess the genotypic abnormalities of a particular genetic disease could create a powerful system to study that disease [9]. In addition, hESCs can be used in drug efficacy and toxicity testing to facilitate the selection of candidate molecules and to reduce the risk of side-effects in later stages of drug development [10]. hESCs are promising for medical use because they have two special properties. The first is that they are pluripotent, which means they have the ability to differentiate into an impressive diversity of cells from the three primary germ layers: endoderm, mesoderm, and ectoderm [11]. The second is that they have the ability to self-renew continuously in culture while remaining undifferentiated [12].

Thomson et al. derived the first hESC lines in 1998 from the inner cell mass of donated blastocysts that were produced by in vitro fertilization clinics [13]. A blastocyst is a pre-implantation embryo that consists of an outer layer of cells called the trophoblast, which could become a placenta if the blastocyst implants, and the inner cell mass (ICM), which has the potential to develop into an embryo (Figure 1). In order to derive a hESC line, the inner cell mass (ICM) of the blastocyst was removed, placed on inactivated mouse embryonic fibroblasts (MEFs), and passaged serially. The pluripotency of these cell lines was demonstrated in vitro by their ability to form embryoid bodies (EB). It was also demonstrated in vivo after injection of the cells into

Figure 1. Derivation of hESCs. The inner cell mass of a blastocyst is removed and cultured on a layer of feeder cells, such as MEFs, or on a layer of extracellular matrix, such as Matrigel ${ }^{\oplus}$. After serial passaging, ICM cells become hESCs.
severe combined immunodeficient (SCID) beige mice produced teratomas, which are tumors with tissue components resembling normal derivatives of all three germ layers [13]. ICM cells differ from hESCs in that they are transient, while hESCs are stable in vitro artifacts of the derivation process. However, hESCS are believed to posses the same developmental potential as ICM cells.

Further studies of hESCs revealed that these cells express high levels of the pluripotency associated transcription factor, Oct4 and the telomere extending polymerase, telomerase [14]. Oct4, Nanog, and Sox2 function as core transcription factors in maintaining pluripotency of ESCS and act as a complex to repress genes involved in lineage specification [15].

1.2 Maintenance of hESCs in vitro

Whether hESCs remain pluripotent or begin to differentiate down a particular lineage is determined largely by extracellular signals from the surrounding dynamic microenvironment. These signals include growth factors, nutrients and morphogens in the culture medium, extracellular matrix proteins, and even oxygen gradients.

Many research experiments and proposed clinical applications of hESCs require the cells to be pluripotent and free of non-human contamination. However, a major limitation to the use of hESCs in medical research is that they can undergo spontaneous differentiation in culture if proper conditions for pluripotency are not maintained. Either passage must always be performed early, before differentiated cells are observable, or pluripotent cells must be separated from differentiated cells during passage.

Currently, the in vitro microenvironment that sustains hESC pluripotency is not well understood. One reason for this is that many breakthrough discoveries in culture conditions for mouse embryonic stem cells (mESCs) are not applicable to hESCs [16]. For example, LIF is sufficient to maintain mESC pluripotency on gelatin as an attachment layer, but LIF does not maintain hESC pluripotency in the absence of feeders [17]. More surprisingly, BMP-4 increases the proliferative capacity of mESCs, but promotes differentiation of hESCs [18].

Since the optimal mixture of factors that maintain hESC pluripotency is unknown, hESCs are often derived on a feeder layer of mitotically inactivated mouse or human fibroblast cells. This layer provides a growth substrate and secretes various growth factors, cytokines, and adhesion related proteins that promote pluripotency [19, 20]. A significant leap forward in hESC culture methods was the discovery by Xu et al. that hESCs can be maintained on a layer of basement membrane matrix, called Matrigel ${ }^{\circ}$, in media that has been conditioned by γ-irradiated MEFs (MEF-CM) [21]. Matrigel ${ }^{\bullet}$, which is extracted from Englebreth-Holm-Swarm tumors in mice, is a complex mixture of extracellular matrix (ECM) proteins that is composed primarily of laminin, collagen-IV, and enactin [22-24]. This type of culture is called feeder-free, and it increases the efficiency and consistency of the culture environment compared to feeder-dependant culture. However, both MEFs and Matrigel provide a source of experimental variability and a risk of xeno-transmission from non-human sources [25, 26]. Moreover, different stem cell lines are cultured on different strains of MEFs, adding an additional layer of complexity. Therefore, it is necessary to determine which of the fibroblast-secreted proteins promote pluripotency so that these alone can be used to maintain hESC cultures.

If the replacement of necessary culture components with defined human factors is incomplete, hESCs may be forced to alter their gene expression in order to adapt. This was demonstrated when Ludwig et al., derived the first hESC lines in defined feeder-free conditions with all proteins derived from human material [27]. High concentrations of bFGF were used instead of MEF conditioning of the media to support hESC self-renewal. Disappointingly, the cultures became unstable in these defined conditions and could not maintain a normal karyotype for more than six months [27].

Future studies that aim to increase our understanding of the regulatory mechanisms involved in hESC pluripotency and differentiation may allow for the development of effective, xeno-free, defined culture conditions. Furthermore, this knowledge will increase our ability to produce homogeneous populations of cells that could be used safely in clinical applications. For this reason, hESC research has focused
as much on revealing mechanisms to maintain hESCs in the pluripotent state as on methods to direct differentiation along specific cell lineages.

1.3 Hypoxia and human embryonic stem cells

Oxygen is not only an essential substrate for metabolism in aerobic organisms, it is also a signaling molecule that influences cellular activity. It is therefore an important component of the cellular microenvironment [28]. In the early days of hESC culture, little attention was paid to the importance of oxygen tensions in the microenvironment, and the cells were thus maintained in atmospheric oxygen [29]. However, atmospheric oxygen tensions are significantly higher than oxygen tensions in the reproductive tract, which is the natural environment of hESCs [30]. During implantation, the embryo has not yet accessed maternal circulation and as a result, it resides in a hypoxic environment of about 2% oxygen at the uterine surface [31]. Not only does the early embryo develop in a hypoxic environment, but studies have shown that oxygen gradients actually have a large influence on embryogenesis [32]. In most mammalian species that have been studied, low oxygen has been shown to improve in vitro embryo development and increase cell number of the inner cell mass [33,34]. This provided the first clue that oxygen concentration may play an important role in hESC fate.

The second clue was from studies of adult human stem cells, which revealed that hypoxia has an important regulatory role in these cells. After air enters the lungs, the partial pressure of oxygen progressively decreases as it travels to organs and tissues [35]. Adult stem cells reside in anatomical compartments that are relatively hypoxic compared to other tissues of the body. For example, hematopoietic stem cells (HSCs), which reside in bone marrow and replenish blood and immune cells, are physically separated from blood vessels by several stromal cells and progenitor cells. Studies have consistently shown that bone marrow aspirates are hypoxic, with some levels as low as 1-2\% [36]. It has been demonstrated that HSCs that reside in the hypoxic regions of the bone marrow express higher levels of Notch-1, telomerase, and p21 than cells that reside in regions that are closer to blood vessels [37].

Mesenchymal stem cells (MSCs) are multipotent cells that are capable of differentiating into bone, cartilage, fat, tendon, and other progenitor cells. These cells are located in close proximity to blood vessels, but their niche is still relatively hypoxic because it is within tissues that have low oxygen tensions [38]. Hypoxic culture of MSCs in vitro has been shown to increase their proliferative lifespan, to diminish their differentiation capacity [39], and to increase Oct4 expression and telomerase activity [40, 41].

Neural stem cells (NSCs), which are multipotent, self-renewing cells that differentiate into cells of the nervous system, reside in the subventricular zone and the hippocampus. Oxygen tensions in the brain range from 3-4\%, and NSCs are believed to reside in especially hypoxic regions because of the distance between their niche and blood vessels [29]. In vitro studies have shown that hypoxia increases proliferation and promotes multipotency in NSCs, while atmospheric oxygen tensions lead to mitotic arrest and promote glial differentiation [42].

Since oxygen concentration plays such an important role in the biological niche of adult stem cells, the importance of controlling oxygen concentrations in in vitro cell culturing is becoming increasingly appreciated. It is hypothesized that stem cells reside in hypoxic niches because it is important for them to avoid DNA damage since their biological role is to replenish cells [43]. Aerobic metabolism causes some degree of DNA damage through the generation of reactive oxygen species and stem cells may escape this damage by residing in hypoxic niches [37].

1.3.1 Hypoxia Inducible Factors

Hypoxia-inducible factors (HIFs) play a fundamental role in the cellular response to oxygen concentration [44]. Active HIF complexes consist of an oxygen-labile α subunit, which exists in three isoforms, and a stable β subunit [45]. HIF1 α is expressed in almost all mammalian cell types, whereas HIF2 α and HIF3 α are only expressed in specific tissues [45]. In hypoxia, HIF α subunits are stabilized and form heterodimers with the constitutively expressed protein, HIF1 β (ARNT). HIF heterodimers regulate
transcriptional responses by binding to hypoxia-response elements (HREs) on their target genes (Figure 2; [46]). In the presence of increased oxygen tensions, HIFa subunits are hydroxylated by prolyl-hydroxylase domain enzymes (PHD), which require oxygen for their activation [47]. Hydroxylated HIF α is subsequently marked for proteosomal degradation by the E3 ubiquitin ligase, von Hippel-Lindau factor (VHL).

Numerous studies have revealed that HIF1 α and HIF2 α have a role in the maintenance of hESC pluripotency. For example, HIF2 α has been shown to regulate Oct-4 expression, which suggests one mechanism by which hypoxia could affect hESC pluripotency [48]. In another study, HIF1 α was shown to interact with the Notch intracellular domain to induce expression of Notch target genes, which are important for the maintenance of undifferentiated stem cells [49].

While HIFs are known to play a significant role in the cellular response to hypoxia, it is believed that there are multiple oxygen sensing pathways involved in the response. For example, PHDs hydroxylate proteins other than HIF in the presence of oxygen, and these other substrates may play an important role in the cell's response to oxygen [50]. In addition, PHDs belong to a family of 2-oxogluterate-dependant dioxygenases, all of which require oxygen for their enzymatic activity [51].

1.3.2 Hypoxia promotes pluripotency of stem cells

A striking study by Ezashi et al. in 2005 showed that hESCs not only grow as well in hypoxic conditions as they do in normoxic conditions, but that hypoxic culture actually reduces the amount of spontaneous differentiation that occurs in hESC colonies [52]. In this study, hESCs were cultured on MEFs or Matrigel ${ }^{\circledR}$ in hypoxic (1, 3, 5\% oxygen) and normoxic (21% oxygen) conditions for twelve days. After nine days, areas of enlarged, flattened cells that did not express Oct-4 or SSEA-4 appeared in normoxic cultures. In hypoxic conditions, patches of differentiating cells were smaller in size and less numerous, and expression of Oct-4 and SSEA-4 was maintained throughout the colony. Production of human chorionic gonadotropin (hCG), which reflects spontaneous

Figure 2. HIFs translate changes in oxygen concentration to changes in protein expression. Hypoxia prevents the hydroxylation of HIF α by PHD, which would result in proteosomal degradation of HIF . Stabilized HIF subunits travel to the nucleus and form heterodimers with the stable subunit, HIF1ß. HIF heterodimers regulate transcriptional responses by binding to hypoxia-response elements (HREs) on their target genes.
differentiation of hESCs, began to increase after five days in normoxic culture; however, only low concentrations of hCG were detected in hypoxic culture beginning at day seven. Hypoxia did not appear to limit the growth of hESCs, as the number of colonies and average colony surface area did not differ between oxygen conditions, although it was noted that less DNA was recovered from the cells grown at 1% oxygen. After thirteen days, the cells were passaged and cultures that had been grown in normoxic conditions were transferred to hypoxic conditions and vice versa. The cells were cultured in the alternate oxygen condition for an additional 14 days. Cultures that had been exposed to hypoxia for half of the experiment had a much lower degree of overall differentiation compared to control cultures that had been exposed to normoxia for the entire time course. The authors concluded that hypoxia promotes pluripotency of hESCs and does not inhibit proliferation. This suggests that hESCs do not need to be passaged as frequently when maintained in hypoxia, and that hypoxia may decrease the risk of transferring hESCs already marked for differentiation but not easily distinguished from pluripotent cells.

Zachar et al. expanded on this by studying the long term effects of hypoxia on hESC culture [53]. In this study, hESCs were cultured in 21% or 5% oxygen for eighteen months. At the end of the time course, colonies that had been maintained in 21% oxygen had central zones of spontaneously differentiated cells that did not express Oct4. Colonies that had been maintained in 5% oxygen consisted largely of homogeneous cells that expressed Oct-4. Only 56% of the colony area was undifferentiated in cultures maintained in 21% oxygen, while 98% of the colony area was undifferentiated in cultures maintained in 5\% oxygen. Contrary to Ezashi et al.'s findings, measurements of colony size and incorporation of $\left[\mathrm{H}^{3}\right]$-labeled thymidine revealed that the colonies maintained at atmospheric oxygen grew significantly faster than the colonies maintained in hypoxic conditions. After four weeks, colonies cultured in 21% oxygen had a 2.6 -fold greater area than those cultured in 5% oxygen. The authors concluded that hypoxia enhances the long-term self-renewal and pluripotency of hESCs but decreases the rate of proliferation.

A study by Prasad et al. compared short- and long-term effects of hypoxia on hESCs [54]. To study the effect of short-term hypoxic culture, hESCs were cultured in $1 \%, 5 \%, 10 \%, 15 \%$ or 20% oxygen for four weeks. After two weeks, pericentral thick zones, which indicate spontaneous differentiation, became evident around colonies cultured in $10 \%, 15 \%$ or 20% oxygen. The cells cultured in 1% and 5% oxygen were homogeneous and did not have pericentral thickening; however, most of the colonies in 1% oxygen did not survive beyond 2 weeks. Immunofluorescence assays revealed that only 60% of the cells cultured in 10% and 15% were Oct-4 positive, undifferentiated cells after 4 weeks, while cells cultured in 1% and 5% were 100% undifferentiated at 4 weeks. In order to compare short- and long-term effects of hypoxia, some hESC cultures were maintained in 5% oxygen for 18 months prior to the 4 -week experiment. Colonies that had been maintained in hypoxia for the long-term displayed similar structural development to the colonies maintained in 21% oxygen prior to the experiment. However, real time RT-PCR analysis revealed that the colonies that had been maintained in 5\% oxygen for 18 months expressed lower levels of Nanog and Notch1 mNA than cells maintained in 5% oxygen for only 4 weeks. After the four week experiment, all cultures were transferred back to normoxic conditions, and after only one week, differentiation zones appeared in all cultures, except for the cultures originally maintained in 1\% oxygen. By the end of four weeks, all cultures contained 60% undifferentiated cells. The authors additionally noted that the rate of proliferation was lower in 5% oxygen and especially lower 1\% oxygen compared to cells cultured in higher oxygen tensions, as determined by incorporation of $\left[\mathrm{H}^{3}\right]$-labeled thymidine.

Prompted by the finding that hypoxia promotes pluripotency in hESCs, Westfall et al. investigated the molecular basis of the phenomenon by studying differences in RNA transcript levels between hESCs maintained in low and high oxygen tensions [55]. RNA was collected after hESCs had been maintained in 4% or 20% oxygen for one week, at which point the colonies were indistinguishable in morphology and size, and neither culture had visible signs of differentiation. When three samples from each condition were compared, the samples from hESCs cultured in 20% oxygen exhibited greater
variance in their gene expression profile that those cultured in 4\% oxygen. A total of 149 transcripts demonstrated consistent differences in expression level between the two oxygen conditions; however, the changes observed were quite small. Of these, 42 transcripts had increased expression in 20\% oxygen and 107 transcripts had decreased expression in 20% oxygen compared to 4% oxygen. Several genes considered to be under the transcriptional control of the Oct4/Nanog/Sox2 complex, including LEFTY2 and endothelin receptor type B (EndRB), were expressed at much lower levels in cells cultured in 20\% oxygen than cells cultured in 4\% oxygen. hESCs cultured in 20\% oxygen also had decreased expression of genes that are known to be regulated by Oct4, such as SALL1, Trim2, Zic2, and FGFR2. However, several genes that have been found to be associated with pluripotency in hESCs, including Oct4, Nanog, Lin28, Sox2, ZFP42/Rex1, Tert, and PodXL did not show a significant difference in transcript levels between the two oxygen conditions. In addition, there was no difference in the expression of the TDGF1 (CRIPTO) gene, which has been shown to be down-regulated during the initial steps of hESC differentiation. The authors suggest that although transcriptional profiles of the core pluripotency genes may not be greatly affected by oxygen conditions, the expression of their downstream targets might be. As one would expect, several genes associated with oxidative stress responses, such as NRF2, NQO1, AKR1C3, VCAN and CTNS, showed increased expression in 20\% oxygen conditions. The biochemical pathway that had the greatest number of downregulated genes in 20% oxygen was glycolysis, which agrees with the fact that most genes encoding enzymes of the glycolytic pathway are known to be regulated by HIF1a. HIF1 α mRNA was highly expressed, but the transcript concentration did not differ between the oxygen conditions. However, several genes thought to be under the control of HIF1 α and that contribute to apoptosis, cellular redox regulation, and proliferation were down-regulated under 20\% oxygen; for example, BNIP3, TXNIP (thioredoxin interacting protein), DDIT4 (DNA damage inducible transcript 4), IGFBP2, LGALS1 and VEGF. HIF2 α was expressed at a much lower level than HIF1 α, but its transcript concentration was increased at 20\% oxygen, and transcripts for HIF β were unaffected by oxygen concentration. It was not
surprising that there was no change in HIF1 α mRNA expression because HIF1 α is primarily regulated at the level of protein turnover. Studying the proteome by mass spectrometry may provide more insight into differences in gene expression because changes in many other proteins may exist through alterations in the rate of translation or protein degradation.

The observation that hypoxia prevents differentiation of hESCs led Yoshida et al. to hypothesize that hypoxia could enhance the generation of induced pluripotent stem cells (iPSCs) [56]. iPSCs are pluripotent stem cells that are artificially derived from differentiated cells by the forced expression of four transcription factors (Oct3/4, Sox2, KIf4, and c-Myc) [57]. They are nearly indistinguishable from ESCs, but the full extent of their similarity to natural pluripotent stem cells is currently being assessed. Yoshida et al. used retroviral vectors to introduce four or three transcription factors (Oct 3/4, Sox2, KIf4, +/- c-Myc) into MEFs, and then cultured the cells in 5% or 21% oxygen from day 5 to day 14 after transduction. The percentage of pluripotent cells was greater in cultures reprogrammed in hypoxia than cells reprogrammed in atmospheric oxygen. The four transcription factors were also introduced into human dermal fibroblasts (HDFs) and the cells were maintained in 5% oxygen for $7,14,21$, or 33 days. The efficiency of iPSC generation was increased by 4.2 fold after 14 and 21 days in hypoxia, and by 3.6 fold after 24 days in hypoxia. Interestingly, iPSCs could be generated in the presence of hypoxia when only 2 transcription factors (Oct3/4 and KIf4) were used. The authors concluded that conducting reprogramming in hypoxic conditions results in improved efficiency for both mouse and human cells and they suggested that hypoxia may contribute to the reprogramming process itself.

Recently, Lengner et al. derived a new hESC line in 5\% oxygen [58]. Interestingly, these cells contained two active X chromosomes (XaXa). The presence of two active X chromosomes is observed in pluripotenct mESCs, whereas all previous hESC lines have undergone X chromosome inactivation (XCI) and are considered developmentally more advanced than mESCs. Using the XaXa hESC line that had been derived in hypoxia, the authors demonstrated that random XCl is induced during differentiation and that
continuous exposure to 20% oxygen induces irreversible XCI. These findings indicate that human ICM cells have two active X chromosomes, and that culturing hESCs in hypoxia preserves this state.

Collectively, these studies have demonstrated that hypoxia plays a significant role in hESC self-renewal and pluripotency and that hypoxia must therefore be carefully controlled when culturing hESCs in vitro. This phenomenon is not well understood, and future studies are needed to determine exactly how hypoxia exerts this effect on protein expression and activity.

1.3.3 Hypoxia can improve differentiation of stem cells

While many studies have shown that culturing hESCs in hypoxia promotes pluripotency and self renewal, other studies have shown that hypoxia is able to improve the efficiency of hESC differentiation, especially to chondrocytes and cardiomyocytes [28]. In a study by Koay et al., hESCs that were differentiated to chondrocytes in 2\% oxygen had significantly greater biomechanical functionality and production of cartilage matrix proteins, especially collagen, than hESCs differentiated in 20% oxygen [59]. Niegruegge et al. differentiated hESCs to cardiomyocytes in 4\% oxygen and found that the total cell number increased by $30-47 \%$ and some cardiac markers increased compared to cardiomyocytes that had been differentiated in 20% oxygen [60].

It is not surprising that hypoxia has been shown to promote pluripotency in hESCs and also to improve the efficiency of differentiation. At the beginning of its development, the pre-implantation embryo consists largely of pluripotent cells. These cells soon begin to differentiate down particular lineages as directed by external signals. Until the embryo accesses maternal circulation, it resides in a hypoxic environment. Therefore, pluripotency and differentiation both naturally occur in hypoxia.

1.4 Fundamentals of mass spectrometry

Proteomics is a rapidly evolving field that provides unparalleled insight into a cell's biochemistry. Mass spectrometry (MS) has become a central technology for
proteomic studies because it is highly sensitive and can generate spectral information about a peptide's amino acid sequence in milliseconds [61].

In order to measure the mass-to-charge ratio (m / z) of peptides, a mass spectrometer must convert these large biomolecules to ions in the gas phase, which was a long-standing barrier to the efficacy of MS. The development of two soft ionization techniques, Matrix Assisted Laser Desorption Ionization (MALDI) and Electrospray Ionization (ESI), revolutionized this technology [61]. In the MALDI technique, a peptide is mixed with a low-molecular weight aromatic acid that forms a light-absorbing matrix. A focused laser beam irradiates the sample, causing the matrix molecules to sublime and transfer the embedded peptides into the gas phase. Generally, the peptide ions are singly charged. In the ESI technique, a peptide solution is dispersed into airborne droplets as it exits a charged needle or the tapered end of an LC column that is held at a high electrical potential with respect to the MS. This generates a high positive charge on the droplets, which undergo desorption of analyte ions and/or droplet fission as the solvent evaporates. Eventually, each droplet contains an average of one multiplycharged analyte ion [61]. ESI ionization was used in this thesis because it allows liquid separation techniques to be coupled directly to MS analysis, and because multiplycharged ions are more easily characterized by MS.

Numerous types of mass analyzers are available to measure the mass-to-charge ratio of peptide ions. These include the quadrupole (Q), time-of-flight (ToF), ion trap (IT), and the newer Orbitrap and Fourier transform ion-cyclotron-resonance (FT-ICR) analyzers. Most mass spectrometers are hybrids that contain different types of mass analyzers in a single instrument; for example, QqQ Q-ToF, QqIT, ITqOrbitrap, and qFTICR. Each of these platforms has advantages and limitations, but they share the ability to generate spectra containing sequence data for thousands of species in a short period of time. Currently, FT ICR and Orbitrap instruments have the highest resolution and mass accuracy, but they are expensive and difficult to operate. Ion traps are robust and usually less expensive than other models, but their mass accuracy and effective mass range are not as great. A Q-ToF is the only type of MS used in this thesis. In this
instrument, the quadrupole is used as a mass filter because it has high efficiency in transmitting a small m / z window. The ToF is used for measuring the m / z of the selected ion because it has a higher mass accuracy.

1.4.1 Peptide sequencing by tandem mass spectrometry

The ability to interface electrospray ionization with these advanced tandem mass analyzers meant that thousands of peptides in a single sample could be analyzed in a high-throughput manner. In a tandem MS experiment, the mass spectrometer first determines the mass of peptide ions as they elute from the LC column. One at a time, abundant ions are selected and allowed to pass to the collision cell, where they are fragmented by Collision Induced Dissociation (CID) with an inert gas or Electron Transfer Dissociation (ETD). CID causes cleavage at the peptide bond, and the resulting ions are called b -ions if the charge is at the amino-terminal and y -ions if the charge is at the carboxy-terminal [61]. ETD causes cleavage between the amino group and the alpha carbon, and the resulting ions are called c-ions if the charge is at the amino-terminal and z-ions if the charge is at the carboxy-terminal. The fragmentation techniques are mild so that the peptide only fragments in one place along the backbone. The peptide fragments move to another mass analyzer, which generates a spectrum of all m / z values in the pool of fragments. The difference in mass between the fragment ions corresponds to the mass of an amino acid, and the sequence can be determined from this spectrum (Figure 3, reviewed in [62]).

1.4.2 Sample preparation for MS analysis

Even with advancements in instrument scan speed, mass spectrometers can only detect a limited number of ions in a given period of time. Proteomes are difficult to study because they are extremely complex and the dynamic range of protein concentrations can span ten orders of magnitude. To alleviate this complexity, the proteome can be fractionated by one- or two-dimensional SDS PAGE or any type of liquid chromatography to divide the sample into simpler portions (Figure 4, [63]).

Figure 3. Liquid-chromatography tandem mass spectrometry. In an LC-MS/MS experiment, peptides ions are separated by LC, which is directly coupled to MS. At a given point in time, the m / z of peptides eluting from the LC column is determined by MS^{1}. An abundant peptide ion is selected and fragmented such that it breaks in one place along the backbone. The m / z of the fragments is measured in MS/MS. The sequence of the peptide can be determined because the difference in mass between the fragments is equal to the mass of the corresponding amino acid.

MS experiments are typically done in a 'bottom-up' approach, in which proteins are enzymatically digested to peptides prior to fractionation and analysis (Figure 4). An important reason for this is that it is difficult to generate sequence information from polypeptides that contain more than 20 amino acids. In addition, many proteins are difficult to solubilize and/or have multiple modification sites, which complicates the identification of the protein. Trypsin, which cleaves peptides on the C-terminal side of arginine and lysine, is a popular choice for enzymatic digestion of proteins. This is because it is stable and highly specific, and it creates appropriately sized peptides that have a charged amino acid at the C-terminus. These properties allow for generation of fragmentation spectra that are easy to interpret. Other enzymes may be used to generate peptides that are complementary to the tryptic peptides or when proteins must be solubilized in conditions that affect trypsin's activity.

It is very common to perform a second fractionation to separate the resulting peptides for MS analysis. The most popular method to identify more ions in a given sample is to interface the MS with a RP, SCX, or SAX LC device (Figure 4). Each of these column types has a different ability to separate a mixture, so the column choice depends on the sample type and proteomics application. Complementary types of fractionation can be used to increase proteome coverage; however, many peptides will not be characterized, making experiments difficult to reproduce.

1.4.3 Quantitative proteomics

Mass spectrometers are not strictly quantitative; therefore, in order to obtain accurate quantitative information in proteomic experiments, stable isotopic labeling is typically used. In techniques involving isotopic labels, such as stable isotope labeling of amino acids in culture (SILAC), one sample is labeled with a stable isotope through metabolic incorporation, and then mixed with an unlabeled sample at a 1:1 ratio of protein concentration [64]. The resolution of current mass spectrometers is high enough to resolve heavy (labeled) from light (unlabeled) peptides, and the intensities of the spectral peaks they produce can be directly compared to determine their relative

Figure 4. Overview of a general proteomics workflow. Proteins are extracted from cells and fractionated by 1D or 2D electrophoresis or some type of liquid chromatography (RP, SCX, SEC, etc.). Cysteines are often reduced and alkylated, and proteins are digested to peptides with a site specific enzyme. The resultant peptides are then fractionated by liquid chromatography, which can be coupled directly to MS. The peptides are analyzed by MS/MS, and bioinformatics software is used to identify the peptide sequences.
abundance (Figure 5; [65]). Alternatively, samples can be labeled following digestion by way of isobaric labeling techniques, such as iTRAQ. After the samples are mixed at a 1:1 ratio, the peptide abundance levels can be compared quantitatively based on the amount of tag present in the $M S / M S$ spectrum. These methods allow minute changes between cellular states to be monitored over time.

There are limitations to most label-based quantification approaches. Specifically, sample preparation techniques can be very complicated, there is often a need for high sample concentration, and labeling is frequently incomplete. For these reasons, label-free techniques are becoming increasingly popular. A recent study by Patel et al. compared a label-free quantitative proteomics approach with an iTRAQ approach [66]. There was good agreement between the results generated by each technique; however, more peptides were detected using the label-free approach.

1.4.4 Bioinformatic analysis of MS spectra

In order to identify the peptides present in a given sample, fragmentation spectra generated by the MS must be accurately interpreted. There are many software platforms available for analyzing MS/MS spectra with sophisticated algorithms and scoring schemes [67]. The primary method by which software interprets MS/MS spectra is through comparison of observed spectra to in silico spectral databases [68]. These in silico databases are generated using theoretical digests of protein sequences that have been observed or predicted from genome sequencing projects [69]. By statistically matching MS/MS spectra to in silico databases, the actual sequence of the peptide does not need to be measured, and the peptides can be more rapidly identified. Three search engines were used to analyze data in this thesis: Mascot, X!Tandem and OMSSA. All of these tools compare observed spectra to in silico databases, but they use different scoring schemes to establish the best peptide match [70-72]. Although spectral interpretation software offer rapid analysis of a large number of spectra, the majority of spectra generated in a typical MS experiment will remain unidentified [73]. Background peaks can be mistaken as peptide peaks, resulting in false positive identifications and
A

${ }^{13} \mathrm{C}$
B

Proteins from labeled culture
C

Figure 5. Stable isotope labeling of amino acids in culture. A) The amino acids, arginine and lysine are labeled with heavy isotopes, N^{15} and C^{13}, and added to culture medium that does not contain arginine and lysine. B) Labeled medium is added to a cell culture so that cells in that culture incorporate heavy isotopes into their proteins. C) Proteins from labeled and unlabeled cultures can be mixed at a 1:1 ratio and differences in abundance between particular proteins can be observed by mass spectrometry.
unpredicted posttranslational modifications (PTMs) or sequence polymorphisms can result in missed identifications. Combining results of multiple search engines can increase the percentage of peptides that are identified in a sample and increase confidence that the identified peptides are not false positives [74].

1.5 Mass spectrometry analysis of the hESC proteomet

In an effort to better characterize hESCs, many studies have employed large scale genetic screens to identify genes that regulate the pluripotent state. Large-scale analyses of the hESC transcriptome have revealed valuable information about gene expression in pluripotent hESCs, as well as changes in transcription that occur during differentiation [75-82]. These studies were important for the identification of some key genes involved in pluripotency, such as Oct 3/4, Nanog, and Sox 2 [78, 80, 83, 84]. However, changes in RNA levels do not always correspond to changes in the respective protein levels because of post-transcriptional factors, such as stability of mRNA, rate of translation, and rate of protein degradation. Since proteins are the effectors of cellular processes, it is important to investigate hESC expression at the protein level as well as the transcript level [85]. In addition, posttranslational modifications, such as phosphorylation, may influence the activity of pivotal proteins in hESCs, and this information can only be determined by studying the proteome. For this reason, there has been a surge of proteomic studies of hESCs in the past few years [86-88].

Baharvand et al. performed one of the first proteomic analyses of hESCs, using 2D-SDS-PAGE followed by spot identification with MALDI-TOF-TOF MS [89]. This study compared protein expression of three hESC lines: Royan $\mathrm{H} 2, \mathrm{H} 3$, and H 5 and identified a total of 685 proteins. A significant portion of these were localized to the nucleus, which agrees with the fact that hESCs have a high nucleus to cytoplasm ratio. Of the proteins identified, many are involved in protein synthesis and regulation, which the authors suggest reflects the ability of hESCs to change phenotype rapidly. The authors also acknowledged that 2D-SDS-PAGE has limited ability to detect low abundance proteins.

[^0]In the same year, Van Hoof et al., reported a more extensive analysis of the hESC proteome, and compared the proteomes of undifferentiated mouse and human ESCs to their differentiated counterparts [90]. Using tandem MS analysis on an FT-ICR-MS, the authors identified 1871 and 1775 unique proteins from undifferentiated mESCs and hESCs respectively, 639 and 743 of which were found only in pluripotent ESCs. The proteins that were uniquely identified or enriched in mouse and human ESCs include important transcription factors such as Oct4 and UTF-1, and the ESC marker, alkaline phosphatase. The relative expression of selected proteins was determined by western blotting, and this data correlated well with the proteomics data. This validates the ability of an MS-based screen to fish out cell specific markers.

In an attempt to elucidate which proteins secreted by MEFs support pluripotency of hESCs, Lim et al. used MS to identify 136 unique proteins in MEF-CM [91]. The MEFCM was concentrated, separated by 2D-SDS-PAGE, and compared to gels from media that was not conditioned. Differential spots were excised and identified by MS using a MALDI-TOF. An interesting candidate for a hESC pluripotency regulator was pigment epithelium-derived factor (PEDF), a protein with a diverse array of functions. A similar study by Chin et al. used 2D-SDS-PAGE and MALDI-TOF analysis of CM from MEFs (supportive of hESC growth) and $\triangle E-M E F$ (not supportive of hESC growth) [92]. Of the proteins identified as differentially abundant, they chose six growth factors including PEDF, MCP-1, PAI, IGFBP-2 and 7, and IL-6 as supplements for defined hESC media. Using this cocktail, they were able to maintain the hESCs in an undifferentiated state based on Oct4 and Tra-1-60 detection, although for only 5 passages. Gonzalez et al. later demonstrated that PEDF can maintain undifferentiated hESCs without the addition of other exogenous supplements [93].

Two studies by Prowse et al. revealed some proteins that are secreted into conditioned medium (CM) by other types of fibroblasts. The first study surveyed media conditioned by human neonatal fibroblasts [94]. A 2D-SDS PAGE gel of CM was compared to that of unconditioned media, and differential spots were analyzed by MALDI-TOF/TOF-MS. The CM was also analyzed by Q-Star tandem MS after SCX-RP-LC
fractionation. A total of 102 proteins were identified. Some of these proteins are known to function in pathways related to development, including the BMP inhibitor Gremlin, members of the insulin-like growth factor family, and ECM proteins such as SPARC and follistatin. Some of the identified proteins were also detected in the studies by Chin et al. and Lim et al., including IGF binding proteins. The second study by Prowse et al. used the same fractionation and analysis techniques to identify proteins in the conditioned media of three fibroblast lines (human neonatal, human foreskin, and mouse embryonic) that are commonly used to maintain hESC pluripotency [95]. They identified a total of 175 proteins, 34 of which were common between all three cell lines. Based on previous literature and ontology classification, proteins most likely to be involved in growth, differentiation, and maintenance of hESC pluripotency were found. Many of these proteins were extracellular matrix core, binding, and remodeling proteins. Some interesting proteins that were not identified in the first study were Activin A, IGF-1, and proteins involved in TGF- $\beta 1$ signaling. Activin A has been shown through supplementation in culture medium to promote the feeder-independent growth of hESCs in the absence of MEF pre-conditioning [96, 97]. TGF- $\beta 1$ is known to promote hESC pluripotency, and has also been shown to promote the feeder independent growth of hESCs [27]. IGF-1 has also been shown to function with bFGF in the maintenance of hESCs [98]. These studies offered valuable insight into potential regulators of hESC pluripotency in vitro; however, they demonstrated the limitations of reproducibility and the inability to sample low abundance proteins.

Bendall et al. hypothesized that growth factors secreted by both feeder cells and hESCs themselves are involved in the microenvironment that maintains hESC pluripotency in culture [99]. A variety of fractionation and analysis methods were used in combination with an iterative exclusion technique to provide the most in-depth analysis of CM from MEFs and hESCs at the time of publication. In iterative exclusion, the first round of MS analysis identifies the most abundant proteins in the fraction. In subsequent rounds, ions that were selected in all previous rounds are ignored based on m / z and retention time to allow for the identification of previously uncharacterized,
lower abundance ions. This resulted in the identification of 550 and 2493 proteins in the MEF media and hESC media, respectively. Some of these proteins were also identified by Prowse et al., including IGF binding protein 3, 6, and 7, follistatin, DKK3, TGF- β-binding protein, PEDF, and inhibin β A. In addition, IGF-II, TGF- $\beta 1$, and over 40 new potential growth factors were identified. From this dataset, a model was proposed for in vitro hESC signaling with human dermal fibroblasts (hDfs), wherein bFGF in the medium signaled the production and release of IGF-II from hDfs to maintain hESCs in an undifferentiated state [98]. This model indicated that hESCs may communicate with fibroblast-like cells in vitro to sustain pluripotency, and highlighted the utility of proteomics analysis for this research.

Many studies have compared the protein expression of hESCs with the protein expression of differentiated derivatives of hESCs, different hESC cell lines, or other pluripotent cells. These studies have revealed hESC specific markers, proteins associated with the pluripotent state, and changes in gene expression that occur during differentiation.

To characterize the differences between hESCs and their differentiated equivalents after 3, 6, 12, and 20 days toward EB formation, Fathi et al. utilized a 2D-SDS-PAGE tandem-MS approach [100]. Of 979 reliably detected protein spots, 58 spots were up-regulated and 38 were down-regulated as hESCs differentiated into EBs. Functional analysis revealed that many of the down-regulated proteins are involved in cell cycle, developmental, and protein degradation processes. Some of the proteins that were more abundant in hESCs than EBs, such as NPM1, Ebp1, and Sutg1, have been shown to be down-regulated as mESCs differentiate. The researchers also acquired genomic expression data using RT-PCR to obtain mRNA levels for comparison to the proteomic data. A total of 6187 transcripts were found to be modulated upon differentiation. When the proteomic and genomic data were compared, there was minimal correlation between the two sets. While some transcripts and proteins shared the same change in expression, others displayed opposite patterns. The authors
mention limitations in the sensitivity of the proteomic assay, as well as discordance between protein and mRNA abundance levels as possible reasons for this.

1.6 Objectives of this thesis

It is known that hypoxia promotes pluripotency in hESCs, but the mechanism by which this occurs is poorly understood. A few proteins have been linked to oxygen signaling and pluripotency in hESCs, but it is believed that there are several oxygen signaling networks involved, and that many proteins are differentially expressed in hypoxia. Microarray analysis of hESCs cultured in hypoxia shed some light on global changes in protein expression in hypoxia; however, since there is little correlation between changes in RNA expression and changes in protein levels, it is important to study this problem at the proteome level for a complete picture. In this thesis, mass spectrometry is used to identify proteins that are expressed differently under low oxygen conditions. We hypothesized that hESCs alter their protein expression in response to decreased oxygen levels, and that these changes in protein expression are associated with the pluripotent state. The results of this study will improve our understanding of the mechanism by which hypoxia maintains pluripotency in hESCs in vitro and in ICM cells during development of embryos in the hypoxic reproductive tract. In addition, the identification of proteins associated with pluripotency of hESCs could aid the development of defined, xeno-free culture conditions for hESCs.

Chapter 2: Experimental Procedures

2.1 Maintenance of hESC cultures

H9 and CA1 hESCs were maintained on a feeder layer of MEFs because MEFs provide a growth substrate and secrete various proteins that are needed to maintain hESC pluripotency [19]. The MEFs (strain CF-1; American Type Culture Collection, Manassas, VA, http://www.atcc.org) were γ-irradiated so they could no longer proliferate, and were plated in gelatin-coated six-well polystyrene dishes at 200000 cells per well in 2 mL of MEF medium (MM; 90\% Dulbecco's modified Eagle's medium, 8% fetal bovine serum, 1% nonessential amino acids, and 1% L-Glutamine). After a minimum of 24 hours, when the MEFs had attached to the bottom of the dish, the MM was aspirated and hESCs were transferred to each well in 2.5 mL of stem cell medium (SM; 80\% Dulbecco's modified Eagle's medium-F12, 20\%, 1\% nonessential amino acids, 1 mM L-Glutamine, and $4 \mathrm{ng} / \mathrm{ml}$ basic fibroblast growth factor (Invitrogen) and 0.1 mM mercaptoethanol). The cultures were incubated at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ and the SM was changed daily. If differentiating colonies became visible, they were removed manually by scraping with a glass pick.

Cultures were passaged approximately every five days to prevent differentiation and were passaged less than 50 times to limit the risk of karyotypic abnormalities. H9 hESCs were passaged manually and CA1 hESCs were passaged enzymatically or manually. For manual passaging, small clusters of hESCs were mechanically detached from the MEF layer with a glass pick and transferred to a new six-well dish of MEFs. For enzymatic passaging, hESCs were rinsed with phosphate buffered saline (PBS) and incubated with $500 \mu \mathrm{~L}$ of 0.05% trypsin until the cells detached from the plate in small clumps. MM was added to each well to deactivate the trypsin and the suspension was centrifuged to collect the hESCs in a pellet. The supernatant was aspirated and replaced with SM, and the hESCs were transferred to a fresh six-well dish of irradiated MEFs. For both cell lines, one well of a six-well dish was split into six wells and cells were
transferred in compact colonies of at least 3 cells, as single-celled hESCs are prone to differentiation [101].

2.2 Culture of hESCs in different oxygen conditions

A feeder-free system was used for all hypoxia experiments to limit the transmission of MEF proteins into the experimental samples [21]. To create a 3D extracellular matrix for hESC attachment, each well of a six-well dish was coated in 800 $\mu \mathrm{L}$ of growth factor-reduced Matrigel ${ }^{\circledR}$ ($1 \mathrm{mg} / \mathrm{ml}$ dissolved in DMEM-F12; BD Biosciences, San Diego, http://www.bdbiosciences.com) for 30 minutes. Excess Matrigel ${ }^{\text {® }}$ solution was aspirated and hESCs were transferred in compact colonies from a MEF layer onto the Matrigel ${ }^{\circledR}$ coated wells. Since MEFs secrete proteins that are necessary for hESC pluripotency, special medium is needed when hESCs are maintained in the absence of a MEF feeder layer [102]. For proteomics, western blotting, and real time reverse transcription polymerase chain reaction (RT-PCR) experiments, the hESCS were cultured in mTeSR ${ }^{\oplus} 1$ medium, which is a defined, serum-free medium that contains all growth factors needed to maintain hESCs in feeder free conditions [103]. For immunofluorescence experiments, the hESCs were maintained in SM that had been preconditioned for 24 hours on irradiated MEFs seeded at a density of 2.12×10^{5} MEFs per mL of medium.

Twenty-four hours after the hESCs were seeded onto Matrigel ${ }^{\circledR}$, the medium was changed, and the cultures were placed in 1% oxygen (hypoxia) or 20% oxygen (normoxia). To establish hypoxic conditions, cells were placed in airtight chambers (BioSpherix) that were flushed with a gas mixture of $5 \% \mathrm{CO}_{2}$ and $95 \% \mathrm{~N}_{2}$. Oxygen concentrations within these chambers were maintained at 1% using Pro-Ox Model $110 \mathrm{O}_{2}$ regulators (BioSpherix, Redfield, NY). In each oxygen condition, one plate of hESCs was incubated for 48 hours, and another was incubated for 72 hours. The medium was not changed during this time in order to accelerate differentiation and to accumulate hESC derived signals within the culture milieu. At the appropriate time points, the medium was removed and cells were washed with PBS. Phase contrast
images were taken of the hESC colonies in order to assess cell growth and morphology. The medium was then removed and culture dishes were wrapped in parafilm and frozen at $-80^{\circ} \mathrm{C}$ until protein and RNA could be extracted.

2.3 Protein extraction and quantification

Immediately after frozen six-well dishes of hESCs were transferred from $-80^{\circ} \mathrm{C}$ to room temperature, each well was covered with $150 \mu \mathrm{~L}$ of the nondenaturing detergent, Mammalian Protein Extraction Reagent (mPER; Thermo Scientific) mixed with $1.5 \mu \mathrm{~L}$ 100X EDTA-Free Protease Inhibitor Cocktail (Thermo Scientific) and $1.5 \mu \mathrm{~L} 100 \mathrm{X}$ Halt $^{\text {tM }}$ Phosphatase Inhibitor Cocktail (Thermo Scientific) for five minutes. The wells were then scraped with a disposable cell scraper (Fischer Scientific) to aid the removal of cells. The cell lysates were transferred to microcentrifuge tubes and kept on ice. Each sample was then sonicated to ensure all membranes had been lysed. The samples were centrifuged at 14000 g for 20 minutes at $4^{\circ} \mathrm{C}$ to remove large cytoskeleton proteins and other cell debris. The supernatant was then aliquoted and stored at $-80^{\circ} \mathrm{C}$ for future mass spectrometry and Western blot analysis.

A modified Bradford assay was used to quantify the protein [104]. A protein standard was prepared by diluting a solution of bovine serum albumin (BSA; Pierce) to 1 $\mathrm{mg} / \mathrm{mL}$. The protein standard and protein samples of unknown concentration were diluted with $\mathrm{ddH}_{2} \mathrm{O}$ to a final volume of $10 \mu \mathrm{~L}$ in a 96 -well flat bottom plate as shown in Figure 6. $200 \mu \mathrm{~L}$ of Coomassie Protein Assay Reagent (Thermo Scientific) was dispensed into each well. The absorbance at 595 nm was measured with a Victor ${ }^{3} \mathrm{~V} 1420$ Multilabel Counter (Perkin Elmer). A standard curve was created by plotting absorbance at 595 nm versus concentration of BSA. The concentrations of the protein samples were calculated by inserting their absorbance values into the equation of the standard curve.

2.4 RNA extraction and quantification

RNA was extracted from hESCs using a Purification Column and proprietary solutions from a Perfect Pure RNA Purification Kit (5Prime). Immediately after frozen

Figure 6. Modified Bradford assay setup. Various volumes of protein standard (BSA) and samples (S1, S2, S3 and S4) were brought up to $10 \mu \mathrm{~L}$ with $\mathrm{ddH}_{2} \mathrm{O}$. Two hundred microlitres of Coomassie Protein Assay Reagent was then added to each well.
six-well dishes of hESCs were transferred from $-80^{\circ} \mathrm{C}$ to room temperature, each well designated to be used for RNA experiments was covered with $400 \mu \mathrm{~L}$ of Lysis Buffer. After five minutes of gentle rocking at room temperature, the solution was pipetted up and down vigorously to homogenize and lyse the cells. The solution was then transferred to a Purification Column. Four hundred microlitres of Wash 1 Solution was added to the column to wash away residual lysate, to eliminate RNase activity, and to support full DNase activity. To degrade DNA, $50 \mu \mathrm{~L}$ of DNase Solution was added to the column and incubated at room temperature for 15 minutes. Two $200 \mu \mathrm{~L}$ aliquots of DNase Wash Solution were then added to inactivate DNase and keep RNA bound to the column. Next, Wash 2 Solution was added in two separate applications of $200 \mu \mathrm{~L}$ to remove salts. Finally, $50 \mu \mathrm{~L}$ of Elution Solution was added to elute RNA into a clean tube. After each solution was added to the column, the collection tube was centrifuged at 13000 g for 1 minute to pass the solution through the column. The collection tube was changed every time $400 \mu \mathrm{~L}$ of solution collected in the bottom. The eluted RNA was stored on ice or in the freezer at $-80^{\circ} \mathrm{C}$ until it was quantified.

RNA was quantified using a NanoDrop 2000 Spectrophotometer (Thermo Scientific). The instrument was rinsed with $\mathrm{ddH}_{2} \mathrm{O}$ and the sample type was set to "RNA$40^{\prime \prime}$. Two microlitres of Elution Solution was loaded to blank the instrument, and then 2 $\mu \mathrm{L}$ of each sample was loaded and measured. Each sample was measured twice and an average concentration was calculated. The instrument was washed with $\mathrm{ddH}_{2} \mathrm{O}$ between measurements.

2.5 Immunofluorescence

H9 and CA1 compact hESC colonies were seeded onto Matrigel ${ }^{\circledR}$ in twelve-well dishes and cultured in 1% or 20% oxygen as described in section 2.2. After 48 or 72 hours, the wells were rinsed twice in PBS and incubated in 0.5 mL of fixing solution (4\% paraformaldehyde, 4% sucrose, $300 \mu \mathrm{M} \mathrm{CaCl}_{2}$ in PBS) for 20 minutes at room temperature. After the cells had been fixed, they were rinsed three times in PBS and stored at $4^{\circ} \mathrm{C}$ until staining was performed. Before staining for Oct-4, which is an
intracellular protein, the cells were permeabilized with 0.1% Triton X-100 in PBS for 10 minutes. After two five-minute washes in 1X Rinse Buffer (5\% Tris-Cl buffer, 150 mM $\mathrm{NaCl}, 0.05 \%$ Tween 20 in $\mathrm{ddH}_{2} \mathrm{O}$), the cells were treated with Serum-Free Protein Block (0.25% casein in PBS, containing stabilizing protein and 0.015 M sodium azide; Dako) for 30 minutes at room temperature to inhibit non-specific staining. The cells were then incubated with 0.5 mL of a primary antibody against human Oct-4 (Oct-3/4 probe mouse monoclonal $\lg G$; Santa Cruz Biotechnology) diluted 1:50 in Antibody Diluent (Tris-HCl buffer containing stabilizing protein and 0.015 M sodium azide; Dako) for one hour. After three five-minute washes in 1X Rinse Buffer, the cells were incubated with a secondary antibody against mouse \lg (AlexaFluor 488 goat anti-mouse $\operatorname{lgG}(\mathrm{H}+\mathrm{L})$; Invitrogen). After another three five-minute washes in 1X Rinse Buffer, fluorescence micrographs were taken of random colonies. The total number of colonies in three wells for each time point and oxygen condition was counted. The number of colonies containing at least one region that was not expressing Oct-4 was also counted and divided by the total number of colonies to determine the percentage of colonies that contained differentiated cells. A Two Way Analysis of Variance (ANOVA) with a Student-Newman-Keuls post hoc test was performed for each cell line to determine whether there was a significant difference between time points and between oxygen availiability in the datasets. A P value <0.05 was considered significant.

