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Abstract

This thesis deals with the problem of approximating germs of real or complex analytic

spaces by Nash or algebraic germs. In particular, we investigate the problem of

approximating analytic germs in various ways while preserving the Hilbert-Samuel

function, which is of importance in the resolution of singularities. We first show that

analytic germs that are complete intersections can be arbitrarily closely approximated

by algebraic germs which are complete intersections with the same Hilbert-Samuel

function. We then show that analytic germs whose local rings are Cohen-Macaulay

can be arbitrarily closely approximated by Nash germs whose local rings are Cohen-

Macaulay and have the same Hilbert-Samuel function. Finally we prove that we may

approximate arbitrary analytic germs by topologically equisingular Nash germs which

have the same Hilbert-Samuel function.

Keywords:analytic space, Hilbert-Samuel function, approximation, Nash,

Cohen-Macaulay, complete intersection
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Summary for Lay Audience

Replacing geometric objects with simpler ones that share some properties with the

original is an important operation in many branches of geometry. When the simpler

replacement can be derived from the original by stopping a limiting process, it is

called an approximation. In this thesis we deal with the local approximations of real or

complex analytic spaces which preserve various properties. “Local” here indicates that

we are interested in approximations near a point as opposed to global approximations

that are approximations over some finite region of space. Analytic spaces near a

point are defined by finite sets of power series. We look for approximations that

preserve (i) the algebro-geometric class of the original, i.e., Complete Intersection

or Cohen-Macaulay or (ii) the topological type of the original. In both cases we

also impose the requirement that the approximants have the same Hilbert-Samuel

function as the original. This additional constraint is motivated by the fact that

the Hilbert-Samuel function is thought of as a measure of how singular an analytic

space is near a point and plays an important role in Hironaka’s seminal work on

desingularization of analytic spaces. We approximate the original analytic space by

approximating the power series that define it near a point. We show that it is possible

to find approximations of the form (i) and (ii) whose defining power series belong to

an algebraically simpler class than those of the original. Specifically, in the case of

Complete Intersections we show that we can approximate the original set of defining

power series by polynomials. In the other cases we show that the approximating power

series can be chosen to be Nash, i.e., power series satisfying a polynomial equation.
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Chapter 1

Introduction

For an analytic space X ⊂ Kn (for K = R or C), its germ at a point a ∈ X, denoted

by Xa, is defined by a finite set of convergent power series, and describes the local

behaviour of X at the point a. The main question considered in this thesis is whether,

given a germ of an analytic space Xa, we can find a germ X̂a that is defined by

polynomials or algebraic power series, such that X̂a shares certain specified algebro-

geometric properties with Xa. A standard approach to such problems in analytic

geometry is to consider approximations X̂a to Xa, defined by polynomials or algebraic

power series that are µ-degree (for µ ∈ N) approximations to the defining convergent

power series of Xa. Then by choosing µ to be sufficiently large one can expect to

find germs X̂a that have the same algebro-geometric properties as Xa. Indeed, the

construction of such algebraic approximations to analytic objects is one of the central

problems in analytic geometry.

Specifically, in this thesis we consider approximation of the germs of (real or

complex) analytic spaces, Xa, by Nash germs, or even algebraic germs, which are

equisingular with Xa in the sense of the Hilbert-Samuel function. Recall that, for an

1



2 Chapter 1. Introduction

analytic germ Xa, the Hilbert-Samuel function HX,a is defined as

HX,a(η) = dimK
OX,a
mη+1

, for all η ∈ N ,

where OX,a is the local ring of X at a, with the maximal ideal m. The Hilbert-Samuel

function encodes many important algebro-geometric properties of the germ and may

be regarded as a measure of its singularity. It plays a central role in resolution of

singularities (see [10]).

Let K = R or C, let x = (x1, . . . , xn) and let K{x} denote the ring of convergent

power series in variables x. If X0 is an analytic germ at 0 in Kn, its local ring OX,0 is

of the form K{x}/I for some ideal I in K{x}. Let K〈x〉 denote the ring of algebraic

power series, that is, the convergent power series algebraic over the ring of polynomials

K[x]. One says that the germ X0 is Nash if the ideal I can be generated by elements

of K〈x〉. If I can be generated by polynomials then we call the germ X0 algebraic.

In our first series of results, we deal with singularities of special types. Namely,

those whose local ring is Cohen-Macaulay, or even better, a complete intersection.

We prove that a complete intersection singularity can be arbitrarily closely approxi-

mated by algebraic germs which are also complete intersections and share the same

Hilbert-Samuel function (Theorem 3.1.3). Polynomial approximation is not possible,

in general, for Cohen-Macaulay singularities (see Example 3.2.2). The next best thing

is approximation by Nash germs. In Theorem 3.2.1, we show that a Cohen-Macaulay

singularity can be arbitrarily closely approximated by Nash germs which are also

Cohen-Macaulay and share the same Hilbert-Samuel function.

We also consider the problem of the approximation of an analytic singularity X0

by Nash germs which are homeomorphic with X0. We give a variant of Mostowski’s

theorem [22], Theorem 3.4.1, showing that every analytic germ X0 ⊂ Kn
0 can be

arbitrarily closely approximated by a Nash germ X̂0 ⊂ Kn
0 , such that the pairs (Kn, X)
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and (Kn, X̂) are topologically equivalent near zero, and the Hilbert-Samuel functions

HX,0 and HX̂,0 coincide. This may be combined with the other results that we prove.

When dealing with questions about the Hilbert-Samuel function of the ring K{x}/I,

it is convenient to work with the so-called diagram of initial exponents of I, a com-

binatorial representation of the ideal I, denoted N(I), which we recall in Section 2.4.

Indeed, the Hilbert-Samuel function of K{x}/I may be read off from the sub-level

sets of (the complement of) N(I) (Lemma 2.8.3). The diagram itself is, in turn,

uniquely determined by a standard basis of I, which is a special generating set of

I (see Section 2.5). Our key tool in establishing Hilbert-Samuel equisingularity of a

given germ and its approximants is a theorem of T. Becker [5], which gives a criterion

for a collection {F1, . . . , Ft} ⊂ I to form a standard basis of I in terms of finitely

many equations that depend polynomially on the Fi. It is therefore well suited for an

application of the classical Algebraic Artin Approximation.

We call X0 a Cohen-Macaulay (resp. complete intersection) singularity when the

local ring OX,0 is Cohen-Macaulay (resp. a complete intersection); see Section 3.1

for definitions. The finite determinacy of the Hilbert-Samuel function of a complete

intersection follows already from the work of Srinivas and Trivedi [31]. We give a new

proof of this fact here, because it can also be applied in the Cohen-Macaulay case,

which is new. Roughly speaking, we combine the equivalence of Cohen-Macaulayness

and flatness (Remark 3.1.2) with a corollary to Hironaka’s flatness criterion (Proposi-

tion 2.4.11), to show that with respect to a certain total ordering on Nn the diagrams

of I and its suitable approximation Iµ coincide. We then show (Proposition 2.8.8) that

this equality implies equality of the diagrams with respect to the standard ordering,

and hence equality of the Hilbert-Samuel functions.

Finally, in the proof of Theorem 3.4.1, we combine the above Becker criterion with

the original strategy of Mostowski, based on P loski’s parametrized Artin approxima-

tion [27] and a theorem of Varchenko stating that the algebraic equisingularity of
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Zariski implies the topological equisingularity [32]. We use the modern exposition

of Mostowski’s theorem, due to Bilski, Parusiński and Rond [12], where the original

P loski theorem is replaced with a more powerful Theorem 2.6.1.

The structure of the thesis is as follows: Chapter 2 develops background material

that establishes the setting in which we are working, and some essential propositions

which we use as tools in the proofs of the main results. Chapter 3 contains the proofs

of the main approximation results of this thesis. In Chapter 4 we explore consequences

of these results and present two possible directions of future work. In Appendix A

we present certain definitions and theorems from local algebra that we use at various

points in the thesis.



Chapter 2

Background

In this chapter we present the basic theory of real and complex analytic sets and

spaces, their germs and the germs of functions defined on them. Many well known

results are presented without proofs. We also present other original results that we

use in the proofs of the main approximation theorems in Chapter 3. For these we

include complete proofs.

2.1 Basic Theory of Real and Complex Analytic

sets and germs

In this section we present certain basic results in the theory of real and complex

analytic sets. These are presented here without proof. There are various well known

references on the theory of real and complex analytic sets and spaces, in particular

we point the reader to [23], which was our primary source for the current section.

This choice was made because of the fact that care is taken by the author in [23] to

clearly separate the theory into parts that apply to both K = R,C, and parts that

specifically only apply to K = C and K = R.

5



6 Chapter 2. Background

2.1.1 Analytic Sets - General Theory

We consider first results and definitions that are valid both in the case when the field

K = R or C. Throughout this section K = R or C.

Definition 2.1.1. A function defined in an open set Ω ⊂ Kn is called analytic if for

every point p ∈ Ω there is a neighborhood U of p and a power series that converges

to f on U . That is,

f(x) =
∑
α

cα(x− p)α for all x ∈ U. (2.1.1)

The power series on the right in the above equation is then called the Taylor series of

f at p.

Remark 2.1.2. In the case when K = C analytic functions are called holomorphic

functions.

Definition 2.1.3. A subset A of an open set Ω ⊂ Kn is called an analytic set if

for any p ∈ Ω there exists an open neighborhood U of p and a collection of functions

f1, . . . , fr analytic on U such that,

A ∩ U = {x ∈ U |f1(x) = · · · = fr(x) = 0} (2.1.2)

Remark 2.1.4. It is easy to see that an analytic set A ⊂ Ω is closed in Ω.

Proposition 2.1.5. If Ω ⊂ Kn is a connected open set and A ⊂ Ω is an analytic

subset of Ω then Ω \ A is dense in Ω.

Definition 2.1.6. A point p in an analytic set A is called a simple (or regular) point

of A if the functions f1, . . . , fs defining A in some neighborhood U of p may be taken

so that the differentials df1(p), . . . , dfs(p) are linearly independent. Points of A that

are not regular are called singular.
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Remark 2.1.7. It is a consequence of the above definition that an analytic set A is

an analytic manifold in some neighborhood about every simple point. We define the

dimension of A at a simple point to be the dimension of this analytic manifold.

The dimension of an analytic set has two equivalent definitions:

Definition 2.1.8. The dimension dimpA, of an analytic set A at a point p is defined

as either:

(1) dimpA := the highest dimension of A as a manifold at simple points near p.

(2) dimpA := the highest codimension of a plane P through p such that p is an

isolated point of A ∩ P .

There is also a global notion of the dimension of an analytic set which is defined

in an intuitive way:

Definition 2.1.9. The dimension of an analytic set A ⊂ Ω ⊂ Kn is dimA :=

sup{dimpA : p ∈ A}.

In this thesis, the set of singular points of an analytic set A is denoted by Sing(A).

2.1.2 Local Properties of Analytic sets

It is desirable to have tools to analyze the properties of an analytic set near a particular

point. The mathematical object that formalizes the notion of a ”set near a point” is

a germ.

Definition 2.1.10. Suppose X is a topological space, and p ∈ X. Consider the

equivalence relation ∼p on the set of subsets of X, P(X),

A ∼p B iff there is an open set U , with p ∈ U such that A ∩ U = B ∩ U. (2.1.3)

The elements of P(X)/ ∼p are called set germs at p. The equivalence class of A ∈

P(X) is denoted by Ap.
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We note the following regarding germs:

Remark 2.1.11. (1) We write Ap ⊂ Bp when A ⊂ B for some representatives A

and B of Ap and Bp respectively.

(2) We set Ap ∩ Bp := (A ∩ B)p and Ap ∪ Bp := (A ∪ B)p. Also, the cartesian

product of germs can be defined Ap×Bq := (A×B)(p,q). These can be shown to

be well-defined (i.e., independent of the representatives chosen for Ap and Bq)

(3) Ap 6= ∅ iff p is in the closure of A, i.e., p ∈ Ā.

(4) Representatives of Xp are exactly those sets A ⊂ X which satisfy p ∈ int(A).

We also have the notion of function germs which is defined as follows:

Definition 2.1.12. Let X be a topological space, p ∈ X and F(X, p) be the collection

of all pairs (U, f) where U is an open neighborhood of p and f : U → K. Consider

the equivalence relation ∼p on F(X, p),

(U, f) ∼p (W, g) iff there is an open neighborhood V of p such that f |V = g|V .

(2.1.4)

The elements of F(X, p)/ ∼p are called function germs at p. The equivalence class

of (U, f) is denoted as fp.

Some useful facts about function germs are:

Remark 2.1.13. (1) fp + gp := (f + g)p, fpgp := (fg)p, are well defined (i.e.,

independent of the choice of representatives). Also, fp/gp := (f/g)p is well

defined provided g is non-zero in some neighborhood of p.

(2) We say that the function germ fp vanishes on Ap and write fp|Ap = 0 if some

representative (U, f) of fp vanishes on A∩U where A is a representative of Ap.

(3) The notion of the image fp(Ap) is in general not well defined.
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2.1.3 Germs of Analytic Functions

Let x = (x1, . . . , xn). We denote by K{x} the ring of all power series
∑

α cαx
α which

converge for |x| < δ, where δ > 0 may depend on the power series in question. We

write On for the ring of germs of analytic functions at 0 ∈ Kn. We may identify K{x}

with On via the Taylor series expansion at 0.

Definition 2.1.14. An analytic K-algebra R is a K-algebra isomorphic to a quotient

of K{x}. That is,

R ∼=
K{x}
I

(2.1.5)

where I = (f1, . . . , fs) is a finitely generated ideal of K{x}.

In what follows we shall need the notion of a regular germ.

Definition 2.1.15. Let f(z, w) ∈ K{z, w} = K{z1, . . . , zm, w}. We say that f is

regular of order d in w if f(0, w) = h(w)wd with h(w) 6= 0. We say that f is regular

in w if it is regular of order d in w for some d.

Two results of much utility in the theory of analytic function germs are the Weier-

strass Division Theorem and the Weierstrass Preparation Theorem.

Theorem 2.1.16. (Weierstrass Division Theorem) If f ∈ K{x} is regular of order

d in xn, then g(xn) = f(0, . . . , 0, xn) = xdnh(xn) where h(xn) ∈ K{xn} is a unit, and,

for any φ ∈ K{x} there exist an a ∈ K{x} and b1, . . . , bd ∈ K{x1, . . . , xn−1} such that

φ = a · f +
d∑

ν=1

bνx
d−ν
n . (2.1.6)

Furthermore, the a and bν are uniquely determined.

Theorem 2.1.17. (Weierstrass Preparation Theorem) With f as in Theorem 2.1.16,
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there exist a unit u ∈ K{x} and a1, . . . , ad ∈ K{x1, . . . , xn−1} such that

f = u ·

(
xdn +

d∑
ν=1

aνx
d−ν
n

)
(2.1.7)

Furthermore, the u and aν are uniquely determined.

Definition 2.1.18. If a1, . . . , an ∈ K{x1, . . . , xn−1} with aν(0) = 0 for all ν and

P = xdn +
∑d

ν=1 aνx
d−ν
n , then P is called a distinguished polynomial with respect to

xn.

Suppose a ∈ Kn, we denote by On,a the ring of germs of analytic functions at a.

From the remarks in the beginning of the section we have a canonical isomorphism

K{x1 − a1, . . . , xn − an} ∼= On,a via the Taylor series expansion of germs f ∈ On,a

about a. As a consequence of this isomorphism, On,a is a local ring. Some useful

properties of On,a that can be obtained from Theorem 2.1.17 are:

Proposition 2.1.19. (1) On,a is a Noetherian ring.

(2) On,a is a regular local ring with dimOn,a = n.

(3) On,a is an integral domain.

(4) On,a is a unique factorization domain.

(5) Every non-constant f ∈ K{x} ∼= On with f(0) = 0 is regular (after a linear

change of coordinates at worst) with respect to some xj.

2.1.4 Germs of Analytic Sets (General Theory)

In this section Ω ⊂ Kn is an open set and S ⊂ Ω is an analytic set. Also, a is a point

in Ω. All the results in this section are valid for both K = R and K = C.

Definition 2.1.20. The germ of an analytic set S ⊂ Ω at a point a ∈ Ω is called an

analytic set germ.
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Further, in what follows we shall denote by I = I(Sa) ⊂ On,a the set of germs of

analytic functions vanishing on Sa. I forms an ideal in On,a.

