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Abstract

Computer chips are composed by large amounts of transistors that flip between states, on and
off, to build binary digits. These traditional computers based on bits, store all data as 1s or
0s. In the meantime, quantum computers based on qubits have appeared, which are similar to
standard bits but where each qubit can be 1 and 0 simultaneously, according to principles of
quantum mechanics (QM).

Noisy intermediate-scale quantum (NISQ) devices surface, along with other quantum technolo-
gies, and have been used to explore many applications with the promise of reducing computational
complexity. In this new computational era, promising applications of quantum computing are
challenges from artificial intelligence (AI), e.g. machine learning (ML), where the amount of
computing resources needed for particular tasks can be a drawback. From this viewpoint,
quantum machine learning (QML) arises as a research field that relates the interdisciplinary
topics quantum mechanics and machine learning which seeks to incorporate data and information
processing in a quantum perspective.

Currently, there exists some available model directions of quantum computing (QC): (a) the
gate-based qubits universal quantum processors, e.g., IBM’s, (b) the hybrid classical quantum
model, e.g., Xanadu’s and (c) the adiabatic-model quantum accelerated annealing, e.g., D-Wave’s.
Those models are currently stretching the bridge between gate-based model quantum computing
and the adiabatic paradigm. Various research works have been exploring these models to
implement QML algorithms.

The directions and prevailing QC and QML frameworks are designed so that applications
can be mapped from classical to quantum formats. However, mapping applications, especially
ML, to quantum devices remains a very complex task. Some efforts have been made towards
solving this problem, but no general solution exists. This research contributes in this field by
proposing application mappings based on variational circuits and on propositional logic. Our
solution covers both gate-based and adiabatic-based model applications.

In a gate-based perspective, we use a hybrid scheme inspired in the existing PennyLane’s
variational circuits and embedding templates applied to datasets (e.g. Iris plant, traffic, breast
cancer). In an adiabatic scenario, we propose a novel mapping methodology that maps well-
known problems (e.g. graph coloring, travelling salesperson problem) to quantum annealing,
which we call quantum propositional logic (QPL). This methodology provides a method to
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solve combinatorial optimization problems in complex energy landscapes by exploiting thermal
fluctuations. The steps for mapping each problem are based on pseudo-Boolean constraints
starting from the problem formulated as a set of constraints represented in propositional logic,
and later converted to a quadratic unconstrained binary optimization problem (QUBO). This
mapping is not limited to QUBO, because the formulation and mapping can also be translated
into a generic artificial neural network, allowing to find solutions for a combination of multiple
propositional logic problems.
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Resumo

Os chips de computador são compostos por grandes quantidades de transistores que alternam entre
os estados, on e off, para construir dígitos binários. Esses computadores tradicionais baseados
em bits armazenam todos os dados como 1s ou 0s. Recentemente, surgiram os computadores
quânticos baseados em qubits, que são semelhantes aos baseados em bits, mas onde cada qubit
pode ser 1 e 0 simultaneamente, de acordo com os princípios da mecânica quântica (MQ).

Dispositivos noisy intermediate-scale quantum (NISQ) surgiram, a par de outras tecnologias
quânticas, e têm sido usados para explorar muitas aplicações com a promessa de reduzir
a complexidade computacional. Nesta nova era computacional, aplicações promissoras de
computação quântica são desafios da inteligência artificial (IA), por exemplo, aprendizagem
automática (AA), onde a quantidade necessária de recursos computacionais para determinadas
tarefas podem ser insuficientes. Deste ponto de vista, aprendizagem automática quântica (AAQ)
surge como um campo de investigação que interliga os tópicos, mecânica quântica e aprendizagem
automática que visa unir dados e processamento de informação numa perspectiva quântica.

Atualmente, existem algumas direções de modelos para computação quântica (CQ): (a)
processadores quânticos universais de qubits baseados em circuitos, por exemplo, IBM’s, (b)
modelo clássico quântico híbrido, por exemplo Xanadu e (c) modelo adiabático, por exemplo D-
Wave. Esses modelos fazem a ponte entre a CQ do modelo de circuitos e o paradigma adiabático.
Vários trabalhos de investigação têm explorado esses modelos para implementar algoritmos AAQ.

As direções e plataformas de CQ e AAQ predominantes são desenhadas para que aplicações
que possam ser mapeadas de formatos clássicos para quânticos. No entanto, o mapeamento de
aplicações, especialmente de aplicações de AA, para dispositivos quânticos continua a ser uma
tarefa muito complexa. Alguns esforços foram feitos para resolver este problema, mas não existe
uma solução geral. Esta pesquisa contribui neste campo ao propor mapeamento de aplicações
baseadas em circuitos variacionais e na lógica proposicional. A nossa solução cobre aplicações de
modelos baseados em circuitos e adiabáticos.

Primeiro, numa perspetiva de circuitos, consideramos um esquema híbrido inspirado nos
circuitos variacionais de PennyLane com aplicação a conjuntos de dados (p. e. planta Iris, tráfego,
cancro da mama). Num cenário adiabático, é proposta uma metodologia de mapeamento que
mapeia problemas bem conhecidos (p. e. coloração de grafos, problema do caixeiro viajante), a
que chamamos lógica proposicional quântica (LPQ). Esta metodologia sugere um método para
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resolver problemas de otimização combinatória em paisagens de energia complexas, explorando
flutuações térmicas. As etapas de mapeamento de cada problema são baseadas em restrições
pseudo-Booleanas a partir da sua formulação como um conjunto de restrições representadas em
lógica proposicional, e posteriormente convertidas num problema de quadratic unconstrained
binary optimization (QUBO). Este mapeamento não está limitado ao QUBO, uma vez que a
formulação e o mapeamento também pode ser traduzido numa rede neuronal artificial, permitindo
encontrar soluções para uma combinação de múltiplos problemas de lógica proposicional.
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Chapter 1

Introduction

Quantum Computing (QC) is in the Noisy Intermediate-Scale Quantum (NISQ) era [161], which
means that today’s quantum computers are not yet big enough or advanced to be fault-tolerant.
The quantum computers that we have now are still limited in size and prone to noise and to
errors. Here the intermediate-scale plays the role of the size of the available quantum devices
which are currently capable to perform certain tasks. The noisy part, concerns the imperfect
control over the qubits which can lead to small errors, that can be big enough in a long run to
not give us the correct answer for a certain task. Although quantum computations currently
face these imperfections, in 2019 Google claimed for quantum supremacy when its quantum
computer, Sycamore, completed a calculation in just few minutes that its researchers estimated
would have taken 10,000 years in a supercomputer [12]. In response to Google achievement,
which concerns a quantum device that does something impractical for a conventional computer,
IBM rebuttal argued that a simulation of the same task could be conducted on a classical system
in 2.5 days and with greater fidelity 1. In the meantime, China’s leading quantum research
group also claimed for quantum supremacy with the Jiuzhang system, which produced results in
minutes to a problem that would take more than 2 billion years in the world’s third most powerful
supercomputer [226]. Both approaches have different basis, Google builds quantum circuits
using superconducting materials, while China’s group resorts to photons, different quantum
technologies that are inspiring the world of computing research.

This difference of orders of magnitude of performing some computational task in a quantum
computer and in a classical computer is very challenging. Currently, we have quantum computers,
that are able to perform some computational tasks in a faster way than classical computers [18, 90].
So the natural question here is: is there an actual benefit of using a quantum computer? What
are its limitations? What kinds of problems can we actually solve? How can we program a
quantum computer? [67] What are the advantages of quantum computers over classical devices?
What is the purpose of advances in QC? Are we looking for a new working model to solve
problems that are not solved in a von Neumman’s machine? The question is whether we can take
advantage of these computers to make computations faster, or to reduce the kind of resources

1https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
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2 Chapter 1. Introduction

needed. For instance, by reducing the memory or decreasing the amount of data that we need to
attain some models or some conclusions. So this is a very interesting question, what can these
quantum computers do? This is a question that is hard to answer for many reasons. One reason
is that we really don’t fully understand what are the capabilities of quantum computers, at least
in a practical sense, although in theory we have several different definitions, the first proposed by
the physicist Richard Feynman in the 80’s with the presentation of a basic model for a quantum
computer [61].

Nowadays, QC comprises the intersection of many fields of knowledge, e.g. quantum mechanics,
computer science, mathematics, statistics, engineering, where all play the most relevant roles to
handle all technological issues and developments. As such, this quantum supremacy seems to
show that quantum computers are more powerful in some sense, in some task. This ability was
proven before in 1994 by Peter Shor [184] and in 1996 by Lov K. Grover [75]. In sum, if we solve
those questions we probably would be able to solve long-standing problems regarding classical
computational complexity. QC has been explored for many years. Currently, with the advance of
quantum technology, it is possible to move from theoretical to practical experiences. The pursuit
to build a quantum processor to take advantage of the quantum belief, has shown some of the
first prototypes to emerge in the last decade. However, we still have some limitations and/or
challenges to address from a hardware and software agnostic perspective:

(a) how to deal with interference and the current barriers in manufacturing, controlling and
protecting quantum systems from noise [155];

(b) how to improve the compilation phase and the translation of logical instructions on physical
devices which can lead to inefficient and high-latency programs [182];

(c) how to describe robustness as being capable of reporting the noise tolerance and resilience of
a quantum algorithm [213];

(d) how to program a quantum computer having control of the physical devices and the difference
from conventional programming [81];

(e) how to encode a problem to be solved by a quantum computer and different types of encoding
(e.g. [44, 115, 125, 179, 214, 220]).

This research work concentrates on one of these limitations: mapping applications to quantum
computers. We first show how to map applications to a gate-based quantum computer and then
we move to the adiabatic model, where we propose a mapping strategy, which is based on the
formulation of a problem as a propositional logic constraint satisfaction problem. We start by
firstly showing work done in the field of Quantum Artificial Intelligence (QAI), in particular
Quantum Machine Learning (QML), by selecting quantum algorithms that deal with datasets (Iris
plant, traffic, breast cancer) to solve classification problems. Afterwards, we present our proposed
generalized pipeline for the mapping of problems such as graph coloring or traveling salesperson
problem (TSP). The pipeline is based in pseudo-Boolean constraints that can be mapped to a
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quantum annealer where we first formulate the problem as a set of constraints represented in
propositional logic and then we convert the set of constraints to an energy minimization problem.
Next, we transform the formulation to a Quadratic Unconstrained Binary Optimization (QUBO)
and solve it, as shown in this thesis, resorting to the D-Wave’s graph.

Moreover, QC [147] is an emerging technology that has as one of its challenges, accelerate the
training of machine learning algorithms and, therefore, contribute to solve data related tasks and
optimization problems. QML [18] has been a recent topic of research where questions have already
been tackled on how quantum computers can be used for data-driven prediction and decision
making. The symbiosis of machine learning and quantum information is made by a bridge of
mathematical concepts which can in one hand, unlock the analyses of measurement data from
quantum experiments, on the other hand, contribute to new machine learning algorithms. The
recent advances in QC seems to indicate that machine learning is a suitable field of application.
As machine learning usually represents a form of multivariate optimization which can be mapped
e.g. to quantum annealing and adiabatic model quantum computing [175, 215].

Currently, QC has followed some different directions and the information is scattered, specially
regarding models, and applications. Many models of quantum computation are available (e.g. the
circuit-model, the adiabatic model, measurement-based model, quantum walk model, one clean
qubit model, etc.). Although the view of this thesis aims to be quantum platform agnostic, the
approach of this thesis is based in: (a) the IBM gate-based quantum processors and programming
environment, (b) the Xanadu hybrid classical quantum model, and (c) the commercial D-Wave
adiabatic model. We start with the Open Quantum Assembly Language (OpenQASM) [41]
for representation of quantum instructions, launched as part of IBM’s Quantum Information
Software Kit (Qiskit) [2]. Followed by Xanadu’s Strawberry Fields, the open-source software
for photonic quantum computing, and PennyLane [15], a Python library for quantum machine
learning, automatic differentiation, and optimization of hybrid quantum-classical computations
which allows hybrid CPU-GPU-QPU computations. Finally, to handle the adiabatic-based
quantum computing paradigm, we resort to the D-Wave’s ocean software stack 2 which provides
tools that can convert a problem to a form that is solvable on a quantum device.

1.1 Main Contribution

This thesis begins with a gate-based approach in which supervised machine learning problems are
chosen. In particular classification, by first exploring small datasets like the Iris plant and a traffic
dataset, and later, breast cancer data. The aim is to study the performance of current quantum
devices in solving this type of problems. Afterwards, we explore the adiabatic model. The main
contribution of this work is to show how to map well-known problems to quantum computers
from a circuit model and adiabatic model perspective. In particular, this thesis provides a method
for mapping combinatorial problems to quantum devices by the intersection between quantum

2https://docs.ocean.dwavesys.com/
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computing and propositional logic via constraint satisfiability, in a novel approach using a pipeline
capable of solving any optimization problem defined by logical constraints. In addition, in the
scope of the NP problems, the motivation of this work is to (a) map well-known optimization
problems to a quantum computing (e.g. graph coloring, traveling salesperson problem), (b)
compare classical (simulated annealing) and quantum (quantum annealing) methods, and (c)
explore optimal and approximate solutions. In brief, the contribution of this thesis can be
summarized as follows:

• Two problems of supervised machine learning (classification)

– Quantum binary classification

– Quantum transfer learning for breast cancer detection

• Two problems of search and optimization

– Mapping graph coloring to quantum annealing

– Mapping a logical representation of TSP to quantum annealing

This thesis is organized as follows. The first four chapters give an introduction to quantum
computing and its computational models, quantum machine learning, constraints, propositional
logic and satisfiability. The remaining chapters contain our contributions as a collage of papers.
We end this thesis by summarising our contributions and giving perspectives for future work.

1.2 Thesis Overview

Chapter 1: Introduction: The recent advances in quantum computing indicate that applica-
tions can take advantage of the new quantum available platforms and devices, based in the
current new challenges around QC, this thesis, covers the topics:

(1) how to map problems to quantum computers; (2) show the mapping resorting to
applications; (3) explain how recent advances in quantum technologies allow us to go
further in certain computation tasks; (4) resort to hybrid computations (classical and
quantum) and to the adiabatic paradigm to solve problems; (5) as example, we studied the
Iris plant, traffic, breast cancer, graph coloring and traveling salesperson problem.

Chapter 2: Concepts and Terminology: In chapter 2, material on circuit model and adia-
batic quantum computing is introduced, quantum machine learning and quantum proposi-
tional logic, as follows:

(1) concepts of quantum computing are introduced, such as, qubit, Bra-ket notation,
quantum systems, reversible vs irreversible computation, multi-qubit systems, quantum
algorithms and complexity, adiabatic concepts, adiabatic theorem and annealing processes;
(2) definitions on quantum machine learning with topics, such as, classical machine learning
and variational quantum concepts (e.g. variational circuits, quantum nodes, quantum
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gradients, hybrid computation); (3) background of Satisfaction and Conjunctive Normal
Form (CNF), pseudo-Boolean problems and the integration between them and the problem
of Satisfiability and mapping Satisfiability in Linear Programming 0-1.

Chapter 3: Mapping Applications to Quantum Hardware: In chapter 3, we discuss vari-
ous kinds of mappings, encodings or embeddings, highlighting relevant work in the field
regarding mapping problems to quantum hardware, as follows: (1) from two perspectives,
gate-based model mapping, namely, basis embedding, amplitude embedding, angle embed-
ding and other forms of embedding; and also, adiabatic model mapping based on encoding
using a mathematical formulation; (2) describes the thesis roadmap which led to a pipeline
construction of a novelty contribution in the field; (3) describes a final generalized strategy
to map classical problems to quantum hardware, the method for modeling optimization
problems using Quantum Propositional Logic (QPL).

Chapter 4: Results and Discussion: In chapter 4, we briefly explain the target problem,
summarise the type of model (gate-based or adiabatic), the type of hardware to conduct the
experiments (simulator or real quantum device) and the main findings, for the challenges:
(1) mapping quantum classification problems; (2) mapping problems to Quantum Annealing
(QA).

Chapter 5: Quantum Binary Classification: In chapter 5 it is shown how to construct a
quantum binary classifier. It will be first introduced the necessary background on quantum
classification. This chapter concerns the topic of supervised binary classification with
amplitude encoding and a quantum classifier, resorting to a gradient-descent optimiser,
with applications to biology (Iris plant) and traffic. In brief, it is shown how to construct a
gate-based model application.

Chapter 6: Quantum Transfer Learning for Breast Cancer Detection: In chapter 6 re-
sorting to a gate-based approach and inspired on the work of Mari et al., we train a set
of hybrid classical-quantum neural networks using Transfer Learning (TL). The goal was
to solve the problem of classifying full-image mammograms into malignant and benign,
provided by BCDR. While analyzing different performance metrics, specific charts were
used to indicate the parts of the mammograms that were being targeted by the networks.

Chapter 7: Mapping Graph Coloring to Quantum Annealing: Chapter 7 introduces the
mapping of a graph coloring problem based in pseudo-Boolean constraints to a working
graph of the D-Wave’s. We start from the problem formulated as a set of constraints
represented in propositional logic. We use the SATyrus approach to transform this set of
constraints to an energy minimization problem. We convert the formulation to a quadratic
unconstrained binary optimization problem (QUBO), applying polynomial reduction when
needed, and solve the problem using different approaches.

Chapter 8: Mapping a Logical Representation of TSP to Quantum Annealing: This
chapter 8 presents the mapping of the traveling salesperson problem (TSP) based in pseudo-
Boolean constraints to a working graph of the D-Wave’s. We first formulate the problem
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as a set of constraints represented in propositional logic. With this regard, we resort to
the SATyrus approach to convert a set of constraints to an energy minimization problem.
Afterwards, we transform the formulation to a quadratic unconstrained binary optimization
problem (QUBO) and solve the problem using different approaches.

Chapter 9: Conclusions and Future Work: Presents a summary highlighting key points
of the thesis, a conclusion is given and the discussion of interesting remark, as well as,
direction for future work.



Chapter 2

Concepts and terminology

In this chapter, are detailed the main concepts and terminology of each topic presented in this
thesis: quantum computing from gate-based to adiabatic modelling, quantum machine learning
and quantum propositional logic, as follows:

(a) concepts of quantum computing are introduced, such as, qubit, Bra-ket notation, quantum
systems, reversible vs irreversible computation, multi-qubit systems, quantum algorithms
and complexity, adiabatic concepts, adiabatic theorem and annealing processes;

(b) definitions on quantum machine learning with topics, such as, classical machine learning and
variational quantum concepts (e.g. variational circuits, quantum nodes, quantum gradients,
hybrid computation);

(c) background of Satisfaction and Conjunctive Normal Form (CNF), pseudo-Boolean problems
and the integration between them and the problem of Satisfiability and mapping Satisfiability
in Linear Programming 0-1.

2.1 Quantum Computing

A quantum device is a kind of hardware built on top of quantum mechanics processes and
consists of transforming the input data following a unitary operation, uses gate operations and
performs measurements and is described by a quantum circuit [138]. Instead of working with
binary discrete digits (bits), it works with quantum bits, where 0 and 1 can overlap in time. The
simplest possible quantum system (2-state system) can hold precisely one bit of information.
However, the qubit (unit of quantum information) has two possible states |0⟩ and |1⟩ defined as a
finite-dimensional quantum system that forms a computational basis – two basis states composed
by two distinct quantum states that the qubit can be in physically. In a general form of expression,
it represents a linear combination of x, y, a linear algebra concept denoting any expression of
the form ax + by where x, y are vectors and a, b are coefficients. In the context of quantum
mechanics the vectors are a vector in the Hilbert space, an abstract vector space which holds

7
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the structure of an inner product that allows length and angle to be measured, and a quantum
superposition that allows a physical system to be in more than one basic state simultaneously.
This phenomena occurs when the underlying operations acting are linear combinations [61, 147].

In classical computer devices, we apply basic logical operators (NOT, NAND, XOR, AND,
OR) on bits to develop complex operations. In a gate-based quantum device, consisting of a
quantum network of quantum logic gates, we perform a fixed unitary operator on selected qubits.
The unitary operator is a function U : H → H where H is a Hilbert Space (inner product space),
such that ⟨Ux, Uy⟩H = ⟨x, y⟩H for all vectors x and y in H. The calculations are performed
resorting to logical quantum gates (e.g. Pauli-X, Pauli-Y, Pauli-Z, CNOT) and on the opposite
of classical logic gates, quantum logic gates are reversible (e.g. the Toffoli gate).

The reversible computing concept begins with physicist Rolf Landauer of IBM where he argued
the logically irreversible computational operations and the implications for the thermodynamic
behavior of the device that performed the operations. According to Landauer’s the most
fundamental laws of physics are reversible. In that sense, for instance, if we know the complete
knowledge of the state at some time of a closed system (meaning that no measurement is
performed on the system), we should then be able to reverse the process and determine the
system’s exact state at any previous time, according to physics laws. As such, every time we
overwrite a bit of information, the previous information does not have been physically destroyed,
it is kept in the device’s thermal environment [64].

The model of quantum computation is a system based in complex concepts, such as,
light travelling, and is ruled by fundamental principles, such as, Schrodinger’s wave equation
and Heisenberg’s uncertainty principle. Therefore, quantum computations have foundations
characterised by the Schrödinger equation that can be described as follows, iℏ ∂

∂t |ψ(t)⟩ =
H(t)|ψ(t)⟩ where i is the imaginary unit, ℏ = h

2π is the reduced Planck constant, |ψ(t)⟩ is
a linear combination of all possible qubit states (2N , where N is the number of qubits) and
describes the state of the whole quantum computer at time t, and H(t) is the time-dependent
Hamiltonian modeled in the gate-based quantum computer (e.g. IBM, Google, Intel, Rigetti) or
annealer hardware (e.g. D-Wave Systems).

The mapping process of a circuit to satisfy quantum processor restrictions is known as the
compiling, mapping, synthesis, transpiling, or routing problem [9]. In brief, the quantum circuits
can be described by: data (qubits), operations (quantum gates - unitary transformations) and
results (measurements).

Currently, companies in the field of quantum computing have been racing to handle problems
related with the number of qubits and their interconnection, or other forms of quantum
computation, e.g. cluster state, trapped ions, photons, NV-centers, SQUIDs. Some quantum
platforms offer free available services allowing to conduct experiments so we can be knowledgeable
with quantum environments and quantum scripting languages (e.g. IBM Q Experience, D-Wave
Leap). Thus, two available models and directions of quantum computing to conduct quantum
experiments can be: (a) gate-based model and (b) adiabatic model. In the gate-base model a
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quantum algorithm is represented as a quantum circuit which is compiled to specific quantum
gates and executed on a quantum device or simulator. In the adiabatic model we encode a
problem into an Ising Hamiltonian that allows to find approximate solutions resorting to heuristic
methods, with variables that represent magnetic dipole moments of atomic spins which can be
in one of two states (+1 or −1) embedded into the quantum hardware graph (chimera). In this
case, we use a quantum annealer or a classical solver to sample low-energy states which are the
optimal solutions of a problem being solved [7, 130, 210].

In the next section a description on circuit model quantum computing is introduced and
concepts and definitions are given, such as, qubit, Bra-ket notation, superposition, quantum
circuit, quantum logic gates, entanglement, interference, measurement, quantum operations,
multi-qubit systems. In addition, is also shown the description of gates as mappings and examples
of quantum hardware and common quantum gates, with code scripts examples that execute
quantum operations, ending with a discussion on algorithms and complexity.

2.2 Circuit Model Quantum Computing

Quantum computers are different from binary digital electronic computers based on transistors.
Common digital computing encodes the data into binary digits (bits), each of which is always in
one of two definite states (0 or 1). Quantum computing uses a different computational paradigm
from classical, uses quantum bits [70]. A gate-based qubit quantum computer stores the data in
quantum bits and allows to write all possible values into a register simultaneously or entangle
two qubits, properties that do not exist in traditional computers. Furthermore, a universal
gate quantum computing system is where basic quantum circuit operations, can be handled to
run complex algorithms. Examples are Shor’s algorithm for integer factorization in polynomial
time [185] (to break RSA cryptography) and Grover’s algorithm for black-box search in O(

√
(2n))

time [75] (to perform a faster search). Besides these two most notable algorithms many more
can be mentioned 1.

In gate-based quantum computing, a unitary operation is typically decomposed into elementary
gates. Gate-model quantum computers are composed by circuits with qubit registers and gates
operating on them. In the quantum machine we have as input a set of quantum instructions that
are mapped to the device and after that a result is produced, which is not easily interpretable, and
it’s not easy to measure either. We have to perform qubit measurements and turn them into 0
or 1. The state of the qubit can be |0⟩, |1⟩, or a superposition of them. The superposition
allows the qubit to be in both states at the same time, also, it can be defined as a weighted unit
combination between the basic states 0 and 1. Moreover, entanglement can occur when pairs
or more than two particles are generated or interact in a way that the quantum state of each
particle can’t be described independently of the state of the other(s). Those quantum mechanics
phenomena occur during quantum computations and these operations are executed and results

1https://math.nist.gov/quantum/zoo/
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are collected using measurements.

2.2.1 Qubit, Bra-ket notation and definitions

The basic concept in quantum computing is a qubit. A qubit is a unit of quantum information
that assigns a value to the two classical answers yes and no - corresponding to the two classical
bits 1 and 0, respectively.

Definition 1. Qubit. A qubit is a unit vector |ψ⟩ = α|0⟩+ β|1⟩ of the Hilbert space C2.

The basis {|0⟩, |1⟩} is known as the standard basis. A unitary transformation is defined by
its effect on basis states, extended linearly to the whole space, e.g. the Hadamard transformation
can be defined by:

|0⟩ → 1√
2
|0⟩+ 1√

2
|1⟩, |1⟩ → 1√

2
|0⟩ − 1√

2
|1⟩ (2.1)

which corresponds to the matrix H = 1√
2

(
1 1
1 −1

)
. The Hadamard transformation creates

superpositions: H|0⟩ = |+⟩, H|1⟩ = |−⟩.

In quantum mechanics, bra-ket notation is a standard notation for representing quantum
states. In order to calculate the scalar product of vectors, the notation uses angle brackets ⟨ ⟩,
and a vertical bar |. The scalar product is then ⟨ϕ|ψ⟩ where the right part is the "ket" (a column
vector) and the left part is the "bra" - the Hermitian transpose of the ket (a row vector). Bra-ket
notation was introduced in 1939 by Paul Dirac and is also known as the Dirac notation.

A qubit can "take" infinitely many different values and it is continuous. Also, it can be
in a superposition of these states x|0⟩ + y|1⟩, where x and y are complex numbers such that
|x|2 + |y|2 = 1. Assuming two states represented by two vectors, the superposition is the addition
vector. Moreover, in a classical computer, the maximum integer number that can be stored in N
bits is 2N − 1, e.g. if we consider N = 3 we can store numbers from 0 to 7 (2N − 1 = 7), with 7
being represented as 00000111 in binary form (obviously, this will depend on the encoding used
by the underlying architecture). In a quantum qubit storage, for example, with 3 qubits, we can
obtain coefficients for |000⟩, |001⟩, |010⟩, |011⟩, |100⟩, |101⟩, |110⟩ and |111⟩. As such, in the
classic machine we store 1 number at a time, in the quantum machine we store 2N − 1 numbers
at the same time.

Postulate 1: A quantum bit

Associated to any isolated physical system is a complex vector space with inner product
(i.e. a Hilbert space) known as the state space of the system. The system is completely
described by its state vector, which is a unit vector in the system’s state space [147].

A closed system depict a unit vector in a complex vector space. The qubit is a unit vector
|ψ⟩ = α|0⟩ + β|1⟩ of the Hilbert space C2 where the basis {|0⟩, |1⟩} is known as the standard
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basis. In addition, we can obtain spherical coordinates for a point in R3. Resorting to the
Bloch sphere, shown in Figure 2.1, we can write a single-qubit state |ψ⟩ using the representation:
|ψ⟩ = cos θ

2 |0⟩+ eiφ sin θ
2 |1⟩ with φ ∈ [0, 2π) and θ ∈ [0, π].

(a) Geometrical representation (b) Qiskit representation

Figure 2.1: Bloch sphere, representation of the pure state space of a two-level (or two-state)
quantum mechanical system (qubit) (Source: (a) Bloch sphere from Wikipedia and (b) Qiskit script
with two instructions: from qiskit.visualization import plot_bloch_vector;

plot_bloch_vector([0,0.5,0.9])).

Definition 2. Superposition. A pure qubit state is a linear superposition of the basis states when
we measure the qubit. The probability of outcome |0⟩ is |α|2 and the probability of outcome |1⟩ is
|β|2, where α and β are constrained by the expression |α|2 + |β|2 = 1.

2.2.2 Quantum systems

Postulate 2: Evolution of quantum systems

The evolution of a closed quantum system is described by a unitary transformation.
That is, the state |ψ⟩ of the system at time t1 is related to the state of |ψ′⟩ of the
system at time t2 by a unitary operator U which depends only on times t1 and t2 [147].

The evolution of a closed system in a fixed time interval is described by U .

Definition 3. Quantum circuit. A model for quantum computation where a computation is a
sequence of quantum logic gates.

Definition 4. Quantum logic gates. A quantum circuit operating on a small number of qubits.
Quantum logic gates are reversible.

The depth of the quantum gate structure means the number of time steps (time complexity)
needed for the quantum operations in the circuit to run on the quantum hardware. The width
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is the maximum number of qubits allocated at any one time. Circuits are networks composed of
wires that carry bit values to gates to perform elementary operations on those bits and can be
described by Boolean linear algebra (using vectors). Moreover, the gates are basic units that
perform Boolean logical operations.

The CNOT gate can represent gates applied to two wires. Therefore, we can use the
Controlled NOT (CNOT) which acts on two bits, the control bit and the target bit. The
goal is to apply the NOT operation to the target if the control bit is 1. In the opposite of a
classical computer gate, CNOT is an XOR gate with two outputs. For example, if we set the
value of the control bit to c = 0 or to c = 1, CNOT performs the mapping to the target bit to
t⊕ c with ⊕ representing the logical exclusive-or operation, or addition modulo 2. The CNOT
transforms the quantum state as follows:

CNOT(a |00⟩+ b |01⟩+ c |10⟩+ d |11⟩) = a |00⟩+ b |01⟩+ c |11⟩+ d |10⟩ (2.2)

CNOT


0
0
1
0

 ≡


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0
0
1
0

 =


0
0
0
1

 (2.3)

Definition 5. Entanglement. A physical phenomenon that occurs when pairs or more than
two particles are generated or interact in forms that the quantum state of each particle can’t be
described independently of the state of the other(s).

Definition 6. Quantum interference. Interaction of waves that are correlated. Two waves can
add together to create a wave of greater amplitude (constructive interference) or subtract from
each other to create a wave of lesser amplitude (destructive interference), it depends on their
relative phase.

Postulate 3: Measurement

Quantum measurements are described by a collection {Mm} of measurement operators.
These are operators acting on the state space of the system being measured. The index
m refers to the the measurement outcomes that may occur in the experiment [147].

The interaction between a qubit with other qubits allows measurement to occur. Besides,
the state is observed with a probability ≤ 1 which suggests uncertainty in the result states and
cannot be copied. Furthermore, interference (interaction of waves that are correlated) can give
rise to a measurement-like state collapse named decoherence.

Definition 7. Measurement. Measurement of a quantum state yields a classic state measure
(|ψ⟩ = ∑2n−1

i=0 αi|i⟩) = |i⟩, with probability |αi|2. The quantum superposition collapses into the
measured state. The α′is cannot be accessed directly, i.e., cannot be measured, though there are
algorithms to estimate: amplitude estimation, quantum tomography.
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The model of computation of a quantum device can be summarized as (a) the machine
is initialized and has a state which is contained in a quantum register, (b) the state evolves
according to an algorithm described by operations, and (c) the information on the state of the
quantum register is obtained performing a measurement operation. Similar to a Turing machine,
a quantum machine goes from one of a set of input states to one of a set of output states.
However, although the output is fully determined by the input state, it is not observable [49].
We cannot perform several independent measurements of |ψ⟩ since we cannot copy the state
(no-cloning theorem [33, 217]).

2.2.3 Reversible vs irreversible computation

Typically general computations (e.g. Turing machine) are logically irreversible [14, 170] and
have to deal with energy dissipation issues. Logically reversible computing helps to overcome
this problem. Also, in quantum computation it is often needed to remove the garbage qubits
accumulated at the end of a reversible computation, since these can destroy the interference
important for the quantum algorithms. Most of the irreversible computation can be converted
into a reversible computation. Figure 2.2 shows an example of the classical irreversible and gate
(left) and its reversible version (right).

ANDR
AND

Figure 2.2: AND gate and reversible AND (ANDR)

The reversible AND corresponds to the Toffoli quantum gate which is a generalization of
CNOT. Instead of just one control bit, there exists two bits that control if the third bit is flipped.
Contrasting to the classical AND gate, Toffoli adds one extra input and two extra outputs, which
are copies of the two inputs. Fixing the additional input bit to 0 and dropping the copies we can
simulate the classical non-reversible AND gate. As such, from an irreversible circuit with depth
T and space S, we can build a reversible version that uses a total of O(S + ST ) space and depth
T .

Figure 2.3: F gate and reversible F (FR)
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Figures 2.2 and 2.3 source and adapted from2.

In general, if we consider a gate F which computes a Boolean function c = F (a, b), its
reversible version would be FR which maps the inputs to outputs with c = d ⊕ F (a, b). This
generalization applies to any gates with two input wires and one output wire Figure 2.3 presents
this generalization.

2.2.4 Multi-qubit systems

Postulate 4: Multi-qubit systems "The state space of a composite physical system is the
tensor product of the state spaces of the component physical systems." [147]. The tensor product
captures the superposition in quantum systems. Furthermore, when we perform measurement,
the probability of outcome |0⟩ is |α|2 and the probability of outcome is |1⟩ is |β|2, α and β are
constrained by the expression |α|2 + |β|2. In addition, entanglement is a property of a multi-qubit
system that occurs when pairs or more than two particles, interact in a way that the quantum
state of each one, cannot be described separately. Figure 2.4 shows a state, we can notice that
the state has 50% probability of being measured in the state |00⟩, and 50% chance of being
measured in the state |11⟩.