2.6 Western blotting

Twenty-five micrograms of each protein sample was mixed in a $5: 1$ ratio with $5 X$ loading buffer (28% glycerol, 17% Tris- HCl buffer, $\mathrm{pH} 6.8,0.2 \mathrm{M}$ SDS, 4 mM bromophenol blue in $\mathrm{ddH}_{2} \mathrm{O}$) and 1 M dithiothreitol (DTT) for a final concentration of 100 mM DTT. The mixtures were heated at $100^{\circ} \mathrm{C}$ for five minutes to denature the proteins and reduce disulfide bonds. The samples were then loaded onto a $1.5 \mathrm{~mm}, 8 \%$ polyacrylamide mini-gel and run at 200 V . When 20 kDa proteins had run off the gel, the voltage was turned off and the gel was placed in Transfer Buffer (1.4\% glycine, 0.3\% Tris Base, 20% methanol in $\mathrm{ddH}_{2} \mathrm{O}$) for five minutes. Polyvinlyidene difluoride (PVDF)
paper was activated in methanol for five minutes and then soaked in Transfer Buffer for ten minutes. The gel and PVDF paper were clamped together and transferring was performed in Transfer Buffer on ice at 100 V for 2 hours. The PVDF paper was then stained with Amido Black Staining Solution (0.1\% Amido black, 50\% methanol, 10\% acetic acid in $\mathrm{ddH}_{2} \mathrm{O}$) to visualize total protein present. The paper was cut in half horizontally at 75 kDa so that HIF-1 $(\sim 120 \mathrm{kDa}$) and β-actin ($\sim 42 \mathrm{kDa}$) could be imaged at the same time.

Each half of the PVDF blot was incubated in 5\% milk in Tris-Buffered Saline with Tween (TBS-T; $0.15 \mathrm{M} \mathrm{NaCl}, 0.05 \mathrm{M}$ Tris buffer (pH 7.6), 0.2% Tween in $\mathrm{ddH}_{2} \mathrm{O}$) for one hour. The milk was drained and the top half of the PDVF paper was incubated for one hour with $0.5 \mu \mathrm{~g} / \mathrm{mL}$ mouse anti-human HIF-1 α antibody (BD BioSciences, Lot: 06820) in 1% BSA in TBS-T. The bottom half of the PDVF paper was incubated for one hour with $20 \mathrm{ng} / \mathrm{mL}$ monoclonal mouse anti-human β-actin antibody (Santa Cruz Biotechnology, Lot: D1610) in 1\% BSA in TBS-T. Excess primary antibody was rinsed away with four fiveminute washes of TBS-T. The PDVF paper was then incubated for one hour with goat anti-mouse IgG antibody containing a horseradish peroxidase (HRP) conjugate (BioRad). Excess secondary antibody was rinsed away with five five-minute washes of TBS-T. The membrane was coated with a 1:1 mixture of Peroxidase Solution and Luminol/Enhancer Solution from an Immuno-Star ${ }^{T M}$ Western $C^{\text {TM }}$ Kit (BioRad) and wrapped with Saran wrap. CL-X Posure ${ }^{\text {TM }}$ Film (Thermo Scientific) was pressed against the PDVF paper in a dark room for 1 second to 5 minutes and was developed with a M35A X-OMAT Processor (Kodak).

2.7 Real-time RT-PCR

In order to make cDNA from RNA, $1 \mu \mathrm{~g}$ of RNA from each sample was mixed with $10 \mu \mathrm{~L}$ Master Medium (20\% 10 RT PCR buffer, 32\% RNase free $\mathrm{ddH}_{2} \mathrm{O}, 8 \% \mathrm{dNTPs}, 20 \%$ random primers, 10% reverse transcriptase, 10% RNase inhibitor) from a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). $\mathrm{ddH}_{2} \mathrm{O}$ was added to bring the final volume up to $20 \mu \mathrm{~L}$. The samples were placed in a BioRad C1000 Thermal Cycler at
$25^{\circ} \mathrm{C}$ for 10 minutes, $37^{\circ} \mathrm{C}$ for 2 hours, $85^{\circ} \mathrm{C}$ for five minutes, and $4^{\circ} \mathrm{C}$ until the samples were retrieved.

For real time RT-PCR, a Master Mix solution containing specific primer probes was prepared for each gene that would be analyzed. The Master Mix contained 56% TaqMan Universal PCR Master Mix (Applied Biosystems), $4 \% \mathrm{MgCl}_{2}$, and 6% primer probes in RNase free $\mathrm{ddH}_{2} \mathrm{O}$. Primer probes were selected for the housekeeping gene, HPRT1, which served as comparison for the other genes that were analyzed: Oct 4, Nanog, Nodal and HIF-1 . In a 96-well PCR plate, $2 \mu \mathrm{~L}$ of cDNA from each sample was mixed with $18 \mu \mathrm{~L}$ of Master Mix for each primer probe, in duplicate. Two microlitres of water was mixed with $18 \mu \mathrm{~L}$ of Master Mix for each primer probe as a no template control (NTC). The plate was placed in a C1000 ${ }^{\text {TM }}$ Thermal Cycler (BioRad) and run at $50^{\circ} \mathrm{C}$ for 2 minutes, $95^{\circ} \mathrm{C}$ for 10 minutes, and then repeating cycles of $95^{\circ} \mathrm{C}$ for 15 minutes and $58^{\circ} \mathrm{C}$ for one minute. The following equation was used to calculate fold difference based on CT values:

$$
\text { ratio }=\frac{\left(E_{\text {target }}\right)^{\Delta C P_{\text {target }}(\text { control - sample) })}}{\left(E_{\text {ref }}\right)^{\Delta C P_{\text {ref (Control - sample) }}}}
$$

Man-Whitney Rank sum tests were performed to determine whether the differences in RNA levels were significant. A P value <0.05 was considered significant.

2.8 Fractionation and tryptic digestion of proteins for MS analysis

To reduce the complexity of samples for MS analysis, the proteomes were fractionated by 1D gel electrophoresis [104]. Eighty micrograms of each protein sample was mixed in a 5:1 ratio with 5 X loading buffer (28% glycerol, 17% Tris- HCl buffer, pH 6.8, 0.2 M SDS, 4 mM bromophenol blue in $\mathrm{ddH}_{2} \mathrm{O}$) and 1 M DTT for a final concentration of 100 mM DTT. The mixtures were heated at $90^{\circ} \mathrm{C}$ for 5 minutes to denature the proteins and reduce disulfide bonds. The samples were then loaded onto a $1.5 \mathrm{~mm}, 12 \%$ SDS-PAGE mini-gel and run at 100 V . When the run was complete, the gel was fixed for one hour in Fixing Solution (50% methanol, 10% acetic acid in $\mathrm{ddH}_{2} \mathrm{O}$), stained for one hour with Coomassie Stain Solution (1 mM Brilliant Blue R-250 (BBR),
50% methanol, 10% acetic acid in $d_{d} \mathrm{H}_{2} \mathrm{O}$), and destained overnight in Destaining Solution 1 (45\% methanol, 10\% acetic acid in $\mathrm{ddH}_{2} \mathrm{O}$).

Each lane representing the concentrated sample was then cut into fifteen fractions. Gel fractions were cut into small cubes ($\sim 1 \mathrm{~mm}^{2}$) and placed into separate microcentrifuge tubes. The gel pieces were destained by alternating between washes in Destaining Solution 1 and Destaining Solution 2 (20% acetonitrile [ACN] in 100 mM ammonium bicarbonate [$\mathrm{NH}_{4} \mathrm{HCO}$]).

The cysteines were reduced and alkylated to eliminate disulfide linkages. First, the gel pieces were dehydrated with 100% ACN and completely dried by spinning in a SpeedVac centrifuge. Then the gel pieces were rehydrated with 10 mM (DTT) in 100 $\mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{HCO}$ for 30 min . The DTT solution was removed and 100 mM iodoacetamide (IDA) in $100 \mathrm{mM} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ was added for 30 min to alkylate the cysteines. The gel pieces were washed and dehydrated with 100% ACN, and then rehydrated with 50 mM $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ twice.

For tryptic digestion, the gel pieces were first dehydrated with 100% ACN, and then rehydrated with modified procine trypsin (Promega, Madison, WI) $(20 \mu \mathrm{~g} / \mathrm{mL}$ in 50 $\mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{HCO}_{3}$) on ice for 15 min . Fifty millimolar $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ was added to cover the gel pieces and the samples were maintained at $37^{\circ} \mathrm{C}$ for 18 h . To extract the tryptic peptides, the supernatant was collected and the gel pieces were washed three times with 10% formic acid (FA). The samples were then placed in a Speedvac centrifuge until the volume was approximately $50 \mu \mathrm{~L}$. The tubes were centrifuged at 10000 g for three minutes to remove insoluble matter and the supernatant was transferred to MS tubes.

2.9 Iterative exclusion tandem mass spectrometry analysis

LC separation (5-50\% ACN, 0.1\% FA gradient) was performed on a NanoAcquity UPLC (Waters, Milford, MA) with a $15 \mathrm{~cm} \times 75 \mu \mathrm{~m} \mathrm{C}_{18}$ reverse phase column. Peptide ions were detected in data-dependent acquisition (DDA) mode by tandem MS (Q-ToF Ultima; Waters). To identify lower abundance proteins, each sample was injected multiple times using iterative exclusion to ignore previously selected ions [99]. Ions that

A. hESC Culture in Hypoxia

B. Preparation of Samples for Proteomic Analysis

C. Mass Spectrometry and Bioinformatic Analysis

Analyze peptides by iterative exclusion MS on a Q-TOF

Fragment selected peptides by collision with Argon
,

Analyze peptide fragments by MS/MS

Figure 7. Proteomic analysis of hESCs cultured in hypoxia. A) hESCs were cultured in 1% or 20% oxygen for 48 or 72 hours. B) The proteome was fractionated by 1D gel electrophoresis and proteins were alkylated, digested with trypsin, and separated with reversed-phase LC. C) The peptides were analyzed by ESI tandem mass spectrometry and identified with bioinformatics software.
had previously been selected were excluded (MassLynx DDA exclude functionality; Waters) in subsequent injections of a given fraction using a m / z tolerance window of ± 0.8, based on average mass and a retention time window of $\pm 60 \mathrm{~s}$. Five rounds of iterative exclusion were performed on each fraction. To generate the highest quality MS/MS spectra, the following DDA parameters were used: survey scan (MS only) range m / z 400-1800, 1 s scan time, 1-4 precursor ions selected based on intensity (30 cps) and charge state $(+2,+3$, and +4). For each $M S / M S$ scan, the m / z range was extended to m / z 50-1800, a scan time of 1 s used in early exclusions, with an increase to a scan time of 14 s in later exclusions (signal dependent - TIC 6000 cps). The MassLynx charge statedependent collision energy profile was used. Selected precursors were then excluded for 45 s .

2.10 Bioinformatic analysis

MS/MS raw data files were processed using Mascot Distiller (Matrix Science, London, UK) and summarized to Mascot Generic Files (MGF). All MGF files were analyzed using Mascot (Matrix Science, London, UK), OMSSA (NCBI, Bethesda, MD, USA) and X!Tandem (The GPM, thepgm.org; version TORNADO (2009.04.01.4)). OMSSA, Mascot and X!Tandem were all set up to search ipi.HUMAN.v3.78_REVERSE.fasta (selected for All Entries, 173404 entries) assuming the digestion enzyme trypsin and allowing for 2 missed cleavages. Mascot, OMSSA and X!Tandem were searched with a fragment ion mass tolerance of 0.15 Da and a parent ion tolerance of 0.15 Da . For all search engines, iodoacetamide derivative of cysteine was specified as a fixed modification and oxidation of methionine was specified as a variable modification. Acetylation of the N -terminus was specified in $\mathrm{X}!$ Tandem as a variable modification.

Scaffold (version Scaffold_3_00_08, Proteome Software Inc., Portland, OR) was used to validate MS/MS based peptide and protein identifications from Mascot, OMSSA and X!Tandem. Peptide identifications were accepted if they could be established at greater than 95.0% probability as specified by the Peptide Prophet algorithm in [105]. Protein identifications were accepted if they could be established at greater than 99.0\%
probability and contained at least 2 identified peptides. Protein probabilities were assigned by the Protein Prophet algorithm in [106]. Proteins that contained similar peptides and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsimony.

The results of all six replicates (three for each cell line) were combined and compared manually in Excel. Proteins were said to be up-regulated in hypoxia if they were identified in two out of three replicates in both cell lines in hypoxia but not identified in any replicates in normoxia. Some additional proteins were categorized as up-regulated in hypoxia if the number of peptide identifications for a particular protein was much higher (≥ 3) in hypoxia than in normoxia for four replicates. Proteins were said to be down-regulated in hypoxia if the opposite trend was observed.

Figure 8. Iterative exclusion tandem mass spectrometry. In this technique, the first round of MS analysis identifies the most abundant proteins in the fraction. In subsequent rounds, ions that were selected in all previous rounds are ignored based on m / z and retention time to allow for the identification of previously uncharacterized, lower abundance ions. Image from [99].

Chapter 3: Results

3.1 Hypoxia promotes pluripotency in our experimental system

H9 and CA1 hESCs in feeder-free cultures were incubated in 1\% or 20\% oxygen for up to 96 hours. The medium was not changed during this time in order to promote differentiation. After 48, 72 and 96 hours, a phase contrast microscope was used to take micrographs of random colonies. After 48 hours, almost all hESC colonies that had been cultured in either oxygen condition had sharp edges and uniformly consisted of small, compact cells (Figure 9). This is consistent with the appearance of pluripotent hESC colonies [13]. After 72 hours, a small number of colonies that had been cultured in 1% oxygen contained regions of cells that had a flat and elongated morphology and a decreased index of refraction. This indicates that the cells had begun to differentiate or were differentiated. Cultures that had been maintained in 20% oxygen for 72 hours contained notably more colonies with differentiating areas than cultures that had been maintained in 1\% oxygen (Figure 9). Cultures that had been incubated in either oxygen tension for 96 hours without a change of media had a large amount of differentiation (Figure 9).

Cultures that contain large numbers of differentiated cells no longer represent a hESC population. Therefore, hESCs that are beginning to differentiate in 20\% oxygen but are still mostly pluripotent would provide the most insight into how hypoxia promotes pluripotency in hESCs. This is most consistent with the level of differentiation observed after 48 hours and 72 hours; therefore, these time points were chosen for all subsequent experiments. Since there was excessive differentiation after 96 hours of culture in unchanged media, no further experiments were carried out at this time point.

3.1.1 Immunofluorescence localization of Oct-4

To confirm the observation from phase contrast images that hypoxia promotes pluripotency in our system, immunofluorescence analysis was performed to detect the

Figure 9. hESC morphology after 48 or $\mathbf{7 2}$ hours of culture in $\mathbf{1 \%}$ or $\mathbf{2 0 \%}$ oxygen. H9 and CA1 hESC compact colonies were seeded onto a 3D matrix comprised of growth factor-reduced Matrigel ${ }^{\circledR}$ and were cultured in the presence of conditioned stem cell medium for 48,72 or 96 hours in 1% or 20% oxygen. The medium was not changed during this time in order to accelerate differentiation. Phase-contrast micrographs were taken of randomly selected colonies at each time point. Biological replicates were performed with (A) the H9 hESC line and (B) the CA1 hESC line. Arrows point to areas of differentiation.
presence of Oct-4, which is a transcription factor that is only present in the nucleus of pluripotent hESCs. hESC colonies in feeder-free culture were incubated in 1% or 20% oxygen for 48 or 72 hours. At the appropriate time point, the cells were fixed and permeabilized, and immunofluorescence analysis was performed for Oct-4. After 48 hours, almost all colonies that had been cultured in 1% oxygen emitted bright fluorescence throughout the colony, indicating that Oct-4 was expressed in all cells of these colonies (Figure 10). Some colonies that had been cultured in 20\% oxygen for 48 hours had regions of darkness that did not fluoresce, indicating that these cells were not expressing detectable levels of Oct-4. Phase contrast micrographs were taken of the same colonies to show that cells were present in these dark regions. After 72 hours, more areas that did not stain for Oct-4 appeared in cultures maintained at both oxygen tensions, with appreciably more dark regions in the 20% cultures than the 1% cultures (Figure 10).

For each oxygen condition, the number of colonies that contained at least one dark area not expressing Oct-4 was counted. This was divided by the total number of colonies to give the percentage of colonies with areas of differentiation. Three replicates were performed with each cell line. In hypoxia, $3.0 \pm 3.1 \%$ of H 9 hESCs and $2.0 \pm 1.7 \%$ of CA1 hESCs contained areas of differentiation after 48 hours and $11.7 \pm$ 2.5% of H9 hESCs and $15.5 \pm 5.6 \%$ of CA1 hESCs contained areas of differentiation after 72 hours. In normoxia, $20.3 \pm 7.1 \%$ of H 9 hESCs and $18.4 \pm 5.2 \%$ of CA1 hESCs contained areas of differentiation after 48 hours and $38.7 \pm 8.0 \%$ of H9 hESCs and $34.3 \pm 7.4 \%$ of CA1 hESCs contained areas of differentiation after 72 hours (Figure 11). For both cell lines, there was a significant difference in the percentage of colonies with areas of differentiation between hypoxic and normoxic culture for both time points ($P<0.01$, $\mathrm{n}=3$). For the CA1 cell line, there was a significantly higher percentage of colonies with differentiation at 72 hours than at 48 hours for cultures maintained in hypoxia. For both cell lines, there was a significantly higher percentage of colonies with differentiation at 72 hours than at 48 hours for cultures maintained in normoxia ($P<0.05, n=3$).

Figure 10. Immunofluorescent detection of Oct-4 in hESCs cultured in 1\% or 20\% oxygen for 48 or 72 hours. hESCs cultured on growth factor-reduced Matrigel ${ }^{\circledR}$ in conditioned stem cell medium were incubated in 1% or 20% oxygen for 48 or 72 hours. The medium was not changed during this time in order to accelerate differentiation. The cultures were fixed with paraformaldehyde and immunostained for Oct-4, a protein known to be expressed only in pluripotent cells. Biological replicates were performed with (A) the H 9 hESC line and (B) the CA1 hESC line. Arrows point to areas of differentiation.

Figure 11. Percentage of colonies with areas of differentiation for hESCs cultured in $\mathbf{1 \%}$ or $\mathbf{2 0 \%}$ oxygen, as determined by Immunofluorescent detection of Oct-4. hESCs in feeder-free culture were maintained for 48 or 72 hours in 1% or 20% oxygen. The cultures were immunostained for Oct-4, a marker of pluripotency. The number of colonies containing regions that did not express Oct-4 was counted. This was divided by the total number of colonies to give the percentage of colonies with areas of differentiation. Biological replicates were performed with (A) the H9 hESC line and (B) the CA1 hESC line (mean $\pm S D, n=3$). Values that differ significantly between oxygen tensions within a time point are shown with asterisks ($*, \mathrm{P}<0.01 ; * *, \mathrm{P}<0.001$) and values that differ significantly between time points within an oxygen tension are shown with daggers ($\dagger, P<0.05 ; \ddagger, P<0.01$).

3.2 Real-time RT-PCR Analysis of Pluripotency Associated Genes in Hypoxia

Oct-4, Nanog and Nodal are proteins that are known to be expressed in pluripotent hESCs but not in differentiated cells. Nodal and HIF-1 α protein have been shown to be up-regulated in hypoxia compared to normoxia in cancer cells. To investigate how these genes are expressed in our experimental system, real-time RTPCR anaylsis was performed. H9 and CA1 hESC colonies were seeded onto Martrigel ${ }^{\circledR}$ in the presence of $\operatorname{mTESR}{ }^{\oplus} 1$ media and incubated in 1% or 20% oxygen for 48 or 72 hours. RNA was extracted from the cells and cDNA was made from the extracts. Real-time RTPCR analysis was performed for each oxygen tension and time point with primers for Oct-4, Nanog, Nodal, and HIF-1 . The analysis was repeated three times for each cell line. There was no significant difference ($P>0.05, n=3$) in mRNA levels between hypoxia and normoxia for any of the genes analyzed (Figures 12-15).

3.3 HIF-1 α Protein Expression in hESCs Cultured in Hypoxia and Normoxia

Although real-time RT-PCR analysis revealed that there is no change in HIF-1 α mRNA levels when hESCs are cultured in hypoxia, Western blot analysis of HIF-1a was performed because it is known that there is limited correlation between mRNA levels and protein levels in hESCs, and HIF α proteins are regulated predominantly via alterations in protein degradation. CA1 and H9 hESCs in feeder-free culture were maintained in 1% or 20% oxygen for 48 or 72 hours. Western blot analysis was performed with anti-HIF-1 α and anti- β-actin antibodies. Distinct double bands, representing phosphorylated and unphosphorylated HIF-1 α, were present around 120 kDa in all lanes containing protein from hESCs cultured in hypoxia. The same double band was much fainter or not visible in lanes containing protein from hESCs cultured in normoxia. Densitometry analysis of the plots was performed for three replicates with each cell line and results were analysed with t-tests. There was significantly greater expression of HIF-1 α in hypoxic samples than in normoxic samples ($P<0.01, n=3$) for both cell lines at both time points (Figure 16).

Figure 12. Real-time RT-PCR analysis of Oct-4 mRNA in hESCs cultured in hypoxia and normoxia. H9 and CA1 hESCs were cultured in 1% or 20% oxygen for 48 or 72 hours. At each time point, RNA was extracted and quantified, and real-time RT PCR was performed with a primer for the Oct-4 transcript. CT values were normalized to the housekeeping gene, HPRT1. Graphs depict relative levels of Oct-4 mRNA in hypoxia compared to normoxia for (A) H9 hESCs after 48 hours, (B) CA1 hESCs after 48 hours, (C) H9 hESCs after 72 hours and (D) CA1 hESCs after 72 hours. Values are means \pm SD ($n=3$, P>0.05).

Figure 13. Real-time RT-PCR analysis of Nanog mRNA in hESCs cultured in hypoxia and normoxia. H9 and CA1 hESCs were cultured in 1% or 20% oxygen for 48 or 72 hours. At each time point, RNA was extracted and quantified, and real-time RT-PCR was performed with a primer for the Nanog transcript. CT values were normalized to the housekeeping gene, HPRT1. Graphs depict relative expression of Nanog in hypoxia compared to normoxia for (A) H9 hESCs after 48 hours, (B) CA1 hESCs after 48 hours, (C) H9 hESCs after 72 hours and (D) CA1 hESCs after 72 hours. Values are means \pm SD ($n=3$, $P>0.05$).

Figure 14. Real-time RT-PCR analysis of Nodal mRNA in hESCs cultured in hypoxia and normoxia. H9 and CA1 hESCs were cultured in 1% or 20% oxygen for 48 or 72 hours. At each time point, RNA was extracted and quantified, and real-time RT-PCR was performed with a primer for the Nodal transcript. CT values were normalized to the housekeeping gene, HPRT1. Graphs depict relative expression of the transcript in hypoxia compared to normoxia for (A) H9 hESCs after 48 hours, (B) CA1 hESCs after 48 hours, (C) H 9 hESCs after 72 hours and (D) CA1 hESCs after 72 hours. Values are means $\pm S D(n=3, P>0.05)$.

Figure 15. Real-time RT-PCR analysis of HIF-1 α mRNA in hESCs cultured in hypoxia and normoxia. H 9 and CA1 hESCs were cultured in 1% or 20% oxygen for 48 or 72 hours. At each time point, RNA was extracted and quantified, and real-time RT-PCR was performed with a primer for the HIF-1 α transcript. CT values were normalized to the housekeeping gene, HPRT1. Graphs depict relative expression of the transcript in hypoxia compared to normoxia for (A) H9 hESCs after 48 hours, (B) CA1 hESCs after 48 hours, (C) H9 hESCs after 72 hours and (D) CA1 hESCs after 72 hours. Values are means \pm $S D(n=3, P>0.05)$.

Figure 16. Expression of HIF-1 α in hESCs cultured in hypoxia and normoxia. hESCs were cultured in 1% or 20% oxygen for 48 or 72 hours. Western blot analysis was performed for HIF-1 α, normalized to β-actin for A) H9 hESCs and B) CA1 hESCs. Densitometry analysis was performed to compare HIF-1 α expression at C) 48 hours in H9 hESCs, D) 48 hours in CA1 hESCs, E) 72 hours in H9 hESCs, and F) 72 hours in CA1 $h E S C s$. Values (mean $\pm S D, n=3$) that differ significantly between oxygen tensions are shown with asterisks (${ }^{*}, \mathrm{P}<0.01$; $^{* *}, \mathrm{P}<0.001$).

3.4 Numerous proteins were up- or down-regulated in hypoxia

Shotgun proteomics was used to compare global protein expression of hESCs cultured in hypoxia with that of hESCs cultured in normoxia. After H9 and CA1 hESCs had been cultured in $\mathbf{1 \%}$ or 20% oxygen for 48 or 72 hours, the proteome was extracted and purified. To increase the number of proteins that could be identified by MS analysis, the proteome was separated by 1D gel electrophoresis and each lane was divided into 15 fractions (Figure 17). Equal quantities of each protein sample were loaded onto the gel so that results could be compared semi-quantitatively. The proteins were digested with trypsin and the tryptic peptides of each fraction were separated by nano reverse phase liquid chromatography to further simplify the fractions for MS analysis. The peptides were then analyzed by electrospray tandem MS on a Q-Tof, which generated spectra containing sequence information about the peptides. To increase the number of peptides identified in the samples, each sample was injected 5 times and the MS was instructed to ignore previously identified peptides from that sample.

The bioinformatics search engines, Mascot, OMSSA, and X!Tandem were used to identify peptides from the MS/MS spectra and Scaffold was used to validate MS/MS based peptide and protein identifications. Peptide identifications were accepted if they could be established at greater than 95.0% probability and protein identifications were accepted if they could be established at greater than 99.0% probability and contained at least 2 identified peptides. The results of all six replicates (three for each cell line) were combined and compared manually in Microsoft Office Excel. Proteins were said to be up-regulated in hypoxia if they were identified in two out of three replicates in both cell lines in hypoxia but not identified in any replicates in normoxia. Some additional proteins were categorized as up-regulated in hypoxia if the number of peptide identifications for a particular protein was much higher (≥ 3) in hypoxia than in normoxia for four replicates. Proteins were said to be down-regulated in hypoxia if the opposite trend was observed. (See appendices A-D for lists of the number of peptide identifications in each replicate for proteins up- and down-regulated in hypoxia).

A total of 1358 distinct proteins were identified in at least two replicates in both H9 and CA1 hESCs at 48 hours from cells cultured under both oxygen conditions (see Appendix E for a complete list of proteins identified in hypoxia). A total of 1649 distinct proteins were identified in at least two replicates in both H 9 and CA1 hESCs at 72 hours from cells cultured under both oxygen conditions (see Appendix F for a complete list of proteins identified in hypoxia). Of the proteins identified at 48 hours, 17 were upregulated in hypoxia and 48 were down-regulated in hypoxia (Figure 18). Of the proteins identified at 72 hours, 27 were up-regulated in hypoxia and 32 were downregulated in hypoxia (Figure 18). Only four of the proteins that were up- or downregulated at 48 hours were also up- or down-regulated at 72 hours, respectively.

3.4.1 Hypoxia influenced the expression of some metabolic proteins

Several proteins involved in metabolism were either up- or down-regulated in hESCs that had been cultured in hypoxia (Figure 19). Hexokinase-2, which catalyses the first committed step of glucose metabolism [107], was up-regulated in hypoxia at both 48 and 72 hours (Table 1 and 3). Solute carrier family 2, facilitated glucose transporter member 1 (GLUT1), which transports glucose across the plasma membrane [108], was also up-regulated at both 48 hours and 72 hours in hypoxia (Table 1 and 3).

Pyruvate dehydrogenase E1 $\alpha 1$ (PDHA1) precursor was down-regulated at 48 hours in hypoxia (Table 2). PDHA1 is a mitochondrial enzyme that catalyzes the conversion of pyruvate to acetyl-CoA and CO_{2} [109]. α-ketoglutarate-dependent dioxygenase FTO was also down-regulated at 48 hours in hypoxia (Table 2). This protein is a dioxygenase that uses molecular oxygen, α-ketoglutarate and iron to repair alkylated ssDNA and RNA by oxidative demethylation [110] and contributes to the regulation of the global metabolic rate and energy expenditure [111]. Aldose-1 epimerase, which converts D-glucose, L-arabinose, D-xylose, D-galactose, maltose and lactose to the β-anomer [112], was down-regulated at 48 hours in hypoxia (Table 2). At 48 hours, there was also down-regulation of Arginase-2, which is an inducible protein

Figure 17. Fractionation of the hESC proteome by 1D gel electrophoresis. To simplify hESC proteomes for MS analysis, 1D gel electrophoresis was performed as a prefractionation step. Each lane was divided into 15 fractions. Regions of each lane that contained more protein as revealed by Coomassie blue staining were cut into narrower fractions so that each fraction contained approximately the same amount of protein. Proteomes were extracted from hESCs that had been cultured for (A) 48 hours in 1% oxygen, (B) 48 hours in 20% oxygen, (C) 72 hours in 1% oxygen and (D) 72 hours in 20% oxygen. Molecular weight standards are shown in Lane M.

48 hours

1% oxygen

72 hours

20% oxygen

Figure 18. Number of proteins consistently identified by MS in hypoxic and normoxic hESC samples. Venn diagrams display the number of distinct proteins identified in at least two replicates in both H 9 and CA1 hESCs after 48 and 72 hours of culture in either oxygen tension. O The number of proteins detected only in hypoxia, O the number of proteins detected only in normoxia, and O the number of proteins detected in both oxygen conditions.
that catalyzes the hydrolysis of arginine to ornithine and urea and inhibits the production of nitric oxide ([113]; Table 2).

Two components of Complex I of the electron transport chain: NADH dehydrogenase 75 kDa subunit and NADH dehydrogenase a subcomplex 5, were upregulated at 72 hours in hypoxia (Table 3). Bifunctional coenzyme A synthase, which is a bifunctional enzyme that catalyzes two sequential steps of the CoA biosynthetic pathway [114], was down-regulated at 72 hours in hypoxia (Table 4).

3.4.2 Proteins involved in cell signaling were expressed differently in hypoxia

Proteins involved in various signaling pathways were either up- or downregulated in hESCs cultured under hypoxia. At 48 hours in hypoxia, there was upregulation of mitogen-activated protein kinase 14 (MAPK14; Table 1). This kinase has a role in stress related transcription and cell cycle regulation and mediates developmental, differentiation and proliferation processes [115]. Mitogen activated protein kinase kinase 4 (MAP2K4), which is a dual specificity kinase that activates the JUN kinases MAPK8 (JNK1) and MAPK9 (JNK2) as well as MAPK14 (p38) [116], was down-regulated at 48 hours in hypoxia (Table 2).

Insulin-like growth factor binding protein 2 (IGFBP-2), which modulates the action of insulin-like growth factors (IGFs) and also acts independently to affect proliferation, apoptosis, and mobility [117], was up-regulated at 72 hours in hypoxia (Table 3). PERQ amino acid-rich with GYF domain-containing protein 2 (GIGYF2), which may regulate tyrosine kinase receptor signaling at endosomes and regulate IGF-1 receptor trafficking [118], was also up-regulated at 72 hours in hypoxia.

Oxysterol-binding protein (OSBP) was down-regulated at 48 hours in hypoxia (Table 2). OSBP is a scaffold protein that binds cholesterol and other oxysterols and coordinates the activity of PP2A and a tyrosine phosphatase on the ERK signaling pathway [119]. Tetratricopeptide repeat protein 1 (TPR1), which competes with the Ras-binding domain of Raf-1 [120], was also down-regulated at 48 hours in hypoxia (Table 2).

Table 1: Proteins Up-regulated in Hypoxia at 48 Hours

Symbol	Protein Name	IPI Number
AARS	Alanyl-tRNA synthetase	IPIO0910701
CSE1L	Exportin-2 (Isoform 1)	IPI00022744
DCTN1	Dynactin, subunit 1 (Isoform p150)	IPI00029485
DHX38	Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16	IPI00294211
EXOSC7	Exosome complex exonuclease RRP42	IPI00014198
FAM96B	Protein FAM96B	IPI00007024
FDPS	Farnesyl pyrophosphate synthase (Isoform B)	IPI00914971
GLUT1	Solute carrier family 2, facilitated glucose transporter, member 1	IPI00220194
HIST1H2A	Histone H2A type 1-H	IPI00081836
HK2	Hexokinase-2	IPI00102864
KIAA1524	Protein CIP2A (Isoform 1)	IPI00154283
LRBA	Lipopolysaccharide-responsive and beige-like anchor protein	IPI00002255
	(Isoform 1)	
MAPK14	Mitogen-activated protein kinase 14 (Isoform CSBP2)	IPI00002857
PPP1CA	Serine/threonine-protein phosphatase PP1- α, catalytic subunit	IPI00027423
	(Isoform 3)	
SMC4	Structural maintenance of chromosomes protein 4 (Isoform 2)	IPI00328298
SQLE	Squalene monooxygenase	IPI00291544
TOMM22	Mitochondrial import receptor subunit, TOM22 homolog	IPI00024976
-	Actin-like protein (Fragment)	IPI00556391

Table 2: Proteins Down-regulated in Hypoxia at 48 Hours

Symbol	Protein Name	IPI Number
ARG2	Arginase-2, mitochondrial	IPI00020332
ATG3	Ubiquitin-like-conjugating enzyme ATG3 (Isoform 1)	IPI00022254
C10orf119	UPFO557 protein C10orf119 (Isoform 2)	IPI00552546
C5orf51	UPF0600 protein C5orf51	IPI00374272
DCTD	Deoxycytidylate deaminase (Isoform 1)	IPI00296863
DCTN3	Dynactin subunit 3 (Isoform 2)	IPI00013654
DCUN1D1	DCN1-like protein 1	IPI00291893
DERA	Putative deoxyribose-phosphate aldolase	IPI00219677
DYNLRB1	Dynein, light chain, roadblock-type 1	IPI00412497
EIF2B1	Translation initiation factor elF-2B, subunit α	IPI00221300
EML4	Echinoderm microtubule-associated protein-like 4	IPI00001466
FAM129B	Niban-like protein 1	IPI00456750
FKBP2	Peptidyl-prolyl cis-trans isomerase FKBP2	IPI00002535
FTO	$\alpha-$-ketoglutarate-dependent dioxygenase FTO (Isoform 1)	IPI00028277
G3BP2	Ras GTPase-activating protein-binding protein 2 (Isoform A)	IPI00009057
MAP2K4	Mitogen-activated protein kinase kinase 4 (Isoform 2)	IPI00024674
MARCKS	Myristoylated alanine-rich C-kinase substrate	IPI00219301
MNAT1	CDK-activating kinase assembly factor MAT1	IPI00294701
MRPL19	39S ribosomal protein L19, mitochondrial	IPI00027096
MRPS28	28S ribosomal protein S28, mitochondrial	IPI00022276
NAA25	N-alpha-acetyltransferase 25, NatB auxiliary subunit (Isoform 1)	IPI00025890
NAA38	N-alpha-acetyltransferase 38, NatC auxiliary subunit	IPI00219871
NLN	Neurolysin, mitochondrial	IPI00010346
NSFL1C	NSFL1 cofactor p47 (Isoform 1)	IPI00100197
NUP48	Nucleoporin 43 kDa	IPI00742943
NUP98	Nucleoporin 98 kDa	IPI00006038
OSBP	Oxysterol-binding protein 1 (Isoform 1)	IPI00024971
PCYT2	Ethanolamine-phosphate cytidylyltransferase	IPI00015285
PDCT3	Pentatricopeptide repeat domain 3 (Isoform 2)	IPI00783302
PDHA1	Pyruvate dehydrogenase E1 alpha 1 (Isoform 2) precursor	IPI00306301
PIR	Pirin	IPI00012575
PP2AC	Serine/threonine-protein phosphatase PP1- α, catalytic subunit	IPI00550451
PSMF1	Proteasome inhibitor, PI31 subunit	IPI00009949
PTCD1	Pentatricopeptide repeat domain 1	IPI00926491
RAB4A	RAB4A, member RAS oncogene family variant	IPI00480056
REEP5	Receptor expression-enhancing protein 5	IPI00024670
SLC16A1	Monocarboxylate transporter 1	IPI00024650
SMC4	Structural maintenance of chromosomes protein 4 (Isoform 1)	IPI00411559

SQSTM1	Sequestosome-1 (Isoform 1)	IPI00179473
STOML2	Stomatin-like protein 2	IPI00334190
SUGT1	Suppressor of G2 allele of SKP1 homolog (Isoform 2)	IPI00791573
TBRG4	Transforming growth factor beta regulator 4	IPI00329625
TOMM34	Mitochondrial import receptor, subunit TOM34	IPI00009946
TSFM	Elongation factor Ts, mitochondrial (Isoform 1)	IPI00021016
TTC1	Tetratricopeptide repeat protein 1	IPI00016912
XPNPEP1	xaa-Pro aminopeptidase 1 (Isoform 1)	IPI00645898
-	Protein of unknown function, DUF410 family protein	IPI00419575

Table 3: Proteins Up-regulated in Hypoxia at $\mathbf{7 2}$ Hours

Symbol	Protein Name	IPI Number
ACO1	Cytoplasmic aconitate hydratase	IPIO00008485
AP1B1	AP-1 complex subunit beta-1 (Isoform A)	IPI00328257
ENAH	Protein enabled homolog (Isoform 2)	IPI00374054
FAM162A	Protein FAM162A	IPI00023001
FANCI	Fanconi anemia group I protein (Isoform 1)	IPI00019447
FUBP1	Far upstream element-binding protein 1 (Isoform 1)	IPI00375441
GIGYF2	PERQ amino acid-rich with GYF domain-containing protein 2	IPI00647635
	(Isoform 2)	
GLUT1	Solute carrier family 2, facilitated glucose transporter, member 1	IPI00220194
HK2	Hexokinase-2	IPI00102864
IDI1	Isopentenyl-diphosphate Delta-isomerase 1 (Isoform 1)	IPI00645307
IGFBP2	Insulin-like growth factor-binding protein 2 precursor	IPI00297284
LEPREL1	Prolyl 3-hydroxylase 2	IPI00217055
LUZP1	Leucine zipper protein 1 (Isoform 1)	IPI00296830
MAP4	Microtubule-associated protein 4 (Isoform 1)	IPI00396171
MLLT4	Afadin (Isoform 4)	IPI00023461
MOBKL3	Mps one binder kinase activator-like 3 (Isoform 1)	IPI00386122
MOGS	Mannosyl-oligosaccharide glucosidase	IPI00328170
NDUFAS	NADH dehydrogenase (ubiquinone) 1a, subcomplex 5	IPI00412545
NDUFS1	NADH-ubiquinone oxidoreductase, 75 kDa subunit	IPI00604664
P4HA1	Prolyl 4-hydroxylase subunit $\alpha-1$ (Isoform 1)	IPIO0009923
PLOD2	Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (Isoform 2)	IPI00337495
RPL35A	60S ribosomal protein L35a	IPI00029731
RPRD1A	Regulation of nuclear pre-mRNA domain-containing protein 1A	IPI00062336
	(Isoform 2)	
SAP18	Histone deacetylase complex subunit SAP18	IPI00011698
SNX3	Sorting nexin-3 (Isoform 4)	IPI00552276
TPD52	Tumor protein D52 (Isoform 1)	IPI00619958
YRDC	YrdC domain-containing protein, mitochondrial	IPI00384180

Table 4: Proteins Down-regulated in Hypoxia at 72 Hours

Symbol	Protein Name	IPI Number	
ARPC1B	Actin-related protein 2/3 complex, subunit 1B	IPI00005160	
BOLA2	BolA-like protein 2	IPI00301434	
CDC73	Parafibromin	IP100300659	
CLASP1	CLIP-associating protein 1 (Isoform 1)	IPI00396279	
COASY	Bifunctional coenzyme A synthase (Isoform 1)	IPI00184821	
CTSA	Lysosomal protective protein	\|P100021794	
DCTN1	Dynactin, subunit 1 (Isoform 4)	IP100914026	
DDX19A	ATP-dependent RNA helicase DDX19A	IPI00019918	
DNAJA3	Dnas homolog subfamily A member 3, mitochondrial (Isoform 2)	IPI00179187	
FKBP2	Peptidyl-prolyl cis-trans isomerase FKBP2	\|P100002535	
GLS	Glutaminase kidney isoform, mitochondrial (Isoform 3)	IP100215687	
H1FX	Histone H1x	IPIO0021924	
H3F3A	Histone H3.3	IPI00219038	
IDI1	Isopentenyl-diphosphate Delta-isomerase 1 (Isoform 2)	IPI00220014	
MINPP1	Multiple inositol polyphosphate phosphatase 1 (Isoform 1)	IPI00293748	
MLLT4	Afadin (Isoform 3)	IPI00216505	
MRPL15	395 ribosomal protein L15, mitochondrial	IPI00023086	
MRPL19	395 ribosomal protein L19, mitochondrial	IPI00027096	
MRPS9	28 S ribosomal protein S9, mitochondrial	IPI00641924	
MYO1C	Myosin-IC (Isoform 2)	IPI00010418	
PFDN4	Prefoldin, subunit 4	IPI00015891	
POLR2G	DNA-directed RNA polymerase II, subunit RPB7	IPI00218895	
PTK2	Focal adhesion kinase 1 (Isoform 1)	IPI00012885	
SEC11A	Signal peptidase complex, catalytic subunit SEC11A	\|P100104128	
SNX3	Sorting nexin-3 (Isoform 1)	IPI00815770	
SPCS3	Signal peptidase complex, subunit 3	IPI00300299	
TBPL1	TATA box-binding protein-like protein 1	IP100032911	
TMEM109	Transmembrane protein 109	IPI00031697	
VPS26A	Vacuolar protein sorting-associated protein 26A	\|P	00411426
YLPM1	YLP motif-containing protein 1	IP100165434	

3.4.3 Enzymes involved in steroid biosynthesis were up-regulated in hypoxia

Three proteins involved in biosynthesis of isoprenoids and steroid molecules were up-regulated in hypoxia (Figure 18). At 72 hours in hypoxia, there was upregulation of Isoform 1 and down-regulation of Isoform 2 of Isopentenyl-diphosphate Delta-isomerase 1 (IPPI1), which catalyses the interconversion of isopentenyl pyrophosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are both substrates for Farnesyl pyrophosphate synthase (FDPS) [121]. FDPS, which is a key branch point the isoprenoid biosynthesis pathway, was also up-regulated at 48 hours in hypoxia (Table 1). FDPS creates lipids that are incorporated into sterols, dolichols, ubiquinones and carotenoids or used as substrates for farnesylation and geranylgeranylation of proteins [122]. At 48 hours, there was up-regulation of squalene monooxygenase (SQLE), which catalyzes the first oxygenation step in sterol biosynthesis ([123]; Table 1).

3.4.4 Transcriptional regulatory proteins were expressed differently in hypoxia

Proteins involved in the regulation of transcription were up- or down-regulated in hypoxia. Far upstream element-binding protein 1, which stimulates the expression of c-Myc in undifferentiated cells by activating the far upstream element of c-Myc [124], was up-regulated at 72 hours in hypoxia (Table 3). Protein CIP2A, which prevents proteolytic degradation of c-Myc by inhibiting PP2A tumor suppressor activity towards it [125], was up-regulated at 48 hours in hypoxia (Table 1). DNA-directed RNA polymerase II, subunit RPB7, which is a subunit of RNA polymerase II that is dispensable under optimal growth conditions, but essential for transcription of specific genes when cells are in stressful environments [126], was down-regulated at 72 hours in hypoxia (Table 4).

Several transcription factors were down-regulated in hypoxia. CDK-activating kinase assembly factor MAT1 (MNAT1) was down-regulated at 48 hours (Table 2). MNAT1 forms a trimeric complex with CDK7 and cyclin H called the CAK complex [127], which associates with additional proteins to form the TFIIH basal transcription factor [128]. The transcription regulator, Pirin, which has been shown to be necessary for
terminal myeloid differentiation [129], was down-regulated at 48 hours in hypoxia. TATA box-binding protein-like protein 1 (TBPL1) was down-regulated at 72 hours (Table 4). TBPL1 is a promoter-specific recognition factor that can replace TATA binding protein in transcription regulation of specific genes [130].

3.4.5 Proteins involved in RNA processing were expressed differently in hypoxia

Some proteins involved in RNA splicing, processing, and export from the nucleus were differentially expressed in hypoxia. Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16, which is essential for catalytic step II in the pre-mRNA splicing process [131], was up-regulated at 48 hours in hypoxia (Table 1). Exosome complex exonuclease RRP42 (EXOSC7) was also up-regulated at 48 hours in hypoxia (Table 1). EXOSC7 is a component of the exosome $3^{\prime}-5^{\prime}$ exoribonuclease complex, which degrades unstable mRNAs that have AU-rich elements (AREs) in their 3'-untranslated region and it is also required for processing of 7 S pre-RNA to the mature 5.8 S rRNA [132]. $\mathrm{N}-\alpha$ acetyltransferase 38, NatC auxiliary subunit (NAA38), which binds to the 3'-terminal Utract of U6 snRNA and is involved in mRNA processing and splicing [133], was downregulated at 48 hours in hypoxia (Table 2). ATP-dependent RNA helicase DDX19A, which is an ATP-dependent RNA helicase involved in mRNA export from the nucleus [134], was down-regulated at 72 hours in hypoxia (Table 4).

3.4.6 Protein-processing enzymes were differentially expressed in hypoxia

Some enzymes involved in posttranslational processing of proteins were up- or down-regulated in hypoxia. Mannosyl-oligosaccharide glucosidase, which is the first enzyme in the N-linked oligosaccharide processing pathway, was up-regulated at 72 hours in hypoxia. This enzyme is found in the endoplasmic reticulum and it cleaves the distal glucose from GIc(3)-Man(9)-GIcNAc(2) glycosylated proteins [135].

Peptidyl-prolyl cis-trans isomerase FKBP2, which accelerates protein folding in the endoplasmic reticulum [136], was down-regulated at both 48 and 72 hours in hypoxia (Table 2 and 4). Signal peptidase complex catalytic subunit SEC11A and Signal
peptidase complex subunit 3 , which are components of the signal peptidase complex that removes signal peptides from nascent proteins as they are translated into the endoplasmic reticulum [137, 138], were down-regulated at 72 hours in hypoxia (Table 4).

3.4.7 Proteins involved in cell trafficking were expressed differently in hypoxia

Proteins involved in trafficking and sorting of proteins through the Golgi and endosomes were up- or down- regulated in hypoxia. Lipopolysaccharide-responsive and beige-like anchor protein (LBRA) was up-regulated at 48 hours in hypoxia (Table 1). LRBA may be involved in coupling signal transduction and vesicle trafficking for polarized secretion and/or membrane deposition of immune effector molecules [139]. Isoform p150 of dynactin subunit 1 was up-regulated at 48 hours in hypoxia, isoform 2 of dynactin subunit 3 was down-regulated at 48 hours and isoform 4 of dynactin subunit 1 was down-regulated at 72 hours. Dynactin is involved in many cell functions, including ER-to-Golgi transport, centripetal movement of lysosomes and endosomes, spindle formation, and chromosome movement [140, 141].

Adaptor protein complex 1, subunit beta, which is involved in protein sorting in the Golgi and endosomes, was up-regulated at 72 hours in hypoxia. The AP complexes mediate the recruitment of clathrin to membranes and the recognition of sorting signals [142]. Isoform 4 of sorting nextin-3 (SNX3) was up-regulated at 72 hours in hypoxia (Table 3) and isoform 1 was down-regulated (Table 4). SNX3 is required for multivesicular body formation and plays a role in protein transport between cellular compartments [143]. Tumor protein D52, which is an adaptor protein that is involved in lysosomal membrane trafficking to and from the plasma membrane and regulation of vesicle trafficking [144], was also up-regulated at 72 hours in hypoxia.