Remark 2.1.21. Sa ⊂ S ′a if and only if I(Sa) ⊃ I(S ′a).

Definition 2.1.22. An analytic set germ Sa is called irreducible if whenever there

are two analytic germs S1,a and S2,a such that Sa = S1,a ∪S2,a then one of them must

be Sa.

Lemma 2.1.23. Sa is irreducible if and only if I(Sa) ⊂ On,a is a prime ideal.

Proposition 2.1.24. Let Sa be an analytic set germ, then Sa can be written as a

finite union Sa = ∪kν=1Sν,a of irreducible analytic set germs such that Sν,a 6⊂ ∪µ 6=νSµ,a.

Further, this decomposition is uniquely determined up to order.

Definition 2.1.25. For Sa, an analytic set germ, the germs Sν,a in Proposition

2.1.24, are called the irreducible components of Sa.

Proposition 2.1.26. Suppose I is a non-zero ideal of On, p < n, and Rp is the image

of K{x1, . . . , xp} via the canonical isomorphism K{x} ∼= On. Let Op = On ∩Rp. Let

A = On/I. Then we have a morphism η : Op → A induced by the canonical injection

Op → On. Further, after a linear change of coordinates in Kn there is an integer

0 ≤ p0 < n such that η : Op0 → A makes A into a finite Op0 module.

Remark 2.1.27. The necessary and sufficient condition that the coordinates satisfy

the condition of Proposition 2.1.26 is that I ∩Op0 = 0 and for any r > p0 there exists

a Qr(x1, . . . , xr) ∈ Or−1[xr] ∩ I which is distinguished in xr.

Suppose that Ω ⊂ Kn is an open set and S ⊂ Ω is an analytic set with 0 ∈ S.

Further we suppose that S0 is an irreducible germ, that is, I = I(S0) ⊂ On is a prime

ideal. Also, we assume that we choose the coordinates referred to in Prop. 2.1.26.

Then we have,
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Proposition 2.1.28. There is a fundamental system of neighborhoods, U = U ′×U ′′

where U ′ ⊂ Kp and U ′′ ⊂ Kn−p, of 0 such that if π : S ∩ U → U ′ is the restriction

of the projection of U onto U ′ then π is a proper map and every fibre of π, π−1(x′)

where x′ ∈ U ′ is a finite set.

Proposition 2.1.29. The integer p0 of Proposition 2.1.26 for I = I(Sa) where Sa is

irreducible is dima S.

Definition 2.1.30. Let Sa be an irreducible analytic set germ. The integer p0 of

Proposition 2.1.26, with respect to I = I(Sa) is called the dimension of Sa and is

denoted dimSa.

We observe here that by definition dimSa = dima S for an irreducible analytic set

germ Sa. We may now define the dimension of an arbitrary analytic set germ,

Definition 2.1.31. Let Sa be an analytic set germ with irreducible components Sν,a

for ν = 1, . . . , k. The number p = max{dimSν,a : ν = 1, . . . , k} is called the dimen-

sion of Sa and is denoted dimSa.

It turns out that this notion too coincides with the geometric definition of dimen-

sion at a point of an analytic set,

Theorem 2.1.32. Let S ⊂ Ω ⊂ Kn be an analytic set germ with Ω an open set. If

a ∈ S then dimSa = dima S (See Definition 2.1.8).

2.1.5 Germs of analytic sets (Case K = C)

In this section we focus on the case when K = C. We shall see that complex analytic

sets have some very nice properties not shared with their real analytic counterparts,

including a very direct relationship between their geometry and algebra. In this entire

section Ω will be an open set in Cn.
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Proposition 2.1.33. If S ⊂ Ω ⊂ Cn is a complex analytic set and 0 ∈ S with S0

irreducible then the projection π of Proposition 2.1.28 satisfies π(S ∩ U) = U ′ (with

U,U ′ as in Prop. 2.1.28).

Theorem 2.1.34. (Rückert’s Nullstellensatz) Let I be any ideal in On and S0 = S(I)

be the complex analytic germ defined by the set of common zeros of a finite set of

generators of I. Then I(S0) = rad(I).

Definition 2.1.35. Let S ⊂ Ω ⊂ Cn be a complex analytic set. A function f on S

is called complex analytic or holomorphic at a ∈ S if there is a neighborhood U of a

in Ω and a complex analytic function F defined on U such that F |S∩U = f |S∩U .

We usually denote the ring of germs of complex analytic functions at a ∈ S by

OS,a.

Remark 2.1.36. We have the following,

OS,a ∼= Oa/I(Sa). (2.1.8)

Hence OS,a is an analytic C-algebra.

2.1.6 Germs of Analytic Sets (Case K = R)

In this section we shall describe the concept of complexification of a real analytic set

germ. This is an essential tool that has much utility in the study of the properties of

real analytic set germs.

Suppose Aa is the germ of an analytic set at a point a ∈ Rn. We may identify Rn

with the subset of points in Cn whose coordinates have zero imaginary part. With this

identification we can consider Rn as a subset of Cn. In order to distinguish between

the R and C cases we shall denote the ring of germs of real analytic functions at

a ∈ Rn ⊂ Cn by OR
n,a and the ring of complex analytic functions vanishing at a by
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OC
n,a. Further we shall denote the ideal in OR

n,a of real analytic functions vanishing on

Aa by IR(Aa).

Proposition 2.1.37. There is a unique germ Ãa of a complex analytic set at a ∈

Rn ⊂ Cn such that Ãa ⊃ Aa and for which any germ g ∈ OC
n,a which vanishes on

Aa also vanishes on Ãa. Further we have Ãa ∩ Rn
a = Aa and any germ of a complex

analytic set Sa which contains Aa also contains Ãa. Also, if I(Ãa) = IC(Aa) is the

ideal of OC
n,a of germs of holomorphic functions which vanish on Ãa then we have

I(Ãa) = IC(Aa) = IR(Aa)⊗R C. (2.1.9)

Definition 2.1.38. The germ Ãa in Proposition 2.1.37 is called the complexification

of Aa.

Proposition 2.1.39. If Aa is irreducible as a real analytic set germ then Ãa is irre-

ducible as a complex analytic germ. If Aa = ∪νAν,a is the decomposition of Aa into

its irreducible components and Ãν,a is the complexification of Aν,a then Ãa = ∪νÃν,a

is the decomposition of Ãa into its irreducible components.

We shall denote the dimension of the germ Aa by dimRAa and that of Ãa as a

complex analytic germ by dimC Ãa. With this notation we have,

Proposition 2.1.40. dimRAa = dimC Ãa.

As a direct consequence of this we have,

Corollary 2.1.41. If A is a real analytic set in an open set Ω ⊂ Rn then every point

a ∈ Ω has a neighborhood U such that for each b ∈ U we have dimRAb ≤ dimRAa.

It is important to note at this juncture that not all complex analytic set germs

are complexifications of real analytic set germs. The following result tells us when

they are in the irreducible case.
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Proposition 2.1.42. Let Sa be an irreducible complex analytic set germ at a ∈ Cn.

Then Sa is the complexification of a real analytic set germ Aa if and only if Sa ∩ Rn

contains a germ Ba with dimRBa = dimC Sa.

2.2 Analytic Spaces

In this section we generalize the notion of an analytic set so that we obtain a tighter

correspondence between algebra and geometry. For the remainder of this section we

will assume that K = R or C. Suppose that Sa is the germ of an analytic set at a ∈ Kn

and that fa is the germ of an analytic function on Kn such that fma |Sa = 0. Then we

have fa|Sa = 0. That is, fm ∈ I(Sa), implies that f ∈ I(Sa) for all positive integers

m. Therefore we don’t have a one to one correspondence with all local analytic K-

algebras and germs of analytic sets. What we do have is a correspondence between

analytic set germs and local analytic K-algebras without nilpotents (i.e., those which

are reduced). This is the motivation for the definition of an analytic space.

Definition 2.2.1. An analytic space (over K) is a ringed space X = (|X|,OX) (i.e.,

a Hausdorff topological space along with a sheaf of rings OX on |X|) which is locally

isomorphic to a ringed space Z defined as follows: Let U be an open set of Kn, and

let f1, . . . , fk be analytic functions on U (also denoted as (f1, . . . , fk) ∈ O(U)). Let

|Z| be the zero set of the fi and OZ = OU/I restricted to |Z|, where I is the ideal

sheaf generated by the fi.

Definition 2.2.2. A morphism of analytic spaces φ : X → Y is a pair φ = (|φ|, φ∗),

where |φ| : |X| → |Y | is a continuous mapping, and φ∗ : OY → |φ|∗OX is a sheaf

homomorphism.

It is a consequence of the above definitions that the germs of analytic spaces are in

one to one correspondence with the set of all local analytic K-algebras K{x}/I, with
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x = (x1, . . . , xm), where I is an ideal in K{x}, and morphisms of germs of analytic

spaces correspond to homomorphisms of local analytic K-algebras.

Definition 2.2.1 is from [7]. It should be noted at this point that this definition is

slightly simpler than the definition of an analytic space that is used in some current

literature (see, for example,[15]). This simplification is made to avoid a discussion of

coherence in the case when K = R. Since we are only concerned with local results

in this thesis, this simplified definition suffices, and allows us to avoid a lengthy

digression focussed on issues that would have no involvement in the rest of the present

work.

The following definitions establish the terminology that we use later when dis-

cussing our notion of approximation of germs of analytic spaces.

Definition 2.2.3. We call the germ of a K-analytic space X ⊆ Kn at a an analytic

germ and denote it by Xa.

Definition 2.2.4. If the local ring OX,a of an analytic germ Xa is isomorphic to

K{x}/I where I = (h1, . . . , hs) and hi ∈ K〈x〉 then we call Xa a Nash germ.

Definition 2.2.5. If the local ring OX,a of an analytic germ Xa is isomorphic to

K{x}/I where I = (h1, . . . , hs) and hi ∈ K[x] then we call Xa an algebraic germ.

2.3 Whitney’s Tangent Cones

In [35] Whitney introduces the notion of a tangent cone at a point in a complex

analytic set. This is a notion that generalizes the tangent space associated to a point

in an analytic manifold. Tangent cones provide information about the nature of

analytic sets at singular points and they have an algebraic structure associated with

them that will be used in the sequel. In this section we will be specifically working

with complex analytic sets in some open set in Cn.
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Definition 2.3.1. A cone K in Cn is a set of vectors such that if v ∈ K and a ∈ C

then av ∈ K. A cone from p ∈ Cnis a set of points p + v where v is any vector of

some cone.

Definition 2.3.2. Given a complex analytic set S ⊂ Ω ⊂ Cn, with Ω open and p ∈ S

the tangent cone C(S, p) of S at p is the set of vectors v with the following property:

There are sequences {pi} of points of S and scalars {ai} such that ai(p− pi)→ v as

i→∞.

The above definition clearly implies that C(S, p) is closed. Tangent cones have a

remarkable algebraic realization that we shall have occasion to use in our later work.

If f is a holomorphic function in a neighborhood of a point p ∈ Cn then we may

expand f in a power series about p as follows:

f(p+ v) = f [0]
p + f [1]

p + f [2]
p + . . . , f [0]

p = f(p), (2.3.1)

where f
[m]
p is a homogeneous polynomial of degree m in v1, . . . , vm the components of

v.

Definition 2.3.3. The initial polynomial of f at p, denoted by f
[∗]
p is equal to f

[m]
p

where m is the smallest integer with f
[m]
p 6≡ 0.

Given the above we have the following result [35, Theorem 10.7],

Theorem 2.3.4. Given a complex analytic set S ⊂ Ω ⊂ Cn and p ∈ S, C(S, p) is

the set of solutions of f
[∗]
p (x) = 0, for all f whose germs at p are in I(Sp).

We note that, in general, a set fi generating I(Sp) may be insufficient to generate

C(S, p). The following are some basic properties of tangent cones:

Lemma 2.3.5. For complex analytic sets S, T ⊂ Ω ⊂ Cn:

(1) C(T, p) ⊂ C(S, p) if p ∈ T ⊂ S,
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(2) C(S ∪ T, p) = C(S, p) ∪ C(T, p) if p ∈ S ∪ T ,

(3) C(S ∩ T, p) ⊂ C(S, p) ∩ C(T, p) if p ∈ S ∩ T ,

(4) [35, Lemma 8.11] dimC(S, p) = dimp S if p ∈ S and dimp S ≥ 1.

2.4 Hironaka’s division algorithm and diagram of

initial exponents

Let K = R or C. Let A denote the field K or the ring K{y} of convergent power series

in variables y = (y1, . . . , ym). Let A{z} denote the ring of convergent power series in

variables z = (z1, . . . , zk) with coefficients in A (i.e., K{z} or K{y, z}, depending on

A). We will write zα for zα1
1 . . . zαkk , where α = (α1, . . . , αk) ∈ Nk.

The mapping A 3 F (y) 7→ F (0) ∈ K = A⊗AK of evaluation of the y variables at

0 induces an evaluation mapping

A{z} 3 F =
∑
α∈Nk

Fα(y)zα 7→ F (0) =
∑
α∈Nk

Fα(0)zα ∈ K{z} .

(In case A = K, this is just the identity mapping.)

Definition 2.4.1. For an ideal I in A{z}, we call I(0) := {F (0) : F ∈ I} in K{z},

the evaluated ideal.

Definition 2.4.2. A function on Kk, Λ(α) =
∑k

j=1 λjαj, for some λj > 0, is called

a positive linear form on Kk.

Given such Λ, we will regard Nk as endowed with the total ordering defined by

the lexicographic ordering of the (k + 1)-tuples (Λ(α), αk, . . . , α1).

Definition 2.4.3. For a non-zero F =
∑

α∈Nk Fαz
α ∈ A{z}, suppF = {α ∈ Nk :

Fα 6= 0} is called the support of F .
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Definition 2.4.4. For F ∈ A{z}, the minimum (with respect to the above total

ordering) over all α ∈ suppF is called its initial exponent and denoted expΛF .

Similarly,

suppF (0) = {α ∈ Nk : Fα(0) 6= 0} and expΛF (0) = minΛ{α ∈ suppF (0)} ,

for the evaluated series. We have suppF (0) ⊂ suppF , and hence expΛF ≤ expΛF (0).

We will write simply expF and expF (0) instead of expΛF and expΛF (0), when Λ(α) =

|α| = α1 + · · ·+ αk.

We now recall Hironaka’s division algorithm.

Theorem 2.4.5 ([7, Thm. 3.1, 3.4]). Let Λ be any positive linear form on Kk. Let

G1, . . . , Gt ∈ A{z}, and let αi := expΛGi(0), 1 ≤ i ≤ t. Then, for every F ∈ A{z},

there exist unique Q1, . . . , Qt, R ∈ A{z} such that

F =
t∑
i=1

QiGi +R, (2.4.1)

αi + suppQi ⊂ ∆i, 1 ≤ i ≤ t, and suppR ⊂ ∆,

where

∆1 := α1 + Nk, ∆i := (αi + Nk) \
i−1⋃
j=1

∆j for i ≥ 2,

and ∆ := Nk \
⋃t
i=1 ∆i.

Definition 2.4.6. For an ideal I in A{z},

NΛ(I) = {expΛF : F ∈ I \ {0}}.

is called the diagram of initial exponents of I relative to Λ.
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Similarly, for the evaluated ideal I(0), we set

NΛ(I(0)) = {expΛF (0) : F ∈ I, F (0) 6= 0}.

We will write N(I) and N(I(0)) instead of NΛ(I) and NΛ(I(0)), when Λ(α) = |α| =

α1 + · · ·+ αk.

Note that every diagram NΛ(I) satisfies the equality NΛ(I) + Nk = NΛ(I). (In-

deed, for α ∈ NΛ(I) and γ ∈ Nk, one can choose F ∈ I with expΛF = α; then

zγF ∈ I, hence α + γ = expΛ(zγF ) is in NΛ(I).)

Remark 2.4.7. It is easy to show that, for every ideal I in A{z} and for every

positive linear form Λ, there exists a unique smallest (finite) set VΛ(I) ⊂ NΛ(I) such

that VΛ(I) + Nk = NΛ(I) (see, e.g., [7, Lem. 3.8]). The elements of VΛ(I) are called

the vertices of the diagram NΛ(I).