(a) Circuit (b) Histogram (c) Q-sphere

Figure 2.4: Quantum circuit at IBM Quantum Experience

Gates as Mappings. A function f representing a gate can be defined as f : {0, 1}n → {0, 1}m

where {0, 1}n means the permutations of n 0’s and 1’s. For example, {0, 1}2 indicates the set 00,
01, 10, 11, with n = 2 bits, map into a m bit register. Boolean functions are mappings of the
form f : {0, 1}n → {0, 1}, e.g. XOR, AND and OR gates are Boolean functions for n = 2, also,
the NOT gate is a Boolean function with n = 1 [228].

Quantum Hardware. Quantum gates/operations matrices which act on a qubit are
represented by a 2× 2 unitary matrix U . The operation is to multiply the matrix that represents
the gate with the vector that depicts the quantum state |ψ⟩ = U |ψ⟩ where e.g. 2-qubit gates are
4×4 matrices, and 3-qubit gates are 8×8 matrices. The qubits need to be connected and interact
to implement operations. However, not all possible connections can be implemented due to
physical reasons, such as, interference of one qubit with another. When programming a quantum

2https://quantum-computing.ibm.com/composer/docs/iqx/guide/shors-algorithm
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machine, due to the topology of each quantum hardware, we should choose a qubit connection
and set the "ideal" coupling map. In the IBM quantum machines, the compiler transforms the
user program in order to take advantage of the machine’s topology, Figure 2.5 [23].

Figure 2.5: IBM Q Experience Manhattan topology with main characteristics: 65 qubits and 32
quantum volume (source: https://quantum-computing.ibm.com)

Script 2.1 shows an example. We start with the most common operations in quantum
computing (Table 2.1) by importing from qiskit the libraries QuantumCircuit to initialize our
circuit (qc) and QuantumRegister to register (q) qubits. We first perform an operation resorting
to the Hadamard gate on qubit 0 (line 5). Then, we proceed to a CNOT on control qubit 0 and
target qubit 1 (line 9). Ending with a Toffoli where the last qubit (2) is the target, the rest are
controls (line 13). The circuit _drawer allows us to picture the circuit of each operation.

Listing 2.1: Example using Qiskit
1 from q i s k i t import QuantumCircuit , QuantumRegister
2 from q i s k i t . t o o l s . v i s u a l i z a t i o n import c i r cu i t_drawer
3 q = QuantumRegister (1 )
4 qc = QuantumCircuit ( q )
5 qc . h( q [ 0 ] )
6 c i r cu i t_drawer ( qc )
7 q = QuantumRegister (2 )
8 qc = QuantumCircuit ( q )
9 qc . cx ( q [ 0 ] , q [ 1 ] )

10 c i r cu i t_drawer ( qc )
11 q = QuantumRegister (3 )
12 qc = QuantumCircuit ( q )
13 qc . ccx ( q [ 0 ] , q [ 1 ] , q [ 2 ] )
14 c i r cu i t_drawer ( qc )
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Table 2.1: Common quantum gates

Gate Matrix

Hadamard gate (H) 1√
2

[
1 1
1 −1

]
Pauli-X, NOT gate (X)

[
0 1
1 0

]
Pauli-Z gate (Z)

[
1 0
0 −1

]
Rotation-X (Rx)

[
cos(θ/2) −ı sin(θ/2)

−ı sin(θ/2) cos(θ/2)

]
Rotation-Y (Ry)

[
cos(θ/2) − sin(θ/2)

− sin(θ/2) cos(θ/2)

]

Controlled-NOT (CNOT, CX)


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


a The Hadamard gate rotates the states |0⟩ and |1⟩ to |+⟩ and |−⟩,

respectively, and is useful to create superpositions.
b The Pauli-X gates flip the |0⟩ state to |1⟩, and vice versa, and is

equivalent to Rx, for the angle π.
b The Pauli-Z gates flip the |+⟩ state to |−⟩, and vice versa, and

is equivalent Rz, for the angle π.
c The Rx and Ry gates require an angle (in radians) and correspond

to rotating the qubit state around the x and y axis, respectively,
by the given angle.

d The controlled-NOT acts on two qubits, one as ’control’ and the
other as ’target’ and performs an X on the target whenever the
control is in state |1⟩. In case the control qubit is in superposition,
it creates entanglement.

Xq0

(a) NOT gate

Hq0

(b) Hadamard

q00

q01

(c) CNOT

q00

q01

q02

(d) Toffoli

q00

q01

q02

(e) Fredkin

Figure 2.6: Examples of gates in Qiskit

The quantum gates described in the IBM’s website guide3 show how to apply the basic
operations of quantum computing. The code in Listing 2.2 is based in OpenQASM IBM’s quantum
assembly language. We set two quantum and classical registers (lines 3 and 4), perform a
Hadamard (line 5), followed by a CNOT operation (line 6), ending with a measurement (line 7).

3https://quantum-computing.ibm.com
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We add the h gate in the qubit 0, putting this qubit in superposition, then we add the cx gate
on control qubit 0 and target qubit 1, putting the qubits in entanglement. We finally add a
Measure gate to see the state, Figure 2.4.

Listing 2.2: OpenQASM: Hello World
1 OPENQASM 2 . 0 ;
2 i n c l u d e " q e l i b 1 . inc " ;
3 qreg q [ 2 ] ;
4 c reg c [ 2 ] ;
5 h q [ 0 ] ;
6 cx q [ 0 ] , q [ 1 ] ;
7 measure q −> c ;

The next script 2.3 shown consists of a Python environment and commands to reproduce the
same example resorting to a QASM simulator backend to execute the circuit with 1024 shots
giving rise to the histogram in Figure 2.4(b).

Listing 2.3: Qiskit: Hello World
1 from q i s k i t import C l a s s i c a l R e g i s t e r , QuantumRegister , QuantumCircuit
2 from q i s k i t import execute
3 from q i s k i t import BasicAer
4 from q i s k i t . t o o l s . v i s u a l i z a t i o n import plot_histogram , c i r cu i t_drawer
5 backend = BasicAer . get_backend ( ’ qasm_simulator ’ )
6 q = QuantumRegister (2 )
7 c = C l a s s i c a l R e g i s t e r (2 )
8 qc = QuantumCircuit (q , c )
9 qc . h ( q [ 0 ] )

10 qc . cx ( q [ 0 ] , q [ 1 ] )
11 qc . measure (q , c )
12 job_exp = execute ( qc , backend=backend , shot s =1024)
13 plot_histogram ( job_exp . r e s u l t ( ) . get_counts ( qc ) )
14 c i r cu i t_drawer ( qc )

Quantum scripts can be implemented using different software development kits (SDKs),
frameworks or programming languages, e.g. OpenQASM, Qiskit (IBM), Cirq, Forest/pyqil
(Rigetti), Q# (Microsoft), Ocean (D-Wave), ProjectQ, PennyLane (Xanadu), TensorFlow
Quantum (Google), tket/pytket (Cambridge Quantum Computing), IonQ, XACC.

2.2.5 Quantum algorithms and complexity

According to [147] quantum algorithms can be divided in two main types: (a) algorithms based
on Shor’s quantum Fourier transform, some of the most popular known algorithms are built on
top of Shor’s with a exponential speed-up over their classical counterparts. Besides, the classic
Fast Fourier transform runs on O(n logn) time and the quantum version on O(log2 n). And,
(b) algorithms based on Grover’s (used on quantum search). This method allows a quadratic
speed-up to some of the best classical algorithms. If the classical algorithm runs on the worst
case on O(N), Grover’s search algorithm can be improved to run on O(

√
N).
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In classical computing there are two main complexity classes: (a) P : class of problems that
can be solved by an algorithm in polynomial time, (b) NP : class of problems to which it is
unknown if there are solutions in polynomial time. In quantum computing there are equivalent
complexity classes: (a) Bounded-error Quantum Polynomial (BQP) time which is the class of
decision problems that can be solved by a quantum computer in polynomial time, (b) Quantum
Merlin Arthur (QMA), which is, in an informal way, the set of decision problems for which when
the answer is YES, there is a polynomial-size quantum proof (a quantum state) which convinces a
polynomial-time quantum verifier of the fact with high probability. Moreover, when the answer is
NO, every polynomial-size quantum state is rejected by the verifier with high probability. Several
problems in computer science are known to be NP-hard (non-deterministic polynomial time)-hard
or even NP-complete and difficult to handle on traditional computers. These problems can be
mapped and implemented in quantum physical devices instead of traditional digital computers
in a BQP time.

In the next section a description on adiabatic model quantum computing is introduced, along
with the concepts and theorem. The annealing process is discussed with regard to the quantum
annealing Quantum Annealing (QA) and simulated annealing Simulated Annealing (SA).

2.3 Adiabatic Model Quantum Computing

In brief, quantum algorithms evolve by applying an infinitesimal operator (the Hamiltonian) to
the initial state which end with a final quantum state. Adiabatic quantum computation (AQC)
uses the quantum mechanics properties to achieve that final state (solution). The model that it
has been shown so far is called circuit model or gate-based model, an alternative model is named
adiabatic. The circuit model is more used and is equivalent to the adiabatic [5].

To deal with the adiabatic-based quantum computing paradigm we resort to the D-Wave’s
Ocean software stack. Nowadays, the variational quantum implementations are linking the
gate-model QC and the adiabatic paradigm. ML tasks are suitable to be processed through
the adiabatic-model quantum computer. The gate-model quantum computer can be useful if
classical big data can be efficiently converted to a quantum format. Since speed-up is possible,
quantum computers are accelerating the development of artificial intelligence, and AI in its turn
is contributing to new quantum technologies.

”A physical system remains in its instantaneous eigenstate if a given perturbation is
acting on it slowly enough and if there is a gap between the eigenvalue and the rest
of the Hamiltonian’s spectrum.” [27, chap. Adiabatic Model Quantum Computing]
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2.3.1 Adiabatic concepts and theorem

D-Wave Systems has been developing their own version of a quantum computer that uses
annealing, which is different from the gate model based approaches from IBM, Intel, Rigetti and
Google. Currently, D-Wave’s has more than 5,000 qubits and 35,000 couplers, a larger, denser,
and powerful graph for building quantum applications. Unlike universal quantum computers that
operate using quantum gates and the principles of the circuit model, devices that are specialize
primarily in solving combinatorial optimization problems typically uses QA [113]. QA can be
described as a metaheuristic to find the global minimum of a given objective function over a
given set of candidate solutions by a process that uses quantum fluctuations. Similar to SA,
a metaheuristic for optimization that consists of a local search technique, and is based on an
analogy with thermodynamics. In QA the focus has been the performance of quantum annealers
against classical algorithms. QA allow solving local search problems in multivariable optimization
when there is a need of finding the maximum or minimum for a cost function that comprises
independent variables and a large number of instances. An effort that has not yet been addressed
with gate models, explained by the large number of qubits available in QA, which enables scaling
tests over several orders of magnitude of problem sizes [8]. Also, in QA, on the contrary to the
circuit based model, the solution to a problem is encoded in the ground state of the quantum
system and its susceptibility to environmental issues [36].

Furthermore, QA (also known as the quantum adiabatic algorithm or adiabatic quantum
optimization) starts from the ground state of the initial Hamiltonian and concerns on continuously
deforming the Hamiltonian such that the system attain the final ground state (e.g from a Ising
model) which solves the optimization problem. Besides, the adiabatic theorem (explained below)
of quantum mechanics ensure that QA finds the final ground state. However, should consider if
the run-time is sufficiently large with respect to the inverse of the quantum ground state energy
gap. In addition, despite all the sophisticated QA process, it does not mean that generally
perform better than classical optimization algorithms [139].

In brief, to describe Adiabatic Quantum Computation (AQC), the system begins in a ground
state of a time dependent Hamiltonian H(s) where s ∈ [0, 1] that is slowly being modified from
an initial form H0 to a final form H1, in a time t(s) with t(0) = 0, t(1) = τ , considering an
interpolation between the two Hamiltonians. Starting with |ψ(0)⟩ in the ground state of H0

the system evolves according to Schrödinger’s equation and end up near the ground state of
H1 [57, 166]. The AQC Hamiltonian can be written as follows,

H(s) = (1− s)H0 + sH1 (2.4)

where the Hamiltonian H1 ground state encodes the solution of a combinatorial optimization
problem. Adiabatic quantum computation encodes the solution to a problem in the ground state
of the final Hamiltonian, as it occurs in quantum annealing. The adiabatic theorems can have
approximate or rigorous versions as described in [7].
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Nowadays, there are many types of architectures for quantum computers. In the gate-model
the goal is to control and handle the evolution of the quantum states in time in a circuit
perspective. In quantum annealing, the goal is to initialize the system in a delocalized state, i.e.
anywhere in space, where gradually converges to the description of our problem, ending in the
answer we are trying to find by means of energy. In the D-Wave’s system we can formulate the
problem in different perspectives that allows us to map optimization problems to find the lowest
energy state of a system representing the problem. Quantum annealing (as a metaheuristics) aids
in finding the global minimum of a given objective function over a given set of candidate states.

Ising model. Shows the relationships between the spins, represented by couplings and where
the objective function is as follows:

Eising(s) =
N∑

i=1
hisi +

N∑
i=1

N∑
j=i+1

Ji,jsisj (2.5)

where the linear coefficients corresponding to qubit biases are hi, and the quadratic coefficients
corresponding to coupling strengths are Ji,j , and the variables are either "spin up" (↑) or "spin
down" (↓) states which correspond to +1 and -1 values, si and sj . A problem can also be
formulated as a Quadratic Unconstrained Binary Optimization (QUBO) where variables can be
true and false with states corresponding to 1 and 0 values.

Ocean software is an open-source SDK from D-Wave Systems for solving hard problems with
quantum computers4.

Quantum
Annealing

Quantum
Tunneling

Thermal
Annealing

Configuration

Cost
(energy)
Function

(jump)

Global
minimum

Figure 2.9: Graphical representation of quantum tunnelling. Figure adapted from Wikipedia on
the topic "Quantum annealing"

In some cases, quantum tunneling can escape from local minima that overcomes conventional
methods such as SA.

4https://docs.ocean.dwavesys.com
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In sum, the qubits are interconnected to exchange information and are connected via couplers,
which are also superconducting loops. The interconnection of qubits and couplers, and the
control of the magnetic fields, creates programmable quantum devices. When a qubit is in both
0 and 1 state at the same time, is in superposition. When the problem-solving process ends,
the superposition collapses into one of the two classical states, 0 or 1, which means that the
Quantum Processing Unit (QPU) achieved a solution, and all qubits are in their final states and
their values are returned as a bit string.

2.3.2 Annealing process

QA is analogous to SA. In nature, physical systems tend to evolve toward their lowest energy
state, e.g., objects slide down hills. It is generally most efficient to move downhill and avoid
climbing hills that are too high. Quantum annealing can be explained comparing to a landscape
with valleys, mountains, tunnels and water. Once the problem to be solved is translated into an
energy landscape, the machine finds the lowest point by following the laws of quantum mechanics.
In brief, a QA, solves hard optimisation problems by evolving a known initial configuration at
non-zero temperature towards the ground state of a Hamiltonian [24].

Algorithm 1: SA [169]

input : problem (a problem), schedule (a mapping from time to "temperature")
static : current (a node), next (a node), T (a "temperature" controlling the probability of

downwards steps)
1 function SA(problem, schedule)
2 current← Make-Node(Initial-State[problem])
3 for t← 1 to ∞ do
4 T ← schedule[t]
5 if T=0 then
6 current

7 end
8 next← a randomly selected successor of current
9 ∆E ← V alue[next]− V alue[current]

10 if T=0 then
11 current← next

12 else
13 current← next only with probability e∆E

T

14 end
15 end
16 return a solution state

Algorithm 26 refers to the main routine QA which calls alternatively the subroutines Local
Optimization 6 and Quantum Transition 2. The aim of the Local Optimization is to carry out a
local descendent from the current configuration. The Quantum Transition generates a transition
from the current configuration according to the surrounding environment.
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Algorithm 2: QA [11, 46]

input : init (initial condition), ν (control parameter), tmax (duration), tdrill (tunnel time), tloc

(local opt. time)
1 function QA(init, ν, tmax, tdrill, tloc)
2 t← 0
3 ϵ← init

4 vmin = cost(ϵ)
5 while t < tmax do
6 j ← 0
7 repeat
8 i← 0
9 repeat

10 ϵ← QT(ϵ, ν, tmax)
11 if cost(ϵ) < vmin then
12 vmin ← cost(ϵ)
13 i, j ← 0
14 else
15 i← i+ 1
16 end
17 until i > tloc

18 ϵ← LO(ϵ)
19 if cost(ϵ) < vmin then
20 vmin ← cost(ϵ)
21 j ← 0
22 end
23 until j < tdrill

24 draw a trajectory of length vtmax and jump there
25 LO(ϵ)
26 end

Algorithm 3: Quantum Transitions [11, 46]

input : ϵ (initial condition), νt (chain length), Neigh (set of neighbours to estimate)
1 function QT(ϵ, νt,Neigh)
2 for all neighbourk ∈ Neigh do
3 estimate the wave function ψν(k)
4 end
5 best← select a neighbour in Neigh with probability proportional to ψν

6 return best

Algorithm 4: Local Optimization [11, 46]

input : ϵ (initial condition)
1 function LO(ϵ)
2 return the best solution found by any steepest descent strategy
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Comparison between SA and QA 2.2.

Table 2.2: SA versus QA

SA QA

C
om

p. i) Reheating;
ii) Statistically seeks wider not deeper valleys;
iii) Gets stuck to local minimum.

i) Is not locked by barriers;
ii) Tunnel into deeper valleys;
iii) Finds global minimum.

2.4 Quantum Machine Learning

”The quest of machine learning is ambitious: the discipline seeks to understand what
learning is, and studies how algorithms approximate learning. Quantum machine
learning takes these ambitions a step further: quantum computing enrolls the help of
nature at a subatomic level to aid the learning process.” [215, Peter Wittek]

In the 80’s, Feynman [61] proposed quantum computing after performing quantum mechanics
simulations on a classical computer. Nowadays, the experiments at the smallest scales of energy
levels of atoms and subatomic particles lead us to the new merged field Quantum Machine
Learning (QML) [39]. The classical Machine Learning (ML) [22, 140] can be roughly fit into
three main categories depending on the type of data: supervised learning (classification or
regression), unsupervised learning (e.g. clustering) and reinforcement learning (e.g. deep
reinforcement learning). Those categories in a quantum domain allow to take an advantage of
combining fields. For example, quantum computing and data science to speed-up processing,
ML optimization applied to quantum experiments, or the exploration of quantum-enhanced
learning agents. Currently, quantum computing [147] is approaching the mainstream with the
introduction of classical ML algorithms to analyze quantum systems and, conversely, quantum
versions of ML algorithms e.g., quantum support vector machines, quantum principal component
analysis, quantum neural networks or quantum deep learning. The goal is to solve large scale and
complex computational issues by a QML procedure, improving a classical ML method, giving rise
to, e.g., quantum pattern recognition, quantum classification and/or solving large combinatorial
problems [18].

Essentially all ML classical problems are being upgraded to a quantum level [174, 215] where
the supervised quantum prediction occurs: (a) when we know the quantum states that describe
the system, and (b) we map classical problems from a typical Euclidean space onto the quantum
states in the corresponding Hilbert space [173]. QML is focused in the exchange between quantum
computing and ML, and seek techniques from one topic that can solve the problems of the other.
Moreover, ML concerns the exploration of large vectors in high-dimensional spaces suitable for
quantum computation since it allows to manipulate high-dimensional vectors in large tensor
product spaces [126].
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Arguably, the three main popular quantum models in the literature are gate-based, hybrid
classical quantum and annealing-based [62, 114]. These models pose computational challenges in
the areas of quantum languages, quantum compilers and quantum algorithms. For example, it
is not trivial to encode and map an input and program an algorithm that, given the input will
produce the desired output in a quantum hardware. There are specific techniques we should
consider namely for encoding classical data, such as, basis, angle, amplitude, variational/trained
or higher order embedding encoding [31, 80, 127, 177, 205]. Moreover, results of a quantum
hardware are not trivial to retrieve due to the physics behind measuring the qubit’s (equivalent
to a classical bit) values [179].

Figure 2.10 shows four different possible approaches that merge the topics quantum computing
and machine learning [6, 55].

CC

QC

CQ

QQ

classical quantum

cl
as
si
ca
l

qu
an
tu
m

Type of Algorithm

Ty
pe

 o
f D

at
a

Figure 2.10: The first letter indicates the type of system and the second letter the type of device.
Also, "C" means classical and "Q" means quantum. Figure adapted from [175].

For example, in quantum-classical (QC) the ML extract knowledge from quantum measure-
ment data. On the other hand, classical-quantum (CQ) resorts to classical data and quantum
algorithms to solve ML challenges.

2.4.1 Machine learning

ML is a branch of AI that applies algorithms to incorporate the relationships among data and
information. Let {x1, ..., xN} be a large set of N examples called a training set. A ML algorithm
(a learning algorithm) can be expressed as a function y(x) which takes a new example x as input
and give rise to an output vector y where the function y(x) is determined during the training
phase, also known as the learning phase, based on the training data. Once the mathematical
model (created by the training process) is trained, is then capable to identify new examples in a
test set.

Generalization occurs when the algorithm is able to categorize correctly new examples different
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from the data used for training. If an algorithm performs well on the training set but fails to
generalize, we can say overfitting occurs. Usually, the original input variables are preprocessed
using the same steps in the training data and in the test data, this phase is also known as feature
extraction. This procedure has many advantages, such as, making easier for an algorithm to
distinguish between classes, or for speed-up computations.

Applications in which the data provides given examples and for each example it specifies an
outcome are known as supervised learning problems (e.g. classification, regression). In other
problems, inference from data consist of input examples without labeled responses, is known
as unsupervised learning problems (e.g. clustering, association). Additionally, reinforcement
learning is characterized by actions in a given scenario in order to maximize a reward. Those are
types of ML problems. Furthermore, the ML process can be summarized by the steps: (a) data
acquisition and preprocessing where occurs data set integration, outliers removal, etc., (b) feature
selection and extraction for identification and extraction of relevant characteristics from data, (c)
model selection where a model is chosen considering the task to be solved, and (d) validation
where a performance measure is calculated according to the task, e.g. accuracy (classification)
and mean absolute error (regression) evaluated on a validation set [22, 79, 140].

2.4.2 Variational quantum concepts

”Quantum systems produce atypical patterns that classical systems are thought not
to produce efficiently, so it is reasonable to postulate that quantum computers may
outperform classical computers on machine learning tasks. The field of quantum
machine learning explores how to devise and implement quantum software that could
enable machine learning that is faster than that of classical computers. Recent work
has produced quantum algorithms that could act as the building blocks of machine
learning programs, but the hardware and software challenges are still considerable.” [18,
Jacob Biamonte et al.]

As for example, a machine learning model can be defined considering a variational quantum
classifier which uses variational circuits where one circuit associates the gate parameters with
data inputs, and the other depends on trainable parameters, ending with a measurement.

Variational quantum circuits are quantum algorithms that depend on the following steps: (a)
preparation of a fixed initial state (e.g., the zero state), (b) a quantum circuit U(θ) parameterized
by a set of parameters θ, and (c) the measurement of an observable at the output.

In PennyLane5 classical computations and quantum are linked through quantum nodes which
execute a variational circuit (a parametrized quantum computation) on a quantum device. Besides,
it computes the gradients of quantum nodes which allows hybrid computations. PennyLane is
based in four concepts: hybrid computation, quantum nodes, variational circuits and quantum
gradients.

5https://pennylane.readthedocs.io
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lossupdate

Figure 2.11: The principle of a variational circuit (adapted from: ht-
tps://pennylane.ai/qml/glossary/variational_circuit.html)

Definition 8. Quantum nodes. Are like a black box where a basic computational unit is
programmed on a quantum circuit and only classical data can enter or exit.

Definition 9. Hybrid computation. Is composed by algorithms that integrate both classical and
quantum processing, according to the rules of quantum nodes.

Definition 10. Variational circuits. Are quantum algorithms that can be optimized resorting to
hyperparameters. First, we prepare a fixed initial state, then a quantum circuit is parameterized
by both the input x and the function parameters θ. Afterwards, a measurement of an observable
is made at the output.

Figure 2.12: Varational circuit

Figure 2.12 adapted from source6.

Definition 11. Quantum gradients. Are defined by the gradient of a quantum node ∇f(x, θ)
calculated by shifting one variable and resorting to a linear combination of two quantum nodes.
The same quantum device allows us to perform the computations of quantum nodes and the
calculation of the gradients of quantum nodes.

QNode

Figure 2.13: Hybrid computation with quantum nodes and quantum gradients

Figure 2.13 adapted from source7.
6https://pennylane.readthedocs.io/en/user-docs-refactor/concepts/overview.html
7https://pennylane.ai/qml/glossary/variational_circuit.html
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Strawberry Fields8 is a full-stack Python library for designing, simulating, and optimizing
continuous variable (CV) quantum optical circuits [106]. PennyLane is a cross-platform Python
library for quantum machine learning, automatic differentiation, and optimization of hybrid
quantum-classical computations [15].

Quantum computing is approaching the mainstream with the introduction of classical
ML algorithms to analyse quantum systems and quantum versions of ML algorithms e.g.
Quantum Support Vector Machine (QSVM), Quantum Principal Component Analysis (QPCA),
Quantum reinforcement learning, Quantum Bayesian inference [18]. These advances can provide
improvements in Artificial Intelligence (AI) to solve demanding data-related issues using hybrid
quantum-classical models [54, 175].

QML arises from the need to quantise learning by converting a classical algorithm to its
quantum counterpart, and many algorithms are being implemented e.g. a quantum binary
classifier that resembles a multi layer perceptron [175, 178]. Putting big classical data in
superposition remains a challenge. In the quantum learning phase we can convert input data into
quantum states to learn, process and store the learning result in qubits. However, we cannot use
again the stored information, and this should be considered during the test phase. The supervised
quantum prediction occurs when, (i) we know the quantum states that describe the system, and
(ii) we map classical problems from a typical Euclidean space onto the corresponding Hilbert
space [173].

Still, quantum research direction points out that quantum computers can successfully learn
resorting to the QPU, a physical chip that contains interconnected qubits. Nevertheless, as
pointed out by [141], in a gate-based approach, the quantum computer performance depends
on the number of physical qubits, their connectivity, number of gates applied to prior errors or,
decoherence that occurs when a quantum system is not well isolated, available hardware gate set,
and number of operations that can run in parallel. Physical properties that may influence the
mapping of classical problems and compromise the learning phase.

Comparison of classical ML algorithms and their quantum counterparts based in computational
complexity and learning performance have been introduced [39, 215]. Typically involve the
manipulation and classification of large vectors in high-dimensional spaces. Although quantum
advantage has not been fully proved, operations that involve the manipulation of high-dimensional
vectors in large tensor product spaces according to [126] are faster than in classical computations.
For instance, the quantum SVM approach shows that run time in training and classification
equals O(logNM) with N being the dimension of the feature space and M the number of
training vectors. A fast quantum evaluation of inner products is made when approximating the
least-squares problem in M due to a matrix inversion algorithm [165].

Furthermore, e.g. binary classification can be represented by a simple perceptron, where
the input and weights are encoded on the quantum hardware based on quantum information
principles [199]. Moreover, on the opposite to the conventional bit registers, the fundamental

8https://strawberryfields.readthedocs.io
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computational units in deep learning are continuous vectors and tensors converted in high
dimensional spaces, suitable to adapt to the quantum domain [105]. Besides all existing quantum
ML algorithms versions, Quantum Theory (QT) has been introduced as a replacement of classical
statistics and ML algorithms which should outperform classical classification methods [203].

In QML some hot topics consist on, e.g. how to load the input, to read the output and the
circuits size. To overcome certain issues, a number of algorithms in QML uses procedures such
as Quantum Random Access Memory (QRAM) which allow queries in superposition and are
based on the exponential speed-up of methods such as: Quantum Fourier Transform (QFT),
Quantum Phase Estimation, HHL - an example of Quantum Basic Linear Algebra Subroutines
(QBLAS). In addition, other quantum algorithms used in QML include amplitude amplification
and QA. Also, kernel methods are discussed [137, 172].

2.5 Quantum Propositional Logic

The next section concerning classical logic that leads to Quantum Propositional Logic (QPL)
is based on the work "SATyrus2: Compilando Especificações de Raciocínio Lógico" of Bruno
França Monteiro [142].

Propositional logic can aid to define simple constraints that are important building blocks for
complex problems. In the experiments, we map the problem to a working graph of the D-Wave
Systems. Our aim with this work is to translate original problems into a quantum problem by (i)
solving constraints problems using the language of the D-Wave System and (ii) contribute to
the exploration of new technologies and reasoning in the context of the Constraint Satisfaction
Problem (CSP).

2.5.1 Satisfiability and conjuntive normal form

The problem of Boolean Satisfaction (usually referred to as SAT [69]) is a decision problem
that consists of finding an attribution of values to the propositional variables belonging to any
Boolean formula in order to make it true (satisfied). If there is no such attribution, the formula
is said to be unsatisfiable. Formulas are expressions that satisfy the following laws:

• A propositional variable is a formula.

• If p is a propositional variable, its negation, ¬p, is also a formula.

• If p and q are formulas and ◦ is a binary operator (e.g. ∧, ∨, →), then (p ◦ q) is a formula.

Given any formula, the Satisfiability problem can be stated as follows: is it possible to assign
Boolean values {V, F} to propositional variables in such a way that the formula is evaluated as
true? For example, consider the Formula 2.6:

p ∧ (¬q ∨ r) (2.6)
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Table 2.3 represents the Formula 2.6 truth table. Through it, it can be seen that there are
three value assignments that make Formula 2.6 true. In the context of the Satisfaction problem,
each of these five attributions is called a solution to the problem.

Table 2.3: Truth table for the Formula 2.6

p q r ¬q ∨ r p ∧ (¬q ∨ r)
V V V V V
V V F F F
V F V V V
V F F V V
F V V V F
F V F F F
F F V V F
F F F V F

The Boolean Satisfaction problem is NP-Complete [40]. A special case for this problem is the
situation in which the formula to be satisfied is found in Conjunctive Normal Form (CNF). A
formula is in Conjunctive Normal Form when it is composed of conjunctions of clauses. Clauses
are literal disjunctions. These, in turn, are propositional variables or negations of propositional
variables where p and ¬q are examples of literals. The disjunction of these literals, (¬q ∨ r), is
an example of a clause. A clause is satisfied if there is at least an assignment of values to the
variables belonging to the clause that makes it true. Consider the Formula 2.7:

((p→ q) ∧ (q → r)) ∧ ¬(p→ r) (2.7)

Table 2.4: Truth table for the Formula 2.7

p q r (p→ q) ∧ (q → r) ¬(p→ r) ((p→ q) ∧ (q → r)) ∧ ¬(p→ r)
V V V V F F
V V F F V F
V F V F F F
V F F F V F
F V V V F F
F V F F F F
F F V V F F
F F F V F F

The Formula 2.7 (with the corresponding truth Table 2.4) is unsatisfiable, that is, there is no
attribution of values to the variables p, q and r that makes the formula true as a whole.

Considering the above, an optimization problem can be formulated: given a formula written
in Conjunctive Normal Form, what is the attribution of Boolean values to the variables that
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maximizes the number of satisfied clauses? This problem, called the Maximum Satisfiability
Problem (MAX-SAT), has many applications [77].

2.5.2 Mapping satisfiability in linear programming 0-1

Mapping rules. Consider the following mapping (H) that relates Boolean values to the integers
0 and 1, described in [121]:

• H(True) = 1

• H(False) = 0

• H(¬p) = 1−H(p)

• H(p ∧ q) = H(p)×H(q)

• H(p ∨ q) = H(p) +H(q)−H(p ∧ q)

The rules above map logical expressions written in the Conjunctive Normal Form to integer
values belonging to the set 0,1. More specifically, the true Boolean is mapped to 1, while false
propositions are mapped to 0. In the context of the pseudo-Boolean programming problem
that can be obtained through this mapping, only two solutions are possible: 1, if the original
formula is satisfied, and 0, otherwise. This implies the need to maximize the objective function
constructed by the mapping, since, among the two possible values of a solution, 1 is the highest
value. If the objective function was to be minimized, the mapping should be applied to the
negation of the original Boolean formula.

Thus, given a formula ϕ written at the CNF, a pseudo-Boolean programming problem can
be obtained if the mapping described above is applied to the formula ¬ϕ: the problem will be
to minimize the objective function constructed by converting between formulas and algebraic
expressions. If a solution with a cost equal to 0 is found, the original formula ϕ is satisfied. The
mapping presented here relates SAT to the Linear Programming 0-1 problem by constructing an
objective function - hereinafter called the energy function - obtained by applying the H function
to the negation of the formula to be satisfied 2.8:

E = H(¬ϕ) (2.8)

Consider the following trivial example: you want to satisfy Formula 2.9. To do this, it is
necessary to find at least an assignment of Boolean values to the propositional variables a and b
in order to make Formula 2.9 true (ϕ = V ).

ϕ = ¬a ∨ b (2.9)
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The energy function corresponding to Formula 2.9 can be obtained through the direct
application of the mapping rules defined previously. The application of these rules, together with
a brief logical development of the obtained proposals, gives rise to the following energy function:

E = H(¬ϕ) = H(¬(¬a ∨ b)) = H(a ∧ ¬b) = H(a)×H(¬b) = H(a)× (1−H(b))︸ ︷︷ ︸
energy function

(2.10)

Replacing (for reasons of clarity) the symbols H(a) and H(b) with a∗ and b∗ in the obtained
energy function, the original problem, that is, satisfying Formula 2.9, becomes the following
pseudo-boolean linear programming problem:

minimize : E = a∗ × (1− b∗) (2.11)

where a∗ ∈ {0, 1} and b∗ ∈ {0, 1}.

