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Abstract

According to the WHO (World Health Organization), world-wide deaths from injuries 
are projected to rise from 5.1 million in 1990 to 8.4 million in 2020, with traffic-related 
incidents as the major cause for this increase. Intelligent, Advanced Driving Assis­
tance Systems (i-ADAS) provide a number of solutions to these safety challenges. 
We developed a scalable in-vehicle mobile i-ADAS research platform for the purpose 
of traffic context analysis and behavioral prediction designed for understanding fun­
damental issues in intelligent vehicles. We outline our approach and describe the 
in-vehicle instrumentation.

Keywords: Advanced Driving Assistance Systems, i-ADAS, In-vehicle research plat­
form
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Chapter 1

Introduction

1.1 Advanced Driver Assistance System

Advanced Driver Assistance Systems (ADAS) are a collection of applications that 

will assist a driver to safely avoid accidents and minimize the consequences of traffic- 

related incidents. Driving directly affects human lives and health: in 2006, in North 

America, commuting led to 6 million accidents, 1.7 million injuries, and 39,000 fatal­

ities [1]. Yet the simplest of driving assistance systems, such as enhanced stability 

control (ESC), may reduce single-vehicle crashes by 29 to 35 percent [7]. Even with 

low penetration levels of ADAS technologies (five to 10 percent), the safety of every 

vehicle increases [4].

Hypothetically, a crash-less car could be made much lighter without endangering 

its occupants. Vehicle curb weight is a significant fuel consumption factor. As of 

today, such lighter-weight vehicles cannot be manufactured due to enforced crash- 

safety ratings.

Compounding the problem, traffic congestion is a growing concern worldwide as car 

ownership continues to increase [4]. In a typical congestion situation, an aerial view of 

the traffic reveals that cars occupy roughly only 10 percent of the available pavement.
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ADAS technologies could improve this radically by automating longitudinal vehicle 

control, for instance. Such systems could increase the density of traffic, with vehicles 

following each other closely and safely, reducing the need to extend current highway 

infrastructures [14].

Also of significance is the fact that the average driving age in western countries 

is increasing. While this should not be a problem in itself, it has nonetheless been 

established that the decline in cognitive and motor abilities affects the safety of drivers 

and others around them [5] [3].

1.2 Intelligent ADAS

We address the physical design and implementation of an in-vehicle laboratory for 

the development of intelligent, advanced driving assistant systems (i-ADAS). While 

research on ADAS integrates a number of different functions such as forward colli­

sion detection and lane departure tracking [30], little attention was devoted to the 

monitoring of events and factors that directly concern the driver of the vehicle. It 

is only recently that cognitive aspects have been considered as a legitimate part of 

i-ADAS [27]. Since 95 percent of all accidents are caused by human error, it is crucial 

that these aspects of driving be a central part of i-ADAS [8]. Keeping the driver 

as an active participant in the feedback mechanisms provides contextually motivated 

informational support and offers immediate applications for enhancing safety [19].

The extended possibilities of integrated i-ADAS are very relevant research areas as 

they do not intend to replace the driver as much as to assist in a safer driving process. 

As has been pointed out by Petersson et al. [19], what remains to be automated to 

reach the state where vehicles become completely autonomous, in a practical sense, 

turns out to be difficult and elusive in everyday driving situations. However, it is 

our belief that driver support through i-ADAS can be deployed more readily, with
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consequent socioeconomic benefits.

1.3 Challenges

ADAS aim to improve driving comfort and the traffic safety. High-precision real-time 

processing is required for such systems. Typically, ADAS consist of different detection 

modules (e.g. pedestrian detection, lane detection, sign detection) associated with the 

warning system to inform the driver [19] [27],

The accuracy of the detection modules in ADAS has a direct impact on the safety 

of the vehicle and its passenger. The false positive detection of a stop sign, for exam­

ple, may bring the vehicle to a sudden stop, which increases the danger of crashing 

with a following car. On the other hand, drivers may be in an accident due to the 

misdetection of oncoming danger. Accuracy and the reliability are crucial factors in 

ADAS.

Generally, a variety of data from different interfaces is used to improve the per­

formance of the detection modules. Glaser et al. [11] coupled navigation data with 

visual data for detecting the lane. McCall and Trivedi [24] make use of vehicle state 

(e.g. speed, accelerator and brake pedal position) collected through the Controller 

Area Network (CANbus) and other motion-related sensors in conjunction with Light 

Detection And Ranging (lidar) and near-infrared cameras for a brake assistance sys­

tem. As this previous work has suggested, the infrastructure of ADAS must provide 

a rich set of data about the vehicle’s surroundings for reliable ADAS design.

This means that a vast amount of data is continually sent to the processing unit. 

This system must be capable of handling the collected data and sending these to 

appropriate modules in a fashion that will minimize the delay.

Communication between different modules must be taken into the consideration 

for designing the ADAS. In the case of a detection module that estimates the ground
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plane, the results can be used in lane, sign, and pedestrian detection modules, and 

provide a constraint to improve result accuracy. Because one module’s results may 

provide a constraint to other modules, which could greatly increase others’ accuracy, 

ADAS should provide an efficient inter-module communication mechanism.