Corollary 2.4.8 ([7, Cor. 3.9]). Let Λ be any positive linear form on Kk. Let I be an

ideal in K{z}, and let α1, . . . , αt ∈ Nk be the vertices of the diagram NΛ(I). Choose

Gi ∈ I such that expΛGi = αi, 1 ≤ i ≤ t, and let {∆i,∆} denote the partition of Nk

determined by the αi, as above. Then, NΛ(I) =
⋃t
i=1 ∆i and the Gi generate the ideal

I.

Proof. The equality NΛ(I) =
⋃t
i=1 ∆i follows immediately from Remark 2.4.7. Ac-

cording to Theorem 2.4.5, any F ∈ K{z} can be written as F =
∑t

i=1QiGi + RF ,

where suppRF ⊂ ∆. Therefore, F ∈ I if and only if RF ∈ I. But suppRF ⊂ ∆ =

Nk \NΛ(I), hence RF ∈ I if and only if RF = 0.

The remainder of this section will be concerned with the algebraic notion of flat-

ness. First we recall its definition.

Definition 2.4.9. A module M over a Noetherian ring A is called flat when, for
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every exact sequence

0→ N ′ → N → N ′′ → 0

of A-modules, the sequence

0→ N ′ ⊗AM → N ⊗AM → N ′′ ⊗AM → 0

is also exact.

The following result of Hironaka expresses flatness in terms of his division algo-

rithm.

Theorem 2.4.10 ([7, Thm. 7.9]). Let I be an ideal in A{z}. Let Λ be any positive

linear form on Kk, and let α1, . . . , αt be the vertices of NΛ(I(0)). Let G1, . . . , Gt ∈ I

be such that expΛGi(0) = αi, 1 ≤ i ≤ t. Then, the following are equivalent:

(i) A{z}/I is flat as an A-module

(ii) For any F ∈ I, the remainder of F after division (2.4.1) by G1, . . . , Gt is zero.

Let now x = (x1, . . . , xn), n ≥ 2. Fix k ∈ {1, . . . , n − 1}. To simplify notation,

let x[k] denote variables (x1, . . . , xk), and x̃ the remaining (xk+1, . . . , xn). In what

follows, we will regard elements of K{x} either as power series in all the variables

x with coefficients in K, written F =
∑

β∈Nn fβx
β, fβ ∈ K, or as power series in

variables x[k] with coefficients in K{x̃}, written F =
∑

α∈Nk Fα(x̃)xα[k], Fα(x̃) ∈ K{x̃}.

For F ∈ K{x}, we will denote by F (0) the series with variables x̃ evaluated

at 0. That is, if F =
∑

α∈Nk Fα(x̃)xα[k] then F (0) =
∑

α∈Nk Fα(0)xα[k] ∈ K{x[k]}.

Equivalently, if F =
∑

β∈Nn fβx
β then

F (0) =
∑

β∈Nk×{0}n−k
fβx

β ∈ K{x[k]}

(i.e., the sum is over those β = (β1, . . . , βn) for which βk+1 = · · · = βn = 0).
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To avoid confusion, for F ∈ K{x}, we will denote its support as an element of

K{x̃}{x[k]} by suppNkF , and the support as an element of K{x} as suppNnF . That

is,

suppNkF = {α ∈ Nk : Fα(x̃) 6= 0} and suppNnF = {β ∈ Nn : fβ 6= 0}.

Note that a positive linear form Λ(β) =
∑n

i=1 λiβi on Kn gives rise to a positive form∑k
i=1 λiβi on Kk. By a slight abuse of notation, we will denote the latter also by Λ.

Proposition 2.4.11. Let I be an ideal in K{x}, let 1 ≤ k < n, and let x̃ denote the

variables (xk+1, . . . , xn).

(i) If there exist a positive linear form Λ on Kn and a set D ⊂ Nk such that

NΛ(I) = D × Nn−k, then K{x}/I is a flat K{x̃}-module.

(ii) If K{x}/I is a flat K{x̃}-module, then there exist l0 ∈ N and a set D ⊂ Nk

such that, for all l ≥ l0, the diagram NΛ(I) with respect to the linear form

Λ(β) =
k∑
i=1

βi +
n∑

j=k+1

lβj satisfies NΛ(I) = D × Nn−k.

Remark 2.4.12. Note that if Λ is such that NΛ(I) = D × Nn−k for some D ⊂ Nk,

then necessarily D = NΛ(I(0)).

Proof. For the proof of (i), we will need the following well known corollary to the

classical “local criterion for flatness” (see, e.g., [7, Cor. 7.6]): K{x}/I is flat as a

K{x̃}-module if and only if I ∩ (x̃)K{x} ⊂ (x̃)·I.

Suppose that F ∈ I ∩ (x̃)K{x}. Then, F (0) = 0. Let β1, . . . , βt ∈ Nk ×{0}n−k be

the vertices of NΛ(I), and let G1, . . . , Gt ∈ I be such that expΛGi = βi, 1 ≤ i ≤ t.

By Theorem 2.4.5 and Corollary 2.4.8, there are Q1, . . . , Qt ∈ K{x} such that F =∑t
i=1 QiGi and the sets βi + suppNnQi are pairwise disjoint.

Write βi = (αi, 0), where αi ∈ Nk, 1 ≤ i ≤ t. It follows that the sets αi +

suppNkQi(0) in Nk are also pairwise disjoint, and hence the initial exponents
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expΛQi(0)Gi(0) = expΛQi(0) + αi are pairwise distinct. On the other hand,∑t
i=1Qi(0)Gi(0) = F (0) = 0. This is only possible if Qi(0) = 0 for all i. In other

words, Qi ∈ (x̃)K{x}. Hence F =
∑t

i=1QiGi is in (x̃)·I, which proves (i).

Suppose now that K{x}/I is K{x̃}-flat. Let λ(α) = |α| for α ∈ Nk, and let

α1, . . . , αt be the vertices of N(I(0)) = Nλ(I(0)). Let {∆i,∆} be the partition of Nk

determined by the αi as in Theorem 2.4.5. Let l0 = 1 + max{|αi| : i = 1, . . . , t}, let

l ≥ l0 be arbitrary, and set

Λ(β) :=
k∑
i=1

βi +
n∑

j=k+1

lβj .

Set βi := (αi, 0) = (αi1, . . . , α
i
k, 0, . . . , 0) ∈ Nn, 1 ≤ i ≤ t. We will show that the

vertices of NΛ(I) are precisely {β1, . . . , βt}.

Let G1, . . . , Gt ∈ I be such that expGi(0) = αi, 1 ≤ i ≤ t. Write Gi =∑
α∈Nk Gi,αx

α
[k], where Gi,α =

∑
γ∈Nn−k gi,α,γx̃

γ. For every i, there are at most finitely

many α ∈ suppNkGi with λ(α) < λ(αi). For each such α, by the choice of αi, we have

ν(Gi,α) ≥ 1, where for a non-zero F ∈ K{x̃}, ν(F ) = max{r : F ∈ (x̃)r}. Therefore,

for each such α and for every non-zero term gi,α,γx̃
γ of Gi,α, we have |γ| ≥ 1, and

hence Λ((α, γ)) ≥ l0 > Λ(βi). It follows that, with respect to the total ordering in

Nn induced by Λ, we have

expΛ(Gi) = βi, 1 ≤ i ≤ t.

Pick F ∈ I. By Theorem 2.4.10, there are Q1, . . . , Qt ∈ K{x} such that F =∑t
i=1QiGi and αi + suppNkQi ⊂ ∆i, 1 ≤ i ≤ t. Then, βi + suppNnQi ⊂ ∆i × Nn−k;

in particular, βi + expΛQi ∈ ∆i × Nn−k, 1 ≤ i ≤ t. It thus follows that the

expΛ(QiGi) = βi + expΛQi lie in pairwise disjoint regions, and hence are pair-

wise distinct. Consequently, expΛF = minΛ{expΛ(QiGi) : i = 1, . . . , t} belongs

to N(I(0))× Nn−k, which completes the proof.
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We shall need the following Lemma in the proof of Proposition 2.8.8.

Lemma 2.4.13. Let I be an ideal in K{x}, let 1 ≤ k < n and let n denote the ideal

in K{x} generated by x̃ = (xk+1, . . . , xn). Then I ∩ n = I · n implies I ∩ nm = I · nm

for all m ≥ 1.

Proof. Suppose I ∩ n = I · n, and fix m ≥ 2. As in the proof of Proposition 2.4.11,

we then have that K{x}/I is flat as a K{x̃}-module. Hence by Proposition 2.4.11

(ii), there exists a l0 such that, for all l ≥ l0, the diagram NΛ(I) with respect to

the linear form Λ(β) =
∑k

i=1 βi +
∑n

j=k+1 lβj satisfies NΛ(I) = N(I(0))× Nn−k. Fix

G1, . . . , Gt ∈ I such that expΛ(Gi) = βi, where βi = (αi, 0) ∈ Nk × 0n−k, i = 1, . . . , t

are the vertices of NΛ(I).

Pick F ∈ I ∩ nm, and let F =
∑t

i=1QiGi be the unique Hironaka division of

F (with respect to Λ). Set γi := expΛ(Qi). Note that the Qi depend only on the

partition of Nn determined by the expΛ(Gi). In particular, they are independent of

the choice of l, so long as l ≥ l0. Therefore by choosing l large enough, we may

assume that

If βi0 + γi0 = min
Λ
{βi + γi : 1 ≤ i ≤ t} and xγ

i0 ∈ ns then Qi ∈ ns for all i (2.4.2)

Indeed, let s0 be the least integer such that there exist 1 ≤ i∗ ≤ t and γ∗ ∈ suppQi∗

with xγ
∗ ∈ ns0 \ns0+1. Pick any i∗ and γ∗ with these properties. Write γ∗ = (κ∗, λ∗) ∈

Nk × Nn−k and set

l∗ := l0 + |κ∗|+ max
j=1,...,t

|αj|, and Λ∗(β) =
k∑
i=1

βi +
n∑

j=k+1

l∗βj

Then, for all 1 ≤ i ≤ t, and γ = (κ, λ) ∈ suppQi with xγ ∈ ns0+1, we have |λ| ≥ |λ∗|+1
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and hence

Λ∗(βi + γ) = |αi|+ |κ|+ l∗|λ| ≥ |αi|+ |κ|+ l∗(|λ∗|+ 1)

= |αi|+ |κ|+ l0 + max
j
|αj|+ |κ∗|+ l∗|λ∗| > Λ(βi

∗
+ γ∗).

This proves that the minimum minΛ∗{βi+γi : 1 ≤ i ≤ t} is attained for some γi with

xγ
i ∈ ns0 .

Now the fact that expΛ(F ) = minΛ{expΛGiQi : 1 ≤ i ≤ t}, together with F ∈ nm

and (2.4.2), imply that Qi ∈ nm for all i, and so F ∈ I · nm.

Hironaka’s division theorem can also be used to give a simple proof of the following

classical result.

Theorem 2.4.14. (Weierstrass Finiteness Theorem) Let K = C and let I be an ideal

in A{x}, where x = (x1, . . . , xm). Then A{x}/I is a finitely generated A-module if

and only if dimC(C{x}/I(0)) <∞.

Proof. If A{x}/I is finitely generated over A then dimC(C{x}/I(0)) = dimC(A{x}
I
⊗A

A
mA

) <∞, by Nakayama’s Lemma (Theorem A.0.7). Conversely, suppose that

dimC(C{x}/I(0)) < ∞. Let G1, . . . , Gt be representatives of the vertices of the

diagram N(I(0)); i.e. G1, . . . , Gt ∈ I are such that exp(Gj(0)) = βj, where β1, . . . , βt

are the vertices of the diagram N(I(0)). Let {∆,∆1, . . . ,∆t} be the decomposition

of Nm determined by β1, . . . , βt. Then, by Theorem 2.4.5, for every F ∈ A{x}, there

are Q1, . . . , Qt, R ∈ A{x} such that F =
∑t

j=1QjGj + R and supp(R) ⊂ ∆. On the

other hand, the condition dimC(C{x}/I(0)) < ∞ means that ∆ consists of finitely

many points, say γ1, . . . , γs. Thus every R ∈ A{x} with supp(R) ⊂ ∆ is generated

by the monomials xγ
1
, . . . xγ

s
. Hence, modulo I, every F ∈ A{x} is generated over A

by those finitely many monomials, which completes the proof.

Remark 2.4.15. Theorem 2.4.14 is also valid when A is a local analytic C-algebra.

That is when A is the quotient of C{y} by some ideal.
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2.5 Standard bases and Becker’s s-series criterion

Let again Λ(β) =
∑n

j=1 λjβj be a positive linear form on Kn, and let Nn be given the

total ordering defined by the lexicographic ordering of the (n+1)-tuples (Λ(β), βn, . . . , β1).

For F ∈ K{x}, let as before expΛF = minΛ{β ∈ suppF} denote the initial exponent

of F relative to Λ.

The following definition is due to Becker [5].

Definition 2.5.1. Let I be an ideal in K{x}. A collection S = {G1, . . . , Gt} ⊂ I

forms a standard basis of I (relative to Λ), when for every F ∈ I there exists i ∈

{1, . . . , t} such that expΛF ∈ expΛGi + Nn.

Remark 2.5.2. (1) It follows directly from definition that every standard basis S of

I relative to Λ contains representatives of all the vertices of the diagram NΛ(I)

(that is, for every vertex βi of NΛ(I) there exists Gi ∈ S with βi = expΛGi).

Hence, by Corollary 2.4.8, every standard basis of I is a set of generators of I.

(2) Note that the term “standard basis” in most of modern literature refers to a

collection defined by more restrictive conditions than the one above (see, e.g.,

[7, Cor. 3.9] or [10, Cor. 3.19]). In particular, our standard basis is not unique

and may contain elements which do not represent vertices of the diagram.

Becker in [5] also defines the following related to standard bases,

Definition 2.5.3. For any F =
∑

β fβx
β and G =

∑
β gβx

β in K{x}, one defines

their s-series S(F,G) with respect to Λ as follows: If βF = expΛF , βG = expΛG, and

xγ = lcm(xβF , xβG), then

S(F,G) := gβGx
γ−βF · F − fβFxγ−βG ·G .

Definition 2.5.4. Given G1, . . . , Gt, F ∈ K{x}, we say that F has a standard rep-

resentation in terms of {G1, . . . , Gt} with respect to Λ, when there exist Q1, . . . , Qt ∈
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K{x} such that

F =
t∑
i=1

QiGi and expΛF ≤ min{expΛ(QiGi) : i = 1, . . . , t} .

Here, we adopt a convention that expΛF < expΛ0, for any Λ and any non-zero F .

The following s-series criterion of Becker will be our main tool in establishing

Hilbert-Samuel equisingularity.

Theorem 2.5.5 ([5, Thm. 4.1]). Let S be a finite subset of K{x}. Then, S is a

standard basis (relative to Λ) of the ideal it generates if and only if for any G1, G2 ∈ S

the s-series S(G1, G2) has a standard representation in terms of S.

Remark 2.5.6. (1) The notion of s-series as defined in Definition 2.5.3 is analo-

gous to the notion of s-polynomials in the context of Gröbner bases for ideals

in polynomial rings [13, §6, Definition 4 (ii)].

(2) The criterion in Theorem 2.5.5 is analogous to Buchberger’s criterion for Gröbner

bases [13, §6, Theorem 6].

2.6 Nested parametrized algebraic approximation

Let x = (x1, . . . , xn), y = (y1, . . . , ym), and let K〈x〉 denote the ring of algebraic power

series in x. Recall that a convergent power series F ∈ K{x} is called an algebraic

power series when F is algebraic over the ring of polynomials K[x].

The following nested variant of P loski’s parametrized approximation theorem [27]

is due to Bilski, Parusiński and Rond [12]. The result itself follows from Spivakovsky’s

nested approximation [30, Thm. 11.4], which in turn is a corollary of the Néron-

Popescu Desingularization [28].
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Theorem 2.6.1 ([12, Thm. 2.1]). Let f(x, y) = (f1(x, y), . . . , fp(x, y)) ∈ K〈x〉[y]p

and let ȳ(x) = (ȳ1(x), . . . , ȳm(x)) ∈ K{x}m be such that

f(x, ȳ(x)) = 0.