Rab4A was down-regulated at 48 hours in hypoxia (Table 2). Rab4A is a member of the Rab family of small GTPases that regulates intracellular transport, and has been localized to early endosomes and dynein light intermediate chain 1 [145]. Dynein, light chain, roadblock-type 1 , which links dynein to cargos and to adapter proteins that
regulate dynein function, was also down-regulated at 48 hours in hypoxia. Dynein 1 acts as a motor for the retrograde movement of vesicles and organelles along microtubules [146]. Vacuolar protein sorting-associated protein 26A (VPS26A) was down-regulated at 72 hours in hypoxia (Table 4). VPS26A is a necessary component of the retromer complex, which retrieves lysosomal enzyme receptors (IGF2R and M6PR) from endosomes to the trans-Golgi network [147].

Some proteins involved in the transport of proteins between mitochondria, the cytoplasm, and the nucleus, were differentially expressed in hypoxia. Nucleoporin 43 kDa (NUP43) and Nucleoporin 98 kDa (NUP98) were down-regulated at 48 hours in hypoxia (Table 2). NUP43 is responsible for assembly of a functional nuclear pore complex for transport of molecules between the nucleus and cytoplasm, and it is also required for normal kinetochore microtubule attachment, mitotic progression and chromosome segregation [148]. NUP98 is a component of the nuclear pore complex that contributes to nuclear-cytoplasmic trafficking, including mRNA export. In addition, it may play a role in gene expression, mitotic checkpoints, and pathogenesis [149]. At 48 hours, mitochondrial import receptor subunit TOM34, was down-regulated (Table 2) and Mitochondrial import receptor subunit TOM22 homolog was up-regulated (Table 1). TOM34 and TOM22 play roles in the import of pre-proteins that were synthesized in the cytosol into mitochondria [150].

3.4.8 Proteins involved in epigenetics were expressed differently in hypoxia

Several proteins associated with chromatin structure and epigenetic regulation were up- or down-regulated in hypoxic conditions. Histone H2A type 1-H was upregulated at 48 hours in hypoxia (Table 1) and Histone H1X and H3.3 were downregulated in hypoxia at 72 hours (Table 4). Histones are core components of the nucleosome, which wraps DNA into chromatin, limiting the ability of transcription factors to access DNA [151]. Histone deacetylase complex subunit SAP18, which is a component of the SIN3-repressing complex that enhances transcriptional repression [152], was up-regulated in hypoxia at 72 hours (Table 3). Parafibromin (CDC73), which
was down-regulated at 72 hours in hypoxia (Table 4), is a component of the PAF1 complex, which activates transcription of specific genes by ubiquitinating and methylating histones $[153,154]$. The PAF1 complex regulates transcription of genes involved in cell growth and survival and it is essential for normal embryonic development [155].

3.4.9 Some procollagen hydroxylases were up-regulated in hypoxia

Three enzymes that hydroxylate components of collagen were up-regulated at 72 hours in hypoxia: Prolyl 4-hydroxylase, subunit $\alpha-1$ (P4HA1), Prolyl 3-hydroxylase 2 (LEPREL1), and Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) (Table 3). P4HA1 and LEPREL1 hydroxylate prolyl residues and PLOD2 hydroxylates lysyl residues in collagen-like peptides [156]. P4HA1 and PLOD2 have been shown to be up-regulated in rat vascular smooth muscle cells cultured in hypoxia [156].

3.4.10 Proteins involved in proliferation or mitosis were differentially expressed

Some proteins that inhibit proliferation were up-regulated in hypoxia, and some proteins that are associated with increased proliferation or mitotic progression were down-regulated. Transforming growth factor beta regulator 4 (TBRG4), which may play a role in cell cycle progression [157], was down-regulated at 48 hours. NSFL1C cofactor p47, which is necessary for the fragmentation of Golgi stacks during mitosis and for reassembly of Golgi stacks after mitosis [158], was also down-regulated at 48 hours in hypoxia (Table 2). Deoxycytidylate deaminase, which creates the substrate for thymidylate synthetase to make dTMP for use in DNA synthesis and repair [159], was down-regulated at 48 hours in hypoxia (Table 2). Echinoderm microtubule-associated protein-like 4 (EML4) was down-regulated at 48 hours in hypoxia. EML4, which is highly expressed during mitosis and is associated with the mitotic spindle, is needed for correct microtubule formation [160]. Isoform 2 of structural maintenance of chromosomes protein 4 (SMC4) was up-regulated at 48 hours in hypoxia (Table 1) and isoform 1 was down-regulated at 48 hours (Table 2). SMC4 is a core component of the condensin
complex, which converts interphase chromatin into condensed chromosomes for mitosis [161]. Focal adhesion kinase 1, which is a tyrosine kinase that has been linked to increased proliferation and cell motility and decreased apoptosis [162, 163], was downregulated at 72 hours in hypoxia (Table 4). Regulation of nuclear pre-mRNA domaincontaining protein 1 A , which may act as a negative regulator in $\mathrm{G}(1)$ phase by repressing translation of cyclin D1 and cyclin E, was up-regulated at 72 hours in hypoxia (Table 3).

Some proteins that are associated with mitotic progression were up-regulated in hypoxia. Microtubule associated protein 4 (MAP4), which contributes to the formation of a radial array of microtubules during mitosis [164], and Mps one binder kinase activator-like 3 (MOBKL3), which coordinates mitotic exit and cytokinesis [165], were up-regulated at 72 hours (Table 3).

3.4.11 Proteins involved in apoptosis were expressed differently in hypoxia

Some proteins that induce apoptosis were up-regulated in hypoxia and some proteins that suppress apoptosis were down-regulated. Exportin-2 was up-regulated at 48 hours in hypoxia (Table 1). This protein functions as a nuclear transport factor, but has also been shown to bind preferentially to p53 target promoters, which increases transcription of p53 target genes and causes increased apoptosis [166]. The negative regulator of p53, Ras GTPase-activating protein-binding protein 2 (G3BP2) was downregulated at 48 hours in hypoxia. G3BP2 binds to p53, leading to the redistribution of p53 from the nucleus to the cytoplasm and a reduction in p53 induced apoptosis [167]. FAM162A (HGTD-P), which is a HIF-1 α-responsive pro-apoptotic molecule [168], was upregulated at 72 hours in hypoxia (Table 3). Dnas homolog subfamily A member 3 (Isoform 2), which suppresses apoptosis by preventing cytochrome c release from the mitochondria and caspase 3 activation [169], was down-regulated at 72 hours in hypoxia (Table 4). DNAJA3 had also been shown to enhance the interaction between HIF-1 α and pVHL, which destabilizes HIF-1 α [170].

3.4.12 Proteins involved in autophagy were expressed differently

Sequestosome-1 (SQSTM1) was down-regulated at 48 hours in hypoxia (Table 2). SQSTM1 has multiple functions and participates in signal transduction, protein degradation and cell differentiation [171]. It has been shown to be degraded in hypoxia, not through HIF signaling or the proteasome, but through autophagy [171]. Ubiquitin-like-conjugating enzyme ATG3, which is involved in autophagy and mitochondrial homeostasis, was down-regulated at 48 hours in hypoxia (Table 2). Knockdown of ATG3 produces an expansion in mitochondrial mass [172], and rat APG3 mRNA is up-regulated by hypoxic preconditioning but down-regulated by prolonged hypoxia [173].

3.4.13 Proteins involved in translation were down-regulated in hypoxia

Proteins involved in translation in the cytoplasm were differentially expressed in hypoxia. Translation initiation factor elF-2B subunit alpha was down-regulated at 48 hours (Table 2) and 60S ribosomal protein L35a was up-regulated at 72 hours (Table 3).

Some proteins involved in translation of mitochondrial proteins were downregulated in hypoxia. At 48 hours, there was down-regulation of the mitochondrial ribosomal proteins: ribosomal protein S28 and ribosomal protein L19 (Table 2) and at 72 hours there was down-regulation of ribosomal protein S9, ribosomal protein L15, and ribosomal protein L19 (Table 4). Elongation factor Ts, which is a mitochondrial elongation factor [174], was down-regulated at 48 hours in hypoxia (Table 2). Pentatricopeptide repeat domain 1 (PTCD1) and Pentatricopeptide repeat domain 3, mitochondrial (PTCD3), were down-regulated at 48 hours in hypoxia (Table 2). PTCD1 and PTCD3 are predicted to be involved in the assembly of respiratory chain complexes [175], and PTCD3 has been shown to associate with the mitochondrial small ribosomal subunit and to activate mitochondrial translation [176, 177].

Cytoplasmic aconitrate hydratase (ACO1) was up-regulated at 72 hours in hypoxia (Table 3). ACO1 is an mRNA binding protein that regulates uptake, sequestration and utilization of iron when iron levels in the cell are low [178].

3.4.14 Proteins associated with cytoskeleton were up-regulated in hypoxia

Isoform 4 of Afadin was up-regulated in hypoxia at 72 hours (Table 3) and isoform 3 was down-regulated at 72 hours (Table 4). Afadin connects the adhesion molecule, nectin, to the actin cytoskeleton and is activated by Rap1 to regulate VEGFand S1P-induced angiogenesis [179]. Protein enabled homolog, which induces the formation of F -actin rich outgrowths and links signal transduction pathways to localized actin cytoskeleton remodeling [180], was up-regulated at 72 hours in hypoxia (Table 3).

Myristoylated alanine-rich C-kinase substrate (MARCKS), which is an F-actin cross-linking protein [181], was down-regulated at 48 hours in hypoxia (Table 2). Actinrelated protein $2 / 3$ complex subunit $1 B$, which is a regulator of actin dynamics, was down-regulated in hypoxia at 72 hours (Table 4; [182]). CLASP1, which facilitates the recognition of actin filaments by the plus ends of growing microtubules, was also downregulated at 72 hours in hypoxia (Table 4). Dynamic communication between actin filaments and microtubules is required for cell morphogenesis [183].

3.4.15 Proteasomal proteins were down-regulated in hypoxia

Several proteins involved in proteasomal degradation were down-regulated in hypoxia. For example, Suppressor of G2 allele of SKP1 homolog (SUGT1), which interacts with E3 ubiquitin ligase complexes and plays a role in ubiquitination and subsequent proteosomal degradation of target proteins [184], was down-regulated at 48 hours (Table 2). SUGT1 also activates the kinetochore core complex and is important for both the G_{1} / S and G_{2} / M transitions in the cell cycle [184]. Proteasome inhibitor PI31 subunit (PSMF1) was also down-regulated at 48 hours (Table 2). PSMF1 plays an important role in controlling proteasome function by inhibiting the 20S proteasome, and also by inhibiting activation of the proteasome by two regulatory proteins, PA700 and PA28 [185]. DCN1-like protein 1 (DCUN1D1) was down-regulated at 48 hours in hypoxia (Table 2). DCUN1D1 is part of an E3 ubiquitin ligase complex for neddylation, and is involved in nuclear localization of neddylation components [186].

Chapter 4: Discussion

Hypoxia has been shown to promote pluripotency in hESCs, but the mechanism by which this occurs in unknown [52]. To gain insight into this mechanism, we investigated differences in protein expression between hESCs cultured in 1% oxygen and hESCs cultured in 20% oxygen for 48 and 72 hours. Interesting changes were observed in the expression of proteins involved in metabolism, post-transcriptional modification, chromatin modification and regulation of the transcription factor, c-Myc.

4.1 Establishment of a model to study the effects of oxygen in the regulation of pluripotency

The experimental model used in this study was developed to investigate the effect of hypoxia versus normoxia on hESCs that were cultured in unchanged media for up to three days. The objective of leaving the media unchanged was to promote differentiation so that differences in pluripotency between hESCs cultured in hypoxia and normoxia could be observed. hESCs were studied after 48 and 72 hours in the experimental system in order to observe changes in protein expression just as the cells in normoxia were beginning to differentiate. In order to validate the experimental model, immunofluoresence localization of Oct-4 was performed to assess the pluripotency of hESCs after 48 and 72 hours in the experiment. Western blot analysis was performed for HIF-1 α to confirm that a difference in protein expression between the experimental oxygen conditions could be observed for a protein known to be regulated by hypoxia.

At 48 hours, almost all hESC colonies that had been cultured in either oxygen condition were morphologically pluripotent. However, immunofluorescent detection of Oct-4 revealed that there was significantly more differentiation in cultures that had been incubated at 20% oxygen than in cultures that had been incubated in 1% oxygen. At 72 hours, cultures that had been maintained in 20% oxygen contained notably more morphologically differentiated colonies than cultures that had been maintained in 1%
oxygen. Moreover, immunofluorescent detection of Oct-4 revealed that this difference was significant. These results demonstrate that hESCs in our system survive in both oxygen concentrations, but cultures incubated in 1% oxygen contain more pluripotent cells than cultures incubated in 20% at both 48 and 72 hours. By observation with a phase-contrast microscope, there was not a qualitative difference in proliferation between hESCs cultured in 1% oxygen and hESCs cultured in 20% oxygen. This agrees with the findings of Ezashi et al. that hESCs cultured for 12 days in 1-5\% oxygen are more pluripotent than hESCs cultured in atmospheric oxygen and that there is no difference in average colony size between the conditions [52]. However, it differs from the observations of Zachar et al. and Prasad et al., which are that 1% oxygen inhibits hESC growth [53, 54].

Real-time RT-PCR analysis showed that there was no significant difference in mRNA levels of Oct-4, Nanog, Nodal or HIF-1a in hESCs cultured in 1% oxygen versus hESCs cultured in 20% oxygen at both 48 and 72 hours. This agrees with the findings of Westfall et al., who used microarray analysis to compare mRNA expression of hESCs cultured at 4% oxygen to mRNA expression of hESCs cultured at 20% oxygen for seven days. Their results revealed that there is no change in the transcript level of Oct4, Nanog, or HIF-1 α and there is no change or a mild increase in Nodal transcript levels [55]. It has been shown for many genes that there is not a direct correlation between changes in mRNA expression and changes in the corresponding protein levels during stem cell differentiation [187]. This is because protein levels are influenced by posttranscriptional factors, such as stability of mRNA, rate of translation, and rate of protein degradation. Since proteins are the effectors of cellular processes, it is important to investigate hESC expression at the protein level as well as the transcript level [85].

Although real-time RT-PCR analysis revealed that there is no change in HIF-1 α mRNA levels when hESCs are cultured in hypoxia, Western blot analysis revealed that HIF-1 α protein expression was up-regulated in hypoxia at both 48 and 72 hours. It is not surprising that a difference in HIF-1 α expression is observed in the proteome, but not in the transcriptome, because HIF-1 α is largely regulated at the protein level. In hypoxia,

HIF-1 α is stabilized and forms a heterodimer with the constitutively expressed protein, HIF-1 β. In the presence of increased oxygen concentration, HIF-1 α is hydroxylated by prolyl-hydroxylase domain enzymes, which are only active in the presence of oxygen [47]. Hydroxylated HIF-1 α is subsequently marked for proteosomal degradation.

4.2 Hypoxia influenced the expression of some metabolic proteins

When oxygen is available, most human cells rely on mitochondrial oxidative phosphorylation to produce ATP; however, in hypoxia, cells have the ability to use glycolysis as a primary source of ATP because oxygen is not available to be a terminal electron acceptor in the electron transport chain (ETC) [188]. Thus, it is not surprising that HIF-1 α acts as a transcription factor for many rate-limiting glycolytic enzymes and transporters [189]. Interestingly, it only up-regulates specific isoforms of each of the glycolytic proteins that it modulates [189].

Hexokinase-2, which catalyses the first committed step of glycolysis [107], was up-regulated in hypoxia at both 48 and 72 hours. Hexokinase-1 and -2 are special isoforms of hexokinase that have the ability to bind to the external mitochondrial membrane in order to inhibit apoptosis by blocking cytochrome c release [190] and to ensure that mitochondrial ATP is used for glucose phosphorylation [191]. It is known that the Hexokinase-2 promoter contains an HRE and that its gene expression is activated by HIF-1 α [192]. It is also known that Hexokinase-2 is increased at the transcript level in hESCs cultured in hypoxia [55]. Other transcription factors and growth factors that modulate hexokinase-2 expression and activity include: insulin growth factor, c-Myc, glucagon, and cAMP [193]. Hexokinase-2 is the principal regulated isoform of hexokinase in many cell types and it is up-regulated in many cancers [189]. Its depletion in cancer cells results in decreased proliferation and angiogenesis as well as diminished expression of HIF-1 α and VEGF, and its overexpression leads to increased proliferation and therapeutic resistance [194].

GLUT1, which transports glucose across the plasma membrane [108], was upregulated at both 48 hours and 72 hours in hypoxia. It is known that GLUT1 is up-
regulated at the transcript level in hESCs cultured in hypoxia [55] and its expression is directly regulated by HIF-1 α [195]. GLUT1 is a rate-limiting transporter for glucose uptake [196] and it is the most widely over-expressed glucose transporter in proliferative cancer cells [197]. It has been suggested that GLUT1 is over-expressed in cancer cells because it has a higher affinity for glucose than other glucose transporters [198].

Pyruvate dehydrogenase E1 $\alpha 1$ (PDHA1) precursor was down-regulated at 48 hours in hypoxia. Down-regulation of PDHA1, which catalyzes the conversion of pyruvate to acetyl-CoA and CO_{2}, reduces the delivery of acetyl-CoA to the tricarboxylic acid cycle, thus reducing transfer of electrons to the ETC [109]. It is known that pyruvate dehydrogenase kinase 1 (PDK1) is up-regulated by HIF-1 α, which results in decreased activity of PDHA1 [109]; however, it has not been shown previously that PDHA1 protein expression is decreased in hypoxia. Together, these data suggest that hypoxia triggers up-regulation of isoforms of key glycolytic enzymes that increase flux through the glycolytic pathway and it promotes down-regulation of PDHA1 to limit entry into aerobic metabolism.

Low oxygen levels cause an increase in the generation of reactive oxygen species (ROS) in mitochondria by respiratory complexes I and III [188, 199]. It has been hypothesized that the increased concentration of ROS induces oxidation of Fe^{2+} to Fe^{3+}, which cannot be used as a cofactor for PHD to hydroxylate HIF-1 α for degradation [200]. In agreement with this hypothesis, HIF-1 α is hydroxylated and degraded in hypoxia in cells that have been treated with anti-oxidants [201]. Two components of Complex I of the electron transport chain were up-regulated at 72 hours in hypoxia. Up-regulation of Complex I subunits may be necessary for continuous ROS production and subsequent stabilization of HIF during hypoxia.

The presence of ROS in hypoxic conditions induces phosphorylation of the protein kinase, MAPK14 [202], which was up-regulated at 48 hours in hypoxia in this proteomic analysis. A common feature of cancer cells, which tend to reside in poorly vascularized hypoxic tumors, is the increased use of glycolysis to produce ATP, even in

Figure 19. Metabolic proteins that were differentially expressed in hypoxia. Several proteins that play key roles in glycolysis or entry into the tricarboxylic acid cycle (TCA) showed increased (green arrows) or decreased (red arrows) expression in hypoxia. GLUT1: Solute carrier family 2, facilitated glucose transporter, member 1, PDK1: pyruvate dehydrogense kinase isozyme 1, HIF: hypoxia inducible factor, PDH: pyruvate dehydrogenase, MAPK14: mitogen activated protein kinase 14, ROS: reactive oxygen species.
the presence of oxygen [203]. This is called aerobic glycolysis, and it is largely sustained through the stabilization and activation of HIF-1a in normoxia [204]. MAPK14 is necessary for HIF-1 α-dependent aerobic glycolysis, as inhibition of MAPK14 results in decreased levels of HIF-1 α and HIF-1 α target genes, such as GLUT1 and hexokinase 2 [205]. MAPK14 has also been shown to stabilize HIF-1 α in hypoxic conditions [206, 207]. The MAPK14 pathway plays a role in proliferation, differentiation, metabolism and cell death $[115,208]$ by regulating the activity of several transcription factors and interacting with other signaling pathways $[209,210]$. Given that it is activated in hypoxia and it is necessary for HIF-1 α-dependent aerobic glycolysis, MAPK14 is likely a key modulator for the increase of glycolysis in hESCs in response to hypoxia.

Three metabolic proteins involved in the biosynthesis of isoprenoids and steroid molecules were up-regulated in hypoxia: Isopentenyl-diphosphate Delta-isomerase 1 (IPPI1), Farnesyl pyrophosphate synthase (FDPS), and squalene monooxygenase.

FDPS creates lipids that are either incorporated into sterols, dolichols, ubiquinones and carotenoids or used as substrates for farnesylation and geranylgeranylation of proteins [122]. Covalent attachment of isoprenyl chains produced by FDPS is essential for intracellular localization and function of small GTPase binding proteins (for example, Ras, Rac, Rho, and CDC42), which play a fundamental role in signaling pathways that modulate cell proliferation and survival [211]. The important role of FDPS is demonstrated by the fact that its inhibition in cancer cells causes modulation of proliferation, apoptosis, cell migration and invasion, angiogenesis, and tumor-mediated immunosuppression. Inhibition of FDPS is known to cause a reduction is several signaling pathways, including TGF- β signaling [212]. FDPS inhibition has also been shown to suppress the accumulation of HIF-1 α in response to IGF- 1 stimulation in part by increasing degradation of HIF-1 α [213]. This suggests a potential role for the isoprenoid biosynthesis pathway, particularly FDPS, in modulating the cell's response to hypoxia by slowing degradation of HIF-1 α.

Figure 20. Hypoxic up-regulation of proteins involved in steroid biosynthesis. Several proteins involved in isoprenoid and steroid biosynthesis showed increased expression (green arrows) or differential expression of isoforms (yellow arrows) in hypoxia. IPPI1: isopentenyl diphosphate isomerase, GPPS: geranyl diphosphate synthase, FDPS: farnesyl pyrophosphate synthase, SQLE: squaline monooxygenase.

4.3 Hypoxia influenced the expression of some proteins involved in chromatin modification

Pluripotent hESCs maintain a wide open chromatin structure, which is selectively condensed as differentiation down a particular lineage progresses [214]. This process is directed by epigenetic modifications, which control gene expression without changing DNA sequence. The histone family of proteins, which can be modified through acetylation, methylation, phosphorylation, and ubiquitination, plays an important role in epigenetic regulation. It has been shown in mESCs that there are epigenetic markers of open and active chromatin on genes such as Oct-4 and Sox-2 in early replication, whereas genes for lineage specification have both active and repressive markers, suggesting that the expression of these genes could be rapidly controlled [215].

Some histone variants were differentially expressed in hypoxia. Histone H2A type 1-H was up-regulated at 48 hours and Histone H 1 X and H 3.3 were down-regulated at 72 hours. Histone H 3.3 replaces conventional Histone H 3 in a wide range of nucleosomes in actively transcribed genes and it seems to be required for development, although its role in development is poorly understood [216]. Histone variants alter the functional properties of chromatin and play crucial roles in embryonic stem cell maintenance and differentiation [217]. Up- or down-regulation of specific histone variants may be one mechanism by which hypoxia modulates gene expression and thus pluripotency in hESCs.

Two proteins that modify epigenetic labels of histones were differentially expressed in hypoxia. Histone deacetylase complex subunit SAP18, which is a component of the SIN3-repressing complex that enhances transcriptional repression [152], was up-regulated at 72 hours. Parafibromin was down-regulated at 72 hours in hypoxia. Parafibromin is a component of the PAF1 complex, which activates transcription of specific genes by ubiquitinating and methylating histones [153, 154]. The PAF1 complex regulates transcription of genes involved in cell growth and survival and it is essential for normal embryonic development [155]. The differential expression of these proteins may promote pluripotency in hypoxia by adjusting epigenetic marks in such a way as to reduce transcription of genes associated with differentiation.

The actin cytoskeleton has an essential role in cell migration, determination of cell shape and polarity, and protein and organelle trafficking [218]. It is now generally accepted that actin also has a role in transcription and transcriptional regulation through several mechanisms [219]. Actin is a member of several chromatin remodeling and HAT complexes and is essential for the function of these complexes in transcriptional activation [218, 220]. It also physically interacts with all three RNA polymerases and this interaction is necessary for transcription in vitro and in vivo [218, 220]. Monomeric actin regulates gene transcription by binding to specific transcription factors and targeting them for the cytoplasm. It is suggested that actin polymerization may regulate gene transcription by affecting the concentration of monomeric actin that is available to interact with nuclear components.

The highly dynamic organization of actin is controlled by environmental signals that activate signaling pathways and actin-regulatory proteins [221]. In hypoxia, there was up-regulation of protein enabled homolog, which induces the formation of F -actin rich outgrowths and links signal transduction pathways to localized actin cytoskeleton remodeling [180]. There was also down-regulation of MARCKS, which is an F-actin cross-linking protein [181], and Actin-related protein 2/3, which is a regulator of actin dynamics [182]. This suggests that hypoxia may promote pluripotency in hESCs in part by up-regulating actin regulatory proteins, which in turn affect chromatin remodeling and transcription in the nucleus. Very little is known about actin function in nuclear processes and more research must be done to confirm this idea.

4.4 Some proteins that regulate c-Myc expression or activity were upregulated in hypoxia

As cells progress through the multistage process of differentiation, they selectively activate and silence sets of genes in order to acquire specific functions and lose self-renewal capacity. These changes in gene expression are coordinated by the action of many transcription factors that have temporal and cell-type specific expression [222]. The transcription factor, c-Myc has been implicated in the modulation of many
cell functions, including cell cycle regulation, proliferation, growth, differentiation, and metabolism [223]. It acts as a transcription factor for an extremely large number of genes - perhaps 15% of genes in the genome [224]. Two proteins that are associated with increased levels of c-Myc were up-regulated in hypoxia. Protein CIP2A, which prevents proteolytic degradation of c-Myc by inhibiting PP2A tumor suppressor activity towards it [125], was up-regulated at 48 hours. Over-expression of CIP2A promotes Raselicited cell growth and knock-down of CIP2A correlates with differentiation of neural progenitor cells [225]. FUBP1, which stimulates the expression of c-Myc in undifferentiated cells by activating the far upstream element of c-Myc [124], was upregulated at 72 hours. c-Myc is one of only four proteins needed to reprogram differentiated cells to iPSCs, indicating its important role in promoting the pluripotent state of human cells. Therefore, the up-regulation of Protein CIP2A and FUBP1 in hypoxia may result in the maintenance of pluripotency through up-regulation of c-Myc.

4.5 Proteins involved in post-transcriptional modification were differentially expressed in hypoxia

Protein expression and activity are regulated at many levels beyond transcription, including RNA splicing, translation, protein trafficking, and proteasomal degradation. Alternative splicing, a process in which the exons of an RNA transcript are connected in different combinations during RNA splicing, provides a flexible mechanism through which cells can generate proteins with different properties [226]. The resulting mRNAs may be translated into different isoforms of a protein. For example, a change in splice isoforms from the adult pyruvate kinase muscle 1 (PKM1) to the fetal PKM2, is observed in lung cancer cell lines and this change is believed to promote aerobic glycolysis and tumor growth [227]. Many human genes are known to be alternatively spliced in response to hypoxia, and in some cases this has been shown to be regulated by HIF-1a [228-231]. In this study, some proteins involved in RNA splicing were differentially expressed in hypoxia. PRP16, which is essential for catalytic step II in the pre-mRNA splicing process [131], and EXOSC7, which is a component of the exosome 3^{\prime} -

5' exoribonuclease complex that degrades unstable mRNAs [132], were up-regulated at 48 hours. NAA38, which binds to the 3 '-terminal U-tract of U6 snRNA and is involved in mRNA processing and splicing [133], was down-regulated at 48 hours. NAA38 has been shown to be regulated by hypoxia in human retina cells [232]. In response to environmental stress, cells use alternative splicing to rapidly and specifically alter gene expression [233]. It is possible that these RNA splicing proteins were up- or downregulated in response to hypoxia in order to facilitate splicing of genes that mediate the cell's response to hypoxia.

Several proteins that were differentially expressed in hypoxia in this study displayed up-regulation of one isoform alongside down-regulation of another isoform (see Tables 1-4). One example is serine/threonine-protein phosphatase PP1- α, catalytic subunit, which has three different isoforms that are generated through alternative splicing. For most of the proteins that had differential expression of isoforms, little information is available on differences in function between the isoforms. It would be interesting to investigate whether these proteins are spliced differently in response to hypoxia, and whether these changes promote pluripotency.

In order to survive in hypoxia, cells must suppress their metabolic rate to a level that can be sustained with the ATP produced through glycolysis alone [234]. The most energy consuming process in cells is translation of mRNA into protein; therefore, it is not surprising that protein synthesis is globally reduced in hypoxia [235]. In addition, cells can respond to environmental stimuli more rapidly when changes in gene expression are targeted at translation rather than transcription, as protein synthesis is thought to be the rate limiting step in gene expression [236, 237]. Severe hypoxia has been shown to cause a rapid decline in protein synthesis from about 30\% of the cell's energy expenditure to about 7\% [238]. Global regulation of protein synthesis is largely accomplished through the modification of translation initiation factors [239]. In hypoxia, short term inhibition of translation occurs through phosphorylation elf-2 α, which inhibits GDP-GTP exchange catalyzed by elF-2B, thus halting initiation of translation [240, 241] In this proteomic analysis, translation initiation factor elF-2B
subunit α was down-regulated at 48 hours in hypoxia. This result suggests that hypoxia may also decrease global protein expression through down-regulation of eIF-2B.

Some proteins involved in translation of mitochondrial proteins were downregulated in hypoxia. At 48 hours, there was down-regulation of the mitochondrial ribosomal proteins: S28 and L19 and at 72 hours there was down-regulation of S9, L15, and L19. Elongation factor Ts, which is a mitochondrial elongation factor [174], and PTCD1 and PTCD3, which are predicted to be involved in the assembly of respiratory chain complexes [175], were down-regulated at 48 hours. PTCD3 can additionally associate with the mitochondrial small ribosomal subunit to activate mitochondrial translation [176, 177]. These results complement the theory that protein expression is globally decreased in hypoxia and also suggest that there may be a particularly large decrease in expression of proteins associated with mitochondria, which are mostly inactive in hypoxia. Anaerobic energy production in a human cell causes the production of lactic acid, which is secreted from the cell and causes extracellular acidosis. Increased production of H^{+}ions during hypoxia promotes interactions between the von HippelLindau tumor suppressor protein and rRNA genes, resulting in a reduction of rRNA synthesis [242].

Numerous proteins involved in cell trafficking through endosomes, vesicles, and the Golgi aparatus were differentially expressed in hypoxia. Little is known about the role of these proteins in the response to hypoxia or differentiation of stem cells. They may have a role in the response to hypoxia by processing, degrading, secreting, localizing, and endocytosing proteins that have a role in pluripotency or differentiation. For example, Rab4A, which is a member of the Rab family of small GTPases that regulates intracellular transport [145], was down-regulated at 48 hours. Rab4A has an interesting role in the activity of plasma membrane receptors. After activation, many receptors are endocytosed and sorted through endosomes to the lysosome for proteolytic degradation. However, some receptors in Rab4a-positive endosomes are recycled back to the plasma membrane, rather than sent to the lysosome [243-245]. Additionally, VEGF receptor 2 has been shown to stimulate MAPK signaling from the
endosome during this recycling process [243]. Therefore, down-regulation of Rab4A in hypoxia may result in decreased signaling from the receptors that are recycled in a Rab4A dependent manner.

Several proteins involved in proteasomal degradation were down-regulated at 48 hours in hypoxia. These include: SUGT1, which plays a role in ubiquitination and subsequent proteosomal degradation of target proteins [184], PSMF1, which controls proteasome function by inhibiting the 20S proteasome, and also by inhibiting activation of the proteasome by two regulatory proteins, PA700 and PA28 [185], and DCUN1D1, which is part of an E3 ubiquitin ligase complex for neddylation of target proteins [186]. The proteasome ultimately degrades most intracellular proteins in a highly regulated fashion; therefore, it has a crucial role in the regulation of cellular processes such as cell cycle progression, proliferation, differentiation, angiogenesis and apoptosis [246].

The fact that proteins that regulate translation, protein trafficking, and protein degradation were expressed differently in hypoxia strengthens the notion that changes in protein expression in hypoxia do not directly correlate with changes in transcript levels. This highlights the necessity of looking for changes in gene expression at the level of the proteome in addition to the transcriptome.

4.6 Some proteins that require oxygen as a substrate were differentially expressed in hypoxia

The synthesis of collagen deposits involves many steps, including procollagen protein synthesis, prolyl hydroxylation, lysyl hydroxylation, and covalent cross-bridging between collagen fibres [247]. Two enzymes that hydroxylate prolyl residues in collagen, P4HA1 and LEPREL1, were up-regulated at 72 hours in hypoxia. Although prolyl hydroxylation is required for both collagen synthesis and for the stability of HIF-1 α protein, different prolyl hydroxylases perform these functions [248], and P4HA1 and LEPREL1 do not accept HIF1- α as a substrate [249]. P4HA1 is essential for triple helix formation and has been shown to be up-regulated in hypoxia in fetal lung fibroblasts in a HIF-1 α-dependent manner [250]. The prolyl hydroxylase, LEPREL1, has not previously been shown to be up-regulated in hypoxia.

During the maturation of procollagen, lysine residues must also be hydroxylated, and this is performed by procollagen lysyl-hydroxylases [251]. The procollagen lysylhydroxylase, PROD2 was up-regulated at 72 hours in hypoxia. Hypoxia has been shown to stimulate the expression of several hydroxylases, including P4HA1 and PROD2, in a HIF-1 α dependent mechanism in rat vascular smooth muscle cells [156].

All of the collagen hydroxylases use oxygen directly as a substrate [252]. These enzymes may be up-regulated in hypoxia because (a) collagen formation must be increased in hypoxic tissues, or (b) because the concentration of enzyme must increase in order to maintain a normal rate of procollagen hydroxylation in the presence of decreased oxygen substrate. The latter hypothesis is supported by the observation that only components of collagen synthesis that depend on oxygen as a substrate are upregulated in hypoxia, whereas other components, such as procollagen (la) are not upregulated by hypoxia [156]. Together, these results suggest that hypoxia stimulates the expression of a group of hydroxylases that are essential for collagen fiber formation in order to compensate for the lack of oxygen molecules available for use as substrates.

In hypoxia, the high affinity of cytochrome oxidase for oxygen means that the majority of available oxygen is sequestered by the ETC, leaving little in the cytosol for dioxygenases, such as prolyl hydroxylases, which require oxygen as a substrate [253]. The consumption of oxygen by the ETC may be regulated by the endogenous gas, nitric oxide (NO). NO competitively inhibits cytochrome oxidase by competing for binding with molecular oxygen [254]. Arginase-2, which is an inducible mitochondrial protein that inhibits the production of NO [113], was down-regulated at 48 hours in hypoxia. Reduction of Arginase 2 may allow for the production of NO, which can limit binding of oxygen to the ETC in hypoxic conditions.

4.7 Proteins associated with proliferation and apoptosis were differentially expressed in hypoxia

Some proteins that inhibit proliferation were up-regulated in hypoxia, and some proteins that are associated with increased proliferation or mitotic progression were
down-regulated. Regulation of nuclear pre-mRNA domain-containing protein 1A, which may act as a negative regulator in $G(1)$ phase by repressing translation of cyclin D1 and cyclin E, was up-regulated at 72 hours in hypoxia. EML4, which is highly expressed during mitosis and is needed for proper microtubule formation [160], was downregulated at 48 hours. TBRG4, which may play a role in cell cycle progression [157], was also down-regulated at 48 hours in hypoxia. Other proteins that were downregulated at 48 hours include: NSFL1C cofactor p47, which is necessary for the fragmentation of Golgi stacks during mitosis and for reassembly of Golgi stacks after mitosis [158], and eoxycytidylate deaminase, which creates the substrate for thymidylate synthetase to make dTMP for use in DNA synthesis and repair [159]. At 48 hours, isoform 2 of SMC4 was up-regulated and isoform 1 was down-regulated. SMC4 is a core component of the condensin complex, which converts interphase chromatin into condensed chromosomes for mitosis [161]. Focal adhesion kinase 1, which is a tyrosine kinase that has been linked to increased proliferation and cell motility and decreased apoptosis [162, 163], was down-regulated at 72 hours.

These results correspond with the findings of two studies of the long term culture of hESCs in hypoxia, which showed that the rate of proliferation of hESCs is significantly higher in normoxia than in hypoxia [53,54]. Since hESCs must switch from aerobic metabolism to glycolysis in hypoxia, which results in significantly less ATP production per glucose molecule, they must also suppress their metabolic rate and growth to a level that can be sustained with the ATP produced through glycolysis alone [234].

Most genes that are up-regulated by HIF-1 α promote cell survival in hypoxic conditions, such as genes that increase oxygen availability or ATP production through glycolysis. Paradoxically, HIF-1 α also participates in hypoxic cell death through interaction with the pro-apoptotic transcription factor, p53 and by up-regulating other pro-apoptotic factors [255, 256]. In tolerable hypoxia, anti-apoptotic Bcl-2 family proteins prevent cell death by stabilizing mitochondria or inhibiting caspase activation;
however, in the case of severe cell damage caused by hypoxia beyond the cell's adaptive capacity, apoptosis-promoting genes are expressed [257].

Some proteins that promote apoptosis were up-regulated in hypoxia, and some proteins that inhibit apoptosis were down-regulated. The pro-apoptotic molecule, FAM162A, was up-regulated at 72 hours in hypoxia. FAM162A facilitates cell death by induction of the mitochondrial permeability transition (PT), and its transcription is known to be up-regulated by the binding of HIF-1 α to its promoter [168]. Exportin-2, which binds to p53 target promoters to increase transcription of p53 target genes and increase apoptosis [166], was up-regulated at 48 hours in hypoxia. The negative regulator of p53, Ras GTPase-activating protein-binding protein 2 (G3BP2) [167], was down-regulated at 48 hours and DNAJA3, which suppresses apoptosis by preventing cytochrome c release and caspase 3 activation [169], was down-regulated at 72 hours. DNAJA3 had also been shown to enhance the interaction between HIF-1 α and VHL, leading to HIF-1 α degradation [170].

These results suggest that there may have been increased apoptosis in the hESCs cultured at 1% oxygen, although no cell death was observed by phase contrast microscopy. In a study that compared the effects of hypoxia on hESCs cultured in 1%, $5 \%, 10 \%, 15 \%$ or 20% oxygen for four weeks, most of the colonies in 1% oxygen did not survive beyond 2 weeks [54]. Since hypoxia up to 5% oxygen has been shown to promote pluripotency in hESCs [52], and the natural environment of hESCs is closer to 2% [28], culture of hESCs above 1% oxygen but below 5% oxygen may be ideal to promote pluripotency, but prevent apoptosis.

4.8 Suggestions for future experiments

In this study, immunofluoresence localization of Oct-4 was used to determine the percentage of colonies that were differentiating in each oxygen condition. This technique gave an approximate estimation of the percentage of cells that had differentiated, but since some colonies may have had larger patches of differentiation than others, it would be more accurate to determine the percentage of differentiated
cells by measuring the cells individually. This could be achieved by incubating the cells with an antibody against SSEA-4, which is a cell surface marker of pluripotency, and then performing flow cytometry.

Some studies have shown that hypoxia does not affect the rate of proliferation of stem cells, while others have shown that it does (discussed in section 1.3). Proliferation is likely affected by the degree of hypoxia, duration of incubation, and whether the cells are occasionally exposed to oxygen when the incubator door is opened. In order to determine the best culture conditions for hESCs, a study should be performed to determine whether hypoxia does in fact slow proliferation, and under what circumstances this happens.

Dramatic changes were observed in the number of peptides identified for some proteins. For example, Far upstream element-binding protein 1 was not detected in any replicates of hESCs that had been cultured in normoxia, but $8,3,9,8,10$, and 6 peptides were identified in the six replicates of hESCs cultured in hypoxia for 72 hours. For other proteins, the changes in number of peptides were more subtle. For example, RRP4S was not detected in any replicates of hESCs that had been cultured in normoxia, but 2, 1, 2, 1,1 , and 2 peptides were identified in the six replicates of hESCs cultured in hypoxia for 48 hours. Further experiments that utilize Western blotting, selected reaction monitoring, or shotgun $\mathrm{MS} / \mathrm{MS}$ with isotopic labeling should be performed to confirm that some of the proteins identified in this study are in fact differentially expressed.

Selected reaction monitoring (SRM) is a highly selective and sensitive MS technique that can be used for precise and accurate quantification of low-abundance proteins in complex proteomics samples [258]. In this technique, specific precursor ions are selected and fragmented and a few specific fragments are monitored for detection and quantification purposes [259]. SRM is emerging in proteomics as an excellent method to complement shotgun qualitative studies [259].

As discussed in section 1.5.3, accurate quantitative information can be obtained in shotgun proteomics experiments through stable isotopic labeling using SILAC or iTRAQ. These methods allow minute changes between cellular states to be monitored
over time. Since label free MS was used in this study, changes in protein expression were only detected if the difference was large. In future experiments, SILAC or ITRAQ should be used to quantitatively compare protein expression so that more subtle changes in protein expression can be identified.

The importance of candidate proteins such as FUBP1, CIP2A, and MAPK14 in the maintenance of pluripotency can be determined through genetic knock-down of each protein of interest, followed by culture in hypoxia and normoxia.

A major challenge in shotgun proteomics is to identify as many peptides as possible in an LC-MS/MS run. Many proteins known to be present in the hESC proteome, such as Oct-4, Nanog, Nodal and HIF-1 α were not identified by MS/MS in this study. Primary reasons for missed peptide identifications are limitations in sequencing speed and sensitivity of mass spectrometers and the very high complexity of proteomics samples [73]. Another major factor is that the resolution of quadrupoles and ion traps is not high enough to separate all precursor ions, which leads to cofragmentation of precursor ions that are present in the same window [260]. Because of these limitations, even state-of-the-art mass spectrometers do not identify a large percentage of peptides in complex proteomics samples [73]. It is likely that proteins in addition to the ones identified in this study are differentially expressed in hypoxia, but were not identified due to limitations of the experimental technology.

There was little overlap between the proteins expressed differently at 48 hours and the proteins expressed differently at 72 hours, which may be in part due to dynamic regulation of gene expression in the first 72 hours of exposure to hypoxia. Another possibility is that the protein was differentially expressed at both time points, but this change was only detected at one time point due to aforementioned limitations of shotgun proteomics. Since the regulation of gene expression in hESCs after exposure to hypoxia is dynamic, it would be useful to measure protein expression at more frequent time points in future studies, for example every 12 hours for 72 hours over the course of the experiment.

Another important extension of this experiment would be to measure differences in posttranslational modifications, such as phosphorylation of proteins expressed in hESCs cultured under hypoxia versus normoxia. This would provide more insight into the mechanism by which hypoxia promotes pluripotency in hESCs as posttranslational modifications play an important role in the activity or localization of proteins. It would also be interesting to investigate which proteins are up-regulated in hypoxia from specific protein fractions, such as extracellular proteins or nuclear proteins.

4.9 Conclusion

In this study, shotgun proteomics was used for the first time to investigate changes in protein expression that occur when hESCs are cultured in hypoxia. In addition, a new experimental system was developed to compare the pluripotency of hESCs cultured in hypoxia to that of hESCs cultured in normoxia. Many changes in protein expression were observed in hypoxia, particularly in proteins involved in metabolism, chromatin remodeling, post-transcriptional modification, and regulation of c-Myc.

Many experiments and therapeutic applications of hESCs require the cells to be pluripotent [261]. Knowing which proteins are expressed differently in hypoxia and therefore, which proteins may promote pluripotency is important for the development of methods to maintain hESC pluripotency and prevent differentiation in culture [262]. In addition, cancer cells are often exposed to a hypoxic microenvironment due to poor vascularisation of tumors, which is associated with increased invasion and metastatic potential of the cells. The identification of proteins that are expressed differently under hypoxic conditions may be useful for the development of therapeutic strategies to target invasive cells in tumors. This knowledge will also improve our understanding of the ability of hESCs to remain pluripotent during their pre-implantation development in the hypoxic reproductive tract.

