
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Developing a Framework to Improve
Reproducibility in AI Models for the

Health Domain

Pedro Luis Gomes Elias

Mestrado em Engenharia de Software

Supervisor: Ademar Aguiar

Second Supervisor: Artur Rocha

July 29, 2021

Developing a Framework to Improve Reproducibility in
AI Models for the Health Domain

Pedro Luis Gomes Elias

Mestrado em Engenharia de Software

Approved in oral examination by the committee:

Chair: Prof. Nuno Honório Rodrigues Flores

External Examiner: Prof. Ângelo Manuel Rego e Silva Martins

Supervisor: Prof. Ademar Manuel Teixeira de Aguiar

July 29, 2021

Abstract

In scientific work, reproducibility increases trust in the experiment’s results, by allowing it to be
replicated by peers and reviewers and obtain similar results. The work in Artificial Intelligence
(AI) was expected to be highly reproducible, as all the data and models needed to run an experi-
ment are usually stored on a computer. This should allow them to be shared so peers can rerun the
experiments. However, research that looked into many conference papers on Machine Learning
(ML) experiments have shown that, in general, they were irreproducible.

This dissertation will approach specifically the reproducibility of AI experiments for the health
domain. This work was created in association with Institute for Systems and Computer Engineer-
ing, Technology and Science (INESCTEC) to support their personal research in this area. The
health care field adds an extra layer of complexity, as health data is protected under more rigid
privacy constraints, thus being harder to reproduce.

This work aims at designing and creating a framework for researchers to share and catalog
AI experiments in the field of healthcare, to improve reproducibility. This dissertation follows the
development of the said framework, going through the investigation of the problem and available
open-source tools. Passing through the life cycle of software development, research and require-
ments assessment, until the creation of a mockup and the implementation of an Minimum Viable
Product (MVP). The framework was tested and the results were cataloged in this document, in-
cluding possible improvements to provide more functionalities.

Keywords: reproducibility, framework, security

i

ii

Resumo

Em pesquisas científicas a reprodutibilidade aumenta a confiança nos resultados do experimento,
permitindo sua reprodução por pares e revisores. No campo da Inteligência Artificial (AI) sempre
deveria ser possível reproduzir os experimentos, pois os dados e modelos necessários para executá-
los são usualmente armazenados em um computador. Isto permite que estes sejam compartilhados
com outros, para que possam refazê-lo de forma fiel. No entanto, pesquisas que analisaram diver-
sos artigos de conferências sobre experimentos de Aprendizado de Máquina (ML) mostraram que
estes eram em geral, irreproduzíveis.

Esta dissertação abordará especificamente a reprodutibilidade de experimentos de AI na área
da saúde. Foi criado em associação com o Instituto de Engenharia de Sistemas e Computadores,
Tecnologia e Ciência, para dar duporte aos seus pesquisadores que estejam investigando esta área.
Este tópico adiciona uma camada extra de complexidade, pois os dados de saúde são protegidos
por restrições de privacidade mais rígidas e, portanto, se tornam mais difíceis de reproduzir.

Este trabalho tem como objetivo o design e criação de um framework para que pesquisadores
possam partilhar e catalogar experimentos de Inteligência Artificial no campo da saúde, facilitando
assim a reproducibilidade. Esta dissertação tratou de investivgar o problema mencionado, ferra-
mentas de código, o ciclo de vida de desenvolvimento do framework, da pesquisa, elaboração de
requisitos, criação de um protótipo, até a implementação de uma versão funcional do framework.
O framework foi testado, e os resultados foram apresentados neste documento, incluindo possíveis
melhorias para oferecer mais funcionalidades.

Keywords: reprodutibilidade, framework, segurança

iii

iv

Acknowledgements

I would like to start by expressing my appreciation to my supervisors, Ademar Aguiar and Artur
Rocha, for their support and knowledge provided through all the stages of this work.

I also wish to extend my gratitude to all of this master degree’s professors, who guided me
through new knowledge.

Last, but not least, I wish to thank my parents and my sister for their love and unconditional
support whenever I needed it. Additionally, I wish to express my gratitude to my wife, Sílvia, for
accepting to embark with me on this journey and keep pushing me forward. And to all my friends
and family, my sincere thank you.

Pedro Elias

v

vi

“Knowing how to think empowers you
far beyond those who know only what to think.”

Neil deGrasse Tyson

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 2
1.4 Contributions . 4
1.5 Document Structure . 4

2 State of the art 7
2.1 Background . 7

2.1.1 Machine Learning . 7
2.1.2 Software Frameworks . 10
2.1.3 Privacy Constraints . 11

2.2 Reproducibility in AI . 12
2.2.1 Reproducibility Guidelines . 13
2.2.2 Approaches for Reproducibility . 14

2.3 Developing Frameworks . 15
2.4 Summary . 16

3 Problem and Perspective of Solution 17
3.1 Problem . 17
3.2 Requirements Elicitation . 18

3.2.1 Jupyter Notebook . 18
3.2.2 Google Colaboratory . 18
3.2.3 HydroShare . 19
3.2.4 Sciunit . 19

3.3 Requirement Specifications . 19
3.4 Minimum Viable Product . 20
3.5 Requirements Validation . 21

3.5.1 Non-functional Prototype . 21
3.5.2 Prototype Validation . 22

4 Developing a Framework for Reproducible Experiments 23
4.1 Tools . 23

4.1.1 MLflow . 23
4.1.2 Keycloak . 24
4.1.3 Lagom . 25
4.1.4 React . 25
4.1.5 ImmuneML . 25

ix

x CONTENTS

4.2 Software Design and Development . 25
4.2.1 Back-end . 27
4.2.2 Front-end . 28
4.2.3 Authentication . 28

4.3 Validation of Framework . 29
4.4 Use Case Examples . 30

5 Conclusions 35
5.1 Contributions . 35
5.2 Future Work . 36

A Source Code 37
A.1 MLflow Sample Code . 37
A.2 ImmuneML Sample Code . 39

References 41

List of Figures

1.1 Availability of experiments at framework. 2
1.2 Example of one attempt to reproduce experiment by changing implementation

method and utilizing same parameters. 3
1.3 Example of one attempt to reproduce experiment by reproducing implementation

method and utilizing new parameters. 3
1.4 Validation of results and assessment of reproducibility. 4

2.1 Artificial intelligence fields. 8
2.2 Supervised Learning. 9
2.3 Supervised Learning Result Acquisition. 9
2.4 Unsupervised Learning. 9
2.5 Relationship between the patterns in the pattern language, extracted from Evolving

frameworks: A pattern language for developing object-oriented frameworks. [35]. 15

3.1 Low Fidelity Mockup - Screens for the Settings and API Key creation and visual-
ization. 21

3.2 Low Fidelity Mockup - Screens for the Artifacts: experiments and models. 22

4.1 Technical Drawing illustrating the connections between the elements that compose
the Framework and the outside access. 26

4.2 Process of Authentication. 27
4.3 Process of Authentication. 28
4.4 Process of Authentication from user to Keycloak. 29
4.5 Results of the MLflow training viewed at the application log. 30
4.6 Results of the MLflow training viewed at the website. 30
4.7 Results of the ImmuneML training viewed at the application log. 30
4.8 Results of the ImmuneML training viewed at the website. 30
4.9 Keycloak sign in page. 31
4.10 The location of the settings menu. 32
4.11 The settings page, that displays the list of tokens created by the user. 32
4.12 Dialog that displays the API Key upon creation. 33
4.13 Experiment page displaying the runs for a specific experiment. 34
4.14 Model page, displaying the different models that were uploaded. 34

xi

xii LIST OF FIGURES

List of Tables

xiii

xiv LIST OF TABLES

Abbreviations

AI Artificial Intelligence
AIRR Adaptive Immune Receptors and Repertoires
API Application Programming Interfaces
GDPR General Data Protection Regulation
HIPAA Health Insurance Portability and Accountability Act
HIT Health Information Technology
INESC-TEC Institute for Systems and Computer Engineering, Technology and Science
JSON JavaScript Object Notation
JWT JSON Web Tokent
LGPD Lei Geral de Proteção de Dados
ML Machine Learning
MVP Minimum Viable Product
SVM Support vector-machines
SWEBOK Software Engineering Body of Knowledge

xv

Chapter 1

Introduction

This Master’s dissertation in Software Engineering is being developed in association with Institute

for Systems and Computer Engineering, Technology and Science (INESCTEC).

This chapter aims to provide an introduction to this work. Starting by section 1.1 where the

context of this dissertation is presented. This is followed by section 1.2 with the motivation behind

its creation, including a brief description of the problem tackled. Next is presented the framework’s

objectives in section 1.3. Finally, the section 1.5 disclosure its expected contributions.

1.1 Context

Health Information Technology is an integral part of a modern Health Care System. The industry

has followed the global tendency of digitization adopting methods to store, recover, share, analyze

and use health care information [19]. Thus making available a large, and constantly increasing,

amount of data. [30]

Gathering and analyzing data is a core element of the Scientific Method and an important part

of the research. With large datasets, Artificial Intelligence techniques became an additional tool

for extracting knowledge from it, allowing the recognition of patterns and unusual events [38].