During the data acquisition and inter-module communication, we must validate 

data and the results from modules in real-time. Depending on the data and its 

source, the data may not be valid after a certain length of time, or some data may 

have higher priority over others. The system must provide a mechanism to support 

the determination of those decisions.

Since the system is operating on a vehicle, the vibration of the vehicle introduces 

additional noise in image data. The instrumentation should be selected to minimize 

the effect o f this vibration. Prior to processing the visual data, the module must 

consider the impact of such noise as well.

Ultimately, the system should be able to monitor and understand the driver’s 

intention and predict the future manoeuvre, and warn the driver in a manner that 

minimizes driver distractions. To achieve this, we need a way to assess the perception 

of the driver with respect to the environment of the vehicle.

1.4 Scope of the thesis

This thesis presents the description of the instrumentation of a vehicle for the on-going 

ADAS development in the RoadLab project. The scope of the paper includes an ex­

planation of the types of devices used in the infrastructure of ADAS, and a description 

of the software created for initiating ADAS development. In terms of hardware, we 

will discuss the rationale to the choice of each device and its usage. The devices 

include visual sensors, a Global Positioning System (GPS) unit, CANbus interface 

and data processing units. The paper will also discuss the set of software interfaces
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developed for the RoadLab ADAS: RoadLab Recorder, RoadLab Calibration inter­

face, and RoadLab Sequence Reader. We will discuss each interface’s functionality 

and structure, briefly discussing the underlying methods.

1.5 Thesis Outline

The rest of this thesis can be outlined as follows: Chapter 2 gives overview of the 

recent work on ADAS and how our work is related. Chapter 3 describes our system 

infrastructure in detail. Chapter 4 describes our approach on camera calibration and 

data synchronization. Then the use of the calibrated sequence is shown with stereo 

computation in chapter 5. Chapter 6 provides the description of the applications 

created as a part of instrumentation. Chapter 7 describes the data and the format in 

which we collected it. Chapter 8 and 9 discuss the limitations and the evaluations of 

the system. Lastly, we sum up our work and suggest possible future extensions.
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Chapter 2 

Related Work

2.1 Related Literature

While injuries per driven kilometre are in decline in developed countries [1], a reverse 

trend can be observed elsewhere in the world, especially in regions where car ownership 

is rising quickly.

Advanced Driving Assistance Systems are generally designed to support decision 

making by providing ergonomic information on the driving environment, such as the 

presence of surrounding vehicles, potential hazards, and general traffic conditions. 

A large array of sensing devices and data fusion strategies have been devised and 

deployed to create effective ADAS. Sensing may be performed with radar [14], [38], 

lidar [15], or laser range finders [20].

However, a majority of ADAS rely principally on vision systems supported by 

other sensor modes [23]. McCall and Trivedi [23] conducted extensive reviews on 

“video-based lane estimation and tracking” (VioLET) systems. They reported that 

laser radar sensors can perform well in certain situations, but multiple lanes can only 

be detected with the aid of visual data. Therefore, visual data play a significant role in 

most of the lane estimation systems, and data from other sensors are used for refining



7

the result in many detection-related tasks.

To refine and optimize the performance of ADAS, GPS data and additional in­

formation about the vehicle motion can be useful as shown in Glaser et al. [11] In 

this work, they developed a lane departure warning system. The instrumentation 

of their system included motion sensors, an enhanced map, a GPS unit and visual 

sensors. The additional information from the motion sensors allowed them to take 

into consideration both the lateral movement and the longitudinal motion.

Another example of a multi-sensored system is [24]. McCall and Trivedi [24] de­

veloped a brake assistance system that is aware of driver behaviour and the driving 

environment. The need for braking is detected based on the laser radar range finder 

and the data from CANbus (e.g. brake pressure, steering angle, and accelerator posi­

tion). Driver head and feet positions are also used for detecting such situations, where 

the driver’s head position is monitored with color cameras, and near-infrared cameras 

are used to monitor the feet. This system suggests the importance of considering the 

driver as a part of ADAS.

As more attention is devoted to the driver’s perception during the operation of the 

vehicle, a number o f researchers suggest different approaches for collecting data. There 

are two main approaches for data collection: using a simulator [29] [18] and using an 

instrumented vehicle [26] [2]. One of the advantages of simulators is that it makes 

the data acquisition process easier in a variety of scenarios. Another advantage of the 

simulator is that it allows the researcher to focus on a specific scenario. However, due 

to the dynamic nature of the driving environment, a simulator may not be sufficient 

to create scenes (e.g. vibration of the vehicle and illumination effects) for testing and 

developing the complete ADAS.

Perez et al. [26] developed an in-vehicle data recorder. Their system is equipped 

with up to eight medium-resolution cameras and one high-resolution camera. The 

radar scanning system is used in the front of their test vehicle. They equipped a
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24 GHz Doppler sensor to the underbody of the car for accurate speed measure. 

Ultrasonic sensors are attached on both sides of the vehicle to measure the free space 

around the vehicle. An eye-tracking system monitors the driver’s gaze and observes 

the viewpoint. The system aims to record real-time data of the vehicle’s internal and 

external state, and analyze driver behaviour in real driving situations.

Another form of widely used data is from event data recorders (EDRs). EDRs 

are used in real vehicles to collect data. The data from these systems contain certain 

information (e.g. engine faults, and a sudden change in wheel speed) from before, 

during, and after a vehicle collision. These data typically do not contain video, sound, 

location or any other external conditions. The United States National Highway Traffic 

Safety Administration (NHTSA) uses EDRs for their crash investigations.

