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Abstract

As algorithms drive more decision-making processes, machine learning models’ tendency to learn
our input data biases is a massive problem. Furthermore, the wide range of new diverse and
heterogeneous users demands robust and unbiased solutions that perform successfully regardless
of their individual characteristics or demographics. More than ever, companies are starting to be
held accountable for their models’ behaviors and performance, especially concerning minorities
and marginalized groups.

Research has been conducted concerning possible bias conflicts in speech applications, having
identified systematic errors against social groups, such as females, elderlies, and misrepresented
ethnicities. To fight this, data providers’ prevalent interventions focus on assuring uniform dis-
tributions over binary gender groups. Such interventions, however, have three major limitations.
First, gender proxies are non-descriptive of the vocal characteristics they are trying to emulate,
hence may not represent the complete spectrum of diversity. Secondly, in situations where the
collection is not done in person (namely via crowdsourcing platforms), they are easy to mask if
the contributors are ill-intentioned and difficult to validate from the requester’s point of view.
Finally, if misused, these proxies may be perpetuating social stereotypes (eg., what a male voice
is expected to sound like).

This work explores the hypothesis of replacing gender proxies with actual vocal representations
of the speaker to drive the data collection process. Models would be solely based on domain-
specific (ethical) information and balanced over particularities of the speakers’ voice (for instance,
pitch, and volume) instead of proxies to the desired descriptors.

Results show that, when compared to the prevalent method based on self-reported gender la-
bels, vocal traits (particularly pitch and spectral centroid) offer a more verifiable, effective and
ethical approach to the speech data collection: verifiable since they are measurable and objective
depictions of the speaker; effective since they improve performance by two percentage points
and reduce bias both across gender and age groups; and ethical in the sense that they are actual
and fact-based representations, blind to the speaker´s ethnicity, age, gender, etc.

Keywords: AI Fairness; Input Bias; Voice Profiling; Speech Applications; Speech Recognition
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Resumo

A utilização crescente de algoritmos de Machine Learning em processos fundamentais da nossa
sociedade acarreta o risco de estes sistemas replicarem e amplificarem padrões de discriminação
vigentes na nossa sociedade. Além disso, a nova e heterogénea gama de utilizadores exige
soluções robustas e imparciais que funcionem com sucesso, independentemente de caracterís-
ticas demográficas ou individuais do indivíduo. Com efeito, diversas empresas e instituições a
nível mundial têm vindo a ser responsabilizadas pelo comportamento e desempenho dos seus
modelos, especialmente no que diz respeito a minorias e grupos marginalizados.

No caso específico de aplicações de reconhecimento e processamento de voz, têm sido identifi-
cados erros sistemáticos contra diversos grupos da nossa sociedade, como mulheres, idosos, ou
etnias minoritárias. Como resposta a estes problemas, os provedores de dados têm-se focado em
garantir uma representação uniforme de indivíduos nos dados de treino, utilizando como critério
predominante o género (binário) do indivíduo. Tais intervenções têm, no entanto, três grandes
limitações. Primeiramente, o género não é uma descrição objetiva da voz, sendo ummero proxy da
voz do indivíduo. Consequentemente, tais proxies podem representar errada ou insuficientemente
o espectro de diversidade dos indivíduos. Em segundo lugar, em situações em que a recolha de
dados não é realizada pessoalmente (nomeadamente através de plataformas de crowdsourcing), as
informações de género são facilmente falseadas por utilizadores mal-intencionados, e difíceis de
validar. Finalmente, se usados indevidamente, estes proxies podem perpetuar estereótipos sociais
(por exemplo, como se espera que uma voz masculina soe).

Assim, esta dissertação explora a hipótese de usar representações objetivas da voz para garantir
uma representação uniforme de indivíduos nos dados de treino. Os modelos treinados segundo
este método seriam balanceados segundo particularidades da voz (por exemplo, tom e volume da
voz), ao invés de proxies como o género do indivíduo.

A análise dos dados revelou que uma representação uniforme das características da voz nos dados
de treino oferece uma abordagem mais verificável, eficaz e ética à recolha de dados de fala em
comparação com os proxies de género. Verificáveis uma vez que são representações mensuráveis
e objetivas do orador. Eficazes uma vez quemelhoram o desempenho em dois pontos percentuais
e aumentam a imparcialidade do modelo entre grupos de género e etários. Ética no sentido em
que é baseada em representações reais e factuais do indivíduo, i.e., independentes da etnia, idade
e género do orador.

Palavras-Chave: IA Responsável; Discriminação; Aplicações de Reconhecimento e Processa-
mento de Voz; Reconhecimento de Fala
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1 | Introduction

1.1 Motivation

One of the most prominent discussions of the XXI century is the fight against discrimination.
Whether it is racial, gender, or another type of discrimination, human societies have inherent
unfairness conflicts in their core foundations. Data, as a mirrored representation of reality, is no
different. Indeed, one of the current central issues in Artificial Intelligence (hereinafter, AI) is
fairness.

Broadly, fairness is the absence of any prejudice or favoritism towards an individual or a group
based on their intrinsic or acquired traits in the context of decision-making [1]. Because machines
can treat similarly-situated people and objects differently, research is starting to reveal some trou-
bling examples in which the reality of algorithmic decision-making falls short of our expectations.
Some algorithms run the risk of replicating and even amplifying human biases, particularly those
affecting protected groups [2]. Prevailing examples come from facial recognition systems biased
against black-skinned users1, or even hiring algorithms that systematically downgraded the score
given to women’s resumés2. Naturally, given this succession of conflicts, companies are starting to
be held accountable for their models’ behaviors and performance, creating new constraints and
needs for AI.

In the context of AI, fairness entangles two major premises. First, a fair system should only
act based on domain-specific (and ethical) information; and, secondly, its performance should
be comparable across distinct classes of its user base. Certainly, the violation of one of the
referred premises leads to unfair systems, which may be the result of poorly developed AI. The
causes of these conflicts can be drilled-down to the key components of AI systems: inappropriate
methodology (algorithms, features, testing, monitoring) and biased data. The latter, data or input
bias, is the focus of our research.

Notably, an AI system’s quality depends significantly on the volume and quality of the data used in
its training. The latter leaves us facing the emerging concern that ”AI artifacts tend to reflect the
goals, knowledge, and experience of their creators” [3]. Indeed, if historical biases are factored
into our training sets, the existing prejudices will be captured by the models, and potentially
reproduced and amplified. Besides historical issues, input bias can emanate from incomplete or
unrepresentative data. If an algorithm is more representative of some people than others, the
model may systematically go against unrepresented or under-representative groups.

Subsequently, input bias is potentially manifested in all forms of AI, namely in systems that are
1https://www.wired.com/story/can-apples-iphone-x-beat-facial-recognitions-bias-problem/
2https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
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now part of our everyday lives, such as Voice-user interfaces (VUI). VUI´s, like SIRI andAlexa [4],
make spoken human interaction with computers possible, using speech recognition to understand
spoken commands and answer questions, and typically text to speech to play a reply. VUI’s have
been added recently into automobiles, home automation systems, or even virtual smartphones’
assistants. Naturally, this widespread adoption of speech as an interface led to a growing demand
for data to train these systems.

As data is said to be the new oil 3, few data sets are publicly available for speech systems [5]. The
best known are corpora like TIMIT [6], or Switchboard [7], which date back to the early 1990s.
Such scarceness is mostly related to how costly gathering and annotating audio data with respect
to money and time. This led to the increasing importance of data providers, such as crowd-
sourcing platforms. Crowdsourcing is a particularly attractive solution for large data collection
efforts, allowing to reach a diverse crowd in a expedite and scalable manner (both faster and less
costly). Briefly, it consists of gathering and distributing work across a large pool of human con-
tributors, typically via an online platform. Once completed, payment is given to the contributors,
proportional to their participation.

Crowdsourcing, however, presents a new set of challenges, including the loss of control by data
requesters and the vulnerability to ill-intentioned contributors [8]. To address these issues, quality
ensuring is often done by submitting these recordings to validation tasks. Successfully validated
recordings are then packaged for delivery, along with any additional relevant metadata (with re-
spect to the recordings – such as the text that was recorded – or the speakers – such as gender
or age).

However, different aspects of the data present different validation challenges. For instance, val-
idating that a recording has no background noise is more straightforward than validating that
the speaker is of a specific gender. Indeed, self-reported speaker information (provided when
signing up for the platform, such as gender or age) is sensitive, and ultimately hard to verify and
contest.

Gender stats have, indeed, an important role in the speech collection pipeline: they are used as a
relevant tool to mitigate the recently unveiled bias conflicts in speech applications. Garnerin et al.
[5] identified bias towards women in the performance of speech recognition systems by analyzing
the gender representation in 4 major corpora of French broadcast. The authors concluded that
the disparity of available data for both genders caused performance to decrease on women. Vip-
perla [9] identified that the word error rates (WER) of Automatic Speech Recognition systems
(ASR) are significantly higher for older adults, when compared to younger adults. Bias was also
identified against racial groups. According to Koenecke et al. [10], black speakers have an average
WER 10 p.p. greater than white speakers when using state-of-the-art speech recognition systems
— developed by Amazon, Apple, Google, and Microsoft.