References

1. Menendez, P., C. Bueno, and L. Wang, Human embryonic stem cells: A journey beyond cell replacement therapies. Cytotherapy, 2006. 8(6): p. 530-41.
2. Hendrix, M.J., et al., Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer, 2007. 7(4): p. 246-55.
3. Kim, S.U. and J. de Vellis, Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res, 2009. 87(10): p. 2183-200.
4. Korecka, J.A., J. Verhaagen, and E.M. Hol, Cell-replacement and gene-therapy strategies for Parkinson's and Alzheimer's disease. Regen Med, 2007. 2(4): p. 425-46.
5. Okamoto, O.K., Cancer stem cell genomics: the quest for early markers of malignant progression. Expert Rev Mol Diagn, 2009. 9(6): p. 545-54.
6. Lui, K.O., H. Waldmann, and P.J. Fairchild, Embryonic stem cells: overcoming the immunological barriers to cell replacement therapy. Curr Stem Cell Res Ther, 2009. 4(1): p. 7080.
7. Weitzer, G., Embryonic stem cell-derived embryoid bodies: an in vitro model of eutherian pregastrulation development and early gastrulation. Handb Exp Pharmacol, 2006(174): p. 21-51.
8. Dvash, T., D. Ben-Yosef, and R. Eiges, Human embryonic stem cells as a powerful tool for studying human embryogenesis. Pediatr Res, 2006. 60(2): p. 111-7.
9. Lensch, M.W. and G.Q. Daley, Scientific and clinical opportunities for modeling blood disorders with embryonic stem cells. Blood, 2006. 107(7): p. 2605-12.
10. Barbaric, I., P.J. Gokhale, and P.W. Andrews, High-content screening of small compounds on human embryonic stem cells. Biochem Soc Trans, 2011. 38(4): p. 1046-50.
11. Boheler, K.R., Stem cell pluripotency: a cellular trait that depends on transcription factors, chromatin state and a checkpoint deficient cell cycle. J Cell Physiol, 2009. 221(1): p. 10-7.
12. Brivanlou, A.H., et al., Stem cells. Setting standards for human embryonic stem cells. Science, 2003. 300(5621): p. 913-6.
13. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
14. Hoffman, L.M. and M.K. Carpenter, Characterization and culture of human embryonic stem cells. Nat Biotechnol, 2005. 23(6): p. 699-708.
15. Kashyap, V., et al., Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev, 2009. 18(7): p. 1093108.
16. Ginis, l., et al., Differences between human and mouse embryonic stem cells. Dev Biol, 2004. 269(2): p. 360-80.
17. Daheron, L., et al., LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells, 2004. 22(5): p. 770-8.
18. Chadwick, K., et al., Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood, 2003. 102(3): p. 906-15.
19. Richards, M., et al., Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells, 2003. 21(5): p. 546-56.
20. Stewart, M.H., S.C. Bendall, and M. Bhatia, Deconstructing human embryonic stem cell cultures: niche regulation of self-renewal and pluripotency. J Mol Med, 2008. 86(8): p. 875-86.
21. $\mathrm{Xu}, \mathrm{C} .$, et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol, 2001. 19(10): p. 971-4.
22. Kleinman, H.K. and G.R. Martin, Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol, 2005. 15(5): p. 378-86.
23. Kleinman, H.K., et al., Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry, 1982. 21(24): p. 6188-93.
24. Vukicevic, S., et al., Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res, 1992. 202(1): p. 1-8.
25. Hughes, C.S., L.M. Postovit, and G.A. Lajoie, Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics, 2010. 10(9): p. 1886-90.
26. Mallon, B.S., et al., Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol, 2006. 38(7): p. 1063-75.
27. Ludwig, T.E., et al., Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol, 2006. 24(2): p. 185-7.
28. Abdollahi, H., et al., The role of hypoxia in stem cell differentiation and therapeutics. J Surg Res, 2010. 165(1): p. 112-7.
29. Mohyeldin, A., T. Garzon-Muvdi, and A. Quinones-Hinojosa, Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell, 2010. 7(2): p. 150-61.
30. Millman, J.R., J.H. Tan, and C.K. Colton, The effects of low oxygen on self-renewal and differentiation of embryonic stem cells. Curr Opin Organ Transplant, 2009. 14(6): p. 694-700.
31. Rodesch, F., et al., Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol, 1992. 80(2): p. 283-5.
32. Dunwoodie, S.L., The role of hypoxia in development of the Mammalian embryo. Dev Cell, 2009. 17(6): p. 755-73.
33. Petersen, A., A.L. Mikkelsen, and S. Lindenberg, The impact of oxygen tension on developmental competence of post-thaw human embryos. Acta Obstet Gynecol Scand, 2005. 84(12): p. 1181-4.
34. Rinaudo, P.F., et al., Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril, 2006. 86(4 Suppl): p. 1252-65, 1265 e1-36.
35. Brahimi-Horn, M.C. and J. Pouyssegur, Oxygen, a source of life and stress. FEBS Lett, 2007. 581(19): p. 3582-91.
36. Harrison, J.S., et al., Oxygen saturation in the bone marrow of healthy volunteers. Blood, 2002. 99(1): p. 394.
37. Jang, Y.Y. and S.J. Sharkis, A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood, 2007. 110(8): p. 3056-63.
38. Pasarica, M., et al., Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes, 2009. 58(3): p. 718-25.
39. Fehrer, C., et al., Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell, 2007. 6(6): p. 745-57.
40. D'Ippolito, G., et al., Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone, 2006. 39(3): p. 513-22.
41. Grayson, W.L., et al., Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun, 2007. 358(3): p. 948-53.
42. Pistollato, F., et al., Oxygen tension controls the expansion of human CNS precursors and the generation of astrocytes and oligodendrocytes. Mol Cell Neurosci, 2007. 35(3): p. 424-35.
43. Cipolleschi, M.G., P. Dello Sbarba, and M. Olivotto, The role of hypoxia in the maintenance of hematopoietic stem cells. Blood, 1993. 82(7): p. 2031-7.
44. Patel, J., et al., Regulation of hypoxia inducible factors (HIF) in hypoxia and normoxia during placental development. Placenta, 2010. 31(11): p. 951-7.
45. Majmundar, A.J., W.J. Wong, and M.C. Simon, Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell, 2010. 40(2): p. 294-309.
46. Webb, J.D., M.L. Coleman, and C.W. Pugh, Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell Mol Life Sci, 2009. 66(22): p. 3539-54.
47. Czibik, G., Complex role of the HIF system in cardiovascular biology. J Mol Med, 2010. 88(11): p. 1101-11.
48. Covello, K.L., et al., HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev, 2006. 20(5): p. 557-70.
49. Gustafsson, M.V., et al., Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell, 2005. 9(5): p. 617-28.
50. Boulahbel, H., R.V. Duran, and E. Gottlieb, Prolyl hydroxylases as regulators of cell metabolism. Biochem Soc Trans, 2009. 37(Pt 1): p. 291-4.
51. Aragones, J., et al., Oxygen sensors at the crossroad of metabolism. Cell Metab, 2009. 9(1): p. 11-22.
52. Ezashi, T., P. Das, and R.M. Roberts, Low 02 tensions and the prevention of differentiation of hES cells. Proc NatI Acad Sci U S A, 2005. 102(13): p. 4783-8.
53. Zachar, V., et al., The effect of human embryonic stem cells (hESCs) long-term normoxic and hypoxic cultures on the maintenance of pluripotency. In Vitro Cell Dev Biol Anim, 2010. 46(34): p. 276-83.
54. Prasad, S.M., et al., Continuous hypoxic culturing maintains activation of Notch and allows long-term propagation of human embryonic stem cells without spontaneous differentiation. Cell Prolif, 2009. 42(1): p. 63-74.
55. Westfall, S.D., et al., Identification of oxygen-sensitive transcriptional programs in human embryonic stem cells. Stem Cells Dev, 2008. 17(5): p. 869-81.
56. Yoshida, Y., et al., Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 2009. 5(3): p. 237-41.
57. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72.
58. Lengner, C.J., et al., Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell, 2010. 141(5): p. 872-83.
59. Koay, E.J., G. Ofek, and K.A. Athanasiou, Effects of TGF-beta1 and IGF-I on the compressibility, biomechanics, and strain-dependent recovery behavior of single chondrocytes. J Biomech, 2008. 41(5): p. 1044-52.
60. Niebruegge, S., et al., Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol Bioeng, 2009. 102(2): p. 493-507.
61. Steen, H. and M. Mann, The $A B C^{\prime}$'s (and $X Y Z ' s$) of peptide sequencing. Nat Rev Mol Cell Biol, 2004. 5(9): p. 699-711.
62. Domon, B. and R. Aebersold, Mass spectrometry and protein analysis. Science, 2006. 312(5771): p. 212-7.
63. Fang, Y., D.P. Robinson, and L.J. Foster, Quantitative analysis of proteome coverage and recovery rates for upstream fractionation methods in proteomics. J Proteome Res, 2010. 9(4): p. 1902-12.
64. Ong, S.E., et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics, 2002. 1(5): p. 376-86.
65. Mann, M., Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol, 2006. 7(12): p. 952-8.
66. Patel, V.J., et al., A comparison of labeling and label-free mass spectrometry-based proteomics approaches. J Proteome Res, 2009. 8(7): p. 3752-9.
67. Johnson, R.S., et al., Informatics for protein identification by mass spectrometry. Methods, 2005. 35(3): p. 223-36.
68. Lam, H., et al., Building consensus spectral libraries for peptide identification in proteomics. Nat Methods, 2008. 5(10): p. 873-5.
69. Chen, Y. and D. Xu, Computational analyses of high-throughput protein-protein interaction data. Curr Protein Pept Sci, 2003. 4(3): p. 159-81.
70. Craig, R. and R.C. Beavis, TANDEM: matching proteins with tandem mass spectra. Bioinformatics, 2004. 20(9): p. 1466-7.
71. Elias, J.E., et al., Comparative evaluation of mass spectrometry platforms used in largescale proteomics investigations. Nat Methods, 2005. 2(9): p. 667-75.
72. Geer, L.Y., et al., Open mass spectrometry search algorithm. J Proteome Res, 2004. 3(5): p. 958-64.
73. Michalski, A., J. Cox, and M. Mann, More than 100,000 Detectable Peptide Species Elute in Single Shotgun Proteomics Runs but the Majority is Inaccessible to Data-Dependent LCMS/MS. J Proteome Res, 2011. 10(4): p. 1785-93.
74. Alves, G., et al., Enhancing peptide identification confidence by combining search methods. J Proteome Res, 2008. 7(8): p. 3102-13.
75. Bhattacharya, B., et al., Gene expression in human embryonic stem cell lines: unique molecular signature. Blood, 2004. 103(8): p. 2956-64.
76. Boiani, M. and H.R. Scholer, Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol, 2005. 6(11): p. 872-84.
77. Boyer, L.A., et al., Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005. 122(6): p. 947-56.
78. Brandenberger, R., et al., MPSS profiling of human embryonic stem cells. BMC Dev Biol, 2004. 4: p. 10.
79. Carpenter, M.K., E. Rosler, and M.S. Rao, Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells, 2003. 5(1): p. 79-88.
80. Richards, M., et al., The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells, 2004. 22(1): p. 51-64.
81. Sperger, J.M., et al., Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci U S A, 2003. 100(23): p. 13350-5.
82. Wei, C.L., et al., Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem Cells, 2005. 23(2): p. 166-85.
83. Miura, T., et al., Monitoring early differentiation events in human embryonic stem cells by massively parallel signature sequencing and expressed sequence tag scan. Stem Cells Dev, 2004. 13(6): p. 694-715.
84. Mitsui, K., et al., The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 2003. 113(5): p. 631-42.
85. Ahn, S.M., R. Simpson, and B. Lee, Genomics and proteomics in stem cell research: the road ahead. Anat Cell Biol, 2010. 43(1): p. 1-14.
86. Baharvand, H., et al., Concise review: trends in stem cell proteomics. Stem Cells, 2007. 25(8): p. 1888-903.
87. Van Hoof, D., et al., Proteomics and human embryonic stem cells. Stem Cell Res, 2008. 1(3): p. 169-82.
88. Van Hoof, D., et al., Embryonic stem cell proteomics. Expert Rev Proteomics, 2006. 3(4): p. 427-37.
89. Baharvand, H., et al., Proteomic signature of human embryonic stem cells. Proteomics, 2006. 6(12): p. 3544-9.
90. Van Hoof, D., et al., A quest for human and mouse embryonic stem cell-specific proteins. Mol Cell Proteomics, 2006. 5(7): p. 1261-73.
91. Lim, J.W. and A. Bodnar, Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics, 2002. 2(9): p. 1187-203.
92. Chin, A.C., et al., Identification of proteins from feeder conditioned medium that support human embryonic stem cells. J Biotechnol, 2007. 130(3): p. 320-8.
93. Gonzalez, R., et al., Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency. Proc Natl Acad Sci U S A, 2010. 107(8): p. 3552-7.
94. Prowse, A.B., et al., A proteome analysis of conditioned media from human neonatal fibroblasts used in the maintenance of human embryonic stem cells. Proteomics, 2005. 5(4): p. 978-89.
95. Prowse, A.B., et al., Identification of potential pluripotency determinants for human embryonic stem cells following proteomic analysis of human and mouse fibroblast conditioned media. J Proteome Res, 2007. 6(9): p. 3796-807.
96. Beattie, G.M., et al., Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells, 2005. 23(4): p. 489-95.
97. James, D., et al., TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 2005. 132(6): p. 1273-82.
98. Bendall, S.C., et al., IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature, 2007. 448(7157): p. 1015-21.
99. Bendall, S.C., et al., An enhanced mass spectrometry approach reveals human embryonic stem cell growth factors in culture. Mol Cell Proteomics, 2009. 8(3): p. 421-32.
100. Fathi, A., et al., Comparative proteome and transcriptome analyses of embryonic stem cells during embryoid body-based differentiation. Proteomics, 2009. 9(21): p. 4859-70.
101. Gauthaman, K., C.Y. Fong, and A. Bongso, Effect of ROCK inhibitor Y-27632 on normal and variant human embryonic stem cells (hESCS) in vitro: its benefits in hESC expansion. Stem Cell Rev, 2010. 6(1): p. 86-95.
102. Skottman, H. and O. Hovatta, Culture conditions for human embryonic stem cells. Reproduction, 2006. 132(5): p. 691-8.
103. Hakala, H., et al., Comparison of biomaterials and extracellular matrices as a culture platform for multiple, independently derived human embryonic stem cell lines. Tissue Eng Part A, 2009. 15(7): p. 1775-85.
104. Bendall, S.C., A.T. Booy, and G. Lajoie, Proteomic analysis of pluripotent stem cells. Curr Protoc Stem Cell Biol, 2007. Chapter 1: p. Unit 1B 1.
105. Keller, A., et al., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem, 2002. 74(20): p. 5383-92.
106. Nesvizhskii, A.l., et al., A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem, 2003. 75(17): p. 4646-58.
107. Mathupala, S.P., Y.H. Ko, and P.L. Pedersen, Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin Cancer Biol, 2009. 19(1): p. 17-24.
108. Carruthers, A., et al., Will the original glucose transporter isoform please stand up! Am J Physiol Endocrinol Metab, 2009. 297(4): p. E836-48.
109. Semenza, G.L., Oxygen-dependent regulation of mitochondrial respiration by hypoxiainducible factor 1. Biochem J, 2007. 405(1): p. 1-9.
110. Jia, G., et al., Oxidative demethylation of 3-methylthymine and 3-methyluracil in singlestranded DNA and RNA by mouse and human FTO. FEBS Lett, 2008. 582(23-24): p. 3313-9.
111. Tews, D., P. Fischer-Posovszky, and M. Wabitsch, FTO - Friend or foe? Horm Metab Res, 2010. 42(2): p. 75-80.
112. Timson, D.J. and R.J. Reece, Identification and characterisation of human aldose 1epimerase. FEBS Lett, 2003. 543(1-3): p. 21-4.
113. Nagaoka, S., Y. Takata, and K. Kato, Identification of two arginases generated by alternative splicing in the silkworm, Bombyx mori. Arch Insect Biochem Physiol, 2011. 76(2): p. 97-113.
114. Zhyvoloup, A., et al., Molecular cloning of COA Synthase. The missing link in COA biosynthesis. J Biol Chem, 2002. 277(25): p. 22107-10.
115. Dambach, D.M., Potential adverse effects associated with inhibition of p38alpha/beta MAP kinases. Curr Top Med Chem, 2005. 5(10): p. 929-39.
116. Cuenda, A., Mitogen-activated protein kinase kinase 4 (MKK4). Int J Biochem Cell Biol, 2000. 32(6): p. 581-7.
117. Fukushima, T. and H. Kataoka, Roles of insulin-like growth factor binding protein-2 (IGFBP-2) in glioblastoma. Anticancer Res, 2007. 27(6A): p. 3685-92.
118. Higashi, S., et al., GIGYF2 is present in endosomal compartments in the mammalian brains and enhances IGF-1-induced ERK1/2 activation. J Neurochem, 2010. 115(2): p. 423-37.
119. Wang, P.Y., J. Weng, and R.G. Anderson, OSBP is a cholesterol-regulated scaffolding protein in control of ERK 1/2 activation. Science, 2005. 307(5714): p. 1472-6.
120. Marty, C., D.D. Browning, and R.D. Ye, Identification of tetratricopeptide repeat 1 as an adaptor protein that interacts with heterotrimeric G proteins and the small GTPase Ras. Mol Cell Biol, 2003. 23(11): p. 3847-58.
121. Rohdich, F., A. Bacher, and W. Eisenreich, Perspectives in anti-infective drug design. The late steps in the biosynthesis of the universal terpenoid precursors, isopentenyl diphosphate and dimethylallyl diphosphate. Bioorg Chem, 2004. 32(5): p. 292-308.
122. Szkopinska, A. and D. Plochocka, Farnesyl diphosphate synthase; regulation of product specificity. Acta Biochim Pol, 2005. 52(1): p. 45-55.
123. Nagai, M., et al., Localization of the squalene epoxidase gene (SQLE) to human chromosome region 8q24.1. Genomics, 1997. 44(1): p. 141-3.
124. Jang, M., et al., Far upstream element-binding protein-1, a novel caspase substrate, acts as a cross-talker between apoptosis and the c-myc oncogene. Oncogene, 2009. 28(12): p. 152936.
125. Lucas, C.M., et al., Cancerous inhibitor of PP2A (CIP2A) at diagnosis of chronic myeloid leukemia is a critical determinant of disease progression. Blood, 2011.
126. Pillai, B., et al., Rpb4, a non-essential subunit of core RNA polymerase II of Saccharomyces cerevisiae is important for activated transcription of a subset of genes. J Biol Chem, 2001. 276(33): p. 30641-7.
127. Tassan, J.P., et al., In vitro assembly of a functional human CDK7-cyclin H complex requires MAT1, a novel 36 KDa RING finger protein. EMBO J, 1995. 14(22): p. 5608-17.
128. Tirode, F., et al., Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol Cell, 1999. 3(1): p. 87-95.
129. Licciulli, S., et al., Pirin downregulation is a feature of AML and leads to impairment of terminal myeloid differentiation. Leukemia, 2010. 24(2): p. 429-37.
130. Reina, J.H. and N. Hernandez, On a roll for new TRF targets. Genes Dev, 2007. 21(22): p. 2855-60.
131. Zhou, Z. and R. Reed, Human homologs of yeast prp16 and prp17 reveal conservation of the mechanism for catalytic step II of pre-mRNA splicing. EMBO J, 1998. 17(7): p. 2095-106.
132. Navarro, M.V., et al., Insights into the mechanism of progressive RNA degradation by the archaeal exosome. J Biol Chem, 2008. 283(20): p. 14120-31.
133. Pannone, B.K., et al., Multiple functional interactions between components of the Lsm2Lsm8 complex, U6 snRNA, and the yeast La protein. Genetics, 2001. 158(1): p. 187-96.
134. Linder, P., Dead-box proteins: a family affair-active and passive players in RNPremodeling. Nucleic Acids Res, 2006. 34(15): p. 4168-80.
135. Herscovics, A., Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta, 1999. 1473(1): p. 96-107.
136. Bush, K.T., B.A. Hendrickson, and S.K. Nigam, Induction of the FK506-binding protein, FKBP13, under conditions which misfold proteins in the endoplasmic reticulum. Biochem J, 1994. 303 (Pt 3): p. 705-8.
137. Fine, A., et al., Cloning, expression, and purification of functional Sec11a and Sec11b, type I signal peptidases of the archaeon Haloferax volcanii. J Bacteriol, 2006. 188(5): p. 1911-9.
138. Meyer, H.A. and E. Hartmann, The yeast SPC22/23 homolog Spc3p is essential for signal peptidase activity. J Biol Chem, 1997. 272(20): p. 13159-64.
139. Wang, J.W., et al., Identification of a novel lipopolysaccharide-inducible gene with key features of both A kinase anchor proteins and chs1/beige proteins. J Immunol, 2001. 166(7): p. 4586-95.
140. Vaughan, K.T., Microtubule plus ends, motors, and traffic of Golgi membranes. Biochim Biophys Acta, 2005. 1744(3): p. 316-24.
141. Karki, S. and E.L. Holzbaur, Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol, 1999. 11(1): p. 45-53.
142. Gonzalez, A. and E. Rodriguez-Boulan, Clathrin and AP1B: key roles in basolateral trafficking through trans-endosomal routes. FEBS Lett, 2009. 583(23): p. 3784-95.
143. Pons, V., et al., Hrs and SNXX functions in sorting and membrane invagination within multivesicular bodies. PLoS Biol, 2008. 6(9): p. e214.
144. Boutros, R., et al., The tumor protein D52 family: many pieces, many puzzles. Biochem Biophys Res Commun, 2004. 325(4): p. 1115-21.
145. Bielli, A., et al., The small GTPase Rab4A interacts with the central region of cytoplasmic dynein light intermediate chain-1. Biochem Biophys Res Commun, 2001. 281(5): p. 1141-53.
146. Wanschers, B., et al., Rab6 family proteins interact with the dynein light chain protein DYNLRB1. Cell Motil Cytoskeleton, 2008. 65(3): p. 183-96.
147. Seaman, M.N., Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol, 2004. 165(1): p. 111-22.
148. Zuccolo, M., et al., The human Nup107-160 nuclear pore subcomplex contributes to proper kinetochore functions. EMBO J, 2007. 26(7): p. 1853-64.
149. Iwamoto, M., et al., Nucleoporin Nup98: a gatekeeper in the eukaryotic kingdoms. Genes Cells, 2010. 15(7): p. 661-9.
150. Mukhopadhyay, A., L.V. Avramova, and H. Weiner, Tom34 unlike Tom20 does not interact with the leader sequences of mitochondrial precursor proteins. Arch Biochem Biophys, 2002. 400(1): p. 97-104.
151. Vicent, G.P., et al., Four enzymes cooperate to displace histone H1 during the first minute of hormonal gene activation. Genes Dev, 2011. 25(8): p. 845-62.
152. Matyash, A., et al., SAP18 promotes Kruppel-dependent transcriptional repression by enhancer-specific histone deacetylation. J Biol Chem, 2009. 284(5): p. 3012-20.
153. Krogan, N.J., et al., The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell, 2003. 11(3): p. 721-9.
154. Ng, H.H., S. Dole, and K. Struhl, The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J Biol Chem, 2003. 278(36): p. 33625-8.
155. Newey, P.J., M.R. Bowl, and R.V. Thakker, Parafibromin--functional insights. J Intern Med, 2009. 266(1): p. 84-98.
156. Hofbauer, K.H., et al., Oxygen tension regulates the expression of a group of procollagen hydroxylases. Eur J Biochem, 2003. 270(22): p. 4515-22.
157. Edwards, M.C., et al., Human CPR (cell cycle progression restoration) genes impart a Farphenotype on yeast cells. Genetics, 1997. 147(3): p. 1063-76.
158. Kondo, H., et al., p47 is a cofactor for p97-mediated membrane fusion. Nature, 1997. 388(6637): p. 75-8.
159. Weiner, K.X., et al., Primary structure of human deoxycytidylate deaminase and overexpression of its functional protein in Escherichia coli. J Biol Chem, 1993. 268(17): p. 129839.
160. Pollmann, M., et al., Human EML4, a novel member of the EMAP family, is essential for microtubule formation. Exp Cell Res, 2006. 312(17): p. 3241-51.
161. Bazile, F., J. St-Pierre, and D. D'Amours, Three-step model for condensin activation during mitotic chromosome condensation. Cell Cycle, 2010. 9(16): p. 3243-55.
162. Chatzizacharias, N.A., G.P. Kouraklis, and S.E. Theocharis, The role of focal adhesion kinase in early development. Histol Histopathol, 2010. 25(8): p. 1039-55.
163. McLean, G.W., et al., The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nat Rev Cancer, 2005. 5(7): p. 505-15.
164. Andersen, S.S., Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends Cell Biol, 2000. 10(7): p. 261-7.
165. Smits, K., et al., In vivo-derived horse blastocysts show transcriptional upregulation of developmentally important genes compared with in vitro-produced horse blastocysts. Reprod Fertil Dev, 2011. 23(2): p. 364-75.
166. Tanaka, T., et al., hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell, 2007. 130(4): p. 638-50.
167. Kim, M.M., et al., Modulation of p53 and MDM2 activity by novel interaction with RasGAP binding proteins (G3BP). Oncogene, 2007. 26(29): p. 4209-15.
168. Lee, M.J., et al., Identification of the hypoxia-inducible factor 1 alpha-responsive HGTD-P gene as a mediator in the mitochondrial apoptotic pathway. Mol Cell Biol, 2004. 24(9): p. 391827.
169. Syken, J., T. De-Medina, and K. Munger, TID1, a human homolog of the Drosophila tumor suppressor I(2)tid, encodes two mitochondrial modulators of apoptosis with opposing functions. Proc Natl Acad Sci U S A, 1999. 96(15): p. 8499-504.
170. Bae, M.K., et al., Tid-1 interacts with the von Hippel-Lindau protein and modulates angiogenesis by destabilization of HIF-1alpha. Cancer Res, 2005. 65(7): p. 2520-5.
171. Pursiheimo, J.P., et al., Hypoxia-activated autophagy accelerates degradation of SQSTM1/p62. Oncogene, 2009. 28(3): p. 334-44.
172. Radoshevich, L., et al., ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell, 2010. 142(4): p. 590-600.
173. Wu, B.X., et al., The rat Apg3p/Aut1p homolog is upregulated by ischemic preconditioning in the retina. Mol Vis, 2006. 12: p. 1292-302.
174. Akama, K., et al., Analysis of the functional consequences of lethal mutations in mitochondrial translational elongation factors. Biochim Biophys Acta, 2010. 1802(7-8): p. 692-8.
175. Lightowlers, R.N. and Z.M. Chrzanowska-Lightowlers, PPR (pentatricopeptide repeat) proteins in mammals: important aids to mitochondrial gene expression. Biochem J, 2008. 416(1): p. e5-6.
176. Aphasizheva, I., et al., Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial trans/ation in trypanosomes. Mol Cell, 2011. 42(1): p. 106-17.
177. Davies, S.M., et al., Pentatricopeptide repeat domain protein 3 associates with the mitochondrial small ribosomal subunit and regulates translation. FEBS Lett, 2009. 583(12): p. 1853-8.
178. Philpott, C.C., R.D. Klausner, and T.A. Rouault, The bifunctional iron-responsive element binding protein/cytosolic aconitase: the role of active-site residues in ligand binding and regulation. Proc Natl Acad Sci U S A, 1994. 91(15): p. 7321-5.
179. Tawa, H., et al., Role of afadin in vascular endothelial growth factor- and sphingosine 1-phosphate-induced angiogenesis. Circ Res, 2010. 106(11): p. 1731-42.
180. Urbanelli, L., et al., Characterization of human Enah gene. Biochim Biophys Acta, 2006. 1759(1-2): p. 99-107.
181. Shiraishi, M., et al., Unphosphorylated MARCKS is involved in neurite initiation induced by insulin-like growth factor-l in SH-SY5Y cells. J Cell Physiol, 2006. 209(3): p. 1029-38.
182. Soderling, S.H., Grab your partner with both hands: cytoskeletal remodeling by Arp2/3 signaling. Sci Signal, 2009. 2(55): p. pe5.
183. Tsvetkov, A.S., et al., Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments. Cell Motil Cytoskeleton, 2007. 64(7): p. 519-30.
184. Lee, Y.T., et al., Human Sgt1 binds HSP90 through the CHORD-Sgt1 domain and not the tetratricopeptide repeat domain. J Biol Chem, 2004. 279(16): p. 16511-7.
185. McCutchen-Maloney, S.L., et al., cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J Biol Chem, 2000. 275(24): p. 18557-65.
186. Huang, G., et al., SCCRO (DCUN1D1) Promotes Nuclear Translocation and Assembly of the Neddylation E3 Complex. J Biol Chem, 2011. 286(12): p. 10297-304.
187. Williamson, A.J., et al., Quantitative proteomics analysis demonstrates posttranscriptional regulation of embryonic stem cell differentiation to hematopoiesis. Mol Cell Proteomics, 2008. 7(3): p. 459-72.
188. Taylor, C.T., Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J, 2008. 409(1): p. 19-26.
189. Marin-Hernandez, A., et al., HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem, 2009. 9(9): p. 1084101.
190. Pastorino, J.G., N. Shulga, and J.B. Hoek, Mitochondrial binding of hexokinase I/ inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem, 2002. 277(9): p. 7610-8.
191. Pedersen, P.L., et al., Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta, 2002. 1555(1-3): p. 14-20.
192. Rankin, E.B. and A.J. Giaccia, The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ, 2008. 15(4): p. 678-85.
193. Mathupala, S.P., A. Rempel, and P.L. Pedersen, Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J Biol Chem, 2001. 276(46): p. 43407-12.
194. Wolf, A., et al., Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med, 2011. 208(2): p. 313-26.
195. Mobasheri, A., et al., Hypoxia inducible factor-1 and facilitative glucose transporters GLUT1 and GLUT3: putative molecular components of the oxygen and glucose sensing apparatus in articular chondrocytes. Histol Histopathol, 2005. 20(4): p. 1327-38.
196. Amann, T. and C. Hellerbrand, GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opin Ther Targets, 2009. 13(12): p. 1411-27.
197. Altenberg, B. and K.O. Greulich, Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics, 2004. 84(6): p. 1014-20.
198. Zhao, F.Q. and A.F. Keating, Functional properties and genomics of glucose transporters. Curr Genomics, 2007. 8(2): p. 113-28.
199. Klimova, T. and N.S. Chandel, Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ, 2008. 15(4): p. 660-6.
200. Gerald, D., et al., JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell, 2004. 118(6): p. 781-94.
201. Pouyssegur, J. and F. Mechta-Grigoriou, Redox regulation of the hypoxia-inducible factor. Biol Chem, 2006. 387(10-11): p. 1337-46.
202. Kulisz, A., et al., Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am J Physiol Lung Cell Mol Physiol, 2002. 282(6): p. L1324-9.
203. Warburg, O., On respiratory impairment in cancer cells. Science, 1956. 124(3215): p. 269-70.
204. Kroemer, G. and J. Pouyssegur, Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell, 2008. 13(6): p. 472-82.
205. Chiacchiera, F., et al., p38alpha blockade inhibits colorectal cancer growth in vivo by inducing a switch from HIF1alpha- to FoxO-dependent transcription. Cell Death Differ, 2009. 16(9): p. 1203-14.
206. Emerling, B.M., et al., Mitochondrial reactive oxygen species activation of p38 mitogenactivated protein kinase is required for hypoxia signaling. Mol Cell Biol, 2005. 25(12): p. 4853-62. 207. Kwon, S.J., J.J. Song, and Y.J. Lee, Signal pathway of hypoxia-inducible factor-1alpha phosphorylation and its interaction with von Hippel-Lindau tumor suppressor protein during ischemia in MiaPaCa-2 pancreatic cancer cells. Clin Cancer Res, 2005. 11(21): p. 7607-13.
207. Hui, L., et al., p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat Genet, 2007. 39(6): p. 741-9.
208. Perdiguero, E., et al., Genetic deficiency of p38alpha reveals its critical role in myoblast cell cycle exit: the p38alpha-JNK connection. Cell Cycle, 2007. 6(11): p. 1298-303.
209. Serra, C., et al., Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol Cell, 2007. 28(2): p. 200-13.
210. Hosfield, D.J., et al., Structural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis. J Biol Chem, 2004. 279(10): p. 8526-9.
211. Korpal, M., et al., Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med, 2009. 15(8): p. 960-6.
212. Tang, X., et al., Bisphosphonates suppress insulin-like growth factor 1-induced angiogenesis via the HIF-1alpha/VEGF signaling pathways in human breast cancer cells. Int J Cancer, 2010. 126(1): p. 90-103.
213. Meshorer, E. and T. Misteli, Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol, 2006. 7(7): p. 540-6.
214. Azuara, V., et al., Chromatin signatures of pluripotent cell lines. Nat Cell Biol, 2006. 8(5): p. 532-8.
215. Szenker, E., D. Ray-Gallet, and G. Almouzni, The double face of the histone variant H3.3. Cell Res, 2011. 21(3): p. 421-34.
216. Lee, Y.H. and Q. Wu, Chromatin regulation landscape of embryonic stem cell identity. Biosci Rep, 2011. 31(2): p. 77-86.
217. Miralles, F. and N. Visa, Actin in transcription and transcription regulation. Curr Opin Cell Biol, 2006. 18(3): p. 261-6.
218. Blessing, C.A., G.T. Ugrinova, and H.V. Goodson, Actin and ARPs: action in the nucleus. Trends Cell Biol, 2004. 14(8): p. 435-42.
219. Obrdlik, A., et al., The histone acety/transferase PCAF associates with actin and hnRNP U for RNA polymerase II transcription. Mol Cell Biol, 2008. 28(20): p. 6342-57.
220. Farrants, A.K., Chromatin remodelling and actin organisation. FEBS Lett, 2008. 582(14): p. 2041-50.
221. Rosenbauer, F. and D.G. Tenen, Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol, 2007. 7(2): p. 105-17.
222. Junttila, M.R. and J. Westermarck, Mechanisms of MYC stabilization in human malignancies. Cell Cycle, 2008. 7(5): p. 592-6.
223. Fernandez, P.C., et al., Genomic targets of the human c-Myc protein. Genes Dev, 2003. 17(9): p. 1115-29.
224. Kerosuo, L., et al., CIP2A increases self-renewal and is linked to Myc in neural progenitor cells. Differentiation, 2010. 80(1): p. 68-77.
225. Black, D.L., Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem, 2003. 72: p. 291-336.
226. Christofk, H.R., et al., The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008. 452(7184): p. 230-3.
227. Gang, H., et al., A novel hypoxia-inducible spliced variant of mitochondrial death gene bnip3 promotes survival of ventricular myocytes. Circ Res, 2011. 108(9): p. 1084-92.
228. Pasanen, A., et al., Hypoxia-inducible factor (HIF)-3alpha is subject to extensive alternative splicing in human tissues and cancer cells and is regulated by HIF-1 but not HIF-2. Int J Biochem Cell Biol, 2010. 42(7): p. 1189-200.
229. Leask, A., What's in an intron? CCN1 mRNA splicing in cancer. J Cell Commun Signal, 2009. 3(2): p. 151-152.
230. Hang, X., et al., Transcription and splicing regulation in human umbilical vein endothelial cells under hypoxic stress conditions by exon array. BMC Genomics, 2009. 10: p. 126.
231. Schmidt-Kastner, R., et al., Hypoxia-regulated components of the U4/U6.U5 tri-small nuclear riboprotein complex: possible role in autosomal dominant retinitis pigmentosa. Mol Vis, 2008. 14: p. 125-35.
232. Pleiss, J.A., et al., Rapid, transcript-specific changes in splicing in response to environmental stress. Mol Cell, 2007. 27(6): p. 928-37.
233. Storey, K.B. and J.M. Storey, Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev Camb Philos Soc, 2004. 79(1): p. 207-33.
234. Fahling, M., Surviving hypoxia by modulation of mRNA translation rate. J Cell Mol Med, 2009. 13(9A): p. 2770-9.
235. Holz, M.K., et al., mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell, 2005. 123(4): p. 569-80.
236. Scheper, G.C., M.S. van der Knaap, and C.G. Proud, Trans/ation matters: protein synthesis defects in inherited disease. Nat Rev Genet, 2007. 8(9): p. 711-23.
237. Pettersen, E.O., N.O. Juul, and O.W. Ronning, Regulation of protein metabolism of human cells during and after acute hypoxia. Cancer Res, 1986. 46(9): p. 4346-51.
238. Sonenberg, N. and A.G. Hinnebusch, New modes of trans/ational control in development, behavior, and disease. Mol Cell, 2007. 28(5): p. 721-9.
239. Crozier, S.J., et al., Activation of signaling pathways and regulatory mechanisms of mRNA trans/ation following myocardial ischemia-reperfusion. J Appl Physiol, 2006. 101(2): p. 576-82.
240. Koritzinsky, M., et al., Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO J, 2006. 25(5): p. 1114-25.
241. Mekhail, K., et al., Restriction of rRNA synthesis by VHL maintains energy equilibrium under hypoxia. Cell Cycle, 2006. 5(20): p. 2401-13.
242. Bruns, A.F., et al., VEGF-A-stimulated signalling in endothelial cells via a dual receptor tyrosine kinase system is dependent on co-ordinated trafficking and proteolysis. Biochem Soc Trans, 2009. 37(Pt 6): p. 1193-7.
243. Gardner, L.A., et al., Rab11a and its binding partners regulate the recycling of the ss1adrenergic receptor. Cell Signal, 2011. 23(1): p. 46-57.
244. Hellberg, C., et al., Activation of protein kinase C alpha is necessary for sorting the PDGF beta-receptor to Rab4a-dependent recycling. Mol Biol Cell, 2009. 20(12): p. 2856-63.
245. Chen, D. and Q.P. Dou, The ubiquitin-proteasome system as a prospective molecular target for cancer treatment and prevention. Curr Protein Pept Sci, 2010. 11(6): p. 459-70.
246. Uitto, J. and J.R. Lichtenstein, Defects in the biochemistry of collagen in diseases of connective tissue. J Invest Dermatol, 1976. 66(02): p. 59-79.
247. Bruick, R.K. and S.L. McKnight, A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 2001. 294(5545): p. 1337-40.
248. Wang, G.L. and G.L. Semenza, Purification and characterization of hypoxia-inducible factor 1. J Biol Chem, 1995. 270(3): p. 1230-7.
249. Takahashi, Y., et al., Hypoxic induction of prolyl 4-hydroxylase alpha (I) in cultured cells. J Biol Chem, 2000. 275(19): p. 14139-46.
250. Myllyharju, J. and K.I. Kivirikko, Collagens and collagen-related diseases. Ann Med, 2001. 33(1): p. 7-21.
251. Fahling, M., et al., Translational control of collagen prolyl 4-hydroxylase-alpha(I) gene expression under hypoxia. J Biol Chem, 2006. 281(36): p. 26089-101.
252. Hagen, T., et al., Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science, 2003. 302(5652): p. 1975-8.
253. Brown, G.C., Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta, 2001. 1504(1): p. 46-57.
254. Halterman, M.W. and H.J. Federoff, HIF-1alpha and p53 promote hypoxia-induced delayed neuronal death in models of CNS ischemia. Exp Neurol, 1999. 159(1): p. 65-72.
255. Halterman, M.W., C.C. Miller, and H.J. Federoff, Hypoxia-inducible factor-1alpha mediates hypoxia-induced delayed neuronal death that involves p53. J Neurosci, 1999. 19(16): p. 6818-24.
256. Bunn, H.F. and R.O. Poyton, Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev, 1996. 76(3): p. 839-85.
257. Calvo, E., et al., Applying selected reaction monitoring to targeted proteomics. Expert Rev Proteomics, 2011. 8(2): p. 165-73.
258. Gallien, S., E. Duriez, and B. Domon, Selected reaction monitoring applied to proteomics. J Mass Spectrom, 2011. 46(3): p. 298-312.
259. Houel, S., et al., Quantifying the impact of chimera $M S / M S$ spectra on peptide identification in large-scale proteomics studies. J Proteome Res, 2010. 9(8): p. 4152-60.
260. Turksen, K. and M. Rao, Issues in human embryonic stem cell biology. Stem Cell Rev, 2005. 1(2): p. 79-81.
261. Bertout, J.A., S.A. Patel, and M.C. Simon, The impact of $O 2$ availability on human cancer. Nat Rev Cancer, 2008. 8(12): p. 967-75.

Appendix A Proteins up-regulated in hypoxia at 48 hours

Protein Name	$\begin{gathered} \text { Peptide IDs, } \\ \text { H9 } \\ \text { replicates, } \\ 1 \% \mathrm{O}_{2} \end{gathered}$	Peptide IDs, CA1 replicates, $1 \% \mathrm{O}_{2}$	```Peptide IDs, H9 replicates, 20% O```	$\begin{gathered} \text { Peptide } \\ \text { IDs, CA1 } \\ \text { replicates, } \\ 20 \% \mathrm{O}_{2} \end{gathered}$
Actin-like protein (Fragment)	$2 \quad 21$	210	000	000
Alanyl-tRNA synthetase	$0 \quad 21$	$5 \begin{array}{lll}5 & 3 & 2\end{array}$	0	0 0 0
Dynactin, subunit 1 (Isoform p150)	$7 \begin{array}{lll}7 & 2 & 4\end{array}$	$\begin{array}{lll}2 & 7 & 4\end{array}$	30	000
Exosome complex exonuclease RRP42	$2 \begin{array}{lll}2 & 1 & 2\end{array}$	$1 \begin{array}{lll}1 & 1\end{array}$	0 0 0	0 0 0
Exportin-2 (Isoform 1)	$\begin{array}{lll}2 & 1 & 0\end{array}$	42	0 0 0	0 0 0
Farnesyl pyrophosphate synthase	$\begin{array}{lll}7 & 4 & 10\end{array}$	67	0 0 0	445
Hexokinase-2	$\begin{array}{ll}10 & 12\end{array}$	53	33	$1 \begin{array}{lll}1 & 1\end{array}$
Histone H2A type 1-H	$1 \begin{array}{lll}1 & 4 & 12\end{array}$	$11 \begin{array}{lll}11 & 5\end{array}$	0 0 0	0 0 0
Lipopolysaccharide-responsive and beigelike anchor protein (Isoform 1)	$2 \quad 2$	140	0 0 0	000
Mitochondrial import receptor subunit, TOM22 homolog	201	$2 \quad 5 \quad 2$	000	000
Mitogen-activated protein kinase 14 (Isoform CSBP2)	320	50	000	000
Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16	210	20	000	000
Protein CIP2A (Isoform 1)	0	$2 \quad 20$	0 0 0	000
Protein FAM96B	30	10	0 0 0	0 0 0
Serine/threonine-protein phosphatase PP1a, catalytic subunit (Isoform 3)	128	$\begin{array}{lll}10 & 10 & 7\end{array}$	000	0 0 0
Solute carrier family 2 , facilitated glucose transporter, member 1	$6 \quad 43$	43	200	220
Squalene monooxygenase	$2 \begin{array}{lll}2 & 1\end{array}$	140	000	000
Structural maintenance of chromosomes protein 4 (Isoform 2)	12	240	000	000

Note: "Peptide IDs" means the number of unique peptides that were identified from the corresponding protein during one replicate of the experiment. Three replicates are shown for each cell line and each oxygen concentration.

Appendix B Proteins down-regulated in hypoxia at 48 hours

Protein Name	$\begin{gathered} \text { Peptide } \\ \text { IDs, H9 } \\ \text { replicates, } \\ 1 \% \mathrm{O}_{2} \end{gathered}$	$\begin{gathered} \text { Peptide } \\ \text { IDs, H9 } \\ \text { replicates, } \\ 1 \% \mathrm{O}_{2} \end{gathered}$	Peptide IDs, CA1 replicates, $1 \% \mathrm{O}_{2}$	Peptide IDs, H9 replicates, $1 \% \mathrm{O}_{2}$
285 ribosomal protein S28, mitochondrial	000	000	205	$\begin{array}{lll}1 & 0 & 2\end{array}$
39S ribosomal protein L19,	0 0	$0 \quad 00$	$2 \quad 0 \quad 1$	210
Arginase-2, mitochondrial	000	$0 \quad 00$	$2 \quad 2 \quad 2$	$\begin{array}{llll}0 & 2 & 1\end{array}$
CDK-activating kinase assem	000	000	102	$2{ }^{2}$
DCN1-like protein 1	0	$0 \quad 00$	$2 \begin{array}{lll}2 & 0 & 1\end{array}$	120
Deoxycytidylate deaminase (Isoform 1)	000	000	102	30
Dynactin subunit 3 (Isoform 2)	000	000	0	$2 \begin{array}{lll}2 & 2\end{array}$
Dynein, light chain, roadblock-type 1	000	$0 \quad 00$	022	$\begin{array}{lll}5 & 1 & 2\end{array}$
Echinoderm microtubule-associated proteinlike 4	$0 \quad 0 \quad 0$	000	103	130
Elongation factor Ts, mitochondrial (Isoform 1)	$0 \quad 0 \quad 0$	$0 \quad 0 \quad 0$	$2 \quad 0 \quad 1$	130
Ethanolamine-phosphate cytidylyltransferase	000	$0 \quad 0 \quad 0$	102	120
Mitochondrial import receptor, TOM34	$0 \quad 0 \quad 0$	$0 \quad 0 \quad 0$	10	210
Mitogen-activated protein kinase kinase 4 (Isoform 2)	$0 \quad 0 \quad 0$	$0 \quad 0 \quad 0$	212	121
Monocarboxylate transporter 1	$0 \quad 0 \quad 0$	$0 \quad 00$	3	0
Myristoylated alanine-rich C-kinase substrate	00	00	01	102
N -alpha-acetyltransferase 25, NatB auxiliary subunit (Isoform 1)	$0 \quad 0 \quad 0$	$0 \quad 0 \quad 0$	10	210
N -alpha-acetyltransferase 38, NatC auxiliary subunit	$0 \quad 0 \quad 0$	$0 \quad 0 \quad 0$	21	$3 \quad 0 \quad 1$
Neurolysin, mitochondrial	0	22	55	$5 \quad 5 \quad 2$
Niban-like protein 1	00	00	20	$4 \begin{array}{lll}4 & 4 & 1\end{array}$
NSFL1 cofactor p47 (Isoform 1)	000	0 0 0	31	5 5 0
Nucleoporin 43 kDa	000	00	14	$1 \begin{array}{lll}1 & 2 & 1\end{array}$
Nucleoporin 98 kDa	000	00	22	$\begin{array}{lll}2 & 1 & 1\end{array}$
Oxysterol-binding protein 1 (Isoform 1)	000	000	10	220
Pentatricopeptide repeat domain 1	000	000	22	$\begin{array}{lll}3 & 1 & 2\end{array}$
Pentatricopeptide repeat domain 3 (Isoform 2)	000	000	01	12
Peptidyl-prolyl cis-trans isomerase FKBP2	$0 \quad 0 \quad 0$	0 0 0	$2 \begin{array}{lll}2 & 1 & 1\end{array}$	$2 \begin{array}{lll}2 & 1 & 1\end{array}$
Pirin	0	0 0 0	$\begin{array}{lll}3 & 2 & 2\end{array}$	$\begin{array}{lll}1 & 3 & 1\end{array}$
Proteasome inhibitor, P131 subunit	000	0 0 0	$1 \begin{array}{lll}1 & 0 & 2\end{array}$	$2 \begin{array}{lll}2 & 1 & 0\end{array}$
Protein of unknown function, DUF410 family protein	000	$0 \quad 0 \quad 0$	$\begin{array}{lll}3 & 1 & 2\end{array}$	23

Putative deoxyribose-phosphate aldolase									3	1			1			0
Pyruvate dehydrogenase E1 alpha 1 (Isoform 2) precursor	0			0				0	1	0		3	1			1
RAB4A, member RAS oncogene family variant	0	0		0	0		0		2	0		1	2		2	0
Ras GTPase-activating protein-binding protein 2 (Isoform A)				0	0		0		4	1		3	4			0
Receptor expression-enhancing protein 5				0	0		0		2	0		2	2			1
Sequestosome-1 (Isoform 1)				0					1	0		3	1			0
Serine/threonine-protein phosphatase PP1α, catalytic subunit				0	0		0		9	7		1	12		7	9
Stomatin-like protein 2				0					5	2		5	3			2
Structural maintenance of chromosomes protein 4 (Isoform 1)				0					1	1		3	4		3	0
Suppressor of G2 allele of SKP1 homolog (Isoform 2)	6	2		5	4		9	5	11	5		9	9			7
Tetratricopeptide repeat protein 1				0					4	0		4	1			0
Transforming growth factor beta regulator 4				0					1							0
Translation initiation factor elF-2B, subunit				2					6	1						0
Ubiquitin-like-conjugating enzyme ATG3 (Isoform 1)	0			0					2	1		1	1		3	1
UPF0557 protein C10orf119 (Isoform 2)				0					2	1		3	2			0
UPF0600 protein C5orf51				0					0	1			3			0
xaa-Pro aminopeptidase 1 (Isoform 1)				0					4	0			3			1
α-ketoglutarate-dependent dioxygenase FTO (Isoform 1)				0				0	2	0			2			0

Note: "Peptide IDs" means the number of unique peptides that were identified from the corresponding protein during one replicate of the experiment. Three replicates are shown for each cell line and each oxygen concentration.

Appendix C Proteins up-regulated in hypoxia at 72 hours

Note: "Peptide IDs" means the number of unique peptides that were identified from the corresponding protein during one replicate of the experiment. Three replicates are shown for each cell line and each oxygen concentration.

Appendix D Proteins down-regulated in hypoxia at 72 hours

Protein Name	$\begin{gathered} \text { Peptide } \\ \text { IDs, H9 } \\ \text { replicates, } \\ 1 \% \mathrm{O}_{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Peptide } \\ \text { IDs, CA1 } \\ \text { replicates, } \\ 1 \% \mathrm{O}_{2} \\ \hline \end{gathered}$	```Peptide IDs, H9 replicates, 20% O```	Peptide IDs, CA1 replicates, $20 \% \mathrm{O}_{2}$
285 ribosomal protein 59, mitochondrial	000	000	$1 \begin{array}{lll}1 & 0 & 4\end{array}$	$\begin{array}{lll}3 & 1 & 1\end{array}$
395 ribosomal protein L15, mitochondrial	000	000	$1 \begin{array}{lll}1 & 1 & 3\end{array}$	230
395 ribosomal protein L19, mitochondrial	000	000	$1 \begin{array}{lll}1 & 1 & 3\end{array}$	130
Actin-related protein 2/3 complex, sub 1B	000	$0 \quad 00$	$1 \begin{array}{lll}1 & 1 & 2\end{array}$	$2 \begin{array}{lll}2 & 0 & 1\end{array}$
Afadin (Isoform 3)	000	000	$6 \begin{array}{lll}6 & 0 & 3\end{array}$	$\begin{array}{lll}2 & 4 & 1\end{array}$
ATP-dependent RNA helicase DDX19A	000	000	$\begin{array}{lll}0 & 1 & 4\end{array}$	$\begin{array}{lll}4 & 1 & 3\end{array}$
Bifunctional coenzyme A synthase	000	000	$2 \begin{array}{lll}2 & 0 & 1\end{array}$	$2 \quad 22$
BolA-like protein 2	00	000	$\begin{array}{lll}0 & 1 & 2\end{array}$	$\begin{array}{lll}0 & 1 & 2\end{array}$
CLIP-associating protein 1 (Isoform 1)	000	000	50	140
DNA-directed RNA polymerase II, subunit RPB7	$0 \quad 0 \quad 0$	000	$2 \begin{array}{lll}2 & 1 & 4\end{array}$	322
Dnał homolog subfamily A member 3, mitochondrial (Isoform 2)	$0 \quad 0 \quad 0$	$0 \quad 00$	$2 \begin{array}{lll}2 & 0 & 1\end{array}$	210
Dynactin, subunit 1 (Isoform 4)	$4 \begin{array}{lll}4 & 1\end{array}$	000	$8 \quad 0 \quad 4$	923
Focal adhesion kinase 1 (Isoform 1)	000	000	$1 \begin{array}{lll}1 & 1 & 3\end{array}$	120
Glutaminase kidney isoform, mitochondrial	000	000	$3 \begin{array}{lll}3 & 2 & 3\end{array}$	103
Histone H1x	000	000	$\begin{array}{lll}0 & 1 & 4\end{array}$	1
Histone H3.3	000	000	$\begin{array}{lll}3 & 1 & 3\end{array}$	023
Isopentenyl-diphosphate Delta-isomerase 1	000	000	$\begin{array}{lll}4 & 2 & 7\end{array}$	$4 \begin{array}{lll}4 & 5 & 4\end{array}$
Lysosomal protective protein	000	$0 \quad 0 \quad 0$	1002	$2 \quad 21$
Multiple inositol polyphosphate phosphatase 1 (Isoform 1)	000	$0 \quad 0 \quad 0$	$2 \begin{array}{lll}2 & 1 & 3\end{array}$	120
Myosin-Ic (Isoform 2)	0 0 0	000	$\begin{array}{lll}3 & 1 & 1\end{array}$	6 0 3
Parafibromin	000	$0 \quad 00$	$1 \begin{array}{lll}1 & 0 & 2\end{array}$	120
Peptidyl-prolyl cis-trans isomerase FKBP2	000	$0 \quad 00$	$2 \begin{array}{lll}2 & 1 & 0\end{array}$	12
Prefoldin, subunit 4	000	000	$1 \begin{array}{lll}1 & 0 & 3\end{array}$	12
Signal peptidase complex, subunit SEC11A	000	000	$0 \begin{array}{lll}0 & 1 & 2\end{array}$	12
Signal peptidase complex, subunit 3	000	000	$2 \begin{array}{lll}2 & 1 & 0\end{array}$	$\begin{array}{lll}1 & 1 & 2\end{array}$
Sorting nexin-3 (Isoform 1)	$0 \quad 0 \quad 0$	0	$2 \begin{array}{lll}2 & 0 & 3\end{array}$	$\begin{array}{lll}3 & 3 & 2\end{array}$
TATA box-binding protein-like protein 1	000	0	$1 \begin{array}{lll}1 & 1\end{array}$	$\begin{array}{lll}2 & 1 & 1\end{array}$
Transmembrane protein 109	000	0	$2 \begin{array}{lll}2 & 1\end{array}$	$\begin{array}{lll}1 & 2 & 1\end{array}$
Vacuolar protein sorting-associated 26A	000	0	105	$2{ }^{2}$
YLP motif-containing protein 1	$0 \quad 0$	0	102	$2 \begin{array}{lll}2 & 1 & 0\end{array}$

Note: "Peptide IDs" means the number of unique peptides that were identified from the corresponding protein during one replicate of the experiment. Three replicates are shown for each cell line and each oxygen concentration.