Data collection and processing must be performed in real time. In order to meet 

this hard real-time requirement, early ADAS deployed special parallel architectures 

using transputers [9], a massively paralleled Single instruction, multiple data (SIMD) 

machine [6] and other computers. Even with the dramatic improvement of the com­

puting power over the last decade, complete ADAS with single personal computer 

(PC) or a processor is not practical. A processing unit composed of multiple PCs 

and custom hardware [34] [36] is a very common approach. In addition, the system 

can take an advantage of graphics processing unit’s (GPU) parallel architecture to 

improve its performance [31].

2.2 Our contribution

Our approach, while sharing elements with other’s work, is unique in several ways. 

First, we designed a portable instrumentation requiring no modification to the ve­

hicular platform, using low-cost, off-the-shelf components that are widely available. 

Second, our on-board computational approach rests on scalability. That is to say, ad­
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ditional computing power can easily be added to the current instrumentation, without 

any modifications to the existing system. This, of course, is a core requirement, as 

algorithms must run in real- time. Third, the data collected by the in-vehicle labo­

ratory will be available to the research community. The infrastructure of the ADAS 

research platform we are introducing will encourage other researchers join the field 

and minimize the time and effort required in investigating ADAS or other related 

fields.
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Chapter 3

In-vehicle Laboratory

3.1 System Overview

The design of the instrumented vehicle follows principles of sensor portability and 

computing scalability. Sensor portability is achieved by using vacuum devices to 

attach the instrumentation equipment, such as stereo camera rigs, LCD screens, and 

GPS units, to the interior glass and external metal surfaces of the vehicle, without 

performing permanent modifications to the vehicle. The odometry is obtained from 

the On-Board Diagnostic systems (OBD-II) outlet located under the dashboard on 

the driver’s side of the vehicle. Each minute, the sensory equipment sends two to six 

GBytes of data depending on the number of visual sensors equipped, to the on-board 

computer. With such large amounts of data to process, the computing equipment was 

designed with scalability as a guiding principle. For this purpose, a disk-less cluster 

arrangement was chosen essentially to provide the option of adding computing nodes 

as necessary. Currently, the on-board computer is composed of 16 computing nodes 

distributed over four boards networked with a gigabit switch. The nodes and the 

switch are inside a portable server case, which in turn can be installed on the back 

seat or in the trunk of the vehicle. The computer and instrumentation are powered
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with by 1500W inverter connected directly to the vehicle battery. The instrumentation 

can be run continually without battery drainage.

3.2 Visual Sensors

Most ADAS heavily rely on the laser or lidar sensors to achieve their accuracy. These 

sensors are costly and the high cost of ADAS is a constraint to the public market. To 

overcome this constraint, low-cost, off-the-shelf cameras are selected as visual sensors.

The visual sensors on the vehicle should appropriately monitor the immediate en­

vironment (lanes, other vehicles, pedestrians, obstacles, etc). These hardware systems 

must be capable of high sampling rates (30Hz or more) such that sufficient accuracy 

in image processing and automated vision processes is achieved. It is useful to keep 

in mind that the position of a vehicle moving at 120 kph changes by 33 metres every 

second. The latency between the cameras and the data processing unit should be min­

imal. Firewire cameras minimize the latency of the data transfer. The 1394a firewire 

bus supports 400Mbits/s while the 1394b firewire bus provides up to 800Mbits/s.

For these reasons, we have chosen “Grasshopper” cameras from Point Grey (see 

Figure 3.1). The Grasshopper supports both 400Mbits and 800Mbits bus with a 

high frame rate. The camera can also be synchronized when multiple cameras are 

connected to the same bus, simplifying synchronization issues for the cameras. For 

scalability and the future extension, the image frames include time stamps that re­

solves synchronization issues with other types of sensors or other camera products. 

All the image frames from visual sensors are synchronized to within 125 fis. Once 

synchronized frames are obtained, stereo depth maps are computed at frame rate, 

based on the calibration parameters.

In order to achieve full coverage of the surrounding environment of the vehicle lab, 

multiple cameras with different ranges are required. For these visual sensors, it is crit-
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Figure 3.1: The Grasshopper cameras from PointGrey were used for the RoadLab ADAS 
instrumentation. The cameras can operate on either on a 1394a or 1394b firewire bus. The 
cameras are capable of using a number of different lens types. Currently, we are using one 
pair with 12.5mm and the other pair with 25mm lenses on a 1394a firewire bus.

ical to obtain precise calibration parameters such as lens distortion, the optical center, 

and the external orientation of sensors with respect to each other. This calibration is 

necessary to perform stereo computation and to estimate distances of objects (other 

vehicles, pedestrians, etc.), which in turn greatly simplifies other vision-related tasks 

such as estimating motion, tracking, and detecting obstacles.