As people build trust in AI to make complex decisions, they can start to be applied to critical

fields. such as healthcare, to help to solve problems like improving disease diagnosis, predict dis-

ease outbreaks, personalize treatments, analyze behavior modification [32] and support medicines

development.

The majority of experiments using ML models are very hard to reproduce, because of missing

documentation of the experiment, such as environment, model version, hyperparameters, dataset,

data format, description of the features [24]. This is particularly complex with health-related data

due to the privacy of patients’ records that do not allow the creation of databases to train models,

and so require techniques to mitigate these concerns [30].

1

2 Introduction

1.2 Motivation

Reproducibility is an integral part of scientific research [24]. A reproducible AI experiment allows

other researchers or teams to verify the achieved results. It also enables the improvement of models

in order to get better results.

Increasing reproducibility of AI experiments, specifically in the field of health, can help us

gain trust in those models’ decisions. An experiment that can’t be reproduced can’t be refuted,

and so, its results become dubious [24]. At such a high stakes field, validity is a must.

1.3 Objectives

The objective of this dissertation is to conceptualize and develop a web framework to document,

benchmark, and compare ML models in the field of health research.

Figure 1.1: Availability of experiments at framework.

1.3 Objectives 3

The proposed framework should allow researchers to share their data, models, and results

within this scientific research field, illustrated at figure 1.1. Other researchers should be able

to access such data, models, and results on this online platform and be able to reproduce those

experiments using similar processing. They should also be able to interchange the data or model

to run a new experiment and produce similar results, exemplified by figure 1.2 and figure 1.3.

Figure 1.2: Example of one attempt to reproduce experiment by changing implementation method
and utilizing same parameters.

Figure 1.3: Example of one attempt to reproduce experiment by reproducing implementation
method and utilizing new parameters.

After the conceptualization of the framework, a prototype will be tested in conjunction with

a research team that is focused on ML for health. The result should clarify whether or not the

framework made the documentation phase easier and supported, indicated in figure 1.4.

4 Introduction

Figure 1.4: Validation of results and assessment of reproducibility.

1.4 Contributions

This work’s desired contribution would be to facilitate the documentation and support of AI ex-

periments in the research field of health, in order to make it reproducible by other researchers. The

researchers should be able to incorporate the Framework during the training and testing of ML

models, and it will be responsible to register the data and parameters used, as well as the results

produced.

In addition to that, the framework should provide visibility to the advances made on the various

stages of the training process. This could be made by providing a way to share not only the results

but the full experiments. This should allow a secure diffusion of up-to-date ML models to be

applied in Health Care.

1.5 Document Structure

This document is structured with multiple chapters, starting by chapter 1 (p. 1) the introductory

chapter that presented the context of the upcoming dissertation, its motivation, objectives, and

proposed contributions.

1.5 Document Structure 5

These are followed by chapter 2 (p. 7) that provides the State of the Art (SOTA), which is

required to the fully comprehension of this work. It goes through the background for the work,

presenting the Machine Learning methodology and terminology to understand Software Frame-

works. After this section, we present the privacy constraints that are current in place and how

health data presents itself as a special case of secure data for privacy. This section also describes

the reproducibility in AI and the reproducibility guidelines for scientific research and examples of

how could be implemented. Finishing this chapter, are approaches to achieve reproducibility and

methods for developing frameworks.

Next, is chapter 3 (p. 17) that goes through the software requirements to the design of the

software in accordance with Software Engineering good practices. Starting with requirements

elicitation and follow by their specifications, used to develop an MVP. Finalizing, are the require-

ments validation process, that include a mockup and its validation.

Following up is chapter 4 (p. 23) with the development of the framework. Starts displaying

some tools that were used to support this development, and followed by its design and implemen-

tation. Which is succeed by framework validation and examples.

And at the end is chapter 5 (p. 35) presenting the conclusion of the work and future works that

could derive from the Framework developed in this dissertation.

Additionally, it is presented the appendix A (p. 37) with the source code of the tests used for

the training of the Framework.

6 Introduction

Chapter 2

State of the art

The State of the Art chapter provides some necessary information to understand the work described

in this document. Including, but not limited to: definitions, methods, constraints, guidelines,

examples, and terminologies that will appear in this dissertation.

Section 2.1 describes the background to follow this document, including Machine Learning

methodology, presents terminologies to understand software frameworks, the privacy constraints

that are currently in place, and how health data presents itself as a special case of secure data for

privacy.

Follow up section 2.2 dives on reproducibility in AI and the reproducibility guidelines for

scientific research and examples of implemented approaches to achieve Reproducibility

Finally, section 2.3 presents one of the knows methods for developing frameworks.

2.1 Background

This section provides some information to set up the background knowledge required for the full

comprehension of the document. Though the information presented is already part of the body of

knowledge of Software Engineers, it might be useful for less specialized readers. Therefore, in the

spirit of scientific research and knowledge diffusion, such sections should always be included in

works that will be publicly available and can be read and used by people of diverse backgrounds.

Furthermore, the purpose of the Framework is to support researchers in the field of Health, that

might not have Software Engineering knowledge.

2.1.1 Machine Learning

Machine Learning is a process in which a computer algorithm learns through previous experience

and/or data fed as an example, without being explicitly programmed. It is a branch of AI, as seen

in figure 2.1 [15].

7

8 State of the art

Figure 2.1: Artificial intelligence fields.

It is commonly divided into three categories, according to the nature of the inputs or feedback

provided to the model:

• Supervised Learning - These kinds of techniques are applied so a model can learn to iden-

tify an input based on previous experiences where the labeled data were fed by the supervi-

sor [15]. It tries to model the correlations between the input and the label based on the data

provided during training.

2.1 Background 9

Figure 2.2: Supervised Learning.

Figure 2.3: Supervised Learning Result Acquisition.

• Unsupervised Learning - Unlike the previous case, on unsupervised learning, the model

is not fed the data previously labeled. It is fed with different inputs and learns, without the

supervisor’s intervention, to find characteristics common to part of the data [15]. A good

example is the use of unsupervised learning in the creation of clusters. The method receives

the inputs and separates them in accordance with the similarities. There is not an explicit

result perceived as a goal. But rather the segregation of data.

Figure 2.4: Unsupervised Learning.

• Reinforcement Learning - This method aims to teach an agent how to take actions in an

environment in order to maximize a cumulative reward. This means that the environment

10 State of the art

and the reward function need to be modeled so the agent can experiment with different

actions given similar states, and learn what behaviors are the most rewarding ones.

In terms of outputs, it can also be divided in the following categories:

• Regression - The goal is to find the relationship between the input and output, and predict

from a new input a continuous quantity.

• Classification - Based on a classified dataset, it attempts to predict the class of new input.

• Clustering - The data is divided into groups, based on the similarities of the data points that

are in the same group, and dissimilarities of the data points that lie in different groups.

Different models have been developed to predict or explore data. Below the definition of some

types of models can be seen:

• Linear regression is able to predict a target, by fitting a line that has the minimum sum of

squared errors on the two-dimensional data [28].

• Artificial neural networks are networks made of artificial neurons, which are functions

that receives one or multiple weighted inputs, sums them, and pass through an activation

function to produce an output [27].

• Decision trees builds a set of decision rules based on the data features in order to predict a

target value [27].

• Bayesian networks are a graphical model that identifies the relationship between variables

and calculate the probabilities of one causing another. It uses Bayes inference to calculate

those conditional probabilities [27].

• Support vector-machines constructs one or multiple hyperplanes that separates the data

into two categories. It then can be used to classify new data by looking at where it lies on

the space [27].

• K-nearest neighbours classifies new data based on the class of the nearest points [27].

2.1.2 Software Frameworks

Frameworks are by definition solutions made by parts of or all of software designed to build

applications. It is designed by groups of abstracts classes and individualized by the way instances

of their subclasses collaborate within each other [35]. The methods defined by the user to adapt

it to its needs will often be acquired by the framework itself, rather they by the user’s application

code [26].

The development of a framework becomes advantageous when many applications will be de-

veloped in a similar structure for a similar goal [35]. They can also facilitate the usage by giving

2.1 Background 11

a user enough tools to create multiple types of functional compositions without knowledge of the

software and even without previous programming skills [35].

To understand the development of a framework, some terminology should be well defined,

such as:

• Object - Is a runtime entity that supplies state and operations to consult and alter said state,

representing a phenomenon from a domain. It is not immutable and should be able to change

from its creation to the point of its possible elimination [34].

• Class - Represents a group of objects. It can be either abstract or concrete [26]. And should

also be classified by its class type, which is determined by the behavior of the objects that

make the said class. It can be defined for example by the rules of transitions between states

or by the operations that trigger them [34].

• Abstract Class - Does not define instances variables, but rather methods of implementation

for its Subclasses [26].

• Concrete Class - Gives a definition for the represented data. And some will include multiple

Subclasses that differ in representation [26].

• Subclass - Comprises smaller sets of related operations withing a class (that by the subclass

perspective can be refereed as its Superclass) [34].

The way a framework can be designed by the interaction of these objects will be covered in

section 2.3.