Appendix E All proteins identified at 48 hours in hypoxia

Protein Name	IPI Number	Peptide IDs, H9 replicates			Peptide IDs, CA1 replicates		
10 kDa heat shock protein, mitochondrial	\|P100220362	8	8	13	9	1	2
116 kDa U5 small nuclear ribonucleoprotein component	\|PI00003519	14	7	7	11	16	10
14-3-3 protein epsilon	IPI00000816	28	22	19	23	25	17
14-3-3 protein eta	IPI00216319	14	8	13	11	7	8
14-3-3 protein gamma	IPI00220642	8	9	6	5	6	5
14-3-3 protein theta	1PI00018146	16	10	14	12	11	8
14-3-3 protein zeta/delta	IP100021263	19	14	21	25	13	12
15 kDa selenoprotein isoform 1 precursor	IPI00030877	2	2	3	2	0	2
1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase beta-3	IPI00010400	2	1	1	2	3	4
24-dehydrocholesterol reductase	IPI00016703	3	2	2	0	2	1
26 S protease regulatory subunit 10B	IPI00021926	10	5	11	11	6	9
265 protease regulatory subunit 4	IPI00011126	4	6	4	5	4	5
26S protease regulatory subunit 6A	IP100018398	14	10	12	10	8	10
265 protease regulatory subunit 7	IPI00021435	15	8	8	14	10	7
265 protease regulatory subunit 8	IPI00023919	13	9	7	3	1	1
26S proteasome non-ATPase regulatory subunit 14	IPI00024821	6	6	5	9	7	4
26S proteasome non-ATPase regulatory subunit 2	IPI00012268	15	16	4	22	20	9
26S proteasome non-ATPase regulatory subunit 3	IPI00011603	8	7	5	2	1	0
26S proteasome non-ATPase regulatory subunit 5	IPI00002134	6	3	5	9	3	3
265 proteasome non-ATPase regulatory subunit 6	IPI00014151	14	15	14	13	8	6
265 proteasome non-ATPase regulatory subunit 7	IPI00019927	5	6	5	10	4	4
265 proteasome non-ATPase regulatory subunit 8	IPI00937278	3	3	2	5	1	1
28 kDa heat- and acid-stable phosphoprotein	IPI00013297	2	2	2	2	1	4
29 kDa protein	IPI00453476	31	22	25	25	22	14
2-oxoglutarate dehydrogenase, mitochondrial	IPI00098902	1	2	2	6	2	2
33 kDa protein	IP100413108	15	8	14	15	14	12
395 ribosomal protein L1, mitochondrial	IP100549381	2	0	3	2	1	3
395 ribosomal protein L11, mitochondrial	IP100007001	3	1	3	4	0	1
395 ribosomal protein L13, mitochondrial	IP100022403	1	2	1	2	1	0
395 ribosomal protein L44, mitochondrial	IP100009680	2	1	3	1	1	2
39 S ribosomal protein L49, mitochondrial	IPI00013195	2	1	1	1	0	2
3-hydroxyisobutyrate dehydrogenase, mitochondrial	IPI00013860	2	0	2	3	1	0
3-ketoacyl-CoA thiolase, mitochondrial	IPI00001539	4	4	5	7	5	9
40 S ribosomal protein S10	IPI00008438	3	4	5	5	2	3
405 ribosomal protein S11	IPI00025091	5	6	6	5	5	3
40 ribosomal protein S12	IPI00013917	11	10	13	15	4	4
40S ribosomal protein S13	IPI00221089	12	15	12	13	6	5
405 ribosomal protein S14	IPI00026271	7	5	10	9	5	5
40 ribosomal protein 515	IPI00479058	6	7	4	8	3	2
405 ribosomal protein S16	IPI00221092	6	6	10	6	7	3
405 ribosomal protein S17	IPI00221093	11	7	8	8	7	4
40 ribosomal protein S18	IP100013296	16	11	11	10	10	6
40S ribosomal protein S19	IP100215780	8	10	8	7	5	5
405 ribosomal protein S2	IPI00013485	8	7	7	9	6	7
40S ribosomal protein S20	IPI00012493	6	6	7	5	3	4
405 ribosomal protein S21	IPI00017448	7	4	4	5	2	2
405 ribosomal protein S23	IPI00218606	3	3	1	1	1	2
405 ribosomal protein $\$ 25$	IPI00012750	3	5	5	4	5	3
405 ribosomal protein S26	IPI00655650	2	3	2	3	2	1
405 ribosomal protein 53	IPI00011253	15	15	19	17	10	13
405 ribosomal protein S3a	IPI00419880	18	15	17	16	10	12
405 ribosomal protein $54, X$ isoform	IPI00217030	16	12	8	10	7	6
405 ribosomal protein $\mathrm{S5}$	IPI00008433	7	8	10	6	5	7

```
40S ribosomal protein S6
40S ribosomal protein S7
40S ribosomal protein S8
40S ribosomal protein S9
4 8 2 ~ k D a ~ p r o t e i n ~
4-trimethylaminobutyraldehyde dehydrogenase
51 kDa protein
59 kDa protein
5'-nucleotidase domain-containing protein 1
60 kDa heat shock protein, mitochondrial
60S acidic ribosomal protein P0
60S acidic ribosomal protein P1
60S acidic ribosomal protein P2
60S ribosomal protein L10
60S ribosomal protein L10a
60S ribosomal protein L13
60S ribosomal protein L13a
60S ribosomal protein L15
60S ribosomal protein L17
60S ribosomal protein L18
60S ribosomal protein L18a
60S ribosomal protein L19
60S ribosomal protein L21
60S ribosomal protein L22
60S ribosomal protein L22-like 1
60S ribosomal protein L23
60S ribosomal protein L23a
60S ribosomal protein L24
60S ribosomal protein L26
60S ribosomal protein L27
60S ribosomal protein L27a
60S ribosomal protein L28
60S ribosomal protein L3
60S ribosomal protein L30
60S ribosomal protein L31
60S ribosomal protein L32
60S ribosomal protein L35
60S ribosomal protein L35a
60S ribosomal protein L36
60S ribosomal protein L36a-like
60S ribosomal protein L38
60S ribosomal protein L4
60S ribosomal protein L5
60S ribosomal protein L6
60S ribosomal protein L7
60S ribosomal protein L7a
60S ribosomal protein L8
60S ribosomal protein L9
6-phosphofructokinase type C
6-phosphogluconate dehydrogenase, decarboxylating
6-phosphogluconolactonase
AARS cDNA FLJ61339, highly similar to Alanyl-tRNA synthetase
Acidic leucine-rich nuclear phosphoprotein 32 family member A
Acidic leucine-rich nuclear phosphoprotein 32 family member E
Aconitate hydratase, mitochondrial
Actin, alpha cardiac muscle 1
Actin, cytoplasmic 2
Actin-like protein (Fragment)
```

IPI00021840	10	9	11	6	7	3
IPI00013415	11	13	13	11	7	5
IPI00216587	8	9	10	12	8	8
IPI00221088	9	11	7	6	5	5
IPIO0179298	11	10	12	9	16	0
IP100479877	2	2	3	3	3	0
IP100033025	4	2	0	3	4	3
IPI00302925	18	21	14	14	15	9
IPI00177965	3	2	4	4	4	1
IPI00784154	47	46	26	49	37	24
IP100008530	16	13	6	15	10	11
IPI00008527	2	6	3	1	4	2
IPI00008529	7	9	4	10	6	6
IPI00554723	7	8	6	9	9	4
IPI00412579	10	12	8	10	7	6
IPI00465361	5	3	5	7	2	2
IPI00304612	4	5	3	4	3	3
IPI00470528	3	6	6	4	6	2
IPI00413324	10	7	7	10	5	3
IPI00215719	9	9	8	5	4	4
\|PI00026202	4	4	2	2	4	2
IPI00025329	3	4	2	7	4	2
IPI00247583	6	6	4	9	7	3
IPI00219153	5	3	4	9	3	4
\|PI00856049	3	2	0	1	2	0
\|PI00010153	5	4	4	4	4	2
IPI00021266	11	13	9	12	3	4
IPI00306332	4	1	3	4	4	2
IPI00027270	9	14	8	7	5	4
IPI00219155	8	6	5	5	5	5
IPI00456758	4	4	4	5	5	3
IPI00182533	7	7	6	6	2	5
IPI00550021	7	8	7	12	9	6
IP100219156	6	4	3	5	4	4
IPI00026302	4	5	3	5	3	2
\|P100395998	5	3	4	5	3	1
IPI00412607	3	2	5	5	2	2
IPI00029731	1	3	0	1	3	1
\|P100216237	2	3	4	5	1	3
IPI00056494	3	0	2	2	2	1
IPI00215790	2	1	3	3	2	2
IPI00003918	15	12	12	20	16	7
IPI00000494	11	12	5	11	9	8
IPI00329389	12	18	8	14	6	4
IP100030179	13	9	13	10	9	6
IPI00299573	13	9	10	8	9	8
IPI00012772	8	2	8	8	5	3
IP100031691	6	9	5	8	2	7
IP100009790	4	2	3	7	9	7
IPIO0219525	22	17	17	12	11	11
IPI00029997	8	4	10	5	7	8
IPI00910701	0	2	1	5	3	2
IPI00025849	6	6	5	11	2	8
IPI00165393	6	6	2	4	1	5
IP100017855	5	2	3	5	3	3
IP100023006	11	7	9	9	7	12
IPI00021440	52	70	58	55	48	33
\|PI00556391	2	2	1	2	1	0

Actin-related protein 2
Actin-related protein $2 / 3$ complex subunit 2
Actin-related protein $2 / 3$ complex subunit 3
Actin-related protein $2 / 3$ complex subunit 4
Actin-related protein 3
Activated RNA polymerase II transcriptional coactivator p15
Activator of 90 kDa heat shock protein ATPase homolog 1
Acyl-protein thioesterase 2
Adenine phosphoribosyltransferase
Adenosylhomocysteinase
Adenylate kinase isoenzyme 4, mitochondrial
Adenylosuccinate synthetase isozyme 2
ADP/ATP translocase 2
ADP-ribosylation factor 1
ADP-ribosylation factor 4
ADP-ribosylation factor 5
ADP-ribosylation factor 6
ADP-ribosylation factor-like protein 2
ADP-ribosylation factor-like protein 3
Aflatoxin B1 aldehyde reductase member 2
A-kinase anchor protein 12 isoform 2
Alanyl-tRNA synthetase, cytoplasmic
Alcohol dehydrogenase [NADP +]
Alcohol dehydrogenase class-3
Aldehyde dehydrogenase X, mitochondrial
Aldehyde dehydrogenase, mitochondrial
Aldose reductase
Alkaline phosphatase, tissue-nonspecific isozyme
Alpha-actinin-1
Alpha-actinin-4
Alpha-aminoadipic semialdehyde synthase, mitochondrial
Alpha-centractin
Alpha-soluble NSF attachment protein
Amidophosphoribosyltransferase
Aminoacyl tRNA synthase complex-interacting multifunctional protein 1
Aminoacyl tRNA synthase complex-interacting multifunctional protein 2
Annexin A1
Annexin A3
annexin A4
Annexin A5
Annexin A6
Apolipoprotein E
Argininosuccinate synthase
Asparagine synthetase [glutamine-hydrolyzing]
Asparaginyl-tRNA synthetase, cytoplasmic
Aspartate aminotransferase, cytoplasmic
Aspartate aminotransferase, mitochondrial
Aspartyl-tRNA synthetase, cytoplasmic
Astrocytic phosphoprotein PEA-15
Ataxin-10
ATP synthase subunit alpha, mitochondrial
ATP synthase subunit b, mitochondrial
ATP synthase subunit beta, mitochondrial
ATP synthase subunit O, mitochondrial
ATPase ASNA1
ATP-binding cassette sub-family E member 1

U	N	
	N	
	ω	
	N	-
- ω N ω,		

ATP-citrate synthase
ATP-dependent RNA helicase A
ATP-dependent RNA helicase DDX1
ATP-dependent RNA helicase DDX18
ATP-dependent RNA helicase DDX19A
ATP-dependent RNA helicase DDX3X
Band 4.1-like protein 2
Barrier-to-autointegration factor
Basic leucine zipper and W2 domain-containing protein 2
B-cell receptor-associated protein 31
Beta-actin-like protein 2
Bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase 1
Bifunctional aminoacyl-tRNA synthetase
Bifunctional methylenetetrahydrofolate
dehydrogenase/cyclohydrolase, mitochondrial
Bifunctional protein NCOAT
Bifunctional purine biosynthesis protein PURH
Branched-chain-amino-acid aminotransferase
Brefeldin A-inhibited guanine nucleotide-exchange protein 1
C-1-tetrahydrofolate synthase, cytoplasmic
CAD protein
Cadherin-1
Calcium-regulated heat stable protein 1
Calmodulin
Calpain small subunit 1
Calpain-1 catalytic subunit
Calponin-2
Calponin-3
Calreticulin
Carbonic anhydrase 2
Carbonyl reductase [NADPH] 1
Casein kinase II subunit alpha'
Casein kinase II subunit beta
Caspase-3
Cation-independent mannose-6-phosphate receptor
CCR4-NOT transcription complex subunit 7
cDNA FU25678 fis, clone TST04067, highly similar to PURINE

NUCLEOSIDE PHOSPHORYLASE

CDNA FLJ35809 fis, clone TESTI2006016, highly similar to Eukaryotic translation initiation factor 3 subunit 3
cDNA Fப36192 fis, clone TESTI2027450, highly similar to Eukaryotic translation initiation factor 3 subunit 5
cDNA Fப44436 fis, clone UTERU2019706, highly similar to T-complex protein 1 subunit gamma
cDNA FU51909, highly similar to Serine-threonine kinase receptorassociatedprotein
cDNA FL52712, highly similar to Tubulin beta-6 chain
cDNA FL53193, highly similar to Homo sapiens caldesmon 1 (CALD1),
transcript variant 5, mRNA
cDNA FL53975, highly similar to Acetyl-CoA acetyltransferase,
cytosolic
cDNA FL54365, highly similar to DNA replication licensing factor

MCM4

CDNA FU54536, highly similar to Mitochondrial 28S ribosomal protein S27
cDNA FL54957, highly similar to Transketolase
cDNA Fப55382, highly similar to Hsp70-binding protein 1
cDNA FL55482, highly similar to Annexin A11

IPI00021290	32	23	30	14	19	15
IPI00844578	25	27	20	22	24	16
IPI00293655	10	11	4	3	1	7
IPI00301323	2	4	1	2	1	1
IPI00019918	2	0	3	3	4	2
IPI00215637	11	7	6	13	1	4
IPI00015973	3	1	1	5	7	0
IPI00026087	2	2	2	4	1	2
IPI00022305	4	3	1	4	2	2
IPI00218200	2	1	0	2	4	0
IPI00003269	2	1	2	1	1	2
IPI00011619	5	2	0	3	3	0
IPI00013452	10	3	13	14	22	10
IPI00011307	4	4	0	1	2	1
IPI00477231	3	3	2	3	1	0
IPI00289499	25	16	14	24	19	7
IPI00382412	5	5	5	3	1	2
IPI00002188	2	1	3	1	5	0
IPI00218342	19	19	18	18	15	14
IPI00301263	21	17	19	7	13	5
IPI00025861	5	1	3	0	3	1
IPI00304409	4	3	2	5	4	2
IPI00075248	14	8	2	10	0	5
IPI00025084	3	1	2	3		5
IPI00011285	2	3	0	7		1
IP100015262	8	4	3	4	4	4
IPI00216682	6	1	5	7	6	6
IP100020599	12	9	8	12	19	8
IP100218414	2	1	1	3	2	2
IPI00295386	6	1	7	5	3	6
IPI00020602	3	1	4	2	1	0
IPI00010865	2	2	1	2	1	2
IPIO0292140	2	1	4	5	2	2
IPI00289819	3	1	5	1	4	0
IPI00006552	4	1	3	3	1	1
1P100017672	14	11	9	11	7	9
IPI00647650	4	4	4	3	4	1
IP100654777	7	8	6	6	2	4
IPI00290770	18	10	9	18	14	10
IPI00294536	8	9	4	8	12	5
IPI00908469	3	0	2	1	1	2
IPI00218696	4	4	6	10	6	3
IPI00291419	10	14	18	6	6	1
IPI00795318	23	12	8	17	12	8
IP100022002	4	2	1	1	1	2
IPI00643920	28	28	17	32	22	7
IPI00100748	4	3	3	4	1	2
IPI00414320	2	1	0	2	2	0

cDNA Fப55574, highly similar to Calnexin
cDNA Fப55586, highly similar to MMS19-like protein cDNA FL55599, highly similar to DNA replication licensing factor MCM3
cDNA FL56307, highly similar to Ubiquitin thioesterase protein OTUB1
CDNA FU59211, highly similar to Glucosidase 2 subunit beta cDNA FU59367, highly similar to Adenylosuccinate lyase cDNA FU59758, highly similar to S-methyl-5-thioadenosine phosphorylase
CDNA Fப60076, highly similar to ELAV-like protein 1
cDNA Fป60097, highly similar to Tubulin alpha-ubiquitous chain
cDNA FL60424, highly similar to Junction plakoglobin
cDNA FL60607, highly similar to Acyl-protein thioesterase 1
CDNA FL61162, highly similar to Ras-related protein R-Ras2
cDNA FLI75085, highly similar to Homo sapiens glutaminyl-tRNA synthetase (QARS), mRNA
cDNA FU77177, highly similar to Homo sapiens arginine-rich, mutated in early stage tumors (ARMET), mRNA
cDNA FL77422, highly similar to Homo sapiens RNA binding protein,
autoantigenic (hnRNP-associated with lethal yellow homolog
(mouse)), transcript variant 1, mRNA (Fragment)
cDNA, FU79184, highly similar to Procollagen-lysine, 2-oxoglutarate
5-dioxygenase 1
CDNA, FL96508, Homo sapiens SH3-domain GRB2-like 1 (SH3GL1), mRNA
Cell division protein kinase 2
Cellular retinoic acid-binding protein 1
Cellular retinoic acid-binding protein 2
Chloride intracellular channel protein 1
Chloride intracellular channel protein 4
Chromobox protein homolog 3
Citrate synthase, mitochondrial
Claudin-6
Cleavage and polyadenylation specificity factor subunit 5
Cleavage stimulation factor subunit 3
Coactosin-like protein
Coatomer subunit beta
Coatomer subunit beta'
Coatomer subunit delta variant 2
Coatomer subunit epsilon
Coatomer subunit gamma
Coatomer subunit gamma-2
Coatomer subunit zeta-1
Cofilin-1
Coiled-coil domain-containing protein 58
Cold-inducible RNA-binding protein
Collapsin response mediator protein 4 long variant
Complement component 1 Q subcomponent-binding protein, mitochondrial
Condensin complex subunit 1
COP9 signalosome complex subunit 4
COP9 signalosome complex subunit 5
COP9 signalosome complex subunit 6
COP9 signalosome complex subunit 7a
COP9 signalosome complex subunit 8
Creatine kinase B-type
CSE1L Isoform 1 of Exportin-2

IP100020984	10	8	4	10	9	9
IPI00154451	5	3	2	8	3	2
IP100013214	18	13	12	8	10	15
IP100000581	4	7	4	5	4	3
IPI00026154	4	5	8	4	8	7
IP100026904	10	6	7	10	7	5
IP100011876	7	6	8	2	0	1
IPI00301936	10	5	5	8	6	3
\|P100792677	30	33	30	32	36	19
IP100789324	9	4	6	3	4	3
IPI00007321	5	3	4	3	3	3
IPI00012512	4	1	2	4	2	3
\|PI00026665	8	7	3	3	1	3
IP100328748	1	2	0	1	2	1
IPI00011268	2	1	2	2	2	1
IP100027192	2	1	0	1	2	0
IPI00019169	3	1	3	2	1	0
IP100031681	2	2	1	1	2	1
IPI00219930	6	7	6	10	8	5
IPI00216088	5	1	1	5	3	2
IP100010896	9	5	10	11	10	8
IPI00001960	15	11	9	9	8	8
IP100297579	6	4	4	5	3	6
IPI00025366	5	5	3	7	4	1
IPI00011084	4	3	3	2	2	2
IP100646917	6	4	6	2	0	1
IPI00015195	2	2	1	5	1	0
IPI00017704	1	2	1	3	1	2
IPI00295851	8	4	4	13	13	7
IPI00220219	7	1	6	2	10	5
IPI00298520	9	4	7	9	8	3
IPI00465132	6	2	2	4	4	4
IPI00783982	11	7	3	11	12	10
IPI00002557	3	4	2	8	2	2
IPI00032851	3	5	6	3	3	4
IPI00012011	12	19	17	18	12	7
IPI00046828	2	0	2	2	1	0
IPI00180954	2	0	2	3	2	2
IPI00029111	20	9	8	15	10	7
IP100014230	11	12	5	7	6	7
IPI00299524	5	3	3	3	5	1
IPI00171844	6	4	6	5	3	4
IPI00009958	0	1	2	2	2	3
IPI00163230	3	2	1	4	0	1
IP100301419	3	3	2	3	4	3
IP100009480	3	1	4	4	1	1
IPI00022977	11	14	10	16	15	11
IPI00022744	2	1	0	4	2	0

CSNK2A1 protein

CTP synthase 1
Cullin-1
Cystatin-B
Cysteine and glycine-rich protein 2
cysteinyl-tRNA synthetase, cytoplasmic isoform c
cytochrome b5 type B precursor
Cytochrome c
Cytochrome c oxidase subunit 2
Cytochrome c oxidase subunit 4 isoform 1, mitochondrial
Cytochrome c oxidase subunit 5A, mitochondrial
Cytoplasmic aconitate hydratase
Cytoplasmic dynein 1 heavy chain 1
Cytosolic Fe-S cluster assembly factor NUBP2
D-3-phosphoglycerate dehydrogenase
dCTP pyrophosphatase 1
D-dopachrome decarboxylase
Destrin
Developmental pluripotency-associated protein 4
Diablo homolog, mitochondrial precursor
Dihydrolipoyl dehydrogenase, mitochondrial
Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial
Dihydropteridine reductase
Dihydropyrimidinase-related protein 2
Diphosphomevalonate decarboxylase
DNA damage-binding protein 1
DNA ligase 1
DNA mismatch repair protein Msh2
DNA replication licensing factor MCM2
DNA replication licensing factor MCM5
DNA replication licensing factor MCM6
DNA-(apurinic or apyrimidinic site) lyase
DNA-directed RNA polymerase II subunit RPB1
DNA-directed RNA polymerase II subunit RPB3
DNA-directed RNA polymerases I, II, and III subunit RPABC1
DnaJ homolog subfamily A member 1
DnaJ homolog subfamily A member 2
Dnas homolog subfamily B member 11
DnaJ homolog subfamily C member 7
DnaJ homolog subfamily C member 8
Dolichol-phosphate mannosyltransferase
Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 precursor
Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 2
Dual specificity mitogen-activated protein kinase kinase 1
Dual specificity protein phosphatase 3
dynactin subunit 2
Dynein light chain Tctex-type 1
E3 SUMO-protein ligase RanBP2
E3 ubiquitin-protein ligase KCMF1
Electron transfer flavoprotein subunit alpha, mitochondrial
Elongation factor 1-alpha 1
Elongation factor 1-beta
Elongation factor 1-gamma
Elongation factor 2
Emerin

IPI00016613	10	7	10	1	2	2
IPI00290142	6	2	3	8	4	2
IPI00014310	4	1	1	3	0	2
IPI00021828	3	2	3	3	2	2
IPI00002824	3	3	2	5	6	2
IPI00027443	4	6	7	3	4	0
IPI00303954	4	2	2	2	4	2
IPI00465315	5	4	6	6	1	3
IPI00017510	3	3	1	4	1	1
IPI00006579	2	1	0	1	2	0
IPI00025086	3	1	0	2	0	2
IPI00008485	7	6	1	1	2	1
IPI00456969	64	37	36	14	33	0
IPI00644674	3	1	3	0	2	2
IPI00011200	16	11	15	14	13	9
IPI00012197	0	4	2	3	0	1
IPI00293867	4	3	6	6	2	2
IP100473014	1	4	3	3	3	1
IP100018878	2	0	1	2	1	0
IPI00008418	3	3	1	2	3	0
IP100015911	3	1	3	5	5	2
IPI00021338	6	1	3	3	4	0
IPI00014439	3	2	0	2	2	1
IPI00257508	17		8	13	10	7
IPI00022745	1	2	7	1	2	1
IPI00293464	6	2	2	6	10	1
IPI00219841	5	3	0	2	1	1
IPI00017303	9	7	6	8	5	3
IPIO0184330	19	14	13	12	16	14
IP100018350	10	16	9	7	8	10
IPI00031517	15	12	8	13	9	6
IPI00215911	5	4	5	9	11	10
IPI00031627	2	2	2	4	2	0
IPI00018288	4	3	2	6	2	1
IPI00291093	2	1	2	1	2	3
IPI00012535	10	10	4	5	8	4
IPI00032406	7	2	4	5	4	5
IPI00008454	1	1	2	0	1	2
IPI00329629	3	0	2	2	5	0
IPI00003438	6	1	2	4	4	4
IPI00022018	2	1	3	3	2	0
IPI00025874	3	1	3	10	11	1
IPI00028635	5	1	1	2	8	3
IPI00219604	2	0	3	2	2	1
IPI00018671	2	3	1	4	1	1
IPI00220503	4	1	5	1	2	0
1P100019495	3	0	2	2	0	1
IPIOO221325	5	2	5	2	1	0
\|P100306661	2	2	1	2	1	1
IPI00010810	5	3	6	7	3	8
IPI00396485	24	31	28	19	23	16
IPI00178440	4	4	4	2	5	5
IPI00937615	17	12	8	13	14	14
IP100186290	53	50	29	50	40	33
IP100032003	1	1	2	1	3	1

Endoplasmic reticulum resident protein 29
Endoplasmic reticulum resident protein 44
Endoplasmin
Enhancer of rudimentary homolog
Enoyl－CoA hydratase，mitochondrial
Epiplakin
Epithelial cell adhesion molecule
ERO1－like protein alpha
Estradiol 17－beta－dehydrogenase 12
Eukaryotic initiation factor 4A－I
Eukaryotic initiation factor 4A－III
eukaryotic peptide chain release factor GTP－binding subunit ERF3A isoform 2
Eukaryotic peptide chain release factor subunit 1
Eukaryotic translation elongation factor 1 epsilon－1
Eukaryotic translation initiation factor 2 subunit 1
Eukaryotic translation initiation factor 2 subunit 2
Eukaryotic translation initiation factor 2 subunit 3
Eukaryotic translation initiation factor 3 subunit A
Eukaryotic translation initiation factor 3 subunit C
Eukaryotic translation initiation factor 3 subunit D
Eukaryotic translation initiation factor 3 subunit E
Eukaryotic translation initiation factor 3 subunit G
Eukaryotic translation initiation factor 3 subunit I
Eukaryotic translation initiation factor 3 subunit K
Eukaryotic translation initiation factor 3 subunit M
Eukaryotic translation initiation factor 3 ，subunit E interacting protein
eukaryotic translation initiation factor 4 gamma 1 isoform 1
Eukaryotic translation initiation factor 5
Eukaryotic translation initiation factor 5B
Eukaryotic translation initiation factor 6
Exosome complex exonuclease MTR3
Exosome complex exonuclease RRP4
Exosome complex exonuclease RRP41
Exosome complex exonuclease RRP42
Exosome complex exonuclease RRP43
Exportin－1
Exportin－4
Exportin－5
Exportin－7
Exportin－T
Ezrin
FACT complex subunit SPT16
FACT complex subunit SSRP1
F－actin－capping protein subunit alpha－1
F－actin－capping protein subunit alpha－2
farnesyl pyrophosphate synthase isoform b
Fascin
Fatty acid synthase
Fatty acid－binding protein，epidermal
Ferritin heavy chain
Flap endonuclease 1
Fructose－bisphosphate aldolase
Fructose－bisphosphate aldolase A
G2／mitotic－specific cyclin－B1
Gamma－enolase
Glia maturation factor，beta
Glucosamine 6－phosphate N －acetyltransferase

	IPI00401264
	IPI00027230
	IPI00029631
	IPI00024993
	IPI00010951
	IPI00296215
	IPI00386755
	IPI00007676
	IPI00025491
	IPI00009328
	PI00909083

IPI00429191
IPI00003588
IPI00219678
IP100021728
IPI00297982
IPI00029012
IPI00016910
IPI00006181
IPI00013068 IPI00290460 IPI00012795
IPI00033143
IPI00102069
IPI00465233
IPI00479262
IPI00022648
IPI00299254
IPI00010105 IPI00073602 IPI00015905 IPI00745613
IPI00014198
IPI00552920
IPI00298961
IPI00028357
IPI00640703
IPI00302458 IPI00306290 IPI00843975
IPI00026970
IPI00005154
IPI00005969
IPI00026182
IPI00914971
IPI00163187
IPI00026781
IPI00007797
IPI00554521
IPI00026215
IPI00418262
IPI00465439
IPI00745793
IPI00216171
IPI00412987
IPI00061525

のの・	
－NVN	
ω ○	

Glucosamine-6-phosphate isomerase 1
Glucose-6-phosphate isomerase
Glutamate dehydrogenase 1, mitochondrial
Glutaredoxin-3
Glutathione S-transferase omega-1
Glutathione S-transferase P
Glyceraldehyde-3-phosphate dehydrogenase
Glycogen phosphorylase, brain form
Glypican-4
GMP synthase [glutamine-hydrolyzing]
G-rich sequence factor 1
GTP:AMP phosphotransferase, mitochondrial
GTPase NRas
GTP-binding nuclear protein Ran
GTP-binding protein Rheb
Guanine nucleotide-binding protein $\mathrm{G}(\mathrm{I}) / \mathrm{G}(\mathrm{S}) / \mathrm{G}(\mathrm{T})$ subunit beta-1
Guanine nucleotide-binding protein $\mathrm{G}(\mathrm{I}) / \mathrm{G}(\mathrm{S}) / \mathrm{G}(\mathrm{T})$ subunit beta-2
Guanine nucleotide-binding protein $G(k)$ subunit alpha
Guanine nucleotide-binding protein $G(q)$ subunit alpha
Guanine nucleotide-binding protein subunit alpha-13
Guanine nucleotide-binding protein subunit beta-2-like 1
Heat shock 70 kDa protein $1 \mathrm{~A} / 1 \mathrm{~B}$
Heat shock 70 kDa protein 4
Heat shock protein 75 kDa , mitochondrial
Heat shock protein beta-1
Heat shock protein HSP 90-beta
Heat shock-related 70 kDa protein 2
Heme oxygenase 1
Heme-binding protein 1
Heterogeneous nuclear ribonucleoprotein AO
Heterogeneous nuclear ribonucleoprotein F
Heterogeneous nuclear ribonucleoprotein G
Heterogeneous nuclear ribonucleoprotein H
Heterogeneous nuclear ribonucleoprotein K
Heterogeneous nuclear ribonucleoprotein L
Heterogeneous nuclear ribonucleoprotein U-like protein 2
Hexokinase-2
High mobility group protein B1
Histidyl-tRNA synthetase, cytoplasmic
Histone H1.5
Histone H2A type 1-H
Histone H2A.V
Histone H4
Hsc 70 -interacting protein
Hsp90 co-chaperone Cdc37
HSPA5 protein
Hydroxymethylglutaryl-CoA synthase, cytoplasmic
Hypoxanthine-guanine phosphoribosyltransferase
Hypoxia up-regulated protein 1
Importin subunit alpha-2
Importin subunit alpha-3
Importin subunit alpha-4
Importin subunit beta-1
Importin-11
Importin-7
Importin-9
Inorganic pyrophosphatase
Inosine triphosphate pyrophosphatase

IPI00009305	5	2	5	1	2	1
1P100027497	21	14	9	17	15	6
IPI00016801	2	2	1	6	5	3
IP100008552	13	7	9	15	6	6
IPI00019755	3	1	1	2	1	0
IP100219757	18	15	17	22	14	9
IPI00219018	52	60	50	57	37	25
\|P100004358	3	5	3	8	5	2
\|PI00232571	11	5	9	7	5	8
IP100029079	25	9	6	16	12	3
IP100478657	2	1	1	2	2	2
IPI00465256	3	1	2	1	2	1
\|P100000005	1	1	2	5	2	2
\|P100643041	11	10	10	11	5	5
IPI00016669	4	2	3	1	2	0
\|P100026268	7	2	6	8	7	6
\|PI00003348	2	1	3	3	4	3
\|P100220578	3	1	0	3	6	4
IPI00288947	1	0	2	2	2	1
IPIOO290928	1	0	2	2	1	0
IPI00848226	17	14	11	15	15	16
IPI00304925	15	3	10	6	6	0
IPI00002966	25	21	18	16	28	21
IPI00030275	10	3	4	7	3	2
IPIO0025512	7	5	3	4	2	3
IPI00414676	70	73	42	62	60	34
IPI00007702	2	1	2	2	1	2
IPI00215893	1	0	3	3	2	1
IPI00148063	5	3	2	3	3	0
IPI00011913	4	2	4	7	5	3
IPI00003881	7	5	5	5	1	3
IPI00304692	7	5	6	8	6	5
IPI00013881	6	4	4	9	12	10
IPI00514561	21	16	12	19	16	11
IPI00027834	9	4	3	6	12	4
IPI00456887	3	2	4	3	6	2
IPI00102864	10	12	5	5	3	1
IPI00419258	9	10	4	11	7	5
IPI00021808	2	0	3	6	3	0
IPI00217468	5	4	7	7	4	4
IPI00081836	1	4	12	11	S	2
IPI00018278	2	2	1	3	2	3
IPI00453473	6	7	17	17	10	7
IPI00032826	5	6	4	4	4	4
IPI00013122	7	2	5	0	2	1
IPI00003362	35	30	23	31	19	14
IPI00008475	23	18	17	7	12	7
IPI00218493	7	10	6	7	6	5
IP100000877	22	16	16	15	24	15
IPI00002214	16	14	10	10	11	9
IPI00299033	5	2	1	2	0	1
IPI00012578	4	1	0	4	4	1
IP100001639	22	22	9	22	17	17
IPI00301107	4	0	3	2	1	4
IP100007402	12	7	9	10	11	9
IPI00185146	7	7	7	3	11	6
IPI00015018	9	3	3	8	4	3
IPI00018783	2	0	2	3	2	1

Inosine-5'-monophosphate dehydrogenase 2
inositol-3-phosphate synthase 1 isoform 2
insulin-degrading enzyme
Insulin-like growth factor 2 mRNA-binding protein 1
Interleukin enhancer-binding factor 2
Isochorismatase domain-containing protein 1
Isocitrate dehydrogenase [NADP] cytoplasmic
Isocitrate dehydrogenase [NADP], mitochondrial
Isoform 1 of 26 S protease regulatory subunit 6B
Isoform 1 of 265 proteasome non-ATPase regulatory subunit 1
Isoform 1 of 3,2-trans-enoyl-CoA isomerase, mitochondrial
Isoform 1 of 39 S ribosomal protein L22, mitochondrial
Isoform 1 of 3-hydroxyacyl-COA dehydrogenase type-2
Isoform 1 of 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial Isoform 1 of 40S ribosomal protein S24
Isoform 1 of $5^{\prime}\left(3^{\prime}\right)$-deoxyribonucleotidase, cytosolic type Isoform 1 of $5^{\prime}-3$ ' exoribonuclease 2
Isoform 1 of 5^{\prime}-nucleotidase domain-containing protein 2
isoform 1 of 60 S ribosomal protein L11
Isoform 1 of 60S ribosomal protein L12
Isoform 1 of 6-phosphofructokinase, liver type
Isoform 1 of Acetyl-CoA carboxylase 1
Isoform 1 of Acidic leucine-rich nuclear phosphoprotein 32 family
member B
Isoform 1 of Actin-related protein 2/3 complex subunit 5
Isoform 1 of Adenylate kinase 2, mitochondrial
Isoform 1 of Adenylyl cyclase-associated protein 1
Isoform 1 of Adipocyte plasma membrane-associated protein Isoform 1 of Annexin A7
Isoform 1 of AP-2 complex subunit beta
Isoform 1 of Apoptosis-associated speck-like protein containing a
CARD
Isoform 1 of ATP synthase subunit d, mitochondrial
Isoform 1 of Basic leucine zipper and W2 domain-containing protein 1
Isoform 1 of BRCA2 and CDKN1A-interacting protein
Isoform 1 of Calcyclin-binding protein
Isoform 1 of Caprin-1
Isoform 1 of Catenin alpha-1
Isoform 1 of Catenin beta-1
Isoform 1 of CCR4-NOT transcription complex subunit 1
Isoform 1 of Cellular nucleic acid-binding protein
Isoform 1 of Chromodomain-helicase-DNA-binding protein 4
Isoform 1 of Clathrin heavy chain 1
isoform 1 of Coatomer subunit alpha
Isoform 1 of Coiled-coil domain-containing protein 47
isoform 1 of COP9 signalosome complex subunit 2
Isoform 1 of COP9 signalosome complex subunit 7b
Isoform 1 of C -terminal-binding protein 2
Isoform 1 of Cullin-4A
Isoform 1 of Cullin-associated NEDD8-dissociated protein 1
Isoform 1 of Cystathionine beta-synthase
Isoform 1 of Cysteine and histidine-rich domain-containing protein 1
Isoform 1 of Cytosol aminopeptidase
Isoform 1 of Cytosolic acyl coenzyme A thioester hydrolase
Isoform 1 of Cytosolic non-specific dipeptidase
Isoform 1 of Dipeptidyl peptidase 1
Isoform 1 of Dipeptidyl peptidase 3
Isoform 1 of DNA replication licensing factor MCM7

IPI00291510	11	10	8	8	10	3
IPI00478861	3	1	1	6	3	1
IPI00220373	2	4	3	4	2	0
IPI00008557	10	5	7	11	9	1
IP100005198	11	11	11	14	9	9
IPI00304082	5	3	4	4	1	2
IPI00027223	20	17	27	20	14	7
IPI00011107	2	1	0	4	2	0
IPI00020042	11	8	6	7	6	3
IPI00299608	10	6	9	13	12	10
IPI00300567	2	3	2	5	2	1
IPI00414410	3	3	1	3	0	1
IPI00017726	12	7	7	9	6	4
IPI00419802	3	3	0	3	1	0
IPI00029750	5	5	4	5	4	3
IPI00005573	2	2	2	2	1	1
IPI00100151	8	6	3	3	5	2
IPI00009662	3	1	1	3	2	1
IPI00376798	4	8	3	4	2	2
IPI00024933	6	5	6	4	4	4
IPI00332371	4	2	1	4	6	3
IPIO0011569	11	9	15	0	3	3
IPI00007423	2	2	0	3	1	2
IPI00550234	3	1	1	4	2	2
IPI00215901	5	5	7	7	3	4
IPI00008274	12	12	5	14	8	7
IPI00031131	3	0	1	1	4	3
IPI00002460	3	1	1	2	2	1
IPI00784156	11	5	6	8	14	9
IPI00001699	4	5	3	4	2	0
IPI00220487	4	3	3	11	3	2
IPI00785096	7	6	4	8	4	2
IPI00002203	3	3	1	2	1	1
IPI00395627	10	9	5	10	12	7
IPI00783872	7	1	3	4	2	1
IPI00215948	15	7	9	20	16	16
IPI00017292	5	5	4	10	9	4
IPI00166010	5	3	6	3	6	0
IPI00430812	2	2	0	2	1	2
IPI00000846	2	0	1	7	3	1
IPI00024067	46	44	31	30	40	36
IPI00295857	8	8	8	5	14	7
IPI00024642	3	2	0	4	4	1
IPI00743825	5	4	2	2	3	3
IPI00009301	3	1	3	4	0	2
IPI00010120	2	1	4	4	2	2
IPI00419273	4	3	3	2	0	1
IPI00100160	21	19	17	12	18	18
IPI00219352	10	8	3	4	6	2
IPI00015897	3	1	1	0	5	1
IPI00419237	3	2	2	7	3	0
IPI00010415	8	6	4	5	4	3
IPI00177728	11	14	11	16	10	9
IPI00022810	2	2	1	1	3	0
IPI00020672	11	9	2	11	5	2
IPI00299904	17	14	9	11	14	14

Isoform 1 of DNA-dependent protein kinase catalytic subunit Isoform 1 of Drebrin
Isoform 1 of Enolase-phosphatase E1
Isoform 1 of Enoyl-CoA hydratase domain-containing protein 1
Isoform 1 of Eukaryotic initiation factor 4A-II
Isoform 1 of Eukaryotic translation initiation factor 3 subunit B
Isoform 1 of Exosome complex exonuclease RRP44
Isoform 1 of Exportin-2
Isoform 1 of Extended synaptotagmin-1
Isoform 1 of Far upstream element-binding protein 2
Isoform 1 of Filamin-B
Isoform 1 of Filamin-C
Isoform 1 of Fragile X mental retardation syndrome-related protein 1
Isoform 1 of Friend of PRMT1 protein
Isoform 1 of Gamma-glutamylcyclotransferase
Isoform 1 of General transcription factor II-I
Isoform 1 of General vesicular transport factor p115
Isoform 1 of Glucosamine--fructose-6-phosphate aminotransferase
[isomerizing] 1
Isoform 1 of Growth factor receptor-bound protein 2
Isoform 1 of Guanine nucleotide-binding protein $G(i)$ subunit alpha-2
Isoform 1 of Heat shock cognate 71 kDa protein
Isoform 1 of Hematological and neurological expressed 1-like protein
Isoform 1 of Heterogeneous nuclear ribonucleoprotein DO
Isoform 1 of Heterogeneous nuclear ribonucleoprotein M
Isoform 1 of Heterogeneous nuclear ribonucleoprotein Q
Isoform 1 of Heterogeneous nuclear ribonucleoprotein R
Isoform 1 of Hexokinase-1
Isoform 1 of Histone-binding protein RBBP4
Isoform 1 of Importin-4
Isoform 1 of importin-5
Isoform 1 of Insulin-like growth factor 2 mRNA-binding protein 3
Isoform 1 of Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial
Isoform 1 of KH domain-containing, RNA-binding, signal transductionassociated protein 1
Isoform 1 of Kinesin heavy chain isoform 5C
Isoform 1 of Large proline-rich protein BAT3
Isoform 1 of Leukotriene A-4 hydrolase
Isoform 1 of LIM and SH3 domain protein 1
Isoform 1 of Lipopolysaccharide-responsive and beige-like anchor protein
Isoform 1 of L-lactate dehydrogenase A chain
Isoform 1 of Low molecular weight phosphotyrosine protein
phosphatase
Isoform 1 of Malignant T cell-amplified sequence 1
Isoform 1 of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial
Isoform 1 of Metastasis-associated protein MTA3
Isoform 1 of Methyl-CpG-binding domain protein 3
Isoform 1 of Microtubule-associated protein 4
Isoform 1 of Mitotic checkpoint protein BUB3
Isoform 1 of Myb-binding protein 1A
Isoform 1 of Myosin-10
Isoform 1 of Myosin-9
Isoform 1 of NACHT, LRR and PYD domains-containing protein 2
Isoform 1 of NADH-cytochrome b5 reductase 3
Isoform 1 of N -alpha-acetyltransferase 50 , NatE catalytic subunit

IPI00296337	35	28	27	30	39	0
IPI00003406	8	3	7	6	10	6
IPI00038378	3	3	2	2	2	1
IPI00302688	6	0	2	1	1	2
IPI00328328	7	1	1	1	3	1
IPI00396370	13	9	6	9	16	13
IP100746351	2	0	1	1	3	1
IPI00022744	27	21	21	20	18	26
IPI00022143	11	4	5	3	3	0
IPI00479786	8	9	7	10	12	6
IPI00289334	32	22	24	55	59	23
\|P100178352	2	2	0	29	40	10
IPI00016249	3	2	2	2	1	0
IP100300990	1	0	2	2	2	1
IPI00031564	4	4	7	8	2	1
IPI00054042	5	4	2	2	5	3
\|PI00941161	11	6	8	10	15	8
\|PI00217952	9	4	3	7	10	4
IPI00021327	4	3	2	2	3	4
IPI00748145	6	3	3	4	0	3
IPI00003865	48	35	32	38	33	26
IPI00027397	2	2	3	3	1	0
IPI00028888	15	8	14	12	16	9
IPI00171903	18	13	14	15	21	3
IPI00018140	9	9	6	2	2	1
IPI00012074	6	4	4	5	4	3
IPI00018246	2	3	3	8	7	6
IP100328319	5	3	3	3	6	0
IPI00156374	11	4	11	9	8	6
IP100793443	30	22	23	23	29	26
IPI00658000	8	1	2	5	8	1
IPI00030702	2	2	2	2	4	3
IPI00008575	4	3	2	6	6	1
IPI00028561	3	2	3	0	2	1
IPI00465128	3	1	1	2	1	0
IPI00219077	8	6	3	0	3	1
IPI00000861	3	1	4	5	3	1
IPI00002255	2	2	2	1	4	0
IPI00217966	46	37	26	45	30	22
IPI00219861	5	2	4	3	5	2
IPI00179026	1	3	2	5	2	1
IPI00005040	3	0	2	1	2	2
IP\|00165357	5	2	1	5	4	0
IPI00439194	2	3	1	4	2	1
IP100396171	3	2	2	6	9	4
IPIO0013468	4	3	5	1	3	1
IPI00005024	7	8	5	1	4	2
IPI00397526	34	20	38	46	36	25
IPI00019502	64	53	61	63	49	45
IPI00016480	3	2	3	1	1	3
IPI00328415	3	4	4	7	5	2
IP\|00018627	6	3	3	6	4	3

Isoform 1 of Nuclear autoantigenic sperm protein
Isoform 1 of Nuclear pore complex protein Nup155
Isoform 1 of Nuclear pore complex protein Nup160
Isoform 1 of Nucleolar RNA helicase 2
Isoform 1 of Nucleoredoxin
Isoform 1 of Nucleoside diphosphate kinase A Isoform 1 of Obg-like ATPase 1
Isoform 1 of Oligoribonuclease, mitochondrial (Fragment)
Isoform 1 of Paraspeckle component 1
Isoform 1 of Partner of Y14 and mago
Isoform 1 of Peptidyl-prolyl cis-trans isomerase-like 3
Isoform 1 of Peroxidasin homolog
Isoform 1 of Phosphatidylinositol transfer protein beta isoform isoform 1 of Phosphoglucomutase-1
Isoform 1 of Platelet-activating factor acetylhydrolase IB subunit α Isoform 1 of Plectin
Isoform 1 of Polyadenylate-binding protein 1
Isoform 1 of Polyadenylate-binding protein 2
Isoform 1 of Polyadenylate-binding protein 4
Isoform 1 of Polypyrimidine tract-binding protein 1
Isoform 1 of Probable ATP-dependent RNA helicase OHX36
Isoform 1 of Prolyl 4-hydroxylase subunit alpha-1
Isoform 1 of Proteasome activator complex subunit 3
Isoform 1 of Proteasome activator complex subunit 4
Isoform 1 of Proteasome subunit alpha type-7
isoform 1 of Protein canopy homolog 2
Isoform 1 of Protein CIP2A
Isoform 1 of Protein diaphanous homolog 1
Isoform 1 of Protein KIAA1967
Isoform 1 of Protein LSM12 homolog
Isoform 1 of Protein phosphatase 1 regulatory subunit 12A
Isoform 1 of Protein phosphatase 1 regulatory subunit 7
Isoform 1 of Protein SET
Isoform 1 of Protein syndesmos
Isoform 1 of Putative helicase MOV-10
Isoform 1 of Quinone oxidoreductase PIG3
Isoform 1 of Rab3 GTPase-activating protein non-catalytic subunit Isoform 1 of Ras-related protein Rab-1A
Isoform 1 of Ras-related protein Rab-34
Isoform 1 of Regulator of nonsense transcripts 1
Isoform 1 of Replication factor C subunit 2
Isoform 1 of Replication protein A 32 kDa subunit
Isoform 1 of Retinol dehydrogenase 11
Isoform 1 of RNA 3'-terminal phosphate cyclase
Isoform 1 of RNA-binding protein 25
Isoform 1 of RuvB-like 1
Isoform 1 of SEC23-interacting protein
Isoform 1 of Septin-2
Isoform 1 of Serine/arginine-rich splicing factor 7
Isoform 1 of Serine/threonine-protein phosphatase 6 catalytic
subunit
Isoform 1 of Spermine synthase
isoform 1 of S-phase kinase-associated protein 1
Isoform 1 of Splicing factor 38 subunit 3
Isoform 1 of Squamous cell carcinoma antigen recognized by T-cells 3 Isoform 1 of Structural maintenance of chromosomes protein 2
Isoform 1 of Surfeit locus protein 4
Isoform 1 of Syntaxin-7