Due to the nature of instrumentation on the vehicle, a relatively large amount 

of effort is put into minimizing the vibration during the hardware design phase, and 

professional automotive camera mounts are used. The visual sensors are mounted on a 

single metal rod with vacuum devices attached at the both ends, and an additional rod 

with the vacuum device is connected to the rod with sensors to triangulate the mount 

and minimize the vibration (see Figure 3.2). In this way, cameras can be mounted on 

any of the vehicle’s horizontal surfaces. We have tested mounting the visual sensors 

on the top of the vehicle, on the hood of the vehicle, and on the windshield inside 

of the vehicle (see Figure 3.2). The setup gives us great flexibility in the mounting 

position without additional effort.
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(a) Mounting the visual sensors on the windshield 
inside of the vehicle

(b) Mounting the visual sensors on the top of the 
vehicle

Figure 3.2: Different Experimental Configuration with Cameras.

3.3 GPS unit

The utilization of the Global Positioning System (GPS) is another important aspect of 

ADAS [11]. ADAS applications require an accurate knowledge of road structures. The

■

(c) Mounting the visual sensors on the hood of the 
vehicle
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GPS data includes location information including altitude, latitude, and longitude, as 

well as the course and the velocity of the vehicle. The information from a GPS unit 

in combination with the map data becomes a powerful tool for ADAS.

For our in-vehicle laboratory, the GlobalSat BU-353 GPS unit is used. The GPS 

data is obtained through “gpsd” 1, a GPS service daemon that provides an event- 

driven architecture. This is well aligned with our principle of scalability, gpsd sup­

ports numerous vendors of GPS units since it is independent of the driver. Another 

advantage of gpsd is the capability of socket communication. The data processing 

unit may consist of multiple nodes to increase its computing power. In a such case, 

GPS data can be easily accessed by other ADAS components from different nodes 

without implementing a new communication method.

3.4 CANbus interface

Contemporary vehicles equipped with On-Board Diagnostic systems (OBD-II) allow 

vehicle sensors to report their current status, and constitute the interface through
V

which odometry is made available in real time. Since 2008, the CANbus protocol is 

mandatory for OBD-II. This standardization simplifies the real-time capture o f vehicle 

data. OBD-II to USB hardware interfaces with appropriate drivers are now commonly 

used to route vehicle-related information to on-board computers or similar devices. 

The available information relevant to i-ADAS applications include current speed and 

acceleration (longitudinal and lateral), steering wheel rotation, state of accelerator 

and brake pedals, and independent wheel speed, which are captured in real-time at 

frequencies between 20 and 200Hz. These elements provide the information that is 

required to understand the manoeuvres affected by the driver.

The data from the OBD-II/CANbus is accessed by creating a software layer. Ad­

ditionally, the incoming data from the instrumentation includes timestamps' allowing

1 Available at http://gpsd.berlios.de/

http://gpsd.berlios.de/
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the system to fuse and select data elements in a synchronized fashion.

In our instrumented vehicle, two types of bus speeds are available. Different 

types of information are gathered through these buses. High-speed CANbus contains 

information on the movement of the vehicle: brake pedal position, steering wheel 

position, individual wheel speed, engine speed, etc. Low-speed CANbus interface 

collects the state of interior controls: signals, wipers, remote radio, phone controls, 

hazard lights, fans, seatbelts, etc.

All the information gathered from the CANbus interface is valuable: such infor­

mation is a great indication of the vehicle state as well as a driver’s operation of the 

vehicle.

3.5 Data processing unit

On-board computing capabilities must be sufficient to process incoming data in real 

time. To this end, we have designed and assembled a computer for real-time data 

processing and fusion consisting of 16 cores, each running at 3.0GHz, with 16GB of
X.

internal memory and a 128GB Solid State Drive (SSD), with Linux Debian 5.01 as the 

operating system (see Figure 3.3). The nodes are networked with a high-end gigabit 

network switch, and configured as a disk-less cluster, with the master node providing 

the operating system image to other nodes. By our design choice, it is easy to add 

extra nodes to increase the number of cores and the computing power as necessary. 

In addition, each node can be equipped with a CUDA-enabled graphics card2 to take 

advantage of GPU’s parallel architecture.

The data processing unit and instrumentation are powered with a 1500W inverter 

connected directly to the battery of the vehicle. The instrumentation can run contin­

ually without battery drainage. To protect the devices from the noise-contaminated 

power, we have employed a power conditioner. The power conditioner cleans and 

2CUDA is NVIDIA’s parallel computing architecture



16

Figure 3.3: The Data Processing Unit for RoadLab: The processing unit in the image 
operates with four computing nodes. The top node operates as a master to provide an 
operating system image to other nodes. Only the master node is equipped with a hard disk. 
Other nodes are configured to operate as a disk-less cluster.

filters incoming power and increases the durability of the system.

3.6 The Development of i-ADAS

The in-vehicle laboratory is used as a platform to collect the sequence of the road 

images and test different ADAS modules. The recorded sequence shall cover various 

scenarios on the road. Highway, urban area and rural road sequences are required 

in various weather conditions at different times of the day. Since the change of light 

sources and other illumination problems are challenges that the vision-based system 

must overcome, it is critical to obtain such sequences as a part of the dataset.

The dataset provides rich information about the vehicle state and the surrounding

I
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environment. This allows us to actively develop the various ADAS related applications 

and modules.
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Chapter 4

Data Calibration

4.1 Camera Calibration

The decline in the cost of computer and camera devices has resulted in a growth in 

stereo-based applications. For visual sensors, it is critical to obtain precise calibration 

parameters, such as lens distortion, the optical center, and the external orientation of 

sensors with respect to each other. Again, calibration's required to perform stereo 

and to estimate distances of objects (other vehicles, pedestrians, etc.), which in turn 

greatly simplifies other vision-related tasks such as estimating motion, tracking, and 

detecting obstacles. The RoadLab stereo calibration interface is created for this pro­

cess.