3https://www.theguardian.com/technology/2013/aug/23/tech-giants-data
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1.2 Problem Discussion

As an answer to the various bias conflicts unveiled in speech applications, data providers have
been focusing on balancing speech datasets over binary gender groups. Such interventions, how-
ever, pose three major limitations. First and foremost, gender is only a proxy for actual vocal
characteristics of the speaker, and for that reason, may not represent the complete spectrum of
speaker diversity. Secondly, as previously referred, these interventions are based on self-reported
data, which is hard to contest. Finally, limiting speaker classification to gender labels perpetuates
social stereotypes, for instance, of what a male voice is expected to sound like.

Given this background, this work explores the hypothesis of replacing gender proxies with actual
vocal representations of the speaker to drive the data collection process. The identified vocal
traits could then be used as criteria for balancing the training sets for speech applications. It
is important to note that measuring systems’ performance across social groups (like the ones
provided by gender information) is still relevant. However, this kind of sensitive self-reported
metadata must not be contested on the basis of normative (and potentially offensive) approaches,
and for that reason, are not fit to drive data collection. Accordingly, our hypothesis is that the
identified vocal traits offer a more verifiable and ethical way to describe speech data, ultimately
improving performance and reducing bias.

To test this hypothesis, we will evaluate the impact of vocal traits in speech applications’ perfor-
mance using a concrete speech application (automatic speech recognizer). Post-hoc analysis on
the systems´ performance should allow us to conclude on which vocal traits should be uniformly
represented in the training dataset and measuring the impacts of such distribution in the model’s
performance and biases. Our research was guided by the following two questions:

1. Which voice traits better differentiate and characterize speakers?
2. What is the impact of balancing such features in the training dataset of a speech application?

This document is structured around six different sections. Chapter 2 contains a literature review
that describes relevant work on voice profiling, speech recognition systems, crowdsourcing data
collection, and bias. Chapter 3 explains the proposed methodology. Chapters 4 and 5 detail the
obtained results for each of our research questions. Finally, Chapter 6 discusses the obtained
results and evaluates our initial hypothesis, and Chapter 7 presents the conclusions of our study
and makes some remarks on future work.

3



2 | Literature Review

This work sits at the intersection of three research topics with a wide array of work: crowdsourc-
ing, speaker profiling and AI fairness. For this purpose, this chapter is structured as follows:
Section 2.1 sets some terminology on the phonetics of speech sound; Section 2.2 reviews state-
of-the-art voice profiling techniques with a specific focus on gender categorization through voice;
Section 2.3 provides some background on the high-level architecture for automatic speech recog-
nition systems, and Section 2.4 introduces terminology and background work on crowdsourcing
data collection. Finally, Section 2.5 reviews the key bias and fairness concepts in AI, with a
specific focus on bias conflicts detected in speech applications.

2.1 Phonetics

2.1.1 Phonemes and Phones

Humans produce, classify, and interpret audio signals all the time without conscious effort. In-
deed, Humans are inherently set to capture hearable sounds1, and to decode the information
carried by the signal. In this work, our focus will rest on a specific category of hearable sound:
speech sound.

Speech consists of sequences of sounds, mostly continuous sounds, both within words and across
word boundaries. Indeed, a speaker can quickly dissect their constant sounds into words and
split words into component sounds. For example, three components can be distinguished in the
word bat, corresponding to the letters b, a, and t. The distinct units of sound in spoken English
distinguish one word from another. For example, when we switch the /b/ in bat with /k/, we
reproduce another word, cat.

The sound segments above are phonemes, the smallest sound unit that distinguishes mean-
ing between sounds in a given language [12]. Phones are its acoustic realization. Concisely,
phonemes are an abstract concept in linguistics to distinguish words, and phones are how we
pronounce them. English as spoken in the United States contains a total of 44 phonemes2. Fi-
nally, allophones are the context-dependent (CD) representation of phones, i.e., comprise the
pronunciation variations of a given phone. These are particularly useful to capture accent and
pronunciation variations for a given phone. Identifying allophones in captured sounds –, i.e, un-
derstanding how humans perceive and produce speech –, is the initial task of speech recognition
systems.

1The Gerhard [11] taxonomy separates hearable sounds into Noise Natural, Artificial, Speech, and Music.
2Most languages have between 20 to 60 phones in their vocabulary.
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2.1.2 Production of Phonemes

Speech sounds are generated whenever we tense up our vocal folds, creating the glottal pulse. When
we exhale air from the lungs, it pushes the vocal folds open. The airstream generates a vibration
of the vocal folds, producing a sound wave. These open and close cycles create a series of sound
wave frequencies with a fundamental frequency that tends to differ between male and female
speakers. Indeed, Singh [13] states that the adult woman’s average pitch range is from 165 to 255
Hz, while a man’s is 85 to 155 Hz.

Next, the vocal articulators (such as teeth, nasal cavity, and tongue) create different vocal tract
shapes, generating different resonances. They act as filters in suppressing or amplifying output
sound frequencies. The final generated sound can thus be seen as a weighted additive combina-
tion of different frequencies, which literature refers to as frequency components [13]. The scheme
below summarizes the described process.

Figure 2.1: Sound production and filtering processes.

Components with the highest amplitude dominate the speech content - formants - and carry most
of the spoken content of the signal. The lowest frequency of these components is the funda-
mental frequency and directly impacts the speaker’s perceived pitch.

Sambur [14] identifies fundamental frequency (pitch or F0) and formant frequencies (F1, F2,
F3, and F4) as two of the most informative acoustic features for speaker identification. Indeed,
formant frequencies and energy are instrumental in modeling specific speech traits in the pro-
nunciation of nasal phones, vowels, and strident consonants. Sambur [14] states that individuals
have prominent patterns in the vocal tract filtering process, directly impacting the typical phones’
pronunciation.

Conversely, fundamental frequency depends on the vocal cords’ thickness and height; hence
is particularly useful for gender and speaker identification [14]. Men tend to have an average
fundamental frequency average around 125 Hz, whilst women average 210 Hz – i.e., a significant
discrepancy that dominates the gender perception of vocal traits.
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2.2 Voice Profiling

Speech interface technology, which includes automatic speech recognition, synthetic speech, and
natural language processing, is beginning to have a significant impact on business and personal
computer use. As a result, there is a growing need for machine learning (ML) systems that are
capable of classifying, detecting and extracting information from speech signal.

In the particular case of speech applications, the process of deducting personal characteristics
and information about the circumstances and environment of a speaker from their voice is called
profiling from voice [13]. Typical profiling methods use signal analysis techniques by computing au-
dio features – compact and accurate mathematical representations of the sound. Indeed, audio
features can be thought not only as particular characteristic of the signal, but also, when aggre-
gated, as a proxy for actual vocal traits of the speaker. Therefore, each audio feature has a specific
usage and utility when it comes to capture specific characteristics of the speaker (such as, age,
emotional state, gender, etc.).

For the purpose of our research, we are mostly interested in two research areas in the speech
field that deal with speaker profiling: speaker identification, and gender categorization through
voice. Accordingly, the following subsections outline the state-of-the-art audio features for each
of these tasks.

2.2.1 Speaker Identification Through Voice

While several proposals of vocal traits taxonomies have been developed [13, 11], the work of
Sharma et al. [15] provides an updated and application-oriented framework for acoustic features.
The author proposes a division into six different categories: time-domain features, frequency-
domain, time-frequency, wavelet, cepstral, and deep features. However, for the purpose of
speaker profiling, Sharma et al. [15] highlight four of the previous categories: time-domain,
frequency-domain, cepstral and deep features. Below are synthesized the most commonly used
audio features for the purpose of speaker identification for each of the four selected categories.

2.2.1.1 Time-domain features

Time or temporal domain features measure properties of the signal throughout time. Given that
all sounds correspond to a time series signal, time-domain features are the simplest way of analyz-
ing a signal in its original form. Time-domain analysis is particularly straightforward for signals
that are either short, or stationary over time. Speech signal is, however, non-stationary. To ad-
dress this, most common temporal features cut the signal in short chunks of quasi-stationary sig-
nal, using windowing techniques, and analyze the feature distribution across consecutive chunks
of the signal. For the purpose of speaker identification, there are three most frequent subgroups
of temporal features: amplitude-based, energy-based and rhythm-based features.

Amplitude-based features investigate the signal’s temporal envelope, namely its fluctuation along
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time, being shimmer its most frequent measure. Shimmer computes cycle-to-cycle variations
of the amplitude in a waveform. It is commonly used as an input for speaker recognition and
speaker verification systems.

As the name states, energy-based features measure the level of energy carried by the signal and its
variation through time. The signal’s energy contour provides information on the signal’s spoken
content and the speaker — their affect, emotional and psychological state, health, and various
other factors. Given that the energy carried by the signal is typically variable in time, energy-based
features (such as RMS) capture the energy values over consecutive intervals of time. Loudness or
volume is also a relevant energy-based feature, which is mathematically defined as the root mean
squared value of the signal’s magnitude within a frame.