Suppose that ȳi(x) depends only on variables (x1, . . . , xσ(i)), where {i 7→ σ(i)} is an

increasing function. Then, there exist a new set of variables z = (z1, . . . , zs), an

increasing function τ , an m-tuple of algebraic power series ŷ(x, z) ∈ K 〈x, z〉m such

that

f(x, ŷ(x, z)) = 0,

and for every i,

ŷi(x, z) ∈ K
〈
x1, . . . , xσ(i), z1, . . . , zτ(i)

〉
,

as well as convergent power series z̄i(x) ∈ K{x} vanishing at 0 such that z̄1(x), . . . ,

z̄τ(i)(x) depend only on (x1, . . . , xσ(i)) and

ȳ(x) = ŷ(x, z̄(x)) .

The classical Algebraic Artin Approximation follows immediately from the above.

Theorem 2.6.2 ([3, Thm. 1.10]). Let f(x, y) ∈ K〈x〉[y]p and let ȳ(x) ∈ K{x}m be

such that

f(x, ȳ(x)) = 0.

Then, for any c ∈ N, there exists an m-tuple of algebraic power series ŷ(x) ∈ K 〈x〉m

such that

f(x, ŷ(x)) = 0,

and ŷ coincides with ȳ up to degree c, that is, ȳ(x)− ŷ(x) ∈ (x)c+1.

Proof. Let ŷ(x, z) ∈ K 〈x, z〉m and the z̄i(x) ∈ K{x} be as in Theorem 2.6.1. Then,
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for a given c ∈ N, the m-tuple ŷ(x, jc(z̄(x)) has the desired properties, where jcF

denotes the c-jet of F ∈ K{x}.

2.7 Reduction of the maximal ideal

Let, as before, x = (x1, . . . , xn), and for k < n, let x[k] = (x1, . . . , xk) and x̃ =

(xk+1, . . . , xn). Let m denote the maximal ideal of K{x}. The purpose of this section

is to find a suitable reduction (in the sense of Northcott-Rees [24]) of the maximal

ideal m/I in K{x}/I, for a given ideal I in K{x}.

The following is a consequence of Proposition 2.1.26.

Proposition 2.7.1. Let I be a proper ideal in K{x}. After a generic linear change of

coordinates in Kn, there exists k ∈ {0, . . . , n−1} such that the natural homomorphism

K{x̃} → K{x}/I is injective and makes K{x}/I into a finite K{x̃}-module.

Lemma 2.7.2. Let I be an ideal in K{x} with dimK{x}/I = n − k. Then, after

a generic linear change of coordinates in Kn, there is, for every j = 1, . . . , k, a

distinguished polynomial Pj ∈ K{x̃}[t] of degree dj such that Pj(xj, x̃) ∈ I ∩ mdj ,

where x̃ = (xk+1, . . . , xn).

Proof. By Proposition 2.7.1, after a generic linear change of coordinates in Kn, there

exists k′ ≤ n− 1 and an injective homomorphism K{x̃} → K{x}/I such that K{x}/I

is a finite K{x̃}-module, where x̃ = (xk′+1, . . . , xn). Since for a finite injective ho-

momorphism of Noetherian rings A → R we have dimR = dimA, it follows that

k′ = k.

Suppose first that K = C. Let X0 be the germ of an analytic space at 0 in Cn

defined by OX,0 = C{x}/I. Further, let C(X, 0) denote the tangent cone to X0, in the

sense of Whitney (Definition 2.3.2). Then, dim0C(X, 0) = dim0X = n−k, and after

another generic linear change of coordinates if needed, we may assume that C(X, 0)
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has a proper and surjective projection onto (an open neighborhood of 0 in) Cn−k

spanned by the variables x̃. Finiteness of C{x}/I as a C{x̃}-module implies that the

images of x1, . . . , xk in C{x}/I are integral over C{x̃}. Hence, for every j = 1, . . . , k,

there exist dj ∈ Z+ and a distinguished polynomial Pj ∈ C{x̃}[t] of degree dj, such

that Pj(xj, x̃) ∈ I. Write Pj(xj, x̃) = x
dj
j +

dj∑
r=1

ajr(x̃)x
dj−r
j , j = 1, . . . , k.

Fix j ∈ {1, . . . , k}. Let LF (Pj) denote the leading form of Pj (i.e., the homoge-

neous polynomial consisting of the terms of Pj of lowest degree). By Theorem 2.3.4,

C(X, 0) is the set of common zeroes of leading forms LF (F ) for all F0 vanishing on

X0. In particular, C(X, 0) ⊂ LF (Pj)
−1(0).

To prove the lemma, it now suffices to show that x
dj
j is among the terms of LF (Pj).

We argue by induction on n − k, the number of variables x̃. If n − k = 1, then x̃

is a single variable xn. If x
dj
j were not among the terms of LF (Pj) then xn would

divide LF (Pj), and so the image of C(X, 0) under the projection to Cn−k would be

{0} = LF (Pj)
−1(0) ∩ {x[k] = 0}, contradicting the surjectivity.

Suppose then that n− k ≥ 2, and consider P̃j := Pj(xj, xk+1, . . . , xn−1, 0). Then,

P̃j vanishes on X̃ := X ∩ {xn = 0}, and hence LF (P̃j) vanishes on C(X̃, 0). Since

C(X̃, 0) has a surjective projection onto (an open neighbourhood of 0 in) Cn−k−1,

then, by induction, x
dj
j is among the terms of LF (P̃j). If x

dj
j were not among the

terms of LF (Pj), then we would have degLF (Pj) < degLF (P̃j) = dj. Hence, xn

would divide LF (Pj), and so the image of C(X, 0) under projection to Cn−k would

be contained in the hypersurface {xn = 0}. This contradiction completes the proof

in case K = C.

If K = R, the result follows by applying the above argument to the complexifica-

tion XC of X. Note that the linear changes of coordinates required at the beginning

may be taken with integral coefficients, and hence the distinguished polynomials Pj

will have real coefficients.
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Let Pj(xj, x̃) = x
dj
j +

∑dj
r=1 a

j
r(x̃)x

dj−r
j , j = 1, . . . , k, be as above. Set

d :=
k∑
j=1

(dj − 1).

Corollary 2.7.3. We have (x[k])
d+1 ⊂ I + (x̃)·md, as ideals in K{x}.

Proof. Indeed, for any monomial xβ11 · · ·x
βk
k ∈ (x[k])

d+1, there exists j such that βj ≥

dj. By Lemma 2.7.2, x
dj
j = Pj(xj, x̃)−

∑dj
r=1 a

j
r(x̃)x

dj−r
j is an element of I+(x̃)∩mdj =

I + (x̃) ·mdj−1. Consequently, xβ11 . . . xβkk ∈ I + (x̃) ·mN , where N = β1 + · · ·+ (βj −

1) + · · ·+ βk ≥ d.

Remark 2.7.4. The above corollary implies that I + (x̃)/I is a reduction (with ex-

ponent d) of the maximal ideal m/I in K{x}/I, in the sense of Northcott–Rees [24].

Indeed, one trivially has I + (x̃) ⊂ I + m, and by above, I + md+1 ⊂ I + (x̃) ·md. It

follows that I + md+1 = I + (x̃) ·md, hence by induction

I + md+m = I + (x̃)mmd, for any m ≥ 1. (2.7.1)

2.8 Approximation of ideals and diagrams

Let, as before, Λ(β) =
∑n

j=1 λjβj be a positive linear form on Kn. For such Λ

and µ ∈ N, define nΛ,µ to be the ideal in K{x} generated by all the monomials

xβ = xβ11 . . . xβnn with Λ(β) ≥ µ. (Note that, by positivity of the linear form Λ, the

ideals nΛ,µ are m-primary for every µ. Moreover, for Λ(β) = |β| we have nΛ,µ = mµ.)

Definition 2.8.1. For a natural number µ ∈ N and a power series F ∈ K{x}, the

µ-jet of F with respect to Λ, denoted jµΛ(F ), is the image of F under the canonical

epimorphism K{x} → K{x}/nΛ,µ+1.

In this thesis we will write jµ(F ) for µ-jets with respect to Λ(β) = |β| = β1 + · · ·+βn.
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Remark 2.8.2. Given a power series F ∈ K{x}, suppose that µ ≥ Λ(expΛ(F )).

Then, expΛ(F ) = expΛ(G) for every G ∈ K{x} with jµΛ(G) = jµΛ(F ).

The following lemma expresses the Hilbert-Samuel function of an ideal in terms

of its diagram of initial exponents.

Lemma 2.8.3. Let λ1, . . . , λn > 0 be arbitrary, and let Λ(β) =
∑n

j=1 λjβj. Then, for

any ideal I in K{x} and for every η ≥ 1,

#{β ∈ Nn \NΛ(I) : Λ(β) ≤ η} = dimK
K{x}

I + nΛ,η+1

,

where the dimension on the right side is in the sense of K-vector spaces. In particular,

the Hilbert-Samuel function HI of K{x}/I satisfies

HI(η) = #{β ∈ Nn \N(I) : |β| ≤ η}, for all η ≥ 1 .

Proof. Fix η ≥ 1. Suppose that F ∈ K{x} satisfies supp(F ) ⊂ {β ∈ Nn \ NΛ(I) :

Λ(β) ≤ η} and pick G ∈ nΛ,η+1. Then, expΛ(F + G) = expΛ(F ), by Remark 2.8.2,

and hence expΛ(F + G) /∈ NΛ(I). It follows that F + G /∈ I, and so F /∈ I + nΛ,η+1.

This proves that the set of monomials {xβ : β ∈ Nn \ NΛ(I),Λ(β) ≤ η} is linearly

independent in K{x}/(I + nΛ,η+1), whence

dimK
K{x}

I + nΛ,η+1

≥ #{β ∈ Nn \NΛ(I) : Λ(β) ≤ η} .

Conversely, suppose that F /∈ I + nΛ,η+1. Let G1, . . . , Gt ∈ I be representatives of

the vertices of NΛ(I) and let F =
∑t

i=1QiGi + R be the unique Hironaka division

of F by the Gi in K{x}, relative to Λ. Now, if R ∈ nΛ,η+1 then F ∈ I + nΛ,η+1;

a contradiction. Therefore, we have R = R1 + R2, with R2 ∈ nΛ,η+1, R1 6= 0, and

supp(R1) ⊂ {β ∈ Nn \ NΛ(I) : Λ(β) ≤ η} (cf. Theorem 2.4.5). Then, F − R1 =∑t
i=1QiGi + R2 is in I + nΛ,η+1, which shows that F and R1 represent the same
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element of K{x}/(I + nΛ,η+1). Thus,

dimK
K{x}

I + nΛ,η+1

≤ #{β ∈ Nn \NΛ(I) : Λ(β) ≤ η} .

The last claim of the lemma now follows from the definition of the Hilbert-Samuel

function as HI(η) = dimK K{x}/(I + mη+1).

Definition 2.8.4. For an ideal I = (F1, . . . , Fs) ·K{x}, a positive linear form Λ and

µ ≥ 1, we define the family of ideals Uµ
Λ(I) (or, more precisely, Uµ

Λ(F1, . . . , Fs)) as

Uµ
Λ(I) = {(G1, . . . , Gs) ·K{x} : jµΛ(Gi) = jµΛ(Fi), 1 ≤ i ≤ s}.

We will write simply Uµ(I) for Uµ
Λ(I), when Λ(β) = |β|.

The following lemma shows that the reduction of the maximal ideal in K{x}/I is

preserved by its sufficiently close Taylor approximations.

Lemma 2.8.5. Let I = (F1, . . . , Fs) be an ideal in K{x} with dimK{x}/I = n− k.

Then, after a generic linear change of coordinates in Kn, there exists µ0 such that,

for every µ ≥ µ0 and Iµ ∈ Uµ(I), we have

Iµ + md+m = Iµ + (x̃)mmd, for any m ≥ 1, (2.8.1)

where d is the same as in (2.7.1).

Proof. After a generic linear change of coordinates from Lemma 2.7.2, we may assume

that (x[k])
d+1 ⊂ I + (x̃) ·md, where d is as in (2.7.1). Set µ0 := d + 1. Pick µ ≥ µ0

and Iµ ∈ Uµ(I). Then, I ⊂ Iµ + md+2, and hence (x[k])
d+1 ⊂ Iµ + md+2 + (x̃)md. It

follows that

Iµ + md+1 ⊂ Iµ + md+2 + (x̃)md ⊂ Iµ + (x̃)md + (Iµ + md+1)m ,
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hence Iµ + md+1 ⊂ Iµ + (x̃)md, by Nakayama’s lemma. The claim now follows as in

Remark 2.7.4.

Let us recall now a results from [2] describing the connection between the diagram

of initial exponents of I and those of its approximations Iµ. We include a short proof

for the reader’s convenience.

Lemma 2.8.6 (cf. [2, Lem. 3.2]). Let I be an ideal in K{x} and let Λ be a positive

linear form on Kn. Let l0 = max{Λ(βi) : 1 ≤ i ≤ t}, where β1, . . . , βt are the vertices

of the diagram NΛ(I). Then:

(i) For every µ ≥ l0 and Iµ ∈ Uµ
Λ(I), we have NΛ(Iµ) ⊃ NΛ(I).

(ii) Given l ≥ l0, for every µ ≥ l and Iµ ∈ Uµ
Λ(I), we have

NΛ(Iµ) ∩ {β ∈ Nn : Λ(β) ≤ l} = NΛ(I) ∩ {β ∈ Nn : Λ(β) ≤ l} .

Proof. Fix µ ≥ l0 and let G1, . . . , Gs ∈ K{x} be such that Iµ = (G1, . . . , Gs) and

jµΛ(Gi) = jµΛ(Fi), 1 ≤ i ≤ s. By Remark 2.4.7, for the proof of (i) it suffices to show

that the vertices of NΛ(I) are contained in NΛ(Iµ). Let then F ∈ I be a representative

of a vertex of NΛ(I) (i.e., expΛ(F ) ∈ VΛ(I)). We can write F =
∑s

i=1 HiFi, for some

Hi ∈ K{x}. Then,

jµΛ(F ) = jµΛ(
s∑
i=1

HiFi) = jµΛ(
s∑
i=1

Hi ·jµΛFi) = jµΛ(
s∑
i=1

Hi ·jµΛGi) = jµΛ(
s∑
i=1

HiGi) ,

and hence, by Remark 2.8.2, we have expΛ(F ) = expΛ(
∑s

i=1HiGi). It follows that

expΛ(F ) ∈ NΛ(Iµ), which proves (i).

For the proof of part (ii), fix l ≥ l0. Let µ ≥ l and let Iµ = (G1, . . . , Gs) with

jµΛ(Gi) = jµΛ(Fi), 1 ≤ i ≤ s. By part (i), it now suffices to show that

NΛ(Iµ) ∩ {β ∈ Nn : Λ(β) ≤ l} ⊂ NΛ(I) ∩ {β ∈ Nn : Λ(β) ≤ l} .
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Pick β∗ ∈ Nn \ NΛ(I) with Λ(β∗) ≤ l. Suppose that β∗ ∈ NΛ(Iµ). Then, one can

choose G ∈ Iµ with expΛ(G) = β∗. Write G =
∑s

i=1HiGi for some Hi ∈ K{x}. We

have

jµΛ(G) = jµΛ(
s∑
i=1

HiGi) = jµΛ(
s∑
i=1

Hi · jµΛGi) = jµΛ(
s∑
i=1

Hi · jµΛFi) = jµΛ(
s∑
i=1

HiFi) ,

and since µ ≥ l ≥ Λ(expΛ(G)), it follows that expΛ(G) = expΛ(
∑s

i=1 HiFi), by

Remark 2.8.2 again. Therefore β∗ ∈ NΛ(I); a contradiction.

Corollary 2.8.7. Let I be an ideal in K{x} and let Λ be a positive linear form on

Kn. Suppose that the complement Nn \ NΛ(I) is finite. Then, there exists µ0 ∈ N

such that, for every µ ≥ µ0 and Iµ ∈ Uµ
Λ(I), we have NΛ(Iµ) = NΛ(I).

Proof. Let β1, . . . , βt be the vertices of NΛ(I). Since Nn \NΛ(I) is finite, there exists

µ0 ≥ maxi Λ(βi) such that

Nn \NΛ(I) ⊂ {β ∈ Nn : Λ(β) ≤ µ0} .

