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ABSTRACT
The evolution of antibiotic resistance in pathogenic bacteria is a major threat at the 

forefront of public health today. By studying soils, one of the ancestral origins of antibiotic 

production and resistance, we can gain insight into how antibiotic resistance genes (ARGs) from 

the environment have contributed to the evolution and emergence of resistance in 

pathogens. These studies are particularly important in soils where polar amplification and 

human expansion has already impacted the frequency and intensity of soil disturbance events 

(e.g., wildfires, deglaciation, land-use). In Alaska these disturbances augment permafrost thaw 

shifting the biogeochemical properties of active layer soils that structure microbial community 

composition and hypothetically the resistome (i.e., summation of ARGs). Thus, the goal of this 

thesis was to assess how soil disturbance, and the subsequent shift in community composition, 

will affect the types, abundance, and mobility of ARGs that comprise the subarctic soil 

resistome. In the first chapter I cultured bacteria from a permafrost thaw gradient in Interior 

Alaska, tested the isolates for susceptibility to antibiotics, annotated their genomes for ARGs, 

and compared their resistance profiles to a global database of soil bacteria genomes. I found 

that phylogenic and ecological factors structured the resistome. Additionally, antibiotic 

resistance phenotypes and genotypes were widespread in the soil isolates suggesting 

resistance is an intrinsic component of bacterial evolution. In the second chapter, I used long 

read metagenomics to identify predominant ARGs, ARG host taxa, and the relationship between 

community composition and ARG abundance. From the long read data, I unearthed major 

trends in the types of ARGs at our study site and determined ARG abundance had a quadratic 

relationship with disturbance and negative relationship temporally by year highlighting the 

complex interplay soil conditions have in structuring the taxa that enrich ARGs in the 

community. To analyze how individual bacteria contribute to ARGs in the community, I 

generated metagenome assembled genomes (MAGs) using Hi-C proximity ligation. From the 

MAGs, I found a significant difference in ARGs per genome between phyla that emphasized 

how an enrichment of specific bacteria can affect the abundance of ARGs in subarctic soils. I 

also identified several plasmid-borne ARGs highlighting the potential for horizontal gene 

transfer. Overall, this thesis provides evidence that ARGs in permafrost-associated soil are 

structured by disturbance-induced community shifts. Thus, as climate change increases the 

frequency of disturbance events that shift the microbial communities in active layer soils, One 

Health can be impacted by alterations to ARGs comprising the resistome.
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INTRODUCTION

Antibiotic resistance is a global threat at the forefront of public health. Genes conferring 
resistance to commonly used antibiotics have been shown to recurrently emerge, spread, and 

persist in pathogenic bacteria thereby reducing the clinical efficacy of commonly used 

antibiotics, increasing treatment cost, hospitalization time, and mortality rates (O'Neill 2016). In 

2017, the United States was estimated to have 2,868,700 antibiotic-resistant infections resulting 

in 35,900 deaths (Center for Disease Control and Prevention 2019). This statistic emphasizes 

the burden of antibiotic resistance, which can be attributed to a multitude of factors. For 

example, the rise of globalization, antibiotic misuse and reliance in clinical, agricultural, and 

veterinary settings, widespread distribution of antibiotic resistance genes (ARGs) in bacteria, 

and co-selective pressures in the environment such as heavy metal or antibiotic pollution 

(Aslam et al. 2018). However, it is now evident that selective pressures favoring the 

maintenance of ARGs extends beyond the clinic to bacteria from environmental biomes 

predisposed to evolutionary pressures such as competitive inhibition via antibiotic production 
from competing microbes (Wright et al. 2012).

The soil resistome (i.e., summation of antibiotic resistance genes in soils) has previously 

been implicated as a risk to human health by comprising a reservoir of diverse and ancient 

ARGs that can be transferred from soil bacteria to human pathogens via horizontal gene 
transfer (Forsberg et al. 2012, D'Costa et al. 2011, Davies & Davies 2010). Soils host an 

abundance of resistant bacteria that have evolved in part as a result of the ancient “arms-shield 

race” between antibiotic producing and resistant strains of microorganisms (Aminov & Mackie 

2007). In fact, most antibiotics used in medicine today are derived from bioactive compounds 
produced by soil fungi and bacteria such as Streptomyces, a genus that produces around two- 

thirds of all clinical antibiotics including streptomycin, tetracycline, and cephalosporin (de Lima 

Procópio et al. 2012, Watve et al. 2001). Within soils, these naturally produced antibiotics have 
been suggested to mediate interspecific competition for limited metabolic resources by inhibiting 
growth or killing susceptible cells (Westhoff et al. 2021, Lee et al. 2020) while providing a 

selective advantage for both the antibiotic producer and conspecific non-producing but 

intrinsically resistant individuals (e.g., individuals with ARGs on chromosomes associated with 

that specific bacterial genera). Susceptible soil bacteria can thus evolve to evade the effects of 

antibiotics by acquiring resistance through a random mutation or acquisition of ARGs via 

horizontal gene transfer mediated by mobile genetic elements (MGEs), such as plasmids, 

transposons, and lysogenic bacteriophages (Parnanen et al. 2016).
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Along with natural antibiotics potentially selecting for resistant bacteria, humans 
frequently generate additional selective pressures favoring the maintenance of ARGs (Ager et 

al. 2010). Activities shown to increase the abundance of ARGs in soils include antibiotic use in 

livestock (Ghosh et al. 2007, He et al. 2020), agricultural use of biocides (Berg et al. 2005), and 
introduction of heavy metals from waste management and mining (Xie et al. 2010). These land­

use practices introduce compounds (e.g., biocides and heavy metals) that co-select for genes, 

such as efflux pumps, that confer resistance to both antibiotics and the compound. However, 

even 30,000-year-old Beringian permafrost sediments (D'Costa et al. 2011) and high-latitude 
Alaskan soils (Allen et al. 2009) with minimal anthropogenic influence (e.g., pollution, human 

expansion, agriculture, mining) have been shown to harbor a diverse array of functional ARGs 

that encode proteins that confer resistance to beta-lactams, tetracycline, and vancomycin. The 

role of co-selective pressures and presence of ARGs in unpolluted subarctic soils begs the 

question of how pressures induced by climatic and human driven changes in Alaska will affect 

the soil resistome in terms of abundance, types, and mobility of ARGs.

Alaskan soils are at the forefront of change. Disturbances to these subarctic soils such 

as anthropogenic growth, land use, and climate change augment near-surface permafrost thaw 

rapidly altering physical and chemical properties of the overlying active layer soil (Forsberg et al. 

2014, Douglas et al. 2008). These changes may directly impact the conditions that favor the 

selection of bacterial taxa enriched in ARGs. For example, disturbance events could co-select 

for bacteria that encode mechanisms (e.g., efflux pumps) that allow them to concurrently cope 

with both antibiotics and biological stressors released from permafrost like biogenic volatile 

organic compounds (Ramos et al. 2001, Kramshøj et al. 2018). Changes to niche availability 

driven by disturbance may also favor cells that are capable of competitive inhibition via antibiotic 

production therefore directly selecting for bacteria resistant to antibiotics generated by these 
producers (Hibbing et al. 2010). Moreover, since plasmid-mediated genetic variation allows 

bacterial populations to respond to environmental challenges, permafrost thaw may increase the 

abundance of mobile genetic elements, such as plasmids (Djordjevic et al. 2013) and integrons 
(Stalder et al. 2012), and thus the abundance of ARGs housed on plasmids that pose more risk 

in terms of dissemination to pathogenic bacteria (Aminov et al. 2009).

As antibiotic resistance continues to emerge and rapidly spread in clinical settings, it is 

imperative to generate studies that build insight into the ecology of resistance genes in 
environmental reservoirs that pose a threat to human health. The overarching goal of this thesis 

is to assess how disturbance to permafrost-associated soils, and the subsequent shift in 

community composition, will affect the types, abundance, and mobility of ARGs that comprise 
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the active layer resistome. Chapter 1, entitled “Unearthing Antibiotic Resistance Associated 
with Disturbance-Induced Permafrost Thaw in Interior Alaska” is published in the journal 

Microorganisms in a special issue on Antimicrobial Resistance: From the Environment to 

Human Health. We present a culture-based analysis of 90 bacterial isolates from a disturbance 

gradient associated with permafrost thaw in Interior Alaska, using both phenotypic antibiotic 

susceptibility testing and genomic analyses. Our results describe the role of both phylogeny and 

ecology in shaping the resistome ultimately implying a shift in community composition with 

disturbance-induced permafrost thaw can drive the diversity and abundance of ARGs in soils. 

This chapter is confined to culturable bacteria, which is a limited representation of total bacterial 

diversity in soils (<1%). This thesis chapter's limitation therefore compels the need for further 

research examining resistance genes from uncultivable bacteria through the lens of 

metagenomics.

Chapter 2 entitled “Assessing Risks Posed by Alaska's Active Layer Resistome 

Associated with Permafrost Thaw” addresses this need. In this chapter, I ask how a shift in 

community composition as a result of disturbance-induced permafrost thaw affects ARG 

abundance, composition, and mobility in uncultured bacteria. To answer this, I examined 

resistance genes from shotgun metagenomic long read data along with metagenomic- 

assembled genomes (MAGs) generated using Hi-C proximity ligation to link plasmids to host 

genomes. I identified ARGs and bacterial families indicative of soil disturbance in the context of 

our study site, suggested a relationship between community composition and the abundance of 

antibiotic resistance genes, and generated genomes from uncultivable bacteria that help us 

identify plasmid-borne ARGs and determine which species are enriched in ARGs therefore 

providing context for how a shift in community affects the resistome.
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CHAPTER 1:
Unearthing Antibiotic Resistance Associated with Disturbance-Induced Permafrost Thaw 

in Interior Alaska1

1.1 Abstract

Monitoring antibiotic resistance genes (ARGs) across ecological niches is critical for 

assessing the impacts distinct microbial communities have on the global spread of resistance. In 

permafrost-associated soils, climate and human driven disturbances augment near-surface 

thaw shifting the predominant bacteria that shape the resistome in overlying active layer soils. 

This thaw is of concern in Alaska, because 85% of land is underlain by permafrost, making soils 

especially vulnerable to disturbances. The goal of this study is to assess how soil disturbance, 

and the subsequent shift in community composition, will affect the types, abundance, and 

mobility of ARGs that compose the active layer resistome. We address this goal through the 
following aims: (1) assess resistance phenotypes through antibiotic susceptibility testing, and (2) 

analyze types, abundance, and mobility of ARGs through whole genome analyses of bacteria 

isolated from a disturbance-induced thaw gradient in Interior Alaska. We found a high proportion 

of isolates resistant to at least one of the antibiotics tested with the highest prevalence of 

resistance to ampicillin. The abundance of ARGs and proportion of resistant isolates increased 

with disturbance; however, the number of ARGs per isolate was explained more by phylogeny 

than isolation site. When compared to a global database of soil bacteria, RefSoil+, our isolates 

from the same genera had distinct ARGs with a higher proportion on plasmids. These results 

emphasize the hypothesis that both phylogeny and ecology shape the resistome and suggest 

that a shift in community composition as a result of disturbance-induced thaw will be reflected in 

the predominant ARGs comprising the active layer resistome.

1.2 Introduction
The rapid evolution and spread of antibiotic resistance is one of the greatest challenges 

faced in public health today. Antibiotic resistance impedes the successful treatment of bacterial 

infections by reducing antibiotic efficacy, increasing disease burden, mortality rates, 
hospitalization time and cost [1]. On an evolutionary time scale, the extensive prevalence of 

resistant phenotypes in human pathogens is a recent event, driven by the large-scale

Article Published as: Haan, T. J., & Drown, D. M. (2021). Unearthing Antibiotic Resistance
Associated with Disturbance-Induced Permafrost Thaw in Interior Alaska. Microorganisms , 9 
(1), 116. PMCID: PMC7825290 DOI: 10.3390/microorganisms9010116 
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production and widespread use of antibiotics in clinical, agricultural, and veterinary settings 
[2,3]. Even when antibiotic stewardship is instilled (i.e., antibiotic use is confined to essential 

needs), antibiotics, or pollutants such as heavy metals that co-select for resistance [4], are 

dispersed within microbial habitats, thereby generating selective pressures that increase the 

abundance of resistant strains and their associated antibiotic resistance genes (ARGs). It was 

originally thought that the genetic variability driving resistance was primarily caused by 

mutational modification to antibiotic targets, and thus, would remain clonal [5]. However, it is 

now evident that mutational-driven resistance is a weaker force compared to ARGs acquired via 

horizontal gene transfer (HGT) [6]. In pathogens, resistance genes can be acquired from 

diverse microbial habitats and taxa [5,7], including bacteria from pristine environments free of 

antibiotics introduced via human activities [8]. It is therefore important to assess which bacterial 

taxa and microbial biospheres are the predominant contributors to the evolution of resistance in 
pathogens [9].

Soils, one of the most diverse microbial habitats on earth, are a vast repository of both 

antibiotic-producing and coevolved resistant microbial taxa. Antibiotic production is thought to 

have originated in soils from 2 Gyr to 40 Myr ago, suggesting that resistance has undergone 
concomitant evolution over a similar timeframe [10,11]. The evolutionary origin of resistance is 

also supported by studies that have unveiled soils unpolluted by human activity that harbor 

diverse resistance mechanisms to modern antibiotics, such as 30,000-year-old Beringian 

permafrost sediments [8]. Moreover, bacteria such as Streptomyces, an Actinomycete genus 

that produces around two-thirds of clinically used antibiotics, are abundant in soils [12,13]. The 

presence of these antibiotic-producing genera is thought to promote the evolution, and potential 

dissemination via HGT, of clinically relevant resistance genes from soils. Recent studies have 

reported ARGs in soil-borne bacteria identical to those circulating in pathogens, suggesting that 

HGT has occurred [14,15]. These shared ARGs between soil-borne and pathogenic bacteria 

emphasize a potential role soils have in the evolution and dissemination of resistance. However, 

to assess the risks posed by soil-borne ARGs, more attention should be paid to their distribution 

globally, which environments favor growth of bacteria harboring ARGs, and conditions that 

promote mobility of ARGs such as plasmid carriage [16]. By examining soils affected by 

environmental change, we can provide insights into both the global distribution and how change 

affects resistance determinants that may emerge in pathogens.

Alaskan soils are one environment undergoing unprecedented change, as warming 

within the arctic is occurring 2.5 times faster than in the rest of the globe [17]. This warming has 

triggered a rise in the frequency of soil disturbance events, such as wildfires and thermokarst 
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formation, which are of particular concern for Alaska, since approximately 85% of land is 
underlain by discontinuous permafrost [18-20]. With both climatic and human-driven soil 

disturbances, near-surface permafrost thaw is augmented, shifting the physical and chemical 

properties of the overlying active layer soils [21]. Alterations to pH, moisture, and nutrients in the 

active layer impact ecosystem functions while shifting microbial community composition [22]. 

This shift in both biotic and abiotic factors has the potential to enrich ARGs by selecting for their 

host taxa. For example, the phylum Proteobacteria is significantly enriched with plasmid-borne 

resistance determinants compared to other bacterial phyla [23] and over-represented in terms of 

abundance in active layer soils associated with disturbance-induced thaw [24]. This connection 

between ARGs, phylogeny, and community shifts observed in disturbed soils of Alaska makes it 

imperative to assess how thaw will affect bacteria from active layer soils as a reservoir of 

resistance.
The Fairbanks Permafrost Experiment Station (FPES) is a long-term research site 

established by the Army Corps of Engineers in 1945 containing ice-rich permafrost typical of 
Alaska [21]. FPES has three levels of increasing soil disturbance with minimal thaw in the 

undisturbed site and up to 9.8 m in the most-disturbed site. The location's distinctive gradient of 

disturbance-induced thaw makes it fitting for research on the effect of disturbance on 

permafrost, vegetation, soils, and microbial communities. Previous culture-independent 

metagenomic analyses conducted at this site found distinct shifts in microbial community 
composition, such as an enrichment of Proteobacteria in the disturbed soils [24], necessitating 

more research into how this site has affected antibiotic resistance.

The goal of this study is to assess how soil disturbance, and the subsequent shift in 

community composition, will affect the types, abundance, and mobility of ARGs that compose 

the Alaskan active layer resistome. To explore the effects of both phylogeny and ecology on 

ARGs from active layer soils of Interior Alaska, we identified ARGs in the whole genome 

sequences of bacteria cultured from FPES active layer soils. We then put these FPES isolates 

into a global context by comparing ARGs to those identified in bacteria from a database of 
global soil bacteria, RefSoil+ [25]. This larger database containing both the whole genomes and 

plasmid sequences of bacteria cultured from global soil habitats makes it possible to investigate 

distinguishing features of ARG ecology in Alaskan isolates, such as the plasmid carriage and 
ARG abundance by taxa. Overall, these analyses will allow us to gain insights into the role both 

biotic and abiotic factors associated with disturbance-induced permafrost thaw will have on 

antibiotic resistance. By cataloguing ARGs and their host taxa, this work also contributes to the 

critical knowledge gap regarding the global distribution of ARGs from the environmental 
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biosphere that have the potential to spread to clinically significant bacteria and compromise 

health.

1.3 Materials and Methods
1.3.1. Permafrost Thaw Gradient

The Fairbanks Permafrost Experiment Station (FPES) is an ice-rich permafrost site in 
Interior Alaska (64.875646° N, 147.668981° W), established by the Army Corps of Engineers as 

part of the Cold Regions Research and Engineering Lab. The site consists of three 3721 m2 

Linell plots [26] with increasing levels of disturbance, now known as the Un-Disturbed (UD), 
Semi-Disturbed (SD), and Most-Disturbed (MD) sites (Figure 1.1). In 1946, the three sites were 

established to simulate soil disturbance events, such as wildfire or anthropogenic disturbance, 

on permafrost degradation by clearing of vegetation. The UD site was left undisturbed to 

preserve the subarctic taiga forest, whereas the SD site had the surface vegetation cleared 
while roots and soil organic matter were left intact and the MD site had both surface vegetation 

and organic matter removed. In 2007 the UD site, which is now monitored as part of the 
Circumpolar Active Layer Monitoring Network (CALM), was found to have little to no thaw since 

1946 whereas the SD and MD had up to 4.7m and 9.8m respectively [21]. These results 

suggested that permafrost degradation is dependent on both time and surface vegetation which 
has major implications when it comes to increasing frequency of disturbance events, like 

wildfires and thermokarst formation, influenced by climate change.

Vegetation at the FPES is typical of the Alaskan Interior-subarctic taiga forest. The 

undisturbed site is a relatively open black spruce stand (Picea mariana) with an understory of 

continuous thick moss layer interspersed with low-bush cranberry (Vaccinium vitis-idaea) and 

Labrador tea (Rhododendron groenlandicum). The UD site can be classified as mesic with a soil 

organic layer thickness ranging 2 to 35 cm thick, with little to no thaw during maximal permafrost 

thaw [27]. The semi-disturbed site is now a mix stand dominated by black spruce, Alaskan 

paper birch (Betula neoalaskana), and willow (Salix alaxensis). The understory contains a 

mixture of Labrador tea (Rhododendron groenlandicum), Peltigera lichen, roses, horsetail, 

cloudberry, and small amounts of grass with little litter cover. The MD site is an open shrub land 

dominated by willows (Salix alaxensis) and a developing over story up to 5 m tall of Alaskan 

birch and black spruce (Picea mariana). The understory contains many grasses, clovers, horse­

tail (Equisetum), and some bare ground. There is no permafrost within the top 4.7 m in either 
disturbed sites [21].
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Figure 1.1. Diagram of the disturbance level sites (Undisturbed = UD, Semi-Disturbed = SD, 
Most Disturbed = MD) at the Fairbanks Permafrost Experiment Station (FPES) and the 
subsequent depth of permafrost thaw after 61years.

1.3.2. Bacterial Culturing

In the September of 2017, we collected two 10-cm wide by 20-cm deep soil cores from 

each FPES site with a sterilized soil probe. Prior to coring, the top layer of moss and vegetation 

were removed. Soil cores were then extracted and immediately stored in a cooler throughout 

sample collection. Soil cores were moved to a +4 °C fridge until processing 24 h later. To 

prevent contamination from exogenous cells on the exterior of the soil core, the outer portion of 

each was removed using a sterile scalpel. The interiors of each core were then sub-sampled 

using sterile forceps along a depth gradient at intervals of about 2.5 cm for 20 cm to generate a 

total of 1 g of soil. The 1 g of soil was used to inoculate 100 mL tryptic soy broth (TSB) to 

produce an enrichment culture. After 48 h at 22 °C, we plated serial dilutions (1:10, 1:100, 

1:1000) of the enrichment culture three times for each sample and incubated the plates at three 

temperatures (+4 °C, +12 °C, and +20 °C), for a total of twelve plates per sample, until distinct 

colony formation was observed. Ten discrete colonies were chosen at random from each 

temperature and FPES site by using a random number generator to count colonies across 
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transects moving across the plate horizontally from the top of the plate to the bottom. Only 

discrete colonies (i.e., colonies without overlapping colony growth) were counted along the 

transect lines. This process yielded 90 total colonies, 30 per FPES site. Each colony was 

isolated and purified using three rounds of streak plate method.

1.3.3. Antibiotic Susceptibility Testing

We screened each isolate for antibiotic resistance using the Kirby-Bauer disk diffusion 
method [28]. In brief, this method uses paper disks with a fixed concentration of antibiotic that 

diffuses into agar generating a region where susceptible bacteria cannot grow, called the zone 

of inhibition. The diameter of this circular zone is then measured and compared to breakpoints 

established for clinical isolates with values based on isolate taxonomy. In this study, we used 

five antibiotics, i.e., tetracycline, erythromycin, kanamycin, chloramphenicol, and ampicillin, with 

each representing a distinct antibiotic class. Standards for antibiotic disks and associated 
breakpoints were used from the US Clinical and Laboratory Standards Institute M100, 30th ed. 