Finally, rhythm-based features capture regular patterns in the speech signal. Most common
rhythm-based features are speech duration, articulation rate, phoneme duration, pause ratio, total
duration, total pause duration, total vowel duration, pulse metric, and speaking rate [14].

2.2.1.2 Frequency-domain features

The time-domain shows the signal variation throughout time. Yet, in such domain, the signal
is analyzed in an aggregated fashion, hence with a very low granularity. To address this, using
auto-regression or Fourier transform, the time-domain signal can be converted into a frequency-
domain signal, allowing us to decompose a signal in its frequency components. Features created
over in this domain called of frequency-domain or spectral features. Sharma et al. [15] group spectral
features into five major sub-groups: STFT, chroma related features, auto-regression, tonality, and
spectrum-based features. For the purpose of speaker profiling, Sharma et al. [15] highlight two
major sub-groups of spectral features: tonality and spectrum-based features.

Tonality features capture the tone and intonation of the speaker in an utterance. The four most
common tonality based features are Fundamental Frequency (F0), jitter, frequency formants (F1,
F2, F3, F4), and Harmonic-to-Noise Ratio (HNR). F0, commonly known as pitch, is the lowest
frequency of a periodic waveform and captures a tone’s degree of highness or lowness. Following
up on pitch, we find jitter, which captures pitch variations across consecutive speaking periods.
Typical applications include speaker recognition, and age/gender estimation systems.

Frequency formants capture concentrations of acoustic energy around particular frequencies in
the speech wave. They provide information on typical speaker’s vocal tract patterns, which makes
them reliable features for the purpose of speaker identification. Finally, HNR separates noise
from the harmonic part of the signal, i.e., tones’ sounds. The ratio between those two parts is
the Harmonic-to-Noise Ratio (HNR), which is often used to estimate the level of hoarseness of
a voice.

Spectrum-shape features characterize the distribution of energy across the frequencies of the
signal. There are various types of spectrum-based features, namely: spectral centroid (brightness of
the signal), spectral spread (deviations of energy around the centroid), spectral skewness (level of
deviation from the normal distribution), spectral kurtosis (flatness of the spectrum), and spectral
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slope (how quickly the spectrum tails off towards the high frequencies).

Finally, auto-regression-based features are extracted from linear prediction analysis of a sig-
nal. Linear Predictive Coding (LPC) [16] is one of the most important features based on auto-
regression. LPC removes redundancy from a signal and attempts to determine the following
values by linearly combining the previously known coefficients. LPC based features are used
mainly for audio retrieval, and segmentation.

2.2.1.3 Cepstral features

Cepstral features, also known as cepstrum, are obtained by taking the inverse Fourier transform of
the logarithm of the spectrum of the signal. There is a complex, power, phase, and real cepstrum.
Power, however, is the most accepted cepstrum representation in speech signal processing [17],
using measures such as MFCCs, LPCCs, and PLPs. The cepstrum features are used primarily in
speech recognition, pitch detection, speaker recognition, and speech enhancement.

Mel-frequency cepstral coefficients -MFCCs are one of themost frequent acoustic representation
for speech signal, having wide application in speech recognition systems. MFCCs provide a
representation of the human hearing perception since they filter and transform the original signal
to mimic the way humans perceive it. They are a good representation of the short-time power
spectrum, which can ultimately can be used to represent the vocal tract shape. As stated in Section
2.1.1, the vocal tract shape includes the articulators such as teeth, nasal cavity, and tongue, which
together filter the sound impulse, thus generating the speaker’s voice’s resonance. Therefore, this
shape can give a precise illustration of the phoneme being formed if controlled precisely.

MFCCs are originated from audio cepstral representation and represent a sound frame by a vector
with 39 elements, fromwhich we typically use the 13 first coefficients. This shorter representation
includes 12 cepstrum coefficients plus the energy term. The remaining features correspond to
the delta and the double delta, which characterize feature changes over time and provide the
context information of a phone. Algorithm 1 outlines the extraction process of MFCCs from
signal.

Algorithm 1 MFCC extraction algorithm
1. Result: Mel frequency cepstrum coefficients
2. Input: Audio Signal X
3. Frame the signal into short frames use windowing.
4. For each frame, calculate the periodogram estimate of power spectrum.
5. Apply the mel-filter bank to power spectrum, sum the energy in the filter.
6. Take logarithm of filter-bank energies.
7. Take discrete cosine transformation (DCT) of the log filter-bank energies

Perceptual Linear Predictive (PLPs) [18] use the same rationale as MFCCs, yet introduce changes
in the MFCCs pipeline, namely during the calculation of cepstral coefficients (PLPs use LPCs
instead of linear prediction algorithms) and the signal filtering (by not considering Mel filter
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bank). Literature also makes available alternative cepstrum representations, such as LPCCs (Lin-
ear Prediction Cepstral Coefficients) [19], RASTA-PLP (Relative Spectral Transform PLP) [20],
and GTCCs (Gamma-Tone Cepstral Coefficients) [21]. These representations use a similar algo-
rithm to the one above, yet introducing small changes on the considered auditory scale for the
transformation.

2.2.1.4 Deep Features

Deep Neural Networks (DNNs) mark a new phase in automatic speaker recognition technology
evolution. They provide a powerful way to extract highly discriminating speaker-specific features
from recording the speech [22]. The obtained features – deep features – can be extracted from
various levels of the network, thus representing different granularity levels.

State-of-the-art speaker recognition systems use deep features to create speaker embeddings, a
fixed-size vector representing the vocal traits of the speaker. The twomost common examples are
x-vectors [22] and i-vectors [23], which use DNN and UBM encodings, respectively. X-vectors
can be seen as the replacement of i-vectors, which were the previous standard for speaker recog-
nition systems. I-vectors consist of a universal background model (UBM) and a large projection
matrix T that are learned in an unsupervised way to maximize the data likelihood [22]. The pro-
jection maps high-dimensional statistics from the UBM into a low-dimensional representation,
which output the so-called i-vector[23]. Recently, ECAPA-TDNN (Emphasized Channel Atten-
tion, Propagation and Aggregation in TDNN Based Speaker Verification) [24] embeddings are
becoming the state of the art in speaker identification. They add the attention mechanism and
are more robust to noise and channel conditions.

In spite of being highly-descriptive, deep features show a limited potential to be verified and
interpreted as they are retrieved from black-box models. Accordingly, they are commonly used
as a raw input for other AI models that study the individual’s voice, namely gender and speaker
identification algorithms [17].
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2.2.2 Voice Gender Perception

Voice perception can be thought of as a mixture of low-level perceptual feature extraction and
higher-level cognitive process. Ultimately, in the specific case of voice gender perception, such
exercise can be reduced to a match between the perceived vocal traits and a predefined repre-
sentation of what an individual from a specific gender group typically sounds like, i.e., a gender
model.

The identification of the vocal traits that most contribute to the definition of vocal gender models
is a subject that has been investigated for the past few decades. Indeed, Pernet and Belin [25]
identified two high-influential vocal traits to the gender perception process: pitch and timbre.
The authors proved that pitch is used only when timbre information is ambiguous (i.e., for more
androgynous voices) and that the sole use of pitch for classification allows to obtain good results
for classifying gender.

In general, pitch shows consistent differences across gender groups: male adults tend to have
voices with lower pitch when compared to the female counterparts. Moreover, pitch has also
been proved to be inversely proportional to the height of the individual, i.e., the taller the speaker,
the lower his pitch tends to be. Timbre, on the other hand, reflects the mixture of harmonics
and their relative height, enclosing all-vocal traits that cannot be qualified as pitch or loudness.
Indeed, timbre is often described as the set of characteristics that gives color and personality to
the voice, i.e., the unique attributes on the speaker’s voice.

Combining these two vocal dimensions, Pernet and Belin [25] conclude that the ability to perceive
gender can be mediated by vocal acoustical properties such as pitch, formant values (F1, F2, F3),
glottal function, and spectral slope.

As a last note, little research has investigated the vocal patterns of individuals who do not identify
as men or women and instead identify with non-binary genders. Despite such scarceness, recent
research [26] identified that transgendermen andwomen tend to pattern according to their gender
identity, rather than biological sex, in terms of both vocal pitch and intonation characteristics.
Hope and Bradley [26] suggest that non-binary individuals produce their pitch and vary their
pitch in ways that are different from those with binary identities. Despite these findings, the
authors alert for the danger of generalizing such results since the group of people identifying as
non-binary is more heterogeneous and, consequently, shows a higher variability of vocal traits.
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2.3 Speech recognition systems

As already mentioned in Chapter 1, one of the growing means of interaction with our systems
is through voice. Voice-user interfaces (VUI), like SIRI3 and Alexa4, make spoken human inter-
action with computers possible, using speech recognition to understand spoken commands, and
text-to-speech to reply. Indeed, several speech-based commercial applications exist nowadays,
ranging from home automation systems, virtual smartphones’ assistants, or voice interaction sys-
tems in automobiles. Regarding these systems, we are particularly interested in automatic speech
recognition systems (ASR), which will be the focus of our research.

Accordingly, in this section we start by covering the major ingredients that compose the ASR
pipeline. Then, we introduce the some of the most frequent evaluation measures for speech
recognition systems, and, finally, review the state-of-the-art toolkits for implementing and training
ASR systems.