Solving the above problem is trivial: a∗ = 0 is one of the possible solutions. A family of
problems can be represented using such a formulation.

In short, this chapter described the main concepts and terminology of each topic presented
in this thesis: quantum computing from gate-based to adiabatic modeling, quantum machine
learning and quantum propositional logic. In the next chapter, we discuss the mapping of
applications to quantum machines. We start by enumerating some encoding techniques, and how
to perform the mapping according to each problem and quantum device.
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Mapping applications to quantum hard-
ware

Mapping classical problems to quantum machines it is a hard task, since we need to accurately
comprise the data to encode and the mappings are tailored to each problem and machine. In this
context, there exist libraries already available that we can find e.g. in PennyLane, in the section
embeddings templates which encode input features into the quantum state of the circuit that can
have trainable parameters and repeated layers. This is a complex topic given the range and type
of problems we can possibly map to a quantum machine, novel approaches are always surfacing.
In this section, we discuss various kinds of mappings, encodings or embeddings, highlighting
relevant work in the field. As well as, we describe a method for modeling optimization problems
using Quantum Propositional Logic (QPL).

3.1 Gate-based Model Mapping

A way to encode (or embed) our problems into a quantum machine, can be by transforming
classical data points as quantum states in a Hilbert space, through a quantum feature map
φ : RN −→ C2n in a form of dimensionality reduction. The quantum state provides a probability
distribution for the result of each possible measurement. In that sense, considering a classical
data point x with N features, when translated to a 2n-dimensional vector φ(x), it describes the
initial quantum state |φ(x)⟩. As such, to map the information to qubits, we can consider we have
an input dataset D = {x1, ..., xm, ..., xM} with M samples, for m = 1, ...,M where M represents
N -dimensional vectors xm.

Basis Embedding. If we consider that each example is a N -bit binary string xs = (b1, ..., bN )
with bn ∈ {0, 1} with n = 1, ..., N , in the basis embedding case, xm is directly mapped to quantum
state |xm⟩. Therefore, the number n of qubits should be at least equal to N . As such, D is
mapped in the following way:

33
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|D⟩ = 1√
M

S∑
m=1
|xm⟩

If we consider two data points (x1 = 10 and x2 = 01) the mapping takes the form |x1⟩ = |10⟩
and |x2⟩ = |01⟩,

|D⟩ = 1√
2
|10⟩+ 1√

2
|01⟩

Amplitude Embedding. Also known as wave function embedding which transforms the
data points into amplitudes of the quantum state. In this case, a normalized N -dimensional data
point x is mapped through the amplitudes of a n-qubit quantum state |ψx⟩ as shown:

|ψx⟩ =
N∑

i=1
xi |i⟩

where xi is the i-th element of x that can have different numeric data types, and |i⟩ represents
the i-th computational basis state. The procedure steps are the following: (a) normalize x, (b)
calculate the corresponding amplitude embedding, (c) considering D, is the result of concatenating
the input examples xm, (d) normalize the vector as |α|2 = 1, and (e) representation of D is then,

|D⟩ =
2n∑
i=1

αi |i⟩

with αi elements of α. If the case that the number of amplitudes to encode, is less than 2n, then
we can pad non-informative constants to α. In addition, the number of amplitudes to be encoded
is N ×M which demands n ≤ log2(N ×M). As such, if we considered 5 data points with 3
features for each data point, the result is 5× 3 = 15 amplitudes which requires n ≤ log215 = 4
qubits which represents 24 = 16 possible states.

Angle Embedding. In this method we apply rotations on the x-axis or y-axis or z-axis
using quantum gates along with the values which we want to encode. Applying this embedding
on a dataset D, means that the number of rotations will be the same as the number of features
in D. Therefore, the N -dimensional sample takes N qubits to generate the set of quantum states.
Each data feature is encoded into a corresponding qubit qi via Pauli rotations.

Besides these encoding methods, we can also have: Displacement Embedding this technique
encodes N features into displacement amplitudes r or phase ϕ of M modes, IQP Embedding
this encodes n features into n qubits using diagonal gates of the IQP circuit, QAOA Embedding
encodes N features into n > N qubits using a layered trainable quantum circuit based in QAOA
ansatz, and, Squeezing Embedding which encodes N features into the squeezing amplitudes
r ≥ 0 or phase ϕ ∈ [0, 2π) of M modes. More on the topic e.g. Trainable Embedding
can be found here [127], since we can also train the encoder circuit using machine learning
techniques. Resorting to one of these encodings we implemented an algorithm for quantum
binary classification (B.1) which is discussed later.
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3.2 Adiabatic Model Mapping

The best known adiabatic model can be found at the D-Wave Systems and some hard problems can
benefit from it since can be mapped directly to a Quantum Processing Unit (QPU). Problems
from real world applications can be formulated as optimization problems, such as the TSP,
searching for the optimal solution which can have multiple types of encodings [227].

Encoding using a Mathematical Formulation. As an example, we implemented (A.1)
the TSP based in Hopfield and Tank [87], with the following energy function 3.1:

E = A

2
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D
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distijvik(vjk+1 + vjk−1)
] (3.1)

Where dist corresponds to the distance between cities, v represents a Boolean variable, and n
the number of cities. We considered A = B− (D×dL), B = (3×dU) +C, D = 1/dU and C = 1,
and dL = dU/2 with dU equals to the sum of edge weights in the graph. With this formulation
in QUBO we achieve solutions for the TSP for n ≤ 6, we followed the pipeline shown in 3.1.
Some references with the study of parameters A, B, C and D were analyzed [131, 160, 200].

Mathematical
Problem 

Formulation
Compile

Hamiltonian

Classical

Classical Quantum Simulator

Quantum

Ising/QUBO

Figure 3.1: Pipeline of the typical approach to solve problems formulated in a mathematical
manner translated to a Ising or Quadratic Unconstrained Binary Optimization (QUBO) model.

Regarding the latest news of the D-Wave’s quantum anneling systems, more qubits were added
and their connectivity was changed. However, even though from the 2000Q to the Advantage
system, there have been advances at QPU level, is still hard to embed problems with large
number of variables into the physical qubits. In order to overcome this issue, one of possibility is
to resort to a solver such as QBSolv.

QBSolv. A decomposing solver which finds a minimum value of a large QUBO problem [211].
QBSolv can break the problem into smaller problems, solve these subproblems, and from that
solutions build the answer of the proposed problem. The subproblems are solved using a classical
solver running the tabu algorithm [157].
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Algorithm 5: TSP Hamiltonian (PyQUBO) for mathematical formulation

1 function exp1 (n, v, A);
Parameters : Number of cities, binary vector, A
Expression : 1

2 for i to n do
3 for j to n do
4 for k to n do
5 if k ̸= j then
6 exp+← v(i, j)v(i, k);
7 end
8 end
9 end

10 end
11 exp← (A/2)× Constraint(exp);
12 return exp

13 function exp2 (n, v, B);
Parameters : Number of cities, binary vector, B
Expression : 2

14 for j to n do
15 for i to n do
16 for k to n do
17 if k ̸= i then
18 exp+← v(i, j)v(k, j);
19 end
20 end
21 end
22 end
23 exp← (B/2)× Constraint(exp);
24 return exp

25 function exp3 (n, v, C);
Parameters : Number of cities, binary vector, C
Expression : 3

26 for i to n do
27 for j to n do
28 exp+← (v(i, j)− n)2;
29 end
30 end
31 exp← (C/2)× Constraint(exp);
32 return exp

33 function exp4 (n, v, D);
Parameters : Number of cities, binary vector, D
Expression : 4

34 for i to n do
35 for j to n do
36 if j ̸= i then
37 for k to n do
38 exp+← dist(i, j)v(i, k)(v(j, k + 1) + v(j, k − 1));
39 end
40 end
41 end
42 end
43 exp← (D/2)× Constraint(exp);
44 return exp

45 H = exp1 (n, v, A) + exp2 (n, v, B) + exp3 (n, v, C) + exp4 (n, v, dist, D)



3.2. Adiabatic Model Mapping 37

3.2.1 A generalized strategy to map classical problems to quantum hardware

The work on this thesis [186] was based on an empirical and exploratory search in the field of
Quantum Computing (QC) and was conducted in accordance with the tools as they emerged.

Research #0. We started with an exploratory analysis, in 2017, using Google’s open
source quantum computing playground project 1. We did some explorations with a work entitled
"Simulating Markov Transition Probabilities in a Quantum Environment" [188]. We performed
experiments with Markov chains by modeling them into a quantum algorithm capable of being
simulated on a quantum computer. We used the Google Quantum Computing Playground, a
GPU-accelerated quantum computer with a 3D quantum state visualization, a browser-based
WebGL Chrome using the language QScript. We implemented a Markov chain assuming that the
process is homogeneous in time and built the transition matrix by estimating Markov probabilities
for the states. We modeled a transition in which the process does not stay in the same state,
eliminating the self-loop transitions and normalizing the remaining probabilities.

Figure 3.2: Result of script implementation in the Google’s quantum playground. The global
quantum vector state: height of the surface as amplitude, and color as phase.

Research #1. Afterwards, we moved to the IBM Q platform 2 which was in its first steps
of existence. At that time we developed the work "Driven Tabu Search: A Quantum Inherent
Optimisation" [189, 190]. We developed a driven quantum version of the Tabu search algorithm,
which has been well understood for solving combinatorial or nonlinear problems. The experiments
were implemented in the Python programming language using the Quantum Information Software
Kit (QISKit) - a software development kit (SDK) for working with the Open Quantum Assembly
Language (OpenQASM) and the IBM QX. We use as backend the ibmqx5 (16-qubits), and both
high performance computing and classical simulator. In a quantum-metaheuristic procedure, we

1https://www.quantumplayground.net/#/playground/5652224143261696
2https://www.ibm.com/quantum-computing/
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challenge the quantum search space to be maximized, derived from the advantage of interacting
quantum technologies with classical implementations. In a quantum combinatorial optimisation,
an entanglement-metaheurisc can uncover optimal solutions and accelerate the optimisation
process by using entangled states. Therefore, we conduct simulation-based experiments with
two types of quantum initial populations. The sample solutions are composed by 16 qubits

of combined pairs - with non replacement, and with replacement. Until we obtain the best
solution, we build the neighborhood, evaluate the system and detect whether the algorithm
falls in a local optimum. In those cases, we perform the entanglement between qubits if they
are unequal; otherwise, we use superposition in the redundant qubit. This particular feature of
enhanced-entanglement showed best solution in qubit 1 and qubit 3, and a system evaluation
score of 60. An enhanced-superposition in qubit 1 presented an evaluation score of 28, and it
was the best solution found. The quantum inherent optimisation allows us to highlight the best
solution and algorithm performance according to the input combined set.

Research #2. Later, we discover the Xanadu’s Stranberry Fields and PennyLane software,
and continue our gate-based model explorations with a work entitled "Quantum Binary Classific-
ation (Student Abstract)" [192]. We implement a quantum binary classifier where given a dataset
of pairs of training inputs and target outputs our goal is to predict the output of a new input. The
script is based in a hybrid scheme inspired in an existing PennyLane’s variational classifier and
to encode the classical data we resort to PennyLane’s amplitude encoding embedding template.
This work is later detailed in an upcoming section.

Research #3. This research work was similar to the previous, a gate-based approach
resorting to the framework PennyLanne from Xanadu. In this work, we explore a quantum
approach to a machine learning problem. Based on the work of Mari et al., we train a set of
hybrid classical-quantum neural networks using Transfer Learning (TL). Our task was to solve
the problem of classifying full-image mammograms into malignant and benign, provided by
BCDR. Throughout the course of our work, heatmaps were used to highlight the parts of the
mammograms that were being targeted by the networks while evaluating different performance
metrics. Our work shows that this method may hold benefits regarding the generalization of
complex data, however, further tests are needed. We also show that, depending on the task, some
architectures perform better than others. This work is later detailed in an upcoming section.

Research #4. After attending several talks in the field, we decided to focus our work
on adiabatic computing, bringing the work of Priscila Lima et al. to quantum computing, in
particular D-Wave’s QPU. In one of her talks Priscila Lima mentioned a modeling using SATyrus.
We decided to embrace this method and start our proposal, which had as its starting point the
work entitled "Mapping graph coloring to quantum annealing" [191]. This work introduces the
mapping of a graph coloring problem based on pseudo-Boolean constraints to a working graph of
the D-Wave Systems Inc. We start from the problem formulated as a set of constraints represented
in propositional logic. We use the SATyrus approach to transform this set of constraints to
an energy minimization problem. We convert the formulation to a quadratic unconstrained
binary optimization problem (QUBO), applying polynomial reduction when needed, and solve
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the problem using different approaches: (a) classical QUBO using simulated annealing in a von
Neumann machine; (b) QUBO in a simulated quantum environment; (c) actual quantum 1,
QUBO using the D-Wave quantum machine and reducing polynomial degree using a D-Wave
library; and (d) actual quantum 2, QUBO using the D-Wave quantum machine and reducing
polynomial degree using our own implementation. We study how the implementations using
these approaches vary in terms of the impact on the number of solutions found (a) when varying
the penalties associated with the constraints and (b) when varying the annealing approach,
simulated (SA) versus quantum (QA). This work is later detailed in an upcoming section.

Research #5. The next work "Mapping a Logical Representation of TSP to Quantum
Annealing" followed the previous work and as a way to reinforce the proposed pipeline, making
this method a generic method to be considered in the context of adiabatic computation. This
work presents the mapping of the traveling salesperson problem (TSP) based in pseudo-Boolean
constraints to a graph of the D-Wave Systems Inc. We first formulate the problem as a set of
constraints represented in propositional logic and then resort to the SATyrus approach to convert
the set of constraints to an energy minimization problem. Next, we transform the formulation to
a quadratic unconstrained binary optimization problem (QUBO) and solve the problem using
different approaches: (a) classical QUBO using simulated annealing in a von Neumann machine,
(b) QUBO in a simulated quantum environment, (c) QUBO using the D-Wave quantum machine.
Moreover, we study the amount of time and execution time reduction we can achieve by exploring
approximate solutions using the three approaches. This work is later detailed in an upcoming
section.

Resorting to Lima et al. formulation, the mapping of all constraints is represented by a
energy function as shown in Equation 3.1 and derived from pipeline 3.1. As such, the general
approach to solve problems formulated in propositional logic as explained here is represented by
the generic pipeline shown in 3.3.

Problem 
Formulation

Mapping to Constraint
Satisfiability

Compile
Hamiltonian

Classical

Classical Quantum Simulator

Quantum
SATyrus

ANN

BQM

Figure 3.3: Pipeline of the general approach to solve problems formulated in QPL.

SATyrus. A neuro-symbolic architecture for modeling and solving optimization problems
that uses logic, through mapping a problem specification into sets of pseudo-Boolean constraints.
The goal is to transform a problem into a energy function using a logical declarative language
that specifies and compile a target problem. The resulting energy function is then mapped into
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a higher-order Hopfield network of stochastic neurons to find its global minima [122].

ANN. Artificial Neural Networks, or ANN, is a data processing paradigm inspired by how
the biological nervous system, such as the brain, processes data. It is composed of a large number
of densely connected processing elements (neurons) that work together to solve a problem. More
on ANN [86].

BQM. The D-Wave’s solvers work on binary problems 3, and the inputs for these solvers use
standard format known as a Binary Quadratic Model (BQM). The BQM encodes Ising (±1) and
QUBO (0/1) models used by samplers such as the D-Wave system, represented by the following
equation:

E(v) =
∑
i=1

aivi +
∑
i<j

bi,jvivj + c vi ∈ {−1,+1} or {0,1} (3.2)

where ai corresponds to the weight associated with each qubit, which influences the qubit′s to
collapse into its two possible final states, and bi,j constant associated with each coupler (related
to the connectivity), that controls the influence of one qubit on another.

In Figure 3.3 solid lines represent the path to achieve the classical, quantum classical simulator
or quantum output by: SATyrus → Problem Formulation / Mapping to Constraint Satisfiability
→ Compile Hamiltonian → BQM or we can follow an alternative path, such as: Problem
Formulation → ANN. By mapping of logical formulas into algebraic expressions generates an
energy function representative of the problem. In that sense, any problem that is translated into
logic can be solved using the pipeline shown in Figure 3.3. However, we should take into account
the size of the problem since the mapping to the quantum machine depends on the number of
variables and logical/physical qubits available [151].

This chapter described the mapping of applications to quantum hardware, from two per-
spectives: gate-based model mapping, namely, basis embedding, amplitude embedding, angle
embedding and other forms of embedding; and also, adiabatic model mapping based on encoding
using a mathematical formulation, and a final generalized strategy to map classical problems to
quantum hardware, with a previous roadmap of research works that allow us to achieve the final
pipeline. In the next chapter, we discuss the results of the mapping applications to quantum
machines. We start by the gate-based experiments with the quantum classification problems, and
then proceed to the adiabatic model with the mapping for solving the graph coloring problem
and the TSP through Quantum Annealing (QA).

3Currently, besides the problems defined by two output values {0,1}, is also possible to solve problems defined
on discrete sets of output values, such as (A...Z), through the Discrete Quadratic Model (DQM) solver.



Chapter 4

Results and discussion

The results concerning this thesis are in the publications, which are presented in the next
chapters. The thesis feature research results presented next are a summary concerning the
quantum classification problems (Iris plant and traffic data, and also, breast cancer data) and
mapping graph coloring and travelling salesperson problem to Quantum Annealing (QA). For
each experiment, we will briefly explain the target problem, summarise the type of model (gate-
based or adiabatic), the type of hardware to conduct the experiments (simulator or real quantum
device) and the main findings.

4.1 Quantum Binary Classification

We use a quantum binary classifier applied to the Iris dataset and to a car traffic dataset. The
goal is to see how well the quantum classifier is able to discriminate two classes. In the first
example, corresponding to characteristics of the plant Iris and in the second to the traffic states
meaning congestion or not congestion. To conduct the experiments we use a 2-qubit simulator
and a gate-based model. We resort to an existing PennyLane’s variational classifier, consider a
training and validation set, encode the classical data using the PennyLane’s amplitude encoding
embedding template. Futhermore, we resort to the Adam gradient-descent optimizer and the loss
was estimated iteratively. The experiments showed that the classes were well discriminated and
that we attained high accuracy scores, which were also compared with a classical neural network.

4.2 Quantum Transfer Learning for Breast Cancer Detection

In this research work, also using the PennyLane’s resources, we train a set of hybrid classical-
quantum neural networks using Transfer Learning (TL). The goal was to solve the problem
of classifying full-image mammograms into malignant and benign, provided by BCDR. The
experiments showed that this method may hold benefits regarding the generalization of complex
data, however, further tests are needed. We also show that, depending on the task, some
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architectures perform better than others. The classical residual neural network, without resourcing
to TL, achieved a maximum of 67% accuracy while our other experiments using TL achieved
84%. To conduct the experiments we use a classical machine, a quantum simulator and a real
quantum device working in a gate-based model environment. The results resorting to different
approaches were then compared.

4.3 Mapping Graph Coloring to Quantum Annealing

We conduct experiments to map the graph coloring to QA, that in brief, aim at given n colors, find
a way of coloring the vertices V of a graph G such that no two adjacent vertices are colored using
same color. As such, we generate Erdös-Rényi graphs G with different graph interconnectivy: a
fully disconnected graph, a disconnected graph, a connected graph, and a fully connected graph.
We start with a sanity check for both classical and quantum implementations to ensure that
results are valid. Then, we show the execution times of each set of experiments. Afterwards, we
show the optimal solutions, possible solutions and non solutions varying α and β which allow us
to oppose classical and quantum implementations and infer their behavior and expected energy
values. At the end, we describe the problem mapped onto the Quantum Processing Unit (QPU)
with examples from the quantum annealer. In these experiments, we followed the adiabatic
model and resort to the D-Wave’s Chimera graph. Our study was carried out taking into account
a 5-nodes graph, with classical and quantum experiments, where both implementations obtained
the same solutions for all graphs. For instance, in the sanity check part, the fully disconnected
graph was colored with 1 color (optimal solution), the disconnected graph was colored with 2
colors (optimal solution), the connected graph was colored with 3 colors (also optimal solution)
and the fully connected graph was colored with 5 colors (only solution). Furthermore, when
varying the penalties α and β and using less safe bounds, our results show that the classical
Quadratic Unconstrained Binary Optimization (QUBO) and the quantum annealer are capable
of finding an optimal solution.

Although classical and quantum experiments, searched for solutions using the same number
of iterations, the quantum experiments generated a higher number of optimal solutions. In that
sense, the quantum annealing seems to work as a better heuristic search. Besides, in the classical
experiments, we observe that keeping the same values for α and β does not have impact in the
search for solutions. In addition, the quantum results, in general, showed a higher variation on
the number of solutions (optimal and non optimal).

4.4 Mapping a Logical Representation of TSP to Quantum
Annealing

Similar to the graph coloring problem, we conduct experiments to map the travelling salesperson
problem to QA, where the goal is to calculate the minimum distances tours between cities for



4.4. Mapping a Logical Representation of TSP to Quantum Annealing 43

different number of cities n. As before, we show the results of the execution times of each set of
experiments. Afterwards, we indicate the optimal solutions and possible solutions and expected
energy standardized values of classical C, quantum simulator C_Q_sim and quantum hardware
Q in optimal and approximate solutions perspective.

In addition, we describe the problem mapped onto the QPU with broken and non-broken
solutions. With our approach, we were able to find optimal solutions until 7 cities. Since the
method is heuristic-based, non-optimal solutions can be returned as solution, it was the case
for the graph G of size 8. In these experiments, we followed the adiabatic model and resort to
the D-Wave’s Pegasus graph. In the case of the Simulated Annealing (SA) we use the minimum
number of iterations (sweeps, sw) needed to obtain an optimal solution to each graph G, in order
to reduce the execution times. That number iterations, varies according to the graph size.

To achieve the QA execution times rigorously we considered the QPU sample times, explained
in another section later in the context of the TSP.

Results show that for every graph size tested we can always obtain at least one optimal
solution. In addition, the D-Wave machine can find optimal solutions more often than its classical
counterpart for the same number of iterations and number of repetitions. Execution times,
however, can be some orders of magnitude higher than the classical or simulated approaches for
small graphs. For a higher number of nodes, the average execution time to find the first optimal
solution in the quantum machine is 26% (n=6) and 47% (n=7) better than the classical.

In addition, we calculate the approximate solutions, which are based in the distance of
possible solutions to the optimal solution. We notice, in the execution times, that there is a
quantum advantage in time for some graph sizes to achieve the optimal solution, bringing out
the quantum advantage that can be possible for large graphs. However, the same does not occur
if we are seeking for an approximate solution. In that sense, if an optimal solution is needed for
a problem with a large number of nodes, we should considered a quantum device.

In short, this chapter described the main findings of each feature experiment conducted in
this thesis. From the next chapter onwards, the articles relating to the experiences and results
discussed here, will be shown in detail in each separate chapter.
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Quantum Binary Classification (Stu-
dent Abstract)

Carla Silva, Ana Aguiar, Inês Dutra
in the Proceedings of the AAAI Conference on Artificial Intelligence, 2021

Abstract

We implement a quantum binary classifier where given a dataset of pairs of training inputs
and target outputs our goal is to predict the output of a new input. The script is based in a hybrid
scheme inspired in an existing PennyLane’s variational classifier and to encode the classical data
we resort to PennyLane’s amplitude encoding embedding template. We use the quantum binary
classifier applied to the well known Iris dataset and to a car traffic dataset. Our results show that
the quantum approach is capable of performing the task using as few as 2 qubits. Accuracies are
similar to other quantum machine learning research studies, and as good as the ones produced by
classical classifiers.

5.1 Introduction

Near-term quantum devices involve random processes and are built to transform the input data
following a unitary operation, gate operations and measurements and are described by a quantum
circuit. A classical bit has a state of either 0 or 1 and is the smallest quantity of non-probabilistic
information. The simplest possible quantum system (2-state system) can hold precisely one
bit of information. However, the qubit (unit of quantum information) has two possible states
|0⟩ and |1⟩ defined as a finite-dimensional quantum system that forms a computational basis -
two basis states composed by two distinct quantum states that the qubit can be in physically.
Fault-tolerant quantum computers use few physical qubits to encode each logical qubit. These
qubits are also used for error correction where the logical information is encoded through the
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Algorithm 6: Circuit node

1 procedure CIRCUIT(weights,features):
2 AmplitudeEmbedding(features, qubits = [0, 1], pad = 0.0, normalized)
3 for w in weights do
4 Layer(w)
5 end
6 return Expectation value Pauli Z

Algorithm 7: Layer function

1 procedure Layer(w):
2 Rot(w[0, 0], w[0, 1], w[0, 2], qubits = 0)
3 Rot(w[1, 0], w[1, 1], w[1, 2], qubits = 1)
4 CNOT(qubits = [0, 1])

relationship of the qubits, also known as entanglement. In this work we focus on a quantum
binary classifier that resembles a multilayer perceptron [175, 178, 203].

5.2 Quantum Supervised Binary Classification

The inference is performed with the model by initializing a state preparation circuit encoding the
input into the amplitudes of the quantum device, resorting to a model circuit Uθ with trained
parameters. The optimizer uses a loss function and initial parameters. Let X be the inputs and
Y the outputs (actual instance labels). Given a dataset D = (x1, y1), ..., (xM , yM ) with pairs of
training inputs xm ∈ X and target outputs ym ∈ Y for m = 1, ...,M , our goal is to predict the
output y ∈ Y of a new input x ∈ X . The binary classification task on an N -dimensional real
input space can be then defined using X = IRN and Y = {0, 1}.

5.2.1 Amplitude encoding and quantum classifier

The embeddings that we can found in PennyLane1 are templates to encode features into a
quantum state. The amplitude encoding, encodes 2n features into the amplitude vector of n qubits
with padded dimension 2n, Algorithm 6. Our circuit layer (Algorithm 7) consists of rotations on
one qubit as well as CNOTs that entangle the qubit with its neighbour, according the n features
of the dataset D.

Inference is performed with the model f(x, θ) = y by initialising a state preparation circuit SX
encoding the input X into the amplitudes of the quantum device, resorting to a model circuit Uθ

(parametrised unitary matrix) with classification parameters θ (trained by a variational scheme),
and a single qubit measurement which gives the probability of the model predicting 0 or 1.

1https://pennylane.ai/

https://pennylane.ai/


5.3. Materials and Methods 47

5.2.2 Gradient-descent optimiser

The optimiser uses a loss function and initial parameters, and through differentiation performs the
gradient descent in order to choose a set of optimal hyperparameters for the learning algorithm.
We resort to the well known Adam gradient-descent optimizer with adaptive learning rate, first
and second moment x(t+1) = x(t) − η(t+1) a(t+1)

√
b(t+1)+ϵ

, with the update rules,

a(t+1) = β1a(t) + (1− β1)∇f(x(t))
(1− β1) ,

b(t+1) = β2b(t) + (1− β2)(∇f(x(t)))⊙2

(1− β2) ,

η(t+1) = η(t)
√

(1− β2)
(1− β1)

where (∇f(x(t−1)))⊙2 refers to the element-wise square operation (each element in the gradient
is multiplied by itself) and at start the first and second moment are zero. The loss function was
built using the standard square loss that measures the distance between target labels and model
predictions. The model optimises the weights such that the loss function is minimised.

5.3 Materials and Methods

In order to model a car traffic problem we search for a data set in an open source repository. The
Traffic dataset was retrieved from the R package (LPCM), package to analyse traffic patterns.
It concerns a fundamental diagram with observations of speed and flow from 9th of July 2007,
9am, to 10th of July 2007, 10pm, on Lane 5 of the Californian Freeway SR57-N, VDS number
1202263. The original car traffic dataset has a total of 444 samples. The features in the dataset
are: Lane5Flow, Lane5Speed, Lane5Density. The output variable was created (Lane5congestion)
based in two classes resorting to the fundamental diagram relationship q − v where we calculate
the critical point v(qmax) (max flow) to obtain the critical speed and assign 1 to values below the
critical speed (meaning congestion) and -1, otherwise.

The Iris dataset was used in R.A. Fisher’s 1936 paper. The original dataset has a total of
150 samples of three species of plants (50 of each). We create two splitted datasets (Iris A and
Iris B), each one with 100 instances, and based in two classes. The features in the data sets are:
SepalLength, SepalWidth, PetalLength, PetalWidth, and Species is the target variable. As is
well known, class setosa distinguishes very well from the other two classes, so we should expect
almost perfect accuracy results for Iris A since we only take the first two classes. Our goal is to
map the proposed binary classifier onto quantum simulator, analyse whether the variation in the
number of qubits has impact on the results obtained for accuracy in classification. Also, if the
results obtained are very unlike if we use a simulator or a real quantum device.
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5.4 Experiments

(a) Data points (b) Distribution (c) Loss/Accuracy

Figure 5.1: Iris A

(a) Data points (b) Distribution (c) Loss/Accuracy

Figure 5.2: Traffic

Figures 5.1 and 5.2 show data distribution and classification results for the Iris A and Traffic,
namely, loss and accuracy, retrieved from the quantum simulator, considering the training and
validation sets. We performed a comparison with a classical neural network which also resulted
in accuracy equals to 1 for the Iris A dataset and 0.982 for Traffic.

The circuit parameters were adjusted to maximise the classification accuracy and minimise
the loss. As such, a gradient descent is performed to adjust the circuit to minimise the loss
function. The loss function is estimated by iteratively running the model to compare estimated
predictions with respect to the ground truth (known values of y).

5.5 Conclusion and Perspectives

In this work, we resort to amplitude encoding where we use the pad argument for automated
padding. In the future, we will explore other encoding classical data methods, e.g., angle which
encodes N features into the rotation angles of n qubits where N ≤ n, variational/trained or
higher order embedding [80, 127].
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Abstract

One of the areas with the potential to be explored in Quantum Computing (QC) is Machine
Learning (ML), giving rise to Quantum Machine Learning (QML). In an era when there is
so much data, ML may benefit from either speed, complexity or smaller amounts of storage.
In this work, we explore a quantum approach to a machine learning problem. Based on the
work of Mari et al., we train a set of hybrid classical-quantum neural networks using Transfer
Learning (TL). Our task was to solve the problem of classifying full-image mammograms into
malignant and benign, provided by BCDR. Throughout the course of our work, heatmaps were
used to highlight the parts of the mammograms that were being targeted by the networks while
evaluating different performance metrics. Our work shows that this method may hold benefits
regarding the generalization of complex data, however, further tests are needed. We also show
that, depending on the task, some architectures perform better than others. Nonetheless, our
results were superior to those reported in the state-of-the-art (84% against 76.9%, respectively).
In addition, experiments were conducted in a real quantum device, and results were compared
with the classical and simulator.
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6.1 Introduction

It was in 1981 when Richard Feynman [61] first proposed a basic model for a quantum computer,
tackling the inability of classical computers to simulate the physical world. In 1985, David Deutsch
proposed the Quantum Turing Machine, thus formalizing a Universal Quantum Computer [49].
The potential of quantum computers was later proven by Peter Shor [185] in 1994. Shor developed
an algorithm that solves in polynomial time prime factorization and discrete logarithms, an
exponential advantage over known classical algorithms. Shortly after, in 1996, another major
step was taken by Grover et al. [75], by developing an algorithm that finds a given value in an
array in O(

√
N) steps, where N is the array size. Classical algorithms will take a minimum of

N/2 steps.

Since then, a lot of progress has been made, particularly in the past decade. Nowadays,
there’s an on-going investment by technology companies such as Google, Microsoft, IBM, or
D-Wave, making it possible to access cloud-based quantum computers. One of the most promising
applications of quantum computing is in ML. Depending on the model, computational complexity
may be an obstacle. Recent studies, such as the one performed by IBM and MIT [80] or the one
published by Biamonte et al. [18], conclude that ML could benefit from the exponentially large
quantum state space through controllable entanglement and interference, bringing speed and
efficiency to the process.

In ML, different types of neural networks models have been broadly explored, such as
convolutional neural networks (CNN) or recurrent neural networks (RNN). A good example
of such models for QML are CNNs. CNNs are one of the best algorithms in regards to image
content identification and have shown exemplary performance in several tasks [89]. However,
one of its known disadvantages is its complexity. The further we go into a neural network, the
more complex are the features it can recognize since they end up aggregating and recombining.
Improving the speed of these networks can have a huge impact when training models that require
detailed images as input, such as mammograms.

Breast cancer is the type of cancer with the most incidence in women worldwide, with about
1.7 million new cases diagnosed in 2012, representing roughly 25 percent of all cancers in women.
It is also the second most frequent cause of cancer death in women, after lung cancer [66]. In
this research, we present an approach where we make use of a quantum method in the aid of
breast cancer screening. Our proposal is inspired by the work of Mari et al. [133] on TL in
hybrid classical-quantum neural networks. Our task was to classify full-image mammograms
using pretrained classical neural networks resourcing to a quantum enhanced TL method. The
advantage of the TL method, is that, it can be applied to a task where a model can be reused
as the starting point on another task. In contrast to the work of Mari et al. [133], we evaluate
large images, compare our results across different architectures, and, using the top performer, we
apply a series of tests to evaluate the model against its classical counterparts, using different
performance metrics. We conduct classical experiments without and with TL where we can
noticed the advantage of resorting to TL, for example through accuracy 67% versus 84%,
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respectively. In addition, we resort to a quantum simulator varying the circuit depth from 1 to
4 where we also observe an accuracy of 84% for depth equals 1 and 4. Finally, we use a real
quantum device where we observe an accuracy of 81%. These results are very promising, since
we are in the noisy intermediate-scale quantum (NISQ) era [161], where quantum devices are
associated with the need for error correction and still are in their early stage. Moreover, the
quantum models version showed a faster training comparing to the classical version which is also
quite interesting.