2.1.3 Privacy Constraints

Multiple countries have established laws to regulate the boundaries and conditions for personal

data collection, storage, and treatment. Some examples of current efforts towards personal data

protection are the GDPR by the European Union and the LGPD from Brazil.

The European Strategy for Artificial Intelligence defined through the European Commission

multiple orientations to the use of AI in a beneficial way for individuals and for the society as a

whole [4] revolving around three pillars:

1. Boost investments in the field [37].

2. Prepare the community for socioeconomic changes resulted from AI dissemination [37].

3. Guarantee ethical and legal framework [37].

As part of these Guidelines, item 3 aims that, between other things, the technologies should

assure that the fundamental rights to privacy and dignity of the individual are respected [4].

12 State of the art

2.1.3.1 Health Data and Privacy

Health Data is information of diagnosis, exams results, surgery records, previous treatments, men-

tal and physical evaluations [1], and other relevant records of an individual health through life.

Different countries deal with the privacy of health care data differently. It is broadly accepted

that health-related data are a sensitive category and should be regulated over special conditions.

This is applicable for both the GDPR [3] and LGPD [5], that include sections with specifications

and exceptions for health-related data. Other countries have created new laws specifically targeting

the protection of individuals’ medical records and other personal health information. Without it

being a portion of a wider privacy protection regulation. This is the case of the United States of

America that created the HIPAA [2]. The regulations should be taken into consideration by the

researchers in order to properly comply with the rules of the countries’ repositories.

According to the GDPR Health-related data is considered as a special category that has to

allow access to information in a way that both protects patient’s privacy while also allowing data

to be shared to the benefit of the individual and the community for Scientific Research [3].

In order to maintain the privacy of the individual whose data is addressed a number, symbol,

or particular assignment shall be used to uniquely identify the natural person. This data could

include all health data pertinent to its condition. Including past, present or future health status [1].

And by doing so, allowing researchers to access data without violating individual privacy and the

trust placed upon the health care community.

2.2 Reproducibility in AI

As in any empirical research, reproducibility is a fundamental part of AI experiments. In the

case of Machine learning, most researches depend only on data and models that are available on

a computer to train and verify the results obtained [17], which should facilitate reproducing the

experiments.

The term reproducibility may create some confusion with other terms like repeatability and

replicability [23]. In [24] reproducibility is defined as "the ability of an independent research team

to produce the same results using the same AI method based on the documentation made by the

original research team" and three degrees of reproducibility in terms of the result are presented:

1. Experiment reproducible - when the results can be reproduced by executing the same

implementation of the AI method using the same data.

2. Data reproducible - when the results can be reproduced by executing a different imple-

mentation of the same AI method using the same data.

3. Method reproducible - when the results can be reproduced by executing a different imple-

mentation of the same AI method using different data.

This definition illustrates also the amount of documentation necessary for each of the cases.

For the results to be Experiment reproducible, it is enough to have the data and executable ready

2.2 Reproducibility in AI 13

to run, and minimum documentation is necessary to show how to run. To be Data reproducible,

the AI method need to be documented in order for other researchers to be able to implement

their version. Lastly, to be Method reproducible, information on how the data was collected and

processed needs to be available. The best scenario possible in terms of reproducibility would

be to have the executable and data files, and the documentation needed to collect new data and

implement the AI method.

Based on that definition, Gundersen and Kjensmo (2018) [24] showed that most research pa-

pers in the field of AI are irreproducible, as they document only part of the variables needed to

reach any of the degrees of reproducibility.

2.2.1 Reproducibility Guidelines

This section presents some guidelines that researchers have found to improve the reproducibility

of computational research. Those guidelines include suggestions to the scientific community in

general, to researchers in the field of health, and data providers in order to take maximum ad-

vantage of the voluminous amount of data that is produced and stored. They also contribute to

increasing the general trust in Artificial Intelligence to make critical decisions.

• Shared research resources - If the privacy concerns are taken into account, the creation of

shared research resources allows medical data to be anonymously published, and contributes

to creating large datasets available to multiple research teams [30].

• Keep track of every result - Usually when researchers are training the model, multiple

parameters can be used, which can generate different results. When this happens, the re-

searchers need to keep track of how each result was produced by saving the set of parameters

used [30].

• Register data processing steps - When processing raw data, all the scripts that manipulate

it should be recorded. This allows the same process to be run by other researchers, with the

same or even new data [39].

• Store the version of programs - Archive every previous version of the project and any

external program used in the exact version that was used. Maintain a recording of every

version of the working model, to not only use as a backup but also to allow responding to

reviewers and to provide proper support despite current alterations [39]. The same should be

made for external programs that are used in your project as new versions might be developed

and generate slightly different results, or even be incompatible. Also, old versions might no

longer be available for acquisition [36].

• Register intermediary results - It is common to process the output of models in order to

generate tables or graphs, so it is necessary to record both the processing and the data that

was generated [36].

14 State of the art

• Record the seed used when the model needs randomness - For models that depend on

the generation of random numbers to run, it is important to record the seed that was used.

Using the same seed to reproduce the experiment guarantees that the exact same result will

be produced, instead of a slightly different result [36].

• Make scripts, runs, and results publicly available - Submit at least the main data and

source code online. Preferentially, do so for your complete work, including input data,

program versions, source code, hyperparameters, and achieved results [36].

• Develop data standards - The use of data standards allows other researchers to better un-

derstand the experiment conceptually, as they can be familiarized with that format. It also

gives the advantage of being able to test the experiment with new data [30].

This set of guidelines could be followed individually by researchers to achieve the repro-

ducibility of their AI experiments. However, this would require the use of several tools, uploading

each of the artifacts, and keeping track of the versions of each of the dependencies. The lack of

specific tools that can automate those tasks shows that there is great room for improvement.

2.2.2 Approaches for Reproducibility

There have been many approaches on how to make computational researches reproducible. Some

of them are no longer applicable in recent years as they rely on obsolete technologies. However,

they are worth mentioning as the concepts can be recreated in modern ways.

To document the reported results Claerbout and Karrenbach (1992) [21] proposed sharing the

whole experiment on a CD-ROM, making it re-runnable by anyone that wishes to read the research

and look at the experiments. This approach is outdated, as CD-ROM is hardly used, and depends

on physical sharing of the media.

Buckheit and Donoho (1998) [18] developed a Matlab package called Wavelab that could

reproduce their figures from their papers that contained results. However, this is a package to be

used in specific fields, and it does not apply to Machine learning research.

Gundersen and Kjensmo (2018) [24] proposed sharing access to a virtual machine, that con-

tains everything needed to reproduce the results: the data, runnable, documentation, and source

code. This is a more generic approach, that can fit any supervised or unsupervised learning exper-

iments. An obstacle in this approach is the high cost of keeping a running virtual machine for that

purpose.

Choi et al. (2021) [20] presents a solution in the field of Environmental modeling, by using

containerization technology, notebooks, and Application Programming Interfaces to encapsulate

and document the experiments.

2.3 Developing Frameworks 15

2.3 Developing Frameworks

This dissertation will use as a reference the path to designing a framework from Evolving Frame-

works: A Pattern Language for Developing Object-Oriented Frameworks (Roberts, 1996) [35], by

which an effective framework should be adaptable, reusable, and easily configurable.

The Evolving Framework design method follows the steps described in figure 2.5. These are

not linear, but rather overlap and circle back to, as the framework should be evolving constantly

and being adapted as the designer goes through it.

Figure 2.5: Relationship between the patterns in the pattern language, extracted from Evolving
frameworks: A pattern language for developing object-oriented frameworks. [35].

• Three Examples - Consists in selecting multiple (at least three) applications where your

framework will be used to resolve a problem. By building these applications you will be

able to identify common abstractions to start to design your framework [35].

• White Box Framework - A construction method based on inheritance [34]. By which

new classes are created by inheriting the behavior from an existing class in the individual

applications selected on Three Examples [35]. Framework designed solely on white-box

modeling requires that the user understands their implementation, as to properly change and

adapt the application to its use [26].

• Component Library - Composed by similar objects that will be common across the ma-

jority of the solutions. To start the design all the concrete sub-classes accumulated from the

applications should be added to the component library. If after several uses they are not used

consistently, they should be discarded. Otherwise will be maintained in the code and create

the component library. [35].

• Hot Spots - Parts of the code that show to be recurrently written [35].

16 State of the art

• Pluggable Objects - Design to adapt sub-classes configurable with parameters such as de-

liverable messages, indexes to access, boxes, or any other that discriminates one subclass

from the others. This avoids the creation of unnecessary sub-classes where only one method

is overruled [35].

• Fine-grained Objects - When identified classes that show multiple behaviors with small

variations between them, these can be replaced with several smaller classes encapsulating

each one of that behavior. The original class can be replaced with relationships that recreates

the targeted behavior [35].

• Black Box Framework - Construction method based object composition [34]. By which

components are plugged together to execute a task, not being relevant how they perform

individually [35]. Frameworks that include black box design allow its use by only under-

standing the external interface of components [26].

• Visual Builder - Creation of graphic aids to make the framework more user-friendly. It

should represent the interaction between the objects of the application [35].

• Language Tools - Helps understand and debug the framework. Specialized tools to evaluate

the compositions are required to aid the user [35].