Breakpoints established for Enterobacterales were used for Serratia, Pantoea, and Erwinia 

isolates, Pseudomonas spp. breakpoints for Pseudomonas isolates, and Enterococcus spp. 

breakpoints for Bacillus and Exinguobacterium isolates to determine if an isolate was 

susceptible, intermediate, or resistant to each antibiotic tested (Table A1). Isolates without 

breakpoints to specific antibiotics due to physiological characteristics that render that genus 
intrinsically resistant, such as in the case of Pseudomonas and ampicillin, were removed from 

subsequent analysis.

1.3.4. Whole Genome Sequencing, Assembly, and Taxonomic Classification

From each purified isolate, we inoculated a liquid culture of TSB, incubated it at 22 °C 

overnight, and used 1.8 mL of this liquid culture to extract genomic DNA using the Dneasy 

UltraClean microbial kit (Qiagen, Venlo, The Netherlands) following manufacture protocols. This 
DNA was then used for sequencing on both Illumina and Oxford Nanopore Technology [ONT] 

platforms. For Illumina sequencing, we used a Nextera XT library (Illumina, San Diego, CA, 

USA) prepared by the Genomics Core Lab at the University of Alaska Fairbanks to sequence on 

an Illumina MiSeq platform with version 3 reagents. We trimmed adapters from Illumina reads 
with TrimGalore version 0.5.0 [29]. For ONT long reads, a combination of SQK-RBK004 and 

VSK-VSK002 library preparation (ONT) was employed (Table A2). These libraries were then 

sequenced on a MinION device (ONT) with r9.4.1 flow cells (FLO-MIN106) for 48-72 h. We 

base called the raw data using Guppy v3.4.5 (ONT) specifying the high-accuracy model (-c 
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dna_r9.4.1_450bps_hac.cfg) and default parameters. We de-multiplexed isolate samples using 
the guppy_barcoder function of Guppy with parameters to discard sequences with middle 

adapters (-detect_mid_strand_barcodes) and trim barcodes (-trim_barcodes). We used Filtlong 
v0.2.0 [30] to filter by length (≥50 bp; -min_length 50) and quality (Q) score (≥10; -min_mean_q 
90). Flye version 2.7 [31] was used to assemble quality controlled ONT reads specifying 

nanopore raw reads (-nano-raw) and genome size of 5 mb (-genome-size 5m). The 
unicycler_polish tool of Unicycler version 0.4.8 [32] was used to polish the flye assemblies with 

the Illumina reads as input. For isolates TH26, TH81 and TH88, ONT long read assemblies that 

were previously published in Haan et al. 2019 and Humphrey et al. 2019 respectively were used 

as inputs for unicycler_polish [33,34].
These assemblies were then annotated with RAST tool kit (RASTtk) in PATRIC v3.6.3 

using the Genome Annotation Service [35]. 16S rRNA gene copies for each assembly were 

aligned using MAFFT v7.450 and consensus sequences were run through blastn version 2.10.0 

against the NCBI 16S rRNA database. If the top five hits ranked by bit score were from the 

same genus, then taxonomy was assigned to an isolate at a genus level (Table 1.1).

Table 1.1. Number of isolates within each phylum and genus by Fairbanks Permafrost 
Experiment Station (FPES) site.

Taxonomy
UD

FPES Site 
SD MD TotalPhylum Genus

Firmicute Bacillus 14 11 5 30
Firmicute Exiguobacterium 0 0 1 1
Proteobacteria Erwinia 1 1 3 5
Proteobacteria Pantoea 0 0 2 2
Proteobacteria Pseudomonas 14 18 19 51
Proteobacteria Serratia 1 0 0 1

Total 30 30 30 90

UD = Undisturbed, SD = Semi-Disturbed, MD = Most-Disturbed.

1.3.5. Antibiotic Resistance Gene Identification
In this study we identified ARGs by annotating each whole genome assembly with the 

Comprehensive Antibiotic Resistance Database (CARD) version 3.0.9 using command line tool 

Resistance Gene Identifier (RGI) version 5.1.0 specifying input type contig (-t contig) with 

default parameters for BLAST alignment (-a BLAST) and strict and perfect hits only. In order to 

detect previously unknown homologs using detection models with curated similarity cut-offs 
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while still ensuring the detected variant is a functional resistance gene rather than spurious 
partial hits, we used the strict algorithm rather than the algorithms that would select for 

exclusively perfect or loose hits [36]. Results from RGI were further quality controlled by 

removing any Antibiotic Resistance Ontology (ARO) hits defined as mutations or ARO hits with 

less than 50% coverage of the reference sequence unless cutoff on the edge of a contig. To 

determine if a hit was located on a chromosome or plasmid, contigs containing hits were run 

through blastn [37] in Geneious Prime version 2019.2.1 against bacteria (taxid = 2) from the 

RefSeq database. The top hit ranked by bit score was then used to determine if the contig was 

most similar to a known plasmid or chromosome sequence.

1.3.6. RefSoil+ Comparison

RefSoil+ [25] genomes and plasmids were downloaded from NCBI using accession 

numbers available on the RefSoil+ github page [38]. Each RefSoil+ sequence was then run 

through RGI following the same protocol as the FPES analysis of ARGs. Genomes belonging to 

the matching genera (Bacillus, Erwinia, Exinguobacterium, Pantoea, Pseudomonas, and 

Serratia) as FPES isolates were used for comparison of the RefSoil+ and FPES resistance 

genes. The genus Pseudomonas contains the largest and most diverse species with eight 

distinct phylogenomic groups, because the species Pseudomonas aeruginosa is distinctive from 

other groups within our samples aeruginosa genomes were removed from FPES versus 

RefSoil+ analysis.

1.3.7. Data Analyses and Statistics

Tabular outputs from RGI were used to conduct statistical analyses in R Studio version 

3.5.7 [39] and visualizations were generated with the R package ggplot2 version 3.2.1 [40]. In 

order to determine if ARGs were influenced by phylogeny or ecology of FPES sites, we 

examined statistical differences in the number of ARGs per genome between phyla and across 

thaw and then compared FPES isolates to correspondent genera from RefSoil+. Kruskal-Wallis 

one-way analysis of variance was used to test significance of FPES site and phylum as 

predictors and then a post hoc test using nonparametric Wilcoxon test was used to test for 

significant differences between groups. We used Akaike Information Criterion model selection to 

see which Poisson distributed generalized linear model with phylum, FPES site, and both as 

predictors of the number of resistance genes per isolate has the best-fit. We used a heatmap 

generated with the R package pheatmap version 1.0.12 [41] to visualize the distribution of ARG 

hits across phyla and FPES sites. To generate the heatmap, we normalized ARG counts within 

each group that consisted of phylum and FPES site (e.g., Proteobacteria from MD) by the 
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number of isolates in that group, and then scaled each normalized count for each resistance 
gene to generate z-scores. Dendograms grouping each column and row were based on 

Pearson correlation.

1.4 Results

1.4.1. Assessment of Antibiotic Susceptibility in FPES Isolates

Widespread resistance was observed in the isolates with 91.1% of the 90 total isolates 

exhibiting at least intermediate resistance to one of the five antibiotics tested, and 45.6% 

displaying at least intermediate resistance to two or more antibiotics (Figure 1.2a). Ampicillin 

had the highest prevalence of resistance (82.5%), followed by chloramphenicol (51.1%) and 

erythromycin (17.5%). Tetracycline had the lowest prevalence of resistance (2.2%). We 

observed a positive trend in the number of resistant isolates with disturbance-induced thaw for 

ampicillin, chloramphenicol, and erythromycin that was also observed for intermediate 

resistance to kanamycin and tetracycline (Figure 1.2b).

Figure 1.2. (a) Percent of total isolates with at least intermediate resistance to one or more, 
two or more, and three or more of the antibiotics tested. (b) Proportion of isolates at each 
FPES thaw site (UD = Undisturbed, SD= Semi-Disturbed, MD= Most Disturbed) with the 
associated level of susceptibility (susceptible = light blue, intermediate = orange, resistant = 
red) to each antibiotic tested based on CLSI breakpoints.
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1.4.2. Genome Assembly Statistics
The assembled genomes had a high mean percent completeness (98.91% ± 0.50), low 

percent contamination (1.16% ± 0.26), and high N50 value (N50 = 3,639,582 ± 279,870 bp, 

N50n = 13 ± 5 contigs) for the mean total length of assemblies (6,096,842 ± 946,004 bp). These 

results, outlined in Table A3, suggest high quality assemblies were produced.

1.4.3. Antibiotic Resistance Genes Identified in FPES Isolates

Across all FPES genomes RGI identified 379 significant hits comprising 27 CARD-based 
AROs (Table A4). Of these 379 hits, 30 had 100% sequence identity to CARD AROs and 

another 32 were highly similar (sequence identity >90%). Four genes hits had full length 

coverage of the reference sequence along with 100% sequence identity, two encoding 

aminoglycoside inactivating enzymes AAC(6')-32 and AAC(6')-Ir and two encoding bcrC, an 

undecaprenyl pyrophosphate related protein. However, overall mean percent identity across all 
hits identified was 68.4% ± 19.

Genes encoding proteins for antibiotic efflux, antibiotic inactivation, antibiotic target 

modification, and antibiotic target protection were observed. The top two most abundant 

resistance genes identified across isolates were genes encoding proteins for antibiotic efflux. 

The most abundant efflux pump was adeF, a resistance-nodulation-cell division efflux pump that 

confers multi-drug resistance. There were multiple copies of this gene present in Proteobacteria 

with 176 chromosomally encoded gene copies distributed across the 100% of Proteobacteria 

isolates with a high coverage of the gene across assemblies (% length of reference sequence = 
99.02 ± 2.902) and variable percent identity (% identity = 52.283 ± 11.822). The second most 

abundant resistance gene was AbaQ (% identity = 72.7 ± 0.427% length of reference sequence 

= 101.36 ± 0.109), a gene encoding the major facilitator superfamily efflux pump associated with 

the extrusion of quinolone-type drugs in Acinetobacter baumannii. AbaQ was observed across 

all FPES sites in 78.4% of Pseudomonas isolates.

After antibiotic efflux, genes encoding antibiotic inactivating enzymes were the most 

abundant. These genes were found in isolates from across all FPES sites and genera sampled 

except Exinguobacterium. FosB (% identity = 89.055 ± 2.281%, length of reference sequence = 

105.012 ± 6.992) was the most abundant gene encoding an antibiotic inactivating enzyme with 

25 chromosomally encoded gene copies present in 83% of Bacillus isolates across all thaw 

sites. We also observed beta-lactam inactivating genes from four distinct beta-lactamase 

families (Table A2). The Bc beta-lactamase gene family had the highest abundance (n = 20) all 

encoding BcII, a zinc metallo-beta-lactamase that hydrolyzes a large number of penicillins and 
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cephalosporins. BcII gene copies in our samples were confined to the genus Bacillus and found 
to be both highly similar (% identity = 90.755 ± 0.567) with high gene coverage (% length of 

reference sequence = 100.39 ± 0) to BcII homologs in the CARD database.

Genes encoding target alteration were the least abundant mechanism of resistance (n = 

25) and included the genes armA, bcrC, MCR-4.1, gyrB, PmrF, sgm, and vanJ which are 

associated with resistance to aminoglycosides, peptide, glycopeptide, and fluoroquinolone 

antibiotics. A notable target alteration gene found was the mobilized colistin resistance (MCR) 

phosphoethanolamine transferase. MCR is a gene superfamily tracked by the Center for 

Disease Control and Prevention that confers resistance to the last resort antibiotic colistin, a 
critical antibiotic for treating carbapenem-resistant Enterobacteriaceae. We found two significant 

gene hits for MCR-4.1, however they were fragmented on the edge of contigs and thus had low 

coverage (% length of reference sequence = 10.63 ± 1.174) but 100% sequence identity.

Figure 1.3. (a) Boxplot displaying the number of antibiotic resistance genes per isolate by 
phylum (Kruskal-Wallis p= 2.8 × 10-13) with points representing an isolate color-coded by FPES 
site. (b) Boxplot displaying the number of antibiotic resistance genes per isolate by FPES site 
(UD = Undisturbed, SD= Semi-Disturbed, MD= Most Disturbed; Kruskal-Wallis p= 0.083) with 
points representing an isolate color-coded by phylum. Wilcoxon test between group significance 
p < 0.01 **, p < 0.05 *, ns >0.1.

1.4.4. Influence of Phylogeny and Disturbance-Induced Thaw on ARGs
Although the abundance of ARGs increased with FPES disturbance levels (UD = 101, 

SD = 133, MD = 145), we found the number of CARD hits per isolate was highly significant by 
phylum (Kruskal-Wallis p = 2.8 × 10-13; Figure 1.3a) rather than FPES site (Kruskal-Wallis p = 
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0.083; Figure 1.3b). Although FPES site was not significant as a predictor, there was a 

significant difference between the numbers of ARGs per isolate from the undisturbed to most- 
disturbed sites (Wilcoxon p = 0.045). When comparing generalized linear models containing 

FPES site, phylum, and both site and phylum as predictors of ARGs per isolate we found that 
the model with phylum alone had the best fit (AIC = 349 phylum; 429 FPES site; 351 both).

When examining the types of genes more in depth by phylogeny, there is a distinct set of 

ARGs found within each genus such as FosB, BcII in Bacillus (Figure 1.4a) and adeF, armA, 
and soxR in Pseudomonas (Figure 1.4b). Overall Bacillus isolates' core resistance genes were 

comprised of primarily antibiotic inactivation genes, Pseudomonas was antibiotic efflux and 

target alteration, and Erwinia contained antibiotic efflux, target alteration, and inactivation. 

These sets of core ARGs present in some taxa and absent in the others are what appeared to 

cause ARGs to cluster more strongly by phylum rather than thaw site in the heatmap (Figure 

1.5). Although there was ARGs found across FPES sites in multiple genera (Table A5), some 
genes were observed exclusively in one taxon and site, such as MCR-4.1 in Bacillus from the 

semi-disturbed site (Figure 1.4a).

1.4.5. Comparison of ARGs in RefSoil+ and FPES Genomes from Corresponding Genera

Across the equivalent genera, RefSoil+ and FPES had 15 similar ARGs variants, 41 

unique to RefSoil+ and 12 unique to FPES (Figure 1.6a). The similar ARGs were primarily 

genes determined to be the more abundant ARGs in FPES isolates whereas the distinct genes 

were often rare variants (i.e., only one copy across all isolates). When comparing by genus and 

database we found there were significant differences in number of ARGs per isolate between 
Pseudomonas and Bacillus isolates, which was higher in FPES for Pseudomonas and higher in 

RefSoil+ for Bacillus (Figure 1.6b). Across the 90 FPES isolates, 4 ARG variants with 6 gene 

copies were identified in plasmid sequences whereas there were no significant plasmid hits 
across all 127 RefSoil+ isolates examined from corresponding genera. The plasmid-borne 

ARGs from FPES included a BES-1 beta lactamase, two antibiotic efflux pumps (TriC and 
KpnF), and an undecaprenyl pyrophosphate related protein (bcrC) (Table 1.2).
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Figure 1.4. The proportion of (a) Bacillus and (b) Pseudomonas isolates from each FPES site 
that contain each ARG.
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Figure 1.5. Heat map displaying the z-score by column of ARG count normalized by number of 
isolates in each group (phylum and FPES site). Annotation colors on the side show FPES site 
and phylum of each group and annotations on top show the resistance mechanism of the 
associated ARG. Dendograms display clustering based on Pearson correlation.

Figure 1.6. (a) Types of ARGs by database (b) Boxplot of the number of antibiotic resistance 
genes per isolate by genus and database (FPES vs RefSoil+). Wilcoxon test significance 
p<0.01**, <0.05*, >0.1 ns.  
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Table 1.2. List of ARGs found on plasmids in FPES Isolates along with description of each 
ARG's resistance mechanism, drug class, gene family, and FPES host taxa.

PLASMID BORNE ARGs IN FPES ISOLATES
Best Hit

ARO
Resistance

Genus origin CountMechanism Drug Class AMR Gene Family

carbapenem;
BES-1 inactivation cephalosporin; SIM beta-lactamase Pantoea 1

penam

bcrC target alteration peptide antibiotic
udecaprenyl pyrophosphate 

related proteins
Bacillus 2

TriC efflux triclosan RND antibiotic efflux pump Pseudomonas 2

KpnF efflux Broad Spectrum MFS antibiotic efflux pump Erwinia 1

1.5 Discussion
The Alaskan soil bacteria in this study harbored a diverse array of resistance 

determinants from all major mechanisms of antibiotic resistance, corroborating findings that 
suggest ARGs are ancient in origin and ubiquitous in soil-dwelling bacterial taxa [8,42]. Although 

we cannot draw direct functional conclusions from genomic data, such as if a resistance gene 

will be transcribed in an isolate, we did find that the high abundance of beta-lactam resistance 

genes in isolates directly corresponds with the high proportion of phenotypic resistance to the 

beta-lactam antibiotic screened, ampicillin. Of the seven isolates susceptible to ampicillin only 

two had a hit for a beta-lactamase gene, whereas the prevalence in the resistant isolates was 

much higher with 24 of the 32 resistant isolates encoding a beta-lactamase gene (Table A5). In 

terms of the effect of disturbance-induced thaw associated with FPES sites, we observed a 

positive trend in both the proportion of resistant isolates (Figure 1.2) and abundance of ARGs 

with disturbance level. There were also significantly more ARG copies per isolate in the MD site 

compared to the UD (Figure 1.3a). However, this difference is likely a result of the increasing 
number of randomly sampled Proteobacteria (including Erwinia, Pseudomonas, Pantoea, and 

Serratia) with thaw (n = 15 UD; 19 SD; 24 MD) since isolates from the Proteobacteria phyla had 

a significantly higher number of ARGs per genome compared to the Firmicutes sampled 
(Bacillus and Exiguobacterium) (Figure 1.3a).

Based on AIC model selection, we found that phylum had a stronger effect on the 

number of ARGs per isolate than FPES site or both FPES site and phylum. The link between 

host phylogeny and ARG abundance demonstrates how a loss of Firmicutes and enrichment of 

Proteobacteria as a result of community shifts could increase the abundance of ARGs within a 
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community. Although we cannot say from this specific dataset of cultured isolates which taxa 
are enriched across FPES sites, previous analyses conducted on uncultured metagenomic data 

from across 48 FPES cores in Seitz et al., 2020 identified over-representation of the phylum 

Proteobacteria in the disturbed cores and of the order Bacillales in undisturbed cores [24]. This 

enrichment in the metagenomic data parallels the enrichment of these taxa in this cultured 

subset of the community.
Along with the observed association of host taxa and ARG abundance, we found that the 

types of ARGs clustered by bacterial phylum rather than FPES site (Figure 1.4). Moreover, the 

predominant mechanisms of resistance (e.g., efflux, inactivation, target protection, and target 

alteration) were dependent on host taxa. This connection between host taxa and types of 

resistance determinants means that as microbial community composition shifts in response to 
permafrost thaw, so can the predominant taxa shaping the types and of ARGs within the 

resistome. Proteobacteria predominately harbored ARGs encoding efflux pumps (mean = 4.93 

per isolate) and very few encoding antibiotic inactivating enzymes (mean = 0.28 per isolate) 

whereas the most abundant resistance mechanism in Bacillus spp. was antibiotic inactivation 
(mean = 1.5 per isolate) and the one of the lowest abundance mechanisms was ARGs encoding 

efflux pumps (mean = 0.03 per isolate).

Within each bacterial genus there were both ARGs unique to one genus and site, such 

as tet(45) in Bacillus from the UD site, and a distinct set of core ARGs that were chromosomally 

encoded and ubiquitous across thaw levels within a genus, such as adeF in Pseudomonas 

(Figure 1.4a) and BcII in Bacillus (Figure 1.4b). The genes unique to one site and taxa, although 

rare, are more likely accessory determinants that were acquired either through conjugation, 

transformation, or transduction from other members of the soil community and are therefore 

more of an interest in terms of clinical risk. The more widespread core genes are likely a result 
of clonal expansion and less prone to horizontal gene transfer compared to the aforementioned 

accessory determinants associated with genomic hotspots and mobile genetic elements such as 
integrons, plasmids, transposons [43,44]. Yet core resistance genes in soil bacteria still pose a 

risk because they have the potential to be mobilized through transformation or transduction and 
are widespread within taxa as an intrinsic part of the genome that likely plays a role in both the 

colonization of the rhizosphere and high-level antibiotic resistance associated with many 
environmental borne opportunistic pathogens such as Pseudomonas aeruginosa [45,46].

Some of the isolates in this study do in fact belong to taxa of known opportunistic human 

pathogens, such as Pantonea agglomerans, Bacillus cereus, and several Pseudomonas spp. 

and were found to carry both chromosomally encoded and plasmid-borne ARGs [47,48]. 
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However, even nonpathogenic soil bacteria regularly interact with waterways, air, and built 
habitats, such as hospital surfaces generating a potential for HGT from one biosphere to 

another. When exposed to antibiotics, even the nonpathogenic commensal bacteria carrying 
resistance determinants acquired from environmental sources can be selected for promoting the 

clonal expansion and increased risk for spread of ARGs to the pathogenic bacteria the antibiotic 

is targeting [49]. A study by Hu et al. 2016 analyzed the mobilome of 23,425 bacterial genomes 

and found that mobile ARGs are mainly present in four bacterial phyla, the top two of which 
were Proteobacteria (399 mobile ARGs) and Firmicutes (86 mobile ARGs) [23]. All of the FPES 

isolates belong to these two phyla and six isolates were shown to carry plasmid-borne ARGs. 

Although only 1.6% of the ARGs copies from FPES isolates were located on plasmids, 

presence on these MGEs is telling of the low, but real, potential for ARGs from these soils to be 

disseminated. Moreover the higher number of plasmid-borne ARGs in FPES isolates compared 

to the RefSoil+ bacteria from the same genera, suggests the role local soil attributes have in 

selecting for plasmid-carriage further highlighting the clinical significance of ARGs harbored in 

Alaskan soils.

We found ARGs with high sequence identity and full-length coverage to those present in 

the CARD database. This presence of highly homologous ARGs highlights that resistance 

determinants in soils can be similar to those in clinical settings, rather than just ancient 

divergent homologs. However, the mean percent identity of ARGs in our isolates (68.4% ± 19.) 

suggests that many of the ARGs identified in our isolates are novel homologs. The most 

abundant ARG encoding antibiotic inactivating enzymes, fosB, had a high mean percent identity 

and full-length gene coverage to fosB genes in the CARD database. This gene encodes 

fosfomycin thiol transferase that confers resistance to an antibiotic derived from secondary 
metabolites produced by soil-dwelling bacteria including Streptomyces and pseudomonads [42]. 