The research work is structured as follows: in section 6.2 we show the related work in
the field, in section 6.3 we introduce the details on the QML topic. Section 6.4 describes the
experimental setup. The summarizing of the data used, test of the proposed model, and results
are in section 6.5. Finally, in section 6.6, we outline the resulting contribution and present some
future work.

6.2 Related Work

In this section we summarize the research work on imaging on the topics QML, TL from a
clinical perspective, and also, breast cancer screening using Deep Learning (DL). In order to
compare the quality of the classifiers, we will be using common metrics to assess classification
models. In what follows, we consider binary classification, where True Positive (TP) corresponds
to the number of positive examples that are predicted as being positive, True Negative (TN)
corresponds to negative examples that are predicted as negative, False Positive (FP) corresponds
to a negative example that was predicted as a positive, and False Negative (FN) corresponds to
a positive example that was predicted as a negative [109]. Based on these counters, the following
metrics are defined:

• Sensitivity, Recall or True Positive Rate (TPR): measures the rate of actual positives that
are acknowledged as positives by the classifier.

TP

TP + FN

• Specificity or True Negative Rate (TNR): measures the classifier’s capacity to isolate
negative results.

TN

TN + FP

• Precision: measures the rate of correctly classified instances for one class.

TP

TP + FP

• Accuracy: measures the amount of correctly classified instances of any class.

TP + TN

TP + TN + FP + FN
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• F1-score: is the harmonic mean of precision and recall, with equal weights for both.

2 ∗ precision ∗ recall
precision+ recall

• Area Under the Curve (AUC): AUC represents the degree of separability between classes.
It makes use of Receiver Operating Characteristics (ROC) curve, which measures TPR,
in the y-axis, against FPR (1-TPR), in the x-axis. AUC is a very common indicator of
quality performance used in image classification.

6.2.1 Imaging in quantum machine learning

In an initial search on image processing algorithms for circuit-based quantum models, it is clear
that there are several interesting papers solving tasks such as the algorithm proposed by Duan
et al. [53] for dimensionality reduction, the quantum feature extraction framework proposed
by Zhang et al. [225], the quantum representation of color digital images presented by Sang et
al. [171] or the quantum image edge extraction algorithm proposed by Zhou et al. [68] based on
improved Sobel Operator.

In regards to circuit-based Quantum Neural Networks, Henderson et al. [83] empirically
evaluated the potential benefit of quanvolutional layers by comparing three types of models built
on the MNIST dataset: CNNs, Quantum Neural Network (QNN), and CNN with additional
non-linearities introduced, concluding that QNN models showed a faster training. Grant et al. [74]
used MNIST, Iris, and a synthetic dataset of quantum states to compare the performance for
several different parameterizations. Tang and Shu [202] used rough sets (RS) and QNN in order
to recognize electrocardiogram (ECG) signals. Zhang et al. [223] proved that when compared to
the random structure QNN, QNN with tree tensor (TT-QNN) architectures have gradients that
vanish polynomially with the qubit number showing better trainability and accuracy for binary
classification.

Skolik et al. [194] focus on solving the problem of barren plateaus of the error surface caused
by the low depth of circuits by incrementally growing circuit depth during optimization and
updating subsets of parameters in each training step. Kerenidis et al. [104] proposed a quantum
algorithm for evaluating and training deep convolutional neural networks for both the forward
and backward passes, providing practical evidence for its efficiency using the MNIST dataset.
Kaur et al. [103] presented a novel ensemble-based quantum neural network in order to overcome
the over-fitting issues present in speaker recognition techniques.

6.2.2 Transfer learning in clinical imaging

Several studies [38, 107, 183] support the use of TL using CNN for the analysis of medical
images. Certain methods are more frequently employed according to the clinical object of study
(e.g. brain, breast, eye, etc.), the image acquisition method (e.g. X-rays, ultrasound, or magnetic
resonance, etc.), the depth of the sample, and the size of the dataset.
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Although there is no validated proof of which method works best for a given clinical problem,
Morid et al. [143] suggest that AlexNET is the most commonly CNN model used for brain
magnetic resonance images [129, 209] and breast X-rays [116, 154], while DenseNET for lung
X-rays [124, 219] and shallow CNN models for skin and dental X-rays [149, 224]. In addition,
with smaller datasets, the most frequently applied TL approach is feature extracting, while
fine-tuning is more used with larger datasets; additionally, data augmentation (e.g. translation,
rotation of images), as a mean to feed more artificially generated samples to the CNN model
in exchange of computational stress, is most frequently employed along with fine-tuning TL
approach. Furthermore, studies using fine-tuning TL approaches use fully connected layers
(contrary to traditional classifiers) more often than studies employing feature extracting TL
approaches, which is due to the fact that training fully connected layers usually requires larger
datasets when compared to training traditional classifiers.

In brief, the majority of studies do not benchmark their CNN model against any other model,
and the few that actually do, compare against only one model [143]. Quantum transfer learning
introduces low depth quantum circuits as a subroutine for a classical model. In this context,
Mari et al. [133] propose a method that focuses on the paradigm in which a pretrained classical
network is modified and amplified by a final variational quantum circuit.

Moreover, Acar et al. [3] applied the quantum transfer learning method, in different quantum
real processors of IBM as well as in different simulators, in order to aid Coronavirus 2019
(COVID-19) detection by using a small number of Computed Tomography (CT) images as
a diagnostic tool. Gokhale et al. [72] present an extension to the quantum transfer learning
approach formerly applied to image classification in order to solve the image splicing detection
problem. Zen et al. [222] proposed a method that evaluates the potential of transfer learning
in order to improve the scalability of neural-network quantum states. In the current era of
intermediate-scale quantum technology, Mari’s method [133] is the most appealing as it allows
optimal pre-processing of images with any state-of-the-art classical network and to process the
most relevant features into a quantum computer.

6.2.3 Breast cancer screening using deep learning

The most popular datasets are the Mammography Image Analysis Society (MIAS) database with
322 image samples, the Digital Database for Screening Mammography (DDSM) containing 2500,
and the Breast US Image with 250. Datasets can be used to extract Regions of Interest (ROIs)
to perform detection and segmentation and ResNet variations as well as Inception, AlexNet,
GoogleNet, and CaffeNet models have been used in breast cancer image analysis [48].

In the survey by Debelee et al. [48], we are presented with the available imaging modalities:
Screen-film mammography (SFM), Digital mammography (DM), Ultrasound (US), Magnetic
resonance imaging (MRI), Digital Breast Tomosynthesis (DBT) or a combination of modalities.
The Digital Image category has been the most effective and commonly used breast imaging
modality despite having some limitations which include low specificity, leading to unnecessary
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biopsies.

An interesting work by Shen [181] consists of an end-to-end training algorithm for whole-
image mammograms projected to reduce the reliance on lesion annotations. Initially, it requires
annotations to train the patch classifier consisting of ROI images, then a whole image classifier
can be trained using only image-level labels. INbreast and DDSM datasets were used, showing
that a whole image model trained on DDSM can be easily transferred to INbreast without using
its lesion annotations and using a smaller amount of training data.

Studies, where transfer learning is used in breast cancer image analysis, can also be found;
Mehra et al. [136] compared the results of three networks (VGG16, VGG19, and ResNet50) using
BreakHis dataset, a dataset of histological breast cancer images, and applied data augmentation,
using AUC, accuracy, and Accuracy-Precision Score (APS) as performance measures. The
pretrained networks were used as feature extractors and the extracted features were used to
train logistic regression classifiers. A similar work was presented by Kassani et al. [101]. Also
with a histological dataset, de Matos et al. [47] used Inception-v3 as a feature extractor and a
SVM classifier trained on a tissue labeled colorectal cancer dataset aiming to remove irrelevant
patches. By doing so before training a second SVM classifier, this study shows that the accuracy
improves when classifying malignant and benign tumors. Huynh et al. [92] used data obtained
from the University of Chicago Medical Center, consisting of 219 lesions on full-field digital
mammography images and 607 ROIs about each lesion. By comparing SVM classifiers based on
the CNN-extracted image features and their computer-extracted tumor features in the task of
distinguishing between benign and malignant breast lesions this study concluded TL is a great
tool when there are no large datasets. It is worth mentioning that Li et al. [118] proposed a very
interesting work building a fuzzy rule-based computer-aided diagnosis for mass classification of
mammographic images using the Breast Cancer Data Repository (BCDR) dataset [128].

In brief, the specificity and sensitivity of screening mammography are reported to be 89–97%
and 77–87%, respectively. These metrics describe the performance of the models with reported
false positive rates between 1–29% and sensitivities between 29–97% [167]. Regarding BCDR
- specifically BCDR-D01 and BCDR-D02, the digital image datasets - using a CNN structure
and by undersampling the dataset in order to balance both classes, Hepsag et al. [84] obtained
62% accuracy, 75% training accuracy, 46% precision, 53% recall, and 51% F1-score. However,
different results were achieved when selecting:

• masses: 88% test accuracy, 98% training accuracy, 86% precision, 90% recall, and F1-score
of 88%,

• calcifications: 84%, training accuracy of 98%, precision of 91%, recall of 76%, and F1-score
of 83%.

Cardoso et al. [32] use BCDR in a different context, using ROI to perform a cross-sensor
evaluation of mass segmentation methods. Diz et al. [51] applied KNN, LibSVM, Decision Trees,
Random Forest and Naive Bayes to BCDR and achieved 89.3 to 64.7% for classifying each
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class benign/malignant; 75.8 to 78.3% for classifying dense/fatty tissue and 71.0 to 83.1% for
identification of a finding. Fontes et al. [63] achieved the maximum accuracy of 76.9%, AUC
of 74.9%, sensitivity of 84.88%, and specificity of 64.91% by applying a customized variant of
Google’s InceptionV3 with the use of a Softmax classification layer as the output to perform the
classification task.

However, there seems to be no studies where classical-quantum hybrid models are used to
identify breast cancer in mammograms.

6.2.4 Transfer learning

Conventionally, deep neural networks need large amounts of labeled datasets and very powerful
computing resources to solve challenging computer vision problems, e.g. feature extraction and
classification. TL can be described as the improvement of learning a new task through the
transfer of knowledge from a related (learned) task [153]. This technique only works if the
model features learned from the first task are general. It can be done using labeled or unlabeled
data [162]. From a pretrained model we can perform two types of tasks: (a) fine-tuning and (b)
feature extraction.

In fine-tuning, we essentially retrain the model, updating most or all of the parameters having
the pretrained weights as a basis. In feature extraction, we use the encoded features of the
pretrained model to train the final layer’s weights (classifier) from which we derive predictions
and reshape it to have the same number of outputs as the number of classes in the new dataset
and freeze all the other layers, meaning that the pretrained CNN model works as a fixed feature
extractor.

Transfer learning from natural image datasets, such as ImageNet, whose library is comprised
of roughly one thousand classes (e.g. dog, car, or human, etc.), to medical imaging, such as chest
pathology x-rays with about 5-14 classes (e.g. edema, pleural effusion, or cardiomegaly, etc.), is
often used to avoid training the whole model [143].

6.3 Quantum Machine Learning

In Quantum Computing (QC), instead of working with binary digits (bits) we work with quantum
bits, where 0 and 1 can overlap in time. The qubit (unit of quantum information) has two
possible states |0⟩ and |1⟩. In the context of QC, the Hilbert space represents an abstract vector
space which allows e.g. a quantum superposition meaning that a physical system can be in
more than one state simultaneously. The last few decades have seen significant advances in the
fields of deep learning and quantum computing. As of today, huge amounts of data are being
generated, pushing the interest surrounding the research at the junction of the two fields, leading
to the development of quantum deep learning and quantum-inspired deep learning techniques.
The upcoming topic, is based on Schuld’s description [175].
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6.3.1 Angle embedding

Angle embedding is an interesting approach in the context of neural networks. Assume a neural
network and the network input θ = w0 + w1 ∗ x1 + ...+ wN ∗ xN is written into the angle of an
ancilla or net input qubit, which will be entangled with an output qubit in some arbitrary state
|ψ⟩, Ry(2v) |0⟩ ⊗ |ψ⟩out, where v corresponds to an angle and Ry corresponds to the rotation
around the y-axis, shown in equation 6.1:

Ry(2v) =
[
cos v − sin v
sin v cos v

]
(6.1)

Knowing this, we have what is also known as a quron in the context of quantum neural
networks:

Ry(2v) |0⟩ = cos v |0⟩+ sin v |1⟩ (6.2)

The next step is to prepare the output qubit Ry(2φ(v)) |ψ⟩, we can do this using a nonlinear
activation φ dependent on v that will rotate it.

6.3.2 QNN and variational circuits

A QNN is a machine learning model or algorithm that combines elements from quantum computing
and artificial neural networks. Over the past decades, the term has been used to describe different
ideas, ranging from quantum computers simulating the exact computations of neural nets,
to general trainable quantum circuits that carry only little resemblance with the multi-layer
perceptron structure. We will be focusing mainly on Variational Circuits since it is the one we
will be using in this work, basing its description on the work of Mari et al. [133]. Increasingly, the
term “quantum neural network” has been used to refer to variational or parameterized quantum
circuits. Despite being mathematically different from the inner workings of neural networks, the
term highlights the “modular” feature of quantum gates in a circuit, along with the use of tricks
from training neural networks used in the optimization of quantum algorithms [56].

Classical-quantum hybrid approaches consisting of relatively low-depth quantum circuits
called "variational algorithms" are the near term solution [17, 34, 132, 178]. We can define a
quantum layer as a unitary operation that can be processed by a low-depth variational circuit,
producing the output state |y⟩, by acting on the input state |x⟩ of nq quantum subsystems (e.g.,
qubits or continuous variable modes).

L : |x⟩ −→ |y⟩ = U(w) |x⟩

where w is an array of classical variational parameters. A quantum layer could be, for example,
a sequence of single-qubit rotations followed by a fixed sequence of entangling gates. Notice that,
unlike a classical layer, a quantum layer retains the Hilbert-space dimension of the input states.
This fact is due to the fundamental unitary nature of quantum mechanics and should be taken
into account when designing quantum networks.
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A variational quantum circuit is a concatenation of q quantum layers, equivalent to the
product of many unitaries parametrized by different weights:

Q = Lq ◦ ... ◦ L2 ◦ L1

A real vector x needs to be embedded into a quantum state |x⟩ in order to enter a quantum
network, this can also be done, depending on x, by a variational embedding layer and applied to
some reference state (e.g. ground state).

E : x −→ |x⟩ = E(x) |0⟩

The following step is to apply single-qubit rotations to x. The embedding layer E , unlike L,
maps from a classical vector space to a quantum Hilbert space. Conversely, the extraction of a
classical output vector y from the quantum circuit can be obtained by measuring the expectation
values of nq local observables ŷ = [ŷ1, ŷ2, ..., ŷnq ]. This process can be defined as a measurement
layer, that maps a quantum state to a classical vector:

M : |x⟩ −→ y = ⟨x| ŷ |x⟩

The full quantum network, including the initial embedding layer and the final measurement can
be written as:

F =M◦Q ◦ E

The full network maps a classical vector space to a classical vector space depending on classical
weights. Despite containing a quantum computation hidden in the quantum circuit, F is simply
a black-box analogous to a classical deep network. However, there are technical limitations and
physical constraints that should be taken into account: in a quantum network we don’t have
complete freedom when choosing the number of features in each layer, these numbers are often
linked to the size of the physical system. Typically, embedding layers encode each classical
element of x into a single subsystem where:

#inputs = #subsystems = #outputs

This can be overcome by:

a. adding ancillary subsystems and discarding or measuring some in the middle of the circuit,

b. engineering more complex embedding and measuring layers,

c. adding pre-processing and post-processing classical layers.

6.4 Experimental Setup

Our method consists of a classical-to-quantum TL scheme, based on the one proposed by Mari
et al. [133] where we assume two networks, A and B:
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Figure 6.1: General representation of the transfer learning method [133]

where A′ is the result of removing some of the final layers from network A, trained on dataset
DA to perform task TA. A′ will be used as a feature extractor for B. B is the network that we
want to train using the new dataset DB for some new task TB. In our problem, this can be
translated to:

• DA: ImageNet, image dataset with 1000 classes.

• A: a pretrained ResNet18.

• TA: classification, 1000 labels.

• A′: a pretrained ResNet18 without the final linear layer, serving as an extractor of 512
features.

• DB: BCDR, mammogram image dataset with 2 classes.

• B: DressedQuantumNet, a dressed quantum circuit with 512 input features and 2 real
outputs, proposed by Mari et al. [133].

• TB: classification, 2 labels.

We decided it would be interesting to perform an initial comparison between different
convolutional network architectures to verify which one best fits our data. Therefore, we chose
some of the most widely used architectures in the literature. Using the previous scheme as
reference, network A will be replaced by AlexNet [110], VGG19 [193], DenseNet161 [89],
and ResNeXt50 [218] for the experiments. Further experiments will be done using the one with
the best performance.

6.4.1 Dressed quantum circuit

The Dressed Quantum Circuit (DressedQuantumNet) consists of the classifier that will attach to
the final linear layer of the pretrained model.
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Assuming a Resnet18 is the pretrained model, the classifier will receive 512 real values as
input to the circuit and will output 2 real values. The only trainable part of the network is the
quantum classifier. Therefore, the number of trainable parameters can be calculated using the
circuit’s input size, its depth, and output size: 512 ∗ n_qubits+ n_qubits ∗ depth+ output_size.
Trainable parameters’ count will be presented along our results. The following represents the
dressed quantum circuit:

Q̂ = L4−→2 ◦ Q ◦ L512−→4

where L512−→4 is a pre-processing layer that consists of an affine operation followed by a non-linear
function φ = tanh applied element-wise, Q is the variational circuit and L4−→2 is a linear classical
layer without activation (i.e.φ(y) = y).

The 4 real variables obtained from L512−→4 are then embedded in the quantum circuit by
applying a Hadamard gate(H) and performing a rotation around the y axis of the Bloch sphere
parametrized by a classical vector x:

E(x) =
4⊗

k=1
Ry(xk

π

2 )H |0⟩

The trainable circuit is composed of q variational layers Q = Lq ◦ ... ◦ L2 ◦ L1 where:

L(w) : |x⟩ −→ |y⟩ = K
4⊗

k=1
Ry(wk) |xk⟩

where K is an entangling unitary operation made of three controlled NOT gates.

Finally, the 4 output states are measured on the classical register using the Pauli-Z matrix
and passed to the linear classical layer, producing 2 output states. The classification is done
according to argmax(y), where y = (y1, y2) is the output of the dressed quantum circuit. An
illustration of the circuit is shown in Figure 6.2.

Figure 6.2: Dressed Quantum Circuit

6.4.2 Overview

The implementation for this research was based on the one provided by Mari et al. [133].
Concerning the data, it was loaded using our own dataloader (BCDR), and transformed using
random horizontal and vertical flips for data augmentation. The input channels are also normalized
using mean values and standard deviations of ImageNet. In order to get reproducible results, a
manual seed was set for the dataloader.
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Hybrid classical-quantum model. We start by loading a pretrained model and managed
the following considerations:

a. Since we want to use the pretrained network as a feature extractor, we need to freeze
every layer so that the weights aren’t updated during training, the only weights we will be
updating are the classifier’s.

b. We determine the size of the vector that will be entering DressedQuantumNet and set
DressedQuantumNet as the model’s classifier layer.

c. Cross-entropy was used as a loss function, Adam optimizer was selected to update the
weights of the model at each training step, and a scheduler was set to decay the learning
rate by gamma every step size.

d. Finally, we train the model.

6.5 Materials, Tests and Results

Model comparison tests were performed, classical without and with TL, also comparison
using a quantum simulator and resorting to a quantum device available at IBM Quantum
(https://quantum-computing.ibm.com/).

In this section we give a description of the data used and how it was handled, followed by
testing, analysis and discussion of the obtained results. Tests were run on Intel Core i7-10510U
CPU @ 1.80GHz×8 with 16GB RAM. The quantum experiments were conducted using the IBM
Quantum device ibm_lagos which is detailed later.

6.5.1 Materials, data description and processing

In this section we briefly describe the data and the needed processing for the data preparation
in order to attain the achieved results. We used RStudio in this portion of our work. The
data used was provided by BCDR [128]. According to their website [76], "the creation of
BCDR was supported by the IMED Project (for Development of Algorithms for Medical Image
Analysis) aimed at creating medical image repositories and massive exploration of Computer-
Aided Diagnosis (CADx) methods on GRID computing resources. The IMED project was carried
out by INEGI, FMUP-CHSJ – University of Porto, Portugal and CETA-CIEMAT, Spain between
March 2009 and March 2013. Recently, in October of 2013, the IMED project was renewed and
Aveiro University began to be part of this consortium. Now, the four institutions continue to
actively augment and develop the BCDR."

The data is composed of two folders (BCDR_D01 and BCDR_D02) divided by study and
patient, each containing several files corresponding to cranio-caudal (CC) and Medium-Lateral
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Oblique (O) views of one or both sides - left (L) and right (R) - of a breast. The data also
includes information, such as, the biopsy result. This new dataframe is composed of 49 columns
and 2696 rows. From image filename we cropped out image view and side and created a new
column view. The new column view was filled according to the following: LCC = 1, LO = 2,
RCC = 3 and RO = 4.

When looking for columns with at least 30% of NA values, we also made sure to trim
every value since there were some white spaces in the dataset. Variables with a single class
were also eliminated. Columns with 2 to 10 different values were converted to factor. We
did the same for rows, eliminating those with at least 30% of NA values, no rows were found.
Column classification had a row with value 2, this row was eliminated. Finally, we changed
classification class Malignant to 1 and Benign to 0 and applied the unique function. The
resulting dataframe contains 909 rows and 10 columns. Note that the same mammogram can
contain the description of several different masses/calcifications. Knowing this, 269 mammograms
contain nodules, 688 contain calcifications, 82 contain microcalcifications, 8 contain architectural
distortions and 51 contain stroma distortions. Since we will be analyzing unique images, we
eliminate duplicated image filename from the dataset, and end up with 825 rows. To check
if the images are well represented, we analyzed features age, view, density and classification.
Figure 6.3 shows data distribution of the features age, view, density and classification.

(a) Age distribution in data. (b) View distribution in data(1=LCC, 2= LO,
3=RCC, 4=RO).

(c) Density distribution in data. (d) Classification distribution in data.

Figure 6.3: Data distribution of the features age, view, density and classification
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As we can see, classification is unbalanced. Class 1 has 141 samples and class 0 has 684.
We fixed this by oversampling class 1 by adding 2 copies of every sample with classification = 1
and cropping the excess samples with classification = 0. Each set of copies will be associated
with the angle by which it will be rotated. We chose angle 60 for the first set of copies, and
angle 45 for the second set. Since every image is subjected to random horizontal and vertical
flips during train and test phases, we kept the angles to the first quadrant such that they don’t
result in the same images. The distribution, after balancing classification, can be seen below.

Figure 6.4 shows data distribution of the features age, view, density and classification after
balancing the feature classification.

(a) Age distribution in data after balancing
classification.

(b) View distribution in data after balancing
classification.

(c) Density distribution in data after balancing
classification.

(d) Classification distribution in data after balancing
classification.

Figure 6.4: Data distribution of the features age, view, density and classification after balancing
classification

6.5.2 Tests and results

In this chapter, we present:

• an initial model comparison using a classical approach in order to determine which of the
models has the best performance. We also determine the proper learning rate for each of
the models that will be further tested;
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• tests and results using our QuantumDressedNetwork as a classifier resourcing to a quantum
simulator in order to pick which hybrid classical-quantum model will be further tested;

• tests and results using a classical model without and with TL to benchmark against our
hybrid model. Then a comparison between results obtained from these models;

• tests and results using our QuantumDressedNetwork as a classifier resourcing to a real
quantum device.

Python and PennyLane platform were used in this portion of our work. Heatmaps which explicitly
model the contributions of each pixel in the feature maps of a CNN to the final output were
used to aid result comparison. These heatmaps result from using GradCAM [180], an earlier
gradient-based visual explanation method, and GradCAM++ [37]. Note that these networks
have different architectures and, therefore, the final convolutional layer, the one evaluated by
GradCAM and GradCAM++, is different. Some of the functions were deprecated and were
therefore changed manually.

step # epochs # batch size gamma lr scheduler step size
Model Comparison 0.4 30 32 0.1 5

Classical 0.0004 42 32 0.1 15
Quantum simulator 0.0004 42 32 0.1 15

Table 6.1: Parameters set for each experimental approach

We defined class 0 as the negative class as it represents a benign mammogram, and class 1 as
a positive class as it represents a malignant mammogram.

In Table 6.1 we can observe the values of the parameters for the different approaches, where,
step is the step of the learning rate, # epochs is the number of training epochs, # batch size is
the number of samples for each training step, gamma lr scheduler is the learning rate reduction
applied every 10 epochs and step size concerns the learning rate updates every step size epochs.
Model comparison corresponds to the initial comparison of all the models and Classical to the
parameters set in the classical without and with TL.

Model comparison. A positive case and a negative case were tested against AlexNet,
VGG19,DenseNet161, ResNet18, and ResNeXt50_32x4d respectively. For simplicity, we used a
simple linear transformation as classifier.
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(a) Negative case (b) Positive case

Figure 6.5: The rows in a) and b) show the results from AlexNet, VGG19, DenseNet161, ResNet18,
and ResNeXt50_32x4d, respectively. The first column corresponds to the original image, the
following two result from GradCAM (without image overlap and with image overlap) and the
last two result from GradCAM++ (without image overlap and with image overlap).

In Figure 6.5, the warmer the color, the more the network is targeting the area. Knowing
this, DenseNet, Resnet, and ResNeXt seem to do a pretty good job at targeting the main areas
where masses/calcifications are present.

Now we need to have an idea of which learning rate to use. The starting learning rate is 0.4
and will be adjusted by the model by a power of −1 every 5 epochs. The goal is to find the
optimal learning rate through the graphic, by choosing the global minimum, as suggested in the
paper by Smith et al. [195] so we can give every model a fair chance to converge.

Table 6.2 shows the training results for DenseNet, ResNet and ResNeXt.

Model DenseNet ResNet ResNeXt
Loss [4.52,30.15] [3.21,21.89] [5.99,52.32]

Total parameters 26476418 11177538 22984002
Parameters trained 4418 1026 4098

Time (min) 87 16 55

Table 6.2: Training results for DenseNet, ResNet and ResNeXt. The interval corresponds to the
minimum/maximum loss values obtained during testing phase.

The best learning rate should be the value that is approximately in the middle of the sharpest
downward slope. Therefore, we have that DenseNet’s, ResNet’s, and ResNeXt’s optimal learning
rate is around 0.0004. We will keep step_size = 10 because TL requires small learning rates
regardless.
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Quantum simulator. Using the best parameters mentioned we trained and tested DenseNet,
ResNet and ResNext in a quantum simulator, with the QuantumDressedNetwork as a classifier
for Resnet. We also tune the last parameter needed; the circuit’s depth. According to Mari et
al. [133], a characteristic of the TL approach is the existence of an intermediate optimal value
for the quantum depth.

Model DenseNet ResNet ResNeXt
Loss [0.46,0.64] [0.47,0.67] [0.53,0.66]

Accuracy [0.71,0.84] [0.54,0.83] [0.58 0.83]
Precision [0.77,0.98] [0.53,0.99] [0.90,0.99]

Recall [0.61,0.75] [0.57,0.91] [0.20,0.69]
F1-score [0.68,0.81] [0.67,0.81] [0.33,0.80]

Specificity [0.78,0.98] [0.18,0.97] [0.94,0.99]
AUC 0.69 0.75 0.59

Total parameters 26480854 11178582 22988118
Trainable parameters 8854 2070 8214

Time (min) 104 38 74

Table 6.3: Performance metrics results for DenseNet, ResNet and ResNeXt, for the quantum
simulator. The interval corresponds to the minimum/maximum values obtained during testing
phase.

Table 6.3 shows the performance metrics results for DenseNet, ResNet and ResNeXt, in the
quantum simulator. Results are very similar for all three models. However, ResNet achieved a
considerably higher Recall and AUC. Based on this, we will choose ResNet. Additionally, it is
faster in comparison. Figure 6.6 shows results varying the circuit depth from 1 to 4.

Classical (without and with) TL. Figure 6.7a shows classical results without TL obtained
from a ResNet, meaning that the network was trained from scratch. Figure 6.7b shows classical
results with TL obtained from a ResNet, meaning that the only trained layers were the classifier’s.
These will be used as benchmarks to our model. For simplicity, we used a simple linear
transformation as classifier.
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(a) Circuit depth = 1 (b) Circuit depth = 2

(c) Circuit depth = 3 (d) Circuit depth = 4

Figure 6.6: The rows in a), b), c), and d) show the results for a positive and for a negative sample,
respectively, using Resnet. The first column corresponds to the original image, the following two
result from GradCAM (without image overlap and with image overlap) and the last two result
from GradCAM++ (without image overlap and with image overlap).

(a) Classical without TL (b) Classical with TL

Figure 6.7: The rows in a) and b) show the results for a positive and for a negative sample,
respectively. The first column corresponds to the original image, the following two result
from GradCAM (without image overlap and with image overlap) and the last two result from
GradCAM++ (without image overlap and with image overlap).

Let’s consider the models:

• C: the classical ResNet.

• C+TL: the classical ResNet using Transfer Learning.

• CQ1, CQ2, CQ3 and CQ4: the hybrid classical-quantum ResNet models using Transfer
Learning, whose variational quantum circuits have a depth of 1, 2, 3, and 4, respectively
(using the simulator).

As mentioned before, performance metrics are calculated considering that the class malignant is
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the positive class.

Model C C+TL CQ1 CQ2 CQ3 CQ4
Loss 0.66 0.38 0.41 0.42 0.44 0.42

Precision 0.75 0.95 1.00 0.95 0.99 0.97
Recall 0.52 0.73 0.69 0.70 0.61 0.71

F1-score 0.61 0.82 0.82 0.83 0.80 0.82
Accuracy 0.67 0.84 0.84 0.83 0.83 0.84
Specificity 0.83 0.96 1.00 0.96 0.99 0.98

AUC 0.70 0.58 0.77 0.77 0.74 0.69
Trainable parameters 11689512 1026 2066 2070 2074 2078

Time (min) 48 24 40 51 69 82

Table 6.4: Performance metrics results for test set in all ResNet models tested. These results
were on the same dataset, same train-test split and with a fixed seed. Results using the hybrid
classical-quantum are executed in the simulator.

CQ1 has the higher overall results between training and test, namely precision, specificity
and AUC score. It also has the lowest loss value. No further testing was needed on depth as
the AUC value started to degrade. The resulting model is used on an IBM Quantum device for
testing.

Quantum device. Due to the waiting times, IBM Quantum experiments were done using the
best model state that resulted from training in the simulator. This means that only the test part
was done in the quantum machine. We ran the file containing our network (that resulted from
the Dressed Quantum Circuit with depth=1 - CQ1 - in the state where the best F1-score was
measured), on an IBM Quantum device.

Figure 6.8 shows the quantum results achieved for the metrics under consideration resorting
to the device ibm_lagos, for 20 repetitions of the testing in the same testset. As, in this
experiment, we use data augmentation for each run, results are not the same at each repetition,
but the model seems to be stable.
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Figure 6.8: Results for the quantum experiments on the IBM Quantum device

Figure 6.9: ibm_lagos error map

Loss Precision Recall F1-score Accuracy Specificity Time (hours)
0.47 0.83 0.80 0.81 0.81 0.84 43.7

Table 6.5: Performance metrics results for test set in the quantum device, using the best model
found by the quantum simulator.

In Table 6.5 we show the metrics results for the best classification given by the quantum
device among the 20 repetitions.
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At first, we believed that the testing results variation seen in Figure 6.8a originated from the
quantum machine error rates. The configuration of the qubits connectivity showing associated
errors of the quantum device we use, ibm_lagos, is shown in Figure 6.9. The main characteristics
of this device are: 7 qubits, 32 of quantum volume, a Falcon r5.11H processor type, version 1.0.1,
the basis gates (CX, ID, RZ, SX, X), 6.595e-3 of average CNOT error, 1.466e-2 of average readout
error, 106.39 us average T1 and 79.45 us average T2. The readout error of each qubit is shown
on the left hand side. Errors can be as high as 2.53%. The average error for Hadamard and
CNOT gates are also shown. As the errors are not too high to justitfy changes in performance
results, we performed an experiment without data augmentation.

Using the resulting model from CQ1 as a base, and without performing any data augmentation
techniques, we tested the same exact 32 samples (the size of one epoch):

• once in the quantum simulator;

• twice on ibmq_quito (due to queue size).

The results were exactly the same:

• 6 of our samples were positive but incorrectly classified as negative;

• 26 of our samples were negative and correctly classified as negative.

As expected, the results were the same for testing of the same samples. This leads us to believe
that noise has little or no interference in our model and that the quantum simulator does a good
job of simulating a quantum device.

6.6 Conclusion and Future Work

It is too soon to say whether or not QML can be an advantage. Our results only point to a good
generalization of complex data which needs further testing. The classical residual neural network,
without resourcing to TL, achieved a maximum of 67% accuracy while our other experiments
using TL achieved 84%. When comparing classical ResNet with and without applying TL method
we can see that the task execution time was cut by half. The results are not so drastic when
comparing the classical-classical and the classical-quantum hybrid networks making use of TL.
The results for every metric are far more consistent between training and testing and between
epochs when using the dressed quantum circuit, so much so that AUC value went from 58% to
77%, leading us to believe that a hybrid-quantum network does present some advantage as AUC
measures how well the model separates two classes. Our overall results surpassed those from
the literature that also applied a classical transfer learning technique - accuracy of 84% against
76.9%, AUC of 77% against 74.9% and specificity of 100% surpassed 64.91%. However, regarding
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recall we obtained 69% and 84.88% was mentioned in the literature. Nevertheless, the results
from the quantum device show a recall closer to that of the literature, 81%.