Using concrete examples (as per three examples) as a form to generalize abstraction is the core

value that the white box framework brings to the framework design. White box framework should

be used at the start of the design to not make it too rigid and not reusable. While black-box-based

frameworks rely on the interfacing between their parts. It is easier for the user as no knowledge

of implementation of the parts is required, only the understanding of the external interfaces. As

the framework evolves, it should do so towards a black box relationship [26] with a user-friendly

interface.

2.4 Summary

So far the research shows that many experiments in the field of ML are not reproducible [24].

Through the years efforts have been made to try to improve said reproducibility [30]. Though the

solutions available are too general in terms of improving the reproducibility of AI models as seen

in [21], [18], [24] and [20], their base concepts can be integrated to tackle a specific problem in

the field of health.

With the information described in this chapter, this work aims to develop a framework that

can assist researchers of health to make more reproducible researches. The framework will be

developed utilizing the guidelines of [35] to present a solution that is user-friendly and can be

refined with use. This should make the work of researchers easier as it will allow to automatically

record all variables and code necessary to run the experiment, as well as the documentation that can

clarify how the experiment was conducted. Also, will focus on the availability of the experiments

by allowing them to be shared within the scientific community.

Chapter 3

Problem and Perspective of Solution

This chapter will dive into the design of the solution before the development stage. The intent was

to follow as much as possible the good practices for Software Engineers on the subject of software

development, and so SWEBOK [16] was used as reference.

The next step of the process is to derive from our problem the requirement elicitation, require-

ment analysis, software requirements specification, and prototyping. The prototype was followed

by validation with the supervisors.

3.1 Problem

The software requirements should express the need of a product that resolve some real-world

problem [16] that affect your target user. In this work the motivation was to create a framework to

try to surpass the obstacles that affect reproducibility in ML experiments to facilitate the work of

INESCTEC’s researchers.

Because ML models have high variability in terms of inputs, parameters, and the environment

they are trained to perform with optimal results. Because of this, it is difficult to reproduce exper-

iments without having the exact same conditions that those utilized the first time the experiment

was conducted [24].

Without being able to reproduce experiments, other researchers are not able to verify the pub-

lished results. They are also not able to interchange their parts, such as data, model, or parameters,

to achieve better results. This should be a major concern on scientific method [24].

For health related experiments the access to the same conditions become more complicated

due to the privacy restraints, compromising the diffusion of models and sharing of knowledge.

Additionally, these aspects are highly challenging due to the diversity and voluminous amount of

data.

17

18 Problem and Perspective of Solution

3.2 Requirements Elicitation

The project scope should be designed based on the stakeholders’ needs before the development

of the Framework starts [16]. Thus the elicitation of requirements was the first step of its de-

sign, which is concerned with the origins of the requirements, how and from where they can be

collected.

This process started with the contact with INESCTEC to assess their most important require-

ments to be satisfied. As stated in the previous section, their intent was to possess a platform

that would allow scientific researches on the field of health to be shared between peers for vali-

dation, knowledge diffusion, and reproducibility purposes. The next step was to search and study

available tools that work similarly to their intended requirements.

As part of the Requirement Elicitation some tools that have purposes similar to INESCTEC’s

objective, or that include functionalities that are required by them, were analyzed. This sub-section

will describe some of these Open Source applications and collaborative environments that could

have been used for the construction of the Framework; or in an extreme case, could have been

found to serve its purpose perfectly. This will also explain which requirements were extracted

from these tools, in the cases where they perform appropriately, and which derived from places

where those lack in performance for the scope of this work.

3.2.1 Jupyter Notebook

Jupyter is a web application for interactive computing that allows users to create and share doc-

uments [8]. It was developed under the Jupyter Project, with the work of multiple contributors,

for uses such as data cleaning and transformation, statistical modeling, numerical simulation, ML,

data visualization, and others. The Notebooks (representation of the content) can contain live code,

equations, visualizations, and narrative text in multiple programming languages, and can be shared

with others [8].

Jupyter is available for online use or installation at their website [8].

This tool is a good way to allow users to publicly share their codes. It has a good level of

flexibility for being web-based but also allowing you to download it to use locally. The capability

that allows the user to visualize the code, textual documentation, and rendering of plots in the

same place, creates a user-friendly environment and facilitates the revision of the code. However,

one of the disadvantages related to use this tool under the scope of this work is that it demands the

libraries to be installed, thus requiring additional set-up. It also does not store the multiple runs

of the experiment, causing that the progress of the work is lost and only the final results, usually

already optimized, are shared between peers.

3.2.2 Google Colaboratory

Colaboratory is an interactive environment that allows users to write and execute Python in a

web browser, by executing them on Google’s cloud servers and also making use of pre-installed

3.3 Requirement Specifications 19

libraries [14]. It was developed by Google as an easy-to-use and light way to write and execute

code. The web-based tool doesn’t use the computer processing capacity for being cloud-based and

is also integrated with Google Drive, thus reducing risks of losing your work and allowing it to be

a more collaborative tool where you can share your code, including simultaneous view and edit

[14].

Google Colaboratory is available for use online at their website [14].

The tool was considered to be integrated at the Framework to allow users to publicly share

their code if desired, while also reducing the need for software setup and GPU usage from peers to

review said work. However, this should be considered for future work and was not implemented

in this version of the Framework.

3.2.3 HydroShare

HydroShare is an Open Source collaboration environment, that enables users to share data, models,

and codes with peers (in private groups or publicly) [7]. It was developed by the Consortium of

Universities for the Advancement of Hydrologic Science, Inc. and designed to attend the field of

hydrological research [7].

HydroShare code source is available at GitHub [7].

Although the objective of this tool is rather similar, the difference in the focus of the researches

made the tool too specialized, so it was hard to adjust to the health domain needs. It was, however,

a good model to be studied and used for research.

3.2.4 Sciunit

Sciunit is a system developed for containerizing, sharing, and tracking scientific applications in

the field of scientific researches, in order to allow better reproducibility [12]. It was developed

by researchers from DePaul University, with the work of multiple contributors, to create a type

of research object that encapsulates the workflows of a researchers’ work. The reusable research

objects that containerize and stores applications to facilitate sharing and collaboration by easing

the tasks of environment setup, and execution steps of the shared work [12]. Sciunit also integrates

with HydroShare, so it can publish the generated containers directly into HydroShare. By doing

that, other users are able to download these containers and run the experiments by themselves.

Sciunit is available for installation at their website [12].

This tool was considered a good model to be studied and used for the research of ways to

improve reproducibility for scientific research works.

3.3 Requirement Specifications

The software requirements establishes the agreement on what the Framework should do, as well

as what it is expected not to do [16]. From the product analysis the description of the requirements

could be stated as:

20 Problem and Perspective of Solution

R.1 - The framework should be easily accessed within the organization.

R.1.1 - The framework should present a user interface that allows users to visualize the

artifacts that were uploaded.

R.1.2 - The framework should be accessible by other applications, in order to upload artifacts

programmatically.

R.1.3 - The users should be able to share their artifacts with other users, or even make them

public, so the community may collaborate and give feedback.

R.1.4 - The user should be able to publish a specific version of an experiment and generate

a unique identifier and link, so it can be properly cited.

R.2 - The framework should provide an easy way to reproduce the experiment.

R.2.1 - The framework should be able to store all the artifacts needed to run the experiment

in a new environment and compare results: models, parameters, metrics, and depen-

dencies.

R.2.2 - The framework should encapsulate the experiment executable and its dependencies,

so other researchers can run the experiment without doing any software setup.

R.2.3 - The framework should provide a way to visualize the source code of the experiment.

R.2.4 - The framework should keep track of all the runs for each experiment, by registering

the parameters used for each individual run.

R.3 - The framework should identify the user, and after that, grant access to the user’s resources.

R.3.1 - The framework should not deliver any information to unauthorized entities.

R.3.2 - As the framework will deal with Health information security, the user should be able

to control the access over its artifacts, by telling which are public or private.

R.3.3 - The framework should be integrated with INESCTEC’s authentication server in order

to provide Single-Sign-On access to the user without the need for new credentials.

R.3.4 - The framework should be able to discriminate if the requests are done by a user or

an application.

R.4 - All the data must be stored in a secure server.

3.4 Minimum Viable Product

The Minimum Viable Product is a development technique that allows the developer to shorten the

life cycle of a product while assessing the features needed for its first introduction to the users.

The release of an MVP should allow the user to start using the software and provide feedback to

improve the final product [9].

3.5 Requirements Validation 21

Its use is also often associated with a way to save resources: cost and time. Under the scope

of this work, the MVP is used to provide a first version of the product [31]. The addition of the

features not included in it will be highlighted under the future works segment at section 5.2.

For the proposed Framework’s MVP the following requirements were considered: R.1.1,

R.1.2, R.2.1, R.2.4, R.3.1, R.3.3, R.3.4 and R.4.

With these implemented, it is expected that the user is able to access a web-based interface

(R.1.1 and R.1.2). Where they can log into the framework (R.2.1), considering that it already was

already registered by INESCTEC and with access to the organization (R.3.3). Once authorized,

they should be able to generate an application key, as well as to use them to log their experiments

and visualize all the artifacts that were logged in the interface (R.2.4, R.3.1, R.3.4 and R.4).