Both Streptomyces and pseudomonads have been found to be abundant in FPES metagenomic 

datasets [24] highlighting the taxonomic potential for the production of fosfomycin at this locale. 

This potential along with the high abundance of fosB found in this study is suggestive of the 

selective advantage encoding antibiotic inactivating enzymes may have in competing against 

antibiotic producing bacterial taxa in the soil community.
In our soil isolates genes encoding efflux pumps were the most abundant with 

resistance-nodulation-cell division (RND) efflux pumps being the most abundant gene family 

found in all Proteobacteria isolates. RND efflux pumps have been described as a major 

tolerance mechanism allowing the effective extrusion of organic solvent from the interior of the 

cell to the exterior environment, this mechanism is found to be especially prevalent in 

23



Pseudomonas [50]. As environmental change increasingly affects the arctic in the form of higher 
annual ambient air temperature and anthropogenic disturbance of soils, microbial life within the 

active layer have to cope with the release of biogenic volatile organic compounds (BVOC) 

amplified by thawing permafrost [51]. Efflux pumps could provide an effective mechanism for 

coping with toxic substances, such as BVOCs that will increase in concentration within active 

layer soils with permafrost thaw and antibiotics.

1.5.1. Limitations

There are a variety of published antibiotic resistance gene databases used for the 

annotation of resistance genes. These resources are often created through the curation of 

genes identified in the scientific literature, and only contain functional annotations for genes with 

published experimental data. Results from annotation of these databases can be reflective of 

the database chosen due to inequality across gene and protein annotation resources [52]. 

Moreover, since antibiotic resistance is more commonly analyzed in clinical situations, genes in 

this database can be biased towards clinical phylogenies and are restricted to known resistance 

determinants thus missing novel resistant determinants in environmental communities that could 

be identified via functional vector based tests [53].

One of the most widely used ARG databases is the Comprehensive Antibiotic 

Resistance Database (CARD) [54]. The CARD database provides well-developed and extensive 

antibiotic resistance ontology (ARO) and monthly curation updates to include the most up to 

date ARG reference data which is exclusively derived from peer-reviewed publications validated 

by clinical or experimental data [55]. A 2016 study found that CARD was able to outperform 

other popular AR databases including ARDB, ResFinder, and CBMAR by correctly identifying 

down to a variant level for all variants of the two genes tested, blaVIM and blaNDM, and unlike any 

of the other databases was able to accurately identify the maximum number of resistance genes 

from the whole genome sequences of 3 strains of methicillin resistant Staphylococcus aureus 

[56]. Based on these findings, we decided to use CARD for the annotation of our isolates in this 

study.

Another limitation of this study is that we cannot attribute differences between sampling 

sites specifically to a single factor such as permafrost thaw, vegetation shifts, or soil 

characteristics. Rather we attributed site level differences as a culmination of these biotic and 

abiotic factors present at FPES. This study does not provide direct evidence of a horizontal 

gene transfer event from soil bacteria to pathogenic bacteria; however, we do identify the 

remarkable abundance and diversity of antibiotic resistance in Alaskan soils. The resistance 
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genes identified here are a restricted representation of the Alaskan soil community because this 

study is limited in geography, to the CARD ARG database, and to the culturable nonfastidious 
aerobic to facultative anaerobic bacteria of the phyla Proteobacteria and Firmicutes. Despite this 

restricted scope, the abundance, diversity, and presence of ARGs on plasmids is suggestive of 
the extent these soils have as a reservoir for antibiotic resistance and for the potential to 

compromise health. Furthermore, the over-representation of Proteobacteria in disturbed cores 

and Bacillales in undisturbed cores revealed from previous metagenomic analyses of FPES 
soils parallels the significant difference we observed in the number of ARGs per isolate from MD 

and SD sites driven by the shifting proportion of Firmicutes and Proteobacteria.

1.6 Conclusions

In this study, we unearthed antibiotic resistance in bacteria from active layer soils of 
Interior Alaska associated with permafrost thaw. Most bacterial isolates from this locale were 

phenotypically resistant to clinically significant antibiotics and encoded both highly homologous 

and divergent homologs to previously identified resistance determinants. We even identified 
several resistance genes on plasmids, highlighting the risk these soils have in the dissemination 

of antibiotic resistance. The significant difference in ARG abundance between the most 
disturbed and undisturbed isolates driven by a difference in the isolate's phylogeny, along with 

previously identified enrichment in Proteobacteria at this site, highlights how community shifts 
with thaw may enrich for the taxa that increase the abundance of resistance genes comprising 

the resistome. When compared to the genomes of soil bacteria from a global database, 
RefSoil+, there were differences in the number of ARGs per isolate and a higher abundance of 

plasmid-borne ARGs in our isolates from equivalent genera that emphasized how local biotic 

and abiotic factors shape fine scale differences in the resistance profiles. Moreover, the high- 

quality whole genome assemblies generated in this study can be used for future analyses into 

diverse areas of research, such as the coexistence of virulence factors and antibiotic resistance 

[57], the genomics of cold adaptation of psychrophilic microorganisms [58], and more in depth 

analyses into the mobile genetic elements that have the potential to propagate the spread of 

resistance. As antibiotic resistance continues to emerge and rapidly spread in clinical settings, 
studies like this will be imperative for building insight into the ecology of environmental 

resistance genes in order to understand the threat they pose to human health.
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CHAPTER 2:
Disturbance to Subarctic Soils Shapes the Resistome via Shifts in Microbial Community 

Composition2

2 To be submitted for publication as: Haan, T. J., & Drown, D. M. (2021). Disturbance to 
Subarctic Soils Shapes the Resistome via Shifts in Microbial Community Composition. 
Environmental Microbiology.

2.1 Abstract

The worldwide spread of antibiotic resistance in pathogens is a significant threat to 

human and animal health. Soils are one of the evolutionary origins of both antibiotic production 

and resistance. Therefore, examining soil resistomes can help explain the global emergence of 

antibiotic resistance genes (ARGs) across microbial species and biomes. To assess risks posed 

by soil-borne ARGs it is imperative to identify the predominant ARG host taxa, types of ARGs 

that may emerge, and the specific soil conditions that promote bacterial communities enriched 

with resistant taxa. Previous studies have identified a diverse pool of ARGs in undisturbed 

subarctic soils, however, conditions in these high latitude biomes are rapidly changing with an 

increase in the frequency and severity of soil disturbance events such as wildfires and 

thermokarst formation. Climatic and anthropogenic disturbances to subarctic soils have been 

shown to augment permafrost thaw and alter microbial communities, however, no study has 

explored the effect of disturbance-induced thaw on the active layer resistome. In this study we 

ask how disturbance-induced shifts in active layer community composition affects ARG 

abundance, composition, and mobility. To do this we collected soil cores from a permafrost thaw 

gradient in Fairbanks, Alaska and employed long read shotgun metagenomics to examine the 

relationship between ARGs, disturbance, and community composition. We then used Hi-C 

proximity ligation to construct metagenomic assembled genomes (MAGs) which unearthed the 

contribution of individual bacterial genomes to ARGs in the community. We found ARGs from 

all mechanisms of resistance with genes encoding beta-lactamases as the most abundant 

across disturbance treatments. The high abundance of genes encoding antibiotic inactivating 

enzymes paired with the finding that Streptomycetaceae, a family of prolific antibiotic producers, 

was the second most abundant family across soil cores implicates the presence of selective 

pressures from antibiotic producers in subarctic soils. ARG abundance was found to have a 

quadratic relationship with disturbance and negative linear relationship with year highlighting the 

complex interplay soil conditions have in structuring the taxa that enrich ARGs in the 

community. Our MAGs revealed the microbial mechanism for this relationship by unearthing the 
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abundance of ARGs per genome that was significantly different between phyla. For example, in 

undisturbed soils the phylum Acidobacteria was more abundant and had significantly more 

ARGs per genome than all other phyla examined except Proteobacteria, which was enriched in 

disturbed soils. In terms of mobility, a majority of ARGs were chromosomally encoded 

suggesting resistance has an intrinsic role in bacterial evolution, however, we did identify 

several plasmids-borne and integron associated ARGs highlighting the potential for horizontal 
gene transfer. Our findings emphasize how disturbance-induced changes to soils of interior 

Alaska enrich specific bacterial taxa that structure the resistome thus generating a reservoir of 
ARGs that has the potential to compromise One Health in the subarctic.

2.2 Introduction

The rise of antibiotic resistance is a global health crisis continually impeding our ability to 

treat bacterial infections in humans, animals, and plants alike (CDC, 2019). The genes driving 

this crisis recurrently emerge, disseminate, and persist in bacterial populations thereby reducing 
the efficacy of antibiotics (O'Neill 2016). However, the lack of additional therapies for treating 

bacterial infections has led to our dependence on antibiotics. We now know extensive antibiotic 

use across clinical, veterinary, and agricultural settings generate strong selective pressures 

favoring resistance. Resistance phenotypes can arise in bacteria as a result of random 

mutations to drug targets or through horizontal gene transfer of mobile genetic elements 

(MGEs) carrying antibiotic resistance genes (ARGs) encoding mechanisms such as inactivating 

enzymes, efflux pumps, or proteins that protect drug targets (Djordjevic et al. 2013). However 

even microbial habitats with minimal anthropogenic input, such as 30,000-year-old Beringian 

permafrost sediment, have been identified as reservoirs for bacteria encoding ARGs (D'Costa et 

al. 2016). The presence of these ancient and diverse ARGs in unpolluted environments, paired 

with the fact that most antibiotics are derived from secondary metabolites produced by soil 

microorganisms, has made it evident that human use of antibiotics isn't the sole force driving the 

evolution of ARGs (Wright et al. 2012). More likely, selective pressures favoring resistance 

extends to microbial biomes predisposed to evolutionary pressures such as resource 

competition via competitive inhibition (Nesme et al. 2014).

Soils are one of the richest microbial habitats in terms of both microbial diversity and 

abundance (Torsvik et al. 2002). Compared to other environmental habitats, soils host a high 
prevalence of antibiotic producing and resistant bacterial taxa (Surette & Wright 2017). In fact, 

most clinically significant antibiotics today are derived from bioactive compounds synthesized by 
soil-dwelling bacteria and fungi, namely Streptomyces, a bacterial genus that produces around 
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two thirds of antibiotics (Watve et al. 2001). Thus, the higher prevalence of ARGs in soils 
compared to non-soil biomes has been repeatedly attributed to the hypothesized co- 

evolutionary ‘arms-shields race' between producers and resistant bacteria (Nesme et al. 2014). 

Although hypothetically probable, it has been difficult to disentangle the exact selective forces 

driving the evolution and dissemination of soil-borne ARGs. This is due to soil's biological 

complexity and technical challenges in measuring antibiotic concentrations. Despite these 

technical challenges, advancements in next-generation sequencing technologies have revealed 

that soil-borne ARG's have a worldwide distribution (Nesme et al. 2014), can confer resistance 

(Allen et al. 2009), and can be highly similar to those circulating in human pathogens (Forsberg 

et al. 2012). These findings implicate soils as a risk to global health by acting as a conduit of 

ARGs between disparate groups of bacteria, such as non-pathogenic soil saprophytes to human 
pathogens (Finley et al. 2013, Raphael & Riley 2017).

Despite the apparent risk posed by soils, factors influencing ARG composition and 

abundance in soils remain largely unknown. Large-scale metagenomic studies have previously 

unveiled bacterial community composition as the primary determinant of soil ARG content 

(Forsberg et al. 2014) and have revealed potential land-use practices that enrich ARG 

abundance in soils. For example, ARGs were significantly enriched in agricultural soils 

amended with manure (Udikovic-Kolic et al. 2014), copper (Berg et al. 2005), and ammonium 

nitrogen (Sun et al. 2014) along with soils polluted with heavy metals because of waste 

management and mining (Xie et al. 2010). However, factors that at a global level alter the 

microbial communities that structure ARGs in soils, such as climate change, are largely 

understudied. Soils from high latitude ecosystems are already experiencing the effects from 

climate change because of polar amplification. This phenomenon has contributed to 

temperatures 1.5 to 4.5 times higher in arctic and subarctic ecosystems than the global average 

over the last half-century (Holland & Bitz 2003). As a result, soils at high latitudes may provide 

critical insight into how factors associated with climactic driven disturbances will affect ARG 

abundance, selection, and dissemination. Such factors include soil disturbance events like 

wildfires (Whitman et al. 2019), flooding (Perez-Valdespino et al. 2021), and permafrost thaw.
Since Alaskan soils are one high latitude microbial biosphere at the forefront of change, 

in this study we explore how disturbance to Alaskan soils affects the evolution of antibiotic 

resistance. In Alaska human expansion, land use, and climate change increase the frequency 

and intensity of soil disturbance events, like wildfires and thermokarst formation (Schuur & Mack 

2018). With approximately 85% of Alaska's landmass underlain by permafrost (McGuire et al. 

2018), disturbance to Alaskan vegetation and surface soils are of great global concern. These 
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disturbances augment permafrost thaw releasing ancient carbon that is then decomposed by 

microbes and released to atmosphere in the form of CH4 and CO2 further amplifying climate 

change (Schuur & Abbott 2011). Additionally, disturbances shift biogeochemical properties of 

active layer soils that overlay permafrost (Douglas et al. 2008). Changing physical and chemical 

properties (e.g., nutrient availability, pH, rooting space, and soil moisture) shift microbial 

communities negatively affecting plant health (Seitz et al. 2021, Schütte et al. 2019) and 

ecosystem functions (Whitman et al. 2019). Moreover, these shifts in microbial communities and 

soil properties may impact the conditions that favor the selection of bacterial taxa enriched in 

ARGs (Haan & Drown 2021). For instance, wildfire in the Canadian boreal forest was shown to 

shift soil niches enriching the prolific antibiotic producing microbial taxa Penicillium and 

Streptomyces (Whitman et al. 2019). Thus, disturbance in this system could breed a co- 

evolutionary arms-shield race that directly selects for resistant bacteria by enriching antibiotic 

producers through shifting niche availability (Hibbing et al. 2010). Disturbance to subarctic soils 

typical of Interior Alaska could also indirectly select for ARGs by favoring mechanisms that allow 

bacteria to concurrently cope with antibiotics and biological stressors released from permafrost, 

such as biogenic volatile organic compounds (Kramsh0j et al. 2018). For example, efflux 
pumps are proteins encoded by bacteria that have been shown to confer multidrug resistance 

and promote environmental stress tolerance (Ramos et al. 2001). Thus, disturbance could 

promote multidrug resistant bacteria encoding efflux pumps in soils. Lastly, environmental stress 

may stimulate intra-genomic (e.g., integrons) and inter-species gene transfer (Velkov 1999). As 

a result, disturbance may increase the rate of ARG dissemination and the abundance of ARGs 

housed on conjugative plasmids (Djordjevic et al. 2013)

Previously at our study site, a disturbance-induced permafrost thaw gradient in Interior 
Alaska, we found that around 90% of cultured isolates were resistance to at least one of the five 

antibiotics tested with over 45% displaying multidrug resistance (Haan & Drown 2021). Through 

whole genome sequencing of these isolates, we revealed that while disturbance treatment had 

significant roles in determining the abundance and composition of ARGs, phylogeny had a more 

significant effect. Proteobacteria encoded significantly more ARGs than Firmicutes. That 

analysis, paired with significant community shifts at our site in which Proteobacteria were 

enriched in the disturbed treatment (Seitz et al. 2021), led us to hypothesize how community 

shifts with disturbance could impact the abundance of ARGs in subarctic soils. However, Haan 
& Drown (2021) was limited to cultivable bacteria that represent less than 1% of total bacterial 

diversity in soils warranting further metagenomics. Thus, this study addresses this limitation by 

employing both long read shotgun metagenomics and Hi-C proximity ligation to unearth the 
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relationship between disturbance and the resistome at a community level. We hypothesize that 

a disturbance-induced shift in the subarctic soil community will structure the composition, 
abundance, and mobility of ARGs comprising the resistome by selecting for bacterial taxa 

enriched with ARGs (e.g., Proteobacteria).
Long read sequencing technologies (e.g., Nanopore and PacBio) have massively 

improved over the last decade and are especially promising for the analysis of environmental 
resistance. These technologies can be more costly than other methods, like qPCR, for 

estimating a gene's abundance from environmental samples. However, long read shotgun 

sequencing of total genomic DNA provides major advantages by avoiding amplification and 

primer biases while increasing the power to detect either highly similar or divergent ARG 

homologs (Liu et al. 2019). Integron gene cassettes, a major MGE associated with the 

dissemination of resistance, are important for revealing the mobility of ARGs in the environment 
(Stalder et al. 2012). Unlike short reads that often require assembly to capture ARG-MGE 

associations, long reads sequence data can be directly annotated with a higher chance of 

capturing a full-length gene and flanking MGEs (Huson et al. 2018).
Here, we use long read shotgun sequencing to identify differences in the predominant 

ARG and ARG host taxa with disturbance to unveil how disturbance-induced community shifts 

in Interior Alaskan soils structure the resistome. We then determine how individual bacterial taxa 

contribute to the resistome by examining genome-level ARG composition and abundance by 

reconstructing metagenomic-assembled genomes (MAG) using Hi-C proximity ligation. Previous 

studies have demonstrated the ability of Hi-C proximity ligation with culture-independent de 

novo deconvolution to produce high quality MAGs that reveal plasmid-host associations 

reconstructed from microbial communities without the need for prior information (e.g., reference 
genomes; Press et al. 2017, Stadler et al. 2019). These studies were conducted on microbial 

communities much less complex than soils. In complex communities, like soils, traditional 

binning methods often produce incomplete MAGs, especially from rare taxa. In this study, we 

evaluate the ability of Hi-C to construct individual genomes that reveal ARG profiles from 
complex communities. Together our results unveil how disturbance to Alaskan soils may act as 

a selective force driving subarctic soil microbial community composition that structures the types 
and abundance of ARGs. These findings have implications in terms of how soil disturbance, 

such as climatic-driven events like wildfires, affect the evolution of ARGs that may disseminate 
and emerge in pathogenic taxa as permafrost thaws and human expansion into the subarctic 

increases.
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2.3 Methods
2.3.1 Study Site.

Soil samples were collected from a permafrost thaw gradient in Interior Alaska known as 
the Fairbanks Permafrost Experiment Station (FPES) (64.875646°N, 147.668981°W). FPES is 

an ice-rich permafrost site on a gentle southward slope six kilometers outside of the city of 

Fairbanks in Interior Alaska. The Army Corps of Engineers established the site as part of the 

Cold Regions Research and Engineering Lab to simulate soil disturbance events, such as 

wildfire and land-use, so that the long-term ecological effects of disturbance-induced permafrost 
thaw could be studied. FPES consists of three 3,721 m2 experimental plots with increasing 

levels of disturbance to vegetation; Undisturbed (UD), Semi-Disturbed (SD), and Most-Disturbed 

(MD). When these treatments were generated in 1946, the UD treatment was left pristine, SD 

was cleared of trees while roots and soil organic matter were left intact, and MD was stripped of 

all vegetation and surface soil organic matter down to the mineral soil. After 25 years, the 

pristine plot (UD) was found to have little to no thaw during periods of maximal thaw, the semi­

disturbed treatment had up to 4.5 meters of thaw with a stabilized permafrost table, and the MD 

treatment had up to 9.8 meters of thaw with continual downward migration of permafrost. This 
evidence supported previous work suggesting disturbance to boreal vegetation significantly 

affects the long-term stability of permafrost (Douglas et al. 2008).

Vegetation at the FPES is typical of the Alaskan Interior-subarctic taiga forest. Soils from 

the UD treatment can be classified as mesic (Johnstone et al. 2008) consisting of tan silt and 

windblown loess with a variable organic horizon thickness (2-35 cm). The UD treatment is a 

relatively open black spruce stand (Picea mariana) with an understory of continuous thick moss 

layer interspersed with low-bush cranberry (Vaccinium vitis-idaea) and Labrador tea 

(Rhododendron groenlandicum). The semi-disturbed treatment has reestablished the vegetation 

of a dense boreal forest after 25 years. It is now a mixed stand dominated by black spruce 

(Picea mariana), Alaskan paper birch (Betula neoalaskana), and willow (Salix alaxensis). The 

understory contains a mixture of Labrador tea (Rhododendron groenlandicum), Peltigera lichen, 

roses, horsetail, cloudberry, and small amounts of grass with little litter cover. The MD treatment 

is continually evolving from its current state of a shrub, birch, and willow forest to one with a 

higher density of spruce trees and moss. It is currently an open shrub land dominated by 

willows (Salix alaxensis) and a developing over story up to 5 m tall of Alaskan birch (Betula 

neoalaskana) and black spruce (Picea mariana). The understory contains many grasses, 

clovers, horse-tail (Equisetum), and some bare ground. There is no permafrost within the top 

4.7 m in either disturbed treatments (Douglas et al. 2008).
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2.3.2 Soil Collection for Long Read Metagenomics.

We collected 48 paired active layer soil cores from FPES in May 2018 (Seitz et al. 2021) 

and May 2019 yielding a total of 96 cores with 16 cores per FPES disturbance treatment each 

year. The 4.5 cm wide by 10 cm deep cores were sampled using a sterilized corer along an 

established grid layout with four 1 m by 1 m quadrants at each FPES treatment. The corners of 

each quadrant were sampled allowing us to capture fine-scale heterogeneity present within 

each disturbance treatment. Prior to coring the top layer of moss and vegetation was removed. 

After extracting the soil core from the corer, soil was immediately stored in a cooler throughout 
sample collection and transportation process. Upon arriving at the lab, soil cores were stored at 

4° C to be used between 7 to 45 days later for DNA extractions. For DNA extraction, soil cores 

had the outer portion of each core removed using a sterile scalpel to prevent contamination from 

any exogenous cells. The interiors of each core were then sub-sampled along a transect using 

sterile forceps along a depth gradient at intervals of about 2.5 cm for 10 cm to yield a total of 

0.25 g of soil.