As is known in the community, there has been a lot of work in the field of error correction
regarding quantum machines. However, despite the errors associated to the used quantum device
ibm_lagos, good results were obtained with the quantum experiments. Our results seem to
confirm what has been said in the quantum machine learning literature: the results seem to
converge towards an optimal solution much earlier, which leads us to believe that such a large
number of iterations in the quantum version will not be needed compared to the classical version.

As future work, an interesting approach could be to separate the dataset into masses and
calcifications and only then perform classification. That way, we would be evaluating different
specific features in a similar scenario and would probably get clearer results. It would also be
interesting to test different datasets. We also would like to explore other gate-based quantum
devices with smaller associated errors. Lastly, the best way to know how well this model performs
would be to see how the data appears in our Hilbert Space. Ideally, both classes would appear
very separately in it, as tight clusters.

In addition, in this research we conduct the experiments using the angle embedding technique
since with this method the features can be learned. The same is not true if we use, for example,
the basis embedding because it is theoretically impossible. In addition, if we had used e.g.
the amplitude embedding, it could have been too complex to compute gradients with respect
to features, which may not be feasible. However, in the future other embeddings can be
considered [127].
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Abstract

Quantum annealing provides a method to solve combinatorial optimization problems in complex
energy landscapes by exploiting thermal fluctuations that exist in a physical system. This work
introduces the mapping of a graph coloring problem based in pseudo-Boolean constraints to a
working graph of the D-Wave Systems Inc. We start from the problem formulated as a set of
constraints represented in propositional logic. We use the SATyrus approach to transform this set
of constraints to an energy minimization problem. We convert the formulation to a quadratic
unconstrained binary optimization problem (QUBO), applying polynomial reduction when needed,
and solve the problem using different approaches: (a) classical QUBO using simulated annealing
in a von Neumann machine, (b) QUBO in a simulated quantum environment, (c) actual quantum
1, QUBO using the D-Wave quantum machine and reducing polynomial degree using a D-Wave
library, and (d) actual quantum 2, QUBO using the D-Wave quantum machine and reducing
polynomial degree using our own implementation. We study how the implementations using these
approaches vary in terms of the impact on the number of solutions found (a) when varying the
penalties associated with the constraints and (b) when varying the annealing approach, simulated
(SA) versus quantum (QA). Results show that both SA and QA produce good heuristics for this
specific problem, although we found more solutions through the QA approach.

71
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7.1 Introduction

Quantum computing is an emerging field where science seeks to solve NP-hard problems
more efficiently than classical algorithms, taking advantage of quantum phenomena such as
entanglement and tunneling [112, 147]. Current technology has allowed the building of different
quantum devices that can actually solve small problems. Practical experiments have been
performed in these devices in order to better study their behavior and reliability. Some of these
devices make use of the concept of Quantum Annealing (QA) [65], having the D-Wave family of
computers as one of its representatives [94].

One important problem that has been solved by QA models is constrained optimization [82].
In fact, quantum approaches have been used to solve several applications of constrained
optimization including circuit-based fault diagnosis, nurse scheduling, traffic optimization,
portfolio optimization and vehicle routing [19, 58, 93, 97, 146, 206].

One particular type of constrained optimization is the one based on binary variables, i.e., each
variable can assume one of only two possible values 0 or 1. We explore the logical constraint-based
formulations of problems as used in the SATyrus approach [122], and explore the graph coloring
problem. A pseudo-Boolean optimization [28] of our target problem is obtained by representing
the hard combinatorial problems as pseudo-Boolean constraints based in the one presented
in [123]. We compare a classical and a quantum implementation of the graph coloring modeled as
boolean constraints using a Quadratic Unconstrained Boolean Optimization (QUBO) solver and
a quantum solver based in symbolic/algebraic formulation with polynomial reduction. Our main
contribution is twofold. First, we show how to map a SATyrus modelled problem to a quantum
annealer. Second, we explore the quantum system dynamicity by varying the problem penalties.

According to Kudo [111], other approaches based on quantum annealing for graph coloring
have been proposed. For example, in a QA approach resorting to the Ising model, real-time
quantum simulation requires 2qN dimensions to color a graph with N nodes and q colors. In a
Constrained Quantum Annealing (CQA) approach, the dimension of the Hilbert space is reduced
to qN , meaning that the number of small energy levels is lower, as such, the dimension reduction
achieves better performance. Also, the CQA approach [82] assigns spins to each node of the graph
G, associating a multiple disjoint constraint (with a physical meaning concerning magnetization)
to a qubit, which is ’up’ if vertex i is colored with color k, and is ’down’ otherwise, according
to the objective function. The results show that while a penalty based embedding requires a
fully connected graph, in the CQA approach less additional edges are required to satisfy the
constraint.

The remainder of this paper is organized as follows: in the first section we present the
background where we define (i) the mapping of the graph coloring to constraint satisfiability,
(ii) the QUBO formulation, (iii) the polynomial reduction, and (iv) how adiabatic quantum
computation works. The following section contains the implementations where we describe
the classical graph coloring mapping and the quantum annealer mapping. Next, we show the
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experimental results with discussion. Finally, in the last section we conclude and suggest future
work.

7.2 Background

Logic can be used to define a set of constraints of a problem which can be mapped by combining
optimization problems into energy minimization in such a way that global minima correspond to
the set of solutions to the original problem. In this section, we start by defining the constraints
for the graph coloring problem and describe the techniques used to find solutions by energy
minimization in a classical and quantum perspective.

7.2.1 Mapping combinatorial problems to constraint satifiability

One elegant way of solving problems is to specify the hard combinatorial problems as pseudo-
Boolean constraints defining an energy landscape representing the space state of solutions of
the target problem, as in Lima et al. [123]. From that representation we can use any solver to
output a solution. Lima et al. describe how to map two well-known combinatorial problems:
graph coloring and the traveling salesperson. First, these problems are represented as boolean
constraints that are, in turn, mapped to an energy equation that corresponds to a higher-order
Hopfield network, where the goal is to minimize the energy. From the energy equation, we can
use any solver to find an optimal solution. Very briefly, we recall the mapping process for the
graph coloring problem [123].

The graph coloring problem consists in assigning colors to certain elements of a graph subject
to certain constraints. Let G = (V,A) be an undirected graph, where V is the graph’s vertex set
and A the set of edges. For a boolean modelling, we may define each pair vertex-color and each
color as a variable. The Integrity Constraints are then: (1) every vertex must have one color
assigned to it, (2) two neighbouring vertices cannot have the same color, (3) a vertex cannot
have more than one color, (4) if a color is assigned to a vertex, then the corresponding unit in
matrix "colors" must be activated. Also, the Optimality Constraint is defined by (5) the number
of activated elements in matrix "colors" must be minimum. As an example of logic representation
and mapping, and assuming that vcij is a boolean variable representing that region i is colored
or not colored with color j, the integrity constraint (1) can be represented as the disjunction
∀i,∀k | 1 ≤ i ≤ n, 1 ≤ k ≤ n : ∨(vcik). Following the transformations defined by Lima et al., we
have the mapping of all constraints to the energy function as shown in Equation 7.1.

E = β
[ n∑

i=1

n∑
k=1

n∑
k′ =1,k′ ̸=k

vcikvcik′

]
+ α

[ n∑
i=1

n∑
k=1

(1− vcik)
]
+

α
[ n∑

i=1

n∑
i′ =1,i′ ̸=i

n∑
k=1

vcikvci′kneighii′

]
+ α

[ n∑
i=1

n∑
k=1

vcik(1− ck)
]

+
n∑

k=1
ck

(7.1)
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Where neigh corresponds to G’s adjacency matrix, c is the color vector, and vc is a colored region
in G. As QUBO does not allow objective function constraints, new terms can be added to the
final QUBO quadratic expression to model the objective function through penalty terms [207].
Therefore, the constraints are associated to a penalty (Equation 7.2) where α is applied to the
types (1, 2 and 4) constraints and β to the type (3) constraint, with h being a small number and
n the number of colors which is the same as the number of vertices in the graph.1.

α = (n ∗ 1) + h

β = ((n3 + n2 + 1) ∗ α) + h
(7.2)

In their original work, Lima et al. represented and mapped the problem to be solved by a
higher-order Hopfield network. In this work we will explore the QUBO solver, since there is an
implementation of QUBO for the quantum device we use.

7.2.2 Adiabatic quantum computation

The term quantum annealing refers to the realization of the Adiabatic Quantum Computation
(AQC), or quantum adiabatic optimization [102]. AQC can be performed using a commercially
spin quantum accelerated annealing built by D-Wave Systems Inc [94]. A quantum annealing
approach allows the system to be initialized and search for a neighbor solution gradually at
the same time the system follows the changes, ending in a configuration that outputs one good
solution, similarly to a simulated annealing, but in a quantum context. The goal is to find the
global minimum of an objective function of candidate solutions resorting to thermal fluctuations
in an energy landscape, which allows transitions between states in the process of searching for
the global minimum [46, 99, 100, 108].

Current technology has enabled scalable quantum computing and allowed D-Wave Systems Inc
to create quantum processing units (QPUs) with more than 2000 quantum bits (DW_2000Q_5).
These can be accessed using Leap [96], a real-time quantum application environment. Figure 7.1)
shows a quantum hardware graph (Chimera). A Chimera graph is composed of unit cells
arranged in 8-vertex bipartite graphs (i.e. K4,4). In quantum annealing, processors find low-
energy solutions by seeking low energy states of a problem, i.e. a good solution. The process of
finding a solution in a quantum annealer device is therefore a suitable approach to optimization
problems and problems that require good low-energy samples (probabilistic sampling problems).

1The problem formulated this way assumes that there is a solution, suboptimal, that assigns one distinct color
to each region in the map
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(a) A 2× 2 array of unit cells (b) A 16× 16 array of unit cells

Figure 7.1: Chimera interconnection graph. Each cell is a 4× 4 bipartite graph

The D-Wave quantum annealing processor has the goal to minimize the energy of an
Ising/QUBO configuration whose pairwise interactions lie on the edges of a Chimera graph.
Before QUBO problems are solved on quantum computers, the corresponding graph must be
minor-embedded (or compiled) onto a Chimera graph [26, 43]. However, the complex behavior
of the energy landscape sometimes leads to the chain break in the 2000Q Chimera when
compiling (embedding) an optimization problem into the annealing hardware which can be a
major bottleneck [73]. This may happen because a chained set of qubits can represent the same
variable of the mapped graph (a vertex). During compilation, this chain may break (this occurs
when the qubits of the same chain are not in the same state) due to compiler optimizations. To
handle this problem, we may provide the compiler with a chain break fraction, a quantity defined
per-sample of the fraction of chains which may be broken.

7.2.3 Quadratic unconstrained binary optimization

QUBO is an NP hard problem, used to solve many applications and suitable to algorithms
implementation in quantum annealing [10, 204]. Adiabatic quantum computers can aid to solve
a QUBO problem, using the quantum mechanical process called quantum annealing, therefore
being able to solve any NP-hard problem like graph coloring [43]. In computation, NP-hard and
NP-complete problems can be described through an Ising formulation, e.g., partitioning problems,
binary integer linear programming, covering and packing problems, problems with inequalities,
coloring problems, Hamiltonian cycles, tree problems, graph isomorphisms [130]. In this work,
we formulate graph coloring as a quadratic unconstrained binary optimization problem. QUBO
is a powerful mathematical tool that can aid in mapping a problem to a quantum annealing
computer. The QUBO solution is mapped onto a physical qubit network structure with size and
edge density restrictions [117]. In a QUBO [71] problem, variables can be true and false where
states correspond to 1 and 0 values. The QUBO model is equivalent to the Ising model and can
be translated to an Ising Hamiltonian by a linear transformation (Equation 7.3).
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• In matrix notation, we intend to minimize the function:

f(x) =
∑

i

Qi,ixi +
∑
i<j

Qi,jxixj (7.3)

where the diagonal terms, Qi,i, are the linear coefficients and the nonzero off-diagonal
terms are the quadratic coefficients Qi,j and xi and xj are the variables.

• In scalar notation, the objective function is:

Equbo(ai, bi,j ; qi) =
∑

i

aiqi +
∑
i<j

bi,jqiqj . (7.4)

where ai are the linear coefficients, bi,j the quadratic coefficients, and qi and qj are the
variables.

The problem to be solved by a D-Wave system is given by Equation 7.4 which also may
represent an Artificial Neural Network with symmetric binary connections. In this case, qi is the
qubit i which participates in the annealing cycle and settles into one of the final states {0,1},
with weight ai which influences the qubit′s tendency to collapse into its two possible final states,
with qi and qj the coupler which allow one qubit to influence the other. bi,j is the same as the
binary weight of Artificial Neural Networks [120], also strength, which controls the influence
exerted by one qubit on another. To represent the graph coloring problem, we can then resort
to the QUBO model by using a transformation in the node assignment constraints and using a
transformation on the adjacency constraints. The built QUBO model has an objective function
given by xtQx where Q is determined by the problem formulation and each constraint. The
terms impose the constraints for each vertex and provide energy penalty each time constraints
are violated. In the way the combinatorial problems are formulated we can not directly apply the
QUBO solver, given that some terms of the final expression are not quadratic. We then resort to
a method to perform polynomial reduction to the non-quadratic terms.

7.2.4 Polynomial reduction

Polynomial reduction techniques translate higher order expressions to lower order. Translating
higher order expressions to a quadratic formulation can be very tricky, but, fortunately, for our
formulation, we only need to reduce terms from degree 3 to 2, which simplifies the problem
(for an excellent discussion about degree reduction of polynomials, please check [198]). The
reduction by minimum selection allows to lower our problem’s polynomial degree explained by
Equation 7.5:

xyz = m
w
ax{w(x+ y + z − 2)} (7.5)

where x, y, z are minimized binary variables in a pseudo-binary function and w is the ancillary
binary variable indicating true or false status which are able to replace quadratic terms for
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Figure 7.2: Main scheme for the classical and quantum versions of our method

cubic terms. In that sense, to lower a higher-degree polynomial to QUBO, we can replace terms
in the form of axyz, where a is a real number, according to Equation 7.6:

axyz =

aw(x+ y + z − 2) a < 0

a{w(x+ y + z − 1) + (xy + yz + zx)− (x+ y + z) + 1} a > 0
(7.6)

7.3 Methodology

Figure 7.2 shows the main steps of our methodology. We start with the boolean constraint
formulation according to Lima et al.. We then transform the boolean expressions into algebraic
expressions (all ∨ are replaced by arithmetical "+" and all ∧ by "*", multiplication). We sum
all together to obtain the energy function that will be minimized. We then apply polynomial
reduction to the quantum version and feed the final expression to QUBO solvers. As the penalties
used are "safe" (we use an upper bound assuming a maximum n), we empirically study how the
use of less safe penalties affects the solution and violates constraints. The α’s and β’s can be
over-estimated because, the first level of penalties derives from an upper bound of the objective
function. The worse it is that upper bound, the bigger this first penalty is (usually named
"alpha") and that "gap" is propagated to the other penalty levels, making the energy landscape
more difficult to traverse in order to find global minima. This form of calculating penalties
will be called "safe", as it guarantees the correspondence between global minima of the original
problem and those of the energy equation. By contrast, if we relax this gap between the different
penalty level values, we might still find global minima in the case where there are better (tighter)
upper bounds for the target problem that could not be part of the formulation. In this case, we
will name this value attribution to penalty levels as "unsafe".

Next, we present the algorithms used in our methodology. Code is available at [187].

Algorithm 8 takes the number of colors and h (small constant) and returns the multiplicatives
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α and β. Algorithm 9 compiles the model based on the Hamiltonian H for the classical solver
(PyQUBO [201]). Algorithm 10 prepares the graph coloring Hamiltonian built from symbolic
computing (SymPy) to a quantum approach. Algorithm 11 implements the polynomial reduction.

D-Wave’s Leap provides the function make_quadratic from the dimod library which
allows to create a binary quadratic model from a higher order polynomial. In this work, we will
use the term Q_mq to refer to the use of this library and Q_ms to refer to the use of polynomial
reduction by minimum selection implemented by us. In both implementations, subexpressions
exp correspond to a given problem constraint.

We use an EmbeddingComposite which fixes the chain using a default chain break algorithm.
This is a problem-dependent issue, so we choose a value of chainstrength (a parameter of the
algorithm) corresponding to the maximum value of the order of magnitude of the QUBO terms of
the graph coloring problem. The chainstrength should be a value of the same order of magnitude
as the rest of the terms in the QUBO/Ising, since, when the problem is scaled, it will guarantee
that the forces keeping the member qubits will be comparable to all other forces [16, 30, 151].

The quantum experiments were conducted on the D-Wave 2000Q system, and the classical
in a MacBook Air, 1.8 GHz Intel Core i5 processor, 8 GBytes of memory 1600 MHz DDR3.
All times reported are the average of 10,000 iterations (for the PyQUBO simulated annealing
iterations and for the D-Wave iterations). The SA number of run repetitions is 10,000. The
number of iterations for each one of the 10,000 repetitions of the SA is 5,000. Besides, we should
consider that the quantum annealer experiments have, in addition to the execution time, the
travel time from the remote quantum machine to the local machine.

Algorithm 8: Graph Coloring penalties multiplicatives.

1 function alpha (n, h);
Parameters : Number of colors, small constant
Alpha : Multiplicative

2 return n + h

3 function beta (n, alpha, h);
Parameters : Number of colors, alpha, small constant
Beta : Multiplicative

4 return ((n3 + n2 + 1)alfa) + h

5 A← alpha(n, h);
6 B ← beta(n, A, h);
7 return A, B

7.4 Results and Discussion

In this section, we display the results beginning with a sanity check and the execution times of
each set of experiments. Afterwards, we show the optimal solutions, possible solutions and non
solutions varying α and β which allow us to oppose classical and quantum implementations and
infer their behavior and expected energy values. At the end, we describe the problem mapped
onto the QPU with examples from the quantum annealer.
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Algorithm 9: Graph Coloring Hamiltonian (PyQUBO)

1 function exp1 (n, vc, B);
Parameters : Number of colors, binary vector, β

Integrity : Constraints

2 for i to n do
3 for k to n do
4 for k′ to n do
5 if k′ ̸= k then
6 exp← exp + Constraint(vc(i, k) ∗ vc(i, k′));
7 end
8 end
9 end

10 end
11 exp← Constraint(B ∗ exp);
12 return exp

13 function exp2 (n, vc, A);
Parameters : Number of colors, binary vector, α

Integrity : Constraints

14 for i to n do
15 for k to n do
16 exp← exp + Constraint(1− vc(i, k));
17 end
18 end
19 exp← Constraint(A ∗ exp);
20 return exp

21 function exp3 (n, vc, neigh, A);
Parameters : Number of colors, binary vector, graph adjacency matrix, α

Integrity : Constraints

22 for i to n do
23 for k to n do
24 for i′ to n do
25 if i′ ̸= i then
26 exp← exp + Constraint(vc(i, k) ∗ vc(i′, k) ∗ neigh(i, i′));
27 end
28 end
29 end
30 end
31 exp← Constraint(A ∗ exp);
32 return exp

33 function exp4 (n, vc, A);
Parameters : Number of colors, binary vector, α

Integrity : Constraints

34 for i to n do
35 for k to n do
36 exp← exp + Constraint(vc(i, k) ∗ (1− c(k)));
37 end
38 end
39 exp← Constraint(A ∗ exp);
40 return exp

41 function exp5 (n);
Parameters : Number of colors
Optimality : Constraints

42 for k to n do
43 exp← exp + c(k);
44 end
45 return exp

46 H = exp1 (n, vc, B) + exp2 (n, vc, A) + exp3 (n, vc, neigh, A) + exp4 (n, vc, A) + exp5 (n)
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Algorithm 10: Graph Coloring Hamiltonian (SymPy)

1 function exp1 (n, vc, B);
Parameters : Number of colors, binary vector, β

Integrity : Constraints

2 for i to n do
3 for k to n do
4 for k′ to n do
5 if k′ ̸= k then
6 exp← exp + algebraic constraint expression variable ”vc” and indexes i, k, k′;
7 end
8 end
9 end

10 end
11 exp← B ∗ exp;
12 return exp

13 function exp2 (n, vc, A);
Parameters : Number of colors, binary vector, α

Integrity : Constraints

14 for i to n do
15 for k to n do
16 exp← exp + algebraic constraint expression variable ”vc” and indexes i, k;
17 end
18 end
19 exp← A ∗ exp;
20 return exp

21 function exp3 (n, vc, neigh, A);
Parameters : Number of colors, binary vector, graph adjacency matrix, α

Integrity : Constraints

22 for i to n do
23 for k to n do
24 for i′ to n do
25 if i′ ̸= i then
26 exp← exp + algebraic constraint expression variables ”vc”, ”neigh” and indexes i, k, i′;
27 end
28 end
29 end
30 end
31 exp← A ∗ exp;
32 return exp

33 function exp4 (n, vc, A);
Parameters : Number of colors, binary vector, α

Integrity : Constraints

34 for i to n do
35 for k to n do
36 exp← exp + algebraic constraint expression variables ”vc”, ”c” and indexes i, k;
37 end
38 end
39 exp← A ∗ exp;
40 return exp

41 function exp5 (n);
Parameters : Number of colors
Optimality : Constraints

42 for k to n do
43 exp← exp + algebraic constraint expression variable ”c” and index k;
44 end
45 return exp

46 H = exp1 (n, vc, B) + exp2 (n, vc, A) + exp3 (n, vc, neigh, A) + exp4 (n, vc, A) + exp5 (n)
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Algorithm 11: Polynomial reductions: reduction by minimum selection.

1 function expression (terms);
Terms : Terms with degree 3
Polynomial reductions : Expression with polynomial reductions

2 for t to terms do
3 term← t;
4 if t.count(” ∗ ”) = 3 then
5 subterm← t.split(” ∗ ”);
6 if subterm(0) > 0.0 then
7 term← subterm(0) + ” ∗ (w ∗ (” + subterm(1) + subterm(2) + subterm(3) + ”− 1.0)” + ”(” +

subterm(1) + ” ∗ ” + subterm(2) + subterm(2) + ” ∗ ” + subterm(3) + subterm(3) + ” ∗ ” +
subterm(1) + ”)− (” + subterm(1) + subterm(2) + subterm(3) + ”)” + ”1.0)”;

8 end
9 else

10 term← subterm(0) + ” ∗ w ∗ (” + subterm(1) + subterm(2) + subterm(3) + ”− 2.0)”;
11 end
12 end
13 exp← exp + term;
14 end

7.4.1 Sanity check and execution time

Before presenting further results, we perform a sanity check for both classical and quantum
implementations just to guarantee that results are reliable. Following [168], we generate
Erdös-Rényi graphs G and we experiment small graph coloring problems with different graph
interconnectivy: a fully disconnected graph, a disconnected graph, a connected graph, and a fully
connected graph. Results of coloring are shown in Figure 7.3 (classical coloring) and Figure 7.4
(quantum coloring). Both implementations obtained the same solutions for all graphs. The fully
disconnected graph was colored with 1 color (optimal solution). The disconnected graph was
colored with 2 colors (optimal solution). The connected graph was colored with 3 colors (also
optimal solution) and the fully connected graph was colored with 5 colors (only solution possible
in terms of number of colors). The results shown in Figures 7.3 and 7.4 were obtained with α = 5
and β = 755 (obtained by using n as the number of colors, which is also the same as the number
of vertices).
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Figure 7.3: Classical: sanity check for mapping the graph coloring

We concentrate our study in the 5-nodes graph of Figure 7.4(c). As this is a small problem it
is trivial to check which solutions are optimal and which are not. For this graph, the optimal
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Figure 7.4: Quantum: sanity check for mapping the graph coloring

coloring number is 3. So, we checked all outputs for the conditions below and counted the number
of (a) optimal solutions, (b) possible solutions and (c) non solutions. If we could find all optimal
solutions for this problem, this would be 7200.

a. Optimal solutions

• ∃ci ∈ {0, 1} : ∑4
i=0(ci = 1) = 3

• ∃vcij , vcik ∈ {0, 1} : ∑4
i=0

∑4
j=i+1

∑n
k=0 ¬(vcij = 1 ∧ vcjk = 1)

• ∃neighij , vcik, vcjk ∈ {0, 1} : ∑4
i=0

∑4
j=i+1(neighij = 1)∑n

k=0(vcik ̸= vcjk)

b. Possible solutions

• ∃ci ∈ {0, 1} : ∑4
i=0(ci = 1) >= 3

• ∃vcij , vcik ∈ {0, 1} : ∑4
i=0

∑4
j=i+1

∑n
k=0 ¬(vcij = 1 ∧ vcjk = 1)

• ∃neighij , vcik, vcjk ∈ {0, 1} : ∑4
i=0

∑4
j=i+1(neighij = 1)∑n

k=0(vcik ̸= vcjk)

c. Non solutions

• 3. ̸∈ 1. ∧ 2.

In the conditions, ci corresponds to the activated color i, vcik to a colored region i with color
k, neigh to the graph adjacency matrix and n is the number of colors activated. For optimal
solutions we just need to check if the number of ci variables with value set to 1 is 3 and check
for inconsistencies (constraint violations) in the other variables. For non-optimal solutions, the
number of ci variables will be greater than 3, but we also need to check for inconsistencies. Non
solutions are all that do not fit the conditions (1) and (2).

7.4.2 Varying α and β

In this work, the penalty values α and β are calculated using maximum values of n and therefore
are safe. However, could we still achieve (optimal) solutions by changing these safe values? What
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are the values of α and β that do not allow finding an optimal solution or any solution? Can we
visit a smaller part of the search space and still find an optimal solution by changing the values of
α and β? Do the classical and quantum implementations find the same solutions and behave the
same as we vary the values of α and β? In order to answer these questions, we performed various
experiments decreasing the values of α and β. We pick the G(5, 3) with 3 colors and 5 vertices
with connectivity of type (c) shown in Figures 7.3 and 7.4 and performed a first experimental
part of a set of three with α = {1, 5, 755} and β = {1, 5, 755}, shown in Figures 7.5, 7.6 and 7.7.

When varying the penalties and using less safe bounds, our results show that the classical
QUBO and the quantum annealer are always capable of finding an optimal solution, which
answers our two first questions. In a second experimental part (shown in the Appendix) we again
picked the G(5, 3) with 3 colors and 5 vertices, with connectivity of type (c) and decreased the
values of α and β, ranging from a higher penalty to a lower as shown in Table 7.1. This Table
shows the execution times, in microseconds, the differences between the classical and quantum
execution times, and the number of returned solutions for the quantum solver, with the variation
of α and β. The average execution time is 4046.1 µs for the classical runs (C), 1169.3 µs for the
classical quantum simulator (C_Q_sim), 624.7 µs for the quantum annealing using the D-Wave
quadratic library for polynomial reduction (Q_mq) and 606.7 µs for the quantum annealing using
our implementation of polynomial reduction (Q_ms). For all the other experimental sets (varying
only α and varying only β) we show the execution time in Tables 7.2 and 7.3.

Table 7.1: Time (µs) of classical C and quantum Q experiments for graph coloring with 5 colors
varying α and β

α 5 4 3 2 1
β 755 604 453 302 151

C (µs) 4137.8 4038.7 3980.5 3984.8 4088.5
C_Q_sim (µs) 1053.7 1140.3 1092.2 1379.9 1180.2
Q_mq (µs) 566.6 712.2 580.4 591.0 673.4
Q_ms (µs) 596.8 597.6 587.8 583.8 667.7

Set displayed in Table 7.1 is calculated according Equation 7.2 with α ranging from 1 to 5
and replacing in β = ((n3 + n2 + 1) ∗ α) + h with h equal a small number, e.g. 0.0000005. In
this work, we have as reference α = 5 and β = 755 obtained as functions α = alpha(n, h) and
β = beta(n, α, h) with n equal 5.

As we can observe from the plots, the experiments that ran in the D-Wave produced a higher
number of optimal solutions. Both implementations, classical and quantum searched for solutions
using the same number of iterations. These results seem to indicate that the quantum annealing
searches for solutions in a better space. In that case, the quantum annealing seems to work as a
better heuristic search.

For the classical implementations, keeping the same values for α and β does not seem to
impact the search for solutions. The quantum versions have a higher variation on the number of
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Figure 7.5: Solutions counts for pure classical C and classical quantum simulator C_Q_sim for 3
sets (α = 1, β = 1) and (α = 5, β = 5) and (α = 755, β = 755)
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Figure 7.7: Energy values of classical C and both methods of polynomial reduction Q_mq and
Q_ms for 3 sets (α = 1, β = 1) and (α = 5, β = 5) and (α = 755, β = 755)
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Table 7.2: Time (µs) of classical C and quantum Q experiments for graph coloring with 5 colors
varying α

α 5 4 3 2 1
β 755 755 755 755 755

C (µs) 4002.4 3958.2 4688.5 4411.1 4049.3
C_Q_sim (µs) 1313.1 1054.9 1178.3 1022.2 1299.5
Q_mq (µs) 809.0 753.4 793.2 801.5 866.8
Q_ms (µs) 869.9 763.4 827.5 802.8 784.9

Table 7.3: Time (µs) of classical C and quantum Q experiments for graph coloring with 5 colors
varying β

α 5 5 5 5 5
β 755 604 453 302 151

C (µs) 4226.3 4164.8 4190.6 4085.0 4373.9
C_Q_sim (µs) 1214.0 1102.7 1190.5 1258.5 1284.5
Q_mq (µs) 586.3 576.4 644.3 585.2 576.2
Q_ms (µs) 850.6 607.2 803.7 618.0 579.0

solutions (optimal and non optimal), in general.

In the boxplots that report the energy values for variations of α and β, we can observe that
changes in β impact more the quality of solutions than changes in α. Besides, the classical SA
pushes energy values towards more negative values, which is controversial, given that all quantum
approaches find optimal solutions with energy close to zero, which was expected.

7.4.3 Problem mapped onto the QPU

To map a problem onto a QPU we resort to a process known as minor embedding which allows
the mapping of logical qubits to physical qubits and often requires chains as explained before
associated to a strength. The nodes and edges on the graph described in variables are translated
to the qubits and couplers in the Chimera shown in Figure 7.1. Each logical qubit in the graph
of the objective function can be represented by one or more physical qubits.

We illustrate the graph G(5, 3) with 3 colors and 5 vertices with α = 5 and β = 755, Figure 7.8,
mapping variables to assigned qubits on both Q_mq and Q_ms methods. Also, the binary optimal
results shown in a grid, Figure 7.9 for quantum results (Q_mq and Q_ms). For example, Figure 7.8
shows the embedded graph in the QPU hardware by assigning the vertices onto the physical
qubits. In this Figure, we can notice that one variable can be mapped to several qubits during
compilation. Also, one qubit can be used by multiple variables along the execution time. As an
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example, in the Q_mq experiment, variable ’vc30’ was mapped to qubits [535, 527, 521, 393, 543,
536] while in the experiment Q_ms, variable ’vc30’ was mapped to different qubits: [485, 493,
477] of the Chimera. In Figures 7.9, we show the selected colors for each experiment (i.e. ’ck’
equal 1, black color, when activated with k colors from 0 to 4), as well as, the selected edges of
the resulting colored graph (i.e. ’vcij ’ equal 1, black color, varying ij according to colors k).
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Figure 7.8: Mapping variables to assigned qubits on both Q_mq and Q_ms methods for α = 5
and β = 755 for test in Figure 7.9
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7.5 Conclusions and Future Work

Resorting to the adiabatic model we encoded the graph coloring problem into the quantum
hardware graph (Chimera). We used a quantum annealer solver to sample low-energy states
which are the optimal solutions of the problem.

Besides a classical implementation, both pure classical and simulating a quantum environment
based on the chimera graph, we developed an algorithm that translates pseudo-boolean constraints
to quantum annealing based in QUBO and symbolic computing. Since quantum annealers can
not assure the finding of an optimal (lowest energy) solution and can be considered more than
a formal solver, an automatic heuristic-finding [156], we study how the variation of penalties
affects the number of solutions. We compare two implementations of quantum annealing using
the D-Wave machine with classical implementations of QUBO.

In the D-Wave machine, besides the execution time reported, jobs needed to wait in a
queue till being scheduled to run. We reported the number of optimal solutions found in each
experiment, by performing a more controlled variation of α and β, fixing one of them and varying
the other, giving much more insight about the performance of the quantum implementation
regarding the quality of the explored landscape.

We conclude from our study that (a) experiments made varying α and β have small impact
on the number of solutions found, (b) high β values cause the energy values to vary substantially
and (c) the SA and QA approaches found a good number of solutions, leading to the remark
that SA and QA produces good heuristics for the specific graph coloring problem, in particular
the QA procedure. As future work, we intend to expand the experiments to larger graphs and
other problems, such as, the travelling salesperson problem.
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Abstract

This work presents the mapping of the traveling salesperson problem (TSP) based in pseudo-
Boolean constraints to a graph of the D-Wave Systems Inc. We first formulate the problem as
a set of constraints represented in propositional logic and then resort to the SATyrus approach
to convert the set of constraints to an energy minimization problem. Next, we transform the
formulation to a quadratic unconstrained binary optimization problem (QUBO) and solve the
problem using different approaches: (a) classical QUBO using simulated annealing in a von
Neumann machine, (b) QUBO in a simulated quantum environment, (c) QUBO using the D-Wave
quantum machine. Moreover, we study the amount of time and execution time reduction we can
achieve by exploring approximate solutions using the three approaches. Results show that for
every graph size tested with the number of nodes less than or equal to 7, we can always obtain at
least one optimal solution. In addition, the D-Wave machine can find optimal solutions more
often than its classical counterpart for the same number of iterations and number of repetitions.
Execution times, however, can be some orders of magnitude higher than the classical or simulated
approaches for small graphs. For a higher number of nodes, the average execution time to find
the first optimal solution in the quantum machine is 26% (n=6) and 47% (n=7) better than the
classical.