2.3.1 ASR pipeline

The key focus of automated speech recognition systems (hereinafter ASR) is finding the most
probable word sequence for an observed audio chunk. In other words, the system finds the word
sequence W with the highest likelihood given the observed feature vectors X . Mathematically,
we can model this either in the discriminative or the generative approaches:

Word sequence : W = w1, w2, ..., wm

Acoustic observations : X = x1, x2, ..., xn

W x = argwmax[P (W |X)]︸ ︷︷ ︸
discriminative model

= argwmax[P (X|W ) ∗ P (W )]︸ ︷︷ ︸
generative model

(2.1)

For the past few decades, speech recognition has mostly been on a generative approach. These
models learn how to match audio signals to words, generating the instance space composed by
all possible word sequences. Then, using decoding techniques, the algorithm searches for the most
probable sequence of words.

The high-level architecture of generative speech recognizer can be deconstructed as a set of
sequential building blocks. Indeed, they allow us to go from an observed audio signal to phones,
then to sequences of phones (word), and finally to a sequence of words. Figure 2.25 maps the
high-level framework of these systems.

The basic framework of speech recognizer systems comprises three major stages: capture, trans-
ducing, and decoding. The transducing phase corresponds to the ensemble of three different

3https://www.apple.com/siri/
4https://developer.amazon.com/en-US/alexa
5https://jonathan-hui.medium.com/speech-recognition-series-71fd6784551a
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Figure 2.2: Basic framework of a generative speech recognizer system.

models: acoustic, lexicon, and language model. Joining these pieces, we obtain an end-to-end
ASR framework which follows the steps below:

1. Extract information on the observed signal - starting from an audio clip, we use sliding
windows to extract acoustic features. Each window will generate a sequence of vectors,
one for each frame.

2. Transduce the acoustic features of the signal to obtain all possible words sequences. The
transduction process corresponds to an ensemble of three different models:
(a) Acoustic Model - P (X|W ) - used to recognize phones from the obtained acoustic

features.
(b) Lexicon Model - used to identify the most probable sequence of phones. In short,

it will transform phones into words.
(c) Language Model - P (W ) - used to identify the most probable sequence of words

- utterances.
3. Combine the information provided by the three previous models using an ASR decoder,
that will guide the search in the space of all possible word sequences.

We will briefly cover each of the above blocks in the following sections. It is worth noting that
we will only cover essential aspects of an end-to-end generative speech recognizer. Most recent
frameworks may include additional or distinct elements that will not be discussed in the following
sections.
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2.3.1.1 Acoustic Features

In speech recognition, knowing how we hear is more important than knowing how we speak6.
Following this principle, the input of speech recognition systems aims to represent the speech
signal’s human perception. Indeed, as stated in Section 2.2, MFCCs are the accepted acoustic
features to use as input for ASR systems.

To extract audio features, we conventionally use sliding windows of width 25ms and 10ms apart
to parse the audio waveform. For each sliding window, we extract a frame of audio signals. We
apply Fourier Transform, and manipulate it to make the perceived speech features stand out.
Then we apply the inverse Fourier Transform. Several pre-processing techniques can be applied
at this stage, being the most frequent ones PLP and MFCC. In the end, we extract a vector of
features for each frame, which will be used as the input for the ASR system. As an example, X
in P (X|W ) can be thought as the vector containing the MFCC values.

2.3.1.2 Speech Transducing

The generative approach looks for all possible sequences of words (with limitedmaximum length)
and finds the one that best matches the input acoustic features. Therefore, this process allows us
to go from acoustic features to words.

Acoustic models use MFCC features as an input to identify the most probable phones in the
observed signal. Lexicon models use phones to find the most likely words (phone sequences).
Finally, language models use words to find the most likely phrases (sequences of words).

2.3.1.2.1 Acoustic Model

Acoustic models estimate the likelihood of an audio feature vector X given a phone, i.e.,
P (X|phone). They provide a powerful method to measure the distance between our observed
audio frame and the typical MFCC representation of a phone. Phones, however, are dependent
on the context, i.e., on the adjacent phones.

Articulation depends on immediately adjacent phones (co-articulation). Indeed, sounds change
according to the surrounding context within a word or between words. With that in mind, when
building a complex acoustic model, we should not treat phones independent of their context.
The label of an audio frame should include the phone and its context–triphones. Indeed, as shown
in Figure 2.3, the spectrogram for phoneme /eh/ varies with the context.

Two common modeling techniques for Acoustic models are Gaussian-Mixture models (GMM)
and Deep Neural Network (DNN). GMM combines n Gaussian distributions, each with a spe-
cific weight, to form a new probability density function (an n-component GMM). Concerning
DNN approaches, we can find three significant deep network possibilities for acoustic models:
Fully connected (FC), Convolutional (CNN) and Recurrent (RNN) Neural Networks.

6https://jonathan-hui.medium.com/speech-recognition-series-71fd6784551a

13

https://jonathan-hui.medium.com/speech-recognition-series-71fd6784551a


Figure 2.3: Three context-dependent spectrogram representations of the phone /eh/.

Fully connected (FC) networks directly use the Mel filter bank’s features as an input to the deep
network, which will encode a phone representation and its respective likelihood. Some FCmodels
[27] contain 3–8 hidden layers with 2048 hidden units in each layer. Hence, this model can predict
the context-dependent states’ distribution from the audio frames. However, FC networks are
computationally intense. It requires many model parameters, even for reasonable feature size.
CNN takes advantage of locality and discovers local information hierarchically. On the other
hand, time-delay neural networks (TDNN) explores the fact that audio speech is time-sequence
data. Instead of applying a 2D convolution filter, we use a 1-D filter to extract features across
multiple frames in time.

Finally, RNN is a deep network designed for time-sequence data using an LSTM mechanism.
Long short-term memory (LSTM) is a type of recurrent neural network (RNN) where each cell
has the input, the previous state, and the memory. Because of this architecture, LSTM is par-
ticularly useful to process sequences of data and it is used in some of the most accepted ASR
frameworks like Mozilla’s DeepSpeech [27].

2.3.1.2.2 Lexicon Model

Pronunciation lexicon models the sequence of phones of a word using Finite State Techniques
(FST), frequently represented by Hidden Markov Models (HMM).

An HMM comprises hidden variables and observables and is modeled by the transition - like-
lihood of transiting from one internal state to another - and the emission probabilities - the
likelihood of an observable given an internal state. Combining these two, we obtain the forward
probability, which will express the likelihood of our observations. Then, we use decoding to find
the most probable internal state sequences that matches our observations.

For the purpose of speech recognition, the observable is the content in each audio frame, and the
internal state represents the phones identified in the observed acoustic features. The emission
probability (representing the observable for each internal state) will be modeled by the acoustic
model.

However, phones show changes in frequencies’ amplitudes from the beginning until the end. To
reflect that, we sub-divide the phone into three states: the beginning, the middle, and the ending
part of a phone. To handle silence, noises, and filled pauses in a speech, we can label them as
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SIL and treat it like another phone. We can also introduce skip arcs, arcs with empty input (), to
model skipped sounds in the utterance, i.e., phones that are often mispronounced or omitted in
dialogues.

2.3.1.2.3 Language Model

Even if the audio clip is not grammatically perfect (eg. contains skipped words), we assume that
our audio clip is grammatically and semantically correct. Therefore, if we include a language
model P (W ) in decoding, we can improve the speech recognition.

The language model deals with the likelihood of the word sequence. Since it estimates a sequence,
it is no surprise that HMM is also used to represent language models. Hence, HMM language
models work similarly to lexicon models: instead of predicting phones, they estimate the like-
lihood of a sequence of words. This creates an n-gram language model. Higher-order models
ensure a greater granularity in our predictions.

The combination of the lexicon and acoustic models gives usP (X|W ) element for our generative
speech recognizer – the likelihood of an observation in a space composed of all possible words.
Introducing the language model - P (W ) - we obtain the likelihood of a sequence of words for a
given recording - P (W |X).

These three pieces, however, need to be combined in a efficient and organized way. To do so,
ASR decoders are used to search for the optimal word sequence in a non-exhaustive way.

2.3.1.3 ASR Decoding

Speech recognition architectures commonly give the run-time decoder the task of combining and
optimizing transducers (acoustic, lexicon, and language models). In this section, we will focus on
Weighted Finite-State Transducers (WFST), the most common decoding technique.

Weighted Finite-State Transducers (WFST) is one of the most efficient transducers composition
technique. Transducers encode a mapping between the input and the output label sequences.
We start with an HMM transducerH to transform HMM states into context-dependent phones.
By composing other transducers, namely the context-dependency (C), the pronunciation lexicon
(L), and the grammar transducer (G), we map phones into a grammatically-sound sequence of
words. The combination of these models leads to a decoding graph like the one in Figure 2.4.

The primary efficiency gain of WFST is in the composition of the H, C, L, and G transducers
to form a single decoding/search graph, like the one presented below. However, we do not
directly compose them together since the decoding graph would be too big to store or perform
a full search. Transducer composition provides us with an optimization step, in which pruning
is a vital part of the decoding. Most common prunning techniques are Beam Search, A* Search
(Best-first search), and the Multipass search [28].
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Figure 2.4: Basic WSFT pipeline, with theH ◦ C ◦ L ◦G composition.