2.3.3 DNA extraction, library preparation, and sequencing.

With the 0.25 g of soil from each of the 96 cores we extracted total genomic DNA using 

DNeasy PowerSoil kti (Qiagen; Germany) following manufacturer's instructions. Extracted DNA 

quality and yield were assessed using a NanoDrop One spectrophotometer (Thermo Scientific; 

USA) and a Qubit (Thermo Scientific; USA) respectively. DNA extractions were then randomly 

divided into eight sequencing runs. Libraries were prepared using Oxford Nanopore 

Technologies Ligation Kit (SQK-LSK109, ONT; UK) with Native barcodes (EXP-NBD104) in 

order to multiplex 12 samples per run. DNA was diluted to 400 ng as input and prepared 

following manufactures instructions. Multiplexed libraries were then run on a MinION Mk1b with 

R9.4.1 and R 9.5 flow cells (FLO-MIN106) (Table A6). The raw data was base called using 
Guppy v3.6.1 (ONT) specifying the high accuracy model. Base called runs were then de­

multiplexed with the Guppy barcoder specifying parameters to discard sequences with middle 

adapters and to trim barcodes. We used Filtlong v0.2.0 (https://github.com/rrwick/Filtlong) to 

control for length (≥ 50 bp) and quality (Q) score (≥ 10). The summary of base calling 

specifications and sequencing statistics for each sample can be found in Table A6.

2.3.4 Annotating ARGs in Long Reads and Assigning Taxonomy.

A subset of quality controlled Nanopore reads for each soil core was selected using 

seqTK (https://github.com/lh3/seqtk) specifying 43,263 reads per sample based on the lowest 
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yield sequencing run. This subset of reads was then annotated using the Comprehensive 
Antibiotic Resistance Database (CARD) version 3.0.9 and its associated command line tool 

Resistance Gene Identifier (RGI) Main version 5.1.0 specifying input type contig (-t contig) with 

default parameters for alignment (-a BLAST). Initial RGI hits were further quality controlled by 
removing any ARO hits defined as mutations along with ARO hits with less than 25% coverage 

of the reference sequence to further ensure hits are ARG homologs rather than false positives 

or spurious hits. Long reads containing significant ARG hits were then run through Kraken 2 
(v.2.0.9-beta; Wood et al. 2019) against a reference database built using all the standard 

Kraken 2 microbial databases with domains for bacteria, archaea, and viruses along with 

UniVec_Core library (Seitz et al. 2021).

2.3.5 Community Metrics.

To assess community composition, long reads from each core were assigned taxonomy 
using Kraken 2 (v.2.0.9-beta; Wood et al. 2019). To estimate family-level abundance, Kraken 2 

reports were used as inputs for Bracken (Lu et al. 2017) specifying a read length of 500 bp and 

a threshold of 10 at the family level. Alpha diversity metrics were calculated for each core using 

Shannon-Wiener index (diversity; VEGAN package v2.5-6). Differences in bacterial community 

composition across FPES treatments were visualized using non-metric multidimensional scaling 

(NMDS) with Bray-Curtis dissimilarity (Johnson & Wichern, 1988, VEGAN package v2.5-6, 

Rstudio v 1.2.5019).

2.3.6 Statistical Analyses and Visualizations.

All statistical analyses were completed in R version 3.6.1 (R Development Core Team, 

2020). An indicator species analysis (indicspecies R package, Cáceres and Legendre 2009, 
version 1.7.9) was used to identify indicators of disturbance from the (1) ARG hits and (2) ARG 

bacterial-host families. The reported values from this indicator analysis included an A indicator 

value which in this context is the mean abundance of an ARG in each FPES treatment divided 

by the sum of the mean ARG abundance values over all FPES treatments, a B indicator value 

which is the relative frequency of occurrence (presence-absence) of the ARG inside the target 

FPES treatment, and a p-value from a significance test with 999 permutations. Analysis of 

Similarity (ANOSIM; VEGAN package v2.5-6) was used to test significance of groupings by 
FPES treatment and soil core collection year. To determine if a shift in community by year or 

disturbance treatment significantly affected the abundance of ARGs, NMDS axes were used as 

a covariate in generalized linear models specifying Poisson distribution with ARG abundance 
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per soil core as the response. These models were then visualized against scatterplots of NMDS 

axes versus ARG abundance per core using ggplot2 (version 3.2.1; Wickham 2016). To 

determine if alpha diversity significantly affected the abundance of ARGs, alpha diversity was 
used in a generalized linear model specifying Poisson distribution with ARG abundance per soil 

core as the response. To test for significant differences in ARG abundance by FPES 
disturbance treatments and soil collection year without taking Bray-Curtis distances into 

account, we used non-parametric Wilcoxon signed rank test to compare ARGs per metagenome 
between disturbance treatments (UD, SD, MD) and soil collection year (2018, 2019) with 

Kruskal-Wallis one-way ANOVA to evaluate significance of FPES treatment on abundance of 

ARGs. This analysis was visualized using the R package ggplot2. Sankey visualization 

displaying relationship of ARG hits by FPES treatment, bacterial phyla, type of antibiotic 

associated with ARGs, and mechanism of resistance were generated using SankeyDiagram 

with flipPlots R package (version 1.3.2; https://github.com/Displayr/flipPlots/).

2.3.7 Soil Collection, DNA extraction, library preparation, and sequencing for Hi-C MAGs.
In June of 2020, we collected two 10 cm wide by 10 cm deep active layer soil cores from 

the far corners of each FPES treatment. Sterile technique and transportation as described in the 

metagenomics method section were employed. The interiors of the six cores were then sub­

sample using sterile forceps along a depth gradient at intervals of about 2.5 cm for 10 cm to 

yield a total of 0.25 g of soil per sample for shotgun metagenomic libraries and 2g of soil per 

sample for Hi-C libraries. Shotgun libraries for each soil core were constructed by extracting 

total genomic DNA from subsampled soil using the DNeasy PowerSoil kit (Qiagen; Germany) 

followed by library prep using Nextera DNA Flex Library Prep (Illumina, San Diego, CA, USA) 

following manufacture protocols. We also used the total genomic DNA from these soil cores to 
prepare an SQK-LSK109 library (ONT; UK) that were subsequently sequenced using a MinION 

device with R9.4.1 flow cells, however, sequencing yields were too low (<10 Gb per sample) 

producing inadequate assembly depth for downstream analyses. Hi-C libraries were prepared 

by following ProxiMeta Hi-C preparation kit v3.0 (Phase Genomics, Seattle, WA, USA). Hi-C 

works by linking DNA-associated proteins located in proximity within a cell during DNA 

extraction, ligating the links during library prep, and then bioinformatically mapping ligated DNA 

libraries back to traditional shotgun assemblies. This method allows for the de-convolution of 

like tetranucleotide frequency or read depth (Stadler et al. 2019), therefore binning plasmid with 
host genomes despite a plasmid's potentially distinctive genomic characteristics retained from 

the donor bacteria. Nextera and Hi-C libraries were pooled such that 2/3 of the total DNA from 
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each soil core was from the Nextera library and 1/3 was the Hi-C library. GENEWIZ (South 

Plainfield, NJ, USA) sequenced the pooled libraries across six 2 x 150 bp HiSeq lanes.

2.3.8 Assembly and Binning via ProxiMeta Deconvolution for Hi-C MAGs.

Quality controlled metagenomic paired-end reads for each soil sample were assembled 

on the University of Alaska Fairbank's Research Computing System's high performance cluster 

using Megahit specifying default parameters (Li et al. 2015). The Megahit contigs were then 

filtered by size to select for contigs greater than 1500 bp in length. Size-selected contigs were 

used as input for alignment of Hi-C reads and binning following ProxiMeta workflow as 
previously described in Press et al. 2017. In brief, Hi-C reads were aligned to the Megahit 
contigs via Burrows-Wheeler alignment tool BWA-MEM (Li 2013). All Hi-C reads that were 

unmapped, not mapped uniquely, had a MAPQ score <20, or pairs mapping to the same contig 

were removed from the analysis since they are not useful for deconvolution of contigs. Contigs 

were then deconvoluted via ProxiMeta workflow by clustering based on Hi-C linkages using a 

proprietary Markov Chain Monte Carlo algorithm.

2.3.9 Phylogenetic analysis of Hi-C MAGs.

The quality of all metagenome-assembled genomes (MAGs) was assessed using 

CheckM which estimates phylogenetic placements along with genome quality metrics, such as 

completeness and contamination, based on single-copy core marker genes (Parks et al. 2015). 
A high-quality draft MAG was defined using the standards suggested by Bowers et al. (2017) as 

having >90% completeness and <5% contamination, medium quality was >50% completeness 

and <10% contamination, and a low quality draft was <50% completeness and <10% 

contamination. To place MAGs into a more meaningful phylogenetic context, we created a 

phylogenetic tree using the Hi-C MAGs and genomes from RefSoil+ (Dunivin et al. 2019), a 

database of over 922 RefSeq genomes from soil microbes. To do this, we predicted coding 

sequences in our MAGs and the RefSoil genomes using PRODIGAL44 v.2.6.3 (parameters: -m 

-p meta), and then searched the sequences for 16 ribosomal proteins including L2, L3, L4, L5, 
L6, L14, L16, L18, L22, L24, S3, S8, S10, S17 and S19. These ribosomal proteins have been 

used for comprehensive phylogenetic assessments in Bacteria, Archaea, and Eukaryota 

(Lavrinienko et al. 2020). The 16 phylogenetic markers from our MAGs and RefSoil genomes 
were found using HMMSEARCH with HMMER v.3.1b2 (parameters: -E 1e-5) using the Hidden 

Markov Models for the 16 ribosomal proteins downloaded from the Pfam database 

(https://pfam.xfam.org). Genomes that lacked half or more of the phylogenetic markers were not 
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used in the phylogenetic tree construction or downstream analyses of ARGs. Sequences found 
for each marker were aligned using MUSCLE v.3.8.31 (parameters: --maxiters 16), trimmed 

using TRIMAL v.1.2rev59 (parameters: -automated1), and then concatenated using the 

CONCAT script implemented by BinSanity. We constructed the phylogenetic tree for the 
resulting 194 Hi-C MAGs and 985 RefSoil genomes using FASTTREE v2.1.9 (parameters: - 

gamma -lg). The tree was then viewed and annotated using FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/).

2.3.10 Identifying ARGs and Mobile Genetic Elements in MAGs.

We annotated all ProxiMeta MAGs that were placed in the phylogenetic tree with CARD 

version 3.0.9 (Alcock et al. 2020) using command line tool RGI Main version 5.1.0 specifying 

input type contig (-t contig) with default parameters for BLAST alignment (-a BLAST) for strict 

and perfect hits only. RGI results were further quality controlled by removing any ARO hits 

defined as mutations along with ARO hits with less than 50% coverage of the reference 

sequence unless the hit was cutoff on the edge of a contig to further ensure hits are ARG 

homologs rather than spurious hits. To determine if a hit was located on a plasmid, we first 
screened all contigs containing CARD hits against the PLSDB database (version 2020_06_29; 

Galata et al. 2019) using Mash screen specifying max p-value of 0.01 (Valentina et al. 2018). 

Contigs initially screened as plasmids in mash were then verified using blastn version 2.11.0 so 

that hits with >70% nucleotide identity were classified as plasmids for downstream analyses. 

We used the command line tool Integron Finder, specifying default settings, to search sequence 

data for attC sites using covariance models, (Cury et al. 2016).

2.3.11 Community Composition from Nextera Library Illumina Reads.

To assess community composition the Illumina paired-end shotgun reads from the six 

soil cores were run through Kraken 2 (Wood et al. 2019) specify -paired for paired end reads 

against kraken2_drown_microbial. Kraken reports were then run through Bracken specifying a 

read length of 150 bp and a threshold of 10 at the family level (Lu et al. 2017). Visualization of 

the Bracken estimated abundances were then generated in R using the package pheatmap (v 

1.0.12) make heatmaps and the package ggplot2 (version 3.2.1; Wickham 2016) to generate a 
relative abundance plot.
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2.3.12 Statistical Analyses and Visualizations.
To test for significant differences in the number of ARGs per genome across phyla, we 

used the non-parametric Wilcoxon signed rank test to compare ARGs per MAG between the 

four most abundant bacterial phyla in the MAGs with Kruskal-Wallis one-way ANOVA to 

evaluate the effect of taxonomy. This analysis was visualized using the R package ggplot2 

(version 3.2.1; Wickham 2016). To put the diversity of ARGs identified in MAGs into context with 

the larger FPES long read metagenomic dataset and the RefSoil+ global soil bacteria database, 

we compared how many of the ARG families identified in each dataset were unique or shared. A 

Venn diagram depicting this comparison was generated using meta-chart (https://www.meta- 

chart.com/venn).

2.4 Results
2.4.1 Community-level ARG profile and ARGs as predictors of soil disturbance.

Across the 96 soil samples, we detected 2339 significant gene hits for 984 unique ARGs 

encoding all mechanisms of resistance including antibiotic efflux, inactivation, target alteration, 

target protection, and reduction of permeability (Figure 2.1a). Across all treatments, the most 

abundant mechanism of resistance encoded by all ARGs was antibiotic inactivation (n= 1380) 

followed by antibiotic efflux and target alteration (n=339 and n=360 respectively). ARGs 

encoding β-lactamases were the predominant type of ARGs for inactivating enzymes with OXA 

β-lactamases (n= 203) as the most abundant β-lactamase gene family. ARGs encoding 

aminoglycoside inactivating enzymes were the second most abundant inactivation gene with 

AAC(6') (n=145) as the predominant gene family. The most abundant antibiotic efflux gene 
family was resistance-nodulation cell division (RND) antibiotic efflux pumps (n = 151), one of the 

most important determinants of multidrug resistance in Gram-negative bacteria.

We examined homology of ARGs detected at this locale to those present in the 

Comprehensive Antibiotic Resistance Database (CARD), which includes various ARGs from 

clinical pathogens. We found that 43 genes had full-length coverage and 100% sequence 

identity with 55 gene hits having high gene coverage (>90% length of reference sequence) and 

high identity (>90% identity). These high identity genes encoded a mix of antibiotic inactivating 

enzymes (n = 26), efflux pumps (n = 11), target replacement (n = 11), target alteration (n = 6), 

and target protection (n = 1) genes.
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Figure 2.1. a) Sankey diagram of ARG hits in long reads with nodes representing disturbance 
treatment (UD= Undisturbed, SD= Semi-Disturbed, and MD= Most-Disturbed), the Kraken2 
classified phyla, resistance to antibiotics classes, and mechanisms of resistance identified in the 
reads from across the 96 soil cores. b) Comparison of the proportions of ARG-carrying reads 
from a given bacterial phylum [except for Proteobacteria at a class level] by total reads per 
disturbance treatment.
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Some of these ARGs were found in non-pathogenic soil saprophytes but were highly 
homologous to pathogenic soil microbes. For example, FosB, which encodes a fosfomycin 

inactivating enzyme, was identified on a single long read belonging to the genus Massillia, a 

major group of rhizosphere and root colonizing bacteria. However, this ARG hit was highly 

homologous to the FosB gene from Bacillus anthracis, the causal agent for anthrax that is 

commonly found in soil. OXA-229 cephalosporinase was another example of an ARG hit highly 

similar to a pathogen identified on a long read assigned to a non-pathogenic soil taxon. This 

long read from the UD treatment was identified as Granulicella mallensis, which is a dominant 

soil Acidobacteria that is abundant at low temperatures and nutrient limiting conditions. OXA- 

229 was found to be identical the homolog from Acinetobacter spp., such as the pathogen 

Acinetobacter baumannii that is known to cause a broad range of nosocomial infections.

Using indicator species analysis (ISA), we identified which of the 984 ARG homologs 

were indicative of soil disturbance (Table 2.1). Between the MD and UD soils there was one 

shared indicator, mphN, encoding a macrolide phosphotransferase enzyme. Ten ARGs were 

identified as indicators for a single disturbance treatment (Table 2.1). In the MD treatment the 

indicator ARGs encoded aminoglycoside inactivating enzymes (n=3), beta-lactamases (n=1), 

efflux pumps (n=1), and target alteration for a glycopeptide resistance gene cluster (n=1). In the 

SD treatment there was only one indicator for a beta-lactamase gene, VMB-1, and in the UD 

there were three indicator genes encoding fosfomycin inactivating enzymes (n=1), efflux pumps 

(n=1), and target alteration (n=1).

2.4.2 Identifying predominant ARG host taxa, taxonomic indicators of disturbance, and effect of 

community changes on ARG abundance.

Using Kraken 2, 74.1% of long reads encoding at least one ARG were classified to a 

phylum level, 61.9% to a family level, and 56.5% to a genus level. ARGs on classified reads 

were found across diverse phylogenetic groups within 18 distinct bacterial phyla. 45.2% of 

ARGs were encoded on reads assigned to the phylum Proteobacteria (ARG n = 1058) making 

this phylum the predominant ARG host taxa across our soil samples followed by Actinobacteria 
(ARG n = 355), Acidobacteria (ARG n = 101), Bacteroidetes (ARG n= 77), and then Firmicutes 

(ARG n = 48; Figure 2.1a). We also identified major trends in ARG host phyla in the classified 

reads with increasing disturbance (Figure 1b). For example, there was decreasing proportion of 

Acidobacteria-associated resistance genes with disturbance (UD = 0.13, SD= 0.04, MD = 0.01) 

and an increasing proportion of Actinobacteria (UD = 0.17, SD= 0.23, MD = 0.25) and 
Betaproteobacteria-associated ARGs (UD = 0.11, SD= 0.12, MD = 0.17, Figure 2.1b).
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Without taking between sample differences in bacterial community (i.e., beta-diversity), we did 

not find a significant difference in ARG abundance with disturbance treatment (Kruskal-Wallis P 
= 0.33; Figure A1) but did observe a temporal shift (Kruskal-Wallis P = 0.0082) with a 

significantly lower number of ARGs per metagenome in 2018 compared to 2019 (Figure 

1b). When taking metrics of community composition into account, we observed statistically 
significant shifts both with disturbance (ANOSIM statistic R = 0.619, p-value = 0.001) and 

temporally (ANOSIM statistic R= 0.0944, p-value=0.001) (Figure 2.2a, Figure A7). Alpha 

diversity was found to be significantly higher in the disturbed soil treatments (MD and SD) 

compared to the undisturbed treatment (Figure 2.2b). There was no significant relationship 

between microbial alpha diversity and the abundance of ARGs (Figure A8) Therefore, to 

determine if the observed shift in community composition with disturbance and soil collection 

year had a significant effect on ARG abundance, we used the NMDS axes as covariates and 

found that disturbance-induced community shifts had a quadratic relationship with ARG 
abundance (ANOVA p = 0.017, Figure 2.2C) and temporal community shifts had a negative 

linear relationship with ARG abundance (ANOVA p = 4.3e-07, Figure 2.2D). The temporal 

relationship suggests that taxa from the 2018 soil communities are enriched in ARGs compared 

to the 2019 soils. The relationship with disturbance and ARG abundance suggests that both 

most disturbed and undisturbed soils select for community members enriched in ARGs 

compared to the semi-disturbed taxa.
At a family-level the top ten most dominant ARG hosts were Bradyrhizobiaceae (n= 189 

ARGs), Streptomycetaceae (n= 100 ARGs), Acidobacteriaceae (n= 91 ARGs),

Burkholderiaceae (n= 87 ARGs), Pseudomonadaceae (n= 72 ARGs), Mycobacteriaceae (n= 49 

ARGs), Rhizobiaceae (n= 46 ARGs), Comamonadaceae (n= 36 ARGs), Phyllobacteriaceae (n= 

35 ARGs), and Sphingomonadaceae (n= 30 ARGs). By conducting an indicator species 

analysis on all 161 ARG host families identified, we were able to discriminate which families 

could be driving the relationship between ARG abundance and disturbance (Table 2.1). 
Myxococcaceae, Chitinophagaceae, and Streptosporangiaceae were identified as significant 

ARG host indicators for the most-disturbed treatment (Table 2.1). Comamonadaceae, which 

was the 8th most common host family at FPES, was a strong shared indicator for disturbed soil 

treatments (SD and MD; p = 0.009) with ARGs on reads assigned to Comamonadaceae largely 

confined to disturbed cores (A= 0.86) with at least one Comamonadaceae-associated ARG in 

37% of disturbed cores (B = 0.37). Whereas Acidobacteriaceae, which is the 3rd most common 

host family, was found to be a strong shared indicator for less disturbed cores (UD &SD; p = 
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0.001) with ARGs on reads assigned to this family mostly confined to less disturbed soils 
(A=0.9434) and found across 50% of UD and SD cores (B = 0.50).

Table 2.1. Indicator analysis of ARGs and ARG-host families from long reads across FPES 
treatment treatments with p-value indicating significance association between treatment and 
ARG. (ns, P > 0.05; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001)

Indicator Species Analysis of ARGs

MD # sps. 6 A B stat p.value

AAC(2')-IIb 0.81 0.13 0.32 0.03 *

AAC(3)-Xa 1.00 0.10 0.31 0.03 *

AAC(6')-Ia 1.00 0.10 0.31 0.04 *

LAP-1 1.00 0.10 0.31 0.04 *

tetU 1.00 0.10 0.31 0.03 *

vanKI 1.00 0.10 0.31 0.02 *

Group SD #sps. 1 A B stat p.value

VMB-1 1.00 0.13 0.35 0.03 *

Group UD #sps. 3 A B stat p.value

FosB 1.00 0.16 0.40 0.01 *

AbaF 1.00 0.13 0.35 0.04 *

vanRL 1.00 0.13 0.35 0.03 *

Group MD+UD #sps 1 A B stat p.value

mphN 1.00 0.14 0.38 0.05 *

Indicator Species Analysis of ARG Host Families

A= Acidobacteria, Ac= Actinobacteria, B= Bacteroidetes, P= Proteobacteria

Group MD #sps. 2 A B stat p.value

Chitinophagaceae (B) 0.71 0.23 0.40 0.02 *

Myxococcaceae (P) 0.81 0.13 0.32 0.04 *

Streptosporangiaceae (Ac) 0.72 0.16 0.34 0.049 *

Group MD+SD #sps. 1 A B stat p.value

Comamonadaceae (P) 0.86 0.37 0.56 0.01 **

Group SD+UD #sps. 1 A B stat p.value

Acidobacteriaceae (A) 0.94 0.50 0.69 0.001 ***
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Figure 2.2. A) NMDS based on Bray-Curtis distance showing a shift in bacterial community 
composition between FPES treatments (UD=orange, SD=light blue, and MD=dark blue) and 
year (2018= square, 2019= circles) with convex hulls and group centroids (*) highlighting group 
differences. B) Shannon-Weiner diversity by FPES treatment. Kruskal-Wallis P value is shown 
in addition to Wilcoxon test results between means. Plots showing the effects of changes in 
bacterial community composition by treatment (NMDS1, C) and year (NMDS2, D) ARG 
abundance with pink GLM regression lines.