By Lemma 2.8.6 part (i), for every µ ≥ µ0 and Iµ ∈ Uµ
Λ(I), we have

Nn \NΛ(Iµ) ⊂ Nn \NΛ(I)

and by part (ii)

(Nn \NΛ(Iµ)) ∩ {β ∈ Nn : Λ(β) ≤ µ0} = (Nn \NΛ(I)) ∩ {β ∈ Nn : Λ(β) ≤ µ0} .

Thus, Nn \NΛ(Iµ) = Nn \NΛ(I), as required.

The following proposition is a key tool in the proofs of Theorems 3.1.3 and 3.2.1.

It shows that the equality of diagrams of an ideal I and its approximation Iµ with
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respect to some ordering on Nn implies the equality of diagrams with respect to the

standard ordering.

Proposition 2.8.8. Let I = (F1, . . . , Fs) be an ideal in K{x} with dimK{x}/I =

n− k. Then, after a generic linear change of coordinates in Kn, there exists µ0 such

that, for every µ ≥ µ0 the following holds: If Iµ ∈ Uµ(I) is such that Iµ∩ (x̃) = Iµ· (x̃)

and dimKK{x}/I+ (x̃)m = dimK K{x}/Iµ + (x̃)m for all m ≥ 1, then HI = HIµ (that

is, the Hilbert-Samuel functions of I and Iµ coincide).

Proof. To simplify notation, we shall write n for the ideal (x̃) in K{x}. By Lemma 2.7.2,

Remark 2.7.4 and Lemma 2.8.5, after a generic linear change of coordinates in Kn,

we may assume that there exist positive integers d and µ0 such that

I + md+m = I + nmmd, for all m ≥ 1 , (2.8.2)

and for every µ ≥ µ0 and Iµ ∈ Uµ(I)

Iµ + md+m = Iµ + nmmd, for all m ≥ 1 . (2.8.3)

By Lemmas 2.8.3 and 2.8.6, taking µ0 sufficiently large, we always have HI(η) ≥

HIµ(η) for all η ≥ 1 and µ ≥ µ0. Moreover by Lemma 2.8.6(ii), requiring further that

µ0 ≥ d ensures that HI(η) = HIµ(η) for all µ ≥ µ0 and η ≤ d. Therefore, to prove the

equality HI = HIµ it suffices to show that HI(η) = HIµ(η) for η ≥ d, or equivalently

that

dimK
K{x}

I + nmmd
= dimK

K{x}
Iµ + nmmd

for all m ≥ 1. (2.8.4)
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Fix µ ≥ µ0 and Iµ ∈ Uµ(I). We have, for m ≥ 1, the following exact sequences

0 → I + nm

I + nmmd
→ K{x}

I + nmmd
→ K{x}

I + nm
→ 0 ,

0 → Iµ + nm

Iµ + nmmd
→ K{x}

Iµ + nmmd
→ K{x}

Iµ + nm
→ 0 .

By assumption, dimKK{x}/(I + nm) = dimKK{x}/(Iµ + nm), and hence to prove

(2.8.4), it suffices to show that

dimK
I + nm

I + nmmd
= dimK

Iµ + nm

Iµ + nmmd
for all m ≥ 1.

Note that

I + nm

I + nmmd
∼=

nm

(I + nmmd) ∩ nm
=

nm

(I ∩ nm) + nmmd
(2.8.5)

and

Iµ + nm

Iµ + nmmd
∼=

nm

(Iµ + nmmd) ∩ nm
=

nm

(Iµ ∩ nm) + nmmd
. (2.8.6)

Let λ be the Artin-Rees exponent of I relative to n. That is, we have I ∩ nm =

(I ∩ nλ)nm−λ for all m ≥ λ. For the remainder of the proof we are going to assume

that µ0 ≥ d + λ. Then, Iµ ⊂ I + mµ+1 ⊂ I + nλmd, by (2.8.2), and conversely,

I ⊂ Iµ + mµ+1 ⊂ Iµ + nλmd, by (2.8.3), whence

I + nλmd = Iµ + nλmd, for any µ ≥ µ0. (2.8.7)

We now claim that (I ∩ nm) + nmmd ⊂ (Iµ ∩ nm) + nmmd, for all m ≥ 1. Indeed, for

m < λ, the inclusion I ⊂ Iµ + nλmd implies

I + nmmd ⊂ Iµ + nλmd + nmmd = Iµ + nmmd ,
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and hence

(I ∩ nm) + nmmd = (I + nmmd) ∩ nm ⊂ (Iµ + nmmd) ∩ nm = (Iµ ∩ nm) + nmmd .

If, in turn, m ≥ λ, then (2.8.7) yields

(I ∩ nm) + nmmd = (I ∩ nλ)nm−λ + nmmd = ((I ∩ nλ) + nλmd)nm−λ

= ((I + nλmd) ∩ nλ)nm−λ = ((Iµ + nλmd) ∩ nλ)nm−λ = ((Iµ ∩ nλ) + nλmd)nm−λ

= (Iµ ∩ nλ)nm−λ + nmmd ⊂ (Iµ ∩ nm) + nmmd .

By (2.8.5) and (2.8.6), the above implies that there is, for every m ≥ 1, a well-defined

epimorphism

I + nm

I + nmmd
∼=

nm

(I + nmmd) ∩ nm
ϕm−→ nm

(Iµ ∩ nm) + nmmd
∼=

Iµ + nm

Iµ + nmmd
.

To complete the proof, it thus suffices to show that kerϕm = (0), or equivalently that

Iµ ∩ nm ⊂ I + nmmd, for all m ≥ 1.

Recall that, by assumption, we have Iµ ∩ n = Iµn. By Lemma 2.4.13, we then

have

Iµ ∩ nm = Iµn
m,

and hence Iµ ∩ (Iµ + n)m ⊂ Iµ(Iµ + n)m−1, for all m ≥ 1. Moreover, by (2.8.2),

Iµ ⊂ I +mµ+1 ⊂ I + n, and by (2.8.3), I ⊂ Iµ +mµ+1 ⊂ Iµ + n, hence I + n = Iµ + n.

Finally, by (2.8.7), we also have Iµ ⊂ I + nmd, hence the sequence of inclusions

Iµ ∩ nm ⊂ Iµ ∩ (Iµ + n)m ⊂ Iµ(Iµ + n)m−1 = Iµ(I + n)m−1

⊂ I + Iµn
m−1 ⊂ I + (I + nmd)nm−1 ⊂ I + nmmd .



Chapter 3

Main Results

3.1 Approximation of complete intersections

The main result of this section, Theorem 3.1.3 below, asserts that a complete inter-

section singularity can be arbitrarily closely approximated by algebraic germs which

are also complete intersections and share the same Hilbert-Samuel function.

We begin with a simple but useful observation.

Proposition 3.1.1. For an ideal I in K{x}, the following conditions are equivalent:

(i) dim(K{x}/I) ≤ dimK{x} − k.

(ii) After a generic linear change of coordinates in Kn, the diagram N(I) has a

vertex on each of the first k coordinate axes in Nn.

Proof. Let as before x[k] = (x1, . . . , xk) and x̃ = (xk+1, . . . , xn), and let I(0) denote

the ideal in K{x[k]} obtained from I by evaluating the x̃ variables at zero.

Condition (ii) then implies that the diagram N(I(0)) has finite complement in Nk,

and hence dimK K{x[k]}/I(0) <∞. By the Weierstrass Finiteness Theorem (Theorem

2.4.14), it follows that dim(K{x}/I) ≤ dimK{x} − k.

On the other hand, by Lemma 2.7.2, condition (i) implies that after a generic

linear change of coordinates in Kn, for every j = 1, . . . , k, I contains a distinguished

39
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polynomial Pj(xj, x̃) = x
dj
j +

∑dj
r=1 a

j
r(x̃)x

dj−r
j such that Pj(xj, x̃) ∈ mdj . Since the

total ordering of Nn is induced by the lexicographic ordering of the (n + 1)-tuples

(|β|, βn, . . . , β1), it follows that exp(Pj) = (0, . . . , dj, 0 . . . , 0) with dj in the j’th place.

Hence (ii).

We shall have occasion to use the following result which is a consequence of The-

orem A.0.9 and Corollary A.0.10,

Remark 3.1.2. Let I be a proper ideal in K{x} with dimK{x}/I = n−k, and suppose

that K{x}/I is a finite K{x̃}-module, where x̃ = (xk+1, . . . , xn). Then, K{x}/I is

Cohen-Macaulay if and only if it is a flat K{x̃}-module.

Theorem 3.1.3. Let I = (F1, . . . , Fk) be a complete intersection ideal in K{x} with

dimK{x}/I = n − k. Then, there exists µ0 such that for every µ ≥ µ0 and for any

G1, . . . , Gk ∈ K{x} satisfying jµGi = jµFi, 1 ≤ i ≤ k, the ideal Iµ := (G1, . . . , Gk) is

a complete intersection ideal in K{x} and HIµ = HI .

Proof. By Proposition 3.1.1, after a generic linear change of coordinates in Kn, the

diagram N(I) has a vertex βi on each of the first k coordinate axes in Nn. Let

H1, . . . , Hk ∈ I be representatives of these vertices, so that expHi = βi, 1 ≤ i ≤ k.

Let Qi,j ∈ K{x} be such that Hi =
∑k

j=1Qi,jFj. Set µ1 := max{|β1|, . . . , |βk|}.

Since N(I) has a vertex on each of the first k coordinate axes in Nn, the comple-

ment Nk \N(I(0)) is finite. Hence, by Corollary 2.8.7, there exists µ2 ≥ 1 such that,

for every µ ≥ µ2 and Iµ ∈ Uµ(I), N(I(0)) = N(Iµ(0)). Let then µ0 := max{µ1, µ2}.

Fix µ ≥ µ0 and G1, . . . , Gk ∈ K{x} satisfying jµGi = jµFi, 1 ≤ i ≤ k. Let

Iµ = (G1, . . . , Gk). Then, for every i,

jµHi = jµ(
k∑
j=1

Qi,jFj) = jµ(
k∑
j=1

Qi,jj
µFj) = jµ(

k∑
j=1

Qi,jj
µGj) = jµ(

k∑
j=1

Qi,jGj) ,

hence, by Remark 2.8.2, exp(
∑k

j=1Qi,jGj) = βi. It follows that βi ∈ N(Iµ), 1 ≤
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i ≤ k, and thus N(Iµ) has a vertex on each of the first k coordinate axes in Nn. By

Proposition 3.1.1 again, we get dimK{x}/Iµ ≤ n − k. Since Iµ is generated by k

elements, it is thus a complete intersection ideal.

Since complete intersections are Cohen-Macaulay, then by Remark 3.1.2, both

K{x}/I and K{x}/Iµ are flat over K{x̃}. Therefore, by Proposition 2.4.11 and Re-

mark 2.4.12, there exists l ≥ 1 such that for the linear form

Λ(β) =
k∑
i=1

βi +
n∑

j=k+1

lβj ,

we have

NΛ(I) = N(I(0))× Nn−k and NΛ(Iµ) = N(Iµ(0))× Nn−k .

Thus, NΛ(I) = NΛ(Iµ), and hence

dimK
K{x}

I + nΛ,η+1

= dimK
K{x}

Iµ + nΛ,η+1

for all η ∈ N , (3.1.1)

by Lemma 2.8.3. Note that nΛ,l = (x[k])
l+(x̃), and in general nΛ,ml = ((x[k])

l+(x̃))m,

for all m ∈ N. Also, since K{x}/I is a finite K{x̃}-module, then for l large enough

one has (x[k])
l ⊂ I + (x̃) (Corollary 2.7.3). It follows that I + (x̃) = I + nΛ,l, and

hence by induction

I + (x̃)m = I + nΛ,ml for all m ∈ N .

Therefore, by (3.1.1), we get dimK
K{x}

I + (x̃)m
= dimK

K{x}
Iµ + (x̃)m

for all m ∈ N.

Note finally that Iµ ∩ (x̃) = Iµ · (x̃), by K{x̃}-flatness of K{x}/Iµ (see, e.g., [7,

Cor. 7.6]). The theorem thus follows from Proposition 2.8.8.

Remark 3.1.4. Observe that one can choose polynomials G1, . . . , Gk ∈ K[x] satis-
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fying the hypothesis and hence the conclusion of Theorem 3.1.3. Therefore, Theorem

3.1.3 implies, in particular, that an arbitrary complete intersection singularity can

be approximated arbitrarily well by algebraic complete intersection singularities that

have the same Hilbert-Samuel function.

3.2 Approximation of Cohen-Macaulay singulari-

ties

At this point we recall that a module M over a Noetherian local ring (A,m) is Cohen-

Macaulay if depthA(M) = dimM , where depthA(M) is the maximum length of an M -

regular sequence in m. A local ring A is Cohen-Macaulay, when A is Cohen-Macaulay

as an A-module (Definition A.0.4). In the context of the local rings of analytic germs,

K{x}/I, by Remark 3.1.2, this is equivalent to saying that if dim(K{x}/I) = n− k,

then there exists a generic linear change of coordinates such that K{x}/I is flat as a

K{x̃}-module, where x̃ = (xk+1, . . . , xn).

The polynomial approximation of analytic germs is, in general, not possible beyond

the complete intersection case (see Example 3.2.2 below). The next best thing is an

approximation by Nash germs. The following result shows that a Cohen-Macaulay

singularity can be arbitrarily closely approximated by Nash germs which are also

Cohen-Macaulay and share the same Hilbert-Samuel function.

Theorem 3.2.1. Let I = (F1, . . . , Fs) be an ideal in K{x} such that K{x}/I is

Cohen-Macaulay with dimK{x}/I = n− k. Then, there exists µ0 ∈ N, such that for

any µ ≥ µ0 there are algebraic power series G1, . . . , Gs ∈ K 〈x〉 with jµGi = jµFi,

1 ≤ i ≤ s, the ideal Iµ = (G1, . . . , Gs) satisfies HIµ = HI , and K{x}/Iµ is Cohen-

Macaulay with dimK{x}/Iµ = n− k.

Proof. By Proposition 3.1.1, after a generic linear change of coordinates in Kn, the

diagram N(I) has a vertex on each of the first k coordinate axes in Nn. It follows
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that K{x}/I is K{x̃}-finite, and hence K{x̃}-flat (Remark 3.1.2). Therefore, by

Proposition 2.4.11 and Remark 2.4.12, there exists l ≥ 1 such that for the linear form

Λ(β) =
k∑
i=1

βi +
n∑

j=k+1

lβj ,

we have

NΛ(I) = N(I(0))× Nn−k .

We can extend the given set of generators {F1, . . . , Fs} by power series Fs+1, . . . ,

Fr ∈ I such that the collection {F1, . . . , Fr} contains representatives of all the vertices

of NΛ(I). Since I is generated by {F1, . . . , Fs}, there are Hq
p ∈ K{x} such that

Fs+p =
s∑
q=1

Hq
pFq , p = 1, . . . , r − s.

Then, {F1, . . . , Fr} is a set of generators of I and a standard basis of I relative to Λ

(Corollary 2.4.8). For i, j ∈ {1, . . . , r}, i < j, let Si,j = S(Fi, Fj) denote the s-series

of the pair (Fi, Fj). By Theorem 2.5.5, there exist Qi,j
m ∈ K{x}, i, j,m ∈ {1, . . . , r},

such that

Si,j =
r∑

m=1

Qi,j
mFm and expΛSi,j ≤ min{expΛ(Qi,j

mFm) : m = 1, . . . , r} .

Recall that, for all 1 ≤ i < j ≤ r, there are monomials Pi,j, Pj,i ∈ K[x], which depend

only on the initial terms of Fi, Fj, such that Si,j = Pi,jFi− Pj,iFj. Consider a system


Pi,j(x)yi − Pj,i(x)yj −

r∑
m=1

zi,jm ym = 0

ys+p −
s∑
q=1

wqpyq = 0

(3.2.1)

of
(
r
2

)
+ r− s polynomial equations in variables y = (y1, . . . , yr), z = (z1,2

1 , . . . , zr−1,r
r )
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and w = (w1
1, . . . , w

s
r−s). The system has a convergent solution {Fi, Qi,j

m , H
q
p}, and

hence by Theorem 2.6.2, for every µ ∈ N, an algebraic power series solution {Gi, R
i,j
m , K

q
p}

with jµGi = jµFi, j
µRi,j

m = jµQi,j
m , and jµKq

p = jµHq
p for all i, j,m, p, q.