4.1.1 Calibration Techniques

There are two main categories of camera calibration: photogrammetric and self­

calibration. A  photogrammetric method is performed by observing a geometrically 

well-known calibration object in 3-D. The calibration objects are usually constructed 

from two or three orthogonal planes or a single plane with a checkerboard pattern 

embedded to the surface. The most well-known technique from this category is Tsai’s
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method from .1987 [35]; despite the age of this method, the method delivers high 

precision and therefore is very widely used.

The term self-calibration, or auto-calibration, is used when no calibration object 

is required. Instead, images taken by moving a camera in a rigid scene and other 

constraints on the internal camera parameters are used. Self-calibration was first 

introduced by Maybank et al. [22]. Since Maybank’s proposal, the self-calibration 

method has become an active research topic in the Computer Vision community. 

The self-calibration method is very flexible. However, due to the large amount of 

parameter estimation required by this approach, it is difficult to produce a precise 

outcome. The results of such methods axe not yet comparable to the ones obtained 

from photogrammetric methods. >■■■.■

The hybrid of the two methods above was suggested by Zhang [39], and became 

very popular in the Computer Vision community. Zhang’s method permits a more 

flexible configuration of the calibration object without degrading the accuracy.

The researchers have conducted the number of reviews to assess the existing 

calibration methods. The recent literature reviews conducted by Sun and Cooper- 

stock [32] and Salvi et al. [28] provide details of the traditional calibration methods. 

Salvi et al. make the comparison'between methods from Tsai [35], Hall [12], and 

Faugeras and Toscani [10] to obtain the most accurate method. Sun and Cooper- 

stock provide another comparison between methods from Tsai [35], Heikkila [13] and 

Zhang [39]. All the techniques reviewed by Sun and Cooperstock, and Salvi et al. 

are popular and widely used in the Computer Vision community. The result of the 

surveys indicated that Tsai’s method achieved the highest performance.

The review from Sun and Cooperstock uncovers a drawback of Tsai’s method, 

however. This drawback is that the result of the calibration is highly sensitive to 

the setup of the calibration. To achieve accuracy, one must precisely configure the 

calibration environment, which requires a vast amount of time and effort. This is true
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for any conventional method that is based on a world reference approach. Zhang’s 

method is less prone to noise from the calibrating configuration.

It is also worth noting the iterative nature of above methods. Clearly, there are 

existing non-iterative models to find the solution, which are faster. The algorithms 

do not suffer from problem related to convergence and other iterative optimization- 

related issues. However, the nature of noise on the image significantly reduces the 

accuracy. Therefore, the iterative refinements of. the methods are the main factors 

in determining accuracy. We can clearly see the tradeoffs between accuracy and 

flexibility. ■

As Zhang’s title, “A  flexible new technique for camera calibration,” suggests, this 

calibration method can be easily: performed in casual fashion with; acceptable accu­

racy1. This is well suited for the purpose of RoadLab. The position of visual sensors 

in the in-vehicle laboratory can vary from time to time. The visual sensors can be 

equipped with different ranges. By adopting Zhang’s method, we can minimize the 

loss of accuracy and maintain great flexibility.

X................. .
4.1.2 Camera Calibration Process

In a typical camera calibration process, there are two types of parameters that need 

to be discovered. One is called the intrinsic parameters. This intrinsic parameters 

describe the internal geometry and optical characteristics of the camera. The extrinsic 

parameters measure the position and the orientation of the cameras with respect to 

each other.

Zhang’s calibration method requires a planar checkerboard grid images with at 

least two different orientations. The algorithm uses the extracted corner points of 

the checkerboard pattern to compute a projective transformation between the im­

age points of the n different images. A homography of each view is then optimized

1 According to Sun and Cooperstock [32], the acceptable accuracy for Zhang’s method is the 
Normalized calibration error (Proposed by Weng et al. [37]) of 2.6.
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through the Levenberg-Marquardt algorithm [25], which is a gradient-descent method 

to minimize functions. The images of the two circular points must lie on an absolute 

conic, which is a point at infinity. This constraint is used to establish a linear system. 

Using this linear system, some intrinsic parameters are extracted.

Corner extraction from the checkerboard is the key factor for the stable parameter 

estimation. Once the corners are detected, an additional iterations are conducted to 

find the sub-pixel accurate location of the corner. The resolution of acquired image 

frame affects the accuracy of the detection as well. The resolution is set to 640 by 

480 pixels. Once the parameters are estimated, the focal length is scaled for 320 by 

240 resolutions by division of 2.

In addition, the visual sensors axe calibrated in pairs. A pair with the same 

focal length can be used as another constraint to yield stable intrinsic parameters 

estimation. The RoadLab stereo calibration interface was designed for this process. 

The interface is implemented using a calibration algorithm from the OpenCV 2.1 open 

source library based on Zhang’s technique [39]. The calibration process consists of 

two steps. Intrinsic parameters are first estimated fo^ each sensor and then, based 

on these, the extrinsic parameters for sensor pairs with the same focal length are 

obtained. It is also possible to estimate the extrinsic parameters dynamically [8].