IPIO0179953
IPI00026625
IPI00748807
IPI00015953
IPI00304267
IPI00012048
IPI00290416
IP100032830
IPIO0103525
|P100305092
IP100300952
IP100016112
|P100334907
IP100219526
IPI00218728
IPI00014898
IP100008524
IPI00005792
IPIO0012726
IP100179964
IP100027415
IPI00009923
IPI00030243
IPI00005260
IPI00024175
IP100443909
IPIO0154283
IPI00852685
IPI00182757
IPI00410324
IPI00183002
IPI00033600
IPI00072377
|P|00031650
IPI00444452
IPI00384643
IPI00554590
IPI00005719
IPI00328180
IPI00034049
IPI00017412
IPI00013939
IPI00339384
IPI00011726
IPI00004273
IPI00021187
IPIO0026969
IP100014177
IP100003377
IPIO0012970
|P100005102 IPI00301364
|PI00300371
IPI00006025
|PI00007927
IPI00005737
IPI00289876

Isoform 1 of TP53RK-binding protein
Isoform 1 of Transcription elongation factor A protein 1
Isoform 1 of Transcription factor BTF3
Isoform 1 of Transcription intermediary factor 1-beta
Isoform 1 of Transformer- 2 protein homolog beta
Isoform 1 of Transportin-1
Isoform 1 of Tropomyosin alpha-4 chain
Isoform 1 of Tryptophanyl-tRNA synthetase, cytoplasmic
Isoform 1 of U2-associated protein SR140
Isoform 1 of U5 small nuclear ribonucleoprotein 200 kDa helicase
Isoform 1 of Ubiquitin conjugation factor E4 B
Isoform 1 of Ubiquitin-conjugating enzyme E2 K
Isoform 1 of Ubiquitin-like modifier-activating enzyme 6
Isoform 1 of UDP-glucose:glycoprotein glucosyltransferase 1
Isoform 1 of Uridine 5'-monophosphate synthase
Isoform 1 of UTP--glucose-1-phosphate uridylyltransferase
Isoform 1 of Vinculin
Isoform 1 of WD repeat-containing protein 1
Isoform 1AB of Catenin delta-1
Isoform 2 of Apoptosis inhibitor 5
Isoform 2 of ATP-dependent RNA helicase DDX54
Isoform 2 of Basigin
Isoform 2 of Cat eye syndrome critical region protein 5
Isoform 2 of Cell division control protein 42 homolog
Isoform 2 of Cytochrome P450 2 S1
Isoform 2 of Eukaryotic translation initiation factor 5A-1
Isoform 2 of F -actin-capping protein subunit beta
Isoform 2 of Filamin-A
Isoform 2 of Golgi apparatus protein 1
Isoform 2 of Golgin subfamily A member 2
Isoform 2 of Heat shock protein HSP 90-alpha
Isoform 2 of Heterogeneous nuclear ribonucleoprotein A / B
Isoform 2 of Isochorismatase domain-containing protein 2
Isoform 2 of Lysine-specific histone demethylase 1A
Isoform 2 of N -alpha-acetyltransferase 15, NatA auxiliary subunit
Isoform 2 of Neutral alpha-glucosidase AB
Isoform 2 of Nuclear mitotic apparatus protein 1
Isoform 2 of Nucleoporin NUP188 homolog
Isoform 2 of Proteasome subunit alpha type-3
Isoform 2 of Protein disulfide-isomerase A6
Isoform 2 of Prothymosin alpha
Isoform 2 of Ras-related protein Rab-6A
Isoform 2 of Sarcoplasmic/endoplasmic reticulum calcium ATPase 2
Isoform 2 of Serrate RNA effector molecule homolog
Isoform 2 of Spliceosome RNA helicase BAT1
Isoform 2 of Splicing factor 1
Isoform 2 of Structural maintenance of chromosomes protein 4
Isoform 2 of Succinyl-CoA ligase [ADP-forming] subunit beta
Isoform 2 of Suppressor of G2 allele of SKP1 homolog
Isoform 2 of TAR DNA-binding protein 43
Isoform 2 of Tropomyosin alpha-3 chain
Isoform 2 of Tumor protein D54
Isoform 3 of Anamorsin
Isoform 3 of Epithelial splicing regulatory protein 1
Isoform 3 of Nucleolar and coiled-body phosphoprotein 1
Isoform 3 of Protein PRRC1
Isoform 3 of Protein transport protein Sec31A
Isoform 3 of Ribosome-binding protein 1

| \|P|00301432 | 1 | 3 | 2 | 2 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IP100333215 | 5 | 2 | 4 | 4 | 8 | 3 |
| IPI00221035 | 8 | 3 | 6 | 7 | 3 | 2 |
| IPI00438229 | 12 | 8 | 12 | 8 | 16 | 14 |
| IP100301503 | 4 | 1 | 3 | 2 | 2 | 2 |
| IP100024364 | 10 | 8 | 8 | 12 | 10 | 10 |
| IP100010779 | 6 | 7 | 8 | 6 | 2 | 5 |
| IPI00295400 | 13 | 9 | 4 | 9 | 8 | 1 |
| IPI00143753 | 3 | 1 | 0 | 4 | 3 | 1 |
| IPI00420014 | 23 | 20 | 14 | 6 | 13 | 5 |
| IPI00005715 | 1 | 1 | 2 | 2 | 1 | 0 |
| IPI00021370 | 6 | 4 | 7 | 3 | 4 | 3 |
| IPI00023647 | 3 | 2 | 2 | 2 | 1 | 3 |
| IPI00024466 | 10 | 6 | 3 | 2 | 4 | 1 |
| IPI00003923 | 3 | 3 | 2 | 3 | 3 | 1 |
| IPI00329331 | 23 | 20 | 14 | 19 | 17 | 8 |
| IPI00291175 | 56 | 32 | 43 | 56 | 36 | 40 |
| IPI00746165 | 5 | 3 | 2 | 9 | 6 | 3 |
| IPI00182469 | 1 | 3 | 2 | 7 | 3 | 5 |
| IPI00554742 | 9 | 6 | 3 | 2 | 1 | 1 |
| IPI00152510 | 2 | 0 | 1 | 2 | 1 | 0 |
| IPI00019906 | 6 | 3 | 7 | 3 | 4 | 4 |
| IPI00011511 | 3 | 1 | 3 | 2 | 4 | 1 |
| IPI00016786 | 6 | 2 | 8 | 7 | 3 | 4 |
| IPI00164018 | 5 | 2 | 4 | 0 | 3 | 1 |
| IPI00376005 | 13 | 12 | 12 | 7 | 12 | 8 |
| IP100642256 | 11 | 7 | 6 | 9 | 7 | 8 |
| IP100302592 | 98 | 76 | 69 | 80 | 94 | 55 |
| IP100414717 | 4 | 2 | 5 | 4 | 11 | 3 |
| IPI00413895 | 1 | 0 | 2 | 2 | 2 | 0 |
| IPI00382470 | 33 | 30 | 13 | 39 | 27 | 15 |
| IPI00334587 | 7 | 6 | 5 | 7 | 7 | 5 |
| IPI00003031 | 1 | 1 | 2 | 3 | 1 | 0 |
| IPI00217540 | 2 | 1 | 1 | 3 | 5 | 2 |
| IPI00032158 | 4 | 3 | 3 | 2 | 3 | 1 |
| IPI00011454 | 13 | 12 | 9 | 26 | 15 | 7 |
| IPI00006196 | 8 | 2 | 6 | 5 | 6 | 3 |
| IPI00385001 | 2 | 2 | 1 | 2 | 2 | 1 |
| IPI00171199 | 9 | 10 | 6 | 5 | 6 | 1 |
| IPI00299571 | 21 | 15 | 19 | 16 | 10 | 7 |
| IPI00455510 | 3 | 4 | 3 | 3 | 0 | 6 |
| IP100217943 | 6 | 3 | 5 | 6 | 4 | 1 |
| IP100177817 | 10 | 1 | 4 | 5 | 7 | 7 |
| IPI00220038 | 1 | 2 | 4 | 1 | 7 | 0 |
| IPI00641829 | 10 | 7 | 9 | 15 | 9 | 11 |
| IPI00294627 | 2 | 2 | 1 | 5 | 5 | 1 |
| IP100328298 | 1 | 2 | 4 | 2 | 4 | 0 |
| IPI00217232 | 2 | 1 | 1 | 2 | 1 | 1 |
| IPI00791573 | 6 | 2 | 5 | 4 | 9 | 5 |
| IPI00025815 | 3 | 2 | 3 | 2 | 3 | 1 |
| IPI00218319 | 27 | 24 | 24 | 26 | 19 | 9 |
| IPI00221178 | 3 | 4 | 5 | 1 | 3 | 4 |
| IPI00025333 | 4 | 0 | 1 | 3 | 6 | 1 |
| IPI00184262 | 3 | 1 | 2 | 2 | 1 | 2 |
| IPI00908873 | 2 | 2 | 1 | 2 | 0 | 1 |
| IPI00217053 | 2 | 1 | 2 | 3 | 2 | 1 |
| IPI00305152 | 5 | 2 | 2 | 5 | 3 | 2 |
| IPI00215743 | 5 | 0 | 1 | 4 | 6 | 0 |

Isoform 3 of Serine/arginine-rich splicing factor 10
Isoform 3 of Ubiquitin-conjugating enzyme E2 variant 1
Isoform 4 of Tropomyosin alpha-1 chain
Isoform 4 of Tubulin-specific chaperone D
Isoform 5 of Dynamin-1-like protein
Isoform 5 of Interleukin enhancer-binding factor 3
Isoform 5 of Thioredoxin reductase 1, cytoplasmic
Isoform A of Ras-related C3 botulinum toxin substrate 1
Isoform A of RNA-binding protein with multiple splicing Isoform A of Trypsin-3
Isoform A1 of Tight junction protein ZO-2
Isoform A1-B of Heterogeneous nuclear ribonucleoprotein A1
Isoform Alpha of Apoptosis regulator BAX
Isoform Alpha-6X1X2B of Integrin alpha-6
Isoform alpha-enolase of Alpha-enolase
Isoform ASF-1 of Serine/arginine-rich splicing factor 1
Isoform B of Perilipin-3
Isoform B1 of Heterogeneous nuclear ribonucleoproteins A2/B1
Isoform Beta of Heat shock protein 105 kDa
Isoform Beta-1 of Protein phosphatase 1B
Isoform C1 of Heterogeneous nuclear ribonucleoproteins C1/C2
Isoform Complexed of Arginyl-tRNA synthetase, cytoplasmic
Isoform CSBP2 of Mitogen-activated protein kinase 14
Isoform Cytoplasmic of Lysyl-tRNA synthetase
Isoform Delta-1 of Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit delta isoform
Isoform DFF45 of DNA fragmentation factor subunit alpha (Fragment) Isoform Gamma-1 of Serine/threonine-protein phosphatase PP1gamma catalytic subunit
Isoform GTBP-N of DNA mismatch repair protein Msh6
Isoform II of Ubiquitin-protein ligase E3A
Isoform Long of 14-3-3 protein beta/alpha
Isoform Long of Cold shock domain-containing protein E1
Isoform Long of Delta-1-pyrroline-5-carboxylate synthase
Isoform Long of Double-stranded RNA-binding protein Staufen homolog 1
Isoform Long of Eukaryotic translation initiation factor 4 H Isoform Long of Glucose-6-phosphate 1-dehydrogenase Isoform Long of Heterogeneous nuclear ribonucleoprotein U Isoform Long of Sodium/potassium-transporting ATPase subunit $\alpha-1$ isoform Long of Spectrin beta chain, brain 1 Isoform Long of Splicing factor, proline- and glutamine-rich Isoform Long of Trifunctional purine biosynthetic protein adenosine-3 Isoform Long of Ubiquitin carboxyl-terminal hydrolase 5
Isoform M2 of Pyruvate kinase isozymes M1/M2
Isoform Mitochondrial of Peroxiredoxin-5, mitochondrial Isoform Mitochondrial of Phospholipid hydroperoxide glutathione peroxidase, mitochondrial
Isoform p150 of Dynactin subunit 1
Isoform p26 of 7,8-dihydro-8-oxoguanine triphosphatase
Isoform p27-L of 26 S proteasome non-ATPase regulatory subunit 9
Isoform Rpn10A of 26S proteasome non-ATPase regulatory subunit 4 Isoform Sap-mu-0 of Proactivator polypeptide
Isoform Short of Proteasome subunit alpha type-1
Isoform Short of RNA-binding protein FUS
Isoform Short of Ubiquitin fusion degradation protein 1 homolog Isoform SM-B' of Small nuclear ribonucleoprotein-associated proteins B and B^{\prime}

\|P100009071	1	1	2	3	2	0
\|P100472498	2	2	3	4	3	0
IPI00296039	8	9	9	9	0	3
IPI00030774	2	1	1	1	5	1
IPI00037283	7	7	2	2	1	3
IPI00219330	12	13	7	17	9	8
IPI00554786	6	4	0	3	6	1
IPI00010271	3	1	1	3	3	4
IPI00004045	2	2	3	1	1	2
IPIO0015614	2	0	1	1	3	2
IPI00003843	3	2	3	1	7	0
IP100215965	32	33	15	36	30	13
IP100443773	8	4	4	7	3	4
1P100010697	3	1	2	6	6	0
\|P100465248	48	48	54	46	34	21
IP100215884	7	7	9	9	7	9
IPI00303882	8	2	4	11	10	6
IPI00396378	22	23	15	21	15	14
IPI00218993	18	9	13	16	18	19
\|PI00026612	1	0	3	3	4	1
IPI00216592	10	12	11	16	9	9
IPI00004860	10	3	4	12	8	2
IPI00002857	3	2	0	5	0	1
IPIO0014238	11	4	4	6	5	0
IPI00000030	1	2	2	3	1	0
IP100010882	2	1	0	2	0	2
IPI00005705	1	2	2	1	2	2
IPI00384456	7	6	8	6	9	10
IPI00011609	4	0	1	4	1	0
IPI00216318	14	8	11	13	11	9
IPI00470891	4	0	3	4	4	1
IPI00008982	10	8	9	7	5	4
IPI00000001	4	1	1	3	2	0
IPI00014263	2	3	4		3	2
IPIO0216008	6	4	1	2	2	0
IP100883857	21	17	12	22	21	14
IPIO0006482	15	11	10	13	13	8
IPI00005614	34	18	19	33	46	16
IPI00010740	9	11	11	13	15	7
IPI00025273	11	11	9	8	15	10
IPI00024664	12	6	6	4	4	4
IPI00479186	42	40	27	51	38	26
IPI00024915	7	4	9	10	4	6
IPI00304814	6	4	1	4	1	0
IPI00029485	7	2	4	2	7	4
IPIO0004392	2	2	3	4	2	1
IPI00010860	2	0	3	1	3	0
IPIO0022694	3	1	3	6	7	0
IPI00012503	3	1	2	1	1	2
IPIO0016832	15	4	7	5	5	4
\|P100221354	5	0	3	8	6	0
IPI00218292	2	0	2	1	3	2
IP100027285	2	4	2	4	2	2

Isoform SNAP-23a of Synaptosomal-associated protein 23
Isoform SRP55-1 of Serine/arginine-rich splicing factor 6
Isoleucyl-tRNA synthetase, cytoplasmic
Junction plakoglobin
Junctional adhesion molecule A
Keratin, type I cytoskeletal 10
Keratin, type I cytoskeletal 18
Keratin, type I cytoskeletal 9
Keratin, type II cytoskeletal 1
Keratin, type II cytoskeletal 2 epidermal
Keratin, type II cytoskeletal 8
Kinesin-1 heavy chain
Kinesin-like protein KIF11
Lactoylglutathione lyase
Lamin-B1
Laminin subunit alpha-1
Laminin subunit beta-1
Laminin subunit gamma-1
Lanosterol synthase
Leucine-rich PPR motif-containing protein, mitochondrial
Leucine-rich repeat-containing protein 47
Leucine-rich repeat-containing protein 59
Leucyl-tRNA synthetase, cytoplasmic
LINE-1 type transposase domain-containing protein 1
L-lactate dehydrogenase B chain
Lon protease homolog, mitochondrial
Long-chain-fatty-acid--CoA ligase 3
Lupus La protein
Macrophage migration inhibitory factor
Malate dehydrogenase
Malate dehydrogenase, mitochondrial
Matrin-3
Membrane-associated progesterone receptor component 1
Methionyl-tRNA synthetase, cytoplasmic
Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1
Methylosome subunit pICln
Microsomal glutathione S-transferase 1
Microtubule-associated protein 1B
Microtubule-associated protein RP/EB family member 1
Midasin
Mitochondrial fission 1 protein
Mitochondrial import receptor subunit TOM22 homolog
Moesin
mRNA turnover protein 4 homolog
Multifunctional protein ADE2
$N(G), N(G)$-dimethylarginine dimethylaminohydrolase 1
$\mathrm{Na}(+) / \mathrm{H}(+)$ exchange regulatory cofactor NHE-RF1
N -acetyltransferase 10
NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial
NADH dehydrogenase [ubiquinone] iron-sulfur protein 3
NADPH--cytochrome P450 reductase
N -alpha-acetyltransferase 10, NatA catalytic subunit
Nascent polypeptide-associated complex subunit alpha
NEDD8-activating enzyme E1 catalytic subunit
NEDD8-conjugating enzyme Ubc12
Nestin
NHP2-like protein 1
Nicotinamide phosphoribosyltransferase

IPI00010438	2	2	2	2	1	1	
IPI00012345	2	2	4	2	1	1	
IPIO0644127	20	9	6	13	25	5	
IPI00554711	2	2	0	4	5	3	
IPI00001754	3	1	3	3	4	1	
IPI00009865	13	11	6	21	20	15	
IP100554788	8	6	6	20	19	8	
IPI00019359	8	3	5	5	15	13	
\|P100220327	10	9	6	25	18	17	
\|PI00021304	4	4	4	17	16	9	
\|PI00554648	21	7	17	42	33	16	
\|PI00012837	13	5	8	8	11	11	
\|P	00305289	4	5	3	4	5	0
IPI00220766	5	5	5	5	3	4	
IPIO0217975	4	1	4	5	7	3	
IP100375294	3	4	4	1		0	
IPI00013976	5	2	4	1	5	6	
IP100298281	9	2	2	3	11	4	
IPI00009747	5	5	7	6	4	0	
\|P100783271	43	36	19	18	22	16	
IP100170935	5	2	4	5	3	0	
IPI00396321	4	2	5	9	4	2	
IP100103994	18	13	12	7	14	8	
IP100253050	18	9	12	17	10	14	
IPI00219217	20	27	19	23	15	15	
IPI00005158	5	2	3	5	1	0	
IPI00031397	2	1	1	1	4	1	
IPI00009032	17	13	14	15	8	8	
IPI00293276	3	2	2	3	3	2	
IPI00916111	11	11	8	10	8	8	
IPI00291006	22	13	16	17	13	13	
IPI00017297	19	11	14	9	10	11	
IPI00220739	4	4	3	3	3	3	
IPI00008240	13	7	6	11	11	10	
IPI00291646	3	1	4	2	3	0	
IPI00004795	2	3	2	3	3	2	
IP100021805	4	1	2	1	3	2	
IP100008868	1	0	4	4	6	0	
IP100017596	8	1	8	5	5	7	
IP100167941	17	9	11	3	8	0	
IPI00007052	2	2	3	3	2	3	
IPI00024976	2	0	1	2	5	2	
IPI00219365	18	11	5	14	8	7	
IPI00106491	6	2	1	2	2	1	
IPI00217223	21	16	14	21	17	11	
IPI00220342	4	6	3	3	3	1	
IPI00003527	3	3	4	5	6	2	
IPI00300127	7	3	2	4	6	2	
IPI00291328	2	2	2	3	1	1	
IPI00025796	3	4	4	5	1	2	
IPI00470467	6	4	0	2	2	2	
IPI00013184	3	2	2	2	2	1	
IPI00023748	7	8	5	8	5	5	
IPI00328154	4	0	2	3	6	0	
IPI00022597	1	3	4	5	4	2	
IPI00010800	16	5	9	11	25	16	
IPI00026167	2	0	4	3	2	3	
IPI00018873	6	4	3	5	4	3	

Nodal modulator 1
Non-POU domain-containing octamer-binding protein
Nuclear migration protein nudC
Nuclear pore complex protein Nup107
Nuclear pore complex protein Nup133
Nuclear pore complex protein Nup205
Nuclear pore complex protein Nup93
Nuclear transport factor 2
Nuclease-sensitive element-binding protein 1
Nucleobindin-1
Nucleolar GTP-binding protein 1
Nucleolar protein 56
Nucleolar protein 58
Nucleoporin 54kDa variant (Fragment)
Nucleoprotein TPR
Nucleoside diphosphate kinase
Nucleoside-triphosphatase C1orf57
Nucleosome assembly protein 1-like 1
NudC domain-containing protein 2
Ornithine aminotransferase, mitochondrial
OTU domain-containing protein 68
PDZ and LIM domain protein 1
Peptidyl-prolyl cis-trans isomerase A
Peptidyl-prolyl cis-trans isomerase B
Peptidyl-prolyl cis-trans isomerase FKBP4
Peptidyl-prolyl cis-trans isomerase H
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1
Peptidyl-prolyl cis-trans isomerase-like 1
Peroxiredoxin-1
Peroxiredoxin-2
Peroxiredoxin-4
Peroxiredoxin-6
Peroxisomal multifunctional enzyme type 2
Phosducin-like protein 3
Phosphatidylethanolamine-binding protein 1
Phosphoglycerate kinase 1
Phosphoglycolate phosphatase
Phospholipase D3
Phosphoribosylformylglycinamidine synthase
Phosphoserine aminotransferase
Phosphoserine phosphatase
Plastin-3
Platelet-activating factor acetylhydrolase IB subunit beta
Platelet-activating factor acetylhydrolase IB subunit gamma
Podocalyxin-like protein 1 precursor
Poly [ADP-ribose] polymerase 1
Poly(rC)-binding protein 1
Prefoldin subunit 2
Prefoldin subunit 5
Pre-mRNA-processing factor 19
Pre-mRNA-processing-splicing factor 8
Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16
Pre-mRNA-splicing factor SPF27
Probable ATP-dependent RNA helicase DDX5
Probable ATP-dependent RNA helicase DDX6
Probable fructose-2,6-bisphosphatase TIGAR
Probable ribosome biogenesis protein NEP1
probable ubiquitin carboxyl-terminal hydrolase FAF-X isoform 4

Profilin-1
progesterone receptor membrane component 2
Programmed cell death 6-interacting protein
Programmed cell death protein 10
Programmed cell death protein 6
Prohibitin
Prohibitin-2
Proliferating cell nuclear antigen
Proliferation-associated protein 2G4
Prolyl endopeptidase
Prostaglandin E synthase 3
Prostaglandin reductase 1
Proteasome 265 non-ATPase subunit 11 variant (Fragment)
Proteasome activator complex subunit 1
Proteasome subunit alpha type-2
Proteasome subunit alpha type-4
Proteasome subunit alpha type-5
Proteasome subunit alpha type-6
Proteasome subunit beta type-1
Proteasome subunit beta type-2
Proteasome subunit beta type-3
Proteasome subunit beta type-5
Proteasome subunit beta type-6
proteasome-associated protein ECM29 homolog
protein arginine N -methyltransferase 1 isoform 1
Protein C10
Protein disulfide-isomerase
Protein disulfide-isomerase A3
Protein disulfide-isomerase A4
Protein DJ-1
Protein dpy-30 homolog
Protein FAM3C
Protein FAM49B
Protein FAM96B
Protein kinase, cAMP-dependent, regulatory, type II, alpha, isoform CRA_b
Protein lin-28 homolog A
Protein lin-7 homolog C
Protein mago nashi homolog 2
Protein of unknown function DUF858, methyltransferase-like family protein
Protein phosphatase 1G
Protein RCC2
Protein RRP5 homolog
Protein S100-A11
Protein transport protein Sec23A
Protein transport protein Sec23B
Protein transport protein Sec61 subunit beta
Pseudouridylate synthase 7 homolog
Puromycin-sensitive aminopeptidase
Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15
Putative RNA-binding protein 3
Putative uncharacterized protein
Putative uncharacterized protein DKFZp686L20222
Quinone oxidoreductase
Rab GDP dissociation inhibitor beta
Radixin, isoform CRA_a

IP100216691	18	13	18	18	11	9
IPI00005202	2	2	1	4	2	1
IPI00246058	6	2	5	9	8	8
IP100298558	2	2	2	2	2	2
IP100025277	4	2	3	4	4	2
IPI00017334	5	5	5	7	3	4
IPI00027252	4	3	4	10	8	5
IP100021700	10	5	8	5	4	4
IPI00299000	14	6	8	1	3	1
IP100008164	3	5	2	7	5	2
IPI00015029	6	4	5	4	4	3
IPI00292657	2	1	0	6	10	3
IPI00105598	16	9	5	2	2	3
IPI00479722	5	4	4	6	1	2
IPI00219622	6	5	7	6	4	4
IP100299155	6	5	6	2	5	5
IPIOO291922	7	6	6	7	5	5
IPIO0029623	10	10	11	8	5	6
IPIO0025019	8	10	8	10	6	3
IPI00028006	7	8	6	7		4
IPI00028004	8	9	7	9	1	3
IPI00479306	14	9	9	7	9	4
IPIO0000811	4	4	4	6	4	2
IP\|00157790	14	12	13	13	18	6
IPI00018522	12	7	11	3	10	10
IPI00016925	3	1	3	2	0	4
IPI00010796	21	17	10	25	16	7
IP100025252	27	28	18	33	32	16
IP100009904	17	16	12	23	13	8
IPI00298547	11	12	10	9	7	8
IPI00028109	0	1	2	2	0	1
IPI00334282	4	4	3	2	1	3
IPI00303318	7	4	3	5	2	2
IPI00007024	3	0	1	2	1	0
IPI00063234	2	0	1	1	2	0
IPI00002948	10	13	9	11	12	9
IPI00019997	3	1	2	3	1	1
IPI00059292	5	3	7	5	2	3
IPI00549389	3	3	0	2	1	2
IPI00006167	2	2	4	3	4	2
IPIO0465044	8	3	2	7	8	5
IP100400922	5	4	2	1	2	1
IPI00013895	3	2	2	5	2	1
IPI00017375	2	1	3	5	5	2
IPI00017376	5	4	3	3	4	0
IPI00220835	2	2	2	1	1	3
IPI00044761	2	4	3	2	1	0
IP100026216	10	8	6	11	8	9
IPI00396435	8	12	6	3	1	4
\|P100024320	3	2	3	2	3	3
IPI00010402	3	0	2	1	1	2
IPI00026689	7	6	6	7	4	2
IPI00000792	3	2	2	2	2	1
IPI00940148	29	25	25	26	20	17
IPI00017367	3	2	0	6	4	2

Ran GTPase-activating protein 1
Ran-specific GTPase-activating protein
Ras GTPase-activating protein-binding protein 1
Ras GTPase-activating-like protein IQGAP1
Ras suppressor protein 1
Ras-related protein Rab-10
Ras-related protein Rab-11B
Ras-related protein Rab-14
Ras-related protein Rab-18
Ras-related protein Rab-1B
Ras-related protein Rab-21
Ras-related protein Rab-3B
Ras-related protein Rab-5C
Ras-related protein Rab-7a
Ras-related protein Rab-8A
Replication factor C subunit 4
Reticulocalbin-1
Reticulocalbin-2
retinol-binding protein 1 isoform a
Rho GDP-dissociation inhibitor 1
Rho GTPase-activating protein 1
RhoA activator C11orf59
Rho-related GTP-binding protein RhoC
Ribonuclease inhibitor
Ribonuclease UK114
Ribonucleoside-diphosphate reductase large subunit ribonucleoside-diphosphate reductase subunit M2 isoform 1
Ribose-phosphate pyrophosphokinase 1
Ribosomal protein L14 variant
Ribosome biogenesis protein WDR12
RNA-binding protein with multiple splicing 2
rRNA 2'-O-methyltransferase fibrillarin
RuvB-like 2
S-adenosylmethionine synthase isoform type-2
Selenide, water dikinase 1
Sentrin-specific protease 8
Serine hydroxymethyltransferase, mitochondrial
Serine/arginine-rich splicing factor 2
Serine/arginine-rich splicing factor 3
Serine/arginine-rich splicing factor 9
Serine/threonine-protein kinase MST4
Serine/threonine-protein kinase OSR1
Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform
Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit epsilon isoform
Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit
A alpha isoform
Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform
serine/threonine-protein phosphatase PP1-alpha catalytic subunit isoform 3
Serine/threonine-protein phosphatase PP1-beta catalytic subunit
Serpin B6
Serpin B9
Serpin H1
Seryl-tRNA synthetase, cytoplasmic
SF3A2 protein (Fragment)

IPI00294879	11	4	6	7	4	4
IPI00414127	7	5	6	8	5	5
IPI00012442	9	5	5	9	9	3
IPI00009342	15	7	8	25	24	21
IPI00017256	3	3	5	4	3	4
IPI00016513	3	4	3	4	4	1
IPI00020436	7	6	6	6	6	4
IPI00291928	5	5	4	3	1	1
IP100014577	6	3	5	4	5	3
IPI00008964	9	6	10	13	6	3
IPI00007755	1	2	4	1	0	2
IPI00300562	4	2	3	2	2	2
IPI00016339	9	6	6	5	3	4
IPI00016342	9	5	8	2	2	1
IPI00028481	4	1	3	2	0	1
IPI00017381	2	2	2	0	2	1
IPI00015842	5	2	2	5	1	1
IPI00029628	3	3	1	2	1	2
IPI00219718	2	0	1	2	2	0
IPI00003815	9	4	5	6	5	4
IPI00020567	5	5	2	8	7	0
IPI00016670	1	1	2	2	2	0
IP100027434	2	1	2	2	1	3
IP100550069	4	1	4	1	3	1
IPI00005038	3	0	2	2	2	1
IPI00013871	6	5	2	1	0	2
IPI00011118	6	4	5	5	3	0
IPI00219616	8	7	4	7	6	3
IPI00555744	4	5	3	4	3	2
IPI00304232	3	1	1	1	5	1
IPI00238688	2	0	2	4	1	3
IPI00025039	5	10	1	5	6	3
IPI00009104	7	10	11	8	10	6
IPI00010157	10	5	10	4	1	4
IPI00029056	8	7	7	6	6	7
IPI00165616	1	0	3	2	0	1
IPI00002520	10	8	12	7	4	4
IPI00005978	0	4	2	1	2	4
IPI00010204	6	4	6	10	4	2
IPI00012340	5	6	4	4	2	3
IPI00292827	11	1	7	3	4	0
IP100010080	2	3	3	2	0	1
IPI00332511	5	2	4	0	2	1
IPI00002853	2	2	3	2	2	0
IPI00554737	19	14	12	25	13	9
IPI00008380	4	4	4	5	7	4
IPI00027423	12	8	9	10	10	7
IPI00218236	4	2	3	1	3	3
\|PI00413451	1	2	1	3	1	0
IPI00032139	3	6	11	11	11	8
IPI00032140	20	18	17	20	19	17
IPI00220637	3	1	2	3	2	0
\|PI00017341	3	1	1	1	2	1

S-formylglutathione hydrolase
SH3 domain-binding glutamic acid-rich-like protein
Sialic acid synthase
Sideroflexin-1
Signal recognition particle 72 kDa protein
Signal recognition particle 9 kDa protein
Single-stranded DNA-binding protein, mitochondrial
Small glutamine-rich tetratricopeptide repeat-containing protein α
Small nuclear ribonucleoprotein E
Small nuclear ribonucleoprotein F
Small nuclear ribonucleoprotein Sm D1
Small nuclear ribonucleoprotein Sm D2
Small nuclear ribonucleoprotein Sm D3
Sodium/potassium-transporting ATPase subunit beta-3
Solute carrier family 2, facilitated glucose transporter member 1 solute carrier family 2 , facilitated glucose transporter member 3 Sorcin
Sperm-associated antigen 7
Spermidine synthase
Splicing factor 3A subunit 1
Splicing factor 3 A subunit 3
Splicing factor 3 B subunit 1
Splicing factor $3 B$ subunit 2
Splicing factor U2AF 35 kDa subunit
Squalene monooxygenase
Squalene synthase
SRA stem-loop-interacting RNA-binding protein, mitochondrial
Staphylococcal nuclease domain-containing protein 1
Stathmin
Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating
Stress-70 protein, mitochondrial
Stress-induced-phosphoprotein 1
Structural maintenance of chromosomes protein 1A
Structural maintenance of chromosomes protein 3
SUMO-activating enzyme subunit 1
SUMO-activating enzyme subunit 2
SUMO-conjugating enzyme UBC9
Superkiller viralicidic activity 2 -like 2
Superoxide dismutase [Cu-Zn]
SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5
Synaptic vesicle membrane protein VAT-1 homolog
Talin-1
T-complex protein 1 subunit alpha
T-complex protein 1 subunit beta
T-complex protein 1 subunit delta
T-complex protein 1 subunit epsilon
T-complex protein 1 subunit eta
T-complex protein 1 subunit zeta
TEL2-interacting protein 1 homolog
Thimet oligopeptidase
Thioredoxin
Thioredoxin domain-containing protein 12
Thioredoxin domain-containing protein 17
Thioredoxin domain-containing protein 5
Thioredoxin-dependent peroxide reductase, mitochondrial
Thioredoxin-like protein 1
THO complex subunit 4

IP100411706	2	2	1	1	2	1	
IPI00025318	3	2	4	6	2	4	
IPI00147874	3	4	3	4	3	3	
IPIO0009368	3	0	1	3	1	1	
IPI00215888	3	2	0	2	1	0	
IPI00642816	2	1	2	2	2	1	
IPI00029744	6	4	7	10	5	5	
IPI00013949	2	5	3	7	2	3	
IPIO0029266	3	2	2	3	1	2	
IPI00220528	3	2	3	2	1	1	
IPI00302850	7	3	5	2	1	2	
IP100017963	6	3	4	6	4	3	
IPI00017964	2	2	2	1	3	2	
IPI00008167	4	3	2	1	2	1	
IPI00220194	6	4	3	4	3	1	
IPI00003909	2	2	2	3	3	0	
IP100027175	4	2	5	5	3	1	
IPI00006863	4	0	3	2	0	2	
IPIO0292020	7	5	4	7	3	3	
IPI00017451	7	5	5	6	8	3	
IPIO0029764	4	6	1	3	1	0	
IPI00026089	19	10	12	13	23	10	
IPIO0221106	3	1	4	1	3	2	
IPI00005613	3	3	4	4	3	4	
IPI00291544	2	1	2	1	4	0	
IP100020944	9	9	14	7	6	3	
IP100009922	2	1	3	1	2	1	
IPI00140420	13	8	7	14	14	14	
IP100479997	4	9	6	6	1	3	
IPI00019407	3	3	5	2	1	1	
IPI00007765	28	14	19	21	16	11	
IPI00013894	16	12	4	5	5	1	
IPI00291939	3	1	1	3	4	3	
IPI00219420	5	1	3	3	6	0	
IP100033130	5	6	6	2	1	0	
IPI00023234	6	4	3	3	6	5	
IP100032957	1	2	3	2	4	2	
IPI00647217	10	4	4	6	8	0	
IPI00218733	5	3	4	4	1	1	
IP100297211	1	0	3	1	6	3	
IPI00156689	8	4	7	7	8	4	
IP100298994	23	11	24	37	31	22	
IPI00290566	17	8	9	20	16	7	
IPI00297779	26	26	14	26	28	15	
IP100302927	13	11	11	11	17	10	
IPI00010720	19	17	6	18	17	6	
IPI00018465	17	15	8	13	10	10	
IP100027626	10	15	9	16	11	8	
IPI00011702	3	2	1	2	1	1	
IPI00549189	2	2	1	2	1	0	
\|P100216298	3	3	2	3	1	3	
IP100026328	2	3	2	2	1	0	
\|PI00646689	3	2	4	2	3	2	
IPI00171438	4	4	4	3	5	3	
IPI00024919	9	10	9	6	5	6	
\|P	00305692	9	5	6	8	7	4
IP100328840	8	3	5	4	6	7	

Threonyl-tRNA synthetase, cytoplasmic
THUMP domain-containing protein 1
Thy-1 membrane glycoprotein
Trafficking protein particle complex subunit 3
Transaldolase
Transcription elongation factor B polypeptide 1
Transferrin receptor protein 1
Transforming protein RhoA
Transgelin
Transgelin-2
Transitional endoplasmic reticulum ATPase
Translation initiation factor elF-2B subunit alpha
Translational activator GCN1
Translin
Translin-associated protein X
Transmembrane emp24 domain-containing protein 10
Transmembrane emp24 domain-containing protein 2
Transmembrane emp24 domain-containing protein 9
Trifunctional enzyme subunit alpha, mitochondrial
triosephosphate isomerase isoform 2
Tripartite motif-containing protein 71
Tripeptidyl-peptidase 2
tRNA (cytosine-5-)-methyltransferase NSUN2
tRNA (guanine-N(7)-)-methyltransferase
tRNA methyltransferase 112 homolog
Tropomodulin-3
Tu translation elongation factor, mitochondrial precursor
TUBB6 protein
Tubulin alpha-1C chain
Tubulin beta-2A chain
Tubulin beta- 2 B chain
Tubulin beta-2C chain
Tubulin beta- 3 chain
Tubulin beta-4 chain
Tubulin, beta
Tubulin-folding cofactor B
Tubulin-specific chaperone A
Tubulin-specific chaperone E
Tubulin-tyrosine ligase-like protein 12
Tumor protein, translationally-controlled 1
Twinfilin-2
Tyrosyl-tRNA synthetase, cytoplasmic
U1 small nuclear ribonucleoprotein A
U2 small nuclear ribonucleoprotein A^{\prime}
U2 small nuclear ribonucleoprotein $\mathrm{B}^{\prime \prime}$
U6 snRNA-associated Sm-like protein LSm2
U6 snRNA-associated Sm-like protein LSm3
U6 snRNA-associated Sm-like protein LSm4
Ubiquitin carboxyl-terminal hydrolase 10
Ubiquitin carboxyl-terminal hydrolase 11
Ubiquitin carboxyl-terminal hydrolase 14
Ubiquitin carboxyl-terminal hydrolase 7
Ubiquitin carboxyl-terminal hydrolase isozyme L1
Ubiquitin-40S ribosomal protein S27a
Ubiquitin-conjugating enzyme E2 G1
Ubiquitin-conjugating enzyme E2 L3
Ubiquitin-conjugating enzyme E2 O
Ubiquitin-like modifier-activating enzyme 1

UDP-glucose 6-dehydrogenase
Uncharacterized protein
Uncharacterized protein C17orf25
UPF0027 protein C22orf28
UPF0160 protein MYG1, mitochondrial
UPF0364 protein C6orf211
UPF0368 protein Cxorf26
UPF0568 protein C14orf166
UPF0587 protein C1orf123
UPF0727 protein C6orf115
Uroporphyrinogen decarboxylase
UV excision repair protein RAD23 homolog B
Vacuolar protein sorting-associated protein 26A
Vacuolar protein sorting-associated protein 35
Vacuolar protein sorting-associated protein VTA1 homolog
Valyl-tRNA synthetase
Vesicular integral-membrane protein VIP36
Vimentin
Visinin-like protein 1
von Hippel-Lindau binding protein 1, isoform CRA_b
V-type proton ATPase catalytic subunit A
V-type proton ATPase subunit C 1
V-type proton ATPase subunit E 1
V-type proton ATPase subunit G 1
WD repeat and HMG-box DNA-binding protein 1
Xaa-Pro dipeptidase
X-ray repair cross-complementing protein 5
X-ray repair cross-complementing protein 6
Zyxin

\|P100031420	7	2	5	2	2	0
IP100022434	6	10	5	5	6	6
\|P100007102	5	5	4	7	6	3
IPI00550689	6	3	2	1	1	2
\|P100029444	2	1	4	5	1	0
IPIO0002270	5	2	4	4	5	1
\|P100107104	4	3	1	1	3	0
IPIO0006980	7	9	7	2	0	1
IPIO0016605	3	1	1	3	1	0
IPIO0855846	2	2	3	3	0	1
\|P100301489	4	4	2	4	4	1
IPI00008223	2	3	1	5	4	2
IPI00411426	3	0	1	0	2	1
IPIO0018931	2	4	1	10	5	4
IPI00017160	1	2	0	1	2	0
IPI00000873	12	5	6	10	5	9
IPI00009950	2	2	1	7	4	1
IPI00418471	33	10	18	47	40	27
IPI00216313	7	3	4	3	1	0
IPI00334159	3	2	2	1	4	1
IPI00007682	8	4	2	6	2	2
IPI00007814	1	0	2	2	1	1
IPI00003856	3	1	2	3	2	1
IPI00025285	4	0	3	3	0	1
IPI00411614	1	1	3	1	3	0
IP100257882	4	3	2	4	4	0
IPI00220834	28	18	11	19	20	13
IPI00644712	26	23	13	38	26	9
IPI00926625	6	6	2	6	6	4

Note: "Peptide IDs" means the number of unique peptides that were identified from the corresponding protein during one replicate of the experiment. Three replicates are shown for each cell line.

Appendix F All proteins identified at 72 hours in hypoxia

Protein Name	IPI Number	Peptide IDs, H9 replicates			Peptide IDs, CA1 replicates		
60 S ribosomal protein L35a	IPI00029731	1	3	3	2	1	2
histone deacetylase complex subunit SAP18	IPI00011698	2	1	0	5	1	1
Isoform 1 of Fanconi anemia group I protein	IPI00019447	4	0	1	3	3	1
Isoform 1 of Far upstream element-binding protein 1	IPI00375441	8	3	9	8	10	6
Isoform 1 of Isopentenyl-diphosphate Delta-isomerase 1	IPI00645307	6	5	9	4	5	4
Isoform 1 of Leucine zipper protein 1	IPI00296830	2	0	1	3	2	1
Isoform 1 of Mps one binder kinase activator-like 3	IP100386122	2	0	1	0	3	2
Isoform 1 of Tumor protein D52	IP100619958	3	3	3	5	5	4
Isoform 2 of PERQ amino acid-rich with GYF domain protein 2	IPI00647635	2	0	1	0	3	1
Isoform 2 of Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2	IPI00337495	7	1	1	2	6	1
Isoform 2 of Protein enabled homolog	IP100374054	1	0	5	2	2	0
Isoform 2 of Regulation of nuclear pre-mRNA domain protein 1A	\|PI00062336	2	0	6	1	2	0
Isoform 4 of Afadin	\|PI00023461	4	1	1	3	1	0
Isoform 4 of Sorting nexin-3	\|P100552276	3	0	3	2	2	1
Mannosyl-oligosaccharide glucosidase	IPI00328170	1	2	1	6	3	3
NADH-ubiquinone oxidoreductase 75 kDa subunit	IPI00604664	4	4	2	1	1	3
Prolyl 3-hydroxylase 2	\|PI00217055	2	1	1	2	1	0
Protein FAM162A	\|PI00023001	1	3	0	3	1	1
Putative uncharacterized protein DKFZp781K1356	IPIO0412545	1	0	2	1	1	2
YrdC domain-containing protein, mitochondrial	IPI00384180	2	0	2	2	1	0
insulin-like growth factor-binding protein 2 precursor	IPI00297284	4	2	7	1	2	2
Solute carrier family 2, facilitated glucose transporter member 1	IPI00220194	5	5	4	7	9	5
Hexokinase-2	IPI00102864	7	6	12	6	8	4
Cytoplasmic aconitate hydratase	IPI00008485	11	8	6	7	9	7
Isoform 1 of Microtubule-associated protein 4	IPI00396171	6	6	4	11	9	12
Isoform 1 of Prolyl 4-hydroxylase subunit alpha-1	IPI00009923	4	1	3	11	14	3
Isoform A of AP-1 complex subunit beta-1	IPI00328257	12	4	8	5	7	4
$116 \mathrm{kDa} \mathrm{U5}$ small nuclear ribonucleoprotein component	IPI00003519	13	9	11	13	9	17
14-3-3 protein epsilon	IPI00000816	38	21	28	31	23	19
14-3-3 protein eta	IPIO0216319	14	13	17	14	8	8
14-3-3 protein gamma	IPI00220642	6	6	7	9	5	8
14-3-3 protein theta	IPI00018146	15	9	13	22	13	14
14-3-3 protein zeta/delta	IPI00021263	22	14	23	19	12	10
15 kDa selenoprotein isoform 1 precursor	IPI00030877	1	1	2	2	1	2
1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase beta-3	IP\|00010400	2	4	1	1	4	3
2,4-dienoyl-CoA reductase, mitochondrial	IPI00003482	2	0	1	0	2	0
22 kDa protein	IPI00219910	3	2	1	1	1	2
24-dehydrocholesterol reductase	IP100016703	3	1	5	0	3	1
265 protease regulatory subunit 10B	IPI00021926	9	5	9	14	7	4
265 protease regulatory subunit 4	IPI00011126	6	4	6	8	6	9
26S protease regulatory subunit 6A	IPI00018398	12	10	12	16	10	11
26 S protease regulatory subunit 7	IP100021435	12	5	13	18	13	12
265 protease regulatory subunit 8	IPI00023919	11	6	10	9	8	6
265 proteasome non-ATPase regulatory subunit 10	IP100003565	3	2	0	4	2	1
26 S proteasome non-ATPase regulatory subunit 12	IPI00185374	7	5	8	7	11	10
26 S proteasome non-ATPase regulatory subunit 14	IPI00024821	7	6	5	9	S	8
26 S proteasome non-ATPase regulatory subunit 2	IPI00012268	17	10	11	21	24	13
26 S proteasome non-ATPase regulatory subunit 3	IPI00011603	7	8	6	8	12	8
26 S proteasome non-ATPase regulatory subunit 5	IPI00002134	5	3	2	7	5	6
26S proteasome non-ATPase regulatory subunit 6	IPIO0014151	12	10	9	11	13	9
26S proteasome non-ATPase regulatory subunit 7	IPI00019927	5	5	6	6	4	4
26 S proteasome non-ATPase regulatory subunit 8	IPI00937278	3	1	2	7	5	2
28 kDa heat- and acid-stable phosphoprotein	IPI00013297	2	1	2	1	1	3

285 ribosomal protein 522 , mitochondrial 285 ribosomal protein S29, mitochondrial 29 kDa protein
2-oxoglutarate dehydrogenase, mitochondrial
33 kDa protein
39 S ribosomal protein L1, mitochondrial
395 ribosomal protein L11, mitochondrial
$39 S$ ribosomal protein L44, mitochondrial
395 ribosomal protein L49, mitochondrial
3-hydroxyisobutyrate dehydrogenase, mitochondrial
3-ketoacyl-CoA thiolase, mitochondrial
3-ketoacyl-CoA thiolase, peroxisomal
3-mercaptopyruvate sulfurtransferase
$40 S$ ribosomal protein S 10
405 ribosomal protein S11
40 S ribosomal protein S 12
40S ribosomal protein $\$ 13$
405 ribosomal protein S14
405 ribosomal protein S 15
405 ribosomal protein S15a
405 ribosomal protein S16
40S ribosomal protein S17
405 ribosomal protein 518
40 S ribosomal protein S19
405 ribosomal protein S2
40S ribosomal protein S20
405 ribosomal protein $\$ 21$
40S ribosomal protein S23
40 s ribosomal protein S 25
405 ribosomal protein 526
405 ribosomal protein 528
405 ribosomal protein 53
405 ribosomal protein S3a
40 S ribosomal protein $\mathrm{S} 4, \mathrm{X}$ isoform
405 ribosomal protein 55
40S ribosomal protein S6
405 ribosomal protein 57
40 S ribosomal protein 58
40 S ribosomal protein S 9
482 kDa protein
4-trimethylaminobutyraldehyde dehydrogenase
51 kDa protein
5'-nucleotidase domain-containing protein 1
60 kDa heat shock protein, mitochondrial
605 acidic ribosomal protein PO
605 acidic ribosomal protein P1
605 acidic ribosomal protein P2
605 ribosomal protein L10
605 ribosomal protein L10a
60S ribosomal protein L13
605 ribosomal protein L13a
60S ribosomal protein L15
60S ribosomal protein L17
60S ribosomal protein L18
605 ribosomal protein L18a
60S ribosomal protein L19
60S ribosomal protein L21
60S ribosomal protein L22