3.5 Requirements Validation

Requirements should be validated to ensure they were correctly understood [16]. The documen-

tation of the requirements, as described in section 3.3, should describe the software as the users

expect it to be. The validation should be used not only as a way for the developer to validate their

interpretation of the framework requirements but also as a process that could expose any problems

before the development starts [16].

3.5.1 Non-functional Prototype

The creation of a prototype was chosen as the validation method for the requirements. By creat-

ing a scenario that gives the user the context of the framework so they can experiment, a better

understanding of the final goal can be provided. And with their feedback, the requirements can be

changed and fine-tuned, so the framework may achieve a better result [16].

In the scope of this work is used a non-functional prototype, a low-fidelity model also known as

mockup [16]. figures 3.1 and 3.2 below illustrates the initial version of the framework constructed,

as how it was conceptualized.

Figure 3.1: Low Fidelity Mockup - Screens for the Settings and API Key creation and visualiza-
tion.

22 Problem and Perspective of Solution

Figure 3.2: Low Fidelity Mockup - Screens for the Artifacts: experiments and models.

For this framework, the decision was to implement the interface as a browser-based interface,

so the mockups reflect this format (R.1, R.1.1). The mockup includes the following concepts:

• Sign In page - Allows user to sign into the platform in a secure way. Thus allowing au-

thenticated user to manage its private information, experiments and models. This page is

provided by INESCTEC’s authentication provider, and redirects the user to our platform

after successfully authentication (R.3, R.3.3).

• Experiments page - Display detailed information of all experiments made by or shared

with the user (R.1.1).

• Models page - Display the trained models in each experiment made by or shared with the

user (R.1.1).

• Settings page - Allow user to create, view and delete API keys (R.1.2, R.3.4).

• Application Bar - At the right side it should also include a Settings and Logout buttons

under a dropdown for authenticated users.

During the development process, some alterations were made, and so the final result differs

slightly from the initial concept. Those will be better explored in chapter 4 including the reasoning

behind those changes.

3.5.2 Prototype Validation

Considering the use of a non-functional prototype, the validation consists of demonstrating how

the mockup is related to the functionalities that should be performed and how each page corre-

sponds to each requirement. The requirements described on section 3.3 could be directly corre-

lated to the pages at section 3.5.1 as presented above.

The stakeholder validated that the presented concept would be user-friendly and should, in

theory, provide the required functionalities. Thus the work progressed to the development stage.

Chapter 4

Developing a Framework for
Reproducible Experiments

This chapter will describe the development stage of the Framework.

For the creation of the Framework, the use of Open Source tools already available was taken

into consideration, when applicable. section 4.1 dives into some of those options that were applied

to facilitate the construction and aggregate high-level functions that were already developed by

others.

The following section 4.2 describes the Framework design and development, including the

architecture design and the description of components behavior. Including a dive into the back-end

composition elements and functionalities, and a similar approach for the front-end. The section

also includes a dedicated segment for the authentication of the user.

Closing this chapter is section 4.3 with the validation of the Framework.

4.1 Tools

This section will describe some of those Open Source platforms, management tools, and collab-

oration environments that supported the development of the Framework. Those were created by

different organizations and improved by multiple users evolving their applications and functional-

ities. They have served to simplify functionalities, support design, and guarantee security, as so,

should be included as an integral part of this research.

4.1.1 MLflow

MLflow is an Open Source platform that manages the machine learning life cycle including experi-

ment tracking, model management, model deployment, and registry, increasing the reproducibility

of the model [22]. It was developed by Databricks and designed to be a wide range of tools to

help developers manage data preparation, model training, and deployment with an open interface

23

24 Developing a Framework for Reproducible Experiments

working with multiple libraries, algorithms, programming languages, and deployment tools and

collaborative libraries [22].

MLflow provides a REST API, called Tracking API, that allows applications to communicate

with the server to log artifacts. Additionally, libraries that implement this communication with the

REST API are available for Python, R, and Java and can be used to facilitate integration. This

allows better documentation of all the runs of an experiment, by logging all variables that are

subject to change between runs.

MLflow also offers the possibility to run experiments made by others, given that a descriptor

file is present at the source code. It is called MLflow Projects, in which the descriptor file contains

information about the programming language that was used, and all dependencies that the code

may have. That allows MLflow to run the experiment, without having to set up any of the depen-

dencies. There are two kinds of descriptors based on the environment that the project is set to run:

Docker and Conda.

Although it offers great functionalities towards reproducibility, this tool does not address im-

portant concerns with data access control. All data that is sent to the MLflow server is visible to

every user that has access to the server address. The organization that uses it needs to add a layer

of authentication in front of the server, and authorization is not simple to implement.

MLflow is available at GitHub and was used in its version 1.17.0 from May 8th, 2021 [22].

This tool was used as a building block for our framework because of the functionalities it

already offers. The main functionality of interest for the MVP was the Tracking API, which could

be used to log all the runs of an experiment, as well as save the trained model in a file. The MLflow

Projects also play a very important role in the reproducibility, but will not be integrated into this

initial phase. The data access control will be addressed by the framework, to improve the usability

across an organization.

4.1.2 Keycloak

Keycloak is an Open Source Identity and access management [25]. It is under the stewardship

of Red Hat and was designed to provide an easier way to do authentication and security, using

single-sign-on and being available for multiple platforms and programming languages [25].

Keycloak is available for download at [25] and was used in its version 13.0.1 from May 25th,

2021.

The tool was used to guarantee that private information could not be access by unauthorized

people, while also simplifying the implementation and guaranteeing ongoing secure and updated

authentication methods. In addition, our framework does not have the need of saving credentials,

as it is already handled by Keycloak, thus minimizing the security risks of having a breach in the

system that could compromise those credentials. Keycloak is already used by INESCTEC as a

standard authentication method across the organization for researchers, students, and partners. As

an authentication method was required, Keycloak was not only a good but rather a natural choice

to guarantee the integration with their services.

4.2 Software Design and Development 25

4.1.3 Lagom

Lagom is an Open Source framework to build systems with Reactive micro-services [29]. It is

under the stewardship of Lightbend and was designed to enable the developer to better define re-

sponsibility, do releases with reduced risk and make better use of modern computing environments

[29].

Lagom is available for download at [29] and was used in its version 1.6.5 from April 9th, 2021.

As our framework will have much space for growth, using Lagom facilitates the evolution of

the software architecture, by guaranteeing responsiveness, resilience, scalability, and elasticity.

4.1.4 React

React is a library for JavaScript used for building user interfaces. It is Open Source and mainly

maintained by Facebook.

React is available at [33] and the version used was 17.0.0 from October 20th, 2020.

This framework allows developers to implement interface components that can be easily reused

in other projects. As a consequence, there are a huge amount of Open Source components available

to be used, which can drastically reduce the time spent developing a new interface.

4.1.5 ImmuneML

ImmuneML is an Open Source platform for ML-based analysis and classification of AIRR [6].

It was developed by researchers from the University of Oslo, with the work of multiple contribu-

tors, to train ML models, apply already trained ML models into new datasets, as well as explore

properties of datasets and simulate synthetic data [13].

ImmuneML is available at Github and was used as base for alterations in its version 1.2.5 from

April 27th 2021 [13].

As this library already encapsulated much of the code needed for training models, it was

needed to make additions to the source code, in order to connect to our framework and log exper-

iments data, namely: the parameters used, metrics generated and model trained. These alterations

were made by creating a fork of the source code and implementing the usage of the MLflow library

to achieve these purposes.

4.2 Software Design and Development

Software Design is an important part of the development process which includes the architecture

design and the detailed design. The architecture is a high-level design that shows how the soft-

ware is organized into components, as illustrated in figure 4.1. While the detailed design is the

description of the behavior of the components [16].

26 Developing a Framework for Reproducible Experiments

Figure 4.1: Technical Drawing illustrating the connections between the elements that compose the
Framework and the outside access.

It is fundamental to decompose, organize and package the software components as well as the

properties that affect the components’ performance or semantics in systemic ways (aspects) [16]

and could be decomposed within the scope of this Framework as:

• Concurrency - Part of the design concerned with breaking the software into tasks, pro-

cesses, and threads, and also dealing with issues of efficiency, synchronization, and schedul-

ing [16]. Lagom is used to handle concurrent requests made from outside the framework to

its API.

• Data Persistence - Part of the design concerned with handling long-living data that requires

storage [16]. The data related to user authentication, namely the user id and a simple profile

with basic information about the user such as name, email, user id and whether the email was

verified, and also the data that links the user to their resources are persisted on PostgreSQL,

connected to the back-end of the Framework.

• Error and Exception Handling and Fault Tolerance - Part of the design concerned with

dealing with exceptional conditions, including preventing, tolerating, and processing errors

[16]. Lagom also provides the tool to implement error and exception handlers, while also

guaranteeing a fault tolerance system, by recovering from most of the errors.

4.2 Software Design and Development 27

• Interaction and Presentation - Part of the design concerned with presenting the informa-

tion and how to structure and organize communication with the users of the software [16].