4.2 Camera Calibration of multiple stereo pairs

Once the parameters for each stereo pair with the same focal lengths are estimated, 

additional calibration is conducted. Since we know the intrinsic parameters of the 

cameras, the calibration for all possible pairs of the stereo that share a common field 

of view can be easily performed to estimate the relative position with respect to each 

stereo pair. The same calibration interface is used as the previous section, which is 

based on Zhang’s method. This allows us to set all the cameras on the same coordinate
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system. #

For the cameras that do not share a common view, additional information is 

needed. One way of calibrating is to use a special calibration tool so that the stereo 

pair can view the same object o f known size to calculate the relative position of 

cameras. Another alternative is to detect the most distinct features around the envi­

ronment and track them (e.g. [21], [40] and [16]). The calibration of such a type of 

configuration will be included in the future system.

4.3 Data synchronization

The data from visual sensors must be synchronized with data from CANbus interface 

and GPS unit. Each interface creates a timestamp based on the system time. For 

recording, the data acquisition rate for visual sensors will serve as the base. The GPS 

and CANbus interface data stream is collected and attached to the image-frame. At 

an acquisition rate of 30 Hz, alb the data gathered after the last image frame up to 

the current frame is stored together. The data format--for the recorded sequence is 

discussed in detail in chapter 6.
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5.1 Stereo Correspondence Algorithm

Disparity maps are processed by matching an object on two or more images with 

the corresponding elements. Then the range1 of the object is computed using those 

detected matches. The method for matching the objects can be categorized as local 

or global. Local methods search small regions based on the internal characteristics of 

the given patch. Global methods consider physical constraints such as the continuity 

of the surface. Disparity maps are widely used in vision-based ADAS modules. The 

accuracy of the applications greatly depends on the disparity as a result. Due to the 

hard real-time constraints on these applications, they often rely on local matching 

algorithms. These algorithms outperform the global optimization method. The lo­

cal methods can be further classified by feature-based matching or small area patch 

correlation. Since features (e.g. edges, corners, or blobs) are mostly independent 

of the lighting and viewpoint, feature-based methods may be more robust than the 

ones using correlation. However, feature-based matching will result in sparse range 

disparity1 with additional time required for computing the feature extraction.

'Some parts of images may not have a detectable feature, therefore, resulting a disparity map 
with missing values
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5.2 Stereo Computation in RoadLab

We have deployed a stereo algorithm from OpenCV. The block-matching method 

in OpenCV for stereo is based on Konolige [17]. Konolige used area correlation to 

optimize the performance. He uses Laplacian of Gaussian (LoG) transform and LI 

norm (absolute difference) correlation. The result of the algorithm is improved further 

by scaling the image and using multiple resolutions of the same image. In addition, 

OpenCV uses M M X ™  and Strreaming SIMD Extensions (SSE) instruction sets.

Once the disparity map of the scene is estimated, the map can be used in various 

modules. The distance of the detected object from different ADAS modules is verified 

using the map; it also provides additional criteria for the detection modules. We have 

prior knowledge of the size of vehicles, pedestrians, traffic signs or other objects that 

require detecting. Since we know the distance of the object with respect to the 

vehicle, we can estimate the size of detected object. The estimated size can be used 

to distinguish the outliers.

The estimated values of disparity allow us to calculate the ground plane as well. By 

extracting the ground from the image frame and removingAmnecessary information 

(eg. objects above the ground), it is possible to build a proper region of interest in the 

image (e.g. search only bottom half of the image, which is the ground, for detecting 

lane markings). This significantly reduces the computation time and brings us one 

step closer to real-time programming.
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Chapter 6

Data format and acquisition

A RoadLab research film sequence, which is stored in a folder, consists of XML files 

and RDS files that are used to represent and interpret the data collected by the 

instrumented car. The number of files will vary with the length of the filming session 

and the number of cameras used.

The XML files contain camera parameters used to calibrate the cameras for use 

as stereo pairs. The RDS files contain an amalgamation, of all the data collected by
V

the system at the time of recording. The RDS file names are auto-generated by the 

system and consist of sequential 10 digit numbers (with leading zeros). The RDS file 

contains a header and a data section. The header contains information related to the 

images and cameras that are used to interpret the data section. The data section is 

a series of data frames. Each data frame contains GPS data, CANbus data and the 

image data. Since the data from the CANbus messages have different frequencies, all 

the CANbus data from the last image acquisition to the current image acquisition is 

stored in each data frame. Therefore, an additional data header is required for each 

data frame to know the size of the CANbus data .

The number of image frames in the data frame can also vary. Since the system 

is easily extendable, different numbers of cameras can be used. The header of the
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RDS file contains the information acquired before reading the data (Size of the image 

frame, number of the cameras used during recording sessions, colour information, and 

frame rate)(see Figure 6.1). To avoid data loss, there is no compression in the image 

frames, and a bitmap format is used. The image frames can be stored in RGB or 

gray-scale. At the time of writing, we are collecting image frames at 30Hz with 320 

by 240 pixels.