91
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8.1 Introduction

D-Wave Systems [94] has been developing its own version of a quantum computer that uses
annealing, which is different from the gate-based model approaches of IBM, Intel, Rigetti and
Google [148]. Currently, D-Wave has quantum machines with more than 5,000 qubits and
35,000 couplers, a larger, denser, and powerful graph for building quantum applications. Unlike
universal quantum computers that operate using quantum gates and the principles of the circuit
model [196], D-Wave devices are specialized primarily in solving combinatorial optimization
problems typically using quantum annealing (QA) [98]. QA uses quantum fluctuations to find
the global minimum of a given objective function over a given set of candidate solutions, in a
way similar to simulated annealing (SA), which is based on thermal fluctuations [159]. In brief,
QA exploits the tunnel effect to escape local minima rather than the thermal hill-climbing used
by SA [158]. Various applications take advantage of annealing techniques, e.g. learning agents,
biology, wireless technology, vehicle routing, chemistry [13, 29, 119, 197, 208], among others.

Explorations in quantum logic [42] and algorithms for mapping Boolean constraint satisfaction
problems (CSPs) to QA have been proposed [88, 91, 191]. The aim of this work is to perform
the mapping of the travelling salesperson problem (TSP) by using pseudo-Boolean constraints
to a working graph of the D-Wave Systems. The procedure in this research is similar to the
one presented by Silva et al. [191], applied to the graph coloring problem, resorting to the
formulation of combinatorial problems by using the SATyrus approach (a SAT-based Neuro-
Symbolic Architecture for Constraint Processing) [123]. While that work concentrated on
evaluating the impact of penalties on obtaining optimal solutions, this focuses on finding
approximate solutions. The final aim is to provide a general framework to solve classes of
combinatorial problems such as graph coloring, travelling salesperson, minimum spanning tree,
knapsack, among others [130]. In fact, some works have already highlighted the benefits of
solving optimization problems using QA [52, 145].

Other approaches based on quantum annealing for TSP have been proposed. For example,
Martoňák et al. [134] suggest a Monte Carlo QA scheme for the symmetric TSP, based on a
constrained Ising-like representation. The performance is compared with the standard thermal
SA, and the results highlight the importance of QA methods. In addition, Warren [211, 212]
shows implementations of the symmetric TSP on a quantum annealer resorting to two approaches:
(1) by finding approximate solutions, and (2) by finding an optimal tour. The author ends
with a discussion of the hardware snags that hinder the best way for solving the TSP due
to the connectivity between the artificial spins which are sparse and limited on the D-Wave.
Furthermore, to overcome hardware restrictions, studies on reducing limitations of quantum
annealer in solving optimization problems under constraints are being made [150].

The remainder of this paper is organized as follows: in the first section we present the
background where we define (i) the mapping of the travelling salesperson problem to constraint
satisfiability, (ii) concepts on adiabatic quantum computation and the mapping formulation.
The following section contains the implementations where we describe the travelling salesperson
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problem mapping from classical and annealer perspective through the methodology. Afterwards,
we show the experimental results with discussion, ending with conclusion and future work.

8.2 Background

In this section, a method is shown for modeling optimization problems using logical constraints
which is exemplified for the TSP. We explain the methods used that uncover solutions by energy
minimization in a classical and quantum perspective. We describe the foundations on which the
adiabatic model application is based later on. The concepts of pseudo-Boolean problems and the
integration between them and the problem of satisfiability are addressed.

8.2.1 Mapping combinatorial problems to constraint satisfiability

In our context a combinatorial problem is represented as logical Boolean constraints which are
then mapped to an energy expression where the goal is to minimize the energy. As such, we show
the mapping process for the TSP according to this formulation [123]. The traveling salesperson
problem can be defined as follows. Let G = (V,E) be an undirected graph, where V is the
graph’s vertex set (cities) and E the set of edges (connecting two cities). The goal is to find a
tour of minimum cost (distance). To model the problem, two types of constraints are modeled:
Integrity and Optimality Constraints. The Integrity Constraints are: (1) all n cities must take
part in the tour, (2) two cities cannot occupy the same position in the tour, (3) a city cannot
occupy more than one position in the tour. Also, the Optimality Constraint is defined by (4) the
cost between two adjacent cities in the tour. Resorting to Lima et al.’s formulation, the mapping
of all constraints is represented by the energy function as shown in Equation 8.1.

As an example, the first part of the equation represents the Integrity Constraint (1), which is
initially represented by the logical disjunction: ∀i,∀j | 1 ≤ i ≤ n, 1 ≤ j ≤ n : ∨j(vij), where vij

is a Boolean variable representing a city i appearing in the j_th position in the tour.

Energy = α
[ n∑

i=1

n∑
j=1

(1− vij)
]

+ β
[ n∑

i=1

n∑
i′ =1,i′ ̸=i

n∑
j=1

(vijvi′ j)
]
+

β
[ n∑

i=1

n∑
j=1

n∑
j′ =1,j′ ̸=j

(vijvij′ )
]

+
[ n∑

i=1

n∑
i′ =1,i′ ̸=i

n−1∑
j=1

distii′vijvi′ (j+1)

] (8.1)

The dist corresponds to the distance between cities and v is a Boolean variable. We then model
the objective function through penalty terms. As such, the constraints are associated to a penalty
(Equation 8.2) where α is applied to the constraints of type 1 and β to the constraints of types 2
and 3, with h being a small number and n the number of cities (the number of vertices in the
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graph). 
dist = max{distij}

α = ((n3 − 2n2 + n) ∗ dist) + h

β = ((n2 + 1) ∗ α) + h

(8.2)

As an example, we implemented [187] the TSP based in Hopfield [85] and Tank [87], with
the following energy function 8.3:

Energy = A

2
[ n∑

i=1

n∑
j=1

n∑
k=1,k ̸=j

vijvik

]
+ B

2
[ n∑

j=1

n∑
i=1

n∑
k=1,k ̸=i

vijvkj

]
+

C

2
[ n∑

i=1

n∑
j=1

(vij − n)2
]

+ D

2
[ n∑

i=1

n∑
j=1,j ̸=i

n∑
k=1

distijvik(vjk+1 + vjk−1)
] (8.3)

Where dist corresponds to the distance between cities, v represents a Boolean variable, and
n the number of cities. We considered A = B − (D × dL), B = (3× dU) + C, D = 1/dU and
C = 1, and dL = dU/2 with dU equals to the sum of edge weights in the graph. With this
formulation using the QUBO approach we achieve optimal solutions for the TSP for n ≤ 6. For
the study of parameters A, B, C and D we analyze the references [131, 160, 200].

8.2.2 Adiabatic quantum computation and the mapping

In the context of quantum mechanics, a Hamiltonian is a mathematical concept which describes
the physical system by mapping certain states to energies. As such, in the D-Wave system the
Hamiltonian can be defined as:

HIsing = A(s)
2

(∑
i

σ̂(i)
x

)
︸ ︷︷ ︸
Initial Hamiltonian

+ B(s)
2

∑
i

hiσ̂
(i)
z +

∑
i>j

Ji,j σ̂
(i)
z σ̂(j)

z


︸ ︷︷ ︸

Final Hamiltonian

(8.4)

where σ̂(i)
x,z are Pauli matrices (a set of three 2 x 2 complex matrices) operating on a qubit

qi, and hi and Ji,j represent the qubit biases and coupling strengths. A(s) and B(s) are energy
scaling functions that progress according to the anneal fraction, s.

Quantum annealing (also known as the quantum adiabatic algorithm or adiabatic quantum
optimization) starts from the ground state of the initial Hamiltonian applying successive
transformations till the system attains the final ground state which solves the optimization
problem. The adiabatic theorem of quantum mechanics ensures that QA finds the final ground
state (solution of the optimization). According to Mishra et al. [139], this process does not
generally allows the system to perform better than classical optimization algorithms.
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More formally, the system begins in a ground state of a time dependent Hamiltonian H(s)
(with s ∈ [0, 1]), that is slowly modified from an initial form H0 to a final form H1, in a time
t(s) with t(0) = 0, t(1) = τ , considering an interpolation between the two Hamiltonian states.
Starting with |ψ(0)⟩ in the ground state of H0 the system evolves according to Schrödinger’s
equation and end up near the ground state of H1 [57, 166]. The Adiabatic Quantum Computation
(AQC) Hamiltonian can be written as follows,

H(s) = (1− s)H0 + sH1 (8.5)

where the Hamiltonian H1 ground state encodes the solution of a combinatorial optimization
problem. In brief, AQC encodes the solution to a problem in the ground state of the final
Hamiltonian where the adiabatic theorem can have approximate or rigorous versions as described
in [7].

Nowadays, there are many types of architectures for quantum computers. In the gate-based
model, the goal is to control and handle the evolution of the quantum states in time, in a circuit
perspective. In quantum annealing, the goal is to initialize the system in a delocalized state, i.e.
anywhere in space, where it would gradually converge to our solution by minimizing the energy.
Quantum annealing (as a metaheuristics) aids in finding the global minimum of a given objective
function over a given set of candidate states. For example, one possible mapping is through the
Ising model, which can solve Boolean problems with the objective function below, which shows
the relationship between the spins, represented by couplings. In this case, the linear coefficients,
corresponding to qubit biases, the quadratic coefficients, corresponding to coupling strengths, the
variables are either "spin up" (↑) or "spin down" (↓) states which correspond to +1 and -1 values.
A problem can also be formulated as a QUBO where variables can be true and false with states,
respectively, corresponding to 1 and 0 values. The Ising and QUBO models are mathematically
equivalent, it is possible to translate from one model to the other. The QUBO-based equation is
defined as follows:

EnergyQUBO(x) =
N∑
i

aixi +
N∑

i<j

bi,jxixj . (8.6)

where ai are the linear coefficients, bi,j the quadratic coefficients, and xi and xj are the variables.
To translate a QUBO model to an Ising model, xi → si+1

2 , on the other hand, from Ising to
QUBO, si → 2xi − 1.

Currently, D-Wave Systems allows access to quantum processing units (QPUs) with more than
5000 quantum bits which can be accessed using the real-time quantum application environment,
Leap [96]. Figure 8.1 shows one of the D-Wave QPU architectures, the Pegasus topology. The
D-Wave’s QPU’s are fabricated with X qubits and Y couplers in a named topology and the
D-Wave QPU is a not fully connected lattice of interconnected qubits. Pegasus is the D-Wave
Advantage topology following the D-Wave 2000Q QPU fabricated with 2048 qubits and 6016
couplers in a Chimera topology.
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(a) K4,4 configuration (b) L configuration (c) Unit cells in a P4 graph

Figure 8.1: Pegasus topology with qubits represented as dots and couplers as lines

We use the notation Cn for the Chimera graph with size n and Pn for the Pegasus topology
family. Furthermore, the D-Wave’s topologies are characterized by a nominal length and degree.
The nominal length concerns to how many qubits, through internal couplers, each qubit is
orthogonally connected, and the degree is the number of different qubits each qubit is connected
through couplers. As such, in the Chimera topology, qubits have a nominal length of 4 and degree
of 6, and in the Pegasus topology, qubits have a nominal length of 12 and degree of 15 [95].

As mentioned in [191], the D-Wave quantum annealing processor has the goal to minimize the
energy of an Ising/QUBO configuration whose pairwise interactions lie on the edges of a Chimera
or Pegasus graph. However, the Ising/QUBO problem should first be embedded [16, 45] onto
the working graph. Chain breaks (i.e., the measurement of all qubits in the chain giving different
values) may occur during embedding an optimization problem into the annealing hardware. To
tackle this issue, we can provide a quantity based in upper values of the maximum value of
QUBO coefficients. A chain of (multiple) physical qubits in the QPU represents each logical
variable (a binary variable in the graph), and the chain break fixing is needed when the physical
qubits in a chain do not have all the same value, 0 or 1, when the annealing cycle ends, so they
can be mapped back to the original problem, in this case, the chain strength plays a relevant
role [163].

Problem mapped onto the QPU. When mapping a problem to the QPU (e.g. Pegasus
shown in Figure 8.1), the nodes and edges on the graph that represents the problem are translated
to the qubits and couplers of the working graph. In this scenario, each logical qubit, in the graph
of the objective function, can be represented by one or more physical qubits, and this process is
known as minor embedding. In this embedding technique, each logical variable (binary variable
in the original graph) is represented by a chain of physical qubits in the QPU where all the
physical qubits in a given chain should have the same value at the end of the annealing cycle.
Besides, we should consider the chain strength c which is the weight that is associated to the
edges. If this value is not large enough, the physical qubits in the chain will not take the same
value as we mentioned before, and the chain may break and make it hard to find an optimal
solution. This constant c is typically the maximum value of the QUBO coefficients or an upper
close value to this maximum.
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8.3 Methodology

In this section, we discuss the methods used to conduct the research, in particular, we depict the
mapping process, show the algorithms that allow the mapping of the formulated problem, and
the experimental setup.

8.3.1 The mapping process

Figure 8.2 shows the main scheme steps for the mapping process. We begin with the Boolean
constraint formulation, then we develop the algorithms described in our methodology (code is
available at [187]).

Problem
formulation

Mapping to
constraint

satisfiability

Compile
Hamiltonian
Classical

Quantum Simulator
Quantum

PyQUBO
constraint

Optimal
Solutions

Approximate
Solutions

Figure 8.2: Main scheme steps for the mapping process

Algorithm 12 takes the number of cities and h (small constant) and returns the multiplicatives
α and β. Algorithm 13 compiles the model based on the Hamiltonian created from the expressions
which represent the constraints (PyQUBO [221] is used for that).

As the proposed work is heuristic-based, there is a chance that the returned solution is not
optimal. Usually, the QPU is asked to return a sample of R results, to raise the chances of
finding an optimal solution [135]. These R results contain combinations of variables values that
can be solutions and no solutions. In order to count solutions, optimal and not optimal, we
take the output list of the annealing and check for the conditions below to count the number of
(a) optimal solutions (satisfy all the listed conditions) and (b) possible solutions (satisfy all the
listed conditions but not with the minimum distance tour). The attained results were compared
with the achieved results by resorting to the Python library tsp.

• Conditions to ensure optimal solutions

– no broken constraints: all c ∈ R such that c = 0

– vij ∈ {0, 1} = 1 for the n cities

– different cities for each vertex of an edge
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– same number of edges and vertices: nedges = nvertices

– graph is connected

– path starts and ends in the same city

– path has n nodes

– a 2-edge connection for each node

Algorithm 12: TSP penalties multiplicatives.

1 function alpha (n, h, maxdist);
Parameters : Number of cities, small constant
Alpha : Multiplicative

2 return (((n3)− (2 ∗ n2) + n) ∗maxdist) + h

3 function beta (n, alpha, h);
Parameters : Number of cities, alpha, small constant
Beta : Multiplicative

4 return (((n2) + 1) ∗ alpha) + h

5 A← alpha(n, h, maxdist);
6 B ← beta(n, A, h);
7 return A, B

8.3.2 Experimental setup

We performed three types of experiments:

• classical (C): for this experiment, we used a classical simulated annealing algorithm and
the dwave-neal and PyQUBO libraries. We vary number of reads (10,000; default=10),
number of sweeps (according to each graph size; default=1,000).

• quantum simulation (C_Q_sim): we use the same parameters as before but in these
experiments we added the dwave-networkx library which allows to simulate the Pegasus
architecture, along with the dimod and dwave-system which provide the Structure-
Composite in order to build the sampler.

• quantum hardware (Q): we resort to the Pegasus topology from D-Wave’s, and we change
the chain strength (set as explained previously, based in the maximum QUBO coefficient
value), the default is "None". The number of reads is equal to 10,000 (the default is 1,000)
and the answer mode equal to "raw" so we can get the results sorted by output order and
not ordered from the lowest energy (and maximum number of occurrences) which is by
default "histogram".

We setup the following experiments for the three solvers (classical C, quantum simulator
C_Q_sim and quantum hardware Q) for the TSP varying the number of cities (n). The
experiments were conducted according to the achieved outputs:
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Algorithm 13: TSP Hamiltonian (PyQUBO)

1 function exp1 (n, v, A);
Parameters : Number of cities, binary vector, α

Constraints : Integrity

2 for i to n do
3 for j to n do
4 exp← exp + Constraint(1− v(i, j));
5 end
6 end
7 exp← Constraint(A ∗ exp);
8 return exp

9 function exp2 (n, v, B);
Parameters : Number of cities, binary vector, β

Constraints : Integrity

10 for i to n do
11 for i′ to n do
12 for j to n do
13 if i′ ̸= i then
14 exp← exp + Constraint(v(i, j) ∗ vc(i′, j));
15 end
16 end
17 end
18 end
19 exp← Constraint(B ∗ exp);
20 return exp

21 function exp3 (n, v, B);
Parameters : Number of cities, binary vector, β

Constraints : Integrity

22 for i to n do
23 for j to n do
24 for j′ to n do
25 if j′ ̸= j then
26 exp← exp + Constraint(v(i, j) ∗ v(i, j′));
27 end
28 end
29 end
30 end
31 exp← Constraint(B ∗ exp);
32 return exp

33 function exp4 (n, v, dist);
Parameters : Number of cities, binary vector, tour’s cost
Constraints : Optimality

34 for i to n do
35 for i′ to n do
36 for j to n− 1 do
37 if i′ ̸= i then
38 exp← exp + Constraint(dist(i, i′) ∗ v(i, j) ∗ v(i′, j + 1));
39 end
40 end
41 end
42 end
43 return exp

44 H = exp1 (n, v, A) + exp2 (n, v, B) + exp3 (n, v, B) + exp4 (n, v, dist)
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a. All solutions

• Execution time (µs)

• Possible and optimal solutions counts (#)

• Possible solutions energy and standardized tour length.

b. Optimal and approximate solutions

• Execution time (µs)

• Tour length (l)

The goal with standardization is to transform all values to the same scale, making the data
agnostic to the hardware type (classical or quantum) and annealing (simulated or quantum), for
comparison purposes.

Graphs. We generate random integers coordinates based on numbers e.g. between 0 and 50,
and we build the graphs of size n, 3 ≤ n ≤ 8. Figure 8.3 shows all graphs with their calculated
pairwise Euclidean distances between cities, according to their coordinates. Figure 8.4 shows the
minimum distance tours for each graph size.

Solutions. The optimal solutions correspond to the minimum tour length for a graph G of size
n, and the approximate solutions correspond to the closer first solution near the optimal. For
example, as shown in Table 8.1, let’s suppose s_a is the optimal solution on time t_4 with tour
length l_10. According to this table, the closest approximate solution s_b with tour length
l_20 is obtained at time t_1. If we are interested in a good (not necessarily optimal) solution,
we would save 3 time units in the search.

Table 8.1: Output example to represent optimal and approximate solutions

Solution (s) Energy (e) Tour length (l) Time (t)
s_b e_b l_20 t_1
s_b e_b l_20 t_2
s_b e_b l_20 t_3
s_a e_a l_10 t_4
s_c e_c l_50 t_5
s_c e_c l_50 t_8
s_a e_a l_10 t_7
... ... ... ...

s_p e_p l_30 t_10,000



8.3. Methodology 101

32.06

23.0

38
.28

0

1

2

(a) n = 3

32.06

23
.0

15.338.28

47.01

25.0

0

1

2

3

(b) n = 4

32.06

23
.0

15.3

27.02

38.28

47.01

24
.2

1

25.0

17.12
36.72

0

1

2

3

4

(c) n = 5

32.06

23
.0

15.3

27.02

32
.2

5

38.28

47.01

24
.2

1

41
.04

25.0

17.12 9.85

36
.72

34.67
17.03

0

1

2

3

4

5

(d) n = 6

32.06

23.0

15
.3

27.02

32.25

22.8

38.28

47.01

24.21
41.04

48
.7

25.0

17.12

9.85

14.87

36.72

34.67

15.03

17.03

31.14

22.8

0

1

2

3

4

5

6

(e) n = 7

32.06

23.0

15
.3

27.02
32.25

22.8

11
.4

38
.28

47
.0

1

24.21

41
.0

4

48.7

41.3

25.0

17.12 9.85

14
.8

7

18.36

36.72

34.67

15.03

7.21

17.03

31
.14

29.53

22.8

28.18

12.08

0

1

2

3

4
5

6

7

(f) n = 8

Figure 8.3: All distances between cities varying the number of cities

Hardware. The quantum experiments were conducted on D-Wave’s Advantage systems with
topology Pegasus, and the classical in a MacBook Air, 1.8 GHz Intel Core i5 processor, 8 GBytes
of memory 1600 MHz DDR3.

Times. We ran experiments using 10,000 iterations. For both classical experiments (C and C_-

Q_sim), we calculated average execution time of the 10,000 iterations. In the case of the quantum
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Figure 8.4: Minimum tour length varying the number of cities

annealer experiments, execution times are broken down in various categories: network latency
and QPU access time are sources of overheads reported by the qpu_access_overhead_time
variable. This overhead concerns low-level operations at initialization time of 10-20 ms for
Advantage systems, as is the case with our experiences. In this work, we focus on the QPU
access time which is divided into two parts: a one-time initialization step to program the QPU
(programming time) and sampling times for execution on the QPU (sampling time). In order to
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be fair and measure only the time taken to obtain one solution in the quantum machine we use the
sampling time, which is broken down into anneal (anneal time), the read of the sample from the
QPU (readout time), and thermalization (time for the QPU to hit again its initial temperature,
delay time). The time taken to obtain each solution is then given by the sum of the QPU
times for each sample: qpu_anneal_time, qpu_readout_time and qpu_delay_time1. A
simplified view of the execution time breakdown for quantum experiments is shown in Figure 8.5.

sampling time

delay time
readout time

anneal time

programming time

QPU access time

internet latencyinternet latency service time

Figure 8.5: A simplified diagram of the sequence of steps to execute a quantum machine
instruction (QMI) on a D-Wave system adpated from D-Wave’s documentation

We take into account that the QPU call to sample a QUBO is non blocking, which means
that as the operation is being performed (sent through the cloud, sampled on the QPU, and
returned), other non-related operations can be performed in parallel.

SA sweeps. We begin with both classical solvers by exploring the SA algorithm where the
minimum number of iterations (sweeps, sw) needed to obtain an optimal solution to each graph
G varies. After some tests, we found minimum sw = 2 for graphs of sizes 3, 4, 5, 6 and sw = 9
for size 7. Therefore, we use these values as input to the SA algorithms (classical C and classical
quantum simulator C_Q_sim) to achieve the best performance, since reducing the number of
sweeps reduces the execution time of the algorithms.

Metrics. The metrics used are execution time, tour length and energy. In particular, the energy
is very relevant, since quantum annealing processors return low-energy solutions, and applications
such as the TSP, require the minimum energy given that we model it as an optimization problem.

Objective. Our goal is to answer the following questions for each n (number of cities) and
type of experiment (classical or quantum): (a) how do the execution times vary, (b) what is the
number of possible and optimal solutions, (c) how the energy and the distance vary for each
type of solution, and (d) how far is each approximate solution from the corresponding optimal
solution in value and in time.

1More on QPU times can be found at:
https://docs.dwavesys.com/docs/latest/timing_qa_cycle_time.html
https://docs.dwavesys.com/docs/latest/timing_overview.html

https://docs.dwavesys.com/docs/latest/timing_qa_cycle_time.html
https://docs.dwavesys.com/docs/latest/timing_overview.html
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8.4 Results and Discussion

In this section, we show the results of the execution times of each set of experiments. Afterwards,
we indicate the optimal solutions and possible solutions and expected energy standardized values
of classical C, quantum simulator C_Q_sim and quantum hardware Q in optimal and approximate
solutions perspective. Finally, we describe the problem mapped onto the QPU with broken and
non-broken solutions.

8.4.1 Time, solution, energy and distance

Table 8.2 shows the average execution times, in microseconds (µs), to produce each output
(possible and non possible solutions, e.g. n = 4 cities with results for just 3 cities). The average
execution time for all graph sizes is 4.9 µs for the classical runs (C), 28.1 µs for the classical
quantum simulator (C_Q_sim), and 95.4 µs for the quantum annealing using the D-Wave’s
hardware (Q).

Table 8.2: Time (µs) for 10,000 iterations of classical C, quantum simulator C_Q_sim and
quantum hardware Q experiments for TSP varying the number of cities (n)

n 3 4 5 6 7

C (µs) 1.3 2.1 3.4 5.3 12.4
C_Q_sim (µs) 24.4 23.6 24.2 27.4 41.1
Q (µs) 90.0 102.0 82.0 103.0 100.0

Next, we discuss the results of possible and optimal solutions. As we can notice in Table 8.3,
the experiments that ran in the D-Wave, in general, produced a smaller number of possible
solutions. The average counts are 872 for the classical runs (C), 872 for the classical quantum
simulator (C_Q_sim), and 435 for the quantum hardware (Q). However, for n equals 5 and 6 the
quantum version obtained more possible solutions. Table 8.4 shows that the classical experiments,
in general, obtained more optimal solutions. The average counts are 431 for the classical runs
(C), 431 for the classical quantum simulator (C_Q_sim), and 207 for the quantum version (Q).
The results indicate that the classical procedures performed a better heuristic search for optimal
solutions for n equals 3, 4 and 7, while the quantum annealing performed better for n equals 5
and 6. It is important to notice that for each type of experiment, at least one optimal solution
was found.

Figure 8.6 shows the energy values of classical C, quantum simulator C_Q_sim and quantum
hardware Q experiments for TSP varying the number of cities. The values are standardized with
mean 0 and standard deviation 1. As we can observe, C, C_Q_sim and Q report similar behavior
in energy values and variance within each group for each n, with Q presenting a smaller number
of outliers.
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Table 8.3: Possible solutions: counts (#) of classical C, quantum simulator C_Q_sim and
quantum hardware Q experiments for TSP varying the number of cities (n)

n 3 4 5 6 7

C (#) 1842 858 281 60 1319
C_Q_sim (#) 1842 858 281 60 1319
Q (#) 781 711 393 227 62

Table 8.4: Optimal solutions: counts (#) of classical C, quantum simulator C_Q_sim and
quantum hardware Q experiments for TSP varying the number of cities (n)

n 3 4 5 6 7

C (#) 1842 280 28 2 3
C_Q_sim (#) 1842 280 28 2 3
Q (#) 781 197 51 5 2
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Figure 8.6: Possible solutions energy (standardized values with mean 0 and standard deviation 1)

Similarly, Figure 8.7 shows the tour length values (possible values, not optimal i.e. does not
imply minimum value) of classical C, quantum simulator C_Q_sim and quantum hardware Q
experiments for TSP varying the number of cities. As before, the values are standardized with
mean 0 and standard deviation 1. All the scenarios report similar behavior regarding tour length
values, similar to the previous comparison.

8.4.2 Approximate solutions

Table 8.5 shows the values of the first optimal tour length solution for each n and the closest
approximate solution in time. The time values displayed on Table 8.5 correspond to the time
needed to achieve the first found solution, for both cases, optimal or approximate, since the
beginning of the execution. As we can notice in Table 8.5, there is a quantum advantage in time
for n = 6 and 7 to achieve the optimal solution, highlighting the quantum advantage that can be
possible for larger graphs. However, the same is not true if we are seeking for an approximate
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Figure 8.7: Possible solutions tour length (standardized values with mean 0 and standard
deviation 1)

Table 8.5: Tour length (l) and time (µs) of classical C, quantum simulator C_Q_sim and quantum
hardware Q experiments for TSP varying the number of cities (n) for the first optimal and closest
approximate solutions. Results for n=3 are shown only to validate the implementation

C C_Q_sim Q

n Solutions (l) (µs) (l) (µs) (l) (µs)

3 Optimal 93.3 11.9 93.3 219.7 93.3 630.0
Approximate 93.3 11.9 93.3 219.7 93.3 630.0

4 Optimal 110.6 41.0 110.6 471.5 110.6 38862.0
Approximate 123.6 34.8 123.6 400.8 123.6 63648.0

5 Optimal 113.7 2667.5 113.7 19175.6 113.7 18696.0
Approximate 126.6 3878.1 126.6 27878.5 126.6 103484.0

6 Optimal 123.5 23199.5 123.5 119361.0 123.5 15759.0
Approximate 136.4 14943.7 136.4 76884.9 133.2 20394.0

7 Optimal 128.4 9075.2 128.4 30097.5 128.4 7200.0
Approximate 136.4 1498.1 136.4 4968.3 147.3 19300.0

solution. In this case, the classical version has better performance. As such, the classical process
can be recommended for cases in which it is not possible or it is not necessary to achieve optimal
solutions. In fact, for the graph of size 8 the quantum annealing could not find an optimal
solution.

From the results, it looks like the quantum annealing is more efficient during the search,
jumping to better solutions earlier.

8.4.3 Problem mapping

Figures 8.8, 8.9 and 8.10 show the state of the qubits after obtaining solutions (on the left,
the QUBO mapping and on the right the Ising mapping). The embedded problem gives us a
perspective of the mapping into the graph of the D-Wave’s by using the dwave-inspector
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(a) QUBO (b) Ising

Figure 8.8: Mapping TSP n = 6 cities onto the QPU

(a) QUBO (b) Ising

Figure 8.9: Mapping TSP n = 7 cities onto the QPU. Solution (with warnings)

(a) QUBO (b) Ising

Figure 8.10: Mapping TSP n = 8 cities onto the QPU. Broken solution, chain length equal 8
(greater than 7)

tool which provides a graphical interface for examining problems and solutions. Each image
shows the mapping of a different n. Boolean variables that are solutions, are colored. The QUBO
model represents an objective function of binary variables characterized by an upper-diagonal
matrix, where diagonal terms are the linear coefficients and the nonzero off-diagonal terms are
the quadratic coefficients. The Ising model concerns an objective function of variables represented
by physical Ising spins which consider the biases and the interactions between spins. The gray
chains are connecting groups of qubits. Each chain should contain qubits that are all the same
color (either all 0 or all 1). A chain is broken if it connects qubits of unlike colors.
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8.4.4 Mapping larger graphs

There has been a discussion about the idea of employing adiabatic computations to solve NP
problems, TSP is one of those cases [130] seeking if an adiabatic approach may outperform a
classical one. Lately, considering the D-Wave’s quantum annealing systems, more qubits were
added and their connectivity was improved. Yet, even though there have been advances from
the 2000Q to the Advantage system, is still difficult to embed problems with large number of
variables into the physical qubits. As for example, we generate some graphs G and we experiment
different G sizes. From these conducted experiments we can notice that no matter the number of
edges in the graph, the embedding density is the same. In this context, only the number of nodes
is relevant. The QUBO adjacency matrix corresponds to the number of nodes squared where the
logical qubits are embedded to the physical qubits. In that sense, 2 logical qubits can require 4
physical qubits (2 physical qubits for each logical), as illustrated in Figures 8.11 and 8.12.

(a) n = 5 (b) n = 10 (c) n = 11 (d) n = 12 (e) n = 13

Figure 8.11: Embedded graphs into the Advantage_system1.1

(a) Topology (b) n = 14

Figure 8.12: Embedded graph n = 14 into the Advantage_system1.1

In order to overcome the issue of embedding large problems, one possible choice is to use a
solver such as Leap′s Hybrid2, or since we need flexibility in the input parameters and in order
to generate multiple answers, to increase the chances of a possible solution, we can resort to
the QBSolv3. A decomposing solver which finds a minimum value of a large QUBO problem.
QBSolv can break the problem into smaller ones, solve these subproblems, and from those
solutions construct the answer. The subproblems are solved using a classical solver with the tabu
search algorithm [157].

2https://docs.dwavesys.com/docs/latest/doc_leap_hybrid.html
3https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/

https://docs.dwavesys.com/docs/latest/doc_leap_hybrid.html
https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/
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8.5 Conclusions and future work

We implemented an algorithm that translates pseudo-Boolean constraints to quantum annealing,
which solves the associated optimization problem using the QUBO solver. We perform experiments
using a classical implementation of simulated annealing, a classical-quantum simulation of the
same algorithm and a pure quantum environment. The problem solved is the well-known TSP.
In the quantum implementation, we sampled low-energy states which correspond to the optimal
solutions of the travelling salesperson problem. We resorted to quantum annealing and to
encoding the problem into the D-Wave’s quantum hardware graph Pegasus.

We conclude from our study that (a) both QA and SA attained optimal solutions for the
TSP, (b) increasing the number of sweeps in the simulated annealing algorithm has an impact on
achieving optimal solutions, as well as, the value of the chain strength parameter in the quantum
version. Since the beginning of the experiments we observed the need to choose this input
parameter in the quantum solver (if it is not specified, we may not obtain optimal solutions) and
(c) it seems there is an advantage on using quantum annealing to reach better solutions faster.
Moreover, the results showed that the quantum machine can have a modest advantage when
finding optimal solutions over the classical machine. In addition, the quantum approach seems
to be more suitable if an optimal solution is needed for a problem with larger number of nodes.

Furthermore, each graph maps differently in the hardware according to qubits connectivity.
Besides, quantum annealing quickly jumps to the optimal solution. After finding an optimal
solution, the machine stabilizes, and the other solutions are discarded.

In order to deepen and better explain the annealing processes, as future work, we intend
to explore and draw the problem heuristics path to depict the mapping landscape which will
allow to better describe the search space. In addition, we would like to deepen the study on
embedding large problems in the D-Wave quantum annealer [152] and on quantum algorithms to
accelerate constraint programming [25]. We also would like to compare our results with different
types of mathematical modelling.





Chapter 9

Conclusions and future work

In this research, we study the mapping of problems to quantum devices from two perspectives:
gate-based and adiabatic model. In a gate-based environment, we mapped classification problems
e.g. Iris plant, traffic, and breast cancer to Noisy Intermediate-Scale Quantum (NISQ) era devices.
From an adiabatic perspective, we created a generic pipeline that translates pseudo-Boolean
constraints to quantum annealing based in the Quadratic Unconstrained Binary Optimization
(QUBO) technique and compare the results between classical, classical-quantum simulations and
a pure quantum environment. The adiabatic model allowed us to encode the graph coloring and
the traveling salesperson problems into a quantum hardware graph and explore these optimization
problems. We used a quantum annealer solver to sample low-energy states which are the optimal
solutions of the problems. In the case of the TSP we also compute algorithms for optimal
solutions, as well as, to achieve approximate solutions. We conclude from our study that both
Simulated Annealing (SA) and Quantum Annealing (QA) approaches found a good number
of solutions, leading to the remark that SA and QA produces good heuristics for the specific
problems. Several problems in computer science are known to be NP-hard or even NP-complete
and difficult to handle on traditional computers. Nowadays, quantum machines are at our disposal
and aim to solve these kinds of problems. In this thesis, we showed that is possible to map and
implement algorithms to solve complex problems on these quantum machines, although we still
in the early stage of the technology, we can resort to methods such as, Quantum Propositional
Logic (QPL).