49



Figure 2.3. Scatterplot of Bracken estimated relative abundance for bacterial families 
Comamonadaceae (left) and Acidobacteriaeceae (right) with points representing a soil core 
color coded by FPES treatment versus the abundance of resistance genes from that family for 
each core. Lines show regression for each trend color coded by FPES treatment and top left 
shows Pearson R and p values associated with each trend color coded by treatment.

We conducted a correlation analysis to test the association of these indicator families with the 
detected ARGs on reads assigned to those families. We found a significant positive correlation 

between the relative abundance of Comamonadaceae in disturbed treatments and the number 

of Comamonadaceae-associated ARGs (Figure 2.3a). This same positive correlation was 

observed for Acidobacteriaceae in the less disturbed treatments (UD and SD) (Figure 2.3b). 

Moreover, trends between disturbance and the number of ARGs on reads assigned to these 

indicator families, Acidobacteriaceae (UD = 71, SD = 17, MD = 3 ARGs) and Comamonadaceae 
(UD = 7, SD = 5, MD = 24 ARGs), as well as the two most abundant host families, 

Bradyrhizobiaceae (UD = 79, SD = 65, MD = 45 ARGs) and Streptomycetaceae (UD = 29, SD = 

33, MD = 38 ARGs), correspond with the relative abundance of these families with disturbance 
(Figure 2.4).

2.4.3 Quality of library reads, assemblies, and MAGs.

Across the six FPES soil cores (two per disturbance treatment), we generated an 
average of 1.65×108 paired-end reads per Hi-C library and 2.35×108 paired-end reads per 

Nextera library with mean Q-scores of 37.97 and 37.92 respectively (Table A8). The Nextera 

reads assembled via Megahit and size selected for contigs greater than 1,500 bp resulted in a
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total of 3,053,190 contigs with an average length of 3,339 bp and the largest contig of 693,351 

bp in length. Using ProxiMeta Deconvolution to generate MAGs from the size-selected contigs 

and Hi-C reads, we generated 921 genome clusters of which 59 were high quality (6.4%), 172 
were medium quality (18%), and 690 were low quality drafts (74%) (Figure 2.5a). The number of 

MAGs per soil core was highly associated with Megahit total assembly length (R2=0.75) rather 
than Hi-C library sequencing yield (R2=0.18) (Figure A3). For the 921 Hi-C MAGs mean percent 

completeness was 33.5 % ± 34.3, mean percent contamination was 2.24 % ± 4.27, mean N50 

per MAG was 29,972 bp ± 44,015, and mean novelty score was 73.9 ± 39.4 (Figure 2.5b).

Figure 2.4. Boxplot depicting relative abundance by FPES treatments (UD= Undisturbed; SD= 
Semi-Disturbed, MD= Most-Disturbed) of two indicator ARG host families (top row) and top two 
most prevalent ARG host families (bottom row). Kruskal-Wallis P value is shown in addition to 
Wilcoxon test results between groups (ns, P > 0.05; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, 
P ≤ 0.0001).
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2.4.4 MAGs phylogenetic placement.
To place MAGs in a more robust phylogenetic context of a tree with all RefSoil+ 

genomes for context, we included MAGs with at least half of the sixteen ribosomal marker 

proteins. This cutoff resulted in the placement of 194 MAGs from across the six soil cores 

(Figure 2.6) that were mainly high and medium quality (mean completeness 80.7 % ± 21.8; 
mean contamination 5.54 % ± 6.75; and mean N50 29,373 bp ± 35,379; Figure 2.5C). This tree 

corresponded with marker lineages assigned using MASH resulting in MAGs (n = 194) that 

were taxonomically inferred to be from 8 bacterial phyla including Acidobacteria (n = 72 MAGs), 

Proteobacteria (n = 69), Actinobacteria (n = 19), Bacteroidetes (n=19), Verrucomicrobia (n = 7), 

Tenericutes (n = 4), Gemmatimonadetes (n = 3), and Planctomycetes (n=1) (Figure A6).

Based on the Bracken estimation of abundance at a phylum level from both Nextera 

libraries and long read libraries, all phyla assigned to the MAGs were from the top ten most 

abundant bacterial phyla across treatments, except for Tenericutes which were the eighteenth 

most abundant bacterial phylum (Figure A4).

2.4.5 Antibiotic Resistance in Hi-C MAGs Across FPES Treatments and Phylogeny

We did not observe a significant effect of soil disturbance on the mean number of ARGs 

per MAG (Kruskal-Wallis P = 0.25; Figure A2) but rather a strong effect of bacterial phylum 

(Kruskal-Wallis P = 0.00054; Figure 2.7), especially in taxa that were affected by disturbance 

induced shifts. For example, Proteobacteria, which were enriched in terms of abundance in MD 

soils, and Acidobacteria, which were enriched in terms of abundance in UD soils, were found to 
have significantly more ARGs per MAG than Bacteroidetes (Wilcoxon P = 0.0031 & 0.0215) and 

Actinobacteria (Wilcoxon P = 0.0016 & 0.0064). The four Tenericutes MAGs and one 
Planctomycetes MAG had no ARG hits. Unlike the long read metagenomic data which looks at 

community level rather than individual genome level differences, the most abundant mechanism 

of resistance in MAGs was antibiotic efflux (n = 238), notably the multidrug efflux gene adeF 

which was found in MAGs from all phyla but Acidobacteria, Tenericutes and 

Planctomycetes. The next most abundant mechanism of resistance in MAGs were genes 

encoding antibiotic inactivation (n= 34), with β-lactamase genes being the most frequent type of 

inactivating enzyme. All 31 unique ARG families identified in the MAGs were also ARG families 

identified in the long read metagenomic data's 223 unique ARG families (Figure 2.9). When 

compared to the RefSoil+ database of cultured soil bacteria, there are 24 ARG families distinct 

to that of the long read metagenomic data and four found in FPES MAGs not found in the 

RefSoil+ genomes (Figure 2.9). In terms of types of genes across phylogenies, we found genes 
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encoding tetracycline specific efflux pumps, including tet(D),tet(E),tet(45), tetA(58) along with 

vancomycin inactivation, were confined to the genomes of Proteobacteria and Acidobacteria.

Figure 2.5. Bin quality by soil core based on CheckM metrics with high quality draft MAGs 
defined as >90% complete and <5% contamination, medium quality as > 50% complete and 
<10% contamination, and low-quality as <50% complete. B & C) Boxplots of genomic features 
including percent completeness, contamination, number of contigs and N50 for (B) all MAGs 
and for (C) MAGs used as inputs for the phylogenetic tree (red asterisk indicates mean).
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Phylogenetic analysis
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Figure 2.6. Phylogenetic tree of ProxiMeta metagenome assembled genomes (MAGs) from across FPES thaw treatments and 
reference genomes of Bacteria and Archaea from the RefSoil+ database. Presence of a Hi-C MAGs is highlighted by the colored 
lines of the outer ring with blue lines representing the undisturbed plot, orange representing the semi-disturbed treatment, and red 
representing the most-disturbed treatment. Inner ring shows antibiotic associated with ARGs in each MAG. Maximum likelihood tree 
constructed using concatenated alignments of 16 ribosomal proteins including only genomes with at least half of these proteins.



Figure 2.7. Boxplot of number of ARGs per Hi-C MAG from the phylogenetic tree shows 
significant differences in ARGs count between distinct phyla. Points are vertically jittered as to 
prevent overlap; points are colored by FPES treatment. Kruskal-Wallis P value is shown in 
addition to Wilcoxon test results between groups (ns, P > 0.05; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 
0.001; ****, P ≤ 0.0001).

The phyla associated with tetracycline specific efflux pumps genes in these MAGs were 
consistent with our long read dataset; however, vancomycin inactivation was identified in a 

greater diversity of phyla such as Actinobacteria, Verrucomicrobia, Firmicutes, and 

Bacteriodetes in the long read dataset. Aminoglycoside-specific inactivation genes from the 

gene families AAC(2'), AAC(3), APH(2''), APH(9) were confined to Acidobacteria and 
Actinobacteria in our MAGs but not in the long read dataset. The gene adeF, a membrane 

fusion protein of the multidrug efflux complex adeFGH, was found across all phyla except 

Actinobacteria. β-lactamases from the OXA family were found across phyla, which corresponds 

with the finding that OXA β-lactamases were the most abundant β-lactamase across FPES 

identified using long read metagenomics.
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Figure 2.8. From MAGs used in the phylogenetic analysis, raw ARG count (A) and percent (B) 
of ARGs by resistance mechanism in MAGs on plasmids (blue) or chromosomes (green). The 
raw ARG count (C) and percent (D) of ARGs by phyla on plasmids (blue) or chromosomes 
(green).

Among the 194 MAGs placed in the phylogenetic tree (Figure 6), we identified eight 

plasmid-borne ARGs encoding antibiotic inactivation, efflux, and target alteration (Figure 2.8; 

Table 2.3). These plasmid-borne ARGs were confined to Proteobacteria and Actinobacteria 

MAGs and included homologs for an adeF efflux pumps, a tet(50) inactivating enzyme, and two 

murA transferase genes associated with resistance to fosfomycin. Three plasmids-borne ARGs 

were found in MAGs from the MD and SD treatments, and two were found in UD MAGs. The 

proportion of ARG hits encoded on plasmids versus chromosomes was higher in the FPES 
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Proteobacteria MAGs than in RefSoil+ Proteobacteria genomes (0.048 > 0.040) and for FPES 
Actinobacteria MAGs versus RefSoil Actinobacteria genomes (0.143 > 0.009). Using the 

Integron Finder tool, we did not detect integrons on any contigs in the Hi-C MAGs containing 

ARGs, however, we did detect at least one type 1 integron in 17 of the 194 MAGs. In contrast, 

in the long read metagenomic dataset, we identified five type 1 integrons on long reads 

containing ARGs, four reads with ARGs encoding antibiotic inactivating enzymes and one for 
target protection (Table 2.2).

Figure 2.9. Venn diagram depicting resistance gene families in FPES MAGs, FPES MinION 
metagenomic samples, and RefSoil+ genomes.
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Table 2.2. Description of ARGs identified on long reads containing integrons.
ARGs IDENTIFIED ON LONG READS WITH INTEGRONS

Table 2.3. Description of ARGs identified on plasmids in Hi-C MAGs.

FPES
Sample Year

Mechanism of 
Resistance ARG ARG Family Antibiotic class

% Length of 
Reference

%
Identity

Integron 

Type
MD_10.4 2019 inactivation AAC(3)-IIc AAC(3) aminoglycoside 40.6 100 1

MD_11.1 2019 inactivation DHA-15 DHA beta-lactamase cephalosporin; cephamycin 40.1 100 1

MD_11.2 2018 inactivation ERP-1 ERP beta-lactamase penam 35.5 100 1

UD_10.1 2019 target protection QnrD1 quinolone resistance protein fluoroquinolone 32.7 100 1

UD 11.3 2019 inactivation mphA macrolide phosphotransferase macrolide antibiotic 25.2 100 1

ARGs IDENTIFIED ON PLASMIDS IN MAGs
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Hi-C MAG Phylum Family
Mechanism of

ARG Family
Antibiotic

class
% Length of 
Reference

%
IdentityResistance ARG

MD02 bin_23 Proteobacteria Pseudomonadaceae efflux adeF RND antibiotic efflux pump

fluoroquinolone

; tetracycline 100.38 60.11

MD02 bin_4 Proteobacteria Pseudomonadaceae efflux adeF RND antibiotic efflux pump

fluoroquinolone

; tetracycline 145.14 72.12

MD02 bin_69 Proteobacteria Rhodospirillaceae efflux adeF RND antibiotic efflux pump

fluoroquinolone

; tetracycline 81.78 50.69

SD03 bin_13 Proteobacteria Rhodospirillaceae efflux adeF RND antibiotic efflux pump

fluoroquinolone

; tetracycline 96.22 52.91

SD04 bin_65 Proteobacteria Rhodospirillaceae efflux adeF RND antibiotic efflux pump

fluoroquinolone

; tetracycline 82.63 48.35

SD04 bin_65 Proteobacteria Mycobacteriaceae inactivation tet(50) tetracycline inactivation enzyme tetracycline 19.33 100

UD05 bin_34 Actinobacteria Mycobacteriaceae target alteration murA antibiotic-resistant murA transferase fosfomycin 98.56 94.9

UD06 bin 12 Actinobacteria Mycobacteriaceae target alteration murA antibiotic-resistant murA transferase fosfomycin 98.56 94.9



2.5 Discussion
The overarching goal of this study was to determine how disturbance-induced shifts in 

active layer microbial communities affect the types, abundance, and mobility of antibiotic 

resistance genes (ARGs) that comprise the resistome in permafrost-associated soils. To answer 

this question, we collected culture-independent shotgun metagenomics and reconstructed 

MAGs to examine ARG composition, host range, and abundance's relationship with community 

composition from a permafrost thaw gradient in Fairbanks, Alaska. We found evidence that 

implicates antibiotic resistance as an intrinsic component of bacterial evolution in soils and 

unveils the role of disturbance in subarctic soils for shifting community composition that 

structures the predominant ARGs comprising the resistome. These efforts reveal permafrost- 

associated soils as a potential risk to One Health in the north by identifying soils typical of 

Interior Alaska as a dynamic reservoir of diverse and abundant ARGs that can shift with 

disturbance-induced community changes augmented by climate change.

Using long read metagenomics, we identified major trends in the predominant ARGs and 

host taxa in our subarctic soil samples (Figure 2.1a-b). The most prevalent mechanism of 

resistance detected from our long read sequences was antibiotic inactivation with 59% of the 

ARGs identified encoding an antibiotic inactivating enzyme of which 47.5% were beta­

lactamases followed by aminoglycoside inactivating enzymes (29.8%). A previous study 

examining beta-lactamases in Alaskan soils found an incredibly diverse set of beta-lactamases 

that could confer high level resistance phenotypes in E. coli even without manipulating gene 

expression machinery (Allen et al. 2009). This study's findings that provide evidence soil-borne 

ARGs are functional, paired with the abundance and diversity of beta-lactamases identified in 

our Alaskan soil samples, demonstrates the potential for ARGs in subarctic soils to compromise 

human health by acting as a reservoir of genes that are effective against clinically significant 

antibiotics. Moreover, given minimal presence of people at our remote study site, antibiotic 

pollution from anthropogenic sources is likely insignificant. Rather the prevalence of genes 

encoding antibiotic inactivating enzymes in our soils implies the presence of selective pressures 

favoring these genes, such as pressure that would be imposed by the biosynthesis of antibiotic 
compounds by soil microbes.

Indeed, we identified Actinobacteria, a phylum of prolific antibiotic producers that 

account for 45% of all bioactive microbial metabolites discovered (Anandan et al. 2013), as the 

second most abundant taxa at our site (Figure A4). More specifically the bacterial family 

Streptomycetaceae, a prolific producer of clinically significant antibiotics, was the second most 

abundant taxa across disturbance treatments further highlighting competitive inhibition as a 
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potential selection force for favoring the maintenance of ARGs in subarctic soil bacteria (Figure 
2.4). Previous work in Fairbanks, Alaska identified several cultured soil bacteria with antibiotic 

activity against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella 

pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) 

pathogen relatives (Haan et al. 2020). The ESKAPE pathogens are a major public health threat 

as nosocomial pathogens that exhibit multidrug resistance and virulence. Consequently, our 

findings of diverse ARGs paired with Haan et al. (2020) implicates subarctic soils as a potential 

source of antibiotic biosynthesis and segue into the discovery of novel antibiotics that can 

exhibit activity against major nosocomial pathogens. However, the diversity of ARGs unveiled 

from the subarctic soils presented here also suggests that if novel antibiotics were to be 

discovered, there may already be resistance determinants against those compounds circulating 

in soil-dwelling bacterial communities.

In our long read sequences, we detected a high diversity of significant ARG hits (Figure 

2.1) with 32.3% of the CARD-based ARGs identified at our study site. This is comparable to 

results from soils presented in a large-scale metagenomic study analyzing antibiotic resistance 

from various environmental sources including fecal, ocean, lake, sediment, and soil samples 

(Nesme et al. 2014). Nesme et al. (2014) found that the environmental source with the highest 

diversity of ARGs was soils, which were found on average to have 28.8% ± 3.14% of the 

database's ARG sequences present. In terms of diversity of ARGs in human associated biomes, 

a study examining antimicrobial resistance across global urban microbiomes found that high 

ARG diversity varied across cities and taxonomic differences were not related to human 

population density. Interestingly, Fairbanks, which is a city with a population of 0.052 M people, 

had a high distribution of ARGs across samples with more ARGs per sample on average than 
New York City, a city with a population of 8.623 M people (Danko et al. 2021). With a low 

human population density and high abundance of ARGs across urban surfaces in Fairbanks, it 

is likely that non-human associated environmental bacteria, such as the taxa described from our 

Fairbanks soil samples, had some role in contributing to the high abundance of ARGs detected.

In terms of ARG host range, our long read metagenomics revealed a majority of the 

ARGs (45.2%) were encoded by the phylum Proteobacteria with Alphaproteobacteria as the 

most abundant ARG host at a class level. Although Proteobacteria had a relatively even 

abundance of ARGs across disturbance treatments, ARGs from several other bacterial taxa 

varied by disturbance. For example, in the disturbed treatment Actinobacteria were enriched as 

an ARG host versus the undisturbed treatment where Acidobacteria were enriched as a host 

(Figure 2.1b). By examining the association between the abundance of ARGs and relative 
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abundance of specific bacterial taxa at a family level, we revealed that enrichment of specific 
families could affect the aggregate abundance of ARGs in the community. For instance, the 

bacterial family Comamonadaceae was found to be a significant ARG host indicator for the 

disturbed treatments (MD & SD) and had a higher relative abundance in these soils. Consistent 

with this host family, Acidobacteriaceae was found to be an ARG host indicator for less 

disturbed soils (UD & SD) and had a significantly higher relative abundance in corresponding 

soil treatments (Figure 2.3-2.4). A similar association between enriched abundance of bacterial 

families and ARGs was observed for the Bradyrhizobiaceae, a common plant-associated 

bacteria and most abundant family at FPES that was significantly enriched in the UD soils 

encoding a higher proportion of ARGs detected at this treatment (Figure 2.4).

Interestingly the families Comamonadaceae and Acidobacteriaceae, which are indicator 

ARG host families in this study, were previously found to have significant associations with 

primary productivity in plants. Seitz et al. (2021) found that plants inoculated with SD and MD 

soils had an enrichment of Comamonadaceae that was associated with a significant decrease in 

plant growth whereas plants inoculated with UD soils with a significant enrichment of 

Acidobacteriaceae had an increase in plant growth. In other high-latitude soils, soil disturbance 

as a result of deglaciation resulted in community shifts that paralleled changes observed at 

FPES in which Comamonadaceae was a dominant clade in the young soils, decreased in 

intermediate age soil, and was absent from long established soils and where Acidobacteriaceae 

had an opposite trend (Nemergut et al. 2007, Seitz et al. 2021). In terms of bacterial diversity at 

FPES, the MD and SD treatments were found to have significantly higher alpha diversity than 

undisturbed soils (Figure 2.2b). This trend in microbial diversity corresponds to other studies 

that found a decrease in rhizosphere community diversity with vegetation successional 

development similar to that observed at our study site (Hu et al. 2020). Hu et al. (2020) suggest 

this observed shift in community assemblages with plant growth shows that unvegetated 

rhizosphere microbiomes harbor more pioneer assemblages of species with random resource 

overlap that shifts to climax communities at later stages with more antagonistic and stress 

tolerant bacteria (Hu et al. 2020). Efflux pumps, one microbial mechanism of resistance 

encoded by ARGs in our soils, have been described as a major tolerance mechanism in 

bacteria allowing the effective extrusion of organic solvent from the interior of the cell to the 

exterior environment, thus the presence of stress tolerant species in soils with mature 

vegetation at our site (UD) could influence the observed higher proportion of ARGs encoding 
efflux pumps (UD = 0.147, SD = 0.145, MD = 0.142). The corresponding shifts in soil microbial 

communities observed across studies exploring various forms of soil disturbance stresses how 
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an increase in the frequency of disturbance events with climate change can negatively affect 
global One Health in more ways than one.

Our results show how soil disturbance affects One Health by highlighting the relationship 

between disturbance-induced shifts in microbial composition and antibiotic resistance. We 

identified a significant decrease in ARG abundance with shifting communities from 2018 to 2019 

(Figure 2.2d) and a quadratic relationship in ARG abundance with soil disturbance (Figure 2.2c). 

These relationships show a complex interplay between soil biogeochemical conditions over 

time, disturbance-induced differences in soil community, and ARG abundance. In this study, 

long read shotgun sequences were down sampled to the lowest sequencing yield and then 

annotated to estimate ARG abundance (Table A6). Thus, this measure of ARG abundance 

doesn't take into account absolute microbial abundance but rather represents the proportion of 

reads from each sample that encode an ARG (i.e., number of ARGs per 43,263 reads). 