Figure 6.1: RDS File Structure: The file header consists of the image acquisition frame 
rate and the image format. The data frame is created for every frame. Each data frame 
contains GPS data at the time of the image acquisition, the CANbus messages since the 
previous frame. The images in the data frame are stored in a sequential manner based on 
the ID number o f the camera on the firwire bus.

The camera parameters are stored in XML format. The intrinsic and extrinsic pa­

rameters are stored in separate files for each camera and each camera pair. Therefore, 

if the configuration of the system is consistent, one can easily replace the parameters 

from different calibration tools if necessary.
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Chapter 7

RoadLab Application

7.1 RoadLab Recorder

The main environment of the RoadLab applications is Linux and deployed G TK +/gtkm m 1 

for the user interface development. G TK +/gtkm m  are very well known open source 

cross-platform toolkits. Therefore, applications can be easily ported to Mac or Win­

dows. ; '• ^

The data recorder plays an important role in RoadLab. It is responsible for data 

acquisition, which allows us to develop ADAS modules. The recorder consists of mul­

tiple threads. Each thread is responsible for communicating with hardware interfaces 

and writing the input data to the hard drive. -

We have to minimize the data loss during filming. The bottleneck for recording the 

sequences is writing data on the physical media. The common procedure for writing 

data on the hardware is to read data from the interface, and then buffer the data, and 

finally, write it on the actual storage medium. Increasing the number of write calls 

can reduce the system performance dramatically.

In order to reduce the number of write calls, we have employed a cyclic queuing 

mechanism. All the acquired data is first queued onto the memory. Since the speed 

1Toolkit for creating graphical user interfaces, more detail available at http://www.gtk.org/

http://www.gtk.org/
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of memory is significantly higher than the, writing speed on the physical medium, 

the delay is minimized. We have implemented the queue in a way that en-queuing 

can be possible while de-queuing is in progress, and vice versa. The writing call is 

threaded, as we have mentioned, to keep any blocking the data acquisition process to 

a minimum.

In addition, the recorder provides a way to view stereo computation in order to 

quickly test the sequence and allows encoding of image data to compress the data if 

necessary (see Figure 7.1).

7.2 RoadLab Calibration

The calibration software allows us to estimate and store the intrinsic and extrinsic 

parameters for available cameras. Prior to the calibration process, we need to know 

the number of columns and rows on the calibration board with a checker pattern, 

along with its width and height. If the intrinsic parameters of the selected camera 

were already available, then the user can choose to calibrate the extrinsic parameters 

only. When the chessboard pattern is presented in the scene, the calibration software 

will detect the number of corners. If the number of corners were valid, it allows the 

user to save the image frame. Once the user is collected more than two pairs of images, 

he/she can run the calibration, that estimates the camera parameters and saves these 

parameters in XM L format. The images used in the calibration, can be stored and 

can be used as well (see Figure 7.2).

Once the calibration is done, users can test the result by rectifying current cameras 

or by computing disparity. From our experience, we have discovered that for reliable 

parameter estimation, the calibration image set should cover all areas of the image.

The calibration tool adds great flexibility to the RoadLab instrumentation. The 

location of visual sensors can be changed as often as needed for the desired coverage
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■

Figure 7.1: RoadLab Sequence Recorder: The recorder either allows a user to view two pairs 
of images in real-time, or from a previously recorded session. Users can choose the viewing 
mode of the pair, selecting from raw, rectified, or stereo. The raw mode displays the images 
directly from the cameras or the recorded file. The rectified mode shows horizontally aligned 
images of the selected pair (using the calibration parameters.) The stereo mode computes a 
disparity map and shows the result. The user can change the view mode at anytime during 
the recording and playback sessions. The top pair of images above uses raw mode and the 
bottom pair stereo mode.
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Figure 7.2: RoadLab Calibration Interface: The calibration interface allows us to calibrate 
the cameras and store the parameters in XML files.

7.3 RoadLab Reader

The goal o f the reader application (see Figure 7.3) is to allow any users to download 

and test the sequence. Therefore, the reader supports multiple platforms including 

W indows, different Linux distributions and OS X. The source code o f the reader is 

available with recorded film sequences on the web.

The rectification and depth map com putation features are integrated into the 

reader so that other researchers can use the 3D information without additional effort. 

The plan for the reader is to include the ability to add functionalities as a module, 

so that users can easily add their own functions to test their results rather than 

modifying the reader code.
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Figure 7.3: RoadLab Reader: Once the road image sequences are stored using the recorder, 
data can be viewed using the reader. On the reader, users can select the desired camera pair 
and view the recorded sequence. The reader shows the images directly from files, as well as 
the rectified images and a computed disparity map.
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Chapter 8 

Limitations

There are several limitations with instrumenting a vehicle for purposes such as ours. 

On the sensing side, using vacuum devices to attach the instrumentation to the vehicle 

limits the time of continuous vehicular operation to 30 minutes. After this time, the 

vacuum device pumps must be operated again to securely maintain the equipment 

in place. In addition, long-range lenses (with long focal lengths), when installed on 

the stereo systems, are sensitive to vibrations generated by. both pavement condition 

and vehicle operation, resulting in a degradation of the raw 3D depth data. This 

problem is worse when the mounting configuration is located inside the windshield, 

as it introduces distortions that cannot be easily corrected.