Let now µ0 := max{Λ(expΛQ
i,j
m ) + Λ(expΛFm)) : 1 ≤ i < j ≤ r, 1 ≤ m ≤ r}, and

fix µ ≥ µ0. Then, for any algebraic solution {Gi, R
i,j
m , K

q
p} to (3.2.1) which coincides

with {Fi, Qi,j
m , H

q
p} up to degree µ, we have S(Gi, Gj) = Pi,jGi − Pj,iGj and

S(Gi, Gj) =
r∑

m=1

Ri,j
mGm,

with expΛS(Gi, Gj) ≤ min{expΛ(Ri,j
mGm) : m = 1, . . . , r} .

Hence the Gi form a standard basis for the ideal Iµ = (G1, . . . , Gr), by Theorem 2.5.5

again. In particular, the set {G1, . . . , Gr} contains representatives of all the ver-

tices of NΛ(Iµ) (see Remark 2.5.2(1)). Since, by construction, expΛGi = expΛFi

for all i, it follows that NΛ(Iµ) = NΛ(I). Thus, NΛ(Iµ) = N(I(0)) × Nn−k and so

K{x}/Iµ is K{x̃}-flat, by Proposition 2.4.11. Note also that Iµ is, in fact, generated

by {G1, . . . , Gs}, since the remaining generators Gs+1, . . . , Gr are combinations of the

former, by (3.2.1).

The equality of diagrams NΛ(Iµ) = NΛ(I) implies, as in the proof of Theo-

rem 3.1.3, that we have dimK
K{x}

I + (x̃)m
= dimK

K{x}
Iµ + (x̃)m

, for all m ∈ N. Moreover,

Iµ ∩ (x̃) = Iµ · (x̃), by K{x̃}-flatness of K{x}/Iµ. The theorem thus follows from

Proposition 2.8.8.

In contrast with complete intersections, the Cohen-Macaulay singularities are not,

in general, finitely determined. This can be shown using Becker’s s-series criterion,

as follows.
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Example 3.2.2. Let I be an ideal in K{x, y, z} generated by

F1 = x8, F2 = y5 + y2z4ez, F3 = x2y3 + x2z4ez .

Let N3 be equipped with the standard ordering induced by lexicographic ordering of the

4-tuples (|β|, β3, β2, β1).

We claim that {F1, F2, F3} are a standard basis of I. Indeed, the s-series of pairs

(F1, F3) and (F2, F3) are as follows:

S1,3 = y3F1 − x6F3 = (−z4ez)F1, S2,3 = x2F2 − y2F3 = 0 ,

which are standard representations in terms of {F1, F2, F3}. The S1,2, in turn, has

a standard representation in terms of F1 and F2, because their initial exponents are

relatively prime (see [6, Thm. 3.1]). The claim thus follows from Theorem 2.5.5.

The diagram N(I) contains vertices on the first two coordinate axes in N3, namely

expF1 and expF2, hence K{x, y, z}/I is a finite K{z}-module. On the other hand, by

Remark 2.5.2(1), the only vertices of N(I) are the expF1, expF2, and expF3, which

all lie in N2×{0}. Thus, by Proposition 2.4.11, K{x, y, z}/I is K{z}-flat, and hence

Cohen-Macaulay (Remark 3.1.2).

Let now µ ≥ 8 be arbitrary, and let

G1 = x8, G2 = y5 + y2z4(ez + zµ−6h(z)), G3 = x2y3 + x2z4ez ,

where h(z) ∈ K{z} is an arbitrary non-zero series with h(0) = 0. Then, jµGi = jµFi

for all i, but for the ideal Iµ = (G1, G2, G3), the ring K{x, y, z}/Iµ is not Cohen-

Macaulay. Indeed, consider the s-series S(G2, G3). We have

S(G2, G3) = x2G2 − y2G3 = x2y2zµ−2h(z) ,
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and hence x2y2 is a zero-divisor in K{x, y, z}/Iµ regarded as a K{z}-module. Thus,

K{x, y, z}/Iµ is not K{z}-flat, and hence not a Cohen-Macaulay ring, by Remark 3.1.2

again.

3.3 Zariski equisingularity and Varchenko theorem

In this section we recall a result of Varchenko on topological equisingularity of al-

gebraically equisingular families. This is a central tool in the proof of Mostowski’s

theorem.

Let V be a complex analytic hypersurface in a neighbourhood U of the origin in

Cl × Cn, and let T = V ∩ (Cl × {0}). Suppose there is, for every 0 ≤ i ≤ n, a

distinguished polynomial

Fi(t, x[i]) = xpii +

pi∑
j=1

ai−1,j(t, x[i−1])x
pi−j
i ,

where t ∈ Cl, x[i] = (x1, . . . , xi) ∈ Ci, ai−1,j ∈ C{t, x[i−1]}, all such that the following

hold:

(1) V = F−1
n (0).

(2) ai,j(t, 0) ≡ 0, for all i, j.

(3) Fi−1(t, x[i−1]) = 0 if and only if Fi(t, x[i−1], xi), regarded as a polynomial in xi

with (t, x[i−1]) fixed, has fewer roots than for generic (t, x[i−1]).

(4) Either Fi(t, 0) ≡ 0 or Fi ≡ 1, and in the latter case Fk ≡ 1 for all k ≤ i by

convention.

(5) F0 ≡ 1.
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A system of distinguished polynomials {Fi(t, x[i])} satisfying the above conditions

is called algebraically equisingular. Answering a question posed by Zariski [38],

Varchenko showed that algebraic equisingularity of a system {Fi(t, x[i])} implies topo-

logical equisingularity of V along T . More precisely, we have the following.

Theorem 3.3.1 ([32, 33], cf. [12, Thms. 3.1, 3.2]). Under the above hypotheses, let

Vt = V ∩ ({t} × Cn) and Ut = U ∩ ({t} × Cn), for t ∈ T . Then, for every t ∈ T ,

there exists a homeomorphism ht : U0 → Ut such that ht(V0) = Vt and ht(0) = 0.

Moreover, if Fn = G1 . . . Gr is a product of distinguished polynomials in xn, then

ht(G
−1
j (0) ∩ ({0} × Cn)) = G−1

j (0) ∩ ({t} × Cn) for all 1 ≤ j ≤ r .

3.4 Mostowski theorem with Hilbert-Samuel equi-

singularity

The goal of this section is to prove a strong variant of Mostowski’s theorem [22],

showing that every analytic germ X0 ⊂ Kn
0 can be arbitrarily closely approximated

by a Nash germ X̂0 ⊂ Kn
0 with the same Hilbert-Samuel function, and such that the

pairs (Kn, X) and (Kn, X̂) are topologically equivalent near zero.

Theorem 3.4.1. Let g1, . . . , gs ∈ K{x} and let X0 ⊆ Kn
0 be an analytic germ defined

by g1 = · · · = gs = 0. Then, there exists µ0 such that for all µ ≥ µ0 there are algebraic

power series ĝ1, . . . , ĝs ∈ K 〈x〉 and a homeomorphism germ h : Kn
0 → Kn

0 such that:

(i) jµĝk = jµgk for k = 1, . . . , s

(ii) If X̂0 is the Nash germ defined by ĝ1 = · · · = ĝs = 0, then HX̂,0 = HX,0

(iii) h(X0) = X̂0.
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Our proof of Theorem 3.4.1 combines the exposition of [12] with the Becker s-series

criterion (Theorem 2.5.5). We include the details of the argument for the reader’s

convenience.

3.4.1 Generalized discriminants

Let T = (T1, . . . , Tp) be variables. For j ≥ 1, consider

∆j =
∑

r1,...,rj−1

∏
k 6=l

k,l6=r1,...,rj−1

(Tk − Tl).

The ∆j are symmetric in variables T , and hence each ∆j = ∆j(A0, . . . , Ap−1) is a

polynomial in the elementary symmetric functions A0 = T1 · · ·Tp, . . . , Ap−1 = T1 +

· · · + Tp. We have: A polynomial Xp + ap−1X
p−1 + · · · + a1X + a0 has precisely

p − j distinct roots if and only if ∆1(a0, . . . , ap−1) = · · · = ∆j(a0, . . . , ap−1) = 0 and

∆j+1(a0, . . . , ap−1) 6= 0.

3.4.2 Construction of a normal system of equations

Let g1, . . . , gs ∈ K{x} and let I := (g1, . . . , gs) ·K{x}. After a generic linear change

of coordinates, if needed, all the gk become regular in variable xn. We may thus,

without loss of generality, assume that each gk is a distinguished polynomial in xn.

That is,

gk(x) = xrkn +

rk∑
j=1

an−1,k,j(x[n−1])x
rk−j
n , (3.4.1)

where an−1,k,j ∈ K{x[n−1]} and an−1,k,j(0) = 0.

The coefficients an−1,k,j can be arranged in a row vector an−1 ∈ K{x[n−1]}pn , where

pn =
∑

k rk. Set fn := g1 · · · gs. Then, the generalized discriminants ∆n,i of fn are
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polynomials in an−1. Let jn be such that

∆n,i(an−1) ≡ 0 for i < jn ,

and ∆n,jn(an−1) 6≡ 0. Then, after a linear change of coordinates x[n−1], we may write

∆n,jn(an−1) = un−1(x[n−1])(x
pn−1

n−1 +

pn−1∑
j=1

an−2,j(x[n−2])x
pn−1−j
n−1 ) ,

where un−1(0) 6= 0, and for all j, an−2,j(0) = 0. Set

fn−1 := x
pn−1

n−1 +

pn−1∑
j=1

an−2,j(x[n−2])x
pn−1−j
n−1 ,

and denote the vector of its coefficients an−2,j by an−2 ∈ K{x[n−2]}pn−1 . Let jn−1 be

such that the first jn−1 − 1 generalized discriminants ∆n−1,i of fn−1 are identically

zero and ∆n−1,jn−1 is not. Then, again, we define fn−2(x[n−2]) as the distinguished

polynomial associated to ∆n−1,jn−1 , and so on.

By induction, we define a system of distinguished polynomials fi ∈ K{x[i−1]}[xi],

i = 1, . . . , n− 1, such that

fi = xpii +

pi∑
j=1

ai−1,j(x[i−1])x
pi−j
i

is the distinguished polynomial associated to the first non identically zero generalized

discriminant ∆i+1,ji+1
(ai) of fi+1:

∆i+1,ji+1
(ai) = ui(x[i])(x

pi
i +

pi∑
j=1

ai−1,j(x[i−1])x
pi−j
i ) , i = 0, ..., n− 1, (3.4.2)

where, in general, ai = (ai,1, . . . , ai,pi+1
). Thus, the vector of functions ai satisfies

∆i+1,k(ai) ≡ 0 for k < ji+1, i = 0, ..., n− 1. (3.4.3)
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This means in particular that

∆1,k(a0) ≡ 0 for k < j1 and ∆1,j1(a0) ≡ u0,

where u0 is a non-zero constant.

3.4.3 Incorporating a standard basis

Consider now the diagram of initial exponents N(I) of the ideal I in K{x} (with re-

spect to the linear form Λ(β) = |β| on Nn). We can extend the given set of generators

{g1, . . . , gs} by power series gs+1, . . . , gr ∈ I such that the collection {g1, . . . , gr} con-

tains representatives of all the vertices of N(I). Since I is generated by {g1, . . . , gs},

there are hqp ∈ K{x} such that

gs+p(x) =
s∑
q=1

hqp(x) ·

(
xrqn +

rq∑
j=1

an−1,q,j(x[n−1])x
rq−j
n

)
, (3.4.4)

for p = 1, . . . , r − s, by (3.4.1).

Now, {g1, . . . , gr} is a set of generators of I and a standard basis of I (Corol-

lary 2.4.8). For i, j ∈ {1, . . . , r}, i < j, let Si,j = S(gi, gj) denote the s-series of the

pair (gi, gj). By Theorem 2.5.5, there exist vi,jm ∈ K{x}, i, j,m ∈ {1, . . . , r}, such that

Si,j =
r∑

m=1

vi,jm gm and expSi,j ≤ min{exp(vi,jm gm) : m = 1, . . . , t} . (3.4.5)

Recall that, for all 1 ≤ i < j ≤ r, there are monomials Pi,j, Pj,i ∈ K[x], which depend

only on the initial terms of gi, gj, such that Si,j = Pi,jgi − Pj,igj. Therefore, the vi,jm ,

hqp, and an−1,q,j satisfy the following system of
(
r
2

)
polynomial equations

Pi,j(x)gi − Pj,i(x)gj −
r∑

m=1

vi,jm gm = 0 , 1 ≤ i < j ≤ r , (3.4.6)
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in which the hqp and an−1,q,j are present via (3.4.1) and (3.4.4). We will denote the

vector of functions vi,jm by v ∈ K{x}r(
r
2), and the vector of hqp by h ∈ K{x}s(r−s), to

simplify notation.

3.4.4 Approximation by Nash functions

Consider (3.4.2), (3.4.3), and (3.4.6) as a system of polynomial equations in ai(x[i]),

ui(x[i]), v(x), and h(x). By construction, this system admits a convergent solution.

Therefore, by Theorem 2.6.1, there exist a new set of variables z = (z1, . . . , zk), an

increasing function τ : N → N, convergent power series zi(x) ∈ K{x} vanishing at

zero, algebraic power series ûi(x[i], z) ∈ K
〈
x[i], z1, . . . , zτ(i)

〉
, and vectors of algebraic

power series âi(x[i], z) ∈ K
〈
x[i], z1, . . . , zτ(i)

〉pi , v̂(x, z) ∈ K〈x, z〉r(
r
2), and ĥ(x, z) ∈

K〈x, z〉s(r−s) all such that the following hold:

(a) z1(x), . . . , zτ(i)(x) depend only on variables x[i] = (x1, . . . , xi)

(b) ûi(x[i], z), âi(x[i], z), v̂(x, z), ĥ(x, z) are solutions of (3.4.2), (3.4.3), and (3.4.6)

(c) The convergent solutions satisfy:

ui(x[i]) = ûi(x[i], z(x[i])), ai(x[i]) = âi(x[i], z(x[i])), v(x) = v̂(x, z(x)), and h(x) =

ĥ(x, z(x)).

3.4.5 Proof of Theorem 3.4.1

Let g1, . . . , gs ∈ K{x} and let X0 ⊆ Kn
0 be an analytic germ defined by g1 = · · · =

gs = 0. Suppose first that K = C.

Let gs+1(x), . . . , gr(x), ui(x[i]), ai(x[i]), v(x), and h(x) be as in Sections 3.4.2

and 3.4.3. Set

µ0 := max{|exp(vi,jm )|+ |exp(gm)| : 1 ≤ i < j ≤ r, 1 ≤ m ≤ r} ,
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and fix µ ≥ µ0.

Let zi(x) ∈ C{x} be the convergent power series, and let ûi(x[i], z), âi(x[i], z),

v̂(x, z), and ĥ(x, z) be the (vectors of) algebraic power series constructed above. To

simplify notation, we will write z̄µi (x) for zi(x) − jµzi(x), where as before jµzi(x)

denotes the µ-jet of zi as a power series in variables x.

For t ∈ C, we define

Fn(t, x) :=
s∏

k=1

Gk(t, x) ,

where

Gk(t, x) := xrkn +

rk∑
j=1

ân−1,k,j(x[n−1], j
µz(x[n−1]) + tz̄µ(x[n−1]))·xrk−jn , (3.4.7)

and

Fi(t, x) := xpii +

pi∑
j=1

âi−1,j(x[i−1], j
µz(x[i−1]) + tz̄µ(x[i−1]))·xpi−ji , i = 1, . . . , n− 1.

Finally, we set F0(t) ≡ 1. Now, since ui(0, 0) = ûi(0, z(0)) 6= 0, i = 1, . . . , n − 1, it

follows that the family {Fi(t, x[i])} is algebraically equisingular (with |t| < R, for any

R <∞).

Set ĝk(x) := Gk(0, x), and let X̂0 be the Nash germ in Cn
0 defined by ĝ1 = · · · =

ĝs = 0. Note that gk = Gk(1, x), k = 1, . . . , s. Therefore, by Theorem 3.3.1, there is

a homeomorphism germ h : Cn
0 → Cn

0 such that h(X0) = X̂0.