2.3.2 Evaluation

To evaluate speech recognition systems, the ASR system’s output (hypothesis text), is compared to
a literal transcription of input audio (reference text). Standard measures used in speech recognition
evaluation are:

• Word Error Rate measures how many substitutions, insertions and eliminations - edit
distance - are needed to convert the prediction to the true result - ground truth. The same
formula can be applied on different levels: phoneme – Phoneme Error Rate (PER) –,
character – Character Error Rate (CER), and Sentence Error Rate (SER).

WER =
Insertions+Deletions+ Substitutions

WordCount
(2.2)

• Word Accuracy measures the total number of correct words compared to the total number of
words.

WAcc = 1−WER =
Number CorrectWords

WordCount
(2.3)
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2.3.3 State-of-the-art ASR toolkits

Until a few years ago, state-of-the-art for speech recognition was a phonetic-based approach in-
cluding separate components for pronunciation, acoustic, and language models. Typically, this
consists of n-gram language models combined with Hidden Markov models (HMM). Most ac-
cepted toolkits using this approach are HTK, and Kaldi.

HiddenMarkovModel Tool Kit (HTK)7 is used to build HiddenMarkovModels (HMM) and can
also be used in the designing of speech recognition system. HTK provides scripts for acoustic
modeling, which can be changed for any other recognition applications. These tools uses HMM
for training, testing and results analysis.

Kaldi8 is a state-of-the-art automatic speech recognition (ASR) C++ toolkit, containing almost
any algorithm currently used in the industry. It contains not only pre-trained models ran over
popular datasets (such as Wall Street Journal Corpus [29] and TIMIT [6]), but also allows the
user to train their own acoustic models. Accordingly, Kaldi provides tremendous flexibility and
power in training own acoustic models and forced alignment system. The acoustic models are
created by training the models on acoustic features from labeled data, or any other transcribed
speech corpus.

Nonetheless, with the increasing usage of speech as an interface, major companies joined the
industry by offering new architectures and tools for these systems. Prevalent examples come
from NVIDIA (Neemo toolkit), Facebook (wav2vec toolkit), and Mozilla (DeepSpeech toolkit).

NVIDIA NeMo9 is a Conversational AI toolkit powered by NVIDIA. The toolkit is an accel-
erator, which helps researchers and practitioners to experiments with complex neural network
architectures. Speech processing (recognition and synthesis) and Natural Language Processing
are the significant capabilities of the platform. The framework relays on PyTorch as the Deep
Learning framework.

Facebook is another company with a strong presence in the speech industry. Indeed, Wav2vec
was made available in 2019 as an extension to the open source modeling toolkit fairseq10, and was
announced as an important tool to provide better audio data representations for keyword spotting
and acoustic event detection. Alongside wav2vec, Facebook showcased a new self-supervision
model — ConvLM— that achieves state-of-the-art performance in correctly recognizing words
outside of its training lexicon, and a lightweight sequence-to-sequence (seq2seq) model for speech
recognition that’s reportedly more efficient than previous work while delivering a better WER.

Finally, Mozilla launched the DeepSpeech 11 initiative in 2014, a simple, open, and ubiquitous
speech recognition engine. Simple, in the sense that the engine should not require server-class
hardware to execute. Open, in the sense that the code and models are released under the Mozilla
Public License. Ubiquitous, in the sense that the engine should run on many platforms and have

7https://htk.eng.cam.ac.uk/
8https://github.com/kaldi-asr/kaldi
9https://developer.nvidia.com/nvidia-nemo
10https://github.com/pytorch/fairseq
11https://deepspeech.readthedocs.io/en/v0.9.3/index.html
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bindings to many different languages.

The architecture of the engine was originally motivated by that presented in [27], and it is imple-
mented over Google’s TensorFlow toolkit. However, the engine currently differs in many aspects
from the engine it was originally motivated by. The core of the engine is a recurrent neural net-
work (RNN) trained to ingest speech spectrograms and generate English text transcriptions.

The DeepSpeech architecture is significantly simpler than traditional speech systems, which rely
on laboriously engineered processing pipelines. This framework does not need a phoneme dictio-
nary, nor even the concept of a phoneme. Key to DeepSpeech’s approach is a well-optimized RNN
training system that uses multiple GPUs, as well as a set of novel data synthesis techniques that
allow us to efficiently obtain a large amount of varied data for training. Deep Speech also han-
dles challenging noisy environments better than widely used, state-of-the-art commercial speech
systems.

The standard architecture of the model uses 5 units (4 ReLU + 1 RNN). The first three are
ReLU layers, and the fourth one is an RNN, which includes a set of hidden units with forward
recurrence. The fifth (non-recurrent) layer takes the forward units as inputs. The system also uses
a standard softmax output layer, and CTC (Connectivist Temporal Classification) beam search
decoding.
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2.4 Crowdsourcing data collection

As the industry expands to more natural forms of interaction with everyday devices and ser-
vices, such as communication via natural language, the need for data to train such applications
increases. Indeed, data-driven applications and intelligent systems, such as personal assistants or
autonomous vehicles, require large amounts of data to train such systems. Furthermore, the wide
range of new diverse and heterogeneous users demands for robust and unbiased solutions that
perform successfully regardless of their individual characteristics or demographics.

To answer these needs, crowdsourcing emerged as an attractive solution for large data collection
efforts, allowing to reach a diverse crowd in a expedite and scalable manner (both faster and less
costly). The concept of crowdsourcing leverages the so-called wisdom of crowds, the idea that a
large group of individuals can together provide surprising insight or value, even if individually
they are inaccurate [30]. Therefore, crowdsourcing can be thought as a strategic model to attract
a motivated crowd of individuals. These individuals, henceforth referred as contributors, can
perform micro-tasks that take anywhere from a few seconds to several minutes to complete.
Such tasks, Human-Intelligence Tasks (HITs), are typically made available via an online platform
that distributes jobs across large numbers of people in exchange for a reward. Common tasks
approached with crowdsourcing are labeling images, translating or transcribing text, or recording
speech, to name a few.

Regarding the collection pipeline, Botelheiro et al. [8] suggests that the participation in these
platforms, from the contributor’s point a view, can be divided into four phases:

1. Registration - contributors sign up, providing demographic (age/gender) and language
data (including reading, writing, and speaking proficiency per language).

2. Work Selection - based on their self-reported qualifications, the platform matches the
contributors to a pool of tasks, which are organized as Jobs. A Job is a set of Human-
Intelligence Tasks (HITs) with a common goal, such as ”Record yourself reading the fol-
lowing sentences in English USA”. Once the contributors accept the assigned Job, they
are referred to as Job Members;

3. Execution - Job Members read the instructions of the Job and perform the HITs.
4. Payment - upon successful completion, payment is given to the contributors, proportional
to their participation.

In the specific case of speech data collection, the collection pipeline entangles two steps: 1) a
generation step in which the contributor is assigned with a prompt to read, and 2) a validation step
in which the contributor is requested to validate certain aspects of previously recorded audio.
Recordings that fail to meet the quality criteria are marked to return to the pool of available work
in order to be re-recorded. Successfully validated recordings are then packaged for delivery, along
with any additional relevant metadata (with respect to the recordings – such as the text that was
recorded – or the speakers – such as gender or age).

The aforementioned validation step is an answer to new set of challenges of crowdsourcing that
are caused by the loss of control by data requesters in a remote context, ultimately impacting the
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quality of the collected data.

There are, however, two different motivations for the referred issues. On the one hand, the
required input in a micro-task may be subjective or even ambiguous, leading to misalignment
between the output and the instructions of the task. On the other hand, the reward behind each
micro-task can cause contributors to minimize their effort, rush the work, or even attempting to
cheat the system to get the reward without any effort. The latter is commonly known as crowd
frauds. Typical crowd frauds involve a mismatch between the speaker and its self-collected stats (e.g.,
gender, age, etc.), potentially leading to quality issues in the obtained data. Most common crowd
frauds are of three types:

1. Gender mismatch: the self-assigned gender of the speaker in the platform is incorrect.
2. One account-many speakers: a recording job contains multiple speakers,
3. One speaker-many accounts: the same speaker has multiple accounts in the platform.

Typical validation mechanisms are manual tasks where the Job Member is asked to validate cer-
tain aspects of the recordings (such as recording/noise conditions, nativeness and the match of
the audio with the prompt). Given the sensitivity of this decision, each recording is validated by
multiple contributors to ensure higher consistency and certainty in the final decision. Depending
on the task, the volume of low-quality contributions may be considerable, and manually review-
ing micro-tasks may take as much or more time and effort than performing them. Therefore,
crowdsourcing platforms are trying to use AI in the process, namely by introducing speaker and
gender identification algorithms in the collection pipeline.