IPI00013146	3	1	2	1	2	0	
IPI00018120	2	1	0	2	2	1	
IPI00453476	28	21	28	37	23	20	
IPI00098902	4	2	3	6	5	6	
IPI00413108	15	12	12	13	12	11	
IPI00549381	3	0	2	3	2	2	
IPI00007001	4	2	1	3	3	2	
IPI00009680	3	1	0	1	0	2	
IPI00013195	3	0	1	1	1	2	
IPI00013860	2	1	3	5	5	0	
IPI00001539	5	4	6	10	9	8	
IP100012828	1	0	2	3	1	1	
IPI00165360	3	4	2	3	3	3	
IPI00008438	2	3	3	6	4	5	
IPIO0025091	3	3	4	4	5	5	
\|PI00013917	13	7	8	12	6	4	
IPI00221089	10	14	6	16	8	10	
IPI00026271	11	7	4	9	3	6	
IPI00479058	5	6	4	7	5	5	
IPI00221091	7	5	1	8	4	4	
IPI00221092	8	6		8	5	8	
IPI00221093	11	5	7	6	9	7	
IPI00013296	13	13	7	16	9	9	
\|P	00215780	3	10	7	11	4	5
IPI00013485	8	7	6	9	8	9	
IPI00012493	5	3	5	8	4	4	
IPI00017448	0	3	1	7	4	4	
IPI00218606	2	2	1	3	1	1	
IPI00012750	4	5	4	5	3	3	
IPI00655650	2	3	1	3	3	1	
IPI00719622	0	2	1	7	2	1	
IPI00011253	17	12	20	14	14	14	
IPI00419880	16	15	14	16	13	12	
IPI00217030	7	8	9	13	7	9	
IPI00008433	6	6	3	8	3	6	
IPI00021840	9	8	8	10	2	5	
IPI00013415	9	11	5	17	3	6	
IPI00216587	8	9	13	20	10	8	
IPI00221088	7	6	5	11	6	4	
IPI00179298	15	11	27	14	20	1	
IPI00479877	1	1	5	1	2	0	
IPI00033025	3	2	2	6	8	3	
IPI00177965	4	1	5	5	5	2	
IPI00784154	50	43	46	50	28	29	
IPI00008530	17	10	11	10	14	11	
IPI00008527	2	,	3	4	4	3	
IPI00008529	11	5	4	9	7	7	
IPI00554723	9	6	5	13	8	5	
IPI00412579	12	6	7	13	9	5	
IP100465361	3	5	4	6	4	2	
IPI00304612	3	2	3	3	3	2	
IPI00470528	4	4	3	7	3	5	
IPI00413324	9	5	4	14	6	5	
IPI00215719	9	8	4	9	8	8	
IPI00026202	5	3	1	5	4	3	
\|PI00025329	4	4	4	5	3	4	
IPI00247583	5	6	6	8	7	4	
IP100219153	7	2	3	10	3	3	

60S ribosomal protein L23
60 S ribosomal protein L23a
60S ribosomal protein L24
60S ribosomal protein L26
60S ribosomal protein L27
605 ribosomal protein L27a
60S ribosomal protein L28
605 ribosomal protein L3
60S ribosomal protein L30
60S ribosomal protein L31
60 ribosomal protein L32
605 ribosomal protein L35
60S ribosomal protein L36
60S ribosomal protein L36a-like
60S ribosomal protein L38
60 S ribosomal protein L4
605 ribosomal protein L5
60 S ribosomal protein L6
605 ribosomal protein L7
60S ribosomal protein L7a
605 ribosomal protein L8
605 ribosomal protein L. 9
6-phosphofructokinase type C
6-phosphogluconate dehydrogenase, decarboxylating
6-phosphogluconolactonase
Acetyl-COA acetyltransferase, mitochondrial
Acidic leucine-rich nuclear phosphoprotein 32 family member A
Acidic leucine-rich nuclear phosphoprotein 32 family member E
Aconitate hydratase, mitochondrial
Actin, alpha cardiac muscle 1
Actin-related protein 2
Actin-related protein $2 / 3$ complex subunit 2
Actin-related protein $2 / 3$ complex subunit 3
Actin-related protein $2 / 3$ complex subunit 4
Actin-related protein $2 / 3$ complex subunit 5 -like protein
Actin-related protein 3
Activated RNA polymerase II transcriptional coactivator p15
Activator of 90 kDa heat shock protein ATPase homolog 1
Acylamino-acid-releasing enzyme
Acyl-protein thioesterase 2
Adenine phosphoribosyltransferase
Adenosylhomocysteinase
Adenylate kinase isoenzyme 1
Adenylate kinase isoenzyme 4, mitochondrial
Adenylosuccinate synthetase isozyme 2
ADP/ATP translocase 2
ADP-ribosylation factor 4
ADP-ribosylation factor 5
ADP-ribosylation factor 6
ADP-ribosylation factor-like protein 2
ADP-ribosylation factor-like protein 3
ADP-sugar pyrophosphatase
A-kinase anchor protein 12 isoform 2
Alanyl-tRNA synthetase, cytoplasmic
Alcohol dehydrogenase [NADP+]
Alcohol dehydrogenase class-3
Aldehyde dehydrogenase X, mitochondrial
Aldehyde dehydrogenase, mitochondrial

Aldose reductase
Alkaline phosphatase, tissue-nonspecific isozyme
Alpha-actinin-1
Alpha-actinin-4
Alpha-aminoadipic semialdehyde synthase, mitochondrial
Alpha-centractin
Alpha-mannosidase 2
Alpha-soluble NSF attachment protein
Amidophosphoribosyltransferase
Aminoacyl tRNA synthase complex-interacting multifunctional prtn 1 Aminoacyl tRNA synthase complex-interacting multifunctional prtn 2 Aminopeptidase B
Annexin A1
Annexin A3
annexin A4
Annexin A5
Annexin A6
Apolipoprotein E
Argininosuccinate synthase
Asparaginyl-tRNA synthetase, cytoplasmic
Aspartate aminotransferase, cytoplasmic
Aspartate aminotransferase, mitochondrial
Aspartyl-tRNA synthetase, cytoplasmic
Astrocytic phosphoprotein PEA-15
Ataxin-10
ATP synthase subunit alpha, mitochondrial
ATP synthase subunit b, mitochondrial
ATP synthase subunit beta, mitochondrial
ATP synthase subunit O, mitochondrial

ATPase ASNA1

ATP-binding cassette sub-family E member 1
ATP-citrate synthase
ATP-dependent RNA helicase A
ATP-dependent RNA helicase DDX1
ATP-dependent RNA helicase DDX18
ATP-dependent RNA helicase DDX3X
BAG family molecular chaperone regulator 2
Band 4.1-like protein 2
Basal cell adhesion molecule
Basic leucine zipper and W2 domain-containing protein 2
B-cell receptor-associated protein 31
Beta-hexosaminidase subunit beta
Bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase 1
Bifunctional aminoacyl-tRNA synthetase
Bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase
Bifunctional purine biosynthesis protein PURH
Bleomycin hydrolase
Branched-chain-amino-acid aminotransferase
Brefeldin A-inhibited guanine nucleotide-exchange protein 1
C-1-tetrahydrofolate synthase, cytoplasmic
CAD protein
Cadherin-1
Calcium-binding protein p22
Calcium-regulated heat stable protein 1
Calpain small subunit 1
Calpain-1 catalytic subunit
Calponin-2
Calponin-3

Calreticulin

Carbonic anhydrase 2
Carbonyl reductase［NADPH］ 1
Carboxypeptidase D
Casein kinase II subunit alpha＇
Casein kinase II subunit beta
Caspase－3
Cathepsin D
Cation－independent mannose－6－phosphate receptor
CD2－associated protein
CDGSH iron－sulfur domain－containing protein 2
CDNA FL25678 fis，highly similar to purine nucleoside phosphorylase cDNA FL 31776 fis，highly similar to calumenin
cDNA FL35809 fis，highly similar to eukaryotic translation initiation factor 3 subunit 3
cDNA FL36192 fis，highly similar to Eukaryotic translation initiation factor 3 subunit 5
cDNA FL 44436 fis，highly similar to T－complex protein 1 subunit y cDNA FU50992，highly similar to Coronin－1C
cDNA FL51909，highly similar to Serine－threonine kinase receptor－ associated protein
cDNA FU53193，highly similar to Homo sapiens caldesmon 1 （CALD1）， transcript variant 5，mRNA
cDNA FU53229，highly similar to Importin alpha－7 subunit
CDNA FL53975，highly similar to Acetyl－CoA acetyltransferase
cDNA FL54365，highly similar to DNA replication licensing factor
MCM4
cDNA FU54492，highly similar to Eukaryotic translation initiation factor 4B
cDNA FL54536，highly similar to mitochondrial 285 ribosomal protein
S27
cDNA FU54710，highly similar to Target of Myb protein 1
cDNA Fப55382，highly similar to Hsp70－binding protein 1
cDNA FL55482，highly similar to Annexin A11
cDNA FL55543，highly similar to Phosphoacetylglucosamine mutase
cDNA FL55574，highly similar to Calnexin
cDNA FU55586，highly similar to MMS19－like protein
cDNA FL555599，highly similar to DNA replication licensing factor MCM3
cDNA FU56285，highly similar to ADP－ribosylation factor－like protein 8B
cDNA Fப56357，highly similar to Homo sapiens apolipoprotein A－I binding protein（APOA1BP），mRNA
cDNA FU56370，highly similar to Homo sapiens FK506 binding protein $8,38 \mathrm{kDa}$（FKBP8），mRNA
cDNA FL56414，highly similar to Homo sapiens proline－，glutamic
acid－，leucine－rich protein 1 （PELP1），MRNA
cDNA FU56420，highly similar to Aspartyl aminopeptidase
cDNA FU59142，highly similar to Epididymal secretory protein E1
cDNA FL59211，highly similar to Glucosidase 2 subunit beta
CDNA FL59367，highly similar to Adenylosuccinate lyase
cDNA Fப59758，highly similar to S－methyl－5－thioadenosine
phosphorylase
cDNA FL60076，highly similar to ELAV－like protein 1
CDNA FU60097，highly similar to Tubulin alpha－ubiquitous chain
cDNA FU60124，highly similar to Mitochondrial dicarboxylate carrier
cDNA FU60424，highly similar to Junction plakoglobin
cDNA FL60607，highly similar to Acyl－protein thioesterase 1

IPI00020599
IPI00218414
IPI00295386
IPI00027078
IPIO0020602
IPI00010865
IPI00292140
IPI00011229
IPI00289819
IPI00412771
IPI00166865
IPI00017672
IPI00789155
IPI00647650

｜P100654777
IP100290770

IPI00798401

｜PI00294536
IPI00218696
IPI00747764
IPI00291419
IP100795318
IP100012079
IP100022002
｜P100023191 IPI00100748 IPI00414320 IPI00030116 ｜PI00020984 ｜PI00154451 ｜PI00013214
｜PI00018871
｜P100168479
IPI00328161
IPI00006702
IPI00015856
IPI00301579
IPI00026154
IPIO0026904
IPI00011876

IPI00301936
IPI00792677
IPI00005537
IPI00789324
IPI00007321

$\omega \sim \omega \stackrel{\omega}{\sim}$	ちぃのトゥ	N	N	ω	ω		N	ω	N完	v	$\infty \omega \stackrel{\square}{\infty}$	σ	$\omega \Delta \stackrel{\square}{\sim} \sim \omega \infty \omega \sim \Delta \Delta \sim \sim \stackrel{\rightharpoonup}{\bullet}$
$\omega \mathrm{ur} \mathrm{N}^{\text {u }}$	$\infty \rightarrow \sim O O$	\bigcirc	\bigcirc	ω	\bigcirc		N	N	$\infty \infty$	N	$\checkmark \bigcirc \stackrel{\square}{\square}$	v	
－官 $\omega \sim$	$\infty \vee \infty \sim N$	$\stackrel{\rightharpoonup}{ }$	\sim	$\stackrel{ }{-}$	$\stackrel{ }{ }+$		$\stackrel{ }{-}$	N	6∞	$\stackrel{\square}{\circ}$	$\infty \triangleright \sim$	∞	
aNN ${ }_{\sim}^{\sim}$	6 号 ∞	$\stackrel{ }{ } \stackrel{ }{ }$	N	\pm	N	守耑N	N	ω	Nのル	∞	$\checkmark ャ \stackrel{\leftrightarrow}{\infty}$	∞	
$\omega v \vdash \underset{\sim}{\omega} v$		ω	N	$\stackrel{ }{ }+$	N		\bigcirc	N	Nのw	∞	$\cdots \bigcirc$	ω	मャ¢NNGのNGANowさ
No No	$\infty \quad \omega \circ \circ$	$\stackrel{ }{ }$	0	N	$\stackrel{ }{ }$	$\stackrel{\square}{ \pm}+\square \sim N N$	$\stackrel{ }{-}$	N	$\stackrel{\ominus}{\cup}$	\bullet	$\stackrel{\rightharpoonup}{\circ}+\stackrel{\square}{\infty}$	u	のO号

CDNA FU61162, highly similar to Ras-related protein R-Ras2
cDNA FL75085, highly similar to Homo sapiens glutaminyl-tRNA synthetase (QARS), mRNA
cDNA FL77177, highly similar to Homo sapiens arginine-rich,
mutated in early stage tumors (ARMET), mRNA
cDNA FL77422, highly similar to Homo sapiens RNA binding protein,
autoantigenic, transcript variant 1, mRNA (Fragment)
cDNA, FL96508, Homo sapiens SH3-domain GRB2-like 1 (SH3GL1)
Cell differentiation protein RCD1 homolog
Cell division cycle protein 123 homolog
Cellular retinoic acid-binding protein 1
Cellular retinoic acid-binding protein 2
Centromere protein H
Centromere/kinetochore protein zw10 homolog
Charged multivesicular body protein 4 b
Charged multivesicular body protein 5
Chloride intracellular channel protein 1
Chloride intracellular channel protein 4
Chromobox protein homolog 1
Chromobox protein homolog 3
Chromobox protein homolog 5
Citrate synthase, mitochondrial
Claudin-6
Cleavage and polyadenylation specificity factor subunit 1
Cleavage and polyadenylation specificity factor subunit 2
Cleavage and polyadenylation specificity factor subunit 5
Cleavage stimulation factor subunit 3
Coactosin-like protein
Coatomer subunit beta
Coatomer subunit beta'
Coatomer subunit delta variant 2
Coatomer subunit epsilon
Coatomer subunit gamma
Coatomer subunit gamma-2
Coatomer subunit zeta-1
Cofilin-1
Coiled-coil domain-containing protein 58
Cold-inducible RNA-binding protein
Collapsin response mediator protein 4 long variant
Complement component 1 Q subcomponent-binding protein
Condensin complex subunit 1
Condensin complex subunit 3
COP9 signalosome complex subunit 3
COP9 signalosome complex subunit 4
COP9 signalosome complex subunit 5
COP9 signalosome complex subunit 6
COP9 signalosome complex subunit 7a
COP9 signalosome complex subunit 8
Copine-1
Copper chaperone for superoxide dismutase
Coproporphyrinogen-III oxidase, mitochondrial
Creatine kinase B-type
Crk-like protein
CSNK2A1 protein
CTP synthase 1
CTP synthase 2
Cullin-1
Cystatin-B

IP100012512	4	3	2	8	4	3
IPI00026665	9	5	6	6	12	8
IPI00328748	3	1	3	4	3	0
IPI00011268	2	2	3	2	1	1
IPI00019169	2	2	5	4	1	3
IP100023101	5	0	1	3	5	4
IP100005670	2	1	1	0	1	2
IPI00219930	11	10	6	12	9	8
IPI00216088	2	2	6	9	8	5
IPI00009668	1	0	2	2	1	1
IPI00011631	2	0	2	4	2	1
IP100025974	3	1	3	4	3	2
IPI00100796	2	1	2	2	3	1
IPI00010896	10	6	11	10	14	12
IPIOOOO1960	11	7	12	12	11	12
IPI00010320	5	2	1	3	2	2
IP100297579	6	5	5	5	6	6
IPI00024662	1	0	2	3	5	3
IPI00025366	4	4	5	5	3	4
IPI00011084	3	3	3	3	2	2
IPI00026219	2	1	1	4	4	3
IP100419531	2	0	1	2	3	2
IP100646917	8	6	6	12	6	7
IPI00015195	3	1	4	4	5	7
\|P100017704	5	1	1	4	1	2
IPI00295851	13	2	5	15	15	11
IP100220219	4	3	6	7	10	8
IPI00298520	6	6	4	8	7	6
\|P100465132	9	3	3	6	4	8
IPI00783982	11	4	4	16	18	12
IP100002557	5	1	4	9	9	6
IPI00032851	6	4	6	6	6	4
IPI00012011	13	16	16	16	9	14
IP100046828	2	0	1	3	2	2
IPI00180954	2	1	5	5	2	3
IPIO0029111	13	12	20	16	19	17
\|PI00014230	15	8	8	10	8	7
IPI00299524	1	2	1	5	6	4
IPI00106495	2	1	0	2	0	2
IPI00025721	2	0	2	2	5	3
IPI00171844	6	5	8	8	7	3
IPI00009958	3	0	2	2	2	5
IPI00163230	1	1	4	1	2	1
IPI00301419	2	2	3	6	1	1
IPI00009480	5	,	3	5	2	0
IPI00018452	2	1	0	2	6	5
IPI00021389	2	0	1	3	2	1
IPI00093057	2	2	2	1	3	1
IPI00022977	13	11	8	23	17	13
IPI00004839	3	3	3	5	2	2
IPI00016613	9	6	5	7	7	5
IPI00290142	6	2	4	3	3	8
IPI00645702	2	1	3	2	0	1
IPI00014310	3	0	3	3	4	4
IPI00021828	4	1	3	2	4	2

Cysteine and glycine-rich protein 2
cysteinyl-tRNA synthetase, cytoplasmic isoform c
cytochrome b5 type B precursor
Cytochrome b-c1 complex subunit 1, mitochondrial
Cytochrome c
Cytochrome c oxidase subunit 5A, mitochondrial
Cytoplasmic dynein 1 heavy chain 1
Cytoplasmic dynein 1 light intermediate chain 1
Cytosolic Fe-S cluster assembly factor NUBP2
D-3-phosphoglycerate dehydrogenase
DCN1-like protein 5
dCTP pyrophosphatase 1
D-dopachrome decarboxylase
Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial
Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial
Density-regulated protein
Desmoglein-2
Destrin
Developmental pluripotency-associated protein 4
Developmentally-regulated GTP-binding protein 1
Developmentally-regulated GTP-binding protein 2
Diablo homolog, mitochondrial precursor
Dihydrofolate reductase
Dihydrolipoyl dehydrogenase, mitochondrial
Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial
Dihydrolipoyllysine-residue succinyltransferase component of 2 -
oxoglutarate dehydrogenase complex, mitochondrial
Dihydropteridine reductase
Dihydropyrimidinase-related protein 1
Dihydropyrimidinase-related protein 2
Diphosphoinositol polyphosphate phosphohydrolase 1
DNA damage-binding protein 1
DNA ligase 1
DNA mismatch repair protein Msh2
DNA polymerase delta catalytic subunit
DNA replication complex GINS protein PSF1
DNA replication licensing factor MCM2
DNA replication licensing factor MCM5
DNA replication licensing factor MCM6
DNA-(apurinic or apyrimidinic site) lyase
DNA-directed RNA polymerase II subunit RPB1
DNA-directed RNA polymerase II subunit RPB2
DNA-directed RNA polymerase II subunit RPB3
DNA-directed RNA polymerases I, II, and III subunit RPABC1
DNA-directed RNA polymerases I, II, and III subunit RPABC3
DnaJ homolog subfamily A member 1
DnaJ homolog subfamily A member 2
Dnas homolog subfamily B member 1
Dnaj homolog subfamily 8 member 11
OnaJ homolog subfamily C member 7
Dnaj homolog subfamily C member 8
Dolichol-phosphate mannosyltransferase
Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48
kDa subunit
Dolichyl-diphosphooligosaccharide--protein glycosyltransferase
subunit 1 precursor
D-tyrosyl-tRNA(Tyr) deacylase 1

Dual specificity mitogen-activated protein kinase kinase 1
Dual specificity protein phosphatase 3
dynactin subunit 2
Dynein light chain Tctex-type 1
E3 SUMO-protein ligase RanBP2
Early endosome antigen 1
EF-hand domain-containing protein D2
Electron transfer flavoprotein subunit alpha, mitochondrial
Elongation factor 1-alpha 1
Elongation factor 1-beta
Elongation factor 1-gamma
Elongation factor 2
Elongator complex protein 1
Emerin
Endoplasmic reticulum resident protein 29
Endoplasmic reticulum resident protein 44
Endoplasmin
Enoyl-CoA hydratase, mitochondrial
Epiplakin
Epithelial cell adhesion molecule
Epoxide hydrolase 1
ERO1-like protein alpha
Estradiol 17-beta-dehydrogenase 12
Eukaryotic initiation factor 4A-I
Eukaryotic initiation factor 4A-III
eukaryotic peptide chain release factor GTP-binding subunit ERF3A isoform 2
Eukaryotic peptide chain release factor subunit 1
Eukaryotic translation elongation factor 1 epsilon-1
Eukaryotic translation initiation factor 2 subunit 1
Eukaryotic translation initiation factor 2 subunit 3
Eukaryotic translation initiation factor 3 subunit A
Eukaryotic translation initiation factor 3 subunit C
Eukaryotic translation initiation factor 3 subunit D
Eukaryotic translation initiation factor 3 subunit E
Eukaryotic translation initiation factor 3 subunit G
Eukaryotic translation initiation factor 3 subunit I
Eukaryotic translation initiation factor 3 subunit K
Eukaryotic translation initiation factor 3 subunit M
Eukaryotic translation initiation factor 3, subunit E interacting protein
Eukaryotic translation initiation factor 5
Eukaryotic translation initiation factor 5B
Eukaryotic translation initiation factor 6
Exosome complex exonuclease MTR3
Exosome complex exonuclease RRP4
Exosome complex exonuclease RRP40
Exosome complex exonuclease RRP41
Exosome complex exonuclease RRP43
Exportin-1
Exportin-4
Exportin-5
Exportin-7
Exportin-T
Ezrin
FACT complex subunit SPT16
FACT complex subunit SSRP1
F-actin-capping protein subunit alpha-1
F-actin-capping protein subunit alpha-2

IPI00219604	3	1	1	2	6	2
IPI00018671	1	1	3	3	3	1
IPI00220503	2	4	4	3	4	1
IPI00019495	2	1	2	3	2	3
IPI00221325	6	1	2	2	6	2
IPI00329536	2	0	1	1	6	0
!PI00060181	0	1	3	6	1	0
IPI00010810	8	6	2	7	6	9
IPI00396485	21	17	24	24	21	14
IPI00178440	4	3	5	5	3	4
IPI00937615	21	8	10	10	18	17
IPI00186290	60	41	42	51	52	42
IPI00293735	2	1	0	3	10	1
IPI00032003	3	0	3	3	4	2
IP100024911	8	9	10	16	6	7
IPI00401264	3	0	3	6	2	3
IPI00027230	43	25	41	34	39	28
IP100024993	12	6	9	13	10	7
IPI00010951	6	4	4	6	5	0
IPI00296215	2	2	3	5	4	2
IP100009896	5	3	3	2	5	1
IP100386755	2	0	4	3	5	3
IP100007676	13	10	13	10	5	6
IP100025491	24	23	22	18	24	19
IPI00009328	9	3	4	4	9	6
IP100909083	3	1	1	6	6	6
\|PI00429191	6	2	5	3	6	5
IP100003588	5	4	6	6	4	6
\|PI00219678	4	5	3	5	6	7
\|PI00297982	9	8	6	2	9	8
IPI00029012	25	15	17	22	22	19
IP100016910	9	6	7	7	7	12
\|P100006181	3	1	1	3	4	5
\|P100013068	12	3	8	13	10	7
IPI00290460	4	3	5	6	4	2
\|P100012795	7	3	4	3	6	6
IPI00033143	4	3	2	5	5	3
IP100102069	5	9	7	11	6	8
\|P100465233	5	3	7	4	10	11
IPIO0022648	2	2	5	5	7	5
IPIOO299254	4	2	0	6	4	2
IP100010105	6	4	6	7	7	7
IPI00073602	3	2	2	2	2	1
IPI00015905	3	3	1	2	6	3
IP100015956	3	1	1	1	2	0
IPI00745613	3	3	2	6	3	1
IPI00552920	2	0	1	0	1	2
IP100298961	22	17	21	27	23	21
IPI00028357	2	1	1	1	0	5
IPI00640703	13	7	5	13	13	12
IPIO0302458	9	3	11	10	11	9
IPI00306290	7	3	4	6	9	6
IPI00843975	12	6	10	26	22	17
IP100026970	2	2	9	11	9	10
IPI00005154	4	0	1	9	7	5
IPI00005969	9	4	8	4	10	8
IPI00026182	3	3	4	4	6	7

Farnesyltransferase, CAAX box, alpha, isoform CRA_a Fascin
Fatty acid synthase

Fatty acid-binding protein, epidermal
Fatty acid-binding protein, heart
F-box only protein 2
Ferritin heavy chain
Flap endonuclease 1
Fructose-bisphosphate aldolase
Fructose-bisphosphate aldolase A
Gamma-enolase
GDP-L-fucose synthase
GDP-mannose 4,6 dehydratase
Gem-associated protein 5
General transcription factor 3C polypeptide 4
Glia maturation factor, beta
Glucosamine 6-phosphate N-acetyltransferase
Glucosamine-6-phosphate isomerase 1
Glucosamine--fructose-6-phosphate aminotransferase [isomerizing] 2
Glucose-6-phosphate isomerase
Glutamate dehydrogenase 1, mitochondrial
Glutamate--cysteine ligase regulatory subunit
Glutaredoxin-3
Glutathione peroxidase 1
Glutathione S-transferase Mu 2
Glutathione S-transferase omega-1
Glutathione S-transferase P
Glyceraldehyde-3-phosphate dehydrogenase
Glycine dehydrogenase [decarboxylating], mitochondrial
Glycogen phosphorylase, brain form
Glycogen phosphorylase, liver form
Glyoxylate reductase/hydroxypyruvate reductase
Glypican-4
GMP synthase [glutamine-hydrolyzing]
Golgi phosphoprotein 3
Golgi phosphoprotein 3-like
GrpE protein homolog 1, mitochondrial
GTP:AMP phosphotransferase, mitochondrial
GTPase NRas
GTP-binding nuclear protein Ran
GTP-binding protein Rheb
GTP-binding protein SAR1a
Guanine nucleotide-binding protein $G(I) / G(S) / G(T)$ subunit beta-1
Guanine nucleotide-binding protein $G(I) / G(S) / G(T)$ subunit beta-2
Guanine nucleotide-binding protein $\mathrm{G}(\mathrm{q})$ subunit alpha
Guanine nucleotide-binding protein subunit beta-2-like 1
HEAT repeat-containing protein 1
Heat shock 70 kDa protein 1A/1B
Heat shock 70 kDa protein 4
Heat shock protein 75 kDa, mitochondrial
Heat shock protein beta-1
Heat shock protein HSP 90-beta
Heat shock-related 70 kDa protein 2
Heme-binding protein 1
Hepatoma-derived growth factor
Heterogeneous nuclear ribonucleoprotein A0
Heterogeneous nuclear ribonucleoprotein F

IPI00163187
IPI00026781

IPI00007797
IPI00219684 IPI00007087
IPI00554521
IPI00026215
IPI00418262 IPI00465439 IPI00216171 IPI00014361
IPI00030207
IPI00291783
IPI00016725
IPI00412987
IPI00061525
IPI00009305
IPI00216159
IPI00027497
IPI00016801
IPI00010090
IPI00008552
IPI00927606
IPI00219067
IPI00019755
IPI00219757
IPI00219018 IPI00843789
IPI00004358
IPI00783313
IPI00037448
IPI00232571
IPI00029079
IPI00005490
IPI00012313
IPI00029557
IPI00465256
IPI00000005
IPI00643041
IPI00016669
IPI00015954
IPI00026268
IPI00003348
IPI00288947
IPI00848226
IPI00024279
IPI00304925
IPI00002966
IPI00030275
IPI00025512
IPI00414676
IP100007702
IPI00148063
IPI00020956
IPI00011913
IPI00003881

Heterogeneous nuclear ribonucleoprotein G
Heterogeneous nuclear ribonucleoprotein H
Heterogeneous nuclear ribonucleoprotein H 2
Heterogeneous nuclear ribonucleoprotein K
Heterogeneous nuclear ribonucleoprotein L
Heterogeneous nuclear ribonucleoprotein U-like protein 2
High mobility group protein B1
High mobility group protein B3
Histidine triad nucleotide-binding protein 1
Histidine triad nucleotide-binding protein 2, mitochondrial
Histidyl-tRNA synthetase, cytoplasmic
Histone acetyltransferase type B catalytic subunit
Histone deacetylase 2
Histone H1.2
Histone H1.5
Histone H2A.V
Histone H4
Histone-binding protein RBBP7
Hsc 70 -interacting protein
Hsp90 co-chaperone Cdc37
HSPA5 protein
HSPC027
huntingtin
Hydroxymethylglutaryl-CoA synthase, cytoplasmic
Hypoxanthine-guanine phosphoribosyltransferase
Hypoxia up-regulated protein 1
Importin subunit alpha-2
Importin subunit alpha-3
Importin subunit alpha-4
Importin subunit beta-1
Importin-11
Importin-7
Importin-9
Inorganic pyrophosphatase
Inosine triphosphate pyrophosphatase
inosine-5'-monophosphate dehydrogenase 2
Inositol monophosphatase 1
inositol-3-phosphate synthase 1 isoform 2
Insulin-degrading enzyme
Insulin-like growth factor 2 mRNA-binding protein 1
Interleukin enhancer-binding factor 2
Isochorismatase domain-containing protein 1
Isocitrate dehydrogenase [NADP] cytoplasmic
Isocitrate dehydrogenase [NADP], mitochondrial
Isoform 1 of 182 kDa tankyrase-1-binding protein
Isoform 1 of 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase gamma-1
Isoform 1 of $26 S$ protease regulatory subunit 6B
Isoform 1 of 265 proteasome non-ATPase regulatory subunit 1
Isoform 1 of 3,2-trans-enoyl-CoA isomerase, mitochondrial
Isoform 1 of 3-hydroxyacyl-CoA dehydrogenase type-2
Isoform 1 of 3-hydroxybutyrate dehydrogenase type 2
Isoform 1 of 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial
Isoform 1 of $5^{\prime}\left(3^{\prime}\right)$-deoxyribonucleotidase, cytosolic type
Isoform 1 of 5'-3' exoribonuclease 2
Isoform 1 of 5^{\prime}-nucleotidase domain-containing protein 2
isoform 1 of 60 S ribosomal protein L11
Isoform 1 of 60 S ribosomal protein L12

IPI00304692	11	4	8	9	8	5
IPI00013881	6	6	5	7	13	9
IPI00026230	2	0	1	1	4	0
IPI00514561	25	15	21	16	19	17
IPI00027834	9	9	7	11	9	12
IPI00456887	2	1	3	6	5	5
\|PI00419258	5	5	6	10	8	8
\|P100217477	2	0	1	4	1	4
IP100239077	1	0	2	4	1	4
IPI00000335	2	1	1	2	2	2
IP100021808	6	2	5	3	4	4
IPI00024719	3	2	3	2	3	3
IPI00289601	5	3	3	3	7	6
IPI00217465	1	3	13	7	4	3
IPI00217468	2	5	10	6	3	4
IPI00018278	1	1	2	4	1	3
IP100453473	7	7	15	22	10	10
IPI00395865	6	3	3	0	2	2
IPI00032826	4	3	5	11	5	6
IPI00013122	9	4	9	8	6	5
IPI00003362	31	27	21	40	30	28
IPI00549672	7	8	12	16	8	6
IP100002335	1	1	3	2	1	0
IPI00008475	23	16	31	10	12	11
IPI00218493	6	6	4	8	8	7
IPI00000877	24	19	19	28	29	24
IPI00002214	17	9	13	11	14	17
IPI00299033	6	0	4	4	2	1
IPI00012578	3	1	3	4	4	2
IPI00001639	25	15	17	26	24	16
IPI00301107	5	1	4	6	1	2
IPI00007402	15	11	14	16	7	11
IPI00185146	8	8	12	12	9	12
IPI00015018	5	2	9	7	8	11
IPI00018783	2	2	0	3	1	0
IPI00291510	14	10	13	8	11	13
IPI00020906	1	1	3	2	3	2
\|PI00478861	5	5	4	5	5	7
IPI00220373	9	4	5	3	4	1
IPI00008557	7	5	7	13	13	10
\|P100005198	14	9	12	12	11	9
IP100304082	3	5	4	2	2	3
IPI00027223	20	20	24	25	17	14
\|PI00011107	3	1	2	5	8	0
IP100304589	4	1	3	4	3	0
IPI00016736	8	1	3	2	5	7
IP100020042	11	6	6	15	7	5
IPI00299608	11	10	12	14	13	11
IPI00300567	3	2	3	3	3	3
IPI00017726	10	5	5	10	8	10
\|P100607799	3	0	4	5	1	2
IPI00419802	1	1	3	4	6	2
IP100005573	2	4	1	3	4	2
IPI00100151	11	5	8	9	9	2
IPI00009662	2	1	3	2	2	2
IPI00376798	4	6	3	3	3	2
IPI00024933	5	6	6	4	5	5

Isoform 1 of 6－phosphofructokinase，liver type Isoform 1 of Acetyl－CoA carboxylase 1
Isoform 1 of Acid sphingomyelinase－like phosphodiesterase 3b Isoform 1 of Acidic leucine－rich nuclear phosphoprotein 32 family member B
Isoform 1 of Actin－like protein 6A
Isoform 1 of Actin－related protein 2／3 complex subunit 5
Isoform 1 of Adenylate kinase 2，mitochondrial
Isoform 1 of Adipocyte plasma membrane－associated protein Isoform 1 of Alpha－adducin
Isoform 1 of Alpha－aminoadipic semialdehyde dehydrogenase Isoform 1 of Alpha－ketoglutarate－dependent dioxygenase FTO Isoform 1 of AP－1 complex subunit mu－2
Isoform 1 of AP－2 complex subunit beta Isoform 1 of AP－ 3 complex subunit beta－1
Isoform 1 of Apoptosis－associated speck－like protein containing a CARD
Isoform 1 of Armadillo repeat－containing protein 6 Isoform 1 of ATP synthase subunit d，mitochondrial
Isoform 1 of ATP－dependent RNA helicase DDX42
Isoform 1 of Axin interactor，dorsalization－associated protein
Isoform 1 of Basic leucine zipper and W2 domain－containing protein 1
Isoform 1 of Beta－enolase
Isoform 1 of Beta－galactosidase
Isoform 1 of BH 3 －interacting domain death agonist
Isoform 1 of BRCA1－A complex subunit BRE
Isoform 1 of BRCA2 and CDKN1A－interacting protein
Isoform 1 of Calcyclin－binding protein
Isoform 1 of Caprin－1
Isoform 1 of Catenin alpha－1
isoform 1 of Catenin beta－1
Isoform 1 of CCR4－NOT transcription complex subunit 1
Isoform 1 of Cellular nucleic acid－binding protein
Isoform 1 of Clathrin heavy chain 1
Isoform 1 of Cleavage and polyadenylation specificity factor subunit 6
Isoform 1 of Cleavage and polyadenylation specificity factor subunit 7
Isoform 1 of Coatomer subunit alpha
Isoform 1 of Coiled－coil domain－containing protein 47
isoform 1 of COP9 signalosome complex subunit 1
Isoform 1 of COP9 signalosome complex subunit 7b
Isoform 1 of C －terminal－binding protein 2
Isoform 1 of Cullin－3
Isoform 1 of Cullin－4A
Isoform 1 of Cullin－associated NEDD8－dissociated protein 1
Isoform 1 of Cystathionine beta－synthase
isoform 1 of Cystathionine gamma－lyase
Isoform 1 of Cysteine and histidine－rich domain－containing protein 1
Isoform 1 of Cytoskeleton－associated protein 4
Isoform 1 of Cytosol aminopeptidase
Isoform 1 of Cytosolic acyl coenzyme A thioester hydrolase
Isoform 1 of Cytosolic non－specific dipeptidase
Isoform 1 of DAZ－associated protein 1
Isoform 1 of Deoxycytidylate deaminase
Isoform 1 of Dipeptidyl peptidase 3
Isoform 1 of DNA primase large subunit
Isoform 1 of DNA replication complex GINS protein PSF3
Isoform 1 of DNA replication licensing factor MCM7
Isoform 1 of DNA－binding protein A

		$\omega \sim \sigma \omega$
	ルーナナナル○カル	$\mapsto \vdash \infty$
		$\omega \rightarrow \omega$
	$\omega \sim$ O	$\Delta \vdash \omega \backsim$
		$N \triangle \stackrel{\rightharpoonup}{\circ}$
		Nのか

Isoform 1 of DNA-dependent protein kinase catalytic subunit Isoform 1 of DNA-directed RNA polymerases I and III subunit RPAC1 Isoform 1 of Electron transfer flavoprotein subunit beta Isoform 1 of Elongation factor G, mitochondrial
Isoform 1 of Elongation factor Ts, mitochondrial
Isoform 1 of Elongation factor Tu GTP-binding domain-containing protein 1
Isoform 1 of Enolase-phosphatase E1
Isoform 1 of Enoyl-CoA hydratase domain-containing protein 1
Isoform 1 of Erlin-2
Isoform 1 of Eukaryotic initiation factor 4A-II
Isoform 1 of Eukaryotic translation initiation factor 3 subunit B
Isoform 1 of Exportin-2
Isoform 1 of Extended synaptotagmin-1
Isoform 1 of FAD synthase
Isoform 1 of Far upstream element-binding protein 2
Isoform 1 of Fermitin family homolog 2
Isoform 1 of Filamin-B
Isoform 1 of Filamin-C
Isoform 1 of Fragile X mental retardation syndrome-related protein 1
Isoform 1 of Gamma-glutamylcyclotransferase
Isoform 1 of Gelsolin
Isoform 1 of General transcription factor II-I
Isoform 1 of General vesicular transport factor p115
Isoform 1 of Glucosamine--fructose-6-phosphate aminotransferase [isomerizing] 1
Isoform 1 of Glycerol-3-phosphate dehydrogenase, mitochondrial
Isoform 1 of Growth factor receptor-bound protein 2
Isoform 1 of Guanine nucleotide-binding protein G(i) subunit alpha-2
Isoform 1 of Heat shock cognate 71 kDa protein
Isoform 1 of Hematological and neurological expressed 1-like protein
Isoform 1 of Heterogeneous nuclear ribonucleoprotein A3
Isoform 1 of Heterogeneous nuclear ribonucleoprotein D0
Isoform 1 of Heterogeneous nuclear ribonucleoprotein H3
Isoform 1 of Heterogeneous nuclear ribonucleoprotein M
Isoform 1 of Heterogeneous nuclear ribonucleoprotein Q
Isoform 1 of Heterogeneous nuclear ribonucleoprotein R
Isoform 1 of Heterogeneous nuclear ribonucleoprotein U-like protein 1
Isoform 1 of Hexokinase-1
Isoform 1 of Histone-binding protein RBBP4
isoform 1 of Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial
Isoform 1 of Importin-4
isoform 1 of Importin-5
Isoform 1 of Inorganic pyrophosphatase 2, mitochondrial
Isoform 1 of Insulin-like growth factor 2 mRNA-binding protein 2
Isoform 1 of Insulin-like growth factor 2 mRNA-binding protein 3
Isoform 1 of Integrin alpha-V
Isoform 1 of Intraflagellar transport protein 27 homolog
Isoform 1 of isocitrate dehydrogenase [NAD] subunit alpha
Isoform 1 of IST1 homolog
Isoform 1 of KH domain-containing, RNA-binding, signal transductionassociated protein 1
Isoform 1 of Kinectin
Isoform 1 of Kinesin heavy chain isoform 5C
Isoform 1 of Kinesin-like protein KIF1A
Isoform 1 of Kynurenine--oxoglutarate transaminase 3
Isoform 1 of Large proline-rich protein BAT3

IPI00296337
IP100005179
IPI00004902
IPI00154473
IPI00021016
IPI00293026

IPI00038378
IPI00302688
IPI00026942
IPI00328328
IPI00396370
IPI00022744
IPI00022143
IPI00220299
IPI00479786
IPI00000856
IPI00289334
IPI00178352
IPI00016249
|PI00031564
IPIO0026314
IPI00054042
IPI00941161
IPI00217952

IPI00017895
IPI00021327
IPI00748145
IPIO0003865
IPI00027397
IPI00419373
IPI00028888
IPI00013877
IPI00171903
IPI00018140
IPI00012074
IPI00013070

IPI00018246
IPI00328319
IPI00294398
IPI00156374
IPIO0793443
IPI00301109
IPI00179713
IPI00658000
IPI00027505
IPI00872292
IPI00030702
IPI00024660
IPI00008575

IPI00328753
IPI00028561
IPI00604711
IPI00465373
IPI00465128

36	20	39	40
3	0	2	1
2	2	2	6
3	1	1	1
2	1	1	2
4	1	1	1
5	2	2	7
4	2	1	0
4	3	2	5
8	2	5	2
17	11	13	13
31	14	30	32
10	3	5	7
2	1	2	3
17	8	8	20
2	3	5	4
43	27	44	65
1	4	4	38
2	1	2	2
4	3	8	9
4	1	1	9
7	4	2	7
13	7	15	17
10	8	5	12
3	1	0	1
4	5	2	4
5	3	3	4
46	37	39	38
2	2	3	1
10	6	8	15
16	10	15	13
4	4	3	4
13	11	14	13
9	6	4	11
9	7	8	8
2	0	2	3
2	2	10	9
2	1	4	2
5	5	3	4
11	8	13	11
36	24	35	34
2	1	2	1
7	1	3	4
7	6	11	7
1	0	2	2
2	0	2	3
3	3	1	3
2	1	2	2
5	4	3	8
3	1	4	7
5	3	2	3
3	2	6	1
3	1	2	2
4	4	2	7

47	36
0	2
2	3
3	6
2	3
3	2
2	4
2	2
4	0
5	2
22	15
28	23
14	14
1	2
13	14
6	5
72	59
42	25
7	5
3	1
13	4
4	3
16	16
14	16
3	2
4	3
8	6
39	31
3	0
17	10
13	6
4	5
22	19
12	14
7	6
4	1
7	5
6	7
0	5
8	10
25	28
2	0
6	0
10	7
8	5
1	0
3	3
1	1
7	3
12	2
3	2
4	4
2	0
5	3

Isoform 1 of LETM1 and EF-hand domain-containing protein 1, mitochondrial
Isoform 1 of Leukotriene A-4 hydrolase
Isoform 1 of LIM and SH3 domain protein 1
Isoform 1 of L-lactate dehydrogenase A chain
Isoform 1 of Low molecular weight phosphotyrosine protein phosphatase
Isoform 1 of Magnesium-dependent phosphatase 1
Isoform 1 of Malignant T cell-amplified sequence 1
Isoform 1 of Medium-chain specific acyl-CoA dehydrogenase, mitochondrial
Isoform 1 of Melanoma-associated antigen D2
Isoform 1 of Metastasis-associated protein MTA3
Isoform 1 of Methionine adenosyltransferase 2 subunit beta
Isoform 1 of Methyl-CpG-binding domain protein 3
Isoform 1 of Mitotic checkpoint protein BUB3
Isoform 1 of Mps one binder kinase activator-like 1B
Isoform 1 of Myb-binding protein 1A
Isoform 1 of Myosin-10
Isoform 1 of Myosin-9
Isoform 1 of Myosin-Ib
Isoform 1 of NACHT, LRR and PYD domains-containing protein 2
Isoform 1 of NADH-cytochrome b5 reductase 2
Isoform 1 of NADH-cytochrome b5 reductase 3
Isoform 1 of N -alpha-acetyltransferase 50 , NatE catalytic subunit
Isoform 1 of Neurochondrin
Isoform 1 of Nicastrin
Isoform 1 of Nicotinate phosphoribosyltransferase
Isoform 1 of NIF3-like protein 1
Isoform 1 of NSFL1 cofactor p47
Isoform 1 of Nuclear autoantigenic sperm protein
Isoform 1 of Nuclear pore complex protein Nup155
Isoform 1 of Nuclear pore complex protein Nup160
Isoform 1 of Nuclear pore complex protein Nup98-Nup96
Isoform 1 of Nucleolar protein 6
Isoform 1 of Nucleolar RNA helicase 2
Isoform 1 of Nucleoredoxin
Isoform 1 of Nucleoside diphosphate kinase A
Isoform 1 of Obg-like ATPase 1
Isoform 1 of Oligoribonuclease, mitochondrial (Fragment)
Isoform 1 of Paraspeckie component 1
Isoform 1 of PC4 and SFRS1-interacting protein
Isoform 1 of Peroxidasin homolog
Isoform 1 of Peroxisomal acyl-coenzyme A oxidase 1
Isoform 1 of Phosphatidylinositol transfer protein beta isoform
Isoform 1 of Phosphoenolpyruvate carboxykinase [GTP]
Isoform 1 of Phosphoglucomutase-1
Isoform 1 of Phosphoribosyl pyrophosphate synthase-associated protein 1
Isoform 1 of Platelet-activating factor acetylhydrolase IB subunit α
Isoform 1 of Polyadenylate-binding protein 1
Isoform 1 of Polyadenylate-binding protein 2
Isoform 1 of Polyadenylate-binding protein 4
Isoform 1 of Polypyrimidine tract-binding protein 1
Isoform 1 of Polypyrimidine tract-binding protein 2
Isoform 1 of Porphobilinogen deaminase
Isoform 1 of Pre-mRNA-processing factor 40 homolog A
Isoform 1 of Probable ATP-dependent RNA helicase DHX36

IP100017592	3	0	2	4	2	3
IP100219077	14	7	8	4	10	7
IP100000861	3	1	4	4	6	4
IP100217966	50	37	42	32	26	30
IPI00219861	4	2	3	4	5	5
IPI00337556	0	1	2	2	1	0
IP100179026	2	1	1	5	3	3
IPI00005040	3	1	0	2	1	1
IP100009542	3	0	1	0	4	5
IPI00165357	5	2	1	1	4	0
IPI00002324	2	3	3	4	3	2
IPI00439194	1	1	2	4	1	1
IPI00013468	3	4	6	5	2	2
IP100301518	3	3	1	3	0	1
IP100005024	6	2	5	8	6	5
IP100397526	33	26	58	48	39	37
IPI00019502	67	54	88	77	66	61
IPI00376344	5	2	1	3	5	2
IP100016480	7	2	8	9	5	12
IPI00008234	1	1	4	3	0	1
IPI00328415	5	2	4	6	5	5
IPI00018627	6	0	6	12	5	7
IPI00549543	2	2	2	2	4	4
IPI00021983	1	1	2	1	1	2
IP100465085	3	0	1	2	2	2
IPI00604624	3	1	1	2	5	2
\|P100100197	4	0	4	4	4	2
\|P100179953	27	19	21	23	27	26
\|P100026625	9	4	5	5	8	7
IPI00748807	1	2	5	7	6	4
\|PI00006038	2	1	1	1	2	1
IPI00152890	2	0	3	2	1	0
IPI00015953	11	9	9	9	12	11
\|PI00304267	3	1	3	2	6	6
IPI00012048	2	2	2	2	2	1
IPI00290416	5	6	11	7	7	7
IPI00032830	2	2	2	4	2	2
IPI00103525	5	2	2	3	4	2
IPI00028122	2	0	3	3	2	2
IPI00016112	3	1	1	1	3	1
IPI00296907	3	0	1	2	0	1
IP100334907	6	2	4	2	5	2
IPI00797038	5	3	5	5	6	6
IPI00219526	14	13	14	13	12	7
IPI00291578	3	1	1	2	4	1
IPI00218728	1	0	4	3	4	5
IP100008524	17	7	10	16	16	13
\|PI00005792	1	3	3	3	1	2
\|PI00012726	3	1	3	5	3	4
\|PI00179964	15	11	13	17	15	13
IPI00514064	1	1	3	5	3	3
IP100028160	2	1	2	3	0	2
IPI00337385	4	1	1	2	5	3
IP100027415	1	1	3	2	2	1