Previous studies have defined ARG abundance in terms of copy number estimated through 

qPCR using primer libraries targeted to specific ARGs (Zhu et al. 2021). Unlike shotgun 

metagenomics that use databases to annotate the total genomic DNA from a sample, qPCR- 

based studies are limited in their power of detection based on the primers designed by the 

researcher. These primer libraries can lead to significant biases that miss divergent homologs 

and genes not targeted (Gaby & Buckley 2017). Moreover, a standard practice for normalizing 

gene copy numbers estimated with qPCR is by using estimates of absolute bacterial abundance 

with 16S rRNA qPCR. This metric of absolute bacterial abundance comes with inherent biases 

of its own. For example, there is significant intragenomic 16S rRNA gene copy number 

heterogeneity that can bias samples based on community composition (Sun et al. 2013). For 

example, at our study site Acidobacteria were enriched in SD and UD treatments while almost 

absent from MD whereas Proteobacteria were more abundant in MD soils (Figure A4b, Figure 

A7). Sun et al. (2013) found significantly higher 16S rRNA gene copies in Proteobacteria (3.94 
±2.62) compared to Acidobacteria (1.3 ±0.4 16S). Therefore, at our study site 16S rRNA qPCR 

would overestimate absolute bacterial abundance in disturbed soils enriched in Proteobacteria 

(Seitz et al. 2021). For these reasons, along with the fact that long read sequences may 

increase the likelihood of capturing full length ARGs and flanking MGEs (Huson et al. 2018), we 

used long read metagenomics to unearth the diversity, abundance, and types of ARGs in our 
subarctic soils.

Another fruitful method for exploring ARGs in soils is through the analysis of individual 

bacterial genomes. In previous work at this site, we cultured and sequenced the genomes of 

bacterial isolates and found Proteobacteria had significantly more ARGs per genome than 
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Firmicutes (Haan et al. 2021). Although this culture-based study revealed key functional 
differences in high-quality genome assemblies, such as presence of plasmid-borne ARGs, it 

was limited to two bacterial phyla as the result of the limitations imposed by culture-based 

methods. Soil cultures are estimated to capture less than 1% of total bacterial diversity thus 

requiring metagenomics to capture a higher proportion of the soil microbial community. 

Metagenomic-assembly and binning can be used without requiring cultures to reconstruct 

individual genomes of soil bacteria, however, genetic elements like plasmids are often not 

binned with the host genome since they can have distinct characters retained from the donor 

bacteria (e.g., read depth and tetra nucleotide frequency). To try and overcome these binning 

issues, we reconstructed individual genomes using Hi-C proximity ligation. Previous studies 

have demonstrated the ability of Hi-C proximity ligation with culture-independent de novo 

deconvolution to reveal plasmid-host associations in high quality bacterial genomes 

reconstructed from mixed samples without the need for prior information (e.g., reference 

genomes; Press et al. 2017, Stadler et al. 2019). Therefore, genomes generated with Hi-C may 

provide critical insight into the functional potential of individual genomes along with novel host- 

MGE associations from a greater diversity of bacteria than culture-independent genomics alone. 

However, the aforementioned studies examined fecal and wastewater samples which are 

several orders of magnitude less rich than soil microbial communities (Torsvik et al. 2002) 

potentially making it difficult to capture complete genomes without extremely deep high 
throughput sequencing.

In this study, we used Hi-C to generate bacterial genomes, theoretically containing 

plasmids, from six soil cores using Illumina ONT based assemblies as the scaffold for Hi-C 

libraries. We initially included long read data, but we did not have a deep enough sequencing 
depth (<10 Gb per core) to generate adequate assemblies, thus only Illumina sequence (64 - 85 

Gb per core) assemblies were used in this study resulting in the deconvolution of 921 genome 

clusters using Hi-C proximity ligation and ProxiMeta deconvolution. The number of clusters 

generated strongly correlated with the sequencing yield of the Nextera library rather than the Hi- 

C library (Figure A3) emphasizing the importance of sequencing depth for the initial assembly 

step even when Hi-C is employed for deconvolution. Of the 921 genome clusters, a majority 

were low quality (74%) based on single copy core gene metrics of completeness and 

contamination (<50% complete and/or >10% contaminated) (Figure 2.5a-b). To select higher 

quality genomes for downstream analysis, we only used genomes that contained eight of 

sixteen ribosomal marker genes that resulted in an improvement of single copy core gene 

metrics (Figure 5c) and the generation of 194 MAGs. These genomes were used for 
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downstream analysis into the types, abundance, and mobility of ARGs in individual bacterial 
genomes (Figure 6). MAGs were generated from across 8 bacterial phyla. Some of these 

genomes belong to clades of bacteria that are difficult to culture under standard conditions but 

still dominant members of soil communities such as Acidobacteria (n = 72 genomes), 

Verrucomicrobia (n = 7), and Tenericutes (n = 4). Thus, genomes produced in this study not 

only provide insight into the types and abundance of ARGs, but also generate a wealth of 

genomic information that can be used to distinguish other functional traits from difficult to culture 

bacterial phylogenies. These functional traits within previously unidentified genomes may have 

implications for ecosystem resilience and health that can be uncovered with future research.

In terms of similarities across datasets in this study, all of the 31 types of ARG families 

identified in our Hi-C MAGs were also present in the long read metagenomic data (n = 223 ARG 

families) despite using different sequencing platforms (ONT versus Illumina) (Figure 2.9). Unlike 

our metagenomic dataset, which found genes encoding antibiotic inactivating enzymes to be the 

most abundant, ARGs encoding efflux pumps were the most abundant across Hi-C MAGs. This 

difference is reflective of the distinct nature behind metagenomic assembly and binning versus 

direct annotation of long reads using metagenomics. In MAGs you concatenate contigs that 

represent a singular microbial genome that is then annotated for ARGs. Therefore, we would 

expect ARGs in MAGs to be similar to what has been identified in whole genomes from 

culturable bacteria. Indeed, in bacterial isolates from our study site we found adeF, which is the 

resistance-nodulation-cell division efflux pump most abundant in MAGs, was also most 

abundant in the isolate's genomes (Haan et al. 2021). On the other hand, using metagenomics 

we would detect ARGs that are most dominant in the community as a whole that may not be the 

most common ARG in MAGs if a dominant community member only represents a single MAG.

If we compare both metagenomic and MAG datasets from this study to a global 

database of cultured soil bacterial genomes, RefSoil+ (Dunivin et al. 2019), we find that the 

greatest diversity of ARG families is from our long read metagenomic dataset. Moreover, there 

were fewer ARG families in our 194 MAGs compared to the 922 RefSoil+ genomes with 24 

ARG families found in RefSoil+ genomes not found in either of our datasets highlighting how 

location can affect types of ARGs detected. The fact that we captured a greater diversity of ARG 

families than the RefSoil+ dataset that relied on culture based methods, emphasizes the 

importance of analyzing soil bacteria using direct sequencing methods in order to capture the 

difficult to culture majority. By analyzing total genomic DNA from soils in this study, we detected 

ARGs in soil bacteria that may pose a threat to human health if located on MGEs that may have 

not been captured with culture-based techniques.
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In terms of MGEs, the majority of ARGs described throughout both datasets were 
chromosomally encoded suggesting ARGs are more commonly spread through vertical rather 

than lateral means. Yet we did detect eight plasmid-borne ARGs in the MAGs of bacteria from 

the phyla Proteobacteria and Actinobacteria highlighting a potential for HGT (Figure 2.8; Table 

2.3). This result isn't surprising given previous research that analyzed the genomes of 23,425 

bacteria and found mobile ARGs were mainly present in four phyla (i.e. Proteobacteria, 

Firmicutes, Bacteroidetes, and Actinobacteria) and were significantly enriched in Proteobacteria 

(Hu et al. 2016). In addition to plasmids, integrons are another MGE often embedded in 

promiscuous plasmids and transposons that have played a key role in the worldwide 

dissemination of ARGs. Especially type 1 integrons, which were detected in our samples and 

have been shown to facilitate lateral transfer of diverse ARGs across divergent bacterial taxa 

(Gillings et al. 2017). In our MAGs, no integrons were detected on contigs containing ARGs, 

however, we did detect type 1 integrons in MAGs and on long reads from metagenomic dataset 

(Table 2.2). This detection of ARG-integron associations on long reads and lack of associations 

detected on contigs in MAGs highlights the advantage of long read technologies for capturing 

full-length genes with flanking MGEs and importance of initial assembly quality for producing 

more contiguous contigs in MAGs (Huson et al. 2018).

Some of these ARGs identified in our soil samples from non-pathogenic soil saprophytes 

were highly homologous to pathogenic bacteria. For example, we found a full-length gene for an 

OXA-229 cephalosporinase on a long read belonging to the Acidobacteria species Granulicella 

mallensis, which is a dominant member of soils at low temperatures and nutrient limiting 

conditions. This gene was identical to that of an OXA-229 from Acinetobacter baumannii which 

is a virulent pathogen that causes a broad range of nosocomial infections. The high sequence 

identity between genes from these two disparate taxa suggests some ARGs between human 

pathogens and soil bacteria could be the result of conserved homologs or integrated into 

genomes from past horizontal gene transfer events thus suggesting evidence of lateral 

exchange. The fact subarctic soils have a widespread distribution of ARGs of which many are 

highly homologous to pathogenic bacteria, including MGE-associated genes, emphasizes the 

clinical importance of resistance in the soils described here.

2.6 Conclusions
The presence of highly diverse ARGs, including those encoded on MGEs, across 

bacterial taxa in our samples implicates active layer Alaskan soils as a reservoir of resistance 

with the potential to compromise human health. This study, paired with previous culture-based 
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susceptibility tests (Haan and Drown. 2021), affirms subarctic soils are a reservoir of bacteria 
resistant to clinically significant antibiotics and abundant ARGs that may arise as a clinical 

problem as human expansion into subarctic ecosystems continues. We detected ARGs in 

dominant non-pathogenic soil bacteria highly homologous to human pathogens. Moreover, the 

high abundance of genes encoding antibiotic inactivating enzymes suggests the presence of 

selective pressures for the maintenance of these ARGs. Given the remoteness of our study 

site, these selective pressures are likely the result of antibiotic producing soil microbes rather 

than anthropogenic antibiotic pollution. Indeed, Streptomycetaceae, a prolific producer of 

antibiotics, was the second most abundant bacterial family at FPES. The significant relationship 

between shifts in community composition and ARG abundance with disturbance unearths the 

role climate change, which increases the frequency and intensity of soil disturbance events, 

may have on ARG evolution in soils. The individual genomes provide a wealth of genomic 

information for future researchers to unveil the functional role of specific Alaskan soil bacterial 

phylogenies. For example, these genomes may help with the discovery of gene clusters that 

can reveal novel bioactive compounds for future antibiotic therapies or functional traits that 

affect ecosystem resilience. Overall, our findings emphasize how the enrichment of specific 

bacterial taxa with disturbance-induced thaw can shape the resistome and identified subarctic 

soils as a reservoir of ARGs potentially available to pathogens via horizontal gene transfer. 

Thus, the evidence presented here implicates antibiotic resistance as an intrinsic component of 

bacterial evolution in soils. These findings also highlight the need for novel therapeutics paired 

with continued antibiotic stewardship to conserve the arsenal of drugs we already have for 

treating bacterial infections.
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OVERALL CONCLUSION
As antibiotic resistance continues to emerge and rapidly spread in clinical settings, it is 

imperative to generate studies that build insight into the ecology and evolution of antibiotic 

resistance genes (ARGs) in environmental reservoirs. Soils are one of the richest microbial 

habitats both in terms of microbial abundance and diversity (Torsvik et al. 2002). Soils from 

biomes across the world have been found to host an abundance of antibiotic producing fungi 
and bacteria, namely Streptomyces, a soil-dwelling bacterial genus that produces bioactive 

compounds in which ⅔ of clinical antibiotics are derived from (Watve et al. 2001). Thus, the 

higher prevalence of ARGs detected in soils compared to other non-soil environments has 
frequently been attributed to the hypothesized co-evolutionary ‘arms-shield race' between 

antibiotic producers and co-evolved resistant bacterial taxa (Nesme & Simonet 2015). Although 

hypothetically probable, it has been difficult to disentangle the exact selective forces driving the 
evolution and dissemination of soil-borne ARGs due to soil's biological complexity and technical 

challenges in measuring antibiotic concentrations. Despite this limitation metagenomic and 

culture-based studies have revealed the worldwide distribution of antibiotic resistant soil 

bacteria that encode a diverse range of genes recognized to confer resistance (Nesme et al. 

2014, Dunivin et al. 2019). The apparent risk posed by soils makes understanding the factors 

influencing ARG composition and abundance critical.

Large-scale metagenomic studies have previously unveiled bacterial community 
composition as a primary determinant of soil ARG content (Forsberg et al. 2014). Land use 

practices and soil disturbance events have also been found to effect ARG abundance in soils, 

such as amendment of copper in agricultural soils (Berg et al. 2005) and flooding (Perez- 
Valdespino et al. 2021). However, there is very little research on how climate change-induced 

disturbances (e.g., wildfires, thermokarst formation, etc.) will affect the microbial communities 

that structure the types and abundance of ARGs in soils. Climate change is increasingly 
affecting soil biogeochemical properties (Zepp et al. 2007), especially in Alaska where polar 

amplification has already led to an increase in the frequency and severity of soil disturbance 
events (Wendler & Shulski 2009, Holland & Bitz 2003). In Alaska, soil disturbance events, and 

anthropogenic land use practices, remove vegetation in return amplifying permafrost thaw and 

shifting microbial community composition in active layer soils (Seitz et al. 2021). The 

overarching goal of this thesis was to assess how disturbance to permafrost-associated soils in 
Alaska, and the subsequent shift in bacterial community composition, affects the types, 

abundance, and mobility of ARGs that comprise the active layer resistome.
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In Chapter 1 I presented a culture-based analysis of 90 bacterial isolates from our study 
site, the Fairbanks Permafrost Experiment Station (FPES), and found that 90% of the isolates 

were resistant to at least one of the antibiotics tested with over 40% of the isolates displaying 

multidrug resistance. Using whole genome analysis, I identified a diverse array of resistance 

determinants from all major mechanisms of antibiotic resistance including antibiotic efflux, 

inactivation, target protection, and target alteration. Although direct functional conclusions from 

our genomic dataset cannot be drawn, the high abundance of beta-lactam resistance genes 

directly corresponds with the high proportion of phenotypic resistance to the beta-lactam 
antibiotic screened, ampicillin. This emphasizes the functionality of Alaskan-borne ARGs and 

their potential to compromise health if disseminated via horizontal gene transfer. Moreover, our 

high-proportion of isolates resistant to ampicillin corroborated previous findings in which beta­
lactamases from Alaskan soils conferred high level resistance in E. coli vectors even without 

manipulating gene expression machinery (Allen et al. 2009).

Some of the isolates presented in chapter 1 do in fact belong to taxa of known 

opportunistic human pathogens, such as Pantonea agglomerans (Cruz et al. 2007), Bacillus 

cereus (Kotiranta et al. 2000), and several other Pseudomonas species. Several of these 
potential opportunistic pathogens were found to carry both chromosomally encoded and 
plasmid-borne ARGs. However, even non-pathogenic soil bacteria regularly interact with 

waterways, air, and built habitats such as hospital surfaces generating a potential for HGT from 

one biosphere to another (Woolhouse et al. 2015). When exposed to antibiotics, nonpathogenic 

commensal bacteria that acquired an ARG from environmental sources can be selected for 

promoting clonal expansion and increased risk for ARG spread to pathogenic bacteria (Lax et 

al. 2015). These microbial interactions across biospheres may become more frequent in Alaska 

with climate change. For example, as climate change increases the frequency of wildfires, 

microbes, including pathogenic fungi and bacteria, can more frequently be aerosolized and 

transported by wildland fire smoke to downstream human populations (Kobziar et al. 2018). 

With thawing permafrost there are changes to hydrologic conditions, including alterations in soil 

moisture, connectivity of inland waters, streamflow seasonality (Walvoord & Kurylyk 
2016). These changes may mobilize active layer microbes, and microbes previously frozen in 

permafrost sediment, into waterways that humans and animals interact with. Lastly, Alaska's 
population has seen a 3.3% growth over the past decade (U.S. Census Bureau 2020). This 

expansion into Alaska may further disturb permafrost soils augmenting thaw and intensifying the 

potential for the spread of invasive species that carry vector-borne diseases. For example, 
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migration into Alaska can stimulate the chance for invasion of insects and arachnids that can 

colonize forests bringing vector-borne infectious disease into Alaska (El-Sayed & Kamel 2020).

The culture-independent analyses conducted in chapter 2 capture more microbial 
diversity than chapter 1 by directly sequencing total genomic DNA from soils rather than relying 

on cultures. In this chapter I presented evidence of highly diverse and abundant ARGs, 

including those encoded on MGEs, across bacterial taxa in our samples. Thus, the evidence 

presented in chapter 2 implicated antibiotic resistance in soils as an intrinsic component of 

bacterial evolution while highlighting the need for novel therapeutics and continued antibiotic 

stewardship to conserve the arsenal of drugs we already have for treating bacterial infections. 

From the long read metagenomic data, I identified genes encoding all mechanisms of resistance 

similarly to the findings of chapter 1. However, in this metagenomic dataset there was a much 

higher diversity of ARGs detected highlighting the importance of culture-independent microbial 

analyses for capturing more variation in soils, which are dominated by uncultivable taxa. The 

high abundance of beta-lactamase genes detected from our metagenomic dataset suggests the 

presence of selective pressures for the maintenance of these ARGs. Given the remoteness of 

our study site, these selective pressures are likely the result of antibiotic producing soil microbes 

rather than anthropogenic antibiotic pollution. Indeed, we found that Actinobacteria, a phylum of 
prolific antibiotic producers that account for 45% of all bioactive microbial metabolites 

discovered (Anandan et al. 2013), were the second most abundant phylum with 
Streptomycetaceae, a prolific producer of clinically significant antibiotics, being the second most 

abundant family in our soils. This high abundance of antibiotic producing taxa highlights the 
potential co-evolutionary ‘arms-shield race' occurring in Alaskan soils.

The significant relationship between shifts in community composition and ARG 

abundance both temporally and with soil disturbance, unearths the complex role climatic- 

induced changes to permafrost soil conditions have on ARG evolution. I found that there was a 
quadratic relationship between disturbance and ARG abundance such that undisturbed soil 

communities with intact permafrost and late successional stage vegetation were enriched in 

ARGs and more disturbed soil communities with high-level permafrost thaw and early 

successional stage vegetation were enriched in ARGs. On the other hand, semi-disturbed soils, 

which had a stable permafrost table but a mid successional stage forest stand, had the lowest 

abundance of ARGs. The shift in taxa observed with soil disturbance at FPES directly 

corresponded with microbial succession observed in other high-latitude soils disturbed via 

deglaciation (Nemergut et al. 2007) and wildfire (Whitman et al. 2019). The de-glaciation study 

found that Comamonadaceae was a dominant clade in the young soils, decreased in 
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intermediate age soil, and was absent from long established soils which corresponds to the 
trend observed with Comamonadaceae across our disturbance gradient (Nemergut et al. 2007, 

Seitz et al. 2021). Although Comamonadaceae is a phenotypically diverse group of organisms, 

isolates from this clade are capable of metabolizing carbon from limited resources in carbon 

poor environments, such as those released from thawing permafrost and glacial ice cores 
(Sheridan et al 2003). In studies examining environmental resistomes, such as wastewater, 

Comamonadaceae was a major reservoir of ARGs (Narciso-da-Rocha et al. 2018). Analogously 

to our findings, in wastewater an increasing abundance of Comamonadaceae was significantly 

correlated with the prevalence of resistance (Gerzova et al. 2014). Another clade at our site 

where we observed consistent trends with other undisturbed soils was Acidobacteria (Seitz et 
al. 2021). Acidobacteria utilizes complex carbon substrates that are present in older established 

soils (Kielak et al. 2016). Moreover, previous findings also showed Acidobacteria were a primary 

source of ARGs in undisturbed Antarctic soils (Van Goethem et al. 2018). These findings, along 

with studies that have shown enrichment of soil nutrients like N increase the prevalence of 

ARGs (Fierer et al. 2012), highlight the significance of disturbance induced shifts in soil 

characteristics and the subsequent shift in bacterial taxa that shape the resistome.

Another fruitful method for exploring ARGs in soils is through the analysis of individual 

bacterial genomes. Whole genomes can reveal functional potential of individual taxa for 

determining the abundance of ARGs detected in soil communities. In the second thesis chapter 

we reconstructed individual genomes without cultures using Hi-C proximity ligation. Previous 

studies have demonstrated the ability of Hi-C proximity ligation with culture-independent de 

novo deconvolution to reveal plasmid-host associations in high quality bacterial genomes 

reconstructed from mixed samples without the need for prior information (e.g., reference 

genomes; Press et al. 2017, Stadler et al. 2019). Therefore, genomes generated with Hi-C may 

provide critical insight into host-MGE associations from a greater diversity of bacteria than 
culture-dependent genomics alone. Our Hi-C MAGs revealed that specific taxa had more ARGs 

per genome than others, including Proteobacteria and Acidobacteria. Previous findings showed 

that Acidobacteria were significantly more abundant in UD FPES soils and Proteobacteria were 

more abundant in MD soils (Seitz et al. 2021). These findings, paired with the MAGs produced 

in chapter 2 and the genomes produced in chapter 1 both emphasized how the enrichment of 
specific bacterial taxa would result in an increased abundance of ARGs at a community level 

(e.g., the quadratic relationship with disturbance-induced community shifts and ARG 

abundance).
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In terms of the mechanism behind why disturbance may impact ARGs, a previous study 

found wildfire in the Canadian boreal forest enriched prolific antibiotic producing microbial taxa 
Penicillium and Streptomyces (Whitman et al. 2019). Our findings found Streptomyces was 

abundant taxa across disturbance treatments. The high abundance of this taxa in Alaskan soils 

suggests a co-evolutionary arms-shield race that directly selects for resistant bacteria by 

enriching antibiotic producers through shifting niche availability (Hibbing et al. 

2010). Disturbance to Alaskan soils could also indirectly select for ARGs by favoring 

mechanisms that allow bacteria to concurrently cope with antibiotics and biological stressors 

released from permafrost, such as biogenic volatile organic compounds (Kramsh0j et al. 