By construction, we have jµĝk = jµgk for k = 1, . . . , s. Finally, as in the proof

of Theorem 3.2.1, observe that the collection {ĝ1, . . . , ĝs, . . . , ĝr} forms a standard

basis for the ideal Iµ that it generates (by (3.4.5)). In particular, the set {ĝ1, . . . , ĝr}

contains representatives of all the vertices of the diagram N(Iµ) (see Remark 2.5.2(1)).

Since, by construction and the choice of µ0, we have exp(ĝk) = exp(gk) for all k, it

follows that N(Iµ) = N(I). Hence, HX̂,0 = HX,0, by Lemma 2.8.3. Note also that Iµ
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is, in fact, generated by {ĝ1, . . . , ĝs}, since the remaining generators ĝs+1, . . . , ĝr are

combinations of the former, by (3.4.4). This completes the proof in the complex case.

The real case follows from the complex one, since by [32, §6], if the distinguished

polynomials Fi of Section 3.3 have real coefficients, then the homeomorphism h con-

structed in Varchenko’s Theorem 3.3.1 is conjugation invariant.

Remark 3.4.2. We note the following:

(1) A parameterization such as Fn(t, x) of a power series is referred to as an un-

folding (see [15, Section II.1.2]).

(2) By [15, Corollary II.1.6, Proposition II.1.7] the unfolding of fn in the proof of

Theorem 3.4.1, given by Fn(t, x), defines an analytic deformation of the hy-

persurface defined by fn = 0. Also, in the case when the germ X0 is complex

analytic and a complete intersection and the gi are a minimal set of defining

functions, the unfoldings Gi(t, x) define a deformation as well, and in this case

one can easily see that the deformation is equisingular both topologically and in

the sense of the Hilbert-Samuel function.

(3) In general, any unfolding of the defining functions of a complex analytic germ

which is not a complete intersection does not define a deformation (see [15,

Example II.1.7.1]).

(4) It is an open question whether the particular unfoldings Gi(t, x) arising in the

proof of Theorem 3.4.1 always define deformations of the germ X0 even when

it is not a complete intersection.



Chapter 4

A look ahead

This section explores work that is a continuation of the main results of this thesis and

points to possible future directions of research. There are two main threads that can

be followed. One is the approximation of germs of flat analytic mappings. This has

potential applications to deformation theory. The second one concerns exploration

into the problem of equiresolution.

4.1 Approximation of flat maps from Cohen-Macaulay

germs

This section begins with a result that builds upon previous work by Adamus and

Seyedinejad [2, Theorem 4.9]. In [2] the authors prove that an analytic flat map

from a complete intersection is finitely determined, that is, by taking sufficienly large

jets of the functions defining the map we can obtain approximations to it that are

flat as well. Subsequently, they asked whether this could be extended to flat maps

from germs of analytic spaces whose local rings are Cohen-Macaulay. The Cohen-

Macaulay case is interesting because in the context of complex analytic spaces the

Cohen-Macaulay case is well understood geometrically - for analytic maps from germs

54
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of complex analytic spaces to euclidean germs, flatness is equivalent to openness [14,

Proposition 3.20]. The work in this section appears in the preprint [26].

In what follows we show first that finite determinacy can be extended to the case

of flat maps from germs of analytic spaces whose local rings are Cohen-Macaulay.

Theorem 4.1.1. Let X be a K-analytic subspace of Kn. Suppose that 0 ∈ X and

the local ring OX,0 is Cohen-Macaulay. Also, let φ = (φ1, . . . , φm) : X → Km with

φ(0) = 0 be a K-analytic mapping which is flat at 0. Then there exists µ0 ∈ N,

such that for every µ ≥ µ0 every mapping ψ = (ψ1, . . . , ψm) : X → Km satisfying

jµφ = jµψ is flat at zero.

Proof. Let dimOX,0 = n − k. Suppose that OX,0 = K{x}/I and I = (F1, . . . , Fs).

Further, let J be the ideal in K{x} generated by φ1, . . . , φm. Then by Theorem A.0.6,

dimK{x}/(I + J) = n − (k + m). Up to a generic linear change of coordinates this

is equivalent, by Proposition 3.1.1, to the condition that N(I + J) has a vertex on

each of the first k + m coordinate axes. Suppose that G1, . . . , Gk+m ∈ I + J are

representatives of these vertices. Then we have Qi
p ∈ K{x} such that,

Gi =
s∑

p=1

Qi
pFp +

m∑
q=1

Qi
s+qφq.

For all sufficiently large µ we have,

expjµGi = expGi (4.1.1)

and,

jµGi = jµ(
s∑

p=1

Qi
pFp +

m∑
q=1

Qi
s+qj

µφq).

Now suppose that ψ = (ψ1, . . . , ψm) : X → Km is a mapping such that jµψq = jµφq
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for q = 1, . . . ,m. We then have,

jµGi = jµ(
s∑

p=1

Qi
pFp +

m∑
q=1

Qi
s+qj

µψq).

Therefore, by (4.1.1), we may conclude that for all sufficiently large µ, N(I + Ĵ),

where Ĵ is the ideal in K{x} generated by ψ1, . . . , ψm, has a vertex each of the first

k +m coordinate axes. By Proposition 3.1.1 this implies that,

dimK{x}/(I + Ĵ) ≤ (n− k)−m.

But we have dimK{x}/(I + Ĵ) ≥ (n− k)−m because Ĵ has m generators, therefore,

dimK{x}/(I + Ĵ) = n − (k + m). Theorem A.0.9 then allows us to conclude that

ψ = (ψ1, . . . , ψm) is flat at zero.

Flat maps from germs of real or complex analytic spaces are central to defor-

mation theory. In this context, it is of interest to know if analytic flat maps can be

approximated by maps that are Nash in such a way that algebro-geometric properties

of the special fibre are preserved. This is of interest because if we are approximating

deformations of analytic spaces we would like the approximant to belong to the same

class, which is usually determined based on properties of the special fibre. Using

Theorem 3.2.1, we can prove that there exist Nash flat approximations to flat maps

whose domains are germs of analytic spaces with Cohen-Macaulay local rings, which

preserve the Hilbert-Samuel function of the special fibre.

Theorem 4.1.2. Let X be a K-analytic subspace of Kn. Suppose that 0 ∈ X and the

local ring OX,0 is Cohen-Macaulay and that OX,0 = K{x}/I where I = (F1, . . . , Fs).

Also, let φ = (φ1, . . . , φm) : X → Km with φ(0) = 0 be a K-analytic mapping which

is flat at 0. Then there exists µ0 ∈ N, such that for each µ ≥ µ0 there exist:

(a) A Nash, Cohen-Macaulay germ X̂0 ⊆ Kn with OX̂,0 = K{x}/Î, where Î =
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(G1, . . . , Gs), for some Gi ∈ K〈x〉 that satisfy jµGi = jµFi for all i, such that

HÎ = HI .

(b) A Nash map ψ = (ψ1, . . . ψn) : X̂ → Km which is flat at 0 with jµφi = jµψi for

all i, such that if J = (φ1, . . . , φm) ⊆ K{x} and Ĵ = (ψ1, . . . , ψm) ⊆ K{x}, then

HI+J = HÎ+Ĵ .

Proof. Suppose that OX,0 = K{x}/I and I = (F1, . . . , Fs). We proceed exactly as in

the proof of Theorem 3.2.1 to establish the following:

(1) After a generic linear change of coordinates in Kn there exists l1 ≥ 1 such that

for the linear form

Λ1(β) =
k∑
i=1

βi +
n∑

j=k+1

l1βj ,

we have

NΛ1(I) = D1 × Nn−k, for some D1 ⊂ Nk. (4.1.2)

(2) We may extend {F1, . . . , Fs} by power series Fs+1, . . . , Fr ∈ I such that the

collection {F1, . . . , Fr} contains representatives of all the vertices NΛ1(I). Since

I is generated by {F1, . . . , Fs}, there are Hq
p ∈ K{x} such that

Fs+p =
s∑
q=1

Hq
pFq , p = 1, . . . , r − s.

(3) By Theorem 2.5.5, there exist Qi,j
m ∈ K{x}, i, j,m ∈ {1, . . . , r}, such that

Si,j =
r∑

m=1

Qi,j
mFm and expΛ1

Si,j ≤ min{expΛ1
(Qi,j

mFm) : m = 1, . . . , r} .

Let J = (φ1, . . . , φm) ⊆ K{x}. The flatness of φ implies that the representatives of

φ1, . . . , φm form a regular sequence in K{x}/I. By Theorem A.0.6 the ring K{x}/(I+

J) is Cohen-Macaulay with dimension dim(K{x}/I)−m = n− k−m. Therefore, as
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in (1), after a generic linear change of coordinates in Kn there exists l2 ≥ 1 such that

for the linear form

Λ2(β) =
k+m∑
i=1

βi +
n∑

j=k+m+1

l2βj ,

we have

NΛ2(I + J) = D2 × Nn−k−m, for some D2 ⊂ Nk+m. (4.1.3)

Since generic linear changes of coordinates form an open dense subset of the space

of all linear changes of coordinates, and both the coordinate changes made above are

generic, we can, in fact, chose one change of coordinates for which both (4.1.2) and

(4.1.3) hold.

Now, we observe that I + J = (F1, . . . , Fs, φ1, . . . , φm). We may extend the set

of generators of this ideal by φm+1, . . . , φl, such that F1, . . . , Fs, φ1, . . . , φl form a

standard basis for I + J with respect to Λ2. We then have H̄q
p ∈ K{x} such that

φm+p =
s∑
q=1

H̄q
pFq +

m∑
q=1

H̄q+s
p φq , p = 1, . . . , l −m.

Let S
(1)
i,j = S(Fi, Fj) for 1 ≤ i < j ≤ s, S

(2)
i,j = S(Fi, φj) for i ∈ {1, . . . , s}, j ∈

{1, . . . , l}, and S
(3)
i,j = S(φi, φj) for 1 ≤ i < j ≤ l be the s-series with respect to

the ordering induced by Λ2. We may now apply Theorem 2.5.5 to conclude that

there exist: Q̃i,j
m , Q̄

i,j
m , Q̂

i,j
m ∈ K{x} with index ranges 1 ≤ i < j ≤ s, i ∈ {1, . . . , s},

j ∈ {1, . . . , l}, and 1 ≤ i < j ≤ l respectively, such that

S
(1)
i,j =

s∑
m=1

Q̃i,j
mFm +

l∑
m=1

Q̃i,j
m+sφm

S
(2)
i,j =

s∑
m=1

Q̄i,j
mFm +

l∑
m=1

Q̄i,j
m+sφm
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and

S
(3)
i,j =

s∑
m=1

Q̂i,j
mFm +

l∑
m=1

Q̂i,j
m+sφm

In the above equations we have expΛ2
S

(1)
i,j ≤ min{e1, e2}, expΛ2

S
(2)
i,j ≤ min{f1, f2},

and expΛ2
S

(3)
i,j ≤ min{g1, g2} where,

e1 = min{expΛ2
(Q̃i,j

mFm) : m = 1, . . . , s},

e2 = min{expΛ2
(Q̃i,j

m+rφm) : m = 1, . . . , l},

f1 = min{expΛ2
(Q̄i,j

mFm) : m = 1, . . . , s},

f2 = min{expΛ2
(Q̄i,j

m+rφm) : m = 1, . . . , l},

g1 = min{expΛ2
(Q̂i,j

mFm) : m = 1, . . . , s},

g2 = min{expΛ2
(Q̂i,j

m+rφm) : m = 1, . . . , l}.

Now, there are monomials Pi,j, P̄j,i, P
(1)
i,j , P̄

(1)
j,i , P

(2)
i,j , P̄

(2)
j,i , P

(3)
i,j , P̄

(3)
i,j such that

Si,j = Pi,jFi − P̄i,jFj

S
(1)
i,j = P

(1)
i,j Fi − P̄

(1)
i,j Fj

S
(2)
i,j = P

(2)
i,j Fi − P̄

(2)
i,j φj

S
(3)
i,j = P

(3)
i,j φi − P̄

(3)
i,j φj

Further, these monomials only depend on the initial terms of the Fk, φk involved on

the right hand sides of the above equations taken with respect to the appropriate or-

dering (i.e., the one induced by Λ1, or Λ2). We now consider the following system of

equations in variables y = (y1, . . . , yr), z = (z1,2
1 , . . . , zr−1,r

r ), w = (w1
1, . . . , w

s
r−s),

ỹ = (ỹ1, . . . , ỹl), z̄ = (z̃1,1
1 , . . . , z̃s,ls+l), ȳ = (ȳ1, . . . , ȳl), z̄ = (z̄1,1

1 , . . . , z̄s,ls+l), ẑ =
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(ẑ1,2
1 , . . . , ẑl−1,l

s+l ), w̄ = (w̄1
1, . . . , w̄

s+l
l−m).



Pi,j(x)yi − P̄j,i(x)yj −
r∑

m=1

zi,jm ym = 0

P
(1)
i,j (x)yi − P̄ (1)

j,i (x)ỹj −
s∑

m=1

z̃i,jm ym −
l∑

m=1

z̃i,jm+sỹm = 0

P
(2)
i,j (x)yi − P̄ (2)

j,i (x)ȳj −
s∑

m=1

z̄i,jm ym −
l∑

m=1

z̄i,jm+sȳm = 0

P
(3)
i,j (x)ȳi − P̄ (3)

j,i (x)ȳj −
s∑

m=1

ẑi,jm ym −
l∑

m=1

ẑi,jm+sȳm = 0

ys+p −
s∑
q=1

wqpyq = 0

ȳs+p −
s∑
q=1

w̄qpyq −
m∑
q=1

w̄q+sp = 0

(4.1.4)

This system has a solution in convergent power series {Fi, Qi,j
m , Q̃

i,j
m , Q̄

i,j
m , H

q
p , φi, Q̂

i,j
m , H̄

q
p},

and hence by Theorem 2.6.2, for every µ ∈ N an algebraic power series solution

{Gi, R
i,j
m , R̃

i,j
m , R̄

i,j
m , K

q
p , ψi, R̂

i,j
m , K̄

q
p} such that

jµGi = jµFi

jµRi,j
m = jµQi,j

m

jµR̃i,j
m = jµQ̃i,j

m

jµR̄i,j
m = jµQ̄i,j

m

jµR̂i,j
m = jµQ̂i,j

m

jµψi = jµφi

for all allowable values of the indices.

Taking µ0 sufficiently large, so as to satisfy all the inequalities on the initial

exponents with respect to both orderings (i.e., the ordering corresponding to Λ1 and

the one corresponding to Λ2) we can conclude, as in the proof of Theorem 3.2.1, the
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following:

(1) The analytic germ X̂0 with local ring K{x}/Î where Î = (G1, . . . , Gs) is Cohen-

Macaulay and has the same Hilbert-Samuel function as X0. This is by an

argument in terms of the ordering corresponding to Λ1.

(2) If Ĵ = (ψ1, . . . , ψm) then K{x}/(Î + Ĵ) is Cohen-Macaulay and (Î + Ĵ) has the

same Hilbert-Samuel function as (I+J). This implies that dimK{x}/(I+J) =

dimK{x}/(Î+Ĵ). This is by an argument in terms of the ordering corresponding

to Λ2.

Point (2) above allows us to apply Theorem A.0.9 to conclude that the map ψ : X̂0 →

Kn
0 defined by ψ = (ψ1, . . . , ψm) is flat at zero.

In the case when the germ X is already Nash, we have the following corollary,

Corollary 4.1.3. Let X be a K-analytic subspace of Kn. Suppose that 0 ∈ X, X0 is

a Nash germ, the local ring OX,0 is Cohen-Macaulay, and that OX,0 = K{x}/I where

I = (F1, . . . , Fs). Also, let φ = (φ1, . . . , φm) : X → Km with φ(0) = 0 be a K-analytic

mapping which is flat at 0. Then for some µ0 ∈ N, and each µ ≥ µ0 there is a Nash

map ψ = (ψ1, . . . ψm) : X → Km which is flat at 0 and such that jµφi = jµψi for all

i. Further, if J = (φ1, . . . , φm) ⊆ K{x}, and Ĵ = (ψ1, . . . , ψm) ⊆ K〈x〉 ⊆ K{x}, then

we have HI+J = HI+Ĵ .