However, different aspects of the data present different validation challenges. For instance, val-
idating that a recording has no background noise is more straightforward than validating that
the speaker is of a specific gender. Indeed, self-reported speaker information (provided when
signing up for the platform, such as gender or age) is sensitive, and ultimately hard to verify and
contest. Hence, self-reported stats on the speaker, like gender, are vulnerable to ill-intentioned
contributors, ultimately impacting all tasks that rely on this data.
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2.5 Bias and Fairness

Despite not having a universal definition, an unfair AI algorithm is frequently described in litera-
ture as one whose decisions are skewed toward a particular group of people [31]. Indeed, because
machines can treat similarly-situated people and objects differently, research is starting to reveal
some troubling examples in which the reality of algorithmic decision-making falls short of our
expectations. As a result, some algorithms run the risk of replicating and even amplifying human
biases, particularly those affecting misrepresented groups [2].

Prevailing examples come from facial recognition systems biased against black-skinned users12,
or even hiring algorithms that systematically downgraded the score given to women’s resumés13.
Naturally, as these conflicts are starting to be unveiled, companies and governmental institutions
are starting to be held accountable for their models’ behaviors and performance, especially with
respect to minorities and marginalized groups.

As an answer to these events, new constraints and needs were introduced in AI. A major example
comes from AI systems trained to help on high-stakes decisions in loan applications. To prevent
the existence of bias conflicts in these sytems, the European Central Bank (ECB) introduced
restrictions on the information that can be used to train these models, for instance by forbidding
the usage of specific information the clients such as age and gender14.

While highly related, the concept of bias differs from fairness. For that reason, in this section we
start by distinguishing the two concepts. Then, focusing on speech applications, wewill review the
major bias conflicts unveiled in literature, while covering the most frequently employedmitigation
techniques. Finally, we present some considerations on the effectiveness of such interventions,
particularly in a crowdsourcing data collection scenario15.

2.5.1 Bias ̸= Fairness

Broadly, fairness is the absence of any prejudice or favoritism towards an individual or a group
based on their intrinsic or acquired traits in the context of decision-making [1]. Fairness is thus
a concept from Sociology that depends on individual perceptions, individual expectations, and
context. Indeed, this subjectivity of the concept itself is one of the main reasons for it to be hard
to achieve.

Verma and Rubin [32] identifies twenty different fairness definitions, while Mehrabi et al. [1] sim-
plifies this approach and solely considers ten different definitions. Regarding the latter approach,
we can group the prevalent fairness definitions into three major categories:

1. Individual Fairness. Give similar predictions to similar individuals [33].
2. Group Fairness. Treat different groups equally [33].

12https://www.wired.com/story/can-apples-iphone-x-beat-facial-recognitions-bias-problem/
13https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
14https://www.ecb.europa.eu/paym/coll/risk/ecaf/html/index.en.html
15Details on crowdsourcing data collection available at Section 2.4.
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3. Subgroup Fairness. Subgroup fairness is a mixture of the two previous fairness types.
It picks a group fairness constraint like equalizing false positive and asks whether this
constraint holds over a large collection of subgroups [34].

A fair system is one that verifies two major sets of conditions. First, a fair system should only
act based on domain-specific (and ethical) information; and, secondly, its performance should be
comparable across distinct classes of its user base. Certainly, the violation of one of the referred
premises leads to unfair systems, which may be the result of poorly developed AI. Causes of such
conflicts can then be drilled-down to each of the key components of AI systems: inappropriate
methodology (algorithms, features, testing, monitoring) and biased data.

On the contrary, bias is a mathematical concept commonly defined as a systematic error against
specific sub-groups. Indeed, it is a measure of favoring/hindering something and, if not con-
trolled, may lead to unfair treatment of misrepresented groups. Bias in algorithms can emanate
from unrepresentative or incomplete training data or the reliance on flawed information that
reflects historical inequalities. If unchecked, biased algorithms can lead to decisions with a col-
lective, disparate impact on specific groups of people even without the original intention to dis-
criminate. Yet, if controlled, it can be a compensation mechanism hence fair.

Bias can be manifested in data in many shapes and forms. Indeed, Mehrabi et al. [1] identifies
twenty different types of bias. For the purpose of our research, we will solely focus on two of
the previous:

1. Representation bias. derives from inappropriate definition or sampling of the population
[35], leading to diversity issues in the obtained training sets.

2. Aggregation bias. happens when false conclusions are drawn for a subgroup based on
observing other different subgroups or when false assumptions about a population are
taken [35].

Lee et al. [2] point out that bias can creep in during all phases of a project. This is usually the
result of an unintentional emergent property of the algorithm’s use rather than its programmers’
conscious choice. Indeed, it can be challenging for developers to identify the problem’s source
or explain it to a court. While there are many causes, we focus on two: historical human biases
and incomplete or unrepresentative data.

Pervasive prejudices shape historical human biases against certain groups, leading to their reproduction and ampli-
fication in computer models [2]. Suppose African-Americans are more likely to be arrested in the U.S.
due to historical racism or other inequalities within the criminal justice system. In that case, these
patterns will be mirrored in the training data and captured by the ML algorithm. If historical
biases are factored into the model, it will make the same kinds of wrong judgments that people
do [2].

Insufficient training data is another cause of algorithmic bias. Consider that an algorithm’s train-
ing set is more representative of some people than others. In that case, the system will most likely
show systematic errors against unrepresented or under-representative groups. Lee et al. [2] argues
that it is often the lack of diversity in the training sample that leads to the under-representation
of a particular group or specific attributes. Indeed, the latter, data or input bias, is the focus of

22



our research. To fight this, the author suggests that pre-processing tasks should be employed to
correct the lack of diversity in the training set, ensuring a uniform distribution over one or more
variables of the training set.

General methods for bias mitigation involve interventions before or during the model’s training,
and fair interventions over already trainedmodels. Foster et al. [31] proposes a taxonomy that divides
mitigation methods in three different levels: pre-processing, in-processing, and post-processing
[1]. For the purpose our research, we will focus on the pre-processing level.

Pre-processing interventions transform train data to remove underlying discrimination. This ap-
proach intervenes at a design level by assuring an uniform distribution over one or more variables
in the training set. Such variables can thus be thought as the balancement criterion of these in-
terventions.

The premise explored by these interventions is that assuring a similar representation of groups
in the training set guarantees a similar performance for the referred groups. The effectiveness of
such interventions is, however, dependent on the ability of the selected variables to represent the
complete spectrum of diversity in data. Whether it concerns speech, images, text, or other types
of data, the more diverse a train set is, the more capable will the algorithm be to handle extreme
and diverse scenarios. Therefore, the selection of the balancement criterion is an highly-impacting
decision to take before balancing the training set.

Indeed, as the industry expands and demands robust and unbiased solutions, balancing the train-
ing set for AI systems has become a common practice among developers. Most common bal-
ancement criterion follow a direct recipe: once bias is detected against specific social sub-groups,
then the training sets are adjusted to ensure an equal representation of over the same sub-groups
in which bias is detected. As a result, descriptors such as gender and racial groups are some of
the most frequent balancement criteria used in the AI industry.

Such variables are, however, general descriptions of individuals, i.e., mere proxies for actual char-
acteristics on the individual. Indeed, if the referred proxies are misaligned with the actual profile
of the individual, these proxies can be dangerous in the sense that they may be perpetuating of-
fensive social stereotypes (for instance, what a male voice is expected to sound like, or what is
the skin tone for an individual of a given racial group).

To fight this issue, there has been a growing effort to use verifiable and actual descriptions of
individuals in the dataset. A prevalent example comes from ImageNet16, an image database
commonly used to generate train sets for facial recognition systems. As reported in the State of AI
Report 202017, the company identified offensive categories, such as racial and gender expression
characterizations, among ImageNet’s database. Depictions such as race were complemented by
descriptions of the skin tone of the individual, allowing developers to produce algorithms that
more fairly classify faces and activities in images.

16https://www.image-net.org/
17https://www.stateof.ai/
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2.5.2 Speech bias

Research has been conducted concerning possible bias conflicts in speech applications in recent
years. As a result, speech bias has been identified against social groups of our society, such as
gender [5], age [9], race [10] groups.

Garnerin et al. [5] identified bias against women in the performance of speech recognition systems
by analyzing the gender representation in four major corpora of French broadcast. The authors
concluded that the disparity of available data for both genders caused performance to decrease
on women. Vipperla [9] identified that the ASR word error rates (WER) for older adults are
significantly higher than those of younger adults. Bias was also identified against racial groups.
According to Koenecke et al. [10], black speakers have an average WER ten points greater than
white speakers when using state-of-the-art speech recognition systems— developed by Amazon,
Apple, Google, and Microsoft [4]. Additionally, most of the example above were revealed to be
caused by caused by input bias [10], i.e. the collection of speech data was not diverse enough,
causing performance differences against the misrepresented groups.

As an answer to this, data providers’ most prevalent interventions intervene on a pre-processing
level, by assuring diversity in their datasets, i.e., variability. To do so, datasets are adjusted to ensure
an uniform distributions over the same aspects in which bias is detected, most frequently across
gender groups. Notably, an AI system’s quality depends significantly on the volume and quality
of the data used in its training. Data providers believe that by assuring a similar representation of
genders in the training sets, they will observe an equal performance between gender groups.

The effectiveness of this technique is then dependent on two major premises: 1) the availability
of accurate speaker metadata, and 2) the criterion applied for balancing data data must be diverse
enough to capture the complete diversity spectrum of speaker profiles.