The availability of on-board computing power is inherently limited by the available 

space and electrical power in the vehicle. For instance, the use of high-resolution 

cameras would severely compromise our requirements for frame-rate processing. In 

this case, the problem may be addressed by replacing the computing nodes with GPUs, 

involving significant material costs. There is also the possibility of vehicle battery 

drainage with the use o f high-end computing equipment, requiring the installation 

o f a high-output, after-market vehicle alternator. In addition, our use of solid state 

drives limits the amount of time the vehicle can be operated in recording mode. In
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our case, this limit is between 10 and 30 minutes, depending on how many visual 

sensors are in use while recording.
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Performance Evaluation of 

Platform

The dual stereo systems constitute an essential component of the instrumented vehicle 

and, for this reason, their performance (related to raw 3D depth data) is crucially 

important. We first consider the problem of range resolution, which is inversely related 

to object distance. The relationship governing range resolution is given by

A  r (9.1)

where r is distance to object; / ,  focal length of imaging lens; b, stereo baseline length; 

and Ad, pixel size divided by the interpolation factor of the epipolar scan-line al­

gorithm (for sub-pixel-precision 2D matching). The range resolutions for our dual 

stereo systems constitute a reliable indication of the error levels contained in the 

depth data, provided that calibration is accurate and that the depth measurements 

do not stem from incorrect 2D matches (due to occlusion, spatial aliasing, image 

noise, or related problems). Many dense stereo vision algorithms have been compar­

atively evaluated (including that of OpenCV, which we use) with image sequences 

for which true depth is available in terms of incorrect match density and resilience
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to noise [33]. The short-range stereo system has a baseline o f length b =  357 mm, a 

smallest detectable 2D disparity of T  Qf a pixel, a focal length of /  =  12.5 mm, and 

a physical pixel square size o f 4.40 pm. The long-range stereo system differs only in 

its baseline (b =  678 mm) and focal length ( /  =  25.0 mm). Figure 9.1 shows the 

range resolution functions for both stereo systems. As expected, the range resolution 

of the long-range stereo pair surpasses that of the short-range, due to an extended 

baseline and a longer focal length of the lens.

0 10 30 30 40 50 60 70 80 90 100 110 130 130 140 150
Distance l m)

Range Resolution of Dual Stereo System

Figure 9.1: Range resolution functions for dual stereo system, from 0 to 150 m. As shown, 
the error rate of the stereo system will exponentially increase with respect to the distance

We have com puted the average match density1 of both the long- and short- range 

stereo systems using instrumented sequences produced with the vehicle on public 

roads2. Results are reported in Table 9.1, where different values o f the minimum 

disparity3 were used. As can be observed, the short-range stereo system performs

lrThe number of matched pixels out of the size of density map is averaged.
2 The instrumented sequences used to perform these computations are publicly available at 

www.csd.uwo.ca/faculty/beau /  roadlab-download/index.html.
3The minimum disparity parameter controls the offset to the disparity search window. Increasing

http://www.csd.uwo.ca/faculty/beau
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better in terms of density, due to several factors,, including the reported fact that 

operational vibrations introduce more noise in long-range systems.

Table 9.1: Stereo match density for short and long-range systems, where d is minimum 
disparity and D is match density with standard deviation a.

Stereo A verage  D en sity

S hort-R ange L on g-R an ge

d =  32 d =  64 d =  64 d =  96

D a. D a D a D a

71.6% 9.0% 82.5% 10.1% 49.4% 7.7% 41.3% 7.5%

The performance of the quad-core computing nodes is largely sufficient to execute 

the stereo software at 30 fps. While one core suffices for the stereo computation, other 

cores may also be involved in processing other visual aspects of the captured frames 

and hence the speed at which frames can be transferred from one node to another is 

a critical constraint. By way of a high-end gigabit switch, the cores transfer frames 

(with resolution of 320 by 240 pixels) between nodes at 1.4MHz (or 0.7 ms per frame), 

a speed that does not impede the performance of the system. Additionally, the highest 

transmission rate on the OBD II CANbus was measured at 200Hz, and our system 

reads and stores CANbus status at 2MHz, ensuring that no incoming message could 

be missed out4.

positive values have an effect similar to augmenting the convergence of the stereo cameras.
Performance ratings of other aspects of our instrumentation such as the GPS device (GloablSat 

BU-353) is published by manufacturers and not reported herein.
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Chapter 10 

Conclusion

The complete infrastructure for the development of i-ADAS was described in detail. 

We have developed vehicle-independent, portable and scalable in-vehicle instrumen­

tation for i-ADAS. Our motivation to develop this in-vehicle research platform stems 

from the observation that while injuries per driven kilometre are in decline in devel­

oped countries, the reverse trend can be observed elsewhere in the world [1]. Tech­

nologies such as i-ADAS have the potential to significantly reduce vehicle accidents 

and their consequences. ; i

We have made the datasets collected from our platform available to the public. 

These dataset can be read through the applications we have provided, which are also 

available to the public. The reader application can be easily modified to utilize the 

data as one needs. Researchers can save tremendous amounts of time in initializing 

their projects, and focus on their new methods. Furthermore, researchers with existing 

ADAS can test their performances before their actual road test.

In future work, the calibration algorithms for vision sensors that do not share 

a common field of view will be more closely investigated and integrated into the 

platform. The visual data of the driver may be added to the dataset as well.
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