In this chapter, we present the thesis conclusions and future work of the feature research on:
quantum binary classification, quantum transfer learning for breast cancer detection, and mapping
graph coloring and traveling salesperson problem to QA, as well as, other final considerations.

9.1 Quantum Binary Classification

The achieved results for the quantum version showed high accuracy scores using as few as 2 qubits
and a simulator. The values are similar to other Quantum Machine Learning (QML) and Machine
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Learning (ML) feature research. We encode the classical data using the method of amplitude
encoding, in the future, we intend to explore other methods, such as, angle, variational/trained
or higher order embedding [80, 127].

9.2 Quantum Transfer Learning for Breast Cancer Detection

We train a set of hybrid classical-quantum neural networks using TL. The goal of this research
was to solve the problem of classifying full-image mammograms into malignant and benign. The
conducted research shows that depending on the task, some architectures perform better than
others and that this method can have advantages concerning the generalization of complex data.
In sum, the overall results overstep those from the literature that also applied a classical TL
technique.

(a) the classical residual neural network, without resorting to TL, achieved a maximum of 67%
accuracy while our other experiments using TL achieved 84%;

(b) in addition, the AUC from 58% to 77%, shows that a hybrid-quantum network present an
advantage;

(c) the overall results surpassed those from the literature that also applied a classical transfer
learning technique:

• accuracy of 84% against 76.9%

• AUC of 77% against 74.9%

• specificity of 100% surpassed 64.91%

(d) but not for the recall, where we attained a recall of 69% and 84.88% was mentioned in the
literature, however the quantum version got 81%;

(e) other approach could be to perform classification after separating the dataset into masses
and calcifications;

(f) as future work plot a representation of the data in the Hilbert Space;

(g) in this research we conduct the experiments using the angle embedding technique, in the
future other embeddings can be considered.

9.3 Mapping Graph Coloring to Quantum Annealing

We encoded the graph coloring problem into the quantum hardware graph Chimera and we used a
quantum annealer solver to sample low-energy states to achieve the optimal solutions resorting to
the adiabatic model. In this research, we implemented an algorithm to translate pseudo-Boolean
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constraints to QA based on QUBO and symbolic computing. Besides, the pure classical (QUBO
and SA), and the quantum environment simulations in a classical machine, we also compare
implementations using the QUBO and the D-Wave quantum machine and performing polynomial
reduction degree when needed (our own implementation and using a D-Wave’s library).

In addition, we study how varying the penalties α and β has impact in the number of solutions
found. In order to better control the experiments, we decided to fix the α and β, one at a time,
and analyze from there the solutions found as a way to obtain a better representation of the
explored landscape and the search space. In summary, we concluded that:

(a) experiments made varying α and β have small impact on the number of solutions found;

(b) high β values cause the energy values to vary substantially;

(c) both SA and QA approaches found a good number of solutions, in particular the QA
procedure.

As further work, we intend to perform the experiments using larger graphs and explore other
problems.

9.4 Mapping a Logical Representation of TSP to Quantum
Annealing

We encoded the traveling salesperson problem into the quantum hardware graph Pegasus.
Resorting to the adiabatic model we used a quantum annealer solver to sample low-energy states
to achieve the optimal solutions. In this research, we developed an algorithm to translate pseudo-
Boolean constraints to QA based on the QUBO technique and compare the results between pure
classical (on a traditional computer), classical-quantum simulations (on a traditional computer)
and a pure quantum environment (on D-Wave’s). As such, we sample low-energy states which
aim to be the optimal solutions of the TSP. In brief, we concluded that:

(a) both QA and SA attained optimal solutions for the TSP;

(b) we notice that increasing the number of sweeps in the SA algorithm had impact to achieve
the optimal solutions;

(c) we notice that changing the chain strength parameter also had impact to achieve the optimal
solutions;

(d) the quantum version show a slight advantage when finding optimal solutions over the classical
version;

(e) the quantum version can be more suitable if an optimal solution is needed for a problem
with a large number of nodes.
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In the forthcoming studies, we intend to make the graphic recreation of the search space
traversed of the problem heuristics path. Besides, we have interest in deepen the study on large
problems embedding onto the D-Wave’s and the exploration of quantum algorithms to accelerate
constraint programming. In addition, perform experiments using the QUBO directly without
the propositional logic part.

9.5 Remark

Nowadays, we can execute quantum scripts on multiple quantum hardware architectures, from
superconducting qubits to trapped-ions. Quantum tools are diverse, e.g., IBM’s Qiskit, Xanadu’s
PennyLane, D-Wave’s Ocean, Google’s Cirq, Microsoft’s QDK, Rigetti’s Forest, and are accurately
designed for the best algorithms achievements and performance on those architectures. However,
these tools, like many others, have advantages and disadvantages which can be related with the
purpose of the code implemented in each of them, or tasks to be performed, hardware limitations,
or the currently feasibility of the technology itself. For instance, the IBM’s Qiskit, Xanadu’s
PennyLane and D-Wave’s Ocean are all written in Python which allows for easy reading and
understanding the composed quantum scripts. On the other hand, an n-qubit algorithm has
to be implemented according to hardware limitations, considering the coupling maps. As an
example, in the gate-based systems (e.g. IBM’s), on specific cases, we may need to implement
a n-bit Toffoli gate, and that type of operation needs a coupling map with a higher degree of
connectivity. Furthermore, error mitigation is also a hot topic in quantum computing, since
the execution time and also gate errors increase with the number of circuits and may affect the
accuracy of the algorithms. Nevertheless, if we resort to quantum simulators the results coincide
with the theory and are not affected by decoherence and gate errors. However, in those cases
we are not taking full advantage of quantum systems capabilities such as the D-Wave’s hybrid
approach resorting to quantum annealing, where D-Wave’s hybrid solvers use a combination of
classical and quantum resources, designed to solve problems that exceed the size of the Quantum
Processing Unit (QPU).

The D-Wave’s QPU has more than 5,000 qubits, the advantage of this complex system is that
it is designed to applications such as optimization problems and probabilistic sampling problems,
which need the real minimum energy and low-energy samples. Ocean software stack provides
tools that implements the computations needed to transform a problem to a form solvable on
a quantum solver, such as, the Binary Quadratic Model (BQM) class that contains Ising and
quadratic QUBO models used by samplers, a library to construct a BQM from a constraint
satisfaction problem over binary variables, tools for working with Chimera graphs, tools to
optimize chain strength, tools to embed Ising problems onto quantum annealers, tools to solve
a constraint satisfaction problem (CSP) using an Ising model or a QUBO and, a decomposing
solver which finds a minimum value of a large QUBO problem by splitting it into pieces.

Qiskit construction is based in modularly, to be easier the addition of extensions for circuit
optimizations and backends. On the other hand, Qiskit provides a set of circuits and pulses,
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quantum algorithms for machine learning, optimization and chemistry applications, remote-
access backends to execute code on multiple quantum hardware architectures, noise mitigation
implementations to decrease the impact of noise using built-in modules for noise characterization
and circuit optimization. Qiskit has some classification algorithms such as QSVM (Quantum
Support Vector Machine), VQC (Variational Quantum Classifier), and the QGAN (Quantum
Generative Adversarial Network) algorithm. The same and a wider broad variety of quantum
machine learning algorithms can be found in Xanadu’s PennyLane. In brief, Qiskit and PennyLane
explore variational techniques and both provide quantum and classical computations. Besides the
machine learning tools, PennyLane is designed to allow computations that can include multiple
quantum devices from unlike vendors. It allows external quantum devices to be easily added
to PennyLane by installing plugins (Qiskit, Cirq, Rigetti Forest, Microsoft QDK, Strawberry
Fields, AQT, Honeywell, ProjectQ). It has many features and advantages that come into play,
such as, built-in automatic differentiation of quantum circuits, support for hybrid quantum
and classical models and connects quantum hardware with PyTorch, TensorFlow, and NumPy,
provides optimization, variational circuits which are quantum algorithms that depend on tunable
parameters and can be optimized, hybrid computations and the capability to train circuits, the
paradigm of making quantum algorithms differentiable and thereby trainable, representation
of classical data as a quantum state, the mathematical map that embeds classical data into a
quantum state, and the capability to explore multiple backends.

The current technologies allow to adapt the physical systems parameters to each problem,
shifting quantum computations paradigms from universal quantum computers, fault-tolerant
QPUs (still years away), to the quantum machine learning paradigm on near-term quantum
devices where the algorithms are learned. However, all theses quantum systems, unlike what we
are used to on our classic machines, cannot execute jobs at once. Since the quantum devices are
available on the cloud, these are queued and only executed when the QPU is available.

9.6 Future Work

In quantum computation, we deal with errors in the form of noise, faults and loss of quantum
coherence (decoherence), caused by e.g. temperature fluctuations, electromagnetic waves and
interactions with the surrounding environment. These effects, can change the quantum properties
of the quantum device. In current quantum devices the interplay between coherence and
providing the robust error correction required for large-scale computation is not yet being
achieved. Furthermore, NISQ devices are limited to qubit number, qubit connectivity and
qubit/gate fidelity. In that sense, it is hard to engineer and program a quantum computer.
Strategies are being considered, namely, hybrid quantum-classical algorithms approaches to deal
with noisy environments.

In order to evolve the quantum computing, many lines of investigation can be followed, from
the use only of simulators in supercomputers or real quantum machines, from the study of its
limitations, to the creation of new quantum algorithms. The quantum realm still has a vast and
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enthusiastic path of exploration ahead. In this sense, and given that we are dealing with very
recent technologies, many suggestions for future work can be enumerated, as there are still many
open questions and possibilities.

(a) Currently NISQ devices are noisy and slow. In the context of QML, training a quantum
circuit, usually requires many measurements which is a procedure that can take a long time,
e.g. in the optimization step when computing the gradient. As such, contributions concerning
the decrease of the training time, can be of great interest for the community.

(b) Explorations of other quantum technologies and platforms, since there exist different
technologies at the core of each platform. For example, IBM, semiconductor quantum
computing which requires the machine to be supercooled, and IonQ, trapped ion quantum
computing which allows the machines to run at room temperature. In the same way, there
are problems that fit naturally to adiabatic computations, such as optimization problems, the
same goes for other types of quantum computations, with technologies suitable for different
types of challenges.

(c) Perform deeper analysis and compare the mapping of problems to the qubits. Not the
same problem, as different technologies have more suitable problems, but better explore the
architectures limitations, and difficulties to map any problem to a quantum machine. The
connectivity of the qubits plays an important role on the mapping, sometimes conducting
the mapping of problems to quantum machines is too rigid.

(d) In the context of the Adiabatic Quantum Computation (AQC), explore the capabilities of the
D-Wave’s hybrid solver which use quantum and classical resources together. Besides, for large
problems, explore the QBSolv which is a decomposing solver that finds a minimum value
of a large QUBO problem by splitting it into small problems. In addition, also investigate
the discrete quadratic model (DQM) which is a polynomial over discrete variables, where a
discrete variable represents categorical values of some domain, such as, blue, red, black, gray.

(e) In the context of the QPL, a propositional logic mapping was conducted in this thesis.
However, it would be also interesting to build a mapping capable to map first-order logic
(predicate logic) problems into quantum devices. Propositional logic is the foundation of
first-order logic, however, first-order logic uses quantifiers or relations that could be translated
to a quantum machine and be an advantage to problem-solving. There are already some
works that deal with first-order logic in a quantum perspective [21, 216].

(f) In addition, a comparison of the approach developed in this thesis to solve problems formulated
in QPL with other works would be an interesting challenge [20].

Currently, quantum technologies look for speed-up in a wide range of applications. However,
quantum states are extremely fragile, and fault-tolerant systems [35] need precise error correction
and error mitigation to attain the speed-ups over their counterparts. To suppress the noise
in quantum gates, NISQ technology (e.g. quantum computers with 50-100 qubits) aims to
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overcome capabilities of classical digital computers [161]. The quantum computer performance
depends on parameters, such as, number of physical qubits, connectivity between qubits, or the
number of gates or operations that can be run in parallel. Since we are dealing with not yet
fully deployed technologies, some studies discuss that the hybrid quantum-classical variational
approach may be used to variationally suppress certain types of quantum errors. In that sense,
a wide broad research is been performed [1, 4, 176] where we can notice that e.g. QML is
being constantly updated since it handles fast growing quantum technologies and innovative
development. Quantum tools and platforms have been proposed and can be used to implement
QML algorithms [62], namely, Qiskit from IBM Quantum or Strawberry Fields and PennyLane
from Xanadu. ML tasks can be implemented in a quantum context, and is possible to compare
complexity and performance with classical and parallel implementations. These implementations
are suitable to solve demanding data-related issues using hybrid quantum-classical models [175].
In this research, we describe the key recent developments and progress in a wide research
exploring Artificial Intelligence (AI) scenarios in a quantum domain [54], opening the topic to
new perspectives and new developments.
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Appendix A

Algorithm: Quantum TSP based in
Hopfield-Tank

Listing A.1: Quantum TSP based in Hopfield-Tank algorithm
1 # S c r i p t by Carla S i l v a 2021 : : TSP Quantum implementation based on :
2 # Hopf ie ld −Tank TSP formula t ion
3 # h t t p s :// l i n k . s p r i n g e r . com/ content / pdf /10.1007/ BF00339943 . pdf
4 " " " TSP
5
6 Formulation o f the problem f o r a graph random G=(V,E) with a number o f c i t i e s n .
7
8 " " "
9 #### NOTE: GIVES OPTIMAL SOLUTIONS UNTIL N<=6.

10
11 from pyqubo import Array , solve_qubo , Constra int
12 import matp lo t l i b . pyplot as p l t
13 import networkx as nx
14 import time
15 import sys
16 import random
17 import numpy as np
18 import seaborn as sns
19 import warnings
20 warnings . f i l t e r w a r n i n g s ( " i g n o r e " , category=UserWarning )
21 import nea l
22 import pandas as pd
23 from dwave . system . samplers import DWaveSampler
24 from dwave . system . compos i tes import EmbeddingComposite
25 import dimod
26 import dwave . i n s p e c t o r
27
28 de f p lo t_c i ty ( c i t i e s , n , s o l = {}) :
29 n_city = len ( c i t i e s )
30 c i t i e s _ d i c t = d i c t ( c i t i e s )
31
32 G = nx . Graph ( )
33 f o r c i t y in c i t i e s _ d i c t :
34 G. add_node ( c i t y )
35
36 f o r i in range ( n_city ) :
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37 f o r j in range ( n_city ) :
38 G. add_edge ( i , j , d i s t a n c e=round ( d i s t ( i , j , c i t i e s ) , 2 ) )
39
40 f = p l t . f i g u r e ( )
41 pos = nx . spr ing_layout (G)
42 l a b e l s = nx . get_edge_attr ibutes (G, ’ d i s t a n c e ’ )
43 nx . draw (G, pos , wi th_labe l s =1, node_size =400 , font_weight=’ bold ’ , f ont_co lo r=’w ’ ,

↪→ node_color = ’ black ’ , edge_color = ’ black ’ )
44 nx . draw_networkx_edge_labels (G, pos , labe l_pos =0.2 , edge_labe l s=l a b e l s , f ont_co lo r=’

↪→ black ’ )
45 p l t . a x i s ( " o f f " )
46 f . s a v e f i g ( ’ f i g A l l D i s t a n c e s N ’+s t r (n)+’ . pdf ’ , bbox_inches=’ t i g h t ’ )
47
48 G = nx . Graph ( )
49 f o r c i t y in c i t i e s _ d i c t :
50 G. add_node ( c i t y )
51
52 # draw path
53 c i ty_order = [ ]
54 f o r i , v in s o l . i tems ( ) :
55 i f v == 1 :
56 c i ty_order . append ( i n t ( i [ 2 ] ) )
57 c i ty_order . append ( i n t ( i [ 5 ] ) )
58 c i ty_order = l i s t ( c i ty_order )
59 n_city = len ( c i ty_order )
60 f o r k in range (0 , n_city −1 ,2) :
61 i = c i ty_order [ k ]
62 j = c i ty_order [ k+1]
63 G. add_edge ( i , j , d i s t a n c e=round ( d i s t ( i , j , c i t i e s ) , 2 ) )
64
65 sumD = 0
66 f o r u , v in G. edges :
67 sumD += G[ u ] [ v ] [ ’ d i s t a n c e ’ ]
68
69 f = p l t . f i g u r e ( )
70 pos = nx . spr ing_layout (G)
71 l a b e l s = nx . get_edge_attr ibutes (G, ’ d i s t a n c e ’ )
72 nx . draw (G, pos , wi th_labe l s =1, node_size =400 , font_weight=’ bold ’ , f ont_co lo r=’w ’ ,

↪→ node_color = ’ orange ’ , edge_color = ’ orange ’ )
73 nx . draw_networkx_edge_labels (G, pos , labe l_pos =0.5 , edge_labe l s=l a b e l s , f ont_co lo r=’

↪→ orange ’ )
74 p l t . a x i s ( " o f f " )
75 f . s a v e f i g ( ’ f igN ’+s t r (n)+’ Distance=’+s t r (sumD)+’ . pdf ’ , bbox_inches=’ t i g h t ’ )
76
77 de f d i s t ( i , j , c i t i e s ) :
78 pos_i = np . array ( c i t i e s [ i ] [ 1 ] )
79 pos_j = np . array ( c i t i e s [ j ] [ 1 ] )
80 re turn np . l i n a l g . norm( np . subt rac t ( pos_i , pos_j ) ) # Eucl idean d i s t a n c e
81
82 de f exp1 (n , v , A) :
83 exp = 0 .0
84 f o r i in range (n) :
85 f o r j in range (n) :
86 f o r k in range (n) :
87 i f ( k != j ) :
88 exp += v [ i , j ] ∗ v [ i , k ]
89
90 exp = (A/2) ∗ Constra int ( exp , l a b e l=" exp " )
91 re turn ( exp )
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92
93 de f exp2 (n , v , B) :
94 exp = 0 .0
95 f o r j in range (n) :
96 f o r i in range (n) :
97 f o r k in range (n) :
98 i f ( k != i ) :
99 exp += v [ i , j ] ∗ v [ k , j ]

100
101 exp = (B/2) ∗ Constra int ( exp , l a b e l=" exp " )
102 re turn ( exp )
103
104 de f exp3 (n , v , C) :
105 exp = 0 .0
106 f o r i in range (n) :
107 f o r j in range (n) :
108 exp += ( v [ i , j ]−n) ∗∗2
109
110 exp = (C/2) ∗ Constra int ( exp , l a b e l=" exp " )
111 re turn ( exp )
112
113 de f exp4 (n , v , D) :
114 exp = 0 .0
115 f o r i in range (n) :
116 f o r j in range (n) :
117 i f ( j != i ) :
118 f o r k in range (n−1) :
119 exp += d i s t ( i , j , c i t i e s ) ∗( v [ i , k ] ) ∗( v [ j , k+1]+v [ j , k −1])
120
121 exp = (D/2) ∗ Constra int ( exp , l a b e l=" exp " )
122 re turn ( exp )
123
124 i f __name__ == "__main__" :
125
126
127 " " "## Trave l ing Salesman Problem (TSP)
128
129 Find the s h o r t e s t route t h a t v i s i t s each c i t y and re turns to the o r i g i n c i t y .
130 " " "
131
132 n = i n t ( sys . argv [ 1 ] ) # Nodes/ C i t i e s
133
134 " " " Prepare b inary v e c t or with b i t $ ( i , j ) $ r e p r e s e n t i n g to v i s i t $ j$ c i t y at time

↪→ $ i$ " " "
135
136 v = Array . c r e a t e ( ’ v ’ , (n , n ) , ’BINARY ’ )
137
138
139 random . seed (123)
140 a = tup l e ( ( random . rand int (0 , 50 ) , random . randint (0 ,50 ) ) f o r i in range (n) )
141 b = tup l e ( ( i , a [ i ] ) f o r i in range (n) )
142 c i t i e s = l i s t (b)
143
144 # maximum d i s t a n c e
145 maxdist = 0
146 f o r i in range (n) :
147 f o r j in range (n) :
148 i f d i s t ( i , j , c i t i e s ) > maxdist :
149 maxdist = d i s t ( i , j , c i t i e s )
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150
151 n_city = len ( c i t i e s )
152 c i t i e s _ d i c t = d i c t ( c i t i e s )
153
154 G = nx . Graph ( )
155 f o r c i t y in c i t i e s _ d i c t :
156 G. add_node ( c i t y )
157
158 f o r i in range ( n_city ) :
159 f o r j in range ( n_city ) :
160 G. add_edge ( i , j , d i s t a n c e=round ( d i s t ( i , j , c i t i e s ) , 2 ) )
161
162 dU = G. s i z e ( weight=" weight " )
163 dL = dU/2
164 C = 1
165 D = 1 / dU
166 B = (3 ∗ dU) + C
167 A = B − (D ∗ dL)
168 p r i n t ( "dU, dL ,A,B,C,D" ,dU, dL ,A,B,C,D)
169 or ig_stdout = sys . s tdout
170
171 f = open ( ’ tspResults_ ’+’n ’+s t r (n)+’ . txt ’ , ’w ’ )
172 sys . s tdout = f
173
174 start_time = time . time ( )
175
176 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
177 p r i n t ( " \n# TSP PROBLEM WITH n CITIES ON QUANTUM SOLVER #\n " )
178 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
179
180 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
181 p r i n t ( " 1 s t e x p r e s s i o n : " )
182 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
183 p r i n t ( exp1 (n , v , A) )
184
185 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
186 p r i n t ( " 2nd e x p r e s s i o n : " )
187 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
188 p r i n t ( exp2 (n , v , B) )
189
190 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
191 p r i n t ( " 3 rd e x p r e s s i o n : " )
192 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
193 p r i n t ( exp3 (n , v , C) )
194
195 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
196 p r i n t ( " 4 th e x p r e s s i o n : " )
197 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
198 p r i n t ( exp4 (n , v , D) )
199
200 # Define hami l tonian H
201 H = exp1 (n , v , A) + exp2 (n , v , B) + exp3 (n , v , C) + exp4 (n , v , D)
202
203
204 # Compile model
205 model = H. compi le ( )
206
207 # Create QUBO
208 qubo , o f f s e t = model . to_qubo ( )
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209
210 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
211 p r i n t ( " \nQUBO: \ n " )
212 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
213
214 p r i n t ( qubo )
215
216 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
217 p r i n t ( " \nD−WAVE OUTPUT: \ n " )
218 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
219
220 sampler = EmbeddingComposite ( DWaveSampler ( endpoint=’ https : // c loud . dwavesys . com/ s a p i ’ ,

↪→ token=’ ’ , s o l v e r={ ’ topology__type ’ : ’ pegasus ’ }) )
221
222
223 # Submit to the D−Wave with nr number o f reads
224 # Reads number
225 nr = 10000
226 # Chain s t r e n g t h
227 c = max( qubo . va lue s ( ) ) + 10
228
229 p r i n t ( " chain break : " , c )
230
231 start_time = time . time ( )
232
233 response = sampler . sample_qubo ( qubo , num_reads = nr , auto_scale=True ,

↪→ return_embedding=True , chain_strength = c , answer_mode = " raw " )
234
235 p r i n t ( "QPU a c c e s s time ( us ) : \ t " , r e sponse . i n f o [ ’ t iming ’ ] [ ’ qpu_access_time ’ ] )
236
237 elapsed_time = time . time ( ) − start_time
238
239 p r i n t ( " Wall time ( us ) : \ t \ t " , e lapsed_time ∗1000000)
240
241 # Inspec t
242 dwave . i n s p e c t o r . show ( response )
243
244 # c r e a t e dataframe i f we want to s t o r e a l l v a l u e s
245 df = [ ]
246 minD = sys . maxsize # long va lue
247 f o r datum in response . data ( [ ’ sample ’ , ’ energy ’ , ’ num_occurrences ’ , ’

↪→ chain_break_fract ion ’ ] ) :
248 df . append ({ " Sample " : datum . sample , " Energy " : datum . energy , " Occurrences " : datum .

↪→ num_occurrences , " Chain_break_fract ions " : datum . chain_break_fract ion })
249 p r i n t ( datum . sample , " Energy : " , datum . energy , " Occurrences : " , datum .

↪→ num_occurrences , " Chain break f r a c t i o n s : " , datum . chain_break_fract ion )
250
251 i f (sum( datum . sample . va lue s ( ) )==n) : # Consider only i n s t a n c e s with n nodes ( same

↪→ as the n o f the problem ) .
252 s = 0
253 f o r i , v in datum . sample . i tems ( ) :
254 i f ( ( i n t ( i [ 2 ] ) != i n t ( i [ 5 ] ) ) and ( i n t ( v ) == 1) ) : # Found an edge . Check

↪→ i f i != j ( d i f f e r e n t nodes ) .
255 s = s + 1
256 i f ( ( s == n) ) : # Check the number o f edges = number o f nodes .
257 ### Draw graph
258 n_city = len ( c i t i e s )
259 c i t i e s _ d i c t = d i c t ( c i t i e s )
260 G = nx . Graph ( )
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261 f o r c i t y in c i t i e s _ d i c t :
262 G. add_node ( c i t y )
263 # draw path
264 c i ty_order = [ ]
265 f o r i , v in datum . sample . i tems ( ) :
266 i f v == 1 :
267 c i ty_order . append ( i n t ( i [ 2 ] ) )
268 c i ty_order . append ( i n t ( i [ 5 ] ) )
269
270 c i ty_order = l i s t ( c i ty_order )
271 n_city = len ( c i ty_order )
272 f o r k in range (0 , n_city −1 ,2) :
273 i = c i ty_order [ k ]
274 j = c i ty_order [ k+1]
275 G. add_edge ( i , j , d i s t a n c e=round ( d i s t ( i , j , c i t i e s ) , 2 ) )
276
277 sumD = 0
278 f o r u , v in G. edges :
279 sumD += G[ u ] [ v ] [ ’ d i s t a n c e ’ ]
280
281 # Check i f graph i s connected and with a c y c l e .
282 try :
283 G1 = l i s t ( nx . c y c l e_ b a s i s (G. to_undirected ( ) ) ) # check i f i s one c i c l e

↪→ with n nodes .
284 i f ( nx . i s_connected (G) and nx . f ind_cyc l e (G) and ( l en (G1 [ 0 ] )==n) and (

↪→ sumD < minD) ) :
285 minD = sumD
286 minE = datum . energy
287 maxO = datum . num_occurrences
288 sample = datum . sample
289 chain = datum . chain_break_fract ion
290 except :
291 break
292
293 df = pd . DataFrame ( df )
294 df . to_csv ( ’TSP ’+s t r (n)+’ . csv ’ , index=False )
295 pd . set_opt ion ( ’ d i s p l a y . f loat_format ’ , lambda x : ’ %.20 f ’ % x )
296 pd . opt ions . d i s p l a y . max_colwidth = 10000
297 p r i n t ( df . to_st r ing ( index=False ) )
298
299 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
300 p r i n t ( " \nSAMPLE WITH MINIMUM ENERGY AND MAXIMUM OCCURRENCES: \ n" )
301 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
302 p r i n t ( sample , " Energy : " , minE , " Occurrences : " , maxO, " Chain break f r a c t i o n s : " ,

↪→ chain )
303
304 p lo t_c i ty ( c i t i e s , n , sample )
305
306 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
307 p r i n t ( " \nTIME\n " )
308 p r i n t ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" )
309
310 p r i n t ( " Times : \ t \ t " , r e sponse . i n f o )
311
312 sys . s tdout = or ig_stdout
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Algorithm: Quantum Binary Classific-
ation

Listing B.1: Quantum binary classification algorithm
1 # S c r i p t by Carla S i l v a 2020 : : Quantum binary c l a s s i f i c a t i o n us ing PennyLane resources
2 from pennylane . templates . embeddings import AmplitudeEmbedding
3 import pennylane as qml
4 from pennylane import numpy as np
5 from pennylane . opt imize import AdamOptimizer
6 from s k l e a r n import d a t a s e t s
7 from s k l e a r n import p r e p r o c e s s i n g
8 from s k l e a r n . d a t a s e t s import l o a d _ i r i s
9 from numpy import ∗

10 import i t e r t o o l s
11 import pandas as pd
12 import time
13 import sys
14 from matp lo t l i b import pyplot as p l t
15 import seaborn as sns
16
17 font = { ’ s i z e ’ : 20}
18 p l t . r c ( ’ f ont ’ , ∗∗ f ont )
19
20 f i l e = " c l a s s i f i c a t i o n . txt "
21
22 start_time = time . time ( )
23 or ig_stdout = sys . s tdout
24 f = open ( f i l e , ’w ’ )
25 sys . s tdout = f
26
27 dev = qml . dev i c e ( ’ d e f a u l t . qubit ’ , w i r e s =2, shot s =1024)
28
29 de f l a y e r (W) :
30
31 qml . Rot (W[ 0 , 0 ] , W[ 0 , 1 ] , W[ 0 , 2 ] , w i r e s =0)
32 qml . Rot (W[ 1 , 0 ] , W[ 1 , 1 ] , W[ 1 , 2 ] , w i r e s =1)
33
34 qml .CNOT( wi re s =[0 , 1 ] )
35
36 @qml . qnode ( dev )
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37 de f c i r c u i t ( weights , f e a t=None ) :
38
39 AmplitudeEmbedding ( f ea t , [ 0 , 1 ] , pad =0.0 , normal ize=True )
40
41 f o r W in weights :
42 l a y e r (W)
43
44 re turn qml . expval ( qml . PauliZ (0 ) )
45
46 de f v a r i a t i o n a l _ c l a s s i f i e r ( var , f e a t=None ) :
47
48 weights = var [ 0 ]
49 b i a s = var [ 1 ]
50
51 re turn c i r c u i t ( weights , f e a t=f e a t ) + b i a s
52
53 de f square_loss ( l a b e l s , p r e d i c t i o n s ) :
54
55 l o s s = 0
56 f o r l , p in z ip ( l a b e l s , p r e d i c t i o n s ) :
57 l o s s = l o s s + ( l − p) ∗∗ 2
58 l o s s = l o s s / l en ( l a b e l s )
59
60 re turn l o s s
61
62 de f accuracy ( l a b e l s , p r e d i c t i o n s ) :
63
64 l o s s = 0
65 f o r l , p in z ip ( l a b e l s , p r e d i c t i o n s ) :
66 i f l == p :
67 l o s s = l o s s + 1
68 l o s s = l o s s / l en ( l a b e l s )
69
70 re turn l o s s
71
72
73 de f l o s s ( weights , f e a t u r e s , l a b e l s ) :
74
75 p r e d i c t i o n s = [ v a r i a t i o n a l _ c l a s s i f i e r ( weights , f e a t=f ) f o r f in f e a t u r e s ]
76
77 re turn square_loss ( l a b e l s , p r e d i c t i o n s )
78
79 i r i s = d a t a s e t s . l o a d _ i r i s ( )
80 data = i r i s . data [ ( i r i s . t a r g e t == 0) | ( i r i s . t a r g e t == 1) ]
81
82 N = data . shape [ 1 ]
83 X = data [ : , 0 :N]
84 Y = data [ : , −1]
85 Y = i r i s . t a r g e t [ ( i r i s . t a r g e t == 0) | ( i r i s . t a r g e t == 1) ]
86 Y[Y == 0 ] = −1
87
88 f i g = p l t . f i g u r e ( )
89 p l t . s c a t t e r (X [ : , 0 ] [ Y== 1 ] , X [ : , 1 ] [ Y== 1 ] , c=’ orange ’ , marker=’ o ’ , e d g e c o l o r s=’ k ’ , l a b e l="

↪→ c l a s s 1 " )
90 p l t . s c a t t e r (X [ : , 0 ] [ Y==−1], X [ : , 1 ] [ Y==−1], c=’ purple ’ , marker=’ o ’ , e d g e c o l o r s=’ k ’ , l a b e l="

↪→ c l a s s −1" )
91 p l t . x l a b e l ( ’X ’ )
92 p l t . y l a b e l ( ’Y ’ )
93 p l t . a x i s ( ’ o f f ’ )
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94 f i g . s a v e f i g ( ’ o r i g ina lData1a . png ’ , bbox_inches= ’ t i g h t ’ , pad_inches = 0 . 1 , dpi =300)
95
96 f , ax = p l t . subp lo t s ( )
97 sns . kdeplot (X [ : , 0 ] [ Y== 1 ] , X [ : , 1 ] [ Y== 1 ] , cmap=" Oranges " , l egend=True , l a b e l=" c l a s s 1 " )
98 sns . rugp lo t (X [ : , 0 ] [ Y== 1 ] , c o l o r=" gray " , ax=ax )
99 sns . rugp lo t (X [ : , 1 ] [ Y== 1 ] , c o l o r=" gray " , v e r t i c a l=True , ax=ax )