The interaction with them can either be made through the website or via REST API.

• Security - Part of the design concerned with restricting information and other resources

accessible to the user. Should prevent unauthorized creation, change, erasure, and visu-

alization of the artifacts. It also considers the use of cryptography and the prevention of

security-related attacks [16]. The authentication is handled by Keycloak, which communi-

cates with the front-end, which interfaces it with the back-end. The back-end also should be

able to identify applications that make requests directly to the framework.

4.2.1 Back-end

The Back-end, as the server-side of the framework, handles the connections between the front-end

and/or applications and the MLflow server. These connections can be seen in figure 4.1.

It adds a layer of authentication and also persists the users’ IDs to remember which one has

access to what. It is part of the back-end responsibility to generate the API Key for authenticated

users, so they can use that as a credential for applications to connect to the framework.

Figure 4.2: Process of Authentication.

When a new API key is requested by the user, the back-end generates one composed of 3

parts, as illustrated in figure 4.2: a random prefix of 7 characters; a character ’.’; and a postfix of

32 random characters. Then a hash algorithm is applied to the key, in this case, SHA-256 was

used. After that, the hashed key is persisted in the database together with the user ID that came in

the request, and the prefix in plain text. Finally, the API key is returned to the user and displayed

on the front-end, one time only. This process can be seen in figure 4.3

The API key is not persisted in plain text for security reasons. If the database suffers a ma-

licious attack, and the data is compromised, the attacker will not possess the user API keys, thus

not allowing them to operate on behalf of the users. For this reason, the back-end cannot return

the same API Key after the generation process, creating the necessity for the user to save it in a

secure place. Saving a small prefix in plain text serves the purpose of informing the user what is

the name of each key already generated, if, by any chance, the user has many keys. It also allows

the user to revoke the access of a certain key, based on the prefix that matches the key.

The API key can then be added to Machine Learn applications, by using the MLflow library,

to connect and authenticate with our framework. This communication is handled by implementing

a REST API that follows the contract established by the MLflow API, allowing the framework to

28 Developing a Framework for Reproducible Experiments

intercept the requests that would go to the MLflow Server. This enables the framework to act as a

middle-man, and persist an association between the resources and the requesting user.

Figure 4.3: Process of Authentication.

4.2.2 Front-end

The Front-end, as the client-side of the framework, allows the user to visualize the artifacts in a

website by connecting them to the API and the authenticating provider. These connections can be

seen in figure 4.1.

It redirects unauthenticated users to a login page provided by Keycloak. After successfully

authentication it receives a token and stores it on the user browser. On every request the front-end

sends the token on the header, guaranteeing the security of the process by allowing users to only

visualize the artifacts persisted by them. The authentication process will be explained in section

4.2.3 below.

4.2.3 Authentication

The Framework uses the OpenConnect ID protocol to handle the authentication. Therefore, when

users enter the website a verification occurs to validate whether they are authenticated, the flow can

be seen in figure 4.4. In case of unauthenticated users, they will be redirected to a Keycloak page

where they should insert their credentials. After successful authentication, the user is redirected

back to the website, and in this redirection request, an access code is carried on the header. With the

access code, the website is able to retrieve a JSON Web Token from Keycloak, which is persisted

in the browser. Then, the front-end can send requests to the back-end with this authentication

header that carries said token. To retrieve the identity of the user, the back-end should possess

a public key provided by the Keycloak, in order to decrypt the encrypted part of the token, and

verify that the sender really is who it says it is.

4.3 Validation of Framework 29

In case the organization removes access from the user, the OpenConnect ID defines a standard

way to handle this case, preventing the user to keep his access. When the authentication with Key-

cloak occurs, a set composed of two tokens is retrieved. One access token with a small expiration

time, by default 30 minutes. And a second refresh token that can have a larger expiration time, set

for many days later. This will be configured depending on how long the users should stay logged

before the front-end requests their credentials again. The refresh token serves the only purpose

of retrieving a new valid token by making a new request to the Keycloak server, and by doing so,

verifying if the user still has permission to access the framework.

Figure 4.4: Process of Authentication from user to Keycloak.

4.3 Validation of Framework

The verification and validation of the results would determine whether the product conforms to

the requirements and satisfies its intended use and the users’ needs [16].

The Framework was validated by setting up two ML projects that make use of the available

functionalities. One project was created with a simple training process that fits a linear model. The

other project was created using the ImmuneML library with an example code that trains a model

over a sample dataset. For this case, the altered version of the ImmuneML library was used and

configured to publish the artifacts to our framework.

The source code presented in the Appendix A.1 represents the adjustment of one of the MLflow

training models to work within the Framework. Once altered, the experiment run and achieved the

results illustrated in the figures 4.5 and 4.6 below.

30 Developing a Framework for Reproducible Experiments

Figure 4.5: Results of the MLflow training viewed at the application log.

Figure 4.6: Results of the MLflow training viewed at the website.

Similarly, the code presented in the Appendix A.2 represents the descriptor file for a training

pipeline using ImmuneML. With the alterations mentioned in the section 4.1.5, some configuration

parameters could be added to connect to the Framework and log the desired artifacts. Then, the

experiment run and achieved the results illustrated in the figures 4.7 and 4.8 below.

Figure 4.7: Results of the ImmuneML training viewed at the application log.

Figure 4.8: Results of the ImmuneML training viewed at the website.

4.4 Use Case Examples

This section will present the some usage examples of the developed Framework. Similar to the

prototype’s validation, the example will be presented in the form of how the Framework’s website

is related to the functionalities that should be performed and how each page corresponds to the

requirements described in section 3.4. Each part will be accompanied by an explanation of the

4.4 Use Case Examples 31

process following a single flow from a user’s first access, going through the use of the Framework

in all the available functionalities, and eventually logout from the framework.

Figure 4.9: Keycloak sign in page.

As described in section 4.2.3 when the user accesses the website through any page within the

domain, the front-end will verify if the browser already has the user’s credential stored. Assuming

the first interaction where the user is not yet logged in, they will automatically be redirected to a

Keycloak sign-in page as illustrated in figure 4.9.

On this page, users should insert their credentials. This data will be validated with the regis-

tered information in the INESCTEC Keycloak database. And only after successful authentication

occurs, the user will be redirected to the main page and granted access to the framework in its in-

tegrity. At this point, the front-end received a token and persisted in it in the web browser, allowing

the user to remain logged in.

The authenticated user will have access to two options when clicking on the user profile icon

at top right corner of the page: Settings and Logout, as illustrated on figure 4.10.

By clicking in Settings the user will be redirected to said page, as illustrated on figure 4.11.

This page displays the list of tokens created by the user and allows them to create new ones.

To create a new API key, as described in section 4.2.1, the user only has to provide a unique

name and click on the new button. A pop-up will open, as illustrated in figure 4.12, with a warning

to copy and register the API key in a safe place, as it will not be displayed again and can not be

recovered. Once the user clicks on Understood this pop-up will close, and the new key will be

added to the list.

Back to the Settings screen, the tokens created by the user are presented in a table including:

1. API Key name as given by the user.

32 Developing a Framework for Reproducible Experiments

Figure 4.10: The location of the settings menu.

2. Prefix of the API Key, before being hashed.

3. Delete button to exclude and invalidate the API key.

The user can have multiple API Keys to distribute through their applications. The API Keys are

not single-use, thus the user can correlate them with as many applications as they would like and

at their own discretion.

Figure 4.11: The settings page, that displays the list of tokens created by the user.

4.4 Use Case Examples 33

Figure 4.12: Dialog that displays the API Key upon creation.

At the left side of all the pages the user can view a menu that includes two options: Runs and

Models. Depending on the sizing of the screen this menu can be hidden, and in this case, would

be necessary to click on the button on the top left corner of the page to show the side menu with

those options.

By clicking in Runs the user will be redirected to said page, as illustrated on figure 4.13. This

page displays the experiments available for them to visualize, indicated by the name given by the

user when it was created.

Once the user selects one of the experiments available the page will load its run’s information

in a table, including:

1. The run’s ID, randomly generated.

2. The status of the run, which can be: running, schedule, finish, failed or killed.

3. The calculated metrics correspondent to the performance of the trained model in each run.

4. The parameters used at the model in each run.

The stored runs are the register of the various iterations of an experiment, maintaining a log of

the multiple attempts to achieve the optimal results. This allows the researcher to track which set

of parameters were tried and see how they affected the results.

By clicking in Models the user will be redirected to said page, as illustrated on figure 4.14.

This page displays the models saved by the user in the form of a table including:

34 Developing a Framework for Reproducible Experiments

Figure 4.13: Experiment page displaying the runs for a specific experiment.

1. The model’s name, as given by the user.

2. The creation timestamp of the first version of the model.

3. The last update timestamp for the most recent version of the model.

4. The last versions of the model saved.

It also includes in the right corner of the page, below the toolbar, an export button, which lets

the user generate a CSV file with the table’s information.

Figure 4.14: Model page, displaying the different models that were uploaded.

Finally, once the user finishes making use of the Framework, they can logout of it by clicking

in the logout button. This will end the session, by erasing the stored token from the browser, and

to be able to access the pages again, a new login will be required.