Concerning the first premise, as further detailed in Section 2.4, particularly in situations where the
collection is not done in person (such as in a crowdsourcing platform), the obtained data is often
vulnerable to ill-intentioned contributors [8]. Ultimately, such frauds lead to quality issues on the
collected data, particularly affecting the self-reported speaker metadata. So, the metadata used on
bias mitigation interventions shows the potential to have quality issues, hence to be inaccurate.

Focusing now on the second premise, data providers commonly balance datasets by gender labels.
However, the employed criterion is not descriptive of the speaker, but a mere proxy of the vocal
traits he is trying to emulate. In the sense that such representations generalize what an element
of a given social group is supposed to sound like, they are only efficient in representing extremely
homogeneous. Gender groups, however, are not homogeneous. Nor all male voices are low
pitched, nor all female voice are high pitched. As a result, gender proxies show the potential to
result in gender stereotypes, leading to misleading representations of individuals that contradict
the dominant vocal traits of its gender group.

To illustrate this situation, as represented in Figure 2.5, we can think of a hypothetical situation
in which one adjusts the training set to ensure a 50-50 distribution for female and male speakers.
On an ideal scenario, this intervention would guarantee an equal of vocal profiles in the training
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set. Yet, the actual scenario is a lot different: despite existing a dominant vocal profile within
each gender group, the vocal traits distribution is not homogeneous. Indeed, there is a broader
diversity spectrum for which the referred social proxies are relatively short in representing. The
trained model could thus be biased against misrepresented or unrepresented vocal profiles. Most
extreme examples rest on male’s with high pitch voices, or even women’s with low pitch voices
could be systematically misrepresented simply because they fail to follow their sub-groups’ typical
vocal representation.

Figure 2.5: Proxy vocal traits representations: actual scenario.

The scenario presented above can enclose the types of bias referred in Section 2.5.1: aggregation
and representation bias. Aggregation bias is the most evident example: false assumptions may be
taken by generalizing the vocal profile for a gender group, hence neglecting the misrepresented
individuals within the group. On the other hand, representation bias could be caused by balancing
training sets across social groups. Given that these groups are way too broad, the prevailing voice
representation would be based on the dominant group, potentially failing to represent minority
groups and the complete diversity spectrum.
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3 | Research Methodology

As algorithms drive more decision-making processes, machine learning models’ tendency to learn
our input data biases is a massive problem. Furthermore, the wide range of new diverse, and
heterogeneous users demands robust and unbiased solutions that perform successfully regardless
of their individual characteristics or demographics.

In the specific case of speech applications, research identified systematic errors against social
groups of our society, such as female speakers, elderly speakers, or even misrepresented ethnic
groups. To fight this, data providers’ most prevalent interventions focus on assuring uniform
distributions over the same aspects in which bias is detected, particularly across binary gender
groups. However, balancing data along these features has three major drawbacks. First and
foremost, as detailed in Section 2.4, these features are hard to test against when collecting audio
for training such systems (particularly in a remote collection scenario). Secondly, they do not
represent the individual’s actual vocal traits (being only proxies of that). Finally, if used incorrectly,
these proxies can be dangerous in the sense that they may be perpetuating social stereotypes (for
instance, what a male voice is expected to sound like).

Figure 3.1: Research hypothesis: moving from proxy to actual vocal traits as balancement criterion.

To illustrate this, we can think of a hypothetical situation where a speech dataset containing
100 speakers is adjusted to ensure a 50-50 binary gender distribution. Figure 3.1 replicates this
scenario by mapping the speaker distribution in the instance space using two vocal traits: pitch
and amplitude. In an ideal scenario, this intervention would guarantee a similar representation
of voice profiles in the dataset. The actual scenario is, however, a lot different: despite existing
a dominant vocal profile within each gender group, the distribution of the vocal traits is not
homogeneous. As one can see, there is a broader diversity spectrum for which gender proxies
are relatively short in representing, which ultimately leads to a misrepresentation of speakers that
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fail to follow the typical vocal profile of their gender group. In addition, as stated in Section 2.4,
the considered gender stats are quite hard to verify and contest in a crowdsourcing context.

Given this background, this work explores the hypothesis of replacing proxies to the speaker’s
vocal traits (eg. gender), with actual vocal representations of the speaker to drive the data col-
lection process. These traits should represent particularities of the speakers’ voice (for instance,
pitch) instead of proxies to the desired descriptors. It is important to highlight that measuring
systems’ performance across social groups (like the ones provided by gender information) is still
relevant. However, this kind of sensitive self-reported metadata must not be contested based on
normative (and potentially offensive) approaches, hence, they are not fit to drive data collection.

Our hypothesis would be represented by the second scatter plot in Figure 3.1, i.e., guiding the
data collection using a representation that is blind to social groups and that uses an actual and
verifiable criterion to balance data: pitch. This method not only covers a wider spectrum of
diversity on the dataset (hence effective) but also ensures a similar representation of each profile
in the data (hence fair).

Our research starts by identifying the vocal traits conveying the most information on the speaker,
i.e., acoustic features that effectively differentiate individuals through voice. Then, we evaluate
the impact of balancing such features in the training dataset for speech applications, analyzing
the performance and bias impacts of these interventions. Our investigation was guided by the
following two questions:

1. Which voice traits better differentiate and characterize speakers?
2. What is the impact (performance and bias) of balancing such features in training datasets
for speech applications?

The following sections detail the defined methodology for each of the questions above, including
the experimental setup and the considered data for each of the experiments.

3.1 Research Question 1

Research question 1 (hereinafter RQ1) explores the hypothesis of replacing proxy representations
of the speaker with actual and measurable traits of his voice to drive the data collection process.

For this purpose, we divided RQ1 into two major phases. First, we start by identifying the vocal
traits that best replace gender. Such analysis should offer a baseline set of vocal traits to replace
the prevalent criterion for balancing speech data. Next, we go beyond gender labels and look for
the vocal traits that best separate speakers in our dataset. Briefly, our research was guided by the
following two questions:

1. Which observable vocal traits portray the same information as gender labels?
2. Which observable vocal traits best differentiate speakers?
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3.1.1 Vocal Traits Conveying Speaker Characteristics

To identify the vocal traits conveying the most information on the speaker, the following four
steps will be taken:

1. Base Pool of Features - define a pool of acoustic features from the Voice Profiling liter-
ature review.

2. Utterance-level feature extraction - extract the identified acoustic features for all record-
ings in our dataset.

3. Speaker-level feature extraction - aggregate the features’ values at a speaker level, i.e.,
aggregate the values concerning all recordings of the same speaker.

4. Selecting vocal features - define a set of criteria to rank and exclude features from a pool
of acoustic features.

3.1.1.1 Base pool of Features

The base pool of acoustic features was based on the Sharma et al. [15] taxonomy described in
Section 2.2. In addition, the selected features will have to meet two different conditions: 1)
verifiable and 2) semantically understandable.

Accordingly, this work will neither target deep features, nor cepstral features. Deep features are
derived from black-box models, hence show a limited potential to be verified and interpreted.
Regarding cepstral features, they are most commonly used as raw input for speech recognition
systems and not for semantically understandable speaker profiling tasks. Briefly, cepstrum fea-
tures are more helpful in representing an audio clip and its speech content than describing the
speaker’s traits in a concise and semantically understandable way.

As a result, we will work with two major groups of variables: time-domain and frequency-domain
features. Concerning time-domain features, we will consider shimmer (amplitude fluctuations
within the utterance), loudness (volume), energy (mean energy carried by the signal), and speaking
rate (number of words per second). These four features should provide insights not only on the
energy distribution in time but also capture the speaker’s traits involving rhythm.

Regarding the frequency domain, we will use features from the two subgroups identified in Sec-
tion 2.2: tonality and spectrum-shape. From the tonality group, we will use pitch (describing
how high and how low a voice is), jitter (pitch fluctuations within the utterance), and HNR
(Harmonic-to-Noise Ratio, a proxy for the level of hoarseness of a voice). Finally, we will an-
alyze four spectrum-shape features: spectral centroid (a proxy for the brightness of a signal),
spectral spread (average deviation around the centroid), spectral skewness (describing which re-
gions of the spectrum concentrate the most energy), and spectral kurtosis (spectrum flatness
around its mean value).

All things considered, we obtained an initial pool of eleven acoustic features: spectral centroid,
spectral spread, spectral kurtosis, spectral skewness, HNR, pitch, jitter, shimmer, loud-
ness, energy and speaking rate.
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3.1.1.2 Utterance-level feature extraction

All features were extracted using the Surfboard toolkit [36], a Python package for audio feature
extraction. Surfboard either calculates the value of the selected feature or, for variables that use
sliding windows, computes a unique statistic on the feature. The toolkit thus provides for both
cases a single feature value for each recording in our dataset.

In this work, we extracted the average value for all features and, whenever possible, also retrieved
the standard deviation. Average should capture the feature’s overall distribution, while standard
deviation should evaluate how stable the selected measure is within the recording. The latter is
relevant to identify cases for which mean is not representative, i.e., cases where the windowed
instances are too disperse around the mean value for it to be significant.