100 sns . kdeplot (X [ : , 0 ] [ Y==−1], X [ : , 1 ] [ Y==−1],cmap=" Purples " , l egend=True , l a b e l=" c l a s s −1" )
101 sns . rugp lo t (X [ : , 0 ] [ Y==−1], c o l o r=" gray " , ax=ax )
102 sns . rugp lo t (X [ : , 1 ] [ Y==−1], c o l o r=" gray " , v e r t i c a l=True , ax=ax )
103 ax . s e t_x labe l ( ’X ’ )
104 ax . s e t_y labe l ( ’Y ’ )
105 l e g = ax . legend ( )
106 l e g . legendHandles [ 0 ] . s e t_co lo r ( ’ orange ’ )
107 l e g . legendHandles [ 1 ] . s e t_co lo r ( ’ purp le ’ )
108 ax . s p i n e s [ ’ r i g h t ’ ] . s e t _ v i s i b l e ( Fa l se )
109 ax . s p i n e s [ ’ top ’ ] . s e t _ v i s i b l e ( Fa l se )
110 f . s a v e f i g ( ’ o r i g ina lData1b . png ’ , bbox_inches = ’ t i g h t ’ , pad_inches = 0 . 1 , dpi =300)
111
112 f e a t u r e s = np . array ( [ x f o r x in X] )
113
114 np . random . seed (0 )
115 num_data = len (Y)
116 num_train = i n t ( 0 . 7 5 ∗ num_data)
117 index = np . random . permutation (num_data)
118 f e a t s _ t r a i n = f e a t u r e s [ index [ : num_train ] ]
119 Y_train = Y[ index [ : num_train ] ]
120 f ea t s_va l = f e a t u r e s [ index [ num_train : ] ]
121 Y_val = Y[ index [ num_train : ] ]
122
123 X_train = X[ index [ : num_train ] ]
124 X_val = X[ index [ num_train : ] ]
125
126 np . random . seed (0 )
127 num_qubits = 2
128 num_layers = 6
129 var_in i t = ( np . random . randn ( num_layers , num_qubits , 3) , 0 . 0 )
130 opt = AdamOptimizer ( 0 . 0 1 )
131 batch_size = 8
132 loss_progressT = [ ]
133 loss_progressV = [ ]
134 t ra in_progre s s = [ ]
135 va l_progress = [ ]
136 var = var_in i t
137 n = 50
138
139 f o r i t in range (n) :
140
141 batch_index = np . random . rand int (0 , num_train , ( batch_size , ) )
142 feats_tra in_batch = f e a t s _ t r a i n [ batch_index ]
143 Y_train_batch = Y_train [ batch_index ]
144 var = opt . s tep ( lambda v : l o s s (v , feats_train_batch , Y_train_batch ) , var )
145 p r e d i c t i o n s _ t r a i n = [ np . s i g n ( v a r i a t i o n a l _ c l a s s i f i e r ( var , f e a t=f ) ) f o r f in

↪→ f e a t s _ t r a i n ]
146 p r e d i c t i o n s _ v a l = [ np . s i g n ( v a r i a t i o n a l _ c l a s s i f i e r ( var , f e a t=f ) ) f o r f in f ea t s_va l ]
147 acc_tra in = accuracy ( Y_train , p r e d i c t i o n s _ t r a i n )
148 acc_val = accuracy ( Y_val , p r e d i c t i o n s _ v a l )
149 lossT = l o s s ( var , f ea t s_t ra in , Y_train )
150 lossV = l o s s ( var , f eats_val , Y_val )
151 loss_progressT . append ( lossT )
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152 loss_progressV . append ( lossV )
153 t ra in_progre s s . append ( acc_tra in )
154 va l_progress . append ( acc_val )
155 p r i n t ( " I t e r : { : 5 d} | Loss t r a i n : { : 0 . 7 f } | Acc t r a i n : { : 0 . 7 f } | Loss v a l i d a t i o n :

↪→ { : 0 . 7 f } | Acc v a l i d a t i o n : { : 0 . 7 f } "
156 " " . format ( i t +1, lossT , acc_train , lossV , acc_val ) )
157
158 p r i n t ( "−−− %s seconds −−−" % ( time . time ( ) − start_time ) )
159
160 p r i n t ( "CIRCUIT" )
161 p r i n t ( c i r c u i t . draw ( ) )
162
163 sys . s tdout = or ig_stdout
164
165 P l o t t i n g the l o s s , t r a i n and v a l i d a t i o n
166 f i g = p l t . f i g u r e ( )
167 p l t . p l o t ( loss_progressT , l a b e l=’ Train ( l o s s ) ’ , c o l o r=’ blue ’ )
168 p l t . p l o t ( t ra in_progres s , l a b e l=’ Train ( acc ) ’ , c o l o r=’ green ’ )
169 p l t . p l o t ( loss_progressV , l a b e l=’ Va l idat i on ( l o s s ) ’ , c o l o r=’ red ’ )
170 p l t . p l o t ( val_progress , l a b e l=’ Va l idat i on ( acc ) ’ , c o l o r=’ orange ’ )
171 p l t . y l a b e l ( ’ Loss | Accuracy ’ )
172 p l t . x l a b e l ( ’ Step ’ )
173 p l t . l egend ( l o c=’ upper c e n t e r ’ , bbox_to_anchor =(0.5 , 1 . 2 5 ) , nco l =2, fancybox=True , shadow=

↪→ True , frameon=False )
174 f i g . s a v e f i g ( ’ l o s sAccuracy . png ’ , bbox_inches = ’ t i g h t ’ , pad_inches = 0 . 1 , dpi =300)
175
176 p r i n t ( "−−− %s seconds −−−" % ( time . time ( ) − start_time ) )
177 sys . s tdout = or ig_stdout
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Appendix C

Mapping Graph Coloring to Quantum
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C.1 Varying α and β
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Figure C.1: Solutions for pure classical C and classical quantum simulator C_Q_sim and both
methods of polynomial reduction Q_mq and Q_ms (varying α and β) (First part)
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Figure C.2: Solutions for pure classical C and classical quantum simulator C_Q_sim and both
methods of polynomial reduction Q_mq and Q_ms (varying α and β) (Second part)
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Figure C.3: Energy values of classical C and both methods of polynomial reduction (Q_mq and
Q_ms) (varying α and β)
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Figure C.4: Solutions for pure classical C and classical quantum simulator C_Q_sim and both
methods of polynomial reduction Q_mq and Q_ms (varying α) (First part)
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Figure C.5: Solutions for pure classical C and classical quantum simulator C_Q_sim and both
methods of polynomial reduction Q_mq and Q_ms (varying α) (Second part)
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Figure C.6: Energy values of classical C and both methods of polynomial reduction (Q_mq and
Q_ms) (varying α)
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Figure C.9: Energy values of classical C and both methods of polynomial reduction (Q_mq and
Q_ms) (varying β)



Appendix D

Algorithms: Deutsch’s, Deutsch-Jozsa’s,
Grover’s, Shor’s, HHL’s

In this section, we present algorithms that provide quantum speed-up, e.g. Deutsch’s, Grover’s,
and Shor’s algorithms, which can be realized in today’s quantum hardware with limited number
of qubits.

Deutsch’s algorithm.

In 1985, David Deutsch proposed a very simple algorithm: given a circuit (an oracle Uf ) that
implements a one-bit Boolean function, which aims to determine whether the function is constant
(returns the same value c in {0, 1} on all inputs x) or balanced (returns 1 on one input and 0 on
the other). In the classical scenario, we need to consult the oracle twice, to compute both values
of the function, resorting to the quantum black-box Uf , we just need one superposition call,
since we can take advantage of quantum parallelism together with interference (constructive and
destructive). In brief, we were given a Boolean function whose input is 1 bit, f : {0, 1} → {0, 1}
and we aim to know if it is constant. If the function is constant, we will measure 0, otherwise, 1.

Deutsch’s algorithm is the simpler case of Deutsch-Jozsa algorithm where f(x) takes 1-bit as
input.

Deutsch-Jozsa’s algorithm.

As in Deutsch’s algorithm, based in the same principles, Deutsch-Jozsa’s [50], resorting to an
oracle Uf , consider a function f(x) that takes as input n-bit strings x and returns 0 or 1. In
short, given a Boolean function whose input are n bits, f : {0, 1}n → {0, 1}, we aim to know if it
is constant. If the function is constant, we receive |0⟩, otherwise (if the function is balanced), we
obtain a string different from |0⟩, Figure D.1.

141



142 Appendix D. Algorithms: Deutsch’s, Deutsch-Jozsa’s, Grover’s, Shor’s, HHL’s

X

H

H

H

H

Z

H H

H

H

0 1

q00

q01

q02

3c0

Figure D.1: Deutsch-Jozsa’s algorithm circuit

Other interesting algorithms, with related concepts are, the Bernstein-Vazirani and Simon.

Listing D.1: Deutsch-Jozsa’s algorithm
1 # Source ( broken l i n k ) :
2 # h t t p s :// g i t h u b . com/ Q i s k i t /ibmqx−user−gu ides / b l o b
3 #/master/ r s t / f u l l −user−guide /004−Quantum_Algorithms/
4 #080−Deutsch−Jozsa_Algorithm . r s t
5
6 from q i s k i t import IBMQ, BasicAer
7 from q i s k i t import QuantumCircuit , C l a s s i c a l R e g i s t e r , QuantumRegister , execute
8
9 qr = QuantumRegister (3 ) # I n i t i a l i z e q u b i t s

10 cr = C l a s s i c a l R e g i s t e r (3 ) # I n i t i a l i z e b i t s f o r record measurements
11 c i r c u i t = QuantumCircuit ( qr , c r )
12
13 c i r c u i t . x ( qr [ 2 ] ) # i n i t i a l i z e the a n c i l l a q u b i t in the |1> s t a t e
14
15 c i r c u i t . b a r r i e r ( )
16
17 # F i r s t s t e p o f quantum a lgor i thms − Prepare the s u p e r p o s i t i o n
18 # For superpos i t i on , we app ly the Hadamard gate on a l l q u b i t s
19 c i r c u i t . h ( qr [ 0 ] )
20 c i r c u i t . h ( qr [ 1 ] )
21 c i r c u i t . h ( qr [ 2 ] )
22
23 c i r c u i t . b a r r i e r ( )
24
25 # Oracle func t i on
26 c i r c u i t . h ( qr [ 0 ] )
27 c i r c u i t . cx ( qr [ 1 ] , qr [ 0 ] )
28 c i r c u i t . z ( qr [ 2 ] )
29 c i r c u i t . h ( qr [ 0 ] )
30
31 c i r c u i t . b a r r i e r ( )
32
33 # Apply Hadamard g a t e s a f t e r query ing o r a c l e func t ion
34 c i r c u i t . h ( qr [ 0 ] )
35 c i r c u i t . h ( qr [ 1 ] )
36 c i r c u i t . h ( qr [ 2 ] )
37
38 c i r c u i t . b a r r i e r ( )
39
40 # Measure q u b i t
41 c i r c u i t . measure ( qr [ 0 ] , c r [ 0 ] )
42 c i r c u i t . measure ( qr [ 1 ] , c r [ 1 ] )
43
44 c i r c u i t . b a r r i e r ( )
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45
46 # Run our c i r c u i t wi th l o c a l s imu la tor
47 backend = BasicAer . get_backend ( ’ qasm_simulator ’ )
48 shot s = 1024
49 r e s u l t s = execute ( c i r c u i t , backend=backend , shot s=shot s ) . r e s u l t ( )
50 answer = r e s u l t s . get_counts ( )
51 p r i n t ( " Simulator r e s u l t " )
52 f o r c2c1c0 in answer :
53 p r i n t ( f " { c2c1c0 } i s observed in { answer [ c2c1c0 ] } t imes " )
54 # I f we measure |0>^n , then f i s constant , o ther r e s u l t s t e l l us t h a t f i s ba lanced
55 c i r c u i t . draw ( output=’ mpl ’ , f i l ename=’ c i r c 2 . pdf ’ )

Grover’s algorithm.

Grover’s algorithm [75] is used to solve search problems, as in Deutsch-Jozsa’s algorithm, Uf

computes the function f : {0, 1}n → {0, 1} where what we want to find is the one that verifies
f(x) = 1 and is based on the concept of inversion about the mean. Grover’s algorithm performs
O(
√
N) iterations where each iteration query Uf and performs a call to Grover’s diffusion operator

which boost the amplitudes of the states that met the condition, Figure D.2.
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Figure D.2: Grover’s algorithm circuit

Resorting to AQUA from Qiskit we use the Grover’s search algorithm to solve the problem of
determining if there exists a way to satisfy a given Boolean formula which is called the Boolean
satisfiability problem (propositional satisfiability problem or SAT). SAT, was the first computer
science problem to be proven as nondeterministic polynomial time complete (NP-Complete). In
SAT, formulas can be expressed in conjunctive normal form (CNF). The formula is a conjunction
(AND) of clauses, where each clause is a disjunction (OR) of literals (variables). The CNF can
be in DIMACS format. The file consists in lines (a) starting with "c" which is a comment line,
and (b) a line that starts with "p" which identifies the type of problem e.g. "cnf", the number
of variables and the number of clauses. Afterwards, we write a clause line which consists of
spaced numbers ending with a zero. The Python code below provides a possible solution for
(¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)
which outputs an expression that satisfies the CNF: (x1 ∨ ¬x2 ∨ x3).

We start by importing the libraries Aer allows us to choose the qasm_simulator backend
to run the script. The LogicalExpressionOracle creates an oracle of the string of the
desired logical expression and Grover links the oracle to the Grover’s search algorithm.

Listing D.2: Grover’s on Qiskit: import libraries
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1 from q i s k i t import Aer
2 from q i s k i t . aqua . components . o r a c l e s import Log i ca lExpre s s i onOrac l e
3 from q i s k i t . aqua . a lgor i thms import Grover

A Boolean logical expression in the DIMACS CNF format where ’c’ is the comments line and
’p’ the line with the definition of the cnf number of variables and number of expressions. In the
other lines, are all the expressions.

Listing D.3: Grover’s on Qiskit: DIMACS CNF
1 sat_cnf = " " "
2 c Example DIMACS 3−s a t
3 p cnf 3 5
4 −1 −2 −3 0
5 1 −2 3 0
6 1 2 −3 0
7 1 −2 −3 0
8 −1 2 3 0
9 " " "

The .run instantiates the Grover algorithm and oracle and runs it on the backend with seed
and number of repeats defined by the user.

Listing D.4: Grover’s on Qiskit: run the algorithm
1 backend = Aer . get_backend ( ’ qasm_simulator ’ )
2 o r a c l e = Log i ca lExpre s s i onOrac l e ( sat_cnf )
3 a lgor i thm = Grover ( o r a c l e )
4 r e s u l t = algor i thm . run ( backend , seed_simulator = 123 , shot s = 10000)
5 p r i n t ( r e s u l t [ " measurement " ] )
6 p r i n t ( r e s u l t [ " r e s u l t " ] )

Listing D.5: Grover’s on Qiskit: output measurement and result
1 Output ( " measurement " ) : { ’ 100 ’ : 322 , ’ 000 ’ : 2769 , ’ 001 ’ : 326 , ’ 011 ’ : 2793 , ’ 111 ’ : 302 , ’

↪→ 110 ’ : 321 , ’ 101 ’ : 2862 , ’ 010 ’ : 305}
2 Output ( " r e s u l t " ) : 1 , −2, 3

The Oracle will feed the information to the quantum computer which is a quantum black box
that can recognize the solutions to our problem. When using Grover’s to solve SAT problems,
since the algorithm is based upon searching a database for a solution, we can treat all the possible
outcomes as a database we intend to search. The true outputs are the solutions, the remaining
items are false [59, 60].

Listing D.6: Grover’s algorithm
1 # Source : h t t p s ://www. q u a n t i k i . org / wik i / grovers −search−a lgor i thm
2 from q i s k i t import IBMQ, BasicAer
3 from q i s k i t import QuantumCircuit , C l a s s i c a l R e g i s t e r , QuantumRegister , execute
4
5 qr = QuantumRegister (3 ) # I n i t i a l i z e q u b i t s
6 cr = C l a s s i c a l R e g i s t e r (3 ) # I n i t i a l i z e b i t s f o r record measurements
7 c i r c u i t = QuantumCircuit ( qr , c r )
8
9 # We want to search two marked s t a t e s
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10 # |101> and |110>
11
12 # Apply Hadamard to a l l q u b i t s
13 c i r c u i t . h ( qr )
14 c i r c u i t . b a r r i e r ( )
15
16 # Phase o r a c l e ( Marks s t a t e s |101> and |110> as r e s u l t s )
17 c i r c u i t . cz ( qr [ 2 ] , qr [ 0 ] )
18 c i r c u i t . cz ( qr [ 2 ] , qr [ 1 ] )
19
20 # Invers ion around the average
21 c i r c u i t . h ( qr )
22 c i r c u i t . x ( qr )
23 c i r c u i t . b a r r i e r ( )
24 c i r c u i t . h ( qr [ 2 ] )
25 c i r c u i t . ccx ( qr [ 0 ] , qr [ 1 ] , qr [ 2 ] )
26 c i r c u i t . h ( qr [ 2 ] )
27 c i r c u i t . b a r r i e r ( )
28 c i r c u i t . x ( qr )
29 c i r c u i t . h ( qr )
30
31 # Measure
32 c i r c u i t . measure ( qr , c r )
33
34 # Run our c i r c u i t wi th l o c a l s imu la tor
35 backend = BasicAer . get_backend ( ’ qasm_simulator ’ )
36 shot s = 1024
37 r e s u l t s = execute ( c i r c u i t , backend=backend , shot s=shot s ) . r e s u l t ( )
38 answer = r e s u l t s . get_counts ( )
39 p r i n t ( answer )
40 c i r c u i t . draw ( output=’ mpl ’ , f i l ename=’ c i r c 3 . pdf ’ )

Shor’s algorithm.

Peter Shor invented in 1994 the Shor’s algorithm [184, 185] which finds a factor of a n-bit
integer, performs integer factorization in polynomial time. In brief, it solves the problem of given
an integer N , find its prime factors. In this sense, a factorization problem can be reduced to a
factorization of N to the problem of finding the period of an integer which depends on f(x) = ax

mod N , where a and N are positive integers, a < N with the period (or order, r) such that ar

mod N = 1, Figure D.3.
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Figure D.3: Shor’s algorithm circuit

The Shor’s algorithm, where given a large integer N (typically several hundred digits long),
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factorize N as a product of primes:

a. Pick random number a < N .

b. Compute greatest common divisor, gcd(a,N).

c. If gcd(a,N)! = 1, then it is a non-trivial factor of N .

d. Otherwise, use the quantum period-finding subroutine to find r, the period of the following
function: f(x) = axmodN

e. If r is odd, go back to step 1.

f. If ar/2 = −1(modN), go back to step 1.

g. gcd(ar/2 + 1, N) and gcd(ar/2− 1, N) are both nontrivial factors of N .

The computer scientists Ethan Bernstein and Umesh Vazirani, in 1993 defined a new
complexity class named BQP (bounded-error quantum polynomial time). This class contains all
the decision problems - problems with a yes or no answer, suited for quantum computers to solve.
To distinguish between two complexity classes is to find a problem that is probably in one and
not the other. For example, the paper by Raz and Tal [164] proves that a quantum computer
needs less hints than a classical computer to solve the forrelation problem. This problem concerns
two sequences of digits from two random numbers generators, asking the machine if there are
two sequences completely independent from each other, or are they related some how? Aaronson
introduced this forrelation problem in 2009 and proved that it belongs to BQP, and is not in PH,
since there’s no algorithm in PH that can solve the problem.

Listing D.7: Shor’s algorithm
1 # Source : h t t p s :// g i t h u b . com/ Q i s k i t / q i s k i t −community−t u t o r i a l s / b l o b /
2 #b9266a4f9c1 f6b3 f4c f5117d9c443f9 f1c3518cb / a l gor i thms /
3 #shor_algorithm . ipynb
4
5 import math
6
7 from q i s k i t import IBMQ, BasicAer
8 from q i s k i t import QuantumCircuit , C l a s s i c a l R e g i s t e r , QuantumRegister , execute
9

10 # We’ l l b u i l d c i r c u i t f o r a^x mod 15 f o r a = 2
11 qr = QuantumRegister (5 )
12 cr = C l a s s i c a l R e g i s t e r (5 )
13
14 c i r c u i t = QuantumCircuit ( qr , c r )
15
16 # I n i t i a l i z e q [ 0 ] to |1>
17 c i r c u i t . x ( qr [ 0 ] )
18
19 # Apply a∗∗4 mod 15
20 c i r c u i t . h ( qr [ 4 ] )
21 c i r c u i t . h ( qr [ 4 ] )
22 c i r c u i t . measure ( qr [ 4 ] , c r [ 0 ] )
23 c i r c u i t . r e s e t ( qr [ 4 ] )
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24
25 # Apply a∗∗2 mod 15
26 c i r c u i t . h ( qr [ 4 ] )
27 c i r c u i t . cx ( qr [ 4 ] , qr [ 2 ] )
28 c i r c u i t . cx ( qr [ 4 ] , qr [ 0 ] )
29 c i r c u i t . u1 (math . p i / 2 . , qr [ 4 ] ) . c_i f ( cr , 1)
30 c i r c u i t . u1 (math . p i / 2 . , qr [ 4 ] ) . c_i f ( cr , 1)
31 c i r c u i t . h ( qr [ 4 ] )
32 c i r c u i t . measure ( qr [ 4 ] , c r [ 1 ] )
33 c i r c u i t . r e s e t ( qr [ 4 ] )
34
35 # Apply a mod 15
36 c i r c u i t . h ( qr [ 4 ] )
37 c i r c u i t . cswap ( qr [ 4 ] , qr [ 3 ] , qr [ 2 ] )
38 c i r c u i t . cswap ( qr [ 4 ] , qr [ 2 ] , qr [ 1 ] )
39 c i r c u i t . cswap ( qr [ 4 ] , qr [ 1 ] , qr [ 0 ] )
40 c i r c u i t . u1 ( 3 . ∗ math . p i / 4 . , qr [ 4 ] ) . c_i f ( cr , 3)
41 c i r c u i t . u1 (math . p i / 2 . , qr [ 4 ] ) . c_i f ( cr , 2)
42 c i r c u i t . u1 (math . p i / 4 . , qr [ 4 ] ) . c_i f ( cr , 1)
43 c i r c u i t . h ( qr [ 4 ] )
44 c i r c u i t . measure ( qr [ 4 ] , c r [ 2 ] )
45
46 # Run our c i r c u i t wi th l o c a l s imu la tor
47 backend = BasicAer . get_backend ( ’ qasm_simulator ’ )
48 shot s = 1024
49 r e s u l t s = execute ( c i r c u i t , backend=backend , shot s=shot s ) . r e s u l t ( )
50 answer = r e s u l t s . get_counts ( )
51 p r i n t ( answer )
52 # We see the measurements y i e l d x = 0 , 2 , 4 and 6 with equa l ( i s h ) p r o b a b i l i t y .
53 # Using the cont inued f r a c t i o n expansion f o r x /2^3 , we note t h a t only x = 2 and
54 # 6 g i v e the c o r r e c t per iod r = 4 , and thus the f a c t o r s p = gcd ( a^{ r /2}+1 ,15) = 3
55 # and q = gcd ( a^{ r /2} −1 ,15) = 5.
56 c i r c u i t . draw ( output=’ mpl ’ , f i l ename=’ c i r c 4 . pdf ’ )

HHL’s algorithm.

Applying quantum phase estimations to solve linear systems of equations was proposed in
2009 by Harrow, Hassidim and Lloyd [78]. The problem can be defined as, given the matrix
A ∈ CN×N and the vector b⃗ ∈ CN , we aim to find x⃗ ∈ CN satisfying Ax⃗ = b⃗. The algorithm is
based in (a) computation of the eigenvalues (quantum phase estimation), (b) inversion of the
eigenvalues, and (c) uncomputation of the eigenvalues (inverse of quantum phase estimation),
Figure D.4.
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Listing D.8: HHL’s algorithm



148 Appendix D. Algorithms: Deutsch’s, Deutsch-Jozsa’s, Grover’s, Shor’s, HHL’s

1 # Source : h t t p s :// q i s k i t . org / t e x t b o o k /ch−a p p l i c a t i o n s / h h l _ t u t o r i a l . html
2
3 from q i s k i t import QuantumRegister , QuantumCircuit
4 import numpy as np
5
6 t = 2 # This i s not opt imal ; As an e x e r c i s e , s e t t h i s to the
7 # va lue t h a t w i l l g e t the b e s t r e s u l t s . See s e c t i o n 8 f o r s o l u t i o n .
8
9 nqubits = 4 # Total number o f q u b i t s

10 nb = 1 # Number o f q u b i t s r e p r e s e n t i n g the s o l u t i o n
11 n l = 2 # Number o f q u b i t s r e p r e s e n t i n g the e i g e n v a l u e s
12
13 theta = 0 # Angle d e f i n i n g | b>
14
15 a = 1 # Matrix d iagona l
16 b = −1/3 # Matrix o f f −d iagona l
17
18 # I n i t i a l i s e the quantum and c l a s s i c a l r e g i s t e r s
19 qr = QuantumRegister ( nqubits )
20
21 # Create a Quantum C i r c u i t
22 qc = QuantumCircuit ( qr )
23
24 qrb = qr [ 0 : nb ]
25 q r l = qr [ nb : nb+nl ]
26 qra = qr [ nb+nl : nb+nl +1]
27
28 # Sta te prepara t ion .
29 qc . ry (2∗ theta , qrb [ 0 ] )
30
31 # QPE with e^{ iAt }
32 f o r qu in q r l :
33 qc . h ( qu )
34
35 qc . u1 ( a∗ t , q r l [ 0 ] )
36 qc . u1 ( a∗ t ∗2 , q r l [ 1 ] )
37
38 qc . u3 (b∗ t , −np . p i /2 , np . p i /2 , qrb [ 0 ] )
39
40
41 # Contro l l ed e^{ iAt } on \lambda_ {1}:
42 params=b∗ t
43
44 qc . u1 ( np . p i /2 , qrb [ 0 ] )
45 qc . cx ( q r l [ 0 ] , qrb [ 0 ] )
46 qc . ry ( params , qrb [ 0 ] )
47 qc . cx ( q r l [ 0 ] , qrb [ 0 ] )
48 qc . ry(−params , qrb [ 0 ] )
49 qc . u1 (3∗ np . p i /2 , qrb [ 0 ] )
50
51 # Contro l l ed e ^{2 iAt } on \lambda_ {2}:
52 params = b∗ t ∗2
53
54 qc . u1 ( np . p i /2 , qrb [ 0 ] )
55 qc . cx ( q r l [ 1 ] , qrb [ 0 ] )
56 qc . ry ( params , qrb [ 0 ] )
57 qc . cx ( q r l [ 1 ] , qrb [ 0 ] )
58 qc . ry(−params , qrb [ 0 ] )
59 qc . u1 (3∗ np . p i /2 , qrb [ 0 ] )
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60
61 # Inverse QFT
62 qc . h( q r l [ 1 ] )
63 qc . rz (−np . p i /4 , q r l [ 1 ] )
64 qc . cx ( q r l [ 0 ] , q r l [ 1 ] )
65 qc . rz ( np . p i /4 , q r l [ 1 ] )
66 qc . cx ( q r l [ 0 ] , q r l [ 1 ] )
67 qc . rz (−np . p i /4 , q r l [ 0 ] )
68 qc . h( q r l [ 0 ] )
69
70 # Eigenva lue r o t a t i o n
71 t1=(−np . p i +np . p i /3 − 2∗np . a r c s i n (1/3) ) /4
72 t2=(−np . p i −np . p i /3 + 2∗np . a r c s i n (1/3) ) /4
73 t3=(np . p i −np . p i /3 − 2∗np . a r c s i n (1/3) ) /4
74 t4=(np . p i +np . p i /3 + 2∗np . a r c s i n (1/3) ) /4
75
76 qc . cx ( q r l [ 1 ] , qra [ 0 ] )
77 qc . ry ( t1 , qra [ 0 ] )
78 qc . cx ( q r l [ 0 ] , qra [ 0 ] )
79 qc . ry ( t2 , qra [ 0 ] )
80 qc . cx ( q r l [ 1 ] , qra [ 0 ] )
81 qc . ry ( t3 , qra [ 0 ] )
82 qc . cx ( q r l [ 0 ] , qra [ 0 ] )
83 qc . ry ( t4 , qra [ 0 ] )
84 qc . measure_all ( )
85
86 p r i n t ( " Depth : %i " % qc . depth ( ) )
87 p r i n t ( "CNOTS: %i " % qc . count_ops ( ) [ ’ cx ’ ] )
88 qc . draw ( f o l d =100 , output=’ mpl ’ , f i l ename=’ c i r c 5 . pdf ’ )





Appendix E

Quantum operations

In this section are shown concepts which aid to understand quantum operations-based systems.

Preliminaries. Given vector spaces V and W over C with bases e1, ..., em and f1, ..., fn, the
tensor product V ⊗W is another vector space over C of dimension mn. The space V ⊗W has a
bilinear operation ⊗ : V ×W → V ⊗W , and it has basis ei ⊗ fj∀i = 1, ...,m, j = 1, ..., n.

Relationship with Kronecker product (or outer product). Given A ∈ Cm×n, B ∈
Cp×q, the Kronecker product A⊗ B is the matrix D ∈ Cmp×nq. Given standard basis over the
vector spaces Cm×n and Cp⊗q, the bilinear operation ⊗ of Cm×n⊗Cp×q is the Kronecker product.

D = A⊗B =


a11B...a1nB

a21B...a2nB
...

am1B...amnB

 (E.1)

x⊗ y =
(

0.30
0.70

)
⊗


0.10
0.10
0.40
0.40

 =



0.30× 0.10
0.30× 0.10
0.30× 0.40
0.30× 0.40
0.70× 0.10
0.70× 0.10
0.70× 0.40
0.70× 0.40


=



0.03
0.03
0.12
0.12
0.07
0.07
0.28
0.28


(E.2)

Properties of the tensor product. Let A,B : Cm×m, C,D ∈ Cn×n be linear maps on V

and W respectively, u, v ∈ Cm, w, x ∈ Cn, and a, b ∈ C. The tensor product satisfies:

• Bilinearity

– (u+ v)⊗ w = u⊗ w + v ⊗ w
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– u⊗ (w + x) = u⊗ w + u⊗ x

– (au)⊗ (bw) = ab(u⊗ w)

• Associativity

– A⊗ (B ⊗ C) = (A⊗B)⊗ C

– x⊗ (u⊗ v) = (x⊗ u)⊗ v

• Properties for linear maps

– (A⊗ C)(B ⊗D) = AB ⊗ CD

– (A⊗ C)(u⊗ w) = Au⊗ Cw

Vector spaces and braket notation. Given a complex Euclidean space S ≡ Cn, |ψ⟩ ∈ S
denotes a column vector, and ⟨ψ| ∈ S∗ denotes a row vector that is the conjugate transpose of
|ψ⟩, i.e., ⟨ψ| = |ψ⟩∗. |ψ⟩ is called a ket, ⟨ψ| is called a bra.

We work with complex Euclidean spaces of the form (C2)⊗q and with the standard basis [144].

Structure of the standard basis. The standard basis for C2 is denoted by:

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
(E.3)

.

The four basis elements of (C2)⊗2 = C2 ⊗ C2 are:

|00⟩ = |0⟩ ⊗ |0⟩ =


1
0
0
0

 |01⟩ = |0⟩ ⊗ |1⟩ =


0
1
0
0

 (E.4)

|10⟩ = |1⟩ ⊗ |0⟩ =


0
0
1
0

 |11⟩ = |1⟩ ⊗ |1⟩ =


0
0
0
1

 (E.5)

The standard basis for (C2)⊗q is given by the following 2q vectors:

|0⟩ ⊗ ...⊗ |0⟩ ⊗ |0⟩︸ ︷︷ ︸
q times

= |00...00⟩︸ ︷︷ ︸
q digits

(E.6)

|0⟩ ⊗ ...⊗ |0⟩ ⊗ |1⟩︸ ︷︷ ︸
q times

= |00...01⟩︸ ︷︷ ︸
q digits

(E.7)

... (E.8)
|1⟩ ⊗ ...⊗ |1⟩ ⊗ |1⟩︸ ︷︷ ︸

q times

= |11...11⟩︸ ︷︷ ︸
q digits

(E.9)
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Assumption. The state of a q-qubit quantum register is a unit vector in (C2)⊗q =
C2 ⊗ ...⊗ C2.

State of a quantum register. A quantum computer has a state stored in a quantum
register. Classical registers are made up of bits. Quantum registers are made up of qubits. The
state of a q-bit classical register lives in q-dimensional space. The state of a q-qubit quantum
register lives in 2q-dimensional complex space.

The state of a single qubit is:

α|0⟩+ β|1⟩ = α

(
1
0

)
+ β

(
0
1

)
=
(
α

β

)
(E.10)

where α, β ∈ C and |α|2 + |β|2 = 1.
The state of a q-qubit quantum register is:∑

−→
j ∈{0,1}q

α−→
j
|−→j ⟩ (E.11)

with ∑−→
j ∈{0,1}q |α−→j |

2 = 1

Basis states and superposition. q qubits are in a basis state if their state |ψ⟩ =∑
−→
j ∈{0,1}q α−→j |

−→
j ⟩q is |ψ⟩ = |−→k ⟩ for some

−→
k ∈ {0, 1}q. Otherwise, they are in a superposition.

Example: given general 2-qubit state |ψ⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩, the following
is a basis state: |ψ⟩ = |01⟩ (i.e., α00 = α10 = α11 = 0, α01 = 1), and this is a superposition:
|ψ⟩ = 1√

2 |01⟩+ 1√
2 |11⟩. Thus, superposition = linear combination of basis states.

Product states and entanglement. A quantum state |ψ⟩ ∈ (C2)⊗q is a product state if
it can be written as |ψ1⟩ ⊗ ...⊗ |ψq⟩ with 1-qubit states. Otherwise, it is entangled.
Example: product state. Consider 2-qubit state: 1

2 |00⟩+ 1
2 |01⟩+ 1

2 |10⟩+ 1
2 |11⟩. This is a product

state because it is equal to: 1√
2 |0⟩+ 1√

2 |1⟩ ⊗
1√
2 |0⟩+ 1√

2 |1⟩.
Example: entangled state. Consider 2-qubit state: 1√

2 |00⟩+ 1√
2 |11⟩. This is an entangled state,

because it cannot be expressed as a product of two 1-qubit states.
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