In this case there is no need to approximate the generators of I because they are

already algebraic power series. They appear as coefficients in the system of equations

for approximating φ. As in the proof of Theorem 4.1.2, Theorem 2.6.2 will yield the

required approximating map ψ.

Remark 4.1.4. In the proof of Theorem 4.1.2 the system of equations that we are

applying Theorem 2.6.2 to has coefficients that are polynomials in x so, in a sense,

we are not using the full strength of the theorem. This is not true for Corollary 4.1.3.
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4.2 Equisingular deformations

As stated in Remark 3.4.2, it is an open question whether the unfoldings Gi(t, x) of

the defining functions gi of X0 in the proof of Theorem 3.4.1 in Section 3.4.5 define a

deformation in the case when X0 is not a complete intersection. If this is indeed the

case, then this would be a deformation that would be both topologically equisingular

and equisingular in the sense of the Hilbert-Samuel function. Further, the proof

of Theorem 3.4.1 would imply that there is a collection of such deformations, one

associated to each µ > µ0 and preserving the µ-jets of the defining functions of X0.

This remains an avenue for future work.

4.3 Equiresolution

In this section we point to a potential approximation result that is closely connected

to the resolution of singularities of an analytic space.

Hironaka’s Desingularization theorem [16] is an extremely important result in

singularity theory. This was subsequently extended to analytic spaces in [17, 18].

Subsequently, several alternative proofs and formulations of the result have been

published [10, 37, 34] with the aim to simplify the method of proof used by Hironaka,

underscoring the fact that it remains a pivotal result in the field. In this section we

follow the notation and language used in [10], specifically [10, Theorem 1.6], which is

equivalent to [16, Main Theorem I].

Let X ⊆ Kn be a compact reduced analytic space. We are making these assump-

tions to simplify the following exposition (see Remark 4.3.1). Hironaka’s Desingular-

ization Theorem states that we can find a finite sequence of blowups σi of the ambient

space, for i = 1, . . . , p, with non-singular centers Ci−1 that resolve the singularities of

X,

Xp Xp−1 . . . X1 X0 = X
σp|Xp σp−1|Xp−1 σ2|X2

σ1|X1 (4.3.1)
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where the Xj denotes the strict transform of Xj−1 by σj, and Xp is smooth. We

denote by Ej the set of exceptional hypersurfaces, that is, Ej is the set of the strict

transforms of H ∈ Ej−1 together with σ−1
j (Cj−1). It is important to emphasize here

that unlike in the rest of this thesis X0 does not represent the germ of X at 0, instead

it represents an integer subscript. Further, [10, Theorem 1.6] states that Cj ⊆ SingXj

if Xj is singular or Xj ∩Ej if Xj is smooth and that the Xp and Ep have only simple

normal crossings.

Remark 4.3.1. (i) For non-compact analytic spaces, the sequences of blow-ups for

resolving singularities by Hironaka’s Theorem will be locally finite instead of

finite. Since all our considerations in this thesis are local in nature, little is lost

by making this assumption.

(ii) The statement of Hironaka’s Theorem becomes slightly more complicated in the

non-reduced case. A development of the concepts required to incorporate this

more complicated statement would represent a significant excursion into con-

cepts that would have limited relevance to the main exposition in this section.

We refer the reader to [10, Theorem 13.4] for a very general version of Hiron-

aka’s Theorem.

A detailed development of the general notion of blowups, and strict transforms

that are central to Hironaka’s resolution of singularities is beyond the scope of this

thesis, and we refer the reader to [10] for this. That said, it is instructive at this

juncture to explicitly present the equations defining the blowup of Kn with center

given by a coordinate subspace, say, C := {x ∈ Kn|xk+1 = · · · = xn = 0}.

Definition 4.3.2. Let Pn−k−1 be the projective space of dimension n − k − 1 over

K, and let (uk+1 : · · · : un) be projective coordinates on Pn−k−1. The blowup K̃n of

Kn with center given by {(x1, . . . , xn) ∈ Kn|xk+1 = · · · = xn = 0} is the subset of
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Kn × Pn−k−1 defined by the following equations:

uixj = ujxi for i, j = k + 1, . . . , n.

with the blowup map σ : K̃n → Kn given by the restriction of the natural projection

π : Kn × Pn−k−1 → Kn to K̃n.

We can use local charts to cover Pn−k−1 and arrive at local description of K̃n and

σ : K̃n → Kn. For j ∈ {k + 1, . . . , n} we set Uj := Kn and define a glueing map

between any two such charts Uj and Ul as follows,

xi 7→ xi/xj for i ∈ {k + 1, . . . , n} \ {j, l},

xj 7→ 1/xl,

xl 7→ xjxl,

xi 7→ xi for i ∈ {1, . . . , k}

This defines the variety K̃n. We may now define the morphism σ : K̃n → Kn

by specifying it explicitly in the charts Uj. That is, by maps, σj : Kn → Kn for

j = k + 1, . . . , n, defined as follows,

xi 7→ xi, for i ∈ {1, . . . , k} ∪ j,

xi 7→ xixj for i ∈ {k + 1, . . . , n} \ j.

We see from this that locally a blowup is a quadratic map.

Now returning to Hironaka’s resolution of singularities, the smoothness of the

centers of the blowups in (4.3.1) implies that locally there exists a system of coordi-

nates in which each Cj is a coordinate subspace. That is, Cj is locally analytically

isomorphic to {x ∈ U ⊆ Kn|xk+1 = · · · = xn = 0} for some neighborhood U of 0,
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and some k. If we make these coordinate changes explicit, then from (4.3.1) we have

U0, U1, . . . , Up such that,

Xp ∩ Up Xp−1 ∩ Up−1 . . . . . . X1 ∩ U1 X0 ∩ U0

σp|Xp∩Up σp−1|Xp−1∩Up−1 σ2|X2∩U2
σ1|X1∩U1 (4.3.2)

where U0 is a sufficiently small neighborhood of 0 in Kn, Ui = σ−1
i (Ui−1) for i =

1, . . . , p, and σi|Ui = σ̃i ◦ φi|Ui where φi : Kn → Kn is an analytic map representing

the change of coordinates and σ̃i is a blowup of the ambient space with center given

by a coordinate subspace.

Now, by Theorem 3.4.1 there exists a homeomorphism h defined on a sufficiently

small neighborhood of zero in Kn such that, restricting U0 if necessary, h0(X0∩U0) =

X̂0 ∩ h(U0), where X̂0 is an analytic space whose germ at 0 is Nash. A question

that is of interest is whether we can find σ̄i = σ̃ ◦ φ̂i, where φ̂i are Nash morphisms

that approximate the φi, and homeomorphisms hi such that the following diagram

commutes,

Xp ∩ Up Xp−1 ∩ Up−1 . . . X1 ∩ U1 X0 ∩ U0

X̂p ∩ Vp X̂p−1 ∩ Vp−1 . . . X̂1 ∩ V1 X̂0 ∩ V0

hp|Xp∩Up

σp|Xp∩Up

hp−1|Xp−1∩Up−1

σp−1|Xp−1∩Up−1 σ2|X2∩U2

h1|X1∩U1

σ1|X1∩U1

h|X0∩U0

σ̄p|X̂p∩Vp σ̄p−1|X̂p−1∩Vp−1
σ̄2|X̂2∩V2

σ̄1|X̂1∩V1

(4.3.3)

where Vi = hi(Ui). An affirmative answer to this question would tell us that, up

to homeomorphism, in the sense of Hironaka’s resolution, analytic singularities are

locally Nash.

We expect that obtaining an answer to this question will be a challenging endeavor.

As a first step, it is logical to consider a simpler problem. We assume that we have

a homeomorphism h between X ∩U and X̂ ∩ V , where U is a small neighborhood of

the origin in Kn and V = h(U), such as the one we get from Theorem 3.4.1, and that

the coordinate changes required to align the first blow-up in the sequence required for
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desingularization of X and X̂, with a coordinate subspace have already been made.

Then we may ask whether we can find a map H that is a homeomorphism near the

origin in Kn such that the following diagram commutes,

X1 ∩ U1 X ∩ U

X̂1 ∩ V1 X̂ ∩ V

H|Xp∩Up

σ̃|X1∩U1

h|X∩U
σ̃|X̂1∩V1

(4.3.4)

Obviously a negative answer to this question would imply a negative answer to

the more challenging question we posed before.

The most promising line of attack for obtaining H from (4.3.4) is based on a recent

paper [25], in which the authors prove that the homeomorphism h in Theorem 3.4.1

can be chosen to be arc-analytic and subanalytic. These classes of maps have many

nice properties and are of much importance in real analytic and algebraic geometry

(see [20], [8], [9]). It is possible that these much stronger properties can be used to

show that h lifts through the blowups in (4.3.4).

4.4 Simultaneous topological equisingularity of res-

olutions

In this section we shall outline another possible avenue of future research. In order

to keep the exposition simple we shall describe our objective for the case of a single

blowup as in the last part of the previous section. Once again, for simplicity of

exposition, we assume that X is a reduced and compact analytic space in Kn. Suppose

the germ of X at zero defined by equations {f1 = · · · = fk = 0} where fi ∈ K{x}.

We see from Definition 4.3.2, that the blowup X1 of X with center given by C = {x ∈

Kn|xr+1 = · · · = xn = 0} is an analytic space in Kn×Pn−r−1 defined by the following
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equations,

fi = 0 for i = 1, . . . , k (4.4.1)

uixj = ujxi for i, j ∈ {r + 1, . . . n}. (4.4.2)

Since we are only interested in local considerations, by choosing a chart for Pn−r−1

we can consider this to be an analytic space embedded in Kn × Kn−r−1. Now we

may ask if we can find a topological map H : Kn ×Kn−r−1 → Kn ×Kn−r−1 that is a

homeomorphism in some neighborhood of the origin U such that H(X1∩U1) = X̂1∩V1

where V1 is a neighborhood of the origin in Kn ×Kn−r−1 and X̂1 is the blowup of an

analytic space X̂ in Kn whose germ at the origin is Nash and which approximates X.

Further, if we set S := {(x, u) ∈ Kn ×Kn−r−1|u = 0} and identify (X ×Kn−r−1) ∩ S

with X, and (X̂ ×Kn−r−1)∩ S with X̂, we may also impose the additional condition

on H that H|S(X ∩U) = X̂ ∩V where U and V are open neighborhoods of the origin

in Kn × {0}n−r−1.

This would give us something that can best be described as simultaneous (local)

topological equisingularity of X and X̂ and their blowups. It is important to note

at this point that H and H|S may not necessarily commute as H and h do in the

diagram (4.3.4). Suppose we have (x̃, u) ∈ X1 and that we are working in the chart

corresponding to un 6= 0. Further, let H := (H1, . . . , Hn, H
′
r+1, . . . , H

′
n−1). Then,

working around one leg of the commutative diagram (4.3.4) we have,

(x̃, u) = (x1, . . . , xr, ur+1xn, . . . , un−1xn, xn, ur+1, . . . , un−1) for some xi, uj ∈ K.

(4.4.3)

σ(x, u) = (x1, . . . , xr, ur+1xn, . . . , un−1xn, xn) (4.4.4)

This point is then identified with (x̃, 0) = (x1, . . . , xr, ur+1xn, . . . , un−1xn, xn, 0, . . . , 0) ∈
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Kn ×Kn−r−1. Then we have,

H((x̃, 0) = (H1(x̃, 0), . . . , Hn(x̃, 0), 0, . . . , 0) (4.4.5)

Now, going around the other leg of the commutative diagram we observe,

H(x̃, u) = (H1(x̃, u), . . . , Hn(x̃, u), H ′r+1(x̃, u), . . . , H ′n−1(x̃, u)) (4.4.6)

σ(H1(x̃, u), . . . , Hn(x̃, u)) = (H1(x̃, u), . . . , Hn(x̃, u)). (4.4.7)

This point is then identified with (H1(x̃, u), . . . , Hn(x̃, u), 0, . . . , 0) which need not be

the same as (H1(x̃, 0), . . . , Hn(x̃, 0), 0 . . . , 0).

One possible way of approaching this problem is to follow an approach that is

similar to the one used in Section 3.4. The most direct approach would be to construct

a normal system of equations starting with an initial product f consisting of the

generators of X (i.e. fi) along with additional factors required to define the blowup

(4.4.2). The hope is that, we can proceed as in Section 3.4 and apply Theorem

3.3.1 to get the required homeomorphism. There is, however, an obstacle to using

a simple modification of the technique in Section 3.4. This is the fact that in the

step in Section 3.4.4 where the approximation theorem (Theorem 2.6.1) is applied,

the statement that we are pursuing would require the approximations to the fi to be

independent of the variables u = (ur+1, . . . , un), and this, in turn, would violate the

nestedness requirement on the dependencies that is present in Theorem 2.6.1.

The problem of Artin’s approximation with restrictions on the variable dependen-

cies is referred to in some literature as Artin’s approximation with constraints (see

[29]). Due to an example by J. Becker [4], which shows that a similar statement

where the dependencies are disjoint is false, there is a reason to suspect that ob-

taining a version of Artin’s approximation theorem with the constraints required for
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the approach outlined above to succeed may be impossible. That does not preclude,

however, the existence of algebraic power series solutions to the particular system

of equations that is relevant to our considerations, and the proof of this existence is

likely to be a fundamental component in a successful endeavor to obtain the weaker

result that we describe in this section.
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Appendix A

Miscellaneous concepts from local

algebra

In this appendix we present certain definitions and theorems from local algebra. This

material may be found in any standard textbook on commutative algebra such as

[21]. In the remainder of this section (A,m) is a Noetherian local ring and M is a

finitely generated module over A.

Definition A.0.1. An ideal I of A is called a complete intersection ideal if I can be

generated by dimA− dimA/I elements of A.

Definition A.0.2. An analytic germ X0 in Kn
0 is called a complete intersection singu-

larity if its local ring OX,0 is isomorphic to K{x}/I where I is a complete intersection

ideal.

Definition A.0.3. A sequence a1, . . . , al ∈ m is called M -regular if a1 is not a zero-

divisor in M and ai+1 is not a zero-divisor in M/(a1, . . . , ai)M for i = 1, . . . , l − 1.

Definition A.0.4. M is called Cohen-Macaulay when depthA(M) = dimM , where

depthA(M) is the maximum length of an M-regular sequence in m. A local ring A is

Cohen-Macaulay, when A is Cohen-Macaulay as an A-module.

75
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Definition A.0.5. An analytic germ X0 in Kn
0 is called Cohen-Macaulay (or a

Cohen-Macaulay singularity) if its local ring OX,0 is Cohen-Macaulay.

Theorem A.0.6. Let x1, . . . , xn ∈ mA, and M be a finitely generated A-module.

(1) If x1, . . . , xn is M-regular then M is Cohen-Macaulay if and only if M/(x1, . . . , xn)

is Cohen-Macaulay.

(2) Let M be Cohen-Macaulay, then the sequence x1, . . . , xn is M-regular if and

only if dim(M/(x1, . . . , xn)) = dim(M)− n.

Theorem A.0.7. (Nakayama’s Lemma) Let I be an ideal in A, and M a finitely

generated module over A. If IM = M then there exists an r ≡ 1(modI) such that

rM = 0.

Remark A.0.8. Theorem A.0.7 is also valid when the ring A is not a local ring.

We shall also have occasion to use the following result regarding flatness ([15,

Theorem B.8.12]).

Theorem A.0.9. Let φ : A → B be a morphism of local rings with A regular and

M a finitely generated B-module. Let x1, . . . , xd be a minimal set of generators of

the maximal ideal of A, mA, and fi = φ(xi) for i = 1, . . . , d. Then the following are

equivalent:

(1) M is A-flat.

(2) depthA(M) = d, or equivalently depthB(mAB,M) = d.

(3) f1, . . . , fd is an M-regular sequence.

In particular, if B is Cohen-Macaulay, the φ is flat if and only if,

dimB = dimA+ dimB/mAB. (A.0.1)
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The following result is a consequence of the equivalence of (1) and (2) in the above

and the fact that flatness is equivalent to freeness for finitely generated modules.

Corollary A.0.10. Let M be a finitely generated module over a regular local ring A.

Then M is Cohen-Macaulay if and only if it is free.
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