2018). For example, efflux pumps are proteins in a variety of environmental bacteria that have 
been shown to confer multidrug resistance and promote stress tolerance (Ramos et al. 2001) 

and were detected in most Hi-C MAGs generated in chapter 2. Environmental stress has also 

been suggested to stimulate intra-genomic (e.g., integrons) and inter-species gene transfer 
(Velkov 1999). Thus, as climate change progressively generates stressors that affect soil 

bacteria, there may be an increase the rate of ARG dissemination and the abundance of ARGs 
housed on conjugative plasmids (Djordjevic et al. 2013).

Future studies could use the metagenomic data produced in this thesis to examine the 

prevalence of soil-borne plant, human, and animal pathogens in subarctic soils along with how 

disturbance-induced permafrost thaw shifts the abundance and types of pathogenic bacterial, 
fungal, and viral taxa (e.g., Pseudomonas aeruginosa, Bacillus anthracis, Clostridium tetani, 

Francisella tularensis, Aspergillus fumigatus and Sporothrix schenckii ) (Nieder et al. 2018). 

Moreover, by identifying biogeochemical properties of soils at our study site we could 

disentangle how these abiotic factors structure predominant pathogenic microbes and antibiotic 

resistant taxa in soil. The MAGs generated using Hi-C proximity ligation with short-read 
assemblies can be refined with additional long read sequence data in order to produce 

completely circularized genomes of bacteria. Near-complete genomes are much easier to 

annotate and identify biosynthetic gene clusters that can shed light on novel secondary 

metabolites in Alaskan soils. Thus, a refinement of MAGs would complement findings in this 

study by providing insight into the potential antibiotic producing taxa driving this high prevalence 

of ARGs.

To recap, the presence of diverse and abundant ARGs, including ARGs encoded on 

mobile elements, in both chapter 1 and 2 implicates active layer soils as a reservoir of resistant 

bacteria. This reservoir has the potential to compromise human, animal, and plant health by 

acting as a source of bacteria that can transfer ARGs to pathogens via horizontal gene transfer.
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The findings in both chapters affirm subarctic soils contain bacteria resistant to clinically 
significant antibiotics highlighting the intrinsic nature of resistance in soil. By monitoring which 

ARGs are present in soils at this locale, we can predict which ARGs may arise as clinical 

problems as human expansion into subarctic ecosystems continues. The high abundance of 

ARGs encoding antibiotic inactivating enzymes implicates selective pressures that maintain 

these genes, most likely driven by the presence of antibiotic producing taxa. The individual 

genomes provide a wealth of genomic information for future researchers to unveil the functional 

role of specific Alaska soil bacterial phylogenies in ecosystem health and resilience. Moving 

forward these genomes can be refined further and used as a resource to mine for biosynthetic 

gene clusters that encode novel bioactive compounds that have the potential to aid in 

therapeutics that could target drug resistant pathogens in a clinical setting. Overall, this thesis 

provides insight into the ARGs comprising the subarctic soil resistome that may emerge 

clinically and how the resistome is shaped by disturbance-induced shifts in soil communities.
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APPENDIX

Table A1. Zone of inhibition breakpoints (mm) from the US Clinical and Laboratory 
Standards Institute M100, 30th ed. based on the genus of FPES isolates against Ampicillin, 
Chloramphenicol, Erythromycin, Kanamycin, and Tetracycline with R = resistant, I = 
intermediate, and S = susceptible.

CLSI Breakpoint
Class

FPES Isolate
Genus

Ampicillin Chloramphenicol Erythromycin Kanamycin Tetracycline
R I S R I S R I S R I S R I S

Pseudomonas spp Pseudomonas - - - 12 13-17 18 - - - 12 13-14 15 11 12-14 15
Enterobacterales Erwinia 13 14-16 17 12 13-17 18 12 - 13 13 14-17 18 11 12-14 15
Enterobacterales Pantonea 13 14-16 17 12 13-17 18 12 - 13 13 14-17 18 11 12-14 15
Enterobacterales Serratia 13 14-16 17 12 13-17 18 12 - 13 13 14-17 18 11 12-14 15
Enterococcus spp Bacillus 16 - 17 12 13-17 18 13 14-22 23 - - - 14 15-18 19

Enterococcus spp Exiguobacterium 16 - 17 12 13-17 18 13 14-22 23 - - - 14 15-18 19

Table A2. ONT library prep and sequencing run by isolate
ONT Libarary Prep Sequencing Date Run Script RunTime Samples Sequenced
SQK-RBK004 20180724A RBK004 48hr TH01 TH10 TH13 TH21 TH31 TH33 TH45 TH52 TH61 TH64 TH72 TH80

20180724B RBK004 48hr TH04 TH12 TH15 TH30 TH34 TH35 TH41 TH56 TH65 TH66 TH74 TH86
20180724C RBK004 48hr TH03 TH18 TH19 TH29 TH39 TH40 TH47 TH60 TH69 TH76 TH77 TH90
20200203 RBK004 72hr TH02 TH11 TH22 TH32 TH42 TH51 TH62 TH73 TH82 TH05 TH43 TH83
20200207 RBK004 72hr TH08 TH58 TH50 TH14 TH16
20200214 RBK004 72hr TH63 TH36 TH06 TH75 TH44 TH84 TH53 TH23 TH67 TH54
20200221 RBK004 72hr TH07 TH17 TH24 TH25 TH37 TH46 TH55 TH68 TH71 TH85 TH87
20200224 RBK004 72hr TH70 TH38 TH10 TH78 TH48 TH20 TH86 TH57 TH27 TH15 TH49

VSK-VSK002 20180505 VSK002 48hr TH81
20180515 VSK002 48hr TH59
20190228 VSK002 48hr TH26

VSK-VMK002 20191113 VMK002 72hr TH28
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Table A3. Assembly statistics and checkM metrics of quality for each isolate's assembly.

Isolate

Mean
N50

,n

Coding %
Compl

ete:
%

Contam. marker lineagelength
Contig

s
contig 

length
largest GC

%
GC
std

density #
genes:contig N50

TH01 7289415 1 7289415 7289415 7289415 1 0.62 0.00 0.89 6521 99.67 0.87 'o__Pseudomonadales'

TH02 6428555 1 6428555 6428555 6428555 1 0.59 0.00 0.87 5729 99.93 0.05 'g__Pseudomonas'

TH03 6292986 158 39829 230652 56073 39 0.59 0.02 0.88 5752 84.78 1.69 'o__Pseudomonadales'

TH04 6270276 2 3135138 6269627 6269627 1 0.60 0.00 0.89 5593 99.86 0.52 'g__Pseudomonas'

TH05 7101889 70 101456 491789 165760 13 0.62 0.02 0.89 6507 98.59 0.87 'o__Pseudomonadales'

TH06 6565344 4 1641336 5329916 5329916 1 0.59 0.00 0.88 5759 99.89 0.34 'g__Pseudomonas'

TH07 7282377 2 3641189 7270375 7270375 1 0.62 0.00 0.89 6530 100.00 0.87 'o__Pseudomonadales'

TH08 6565193 6 1094199 2115574 1462546 2 0.59 0.00 0.88 5865 99.93 0.34 'g__Pseudomonas'

TH09 6300396 72 87506 1275846 563232 4 0.60 0.04 0.89 5737 100.00 0.19 'o__Pseudomonadales'

TH10 4977657 179 27808 105294 35424 52 0.59 0.02 0.87 5195 75.11 0.76 'g__Pseudomonas'

TH11 3239959 138 23478 116995 30084 34 0.36 0.02 0.81 4199 80.39 0.27 'o__Bacillales'

TH12 5819177 6 969863 5081309 5081309 1 0.35 0.03 0.82 5863 98.90 0.50 'g__Bacillus'

TH13 6132576 25 245303 4565714 4565714 1 0.35 0.04 0.83 6375 99.34 0.76 'g__Bacillus'

TH14 6352696 3 2117565 5830573 5830573 1 0.38 0.00 0.78 6056 98.63 3.44 'f__Bacillaceae'

TH15 6252465 2 3126233 5280705 5280705 1 0.59 0.00 0.87 5674 99.67 0.11 'o__Pseudomonadales'

TH16 6232267 12 519356 2999140 2358609 2 0.38 0.03 0.78 5927 98.63 3.72 'f__Bacillaceae'

TH17 5747064 6 957844 5159847 5159847 1 0.35 0.03 0.82 5826 98.02 0.77 'g__Bacillus'

TH18 7152072 1 7152072 7152072 7152072 1 0.60 0.00 0.88 6271 100.00 0.54 'o__Pseudomonadales'

TH19 5767003 16 360438 2590843 2009945 2 0.35 0.03 0.82 5822 98.90 0.29 'g__Bacillus'

TH20 6987576 201 34764 277831 70357 26 0.59 0.02 0.88 6383 98.53 0.24 'o__Pseudomonadales'

TH21 6760171 2 3380086 6753006 6753006 1 0.62 0.11 0.89 6000 99.57 0.41 'g__Pseudomonas'

TH22 5822214 3 1940738 5423614 5423614 1 0.35 0.02 0.82 5874 98.33 1.55 'g__Bacillus'

TH23 5806530 7 829504 3853346 3853346 1 0.35 0.03 0.82 5907 98.49 1.55 'g__Bacillus'

TH24 6188561 5 1237712 5688067 5688067 1 0.38 0.02 0.78 5938 98.09 3.17 'f__Bacillaceae'

TH25 5862716 39 150326 1409789 711156 3 0.35 0.02 0.82 5916 97.84 0.95 'g__Bacillus'

TH26 5790936 2 2895468 5307118 5307118 1 0.35 0.01 0.82 5779 98.68 0.15 'g__Bacillus'

TH27 6276694 4 1569174 5739858 5739858 1 0.38 0.02 0.78 5984 98.63 3.17 'f__Bacillaceae'
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TH28 5123563 239 21438 170590 39071 37 0.55 0.04 0.88 4859 98.09 0.89 'f__Enterobacteriaceae'

TH29 3154365 1477 2136 11893 2306 442 0.54 0.04 0.87 4077 71.97 0.55 'f__Enterobacteriaceae'

TH30 5897091 6 982849 5270848 5270848 1 0.35 0.04 0.82 5863 98.90 0.21 'g__Bacillus'

TH31 7196786 38 189389 950737 452287 6 0.59 0.03 0.86 7112 98.42 1.69 'g__Pseudomonas'

TH32 7208438 4 1802110 6375311 6375311 1 0.61 0.03 0.89 6670 99.89 0.27 'g__Pseudomonas'

TH33 6929409 1 6929409 6929409 6929409 1 0.61 0.00 0.89 6258 99.86 0.83 'g__Pseudomonas'

TH34 7008149 35 200233 752473 447628 6 0.60 0.02 0.89 6412 99.83 0.21 'g__Pseudomonas'

TH35 6185610 409 15124 421554 141290 14 0.61 0.05 0.88 5996 97.72 0.57 'o__Pseudomonadales'

TH36 6757750 1 6757750 6757750 6757750 1 0.58 0.00 0.89 6241 100.00 0.62 'o__Pseudomonadales'

TH37 6297323 357 17640 345118 170805 13 0.61 0.05 0.88 6060 100.00 0.57 'o__Pseudomonadales'

TH38 6881557 56 122885 870092 341859 6 0.59 0.02 0.89 6255 99.12 0.75 'g__Pseudomonas'

TH39 7179220 8 897403 2756366 1664454 2 0.59 0.01 0.88 6562 99.93 1.08 'g__Pseudomonas'

TH40 6136442 221 27767 225211 73707 29 0.61 0.04 0.87 6090 97.20 0.68 'o__Pseudomonadales'

TH41 6782636 9 753626 3093317 1191987 2 0.59 0.00 0.87 6095 99.35 1.17 'g__Pseudomonas'

TH42 6581347 1 6581347 6581347 6581347 1 0.60 0.00 0.87 5801 99.93 0.97 'g__Pseudomonas'

TH43 6500574 5 1300115 2489632 1546032 2 0.59 0.00 0.87 5811 99.93 0.11 'g__Pseudomonas'

TH44 5938642 59 100655 1212980 347271 5 0.35 0.03 0.81 6211 96.69 1.55 'g__Bacillus'

TH45 5862293 15 390820 4124331 4124331 1 0.35 0.05 0.82 5984 97.89 1.86 'g__Bacillus'

TH46 6582152 1 6582152 6582152 6582152 1 0.60 0.00 0.87 5804 99.93 0.97 'g__Pseudomonas'

TH47 6580544 1 6580544 6580544 6580544 1 0.60 0.00 0.87 5800 99.93 0.97 'g__Pseudomonas'

TH48 6751879 1 6751879 6751879 6751879 1 0.62 0.00 0.89 5973 99.93 0.14 'g__Pseudomonas'

TH49 6641420 2 3320710 3792784 3792784 1 0.60 0.00 0.87 5906 99.93 0.40 'g__Pseudomonas'

TH50 5932849 8 741606 3087957 3087957 1 0.35 0.04 0.82 6012 98.38 1.86 'g__Bacillus'

TH51 5966177 6 994363 3086880 3086880 1 0.35 0.04 0.82 6163 98.24 1.55 'g__Bacillus'

TH52 5965749 15 397717 1979436 1731552 2 0.35 0.02 0.82 6074 98.68 0.61 'g__Bacillus'

TH53 5954056 5 1190811 5462858 5462858 1 0.35 0.04 0.82 6117 98.46 1.53 'g__Bacillus'

TH54 5941371 4 1485343 5495595 5495595 1 0.35 0.08 0.82 6055 98.33 1.55 'g__Bacillus'

TH55 4877094 637 7656 159431 12721 90 0.36 0.02 0.85 5058 93.87 0.38 'g__Bacillus'

TH56 4853631 1 4853631 4853631 4853631 1 0.55 0.00 0.88 4388 100.00 0.00 'f__Enterobacteriaceae'

TH57 5203616 617 8434 188393 15558 81 0.36 0.02 0.85 5407 96.57 1.48 'g__Bacillus'

TH58 5992248 9 665805 2344683 2197132 2 0.35 0.03 0.82 6107 98.55 1.86 'g__Bacillus'



86

TH59 4906365 790 6211 80706 10625 111 0.36 0.02 0.86 5137 94.34 0.73 'g__Bacillus'

TH60 6581323 1 6581323 6581323 6581323 1 0.60 0.00 0.87 5795 99.93 0.97 'g__Pseudomonas'

TH61 6408248 1 6408248 6408248 6408248 1 0.59 0.00 0.88 5691 99.93 0.05 'g__Pseudomonas'

TH62 6683507 3 2227836 6638173 6638173 1 0.59 0.06 0.88 6108 100.00 0.28 'o__Pseudomonadales'

TH63 6157383 1 6157383 6157383 6157383 1 0.59 0.00 0.87 5566 99.39 0.79 'g__Pseudomonas'

TH64 6733090 2 3366545 6465401 6465401 1 0.59 0.05 0.88 6231 100.00 0.30 'o__Pseudomonadales'

TH65 6397841 1 6397841 6397841 6397841 1 0.60 0.00 0.88 5882 99.73 0.66 'g__Pseudomonas'

TH66 6131349 144 42579 201108 70924 28 0.59 0.02 0.88 5639 98.25 14.04 'k__Bacteria'

TH67 6682590 3 2227530 6637397 6637397 1 0.59 0.06 0.88 6102 100.00 0.28 'o__Pseudomonadales'

TH68 7157743 3 2385914 4088561 4088561 1 0.59 0.03 0.87 6529 99.68 0.21 'o__Pseudomonadales'

TH69 5914792 1 5914792 5914792 5914792 1 0.59 0.00 0.88 5243 99.66 0.08 'g__Pseudomonas'

TH70 7078794 3 2359598 6999391 6999391 1 0.60 0.01 0.88 6367 100.00 1.09 'o__Pseudomonadales'

TH71 6270423 38 165011 1061543 465089 5 0.59 0.03 0.88 5540 96.84 0.15 'g__Pseudomonas'

TH72 7744191 23 336704 3545502 1844773 2 0.59 0.05 0.87 6963 98.76 0.67 'g__Pseudomonas'

TH73 3185552 5 637110 3152340 3152340 1 0.48 0.09 0.89 3267 99.34 0.33 'c__Bacilli'

TH74 6766338 6 1127723 2599615 2167177 2 0.60 0.03 0.87 6131 99.79 1.07 'g__Pseudomonas'

TH75 6765294 3 2255098 6708000 6708000 1 0.60 0.04 0.87 6128 99.79 1.07 'g__Pseudomonas'

TH76 5908038 1 5908038 5908038 5908038 1 0.63 0.00 0.89 5248 99.84 0.14 'o__Pseudomonadales'

TH77 7361083 8 920135 6195251 6195251 1 0.60 0.05 0.88 6784 99.86 0.87 'g__Pseudomonas'

TH78 5908405 1 5908405 5908405 5908405 1 0.63 0.00 0.89 5221 100.00 0.14 'o__Pseudomonadales'

TH79 4583151 71 64551 283231 114121 14 0.56 0.03 0.88 4203 99.64 0.24 'f__Enterobacteriaceae'

TH80 6539415 7 934202 3216008 1092864 2 0.59 0.01 0.88 5775 99.66 0.15 'g__Pseudomonas'

TH81 4984468 4 1246117 4128817 4128817 1 0.55 0.03 0.85 4539 100.00 1.50 f__Enterobacteriaceae'

TH82 4647952 2 2323976 4554121 4554121 1 0.56 0.01 0.88 4269 99.96 0.24 'f__Enterobacteriaceae'

TH83 3297868 60 54964 369722 114945 8 0.66 0.21 0.84 3993 89.34 18.46 'k__Bacteria'

TH84 4930048 54 91297 520953 141253 11 0.55 0.03 0.85 4540 99.54 1.80 'f__Enterobacteriaceae'

TH85 5873192 6 978865 5302587 5302587 1 0.35 0.03 0.82 5896 99.01 0.32 'g__Bacillus'

TH86 5476598 280 19559 240496 45743 29 0.35 0.03 0.84 5642 97.91 0.77 'g__Bacillus'

TH87 5967729 13 459056 2640400 2484126 2 0.35 0.03 0.82 6009 98.90 0.48 'g__Bacillus'

TH88 4903410 2 2451705 4824998 4824998 1 0.55 0.01 0.88 4444 100.00 0.05 'f__Enterobacteriaceae'
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TH89 5889526 7 841361 5293100 5293100 1 0.35 0.03 0.82 6099 98.90 0.04 'g__Bacillus'

TH90 6751295 1 6751295 6751295 6751295 1 0.62 0.00 0.88 6311 99.35 0.23 'g Pseudomonas'

MEAN 6096842 75 2102452 3839076 3639582 13 0.52 0.03 0.86 5772 98.01 1.16
STDER 96902 22 251424 261837 279870 5 0.01 0.00 0.00 73 0.50 0.26

Table A4. Description of CARD gene hits from all isolates in terms of resistance mechanism, best hit gene, drug class associated 
with that gene, gene family, count of gene copies for each hit across the 90 isolates, along with the mean and standard deviation of 
percent length of reference sequence and percent identity as defined by RGI.

% length of
Resistance Mechanism Best_Hit_ARO Drug Class AMR Gene Family Count reference sequence % identity

Acinetobacter baumannii AbaQ fluoroquinolone antibiotic major facilitator superfamily (MFS) antibiotic efflux pump 40 101.363 ± 0.109 72.675 ± 0.427
adeF fluoroquinolone antibiotic; tetracycline antibiotic resistance-nodulation-cell division (RND) antibiotic efflux pump 176 99.02 ± 2.902 52.283 ± 11.822
CRP macrolide antibiotic; fluoroquinolone antibiotic; penam RND antibiotic efflux pump 8 100 ± 0 98.87 ± 0.248
emrR fluoroquinolone antibiotic MFS antibiotic efflux pump 7 99.757 ± 0.643 82.049 ± 1.001

antibiotic efflux Klebsiella pneumoniae KpnE Broad Spectrum MFS antibiotic efflux pump 2 96.67 ± 0 66.95 ± 0
Klebsiella pneumoniae KpnF Broad Spectrum MFS antibiotic efflux pump 8 100 ± 0 73.389 ± 2.903
Klebsiella pneumoniae KpnH Broad Spectrum MFS antibiotic efflux pump 6 99.8 ± 0 86.705 ± 1.38
msbA nitroimidazole antibiotic ABC antibiotic efflux pump 7 100 ± 0 87.827 ± 1.059
tet(45) tetracycline antibiotic MFS antibiotic efflux pump 1 100 ± NA 89.5 ± NA
TriC triclosan RND antibiotic efflux pump 2 2.76 ± 0 100 ± 0
AAC(6')-32 aminoglycoside antibiotic AAC(6') 1 122.83 ± NA 100 ± NA
AAC(6')-Ib7 aminoglycoside antibiotic AAC(6') 1 65.13 ± NA 100 ± NA
AAC(6')-Ir aminoglycoside antibiotic AAC(6') 3 272.6 ± 0 100 ± 0
BcII cephalosporin; penam Bc beta-lactamase 20 100.39 ± 0 90.755 ± 0.567

antibiotic inactivation BES-1 penam BES Beta-lactamase 1 27.05 ± NA 100 ± NA
BPU-1 penam BPU Beta-lactamase 4 51.15 ± 0 100 ± 0
Escherichia coli ampC1 beta-lactamase cephalosporin; penam \ampC-type beta-lactamase 1 94.7 ± NA 100 ± NA
Escherichia coli ampH beta-lactamase cephalosporin; penam \ampC-type beta-lactamase 6 101.733 ± 1.17 70.063 ± 2.367
FosB fosfomycin fosfomycin thiol transferase 25 105.012 ± 6.992 89.055 ± 2.281
armA aminoglycoside antibiotic 16S rRNA methyltransferase (G1405) 11 81.214 ± 0.182 100 ± 0
bcrC peptide antibiotic undecaprenyl pyrophosphate related proteins 2 166.995 ± 100.317 100 ± 0
MCR-4.1 peptide antibiotic MCR phosphoethanolamine transferase 2 10.63 ± 1.174 100 ± 0

antibiotic target alteration Morganella morganii gyrB fluoroquinolone antibiotic fluoroquinolone resistant gyrB 6 99.75 ± 0 80.43 ± 0.279
PmrF peptide antibiotic pmr phosphoethanolamine transferase 2 100.93 ± 0 80.5 ± 0
sgm aminoglycoside antibiotic 16S rRNA methyltransferase 1 16.42 ± NA 100 ± NA
vanJ glycopeptide antibiotic vanJ membrane protein 1 11.52 ± NA 100 ± NA

antibiotic target alteration;
antibiotic efflux Pseudomonas aeruginosa soxR Broad Spectrum ABC, MFS, RND antibiotic efflux pump 35 96.793 ± 1.854 68.494 ± 1.961
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Table A5. Number of copies of each gene hit in the sequence data by isolate and phenotypic results with zone of inhibition 
measurements (mm) and CLSI breakpoint interpretation (R-resistant; I-Intermediate; S-susceptible; NA- not applicable for due to 
intrinsic resistance) for Kirby-Bauer disk diffusion assay.