Chapter 5

Conclusions

The project is considered complete as the plans and features established as the scope of the MVP

in section 3.4 were achieved. This chapter’s section 5.1 dives into the goals that were set and

achieved by the framework.

Improvements on the software can be made based on the remaining requirements that were

listed in section 3.3 and not included under the MVP. These can be further explored and developed

in future projects and could be used by INESCTEC as a guideline for follow-up work, as suggested

in section 5.2.

5.1 Contributions

The main goal of the work developed was to provide an evolving Framework that could aid re-

searches to be more reproducible. Though the motivation for this work came from the health

domain, the end result could be applicable not only to this field, but also expanded to others.

The software was successfully developed under this scope attending the MVP’s requirement.

By presenting a simple and intuitive user interface that allows a researcher to visualize their ex-

periments with its multiple runs and their models, as well as detailed tracking of their parame-

ters, metrics, and dependencies. These are stored in a persistent way to allow the user to revisit

and compare the results. Additionally, the artifacts could either be uploaded by them directly or

through other applications that can communicate with the framework, and these types of requests

are discriminated. It does not disclose any of its information, that is stored in a secure server, to

unauthorized users. And is fully integrated with the INESCTEC authentication server. Addition-

ally, it can eventually be open to researchers outside of the organization.

By combining the MLflow to ImmuneML’s libraries the Framework also demonstrated that

the integration of additional libraries to it does not add that much extra complexity.

35

36 Conclusions

5.2 Future Work

The Framework would benefit from the addition of functionalities that attend to the remaining

requirements analyzed in this work.

Some of each could be the control of the information’s access authorizations with different

categories such as private, shareable with a specific user, or totally public. This would allow,

between other things, for artifacts to be shared with different users. This feature should also be

accompanied by the capability to encapsulate the experiment executable and its dependencies, so

other researchers can run the experiment more easily, without the need for software setup. The

encapsulated work should also have the possibility of being published with a specific version of

an experiment with a unique identifier and link for work citations.

As a suggestion for future works the Framework could evolve into a final product that attends

to all the customer’s requirements in the most optimal way and maintains space to improve and be

expanded. Some of the features that could attend the aforementioned requirements are:

• Support logging figures and plots and then display them on the front-end.

• Integrate with MLflow Project, in order to provide a better way to encapsulate the experi-

ments. This would all other researchers to re-run the experiments without the need for setup.

This also establishes a link between the experiment and the source code.

• Integrate with a notebook-like environment, such as Colaboratory and Jupyter, to provide

a way that other users can view and run the experiment directly on their browser. This

could facilitate peer review by reducing the need for setup and waste of resources. This

environment also allows simultaneous access and edition to a work as a nice feature.

• Allow the user to publish an experiment as a persisted copy of all artifacts and the source

code related to it. And also have the published version assign a Digital Object Identifier and

make it publicly available to the community.

• Benchmarking experiments that may implement different models to achieve the same goals.

As this dissertation shows, this field still has a lot of room for improvements. It is expected

that the features previously mentioned could enhance reproducibility and help researchers to create

valid and more trust-worthy AI models. The progress with this work, could also be expanded to

other fields that not healthcare, maintaining that they share similar requirements.

Appendix A

Source Code

This Section includes supplementary information for the reader’s understanding.

A.1 MLflow Sample Code

The code described below received some alteration in relation to the original version, a MLflow

training models available at [10]. The alterations were made to: allow access to the dataset in a

local domain and name the experiments.

1 # train.py

2 # The data set used in this example is from http://archive.ics.uci.edu/ml/datasets/Wine+Quality

3 # P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.

4 # Modeling wine preferences by data mining from physicochemical properties.

5 # # In Decision Support Systems, Elsevier, 47(4):547-553, 2009.

6

7 import warnings

8 import sys

9

10 import pandas as pd

11 import numpy as np

12 from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

13 from sklearn.model_selection import train_test_split

14 from sklearn.linear_model import ElasticNet

15 from urllib.parse import urlparse

16 import mlflow.sklearn

17

18 import logging

19

20 logging.basicConfig(level=logging.WARN)

21 logger = logging.getLogger(__name__)

22

23

24 def eval_metrics(actual, pred):

25 rmse = np.sqrt(mean_squared_error(actual, pred))

26 mae = mean_absolute_error(actual, pred)

27 r2 = r2_score(actual, pred)

28 return rmse, mae, r2

29

37

38 Source Code

30

31 if __name__ == "__main__":

32

33 warnings.filterwarnings("ignore")

34 np.random.seed(40)

35

36 # Download the CSV from

37 # http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv

38 # Read the wine-quality csv file from the CSV

39 csv_url = (

40 "wine-quality.csv"

41)

42 try:

43 data = pd.read_csv(csv_url, sep=",")

44 except Exception as e:

45 logger.exception(

46 "Unable to download training & test CSV, " +

47 "check your internet connection. Error: %s", e

48)

49

50 # Split the data into training and test sets. (0.75, 0.25) split.

51 train, test = train_test_split(data)

52

53 # The predicted column is "quality" which is a scalar from [3, 9]

54 train_x = train.drop(["quality"], axis=1)

55 test_x = test.drop(["quality"], axis=1)

56 train_y = train[["quality"]]

57 test_y = test[["quality"]]

58

59 alpha = float(sys.argv[1]) if len(sys.argv) > 1 else 0.5

60 l1_ratio = float(sys.argv[2]) if len(sys.argv) > 2 else 0.5

61

62 mlflow.set_experiment("Experiment2")

63 with mlflow.start_run():

64 lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)

65 lr.fit(train_x, train_y)

66

67 predicted_qualities = lr.predict(test_x)

68

69 (rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)

70

71 print("Elasticnet model (alpha=%f, l1_ratio=%f):" % (alpha, l1_ratio))

72 print(" RMSE: %s" % rmse)

73 print(" MAE: %s" % mae)

74 print(" R2: %s" % r2)

75 print("artifact_uri: {}".format(mlflow.get_artifact_uri()))

76

77 mlflow.log_param("alpha", alpha)

78 mlflow.log_param("l1_ratio", l1_ratio)

79 mlflow.log_metric("rmse", rmse)

80 mlflow.log_metric("r2", r2)

81 mlflow.log_metric("mae", mae)

82

83 print(mlflow.get_artifact_uri())

84

85 tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme

86

87 # Model registry does not work with file store

A.2 ImmuneML Sample Code 39

88 if tracking_url_type_store != "file":

89

90 # Register the model

91 # There are other ways to use the Model Registry, which depends on the use case,

92 # please refer to the doc for more information:

93 # https://mlflow.org/docs/latest/model-registry.html#api-workflow

94 mlflow.sklearn.log_model(lr, "model", registered_model_name="ElasticnetWineModel")

95 else:

96 mlflow.sklearn.log_model(lr, "model")

A.2 ImmuneML Sample Code

The code described below received some alteration in relation to the original version, a YAML

specification available at [11]. The alterations added configuration to set up a connection with the

Framework and enable the log-in of artifacts.

1 # specs.yaml

2 definitions:

3 datasets:

4 my_dataset: # user-defined dataset name

5 format: AIRR

6 params:

7 # we are importing a repertoire dataset

8 is_repertoire: true

9 # path to the folder containing the repertoire .tsv files

10 path: quickstart_data/repertoires/

11 metadata_file: quickstart_data/metadata.csv

12

13 encodings:

14 my_kmer_frequency: # user-defined encoding name

15 KmerFrequency: # encoding type

16 k: 3 # encoding parameters

17

18 ml_methods:

19 my_logistic_regression:

20 # user-defined ML model name: ML model type (no user-specified parameters)

21 LogisticRegression:

22 C: 0.5

23 penalty: l1

24

25 reports:

26 # user-defined report name: report type (no user-specified parameters)

27 my_coefficients: Coefficients

28

29 output:

30 my_mlflow:

31 MLflow:

32 experiment_name: immuneML

33 url: http://localhost:9000/

34 log_params: true

35 log_metrics: true

36 log_model: true

37

40 Source Code

38 instructions:

39 my_training_instruction: # user-defined instruction name

40 type: TrainMLModel

41

42 dataset: my_dataset # use the same dataset name as in definitions

43 labels:

44 - signal_disease # use a label available in the metadata.csv file

45

46 settings: # which combinations of ML settings to run

47 - encoding: my_kmer_frequency

48 ml_method: my_logistic_regression

49

50 assessment: # parameters in the assessment (outer) cross-validation loop

51 reports: # plot the coefficients for the trained model

52 models:

53 - my_coefficients

54 split_strategy: random # how to split the data - here: split randomly

55 split_count: 1 # how many times (here once - just to train and test)

56 training_percentage: 0.7 # use 70% of the data for training

57

58 selection: # parameters in the selection (inner) cross-validation loop

59 split_strategy: random

60 split_count: 1

61 training_percentage: 1 # use all data for training

62

63 # the metric to optimize during nested cross-validation when comparing multiple models

64 optimization_metric: balanced_accuracy

65 metrics: # other metrics to compute for reference

66 - auc

67 - precision

68 - recall

69

70 number_of_processes: 4 # processes for parallelization

71

72 output:

73 destination: MLflow

74 format: HTML

References

[1] Directive 2011/24/eu. Available at https://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=CELEX:32011L0024, mar 2011.