Isoform 1 of Proteasome activator complex subunit 3
Isoform 1 of Proteasome activator complex subunit 4
Isoform 1 of Proteasome assembly chaperone 1
Isoform 1 of Proteasome subunit alpha type－7
Isoform 1 of Protein canopy homolog 2
Isoform 1 of Protein diaphanous homolog 1
Isoform 1 of Protein KIAA1967
Isoform 1 of Protein LSM12 homolog
Isoform 1 of Protein phosphatase 1 regulatory subunit 12A
Isoform 1 of Protein phosphatase 1 regulatory subunit 7
Isoform 1 of Protein phosphatase methylesterase 1
Isoform 1 of Protein SET
Isoform 1 of Protein syndesmos
Isoform 1 of Protein transport protein Sec 24A
Isoform 1 of Protein unc－45 homolog A
Isoform 1 of Protein virilizer homolog
Isoform 1 of Putative ATP－dependent RNA helicase DHX30
Isoform 1 of Putative deoxyribonuclease TATDN1
Isoform 1 of Putative helicase MOV－10
Isoform 1 of Putative RNA－binding protein Luc7－like 1
Isoform 1 of Pyridoxal kinase
Isoform 1 of Pyruvate dehydrogenase E1 component subunit beta
Isoform 1 of Quinone oxidoreductase PIG3
Isoform 1 of Ras－related protein Rab－1A
Isoform 1 of Ras－related protein Rab－34
Isoform 1 of Regulator of nonsense transcripts 1
Isoform 1 of Replication factor C subunit 2
Isoform 1 of Replication protein A 32 kDa subunit
Isoform 1 of Reticulon－4
Isoform 1 of Retinol dehydrogenase 11
Isoform 1 of Rho guanine nucleotide exchange factor 2
Isoform 1 of Ribonucleoside－diphosphate reductase subunit M 2 B
Isoform 1 of RNA polymerase II subunit A C－terminal domain
phosphatase SSU72
Isoform 1 of RNA－binding protein 8A
Isoform 1 of RRP12－like protein
Isoform 1 of RuvB－like 1
Isoform 1 of Septin－2
Isoform 1 of Serine／arginine－rich splicing factor 7
Isoform 1 of Serine／threonine－protein phosphatase 4 regulatory
subunit 3A
Isoform 1 of Serine／threonine－protein phosphatase 6 catalytic subunit
Isoform 1 of Sodium／potassium－transporting ATPase subunit beta－1
Isoform 1 of Spectrin alpha chain，brain
Isoform 1 of Spermine synthase
Isoform 1 of S－phase kinase－associated protein 1
Isoform 1 of Splicing factor $3 B$ subunit 3
Isoform 1 of Splicing factor U2AF 65 kDa subunit
Isoform 1 of Squamous cell carcinoma antigen recognized by T－cells 3
Isoform 1 of Structural maintenance of chromosomes protein 2
Isoform 1 of Surfeit locus protein 4
Isoform 1 of Syntaxin－7
Isoform 1 of Thyroid receptor－interacting protein 13
Isoform 1 of TIP41－like protein
Isoform 1 of Transcription elongation factor A protein 1
Isoform 1 of Transcription intermediary factor 1－beta
Isoform 1 of Transformer－2 protein homolog beta

	$\overline{0}$ 0 0 0 0 0		
	σ	$\omega \omega \infty$	
	N	$\vdash N \sim \infty \omega$	
	ω	$\mapsto \Delta ン \sigma \Delta O$	
		ーののゅNN	Nロ
		$\omega \sim \vee \stackrel{\sim}{*}$	
		○ $\omega \boldsymbol{H} \ddagger N$ N	

Isoform 1 of Translation initiation factor elF-2B subunit delta Isoform 1 of Transportin-1
Isoform 1 of tRNA-nucleotidyltransferase 1, mitochondrial
Isoform 1 of Tropomyosin alpha-4 chain
Isoform 1 of Tryptophanyl-tRNA synthetase, cytoplasmic
Isoform 1 of Tyrosine-protein kinase-like 7
Isoform 1 of U5 small nuclear ribonucleoprotein 200 kDa helicase
Isoform 1 of Ubiquitin carboxyl-terminal hydrolase 28
Isoform 1 of Ubiquitin conjugation factor E4 B
Isoform 1 of Ubiquitin-conjugating enzyme E2 D3
Isoform 1 of Ubiquitin-conjugating enzyme E2 K
isoform 1 of Ubiquitin-like-conjugating enzyme ATG3
Isoform 1 of UBX domain-containing protein 1
Isoform 1 of UDP-glucose:glycoprotein glucosyltransferase 1 Isoform 1 of Uridine 5'-monophosphate synthase
Isoform 1 of Uridine-cytidine kinase 2
Isoform 1 of UTP--glucose-1-phosphate uridylyltransferase Isoform 1 of Vacuolar protein sorting-associated protein 29
Isoform 1 of Vesicle-associated membrane protein-associated prtn A Isoform 1 of Vesicle-associated membrane protein-associated protein 8/C
Isoform 1 of Vinculin
Isoform 1 of WD repeat-containing protein 1
Isoform 1 of Zinc finger protein 326
Isoform 1 of Zinc phosphodiesterase ELAC protein 2
Isoform 1AB of Catenin delta-1
Isoform 2 of 6-phosphofructokinase, muscle type
Isoform 2 of Annexin A2
Isoform 2 of AP-1 complex subunit gamma-1
Isoform 2 of AP- 2 complex subunit alpha-2
Isoform 2 of Apoptosis inhibitor 5
Isoform 2 of ATP-binding cassette sub-family F member 1
Isoform 2 of ATP-dependent RNA helicase DDX54
isoform 2 of Basigin
isoform 2 of Cat eye syndrome critical region protein 5
Isoform 2 of Cell division control protein 42 homolog
Isoform 2 of Cullin-4B
Isoform 2 of Cytochrome P450 2S1
Isoform 2 of Deoxyuridine 5 '-triphosphate nucleotidohydrolase
Isoform 2 of Eukaryotic translation initiation factor 5A-1
Isoform 2 of F -actin-capping protein subunit beta
Isoform 2 of Filamin-A
Isoform 2 of Golgi apparatus protein 1
Isoform 2 of HD domain-containing protein 2
Isoform 2 of Heat shock protein HSP 90-alpha
Isoform 2 of Heterogeneous nuclear ribonucleoprotein A / B
Isoform 2 of Isochorismatase domain-containing protein 2
Isoform 2 of Lysine-specific histone demethylase 1A
Isoform 2 of Microtubule-actin cross-linking factor 1
Isoform 2 of mRNA cap guanine-N7 methyltransferase
Isoform 2 of Nitrilase homolog 1
Isoform 2 of Nuclear mitotic apparatus protein 1
Isoform 2 of Nucleoporin NUP188 homolog
Isoform 2 of Phosphatidylinositol-binding clathrin assembly protein
Isoform 2 of Proteasome subunit alpha type-3
Isoform 2 of Protein disulfide-isomerase A6
Isoform 2 of Ras-related protein Rab-6A
Isoform 2 of Sarcoplasmic/endoplasmic reticulum calcium ATPase 2

	NGNさん

Isoform 2 of Serrate RNA effector molecule homolog Isoform 2 of Spliceosome RNA helicase BAT1
Isoform 2 of Structural maintenance of chromosomes protein 4 Isoform 2 of Suppressor of G2 allele of SKP1 homolog Isoform 2 of TAR DNA-binding protein 43
Isoform 2 of Transportin-3
Isoform 2 of tRNA pseudouridine synthase A, mitochondrial
Isoform 2 of Tropomyosin alpha-3 chain
Isoform 2 of Tumor protein D54
Isoform 2 of U1 small nuclear ribonucleoprotein 70 kDa
Isoform 2 of Ubiquilin-1
Isoform 2 of UPF0557 protein C10orf119
Isoform 2 of Valacyclovir hydrolase
isoform 2 of Voltage-dependent anion-selective channel protein 2
Isoform 2C of Cytoplasmic dynein 1 intermediate chain 2
Isoform 3 of Anamorsin
Isoform 3 of DNA topoisomerase 2-alpha
Isoform 3 of Epithelial splicing regulatory protein 1
Isoform 3 of Prolyl 3-hydroxylase 1
Isoform 3 of Protein DDI1 homolog 2
Isoform 3 of Protein transport protein Sec31A
Isoform 3 of Reticulon-3
Isoform 3 of Ribosome-binding protein 1
Isoform 3 of Serine/threonine-protein phosphatase 2A activator
Isoform 3 of Ubiquitin-conjugating enzyme E2 variant 1
Isoform 4 of E3 ubiquitin-protein ligase UBR4
Isoform 4 of Probable ATP-dependent RNA helicase DDX17
Isoform 4 of Tropomyosin alpha-1 chain
Isoform 4 of Tubulin-specific chaperone D
Isoform 5 of Interleukin enhancer-binding factor 3
Isoform 5 of Thioredoxin reductase 1 , cytoplasmic
Isoform 6 of Protein quaking
Isoform A of Protein CutA
Isoform A of Ras GTPase-activating protein-binding protein 2
Isoform A of Ras-related C3 botulinum toxin substrate 1
Isoform A of RNA-binding protein with multiple splicing
Isoform A of Trypsin-3
Isoform A1-B of Heterogeneous nuclear ribonucleoprotein A1
Isoform Alpha of Apoptosis regulator BAX
Isoform Alpha of Signal transducer and activator of transcription $1 \alpha / \beta$
Isoform Alpha-6X1X2B of Integrin alpha-6
Isoform alpha-enolase of Alpha-enolase
Isoform APP770 of Amyloid beta A4 protein (Fragment)
Isoform ASF-1 of Serine/arginine-rich splicing factor 1
isoform B of AP-2 complex subunit alpha-1
isoform B of Arfaptin-1
Isoform B of Perilipin-3
Isoform B1 of Heterogeneous nuclear ribonucleoproteins A2/B1
Isoform Beta of Heat shock protein 105 kDa
Isoform Beta-1 of Protein phosphatase 1B
Isoform C1 of Heterogeneous nuclear ribonucleoproteins C1/C2
Isoform Complexed of Arginyl-tRNA synthetase, cytoplasmic
Isoform Crk-II of Adapter molecule crk
Isoform Cytoplasmic of Lysyl-tRNA synthetase
Isoform Del-701 of Signal transducer and activator of transcription 3 Isoform Delta-1 of Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit delta isoform
Isoform DFF45 of DNA fragmentation factor subunit alpha (Fragment)

\|PI00220038	1	3	7	4	5	5
IPIO0641829	13	7	10	18	13	14
\|P100328298	3	0	3	5	3	2
IPI00791573	6	6	7	4	8	5
IP100025815	4	2	7	6	7	4
IPI00395694	8	2	5	10	7	6
IP100001716	2	1	4	1	3	0
IPI00218319	22	26	29	32	17	12
IPI00221178	4	2	8	5	7	3
IPI00219483	3	4	2	5	5	4
\|P100071180	3	0	1	1	1	2
IP100552546	2	1	2	3	3	1
\|P100003990	2	1	1	2	1	0
\|PIO0024145	1	0	3	2	4	3
\|P100216348	2	1	1	2	4	3
IP100025333	2	3	3	3	3	3
IP100218753	1	0	6	3	9	7
IPIOO184262	4	0	2	2	2	4
IPI00045839	2	0	1	2	2	2
IPIO0031618	5	0	2	1	2	0
IPI00305152	4	1	3	5	4	3
IP100028946	1	3	2	1	4	0
IPI00215743	1	0	9	7	10	1
IPI00217296	4	4	2	1	3	2
1P100472498	6	4	3	2	1	1
IPI00640981	8	9	14	7	13	1
IPI00889541	9	2	4	15	11	11
IPI00296039	5	3	17	13	4	6
IPI00030774	6	0	4	6	8	7
IP100219330	8	9	13	14	18	16
IPI00554786	8	3	8	5	10	6
IPI00385562	2	0	2	2	4	0
IPI00034319	4	1	1	2	2	2
IP100009057	2	1	2	1	3	2
IPI00010271	3	2	2	5	4	4
IPI00004045	1	0	3	7	3	3
IPI00015614	1	1	2	1	2	1
\|P100215965	34	28	23	34	28	22
IPI00443773	7	6	5	5	6	3
IP100030781	7	0	1	3	8	1
IPI00010697	2	2	4	7	10	6
IP100465248	50	45	63	72	30	25
IPI00006608	2	2	3	2	3	0
IPI00215884	7	8	10	14	9	10
IPI00256684	8	1	4	7	12	8
IP100021258	2	1	1	2	3	0
\|P100303882	9	6	7	14	12	6
\| P100396378	23	14	18	23	20	18
IPI00218993	22	10	22	19	20	14
IPI00026612	2	1	2	2	7	3
IPI00216592	11	11	13	20	14	10
\| $\mathrm{P} \mid 00004860$	8	4	7	9	10	10
IPI00004838	5	1	2	3	3	2
IP100014238	8	5	6	9	9	8
\|PI00306436	4	1	3	3	6	3
IPI00000030	2	0	1	3	3	3
\|P100010882	3	0	1	2	1	1

Isoform Gamma-1 of Serine/threonine-protein phosphatase PP1gamma catalytic subunit
Isoform GTBP-N of DNA mismatch repair protein Msh6
isoform Heart of ATP synthase subunit gamma, mitochondrial
Isoform II of Ubiquitin-protein ligase E3A
Isoform Long of 14-3-3 protein beta/alpha
Isoform Long of 60 kDa SS-A/Ro ribonucleoprotein
Isoform Long of Cold shock domain-containing protein E1
Isoform Long of Delta-1-pyrroline-5-carboxylate synthase Isoform Long of Double-stranded RNA-binding protein Staufen homolog 1
Isoform Long of ES1 protein homolog, mitochondrial Isoform Long of Eukaryotic translation initiation factor 4 H Isoform Long of Glucose-6-phosphate 1-dehydrogenase Isoform Long of Glycylpeptide N-tetradecanoyltransferase 1 Isoform Long of Heterogeneous nuclear ribonucleoprotein U Isoform Long of Sodium/potassium-transporting ATPase subunit $\alpha-1$ Isoform Long of Spectrin beta chain, brain 1
Isoform Long of Splicing factor, proline- and glutamine-rich Isoform Long of Tight junction protein ZO-1
Isoform Long of Trifunctional purine biosynthetic protein adenosine-3 Isoform Long of Ubiquitin carboxyl-terminal hydrolase 5 Isoform M2 of Pyruvate kinase isozymes M1/M2 Isoform Mitochondrial of Fumarate hydratase, mitochondrial Isoform Mitochondrial of Glutathione reductase, mitochondrial Isoform Mitochondrial of Phospholipid hydroperoxide glutathione peroxidase, mitochondrial
Isoform Non-brain of Clathrin light chain A
Isoform Non-muscle of Myosin light polypeptide 6
Isoform p26 of 7,8-dihydro-8-oxoguanine triphosphatase
Isoform p27-L of 26S proteasome non-ATPase regulatory subunit 9
Isoform Rpn10A of 26 S proteasome non-ATPase regulatory subunit 4
Isoform Short of Proteasome subunit alpha type-1
Isoform Short of RNA-binding protein FUS
Isoform SM-B' of Small nuclear ribonucleoprotein-associated proteins
Isoform SNAP-23a of Synaptosomal-associated protein 23
Isoform SRP55-1 of Serine/arginine-rich splicing factor 6
Isoleucyl-tRNA synthetase, cytoplasmic
Junction plakoglobin
Junctional adhesion molecule A
Keratin, type I cytoskeletal 10
Keratin, type II cytoskeletal 8
Kinesin-1 heavy chain
Kinesin-like protein KIF11
Kinetochore-associated protein 1
Lactoylglutathione lyase
Lamin-B1
Lamin-82
Laminin subunit alpha-1
Laminin subunit beta-1
Laminin subunit gamma-1
L-aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl transferase
lanosterol 14-alpha demethylase isoform 1
Lanosterol synthase
Large neutral amino acids transporter small subunit 1
LDLR chaperone MESD
Leucine-rich PPR motif-containing protein, mitochondrial

IPI00005705	2	1	2	2	2	2
IPI00384456	9	7	3	6	10	6
IPI00395769	5	2	3	5	3	2
IPIO0011609	3	1	3	3	3	0
IPI00216318	13	9	14	18	11	7
IPI00019450	4	2	2	4	3	1
IPI00470891	3	1	2	5	5	4
IPI00008982	11	6	4	8	6	10
IPI00000001	3	1	2	2	4	2
IPI00024913	2	2	1	4	5	4
IPI00014263	6	2	6	5	3	5
IPI00216008	2	2	7	9	10	5
IPI00329692	2	0	3	2	4	3
IPI00883857	20	12	25	23	11	19
IPI00006482	17	15	12	14	20	14
IPI00005614	30	24	38	58	49	40
IPI00010740	14	6	8	17	18	11
IPIO0216219	4	1	3	1	6	6
IPI00025273	14	8	9	14	12	13
IPI00024664	11	5	9	7	11	7
IPI00479186	44	36	38	51	35	36
IPI00296053	9	4	7	5	5	3
IPI00016862	7	5	2	3	4	1
IPI00304814	5	3	4	4	5	2
IPI00216393	3	1	4	1	2	2
IPI00335168	12	5	6	9	11	9
IPI00004392	3	1	4	6	3	4
IPI00010860	0	1	2	5	2	1
IPI00022694	6	6	3	5	9	5
IPI00016832	10	2	12	10	8	7
IPI00221354	3	2	5	6	6	5
IPI00027285	2	2	4	4	2	4
IPI00010438	3	1	2	3	2	3
IPI00012345	1	2	3	3	2	1
IPI00644127	25	14	10	18	25	20
IPI00554711	2	0	1	6	6	5
IPI00001754	2	0	3	3	6	2
IPI00009865	10	5	8	10	24	16
IPI00554648	16	13	21	51	31	13
IPI00012837	15	4	14	18	12	12
IPI00305289	4	4	1	8	6	3
IPI00001458	1	2	1	2	5	2
IPI00220766	5	4	3	9	3	5
IPI00217975	3	0	6	5	7	5
IPI00009771	1	0	3	2	1	0
IPI00375294	2	3	4	2	2	0
IPIO0013976	3	0	2	7	8	1
IPI00298281	6	3	5	2	10	6
IPI00250297	3	0	2	1	0	2
IPI00295772	11	6	11	4	8	6
IPI00009747	5	3	12	4	7	4
IPI00008986	5	0	4	0	5	2
IPI00399089	2	1	0	1	2	3
IPI00783271	28	27	27	29	23	30

Leucine-rich repeat-containing protein 40
Leucine-rich repeat-containing protein 47
Leucine-rich repeat-containing protein 59
Leucyl-tRNA synthetase, cytoplasmic
LINE-1 type transposase domain-containing protein 1
L-lactate dehydrogenase B chain
Lon protease homolog, mitochondrial
Long-chain-fatty-acid--CoA ligase 3
Lupus La protein
L-xylulose reductase
Lysophosphatidylcholine acyltransferase 1
Lysosome-associated membrane glycoprotein 1
Macrophage-capping protein
MAGUK p55 subfamily member 6
Malate dehydrogenase
Malate dehydrogenase, mitochondrial
Malectin
maleylacetoacetate isomerase isoform 1
MARCKS-related protein
Matrin-3
Membrane-associated progesterone receptor component 1
Methionyl-tRNA synthetase, cytoplasmic
Methylenetetrahydrofolate dehydrogenase (NADP+dependent) 1like
Methylosome protein 50
Methylosome subunit plCln
Microsomal glutathione S-transferase 1
Microtubule-associated protein 1B
Microtubule-associated protein RP/EB family member 1
Midasin
Mitochondrial fission 1 protein
Mitochondrial import inner membrane translocase subunit TIM44
Mitochondrial-processing peptidase subunit alpha
Mitochondrial-processing peptidase subunit beta
Mitogen-activated protein kinase 1
Mitogen-activated protein kinase scaffold protein 1
MLL1/MLL complex subunit C17orf49 isoform 1
Moesin
Monocarboxylate transporter 1
mRNA turnover protein 4 homolog
Multifunctional protein ADE2
Myosin-le
Myotrophin
Myristoylated alanine-rich C-kinase substrate
$N(G), N(G)$-dimethylarginine dimethylaminohydrolase 1
$\mathrm{N}(\mathrm{G}), \mathrm{N}(\mathrm{G})$-dimethylarginine dimethylaminohydrolase 2
$\mathrm{Na}(+) / \mathrm{H}(+)$ exchange regulatory cofactor NHE-RF1
N -acetyl-D-glucosamine kinase
N -acetyltransferase 10
NAD-dependent malic enzyme, mitochondrial
NADH dehydrogenase [ubiquinone] iron-sulfur protein 3
NADPH--cytochrome P450 reductase
N -alpha-acetyltransferase $10, \mathrm{NatA}$ catalytic subunit
N -alpha-acetyltransferase 38, NatC auxiliary subunit
nardilysin isoform a
Nascent polypeptide-associated complex subunit alpha
NEDD8-activating enzyme E1 catalytic subunit
NEDD8-activating enzyme E1 regulatory subunit

Nひル	

NEDD8-conjugating enzyme Ubc12
Nestin
Neurolysin, mitochondrial
Neutral amino acid transporter B(0)
NHP2-like protein 1
Niban-like protein 1
Nicotinamide phosphoribosyltransferase
Nicotinate-nucleotide pyrophosphorylase [carboxylating]
Non-POU domain-containing octamer-binding protein
Nuclear cap-binding protein subunit 1
Nuclear migration protein nudC
Nuclear pore complex protein Nup107
Nuclear pore complex protein Nup133
Nuclear pore complex protein Nup205
Nuclear pore complex protein Nup50
Nuclear pore complex protein Nup93
Nuclear receptor-binding protein
Nuclear transport factor 2
Nuclease-sensitive element-binding protein 1
Nucleobindin-1
Nucleolar GTP-binding protein 1
Nucleolar protein 56
Nucleolar protein 58
Nucleoporin 54kDa variant (Fragment)
Nucleoporin Nup37
Nucleoprotein TPR
Nucleoside diphosphate kinase
Nucleoside-triphosphatase C1orf57
Nucleosome assembly protein 1-like 1
NudC domain-containing protein 2
Ornithine aminotransferase, mitochondrial
Osteoclast-stimulating factor 1
OTU domain-containing protein 6B
Paladin
Palmitoyl-protein thioesterase 1
PDZ and LIM domain protein 1
Peptidyl-prolyl cis-trans isomerase A
Peptidyl-prolyl cis-trans isomerase B
Peptidyl-prolyl cis-trans isomerase D
Peptidyl-prolyl cis-trans isomerase FKBP3
Peptidyl-prolyl cis-trans isomerase FKBP4
Peptidyl-prolyl cis-trans isomerase H
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1
Peptidyl-prolyl cis-trans isomerase-like 1
Peroxiredoxin-1
Peroxiredoxin-2
Peroxiredoxin-4
Peroxiredoxin-6
Peroxisomal multifunctional enzyme type 2
Phenylalanyl-tRNA synthetase alpha chain
Phenylalanyl-tRNA synthetase beta chain
Phosducin-like protein 3
Phosphatidylethanolamine-binding protein 1
Phosphoglycerate kinase 1
Phosphoglycolate phosphatase
Phosphomannomutase 2
Phosphomevalonate kinase
Phosphoribosyl pyrophosphate synthase-associated protein 2

IP100022597	3	1	6	4	3	2
IP100010800	18	5	22	13	22	27
IP100010346	7	7	5	8	10	9
IPI00019472	7	5	6	3	4	7
IP100026167	2	1	3	5	3	3
IPI00456750	2	1	1	5	5	4
IPI00018873	8	4	5	7	7	8
IPI00300086	2	0	2	1	3	2
IP100304596	9	5	9	15	12	8
\|P100019380	7	2	5	10	5	5
IP100550746	7	5	6	8	10	7
\|P100028005	7	3	2	2	4	3
IP100291200	2	2	3	5	8	2
\|P100783781	2	8	4	10	14	10
IPI00026940	0	1	4	1	3	0
IPI00397904	8	8	3	8	9	7
\|P100604756	2	1	1	2	1	1
1 P100009901	2	0	3	4	3	5
\|P100031812	6	1	13	0	11	14
IP100295542	5	1	4	6	2	1
IPI00385042	3	1	1	3	7	3
IP100411937	3	1	2	5	7	6
IPI00006379	5	2	2	7	8	6
IP100172580	3	0	2	3	6	2
IP100171665	1	0	2	1	2	1
1P100742682	15	12	25	21	23	14
IPI00604590	18	17	10	19	17	11
IP100031570	3	2	1	6	4	2
IPI00023860	14	10	14	10	9	12
IPI00103142	4	0	1	4	3	3
IPI00022334	12	9	10	7	5	7
IPI00414836	2	1	0	3	2	2
IPI00935722	3	4	2	3	0	3
IPI00297212	2	0	1	3	0	1
IPI00002412	4	1	4	1	2	2
IPI00010414	11	4	6	16	10	12
IPI00419585	23	16	14	21	14	15
IPI00646304	12	6	13	10	9	8
IPI00003927	1	0	2	6	2	3
IPI00024157	4	3	6	9	5	4
IPI00219005	13	11	16	17	19	15
IPI00007346	3	0	4	4	3	1
IPI00013723	3	2	0	5	0	2
IPI00007019	2	1	3	4	3	3
IPI00000874	16	19	16	30	12	11
IPI00027350	8	15	8	12	4	3
IPI00011937	10	7	9	10	3	5
IPI00220301	22	16	20	32	21	18
IP100019912	15	9	16	7	9	9
IPI00031820	3	1	3	3	4	3
IPI00300074	2	0	5	3	6	2
IPI00031629	5	0	3	0	4	2
IPI00219446	8	9	9	10	7	8
IPI00169383	41	40	41	45	35	27
IPI00177008	4	3	4	2	4	2
IPI00006092	2	0	1	4	5	1
IPI00220648	4	2	1	3	2	1
IPI00003168	6	3	5	8	6	3

Phosphoribosylformylglycinamidine synthase
Phosphoserine aminotransferase
Phosphoserine phosphatase
Plastin-1
Plastin-3
Platelet-activating factor acetylhydrolase IB subunit beta
Platelet-activating factor acetylhydrolase IB subunit gamma
Podocalyxin-like protein 1 precursor
Poly [ADP-ribose] polymerase 1
Poly(rC)-binding protein 1
Polymerase delta-interacting protein 2
Prefoldin subunit 2
Prefoldin subunit 5
Pre-mRNA branch site protein p14
Pre-mRNA-processing factor 19
Pre-mRNA-processing-splicing factor 8
Pre-mRNA-splicing factor SPF27
Prenylcysteine oxidase 1
Pre-rRNA-processing protein TSR1 homolog
PRKC apoptosis WT1 regulator protein
PRMT3 protein (Fragment)
Probable ATP-dependent RNA helicase DDX27
Probable ATP-dependent RNA helicase DDX47
Probable ATP-dependent RNA helicase DDX5
Probable ATP-dependent RNA helicase DDX6
Probable fructose-2,6-bisphosphatase TIGAR
Probable ribosome biogenesis protein NEP1
Probable RNA-binding protein EIF1AD
probable ubiquitin carboxyl-terminal hydrolase FAF-X isoform 4
Profilin
Profilin-1
progesterone receptor membrane component 2
Programmed cell death 6-interacting protein
Programmed cell death protein 10
Programmed cell death protein 5
Programmed cell death protein 6
Prohibitin
Prohibitin-2
Proliferating cell nuclear antigen
Proliferation-associated protein 2G4
Proline synthetase co-transcribed homolog (Bacterial), isoform CRA_b
Prolow-density lipoprotein receptor-related protein 1
Prolyl endopeptidase
Prostaglandin E synthase 3
Proteasomal ubiquitin receptor ADRM1
Proteasome 265 non-ATPase subunit 11 variant (Fragment)
Proteasome activator complex subunit 1
Proteasome assembly chaperone 3
Proteasome inhibitor PI31 subunit
Proteasome subunit alpha type-2
Proteasome subunit alpha type-4
Proteasome subunit alpha type-5
Proteasome subunit alpha type-6
Proteasome subunit beta type-1
Proteasome subunit beta type-2
Proteasome subunit beta type-3
Proteasome subunit beta type-4
Proteasome subunit beta type-5

Proteasome subunit beta type-6
Proteasome subunit beta type-7
proteasome-associated protein ECM29 homolog
protein arginine N -methyltransferase 1 isoform 1
Protein arginine N -methyltransferase 5
Protein C10
Protein disulfide-isomerase
Protein disulfide-isomerase A3
Protein disulfide-isomerase A4
Protein DJ-1
Protein FAM3C
Protein FAM49B
Protein FAM96B
Protein flightless-1 homolog
Protein KIAA0664
Protein kinase, cAMP-dependent, regulatory, type II, alpha
Protein lin-28 homolog A
Protein lin-7 homolog C
Protein mago nashi homolog 2
Protein NipSnap homolog 1
Protein of unknown function DUF410 family protein
Protein of unknown function DUF858, methyltransferase-like family
Protein phosphatase 1G
Protein RCC2
Protein RRP5 homolog
Protein SEC13 homolog
Protein transport protein Sec 23A
Protein transport protein Sec 23B
Protein transport protein Sec24C
Protein transport protein Sec61 subunit beta
Pseudouridylate synthase 7 homolog
Pumilio domain-containing protein KIAA0020
Puromycin-sensitive aminopeptidase
Putative ATP-dependent CIp protease proteolytic subunit
Putative deoxyribose-phosphate aldolase
Putative phospholipase B-like 2
Putative pre-mRNA-splicing factor ATP-dpendent RNA helicase DHX15
Putative RNA-binding protein 3
Putative uncharacterized protein
Putative uncharacterized protein GARS
Pyridoxal phosphate phosphatase
Pyrroline-5-carboxylate reductase 2
pyruvate dehydrogenase E1 alpha 1 isoform 2 precursor
Quinone oxidoreductase
Rab GDP dissociation inhibitor alpha
Radixin, isoform CRA_a
Ran GTPase-activating protein 1
Ran-specific GTPase-activating protein
Ras GTPase-activating protein-binding protein 1
Ras GTPase-activating-like protein IQGAP1
Ras suppressor protein 1
Ras-related protein Rab-10
Ras-related protein Rab-11B
Ras-related protein Rab-14
Ras-related protein Rab-18
Ras-related protein Rab-1B
Ras-related protein Rab-21
Ras-related protein Rab-2A

Ras-related protein Rab-3B
Ras-related protein Rab-5A
Ras-related protein Rab-58
Ras-related protein Rab-5C
Ras-related protein Rab-7a
Ras-related protein Rab-8A
Ras-related protein Ral-A
Ras-related protein Rap-1b
Regulation of nuclear pre-mRNA domain-containing protein 1B
Replication factor C subunit 4
Replication factor C subunit 5
Replication protein A 14 kDa subunit
Replication protein A 70 kDa DNA-binding subunit
Reticulocalbin-1
Retinal rod rhodopsin-sensitive cGMP $3^{\prime}, 5^{\prime}$-cyclic phosphodiesterase δ
Retinol-binding protein 1
Rho GDP-dissociation inhibitor 1
Rho GTPase-activating protein 1
RhoA activator C11orf59
Ribonuclease inhibitor
Ribonuclease UK114
Ribonucleoside-diphosphate reductase large subunit
Ribose-phosphate pyrophosphokinase 1
Ribosomal L1 domain-containing protein 1
Ribosomal protein L14 variant
Ribosome biogenesis protein WDR12
Ribosome maturation protein SBDS
RNA-binding protein EWS isoform 1
rRNA 2'-O-methyltransferase fibrillarin
RuvB-like 2
S -adenosylmethionine synthase isoform type-2
SAP domain-containing ribonucleoprotein
SDHA protein
Sec1 family domain-containing protein 1
Secernin-1
Secreted frizzled-related protein 1
Selenide, water dikinase 1
Sepiapterin reductase
septin-9 isoform e
Serine hydroxymethyltransferase, mitochondrial
Serine palmitoyltransferase 1
Serine/arginine-rich splicing factor 2
Serine/arginine-rich splicing factor 3
Serine/arginine-rich splicing factor 9
Serine/threonine-protein kinase MST4
Serine/threonine-protein kinase OSR1
Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform
Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit
A alpha isoform
Serine/threonine-protein phosphatase 2A catalytic subunit α isoform
Serine/threonine-protein phosphatase 4 catalytic subunit
Serine/threonine-protein phosphatase PP1-beta catalytic subunit
Serpin B6
Serpin B9
Serpin H1
Seryl-tRNA synthetase, cytoplasmic
SF3A2 protein (Fragment)

IPI00300562	1	1	3	1	4	1
IPI00023510	4	3	3	6	3	5
IPI00017344	2	2	2	1	2	1
IPI00016339	7	6	8	6	6	7
IPI00016342	9	6	7	12	7	8
IPI00028481	4	1	1	1	1	2
IPI00217519	1	2	2	1	2	2
IPI00015148	2	4	3	6	6	3
IPI00009659	1	0	5	4	4	1
\|P100017381	4	3	1	4	3	5
IPI00031514	1	0	2	1	3	2
IPI00017373	3	0	4	4	1	5
IP100020127	5	2	6	5	6	4
IPI00015842	4	1	4	4	3	2
IPI00015161	3	1	1	2	0	2
IPI00940513	3	1	2	4	4	1
IP100003815	6	6	8	7	6	6
IPI00020567	7	2	7	7	11	4
IPI00016670	1	2	1	4	1	1
IPI00550069	3	1	5	1	6	3
IPI00005038	3	1	5	5	1	2
\|PI00013871	4	4	2	11	9	3
IP100219616	7	6	7	8	3	3
IP100008708	5	4	2	5	8	4
IPI00555744	5	2	3	3	2	4
IPI00304232	2	2	1	1	4	2
IPI00427330	0	2	1	2	2	1
IPI00009841	1	1	2	2	3	1
IPI00025039	5	4	2	10	5	5
IPI00009104	8	7	8	12	10	7
IPI00010157	8	6	5	7	3	5
\|PI00014938	2	0	4	3	3	1
\|P100217143	2	0	1	2	2	2
IP100165261	1	0	3	4	3	1
IPI00289862	1	2	2	2	3	3
\|P100749245	2	1	2	1	3	1
IPI00029056	8	7	7	10	10	8
IP100017469	2	2	1	3	0	1
IPI00455033	3	3	4	2	3	1
IP100002520	11	7	13	6	6	9
IPI00005745	3	0	1	2	3	0
\|P100005978	2	1	4	1	2	4
IPIO0010204	9	2	5	9	5	3
\|PI00012340	4	3	3	8	6	4
IP100292827	9	4	7	3	4	5
IP100010080	4	2	3		5	4
IPI00332511	2	2	5	5	4	5
IP100554737	16	14	17	16	18	17
IPI00008380	6	2	7	6	5	5
\|P100012833	2	1	1	0	4	2
IPIO0218236	3	4	1	5	2	3
\|P100413451	2	2	2	4	7	3
IPI00032139	7	3	14	13	8	12
\|P100032140	21	12	18	22	21	18
\|P100220637	2	1	5	7	12	5
IP100017341	6	1	0	2	2	2

5 -formylglutathione hydrolase
SH3 domain-binding glutamic acid-rich-like protein
Sialic acid synthase
Sideroflexin-1
Signal recognition particle 14 kDa protein
Signal recognition particle 19 kDa protein
Signal recognition particle 72 kDa protein
Similar to Protein SAAL1. Isoform 2
Single-stranded DNA-binding protein, mitochondrial
Small glutamine-rich tetratricopeptide repeat-containing protein α
Small nuclear ribonucleoprotein E
Small nuclear ribonucleoprotein Sm D1
Small nuclear ribonucleoprotein Sm D2
Small nuclear ribonucleoprotein Sm D3
Sodium/potassium-transporting ATPase subunit beta-3
Solute carrier family 2, facilitated glucose transporter member 3
Sorbitol dehydrogenase
Sorcin
Sorting nexin-2
Sorting nexin-5
Spartin
Sperm-associated antigen 7
Spermidine synthase
Splicing factor $3 A$ subunit 1
Splicing factor $3 A$ subunit 3
Splicing factor $3 B$ subunit 1
Splicing factor $3 B$ subunit 2
Splicing factor $3 B$ subunit 4
Splicing factor U2AF 35 kDa subunit
Squalene synthase
SRA stem-loop-interacting RNA-binding protein, mitochondrial
Src substrate cortactin
Staphylococcal nuclease domain-containing protein 1
Stathmin
Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating Stomatin-like protein 2
Stress-70 protein, mitochondrial
Stress-induced-phosphoprotein 1
Structural maintenance of chromosomes protein 1A
Succinyl-CoA:3-ketoacid-coenzyme A transferase 1, mitochondrial
SUMO-activating enzyme subunit 1
SUMO-activating enzyme subunit 2
SUMO-conjugating enzyme UBC9
Superkiller viralicidic activity 2 -like 2
Superoxide dismutase [Cu-Zn]
Superoxide dismutase [Mn], mitochondrial
Synaptic vesicle membrane protein VAT-1 homolog
Synaptic vesicle membrane protein VAT-1 homolog-like
Talin-1
T-complex protein 1 subunit alpha
T-complex protein 1 subunit beta
T-complex protein 1 subunit delta
T-complex protein 1 subunit epsilon
T-complex protein 1 subunit eta
T-complex protein 1 subunit zeta
Telomere length regulation protein TEL2 homolog
Testis-expressed sequence 10 protein
Tetratricopeptide repeat protein 35

IPI00411706	2	2	2	3	2	2
IPI00025318	3	2	5	7	3	4
IPI00147874	5	4	5	5	5	3
IPI00009368	2	1	0	3	2	0
IPI00293434	4	4	4	7	5	3
IPI00295889	3	1	1	2	0	1
IPI00215888	4	2	3	5	6	5
IPI00304935	2	1	1	2	1	1
IPI00029744	6	4	7	8	5	6
IPI00013949	1	1	5	4	5	3
IPI00029266	0	2	1	3	1	3
IP100302850	5	2	2	2	2	3
IPI00017963	6	4	7	5	5	6
IPI00017964	1	2	2	1	3	2
IPI00008167	3	4	5	5	3	4
IPI00003909	5	4	3	4	2	3
IPI00216057	5	5	5	4	4	3
IPI00027175	6	2	4	5	7	5
IPI00299095	2	1	2	4	6	2
IPI00295209	1	0	2	2	2	0
IPI00430622	2	0	2	2	3	1
IPI00006863	3	2	5	3	3	3
IPI00292020	6	4	5	5	6	7
IPI00017451	4	3	6	7	7	7
IPI00029764	8	3	5	7	5	4
IP100026089	19	12	20	29	27	16
IPI00221106	7	1	4	6	9	10
IPJ00017339	3	1	0	1	1	4
IPI00005613	2	3	3	2	4	3
IPI00020944	9	8	14	5	8	4
IPI00009922	3	2	3	2	3	6
IPI00029601	3	1	3	3	5	3
IPJ00140420	18	12	17	14	17	18
IP100479997	5	3	6	8	2	2
IP100019407	3	2	5	4	1	2
IPI00334190	2	1	3	2	8	2
IPI00007765	32	23	22	19	20	18
IPI00013894	20	10	11	18	16	15
IPI00291939	2	0	2	0	4	1
IPI00026516	3	1	2	2	1	1
IPI00033130	6	4	8	5	7	4
1 PI 00023234	7	3	6	7	11	7
IPI00032957	2	3	3	6	3	3
IPI00647217	6	3	7	10	8	6
IPI00218733	3	5	6	9	2	2
IPI00022314	2	2	3	3	2	1
IPI00156689	6	3	6	6	7	7
IPI00030578	4	0	3	1	2	0
IPI00298994	25	23	40	48	49	34
IPI00290566	14	9	8	11	21	19
IPI00297779	29	23	27	23	19	23
IPI00302927	18	9	12	20	19	19
IPI00010720	21	11	15	24	17	16
IPI00018465	19	9	17	16	17	10
IPI00027626	17	12	13	21	10	10
IPI00016868	2	1	2	2	1	2
IPI00549664	5	3	1	3	5	3
IPI00014149	2	1	0	3	1	1

Thimet oligopeptidase
Thioredoxin
Thioredoxin domain-containing protein 12
Thioredoxin domain-containing protein 17
Thioredoxin domain-containing protein 5
Thioredoxin-dependent peroxide reductase, mitochondrial
Thioredoxin-like protein 1
Thioredoxin-related transmembrane protein 1
THO complex subunit 2
THO complex subunit 4
Threonyl-tRNA synthetase, cytoplasmic
THUMP domain-containing protein 1
Thy- 1 membrane glycoprotein
Thymidylate kinase
Trafficking protein particle complex subunit 3
Trafficking protein particle complex subunit 4
Transaldolase
Transcription elongation factor B polypeptide 2
Transferrin receptor protein 1
Transforming protein RhoA
Transgelin
Transgelin-2
Transitional endoplasmic reticulum ATPase
Translation initiation factor elf-2B subunit alpha
Translational activator GCN1
Translational activator of cytochrome coxidase 1
Translin
Translin-associated protein X
Translocon-associated protein subunit delta precursor
Transmembrane emp24 domain-containing protein 10
Transmembrane emp24 domain-containing protein 9
Trifunctional enzyme subunit alpha, mitochondrial
Tripartite motif-containing protein 71
Tripeptidyl-peptidase 2
tRNA (cytosine-5-)-methyltransferase NSUN2
tRNA (guanine-N(7)-1-methyltransferase
tRNA methyltransferase 112 homolog
Tropomodulin-3
Tu translation elongation factor, mitochondrial precursor
TUBB6 protein
Tubulin alpha-1C chain
Tubulin beta-2A chain
Tubulin beta-2 2 C chain
Tubulin beta-2C chain
Tubulin beta- 3 chain
Tubulin beta-4 chain
Tubulin, beta
Tubulin-folding cofactor B
Tubulin-specific chaperone A
Tubulin-specific chaperone E
Tubulin-tyrosine ligase-like protein 12
Tumor protein, translationally-controlled 1
Twinfilin-2
Tyrosyl-tRNA synthetase, cytoplasmic
U1 small nuclear ribonucleoprotein A
U2 small nuclear ribonucleoprotein A^{\prime}
$U 2$ small nuclear ribonucleoprotein $B^{\prime \prime}$
U6 snRNA-associated Sm-like protein LSm4

IP100549189	6	1	1	3	6	3
IP100216298	2	4	4	4	2	4
IP100026328	2	2	3	3	3	2
\|P100646689	4	1	3	2	2	3
\|P100171438	5	3	8	9	5	4
\|P100024919	10	10	4	12	6	6
1P100305692	6	4	9	6	9	8
1PIO0395887	1	2	5	4	1	6
IPI00158615	2	1	1	1	2	1
IP100328840	7	2	5	6	7	8
IP100329633	17	11	10	11	16	19
IPI00550243	2	0	4	2	4	2
\|P100022892	2	2	3	3	3	2
IP100013862	1	2	0	3	3	1
IPI00004324	2	1	0	3	3	3
\|P100007691	2	1	2	2	2	2
\|PI00744692	10	7	11	16	15	7
\|P100026670	2	1	0	3	1	2
IPIO0022462	12	6	5	7	13	6
IPI00478231	5	6	11	12	10	7
IPI00216138	13	9	11	19	12	13
IPI00550363	7	6	7	14	8	7
IPI00022774	41	28	39	41	32	33
IP100221300	4	1	5	5	6	2
IPI00001159	14	11	15	21	20	15
IPI00019903	2	0	1	2	1	1
IPI00018768	10	7	5	14	7	8
IPI00293350	7	3	5	5	6	4
IP100019385	3	3	3	4	3	3
IP100028055	6	8	4	7	7	3
IPI00023542	2	2	2	3	3	3
IPI00031522	8	6	4	7	6	10
IPI00719053	5	5	3	5	5	3
IPI00020416	8	6	10	5	15	9
IP100306369	7	2	4	6	11	5
IPI00290184	2	2	3	2	1	1
IPI00009010	2	2	4	,	2	3
IPI00005087	4	3	2	4	2	2
IPI00027107	11	6	11	13	10	11
IP100646779	3	2	6	4	6	6
IPI00218343	3	1	3	1	2	2
IPI00013475	2	1	2	4	1	1
IPI00031370	32	26	32	42	33	31
IPI00007752	4	4	4	6	6	5
IPI00013683	7	7	8	11	5	7
IP100023598	3	3	1	2	4	2
IP100645452	11	10	14	15	11	9
IPI00293126	5	4	8	7	6	5
IP100217236	8	5	6	5	8	7
IPI00018402	3	0	5	2	3	0
IPI00029048	11	8	4	9	5	11
IPI00009943	8	4	1	7	8	6
IPI00550917	3	0	3	3	4	4
IPI00007074	8	14	10	8	12	8
IPI00012382	2	0	1	4	2	4
IPI00297477	8	7	8	9	5	5
IP100029267	1	2	2	5	2	2
IPI00294955	3	1	2	5	4	2

U8 snoRNA-decapping enzyme
Ubiquilin-2
Ubiquitin carboxyl-terminal hydrolase 10
Ubiquitin carboxyl-terminal hydrolase 11
Ubiquitin carboxyl-terminal hydrolase 14
Ubiquitin carboxyl-terminal hydrolase 7
Ubiquitin carboxyl-terminal hydrolase isozyme L1
Ubiquitin carboxyl-terminal hydrolase isozyme L3
Ubiquitin-40S ribosomal protein S27a
Ubiquitin-conjugating enzyme E2 C
Ubiquitin-conjugating enzyme E2 L3
Ubiquitin-conjugating enzyme E2 O
Ubiquitin-conjugating enzyme E2 variant 2
Ubiquitin-like modifier-activating enzyme 1
Ubiquitin-like protein 4A
UDP-glucose 6-dehydrogenase
UMP-CMP kinase isoform a
Uncharacterized protein
Uncharacterized protein C11orf73
Uncharacterized protein C17orf25
Uncharacterized protein C2orf79
UPF0027 protein C22orf28
UPF0160 protein MYG1, mitochondrial
UPF0364 protein C6orf211
UPF0368 protein Cxorf26
UPF0468 protein C16orf80
UPF0556 protein C19orf10
UPF0568 protein C14orf166
UPF0587 protein C1orf123
UPF0609 protein C4orf27
UPF0727 protein C6orf115
UPF0765 protein C10orf58
Uroporphyrinogen decarboxylase
UV excision repair protein RAD23 homolog B
Vacuolar protein sorting-associated protein 35
Valyl-tRNA synthetase
Vasodilator-stimulated phosphoprotein
Vesicle-trafficking protein SEC22b
Vesicular integral-membrane protein VIP36
Vigilin
Vimentin
Visinin-like protein 1
von Hippel-Lindau binding protein 1 , isoform CRA b
V-type proton ATPase catalytic subunit A
V-type proton ATPase subunit B, brain isoform
V-type proton ATPase subunit D
V-type proton ATPase subunit E 1
V-type proton ATPase subunit G 1
WASH complex subunit strumpellin
WD repeat and HMG-box DNA-binding protein 1
WD repeat-containing protein 61
Xaa-Pro dipeptidase
X-ray repair cross-complementing protein 5
X-ray repair cross-complementing protein 6
Zyxin

IPI00783497	2	1	1	3	1	2	
IPI00409659	1	0	2	0	4	2	
IPI00291946	2	3	2	2	2	5	
IPIOO184533	3	1	6	5	0	2	
IPI00219913	6	4	5	9	7	9	
IPI00003965	7	5	5	16	10	8	
IPI00018352	17	8	10	13	11	11	
IPI00011250	4	1	2	3	5	4	
IPI00179330	5	3	4	10	6	7	
1P100013002	3	2	3	0	2	2	
IPI00021347	7	4	5	3	4	4	
IPI00783378	5	1	5	3	4	4	
IPI00019600	2	0	2	3	6	2	
IPI00645078	41	30	42	30	31	28	
IPI00005658	1	1	2	1	2	1	
IPI00031420	9	4	8	11	10	10	
IP100219953	3	1	1	8	0	2	
IPI00022434	5	7	5	6	14	5	
IPI00410091	1	1	2	1	2	0	
IPI00007102	7	3	7	4	3	3	
IPI00430803	2	2	2	3	2	1	
IPI00550689	5	6	6	8	6	8	
IPI00029444	2	1	2	2	3	1	
IPI00002270	7	3	4	3	2	2	
IPI00107104	6	2	3	4	6	2	
IPI00001655	2	2	1	1	2	1	
IPI00056357	3	1	1	2	4	1	
IPI00006980	6	5	7	9	7	6	
IPI00016605	2	2	0	2	1	0	
\|P	00016532	1	0	2	2	2	0
IP\|00855846	0	2	3	5	0	2	
IPI00296190	2	3	2	5	2	2	
IPI00301489	5	3	2	4	2	4	
IPI00008223	3	1	2	7	3	5	
IPI00018931	6	1	1	11	9	5	
IPI00000873	16	11	15	10	20	14	
IPI00301058	1	1	6	5	3	4	
IPI00006865	2	1	0	4	2	1	
IPI00009950	4	2	1	2	2	1	
IPI00022228	4	4	4	10	14	6	
IPI00418471	33	17	25	65	33	26	
IPI00216313	8	7	6	2	4	2	
IPI00334159	5	4	0	5	4	2	
IPI00007682	4	3	3	5	6	4	
IPI00007812	3	2	6	5	4	3	
IPI00001568	3	1	0	3	2	0	
IPI00003856	4	3	3	4	2	1	
IPI00025285	1	1	3	2	2	3	
IP100029175	1	1	2	1	1	2	
IPI00411614	2	1	0	4	5	2	
IPI00019269	2	2	2	1	2	2	
IP100257882	6	3	3	3	4	3	
IPI00220834	29	18	12	29	28	24	
IPI00644712	27	23	15	28	34	22	
IPI00926625	5	1	5	5	3	10	

Note: "Peptide IDs" means the number of unique peptides that were identified from the corresponding protein during one replicate of the experiment. Three replicates are shown for each cell line.

[^0]: † Parts of this section are excerpts from Hughes CS*, Nuhn AA*, Postovit LM, and Lajoie GA. Proteomics of human embryonic stem cells. Proteomics. 2011. 11(4): 675-90. (*co-first authors).