ISOLATE INFO
COLONY ID GENUS

Antibiotic Inactivation Antibiotic Efflux Antibiotic Target Alteration Phenotypic Results

aminoglycoside
ampC1beta- ampH beta-

f0sf°my"n macrolde,penam BroadspeCtrum Nitroimidazole τe,rsc*ine Triclosan aminoglycoside peptdeentibotiC fl^roquinodne gyrcopeptde Ampicillan Chloramphenicol Erythromyocin Kanamycin Tetracycline

UD+4 colony 1 TH01 Pseudomonas
UD+4 colony 2 TH02 Pseudomonas
UD+4 colony 3 TH03 Pseudomonas
UD+4 colony 4 TH04 Pseudomonas
UD+4 colony 5 TH05 Pseudomonas
UD+4 colony 6 TH06 Pseudomonas
UD+4 colony 7 TH07 Pseudomonas
UD+4 colony 8 TH08 Pseudomonas
UD+4 colony 9 TH09 Pseudomonas
UD+4 colony 10 TH10 Pseudomonas
UD+12 colony 1 TH11 Bacillus
UD+12 colony 2 TH12 Bacillus
UD+12 colony 3 TH13 Bacillus
UD+12 colony 4 TH14 Bacillus
UD+12 colony 5 TH15 Pseudomonas
UD+12 colony 6 TH16 Bacillus
UD+12 colony 7 TH17 Bacillus
UD+12 colony 8 TH18 Pseudomonas
UD+12 colony 9 TH19 Bacillus
UD+12 colony 10 TH20 Pseudomonas
UD+20 colony 1 TH21 Erwinia
UD+20 colony 2 TH22 Bacillus
UD+20 colony 3 TH23 Bacillus
UD+20 colony 4 TH24 Bacillus
UD+20 colony 5 TH25 Bacillus
UD+20 colony 6 TH26 Bacillus
UD+20 colony 7 TH27 Bacillus
UD+20 colony 8 TH28 Serratia
UD+20 colony 9 TH29 Erwinia
UD+20 colony 10 TH30 Bacillus
SD+4 colony 1 TH31 Pseudomonas
SD+4 colony 2 TH32 Pseudomonas
SD+4 colony 3 TH33 Pseudomonas
SD+4 colony 4 TH34 Pseudomonas
SD+4 colony 5 TH35 Pseudomonas
SD+4 colony 6 TH36 Pseudomonas
SD+4 colony 7 TH37 Pseudomonas
SD+4 colony 8 TH38 Pseudomonas
SD+4 colony 9 TH39 Pseudomonas
SD+4 colony 10 TH40 Pseudomonas
SD+12 colony 1 TH41 Pseudomonas
SD+12 colony 2 TH42 Pseudomonas
SD+12 colony 3 TH43 Pseudomonas
SD+12 colony 4 TH44 Bacillus
SD+12 colony 5 TH45 Bacillus
SD+12 colony 6 TH46 Pseudomonas
SD+12 colony 7 TH47 Pseudomonas
SD+12 colony 8 TH48 Pseudomonas
SD+12 colony 9 TH49 Pseudomonas
SD+12 colony 10 TH50 Bacillus
SD+20 colony 1 TH51 Bacillus
SD+20 colony 2 TH52 Bacillus
SD+20 colony 3 TH53 Bacillus
SD+20 colony 4 TH54 Bacillus
SD+20 colony 5 TH55 Bacillus
SD+20 colony 6 TH56 Erwinia
SD+20 colony 7 TH57 Bacillus
SD+20 colony 8 TH58 Bacillus
SD+20 colony 9 TH59 Bacillus
SD+20 colony 10 TH60 Pseudomonas
MD+4 colony 1 TH61 Pseudomonas
MD+4 colony 2 TH62 Pseudomonas
MD+4 colony 3 TH63 Pseudomonas
MD+4 colony 4 TH64 Pseudomonas
MD+4 colony 5 TH65 Pseudomonas
MD+4 colony 6 TH66 Pseudomonas
MD+4 colony 7 TH67 Pseudomonas
MD+4 colony 8 TH68 Pseudomonas
MD+4 colony 9 TH69 Pseudomonas
MD+4 colony 10 TH70 Pseudomonas
MD+12 colony 1 TH71 Pseudomonas
MD+12 colony 2 TH72 Pseudomonas
MD+12 colony 3 TH73 Exiguobacterium
MD+12 colony 4 TH74 Pseudomonas
MD+12 colony 5 TH75 Pseudomonas
MD+12 colony 6 TH76 Pseudomonas
MD+12 colony 7 TH77 Pseudomonas
MD+12 colony 8 TH78 Pseudomonas
MD+12 colony 9 TH79 Erwinia
MD+12 colony 10 TH80 Pseudomonas
MD+20 colony 1 TH81 Pantonea
MD+20 colony 2 TH82 Erwinia
MD+20 colony 3 TH83 Bacillus
MD+20 colony 4 TH84 Pantonea
MD+20 colony 5 TH85 Bacillus
MD+20 colony 6 TH86 Bacillus
MD+20 colony 7 TH87 Bacillus
MD+20 colony 8 TH88 Erwinia
MD+20 colony 9 TH89 Bacillus
MD+20 colony 10 TH90 Pseudomonas
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Table A6. Guppy base calling specifications and summary of sequencing statistics per soil 
sample post quality control.

Sample Year Run
Barc 

ode
Flow cell + kit model

Total
Total Read

Yield
Average

Read
Length (bp)(Mbp)

Count

MD10.1 2018 FPES_20180719A 8 dna_r9.4.1_450bps_hac 336 107,848 3,111

MD10.2 2018 FPES_20180611 10 dna_r9.5_450bps 237 66,156 3,590

MD10.3 2018 FPES_20180719B 7 dna_r9.4.1_450bps_hac 266 95,477 2,789

MD10.4 2018 FPES_20180719C 6 dna_r9.4.1_450bps_hac 528 199,447 2,650

MD11.1 2018 FPES_20180611 11 dna_r9.5_450bps 340 141,202 2,406

MD11.2 2018 FPES_20180719A 7 dna_r9.4.1_450bps_hac 320 151,923 2,105

MD11.3 2018 FPES_20180719B 5 dna_r9.4.1_450bps_hac 245 87,798 2,785

MD11.4 2018 FPES_20180719C 3 dna_r9.4.1_450bps_hac 465 152,761 3,044

MD12.1 2018 FPES_20180719A 1 dna_r9.4.1_450bps_hac 242 104,932 2,310

MD12.2 2018 FPES_20180611 12 dna_r9.5_450bps 187 87,766 2,133

MD12.3 2018 FPES_20180719B 4 dna_r9.4.1_450bps_hac 237 134,994 1,759

MD12.4 2018 FPES_20180719C 2 dna_r9.4.1_450bps_hac 627 198,765 3,154

MD9.1 2018 FPES_20180719A 5 dna_r9.4.1_450bps_hac 400 194,937 2,053

MD9.2 2018 FPES_20180719B 6 dna_r9.4.1_450bps_hac 309 107,312 2,883

MD9.3 2018 FPES_20180611 9 dna_r9.5_450bps 203 93,380 2,179

MD9.4 2018 FPES_20180719C 5 dna_r9.4.1_450bps_hac 374 140,143 2,667

SD10.1 2018 FPES_20180719A 3 dna_r9.4.1_450bps_hac 435 203,659 2,138

SD10.2 2018 FPES_20180719B 3 dna_r9.4.1_450bps_hac 309 136,862 2,254

SD10.3 2018 FPES_20180611 6 dna_r9.5_450bps 305 101,986 2,986

SD10.4 2018 FPES_20180719C 12 dna_r9.4.1_450bps_hac 465 140,711 3,308

SD11.1 2018 FPES_20180719A 2 dna_r9.4.1_450bps_hac 270 129,469 2,083

SD11.2 2018 FPES_20180611 7 dna_r9.5_450bps 183 53,543 3,418

SD11.3 2018 FPES_20180719B 12 dna_r9.4.1_450bps_hac 264 100,301 2,633

SD11.4 2018 FPES_20180719C 10 dna_r9.4.1_450bps_hac 652 220,446 2,957

SD12.1 2018 FPES_20180719A 6 dna_r9.4.1_450bps_hac 523 263,679 1,984

SD12.2 2018 FPES_20180611 8 dna_r9.5_450bps 346 169,926 2,036

SD12.3 2018 FPES_20180719B 2 dna_r9.4.1_450bps_hac 487 246,027 1,979

SD12.4 2018 FPES_20180719C 8 dna_r9.4.1_450bps_hac 700 184,567 3,792

SD9.1 2018 FPES_20180719A 4 dna_r9.4.1_450bps_hac 684 392,010 1,744

SD9.2 2018 FPES_20180719B 1 dna_r9.4.1_450bps_hac 400 173,176 2,311

SD9.3 2018 FPES_20180719C 7 dna_r9.4.1_450bps_hac 737 299,103 2,464

SD9.4 2018 FPES_20180611 5 dna_r9.5_450bps 204 77,269 2,635

UD10.1 2018 FPES_20180719A 10 dna_r9.4.1_450bps_hac 385 124,052 3,106

UD10.2 2018 FPES_20180611 2 dna_r9.5_450bps 276 78,460 3,516

UD10.3 2018 FPES_20180719B 8 dna_r9.4.1_450bps_hac 297 106,709 2,782

UD10.4 2018 FPES_20180719C 4 dna_r9.4.1_450bps_hac 556 178,135 3,122

UD11.1 2018 FPES_20180611 3 dna_r9.5_450bps 295 97,759 3,020

UD11.2 2018 FPES_20180719A 11 dna_r9.4.1_450bps_hac 345 116,453 2,961
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UD11.3 2018 FPES_20180719B 11 dna_r9.4.1_450bps_hac 207 101,380 2,038

UD11.4 2018 FPES_20180719C 11 dna_r9.4.1_450bps_hac 516 135,427 3,811

UD12.1 2018 FPES_20180719A 12 dna_r9.4.1_450bps_hac 272 108,655 2,504

UD12.2 2018 FPES_20180611 4 dna_r9.5_450bps 317 90,290 3,506

UD12.3 2018 FPES_20180719B 10 dna_r9.4.1_450bps_hac 294 121,689 2,413

UD12.4 2018 FPES_20180719C 9 dna_r9.4.1_450bps_hac 546 207,151 2,638

UD9.1 2018 FPES_20180611 1 dna_r9.5_450bps 235 80,943 2,904

UD9.2 2018 FPES_20180719A 9 dna_r9.4.1_450bps_hac 336 122,957 2,731

UD9.3 2018 FPES_20180719B 9 dna_r9.4.1_450bps_hac 316 134,144 2,359

UD9.4 2018 FPES_20180719C 1 dna_r9.4.1_450bps_hac 451 147,992 3,045

MD10.1 2019 FPES_20190606A 1 dna_r9.4.1_450bps_hac 267 87,093 3,062

MD10.2 2019 FPES_20190606A 4 dna_r9.4.1_450bps_hac 264 141,507 1,863

MD10.3 2019 FPES_20190606A 10 dna_r9.4.1_450bps_hac 391 168,414 2,323

MD10.4 2019 FPES_20190605B 2 dna_r9.4.1_450bps_hac 932 403,239 2,311

MD11.1 2019 FPES_20190606B 6 dna_r9.4.1_450bps_hac 303 74,470 4,071

MD11.2 2019 FPES_20190606A 6 dna_r9.4.1_450bps_hac 368 143,732 2,563

MD11.3 2019 FPES_20190605B 7 dna_r9.4.1_450bps_hac 702 264,676 2,652

MD11.4 2019 FPES_20190605A 2 dna_r9.4.1_450bps_hac 314 155,202 2,022

MD12.1 2019 FPES_20190606B 3 dna_r9.4.1_450bps_hac 251 94,902 2,643

MD12.2 2019 FPES_20190605A 5 dna_r9.4.1_450bps_hac 339 130,163 2,606

MD12.3 2019 FPES_20190605A 11 dna_r9.4.1_450bps_hac 12 5,116 2,398

MD12.4 2019 FPES_20190605A 8 dna_r9.4.1_450bps_hac 263 114,914 2,290

MD9.1 2019 FPES_20190605B 3 dna_r9.4.1_450bps_hac 657 243,294 2,700

MD9.2 2019 FPES_20190606B 1 dna_r9.4.1_450bps_hac 278 97,341 2,856

MD9.3 2019 FPES_20190606B 11 dna_r9.4.1_450bps_hac 326 101,212 3,223

MD9.4 2019 FPES_20190605B 10 dna_r9.4.1_450bps_hac 321 126,031 2,546

SD10.1 2019 FPES_20190605B 11 dna_r9.4.1_450bps_hac 393 204,242 1,925

SD10.2 2019 FPES_20190606A 8 dna_r9.4.1_450bps_hac 330 157,270 2,099

SD10.3 2019 FPES_20190606B 7 dna_r9.4.1_450bps_hac 215 79,168 2,719

SD10.4 2019 FPES_20190606B 2 dna_r9.4.1_450bps_hac 333 186,932 1,782

SD11.1 2019 FPES_20190605A 9 dna_r9.4.1_450bps_hac 408 198,591 2,054

SD11.2 2019 FPES_20190606A 2 dna_r9.4.1_450bps_hac 378 192,900 1,961

SD11.3 2019 FPES_20190605A 3 dna_r9.4.1_450bps_hac 405 194,850 2,079

SD11.4 2019 FPES_20190606B 9 dna_r9.4.1_450bps_hac 175 74,331 2,353

SD12.1 2019 FPES_20190605A 10 dna_r9.4.1_450bps_hac 924 445,339 2,075

SD12.2 2019 FPES_20190606A 5 dna_r9.4.1_450bps_hac 278 132,892 2,089

SD12.3 2019 FPES_20190605B 5 dna_r9.4.1_450bps_hac 622 352,394 1,766

SD12.4 2019 FPES_20190606B 5 dna_r9.4.1_450bps_hac 337 171,481 1,962

SD9.1 2019 FPES_20190606B 8 dna_r9.4.1_450bps_hac 233 89,440 2,608

SD9.2 2019 FPES_20190605A 6 dna_r9.4.1_450bps_hac 105 51,196 2,043

SD9.3 2019 FPES_20190606A 11 dna_r9.4.1_450bps_hac 186 60,142 3,089

SD9.4 2019 FPES_20190605B 1 dna_r9.4.1_450bps_hac 711 376,037 1,891

UD10.1 2019 FPES_20190605B 4 dna_r9.4.1_450bps_hac 633 257,532 2,457
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UD10.2 2019 FPES_20190606A 3 dna_r9.4.1_450bps_hac 134 49,394 2,721

UD10.3 2019 FPES_20190605A 1 dna_r9.4.1_450bps_hac 471 231,151 2,037

UD10.4 2019 FPES_20190606A 7 dna_r9.4.1_450bps_hac 119 43,263 2,748

UD11.1 2019 FPES_20190606B 12 dna_r9.4.1_450bps_hac 127 68,557 1,858

UD11.2 2019 FPES_20190606A 9 dna_r9.4.1_450bps_hac 202 117,338 1,721

UD11.3 2019 FPES_20190605B 6 dna_r9.4.1_450bps_hac 641 509,983 1,256

UD11.4 2019 FPES_20190606A 12 dna_r9.4.1_450bps_hac 175 75,728 2,315

UD12.1 2019 FPES_20190605B 12 dna_r9.4.1_450bps_hac 429 224,621 1,909

UD12.2 2019 FPES_20190606B 4 dna_r9.4.1_450bps_hac 260 100,894 2,574

UD12.3 2019 FPES_20190606B 10 dna_r9.4.1_450bps_hac 239 122,560 1,950

UD12.4 2019 FPES_20190605A 12 dna_r9.4.1_450bps_hac 209 99,385 2,099

UD9.1 2019 FPES_20190605A 7 dna_r9.4.1_450bps_hac 481 183,056 2,627

UD9.2 2019 FPES_20190605A 4 dna_r9.4.1_450bps_hac 669 320,815 2,085

UD9.3 2019 FPES_20190605B 9 dna_r9.4.1_450bps_hac 329 174,409 1,886

UD9.4 2019 FPES_20190605B 8 dna_r9.4.1_450bps_hac 443 255,906 1,731
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Table A7. Illumina HiSeq sample barcodes and sequencing statistics per soil core for de-multiplexed 
HiC and Nextera samples

Sample ID Barcode Sequence
Total Read

Count

Mean
Yield (Mbp) Quality 

Score

% Bases
>= 30

hic01 ATCCACGA+GGCATACT 118,219,457 35,466 37.16 87.94

hic02 GAGCGCCA+GGAGAGTT 207,701,849 62,311 38.33 92.03

hic03 GCGCGGTG+GGTCGGGT 129,125,923 38,737 37.84 90.31

hic04 ACGACAGA+ACCAGACT 195,349,364 58,604 38.23 91.58

hic05 TAATGATG+TTCGATAC 173,253,822 51,977 38.2 91.41

hic06 GTCCTAAG+GAGCAGTA 168,486,855 50,547 38.06 90.96

nextera01 CGAGGCTG+TATGCAGT 240,648,488 72,194 37.95 90.66

nextera02 GCTCATGA+CTCCTTAC 216,182,280 64,855 37.71 89.78

nextera03 AAGAGGCA+CTCCTTAC 199,818,148 59,946 37.54 89.21

nextera04 CTCTCTAC+TCTTACGC 209,549,167 62,864 37.71 89.81

nextera05 GGACTCCT+AGAGGATA 284,952,290 85,486 38.44 92.42

nextera06 TAGGCATG+TATGCAGT 256,584,426 76,975 38.17 91.46

Sum 2,399,872,069 719,962

% Bases >=

Mean # reads yield Q score 30

HiC 1.65E+08 49,607 37.97 90.71

Nextera 2.35E+08 70,387 37.92 90.56

Table A8. Assembly statistics for Megahit assemblies of Nextera reads size selected for contigs 
greater than 1,500 bp.

assembly sum 

(bp)

sum, contig
#

ave contig 

length (bp)
largest 

contig (bp) N50
N50, contig

#

MD01 1519381163 511921 2968 417435 2957 128223

MD02 1251434727 422855 2959.49 367604 2876 102380

SD03 1345612131 432225 3113.22 328434 3071 97256

SD04 1869385081 486892 3839.42 693351 4533 82876

UD06 2263788991 630802 3588.75 605266 4005 118792

UD06 2025514159 568495 3562.94 331885 3969 107649

Mean 1712519375 508865 3338.63 457329.16 3568.5 106196

stdev 402738903 80234.56 372.98 154650.55 690.24 16026.64
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Table A9. Number of integrons and integron cassette types identified in Hi-C MAGs used for 
tree construction.

MAG

Number of

Phylum
contigs with 

integrons
Integron 

types
MD01_bin_12 Proteobacteria 2 1

MD02_bin_13 Proteobacteria 2 1

MD02_bin_14 Proteobacteria 5 1

MD02_bin_15 Proteobacteria 2 1

MD02_bin_20 Proteobacteria 5 1

MD02_bin_21 Verrucomicrobia 2 1

MD02_bin_23 Proteobacteria 1 1

MD02_bin_29 Proteobacteria 1 1

MD02_bin_3 Proteobacteria 3 1

MD02_bin_37 Proteobacteria 5 1

MD02_bin_39 Proteobacteria 1 1

SD04_bin_20 Verrucomicrobia 11 1

SD04_bin_44 Proteobacteria 2 1

SD04_bin_88 Proteobacteria 3 1

UD06_bin_57 Proteobacteria 1 1

UD06_bin_70 Verrucomicrobia 6 1

UD06_bin_78 Acidobacteria 1 1

93



Figure A1. A) Boxplot of the number of ARGs per soil core. Kruskal-Wallis P value is shown in 
addition to Wilcoxon test results between means (ns, P > 0.05; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 
0.001; ****, P ≤ 0.0001). B) Boxplot displaying the number of ARGs per metagenome year 
collected (Kruskal-Wallis p= 0.0082) with points representing a soil core color-coded by FPES 
treatment. Wilcoxon test between group significance p < 0.01 **, p < 0.05 *, ns >0.1.

Figure A2. Number of ARGs per MAG used in phylogenetic tree not significantly different 
between sites. Boxplot of ARG per MAG by site. Points are colored by bacterial phyla assigned 
to MAG. Kruskal-Wallis P value is shown in addition to Wilcoxon test results between means 
(ns, P > 0.05; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001).
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Figure A3. Scatterplot depicting the relationship between A) Megahit assembly length (Mbp) 
and number of MAGs per each soil core and B) Hi-C library sequencing yield (Mbp) and number 
of MAGs per soil core. R-squared value is displayed on the top right corner of the plot.

95



Figure A4. A) Bracken heatmap of top 25 most abundant families across the six soil cores 
using the 150 bp Illumina shotgun reads as input. Colors on rows indicate which FPES 
treatment each soil core is from and colors on columns indicate which phylum each family 
belong to. B) Relative abundance of the top ten most abundant bacterial phyla across soil cores 
based on bracken estimation
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Figure A5. Plots showing the effects of Shannon-Weiner diversity on ARG abundance with pink 
GLM regression lines, points colored by FPES treatment, and points shape based on soil 
collection year.

Figure A6. Number of MAGs in phylogenetic tree by phyla across each soil core.
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Figure A7. Bracken estimated abundance at a family level of the top 25 families in the MinION 
metagenomic dataset with groupings of soil cores and bacterial families based on Pearson 
correlation.
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