[2] What does the hipaa privacy rule do? Available at https://www.hhs.gov/hipaa/
for-individuals/faq/187/what-does-the-hipaa-privacy-rule-do/
index.html, jul 2013.

[3] Regulation (eu) 2016/679. Available at https://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN, apr 2016.

[4] Artificial intelligence for europe. Available at https://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=COM:2018:237:FIN, apr 2018.

[5] Lei geral de proteção de dados pessoais (lgpd). Available at http://www.planalto.
gov.br/ccivil_03/_ato2019-2022/2019/lei/l13853.htm, jul 2019.

[6] Airr community. Available at https://docs.airr-community.org/en/stable/,
January 2021.

[7] Hydroshare. Available at https://www.hydroshare.org/, March 2021.

[8] Jupyter. Available at https://jupyter.org/, March 2021.

[9] Minimum viable product in software development: Get-
ting it right. Available at https://codetiburon.com/
minimum-viable-product-in-software-development-getting-it-right/,
June 2021.

[10] Mlflow: Training the model. Available at https://www.mlflow.org/docs/latest/
tutorials-and-examples/tutorial.html#training-the-model, May 2021.

[11] Quickstart: command-line interface with yaml. Available at https:
//docs.immuneml.uio.no/latest/quickstart/cli_yaml.html#
step-2-writing-the-yaml-specification, May 2021.

[12] Sciunit. Available at https://sciunit.run/, March 2021.

[13] Welcome to the immuneml documentation! Available at https://docs.immuneml.
uio.no/index.html, April 2021.

[14] What is colaboratory? Available at https://colab.research.google.com/
notebooks/intro.ipynb?hl=en#scrollTo=5fCEDCU_qrC0, April 2021.

41

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0024
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0024
https://www.hhs.gov/hipaa/for-individuals/faq/187/what-does-the-hipaa-privacy-rule-do/index.html
https://www.hhs.gov/hipaa/for-individuals/faq/187/what-does-the-hipaa-privacy-rule-do/index.html
https://www.hhs.gov/hipaa/for-individuals/faq/187/what-does-the-hipaa-privacy-rule-do/index.html
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2018:237:FIN
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2018:237:FIN
http://www.planalto.gov.br/ccivil_03/_ato2019-2022/2019/lei/l13853.htm
http://www.planalto.gov.br/ccivil_03/_ato2019-2022/2019/lei/l13853.htm
https://docs.airr-community.org/en/stable/
https://www.hydroshare.org/
https://jupyter.org/
https://codetiburon.com/minimum-viable-product-in-software-development-getting-it-right/
https://codetiburon.com/minimum-viable-product-in-software-development-getting-it-right/
https://www.mlflow.org/docs/latest/tutorials-and-examples/tutorial.html#training-the-model
https://www.mlflow.org/docs/latest/tutorials-and-examples/tutorial.html#training-the-model
https://docs.immuneml.uio.no/latest/quickstart/cli_yaml.html#step-2-writing-the-yaml-specification
https://docs.immuneml.uio.no/latest/quickstart/cli_yaml.html#step-2-writing-the-yaml-specification
https://docs.immuneml.uio.no/latest/quickstart/cli_yaml.html#step-2-writing-the-yaml-specification
https://sciunit.run/
https://docs.immuneml.uio.no/index.html
https://docs.immuneml.uio.no/index.html
https://colab.research.google.com/notebooks/intro.ipynb?hl=en#scrollTo=5fCEDCU_qrC0
https://colab.research.google.com/notebooks/intro.ipynb?hl=en#scrollTo=5fCEDCU_qrC0

42 REFERENCES

[15] S. Badillo, B. Banfai, F. Birzele, I.I. Davydov, L. Hutchinson, T. Kam-Thong, J. Siebourg-
Polster, B. Steiert, and J.D. Zhang. An introduction to machine learning. Clinical Pharma-
cology and Therapeutics, 107(4):871–885, 2020.

[16] P. Bourque and R.E. Fairley. Guide to the Software Engineering Body of Knowledge. IEEE
Computer Society, version 3.0 edition, 2014.

[17] M.L. Braun and C.S. Ong. Open science in machine learning. 2014.

[18] Jonathan Buckheit and David Donoho. Wavelab and reproducible research. Wavelets and
Statistics, Vol. 103, 11 1998.

[19] Neil Calman, Kwame Kitson, and Diane Hauser. Using information technology to improve
health quality and safety in community health centers. Progress in community health part-
nerships : research, education, and action, 1:83–8, 03 2007.

[20] Y.-D. Choi, J.L. Goodall, J.M. Sadler, A.M. Castronova, A. Bennett, Z. Li, B. Nijssen,
S. Wang, M.P. Clark, D.P. Ames, J.S. Horsburgh, H. Yi, C. Bandaragoda, M. Seul, R. Hooper,
and D.G. Tarboton. Toward open and reproducible environmental modeling by integrating
online data repositories, computational environments, and model application programming
interfaces. Environmental Modelling and Software, 135, 2021.

[21] J. Claerbout and M. Karrenbach. Electronic documents give reproducible research a new
meaning. 1992.

[22] Databricks. Mlflow. Available at https://www.mlflow.org/, May 2021.

[23] Chris Drummond. Replicability is not reproducibility: Nor is it good science. Proceedings
of the Evaluation Methods for Machine Learning Workshop at the 26th ICML, 01 2009.

[24] O.E. Gundersen and S. Kjensmo. State of the art: Reproducibility in artificial intelligence.
pages 1644–1651, 2018.

[25] Red Hat. Keycloak. Available at https://www.keycloak.org/, May 2021.

[26] Ralph Johnson and Brian Foote. Designing reusable classes. Journal of Object-Oriented
Programming, 1:22–35, 06 1988.

[27] S.B. Kotsiantis. Supervised machine learning: A review of classification techniques. Infor-
matica (Ljubljana), 31(3):249–268, 2007.

[28] David M. Lane. Introduction to Statistics. 2003.

[29] Lightbend. Lagom. Available at https://www.lagomframework.com/, April 2021.

[30] M. B. A. McDermott, S. Wang, N. Marinsek, R. Ranganath, M. Ghassemi, and L. Foschini.
Reproducibility in machine learning for health. 2019.

[31] Kari Liukkunen Nirnaya Tripathi, Markku Oivo and Jouni Markkula. Startup ecosystem
effect on minimum viable product development in software startups. o Journal of Information
and Software Technology, 3, June 2019.

[32] Arjun Panesar. Machine Learning and AI for Healthcare: Big Data for Improved Health
Outcomes. Apress, USA, 1st edition, 2019.

https://www.mlflow.org/
https://www.keycloak.org/
https://www.lagomframework.com/

REFERENCES 43

[33] React. React. Available at https://reactjs.org/, April 2021.

[34] Dirk Riehle. Framework design: A role modeling approach. Softwaretechnik-Trends, 20, 01
2000.

[35] Don Roberts and Ralph Johnson. Evolving frameworks: A pattern language for developing
object-oriented frameworks. 01 1996.

[36] G.K. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig. Ten simple rules for reproducible
computational research. PLoS Computational Biology, 9(10), 2013. cited By 291.

[37] Nathalie A. Smuha. The eu approach to ethics guidelines for trustworthy artificial intelli-
gence. Computer Law Review International, 20(4):97 – 106, 2019.

[38] Darrel M West and John R Allen. How artificial intelligence is transforming the world.
Brookings.

[39] Greg Wilson, Jennifer Bryan, Karen Cranston, Justin Kitzes, Alexander Nederbragt, and
Tracy Teal. Good enough practices in scientific computing. PLOS Computational Biology,
13, 08 2016.

https://reactjs.org/

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Contributions
	1.5 Document Structure

	2 State of the art
	2.1 Background
	2.1.1 Machine Learning
	2.1.2 Software Frameworks
	2.1.3 Privacy Constraints

	2.2 Reproducibility in AI
	2.2.1 Reproducibility Guidelines
	2.2.2 Approaches for Reproducibility

	2.3 Developing Frameworks
	2.4 Summary

	3 Problem and Perspective of Solution
	3.1 Problem
	3.2 Requirements Elicitation
	3.2.1 Jupyter Notebook
	3.2.2 Google Colaboratory
	3.2.3 HydroShare
	3.2.4 Sciunit

	3.3 Requirement Specifications
	3.4 Minimum Viable Product
	3.5 Requirements Validation
	3.5.1 Non-functional Prototype
	3.5.2 Prototype Validation

	4 Developing a Framework for Reproducible Experiments
	4.1 Tools
	4.1.1 MLflow
	4.1.2 Keycloak
	4.1.3 Lagom
	4.1.4 React
	4.1.5 ImmuneML

	4.2 Software Design and Development
	4.2.1 Back-end
	4.2.2 Front-end
	4.2.3 Authentication

	4.3 Validation of Framework
	4.4 Use Case Examples

	5 Conclusions
	5.1 Contributions
	5.2 Future Work

	A Source Code
	A.1 MLflow Sample Code
	A.2 ImmuneML Sample Code

	References