3.1.1.3 Speaker-level feature extraction

The experiments conducted in RQ1 used scripted speech collections fromDefinedCrowd’s1 pro-
prietary crowdsourcing platform Neevo2. Considering that these are recordings of a single sen-
tence, it is expected that the extracted features (on a utterance-level) show high variability, which
ultimately reduces the significance of the obtained features. To mitigate this, we will aggregate
the obtained features on a speaker level, i.e., to combine the features’ values for all recordings of
the same speaker.

To this purpose, three aggregation methods will be tested: mean, median, and trimmedmean. We
are looking for the method that ensures the maximum inter-speaker variability, i.e., features that
show the greatest differences between speakers. For this purpose, the coefficient of variation3 is
going to be used. The coefficient of variation (hereinafter CV) is a standardized measure of the
dispersion of a probability distribution or frequency distribution.

Accordingly, to identify the aggregation method that maximizes the inter-speaker variability, we
generated three different iterations of the train set, each using a different aggregation method.
Then, for each train set and variable, we computed the total coefficient of variation and identified
the aggregation method with the greatest variability for each variable.

1https://www.definedcrowd.com/
2https://www.neevo.ai/
3https://en.wikipedia.org/wiki/Coefficient_of_variation
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3.1.1.4 Selecting the most promising candidates

Having identified and extracted our initial set of features (both at a speaker and utterance level),
the final step in our pipeline is the selection of the most promising candidates. We are interested
in features that are well-distributed across the instance space, i.e., with high variability. For this
purpose, we once again used the coefficient of variation (CV)1 to represent the variability of a
given variable in a compact and unitless way.

CV, however, can be analyzed across multiple levels, namely intra-utterance, intra-speaker, inter-
utterance, and inter-speaker. To reflect that, we defined a set of four premises to exclude the least
promising audio features in each one of the considered levels. If any of the conditions are verified,
the candidate will be excluded. The defined conditions are listed below:

• Intra-Utterance4: variables with very high variability within the utterance do not have a
significant mean (aggregated) value and should be excluded.

• Intra-Speaker5: variables with very high variability across all recordings of the same
speaker do not have a significant speaker mean value and should be excluded.

• Inter-Utterance4: variables with a very low variability across all recordings have low dis-
criminatory power and should be excluded.

• Inter-Speaker4: variables with very low variability between speakers show a low discrim-
inatory power and should be excluded.

There are no objective thresholds in literature to define a very high and very low CV value.
Indeed, such thresholds are subjective and dependent on the variability of all variables in the
dataset. Given this background, we set the following thresholds: CV < 0.15 identifies variables
with very low variability, and CV > 0.85 identifies variables with very high variability.

3.1.2 Direct Replacement to Gender

The first research question investigates a direct replacement for gender models, i.e. vocal traits
that can accurately emulate the speaker information carried by gender labels. To this purpose,
our analysis was divided into two intermediate experiments: 1) measure traits correlation with
gender, and 2) gender classification via traits.

The Spearman correlation6 between gender labels and acoustic features captures the level of
dependence between vocal traits and gender. Complementing these insights with non-parametric
tests over themean distribution of vocal traits between gender groups, we should obtain a shortlist
of relevant features to replace the self-reported gender stats.

The next step in our analysis was to train a ML model to predict the speaker’s gender from its
vocal traits. The trained model follows an XGBoost architecture with the following parameters:
maximum depth = 3, random state = 1, number of threads = 4, evaluation metric = AUC, objective function =

4Criterion only applicable to variables calculated using sliding windows.
5Criterion only applicable if the previous exclusion condition is not verified.
6https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
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binary:logistic, early stopping rounds=10, and learning rate=1. The selected architecture was simplified to
the maximum since our purpose was to assess the importance of each feature in an equal context,
and not to obtain a top-of-the-line model for gender recognition. Considering this objective, the
selection of the XGBoost architecture allowed us to not only obtain a significant performance
(minimum of 80% accuracy), but also to have a high intelligibility on the obtained results. Indeed,
using the feature importance tool from xgboost python toolkit7, we should be able to identify the
most informative vocal attributes for the identifying the speaker´s gender. Each feature will be
scored by considering the mean information gain in the trained model.

3.1.3 Beyond Gender labels

Having identified direct replacements for gender labels, we moved our focus towards our second
question: finding vocal traits not necessarily related to gender but still conveying valuable infor-
mation to differentiate speakers. To do so, we divided our experiment pipeline into two steps.
First, we identify the major correlation patterns in our pool of acoustic features. Then, using
clustering algorithms, we determine which vocal traits better differentiate vocal profiles.

Clustering should allow us to obtain homogeneous groups of vocal profiles, and post-hoc analysis
over the mean differences between clusters should capture the vocal traits that better explain
between groups, i.e., variables with the greatest discriminatory power. To generate and analyze
the obtained groups, we defined the following clustering pipeline:

1. Standardize the vocal traits’ measures for all speakers.
2. Run hierarchical clustering and identify the optimal number of clusters (k). Cut the dataset
into the optimal number of groups.

3. Calculate the mean vocal traits for the cluster.
4. Calculate the mean differences between each pair of clusters and identify the variables with
the greatest standardized differences.

The pipeline above should allow us to identify the vocal traits carrying the most relevant acoustic
features to differentiate vocal profiles in our dataset. Finally, comparing the obtained clusters with
the self-reported gender groups should get us some insights on the effectiveness of the gender
criterion to balance the dataset.

By the end of these two experiments, we should have a shortlist of vocal traits that can be used as
criteria for balancing speech data. Accordingly, these insights will be used in our second research
question, where we will evaluate the impact of balancing such features in the training dataset for
speech applications, analyzing the performance and bias impacts of these interventions.

7https://xgboost.readthedocs.io/en/latest/python/python_intro.html
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3.1.4 Dataset

The experiments conducted in RQ1 will use real data from DefinedCrowd’s8 proprietary crowd-
sourcing platform Neevo9. Our dataset consists of 155.9 hours of English as spoken in the
United States of America, from a total of 275 native speakers. It comprises 63,363 recordings
paired with the corresponding transcript and metadata on the speaker and the prompt’s recording
conditions. Each speaker has, on average, 2041 recordings in the dataset, totaling 34 minutes of
recording time. The mean duration of the recordings in our dataset is thus 8.7 seconds. The
distribution of the number Finally, to keep the focus on a solution that is solely dependent on
the speaker, all entries in our dataset were recorded under a quiet environment.

Figure 3.2: Distribution of speech time in the train set.

The speaker distribution across gender and age groups is not uniform in our dataset: it shows a
prevalence of female speakers (64% vs. 36% of male speakers) and a significant concentration
of speakers in the 20-40 age range. Such difference is reflected in the number of recordings and
in the total recording time of each group. The most extreme example is the 50-60 age group,
which only includes female speakers. The accents, however, show a greater diversity (42 different
accents), with a subtle prevalence of the Californian accent. Table 3.1 summarizes the speakers’
metadata profile.

All transcriptions were normalized using the jiwer10 python package by applying a set of NLP
transformations: lower case, contractions expansion, punctuation removal, removal of consec-
utive white spaces, and empty word tokens. Given that our analysis focuses on the speaker’s
vocal traits, we only considered recordings with a quiet background environment. All sentences
containing characters not included in the English (USA) alphabet were excluded from our dataset.

The metadata on each file can be divided into two major groups: recording and speaker-related
information. Our focus will be on the speaker, namely on his age, accent, and gender. Ac-
cordingly, our initial dataset includes both metadata and the selected acoustic features for each
recording in our dataset. As thoroughly explained in Section 3.1.1.3, we will work over two dif-
ferent levels of analysis (utterance and speaker). Speaker, however, will be the primary level of
analysis, which will imply an aggregation of the values of the features of all recordings of the same

8https://www.definedcrowd.com/
9https://www.neevo.ai/
10https://pypi.org/project/jiwer/
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Characteristics Speakers
Number %

Gender
Female 177 64.36
Male 98 35.64
Age
(0, 20] 34 12.36
(20, 30] 106 38.55
(30, 40] 74 26.91
(40, 50] 37 13.45
(50, 60] 15 5.45
(60, 100] 8 2.91
Living Country
Canada 1 0.36%
United States 268 97.45%
Not Provided 6 2.18%
Total 275 100.00

Table 3.1: Speakers’ metadata profile.

speaker. All features were extracted using the Surfboard toolkit [36], a Python package for audio
feature extraction. Surfboard either calculates the value of the selected feature or, for variables
that use sliding windows, computes a unique statistic on the feature. The toolkit thus provides
for both cases a single feature value for each recording in our dataset.

3.2 Research Question 2

Research Question 2 explores the hypothesis of using actual vocal representations of the speaker
(such as pitch, and loudness) to ensure measurable balancing on speech data collections. For this
purpose, we estimate the impact of balancing the training set of speech applications over a given
setup of vocal features (hereinafter balancement criterion). The considered features will be the
ones identified in RQ1 as the most informative to differentiate speakers through voice.

The area chosen for research is, however, extremely extensive, given not only the plurality of
speech applications and the millions of utterances that state-of-the-art speech applications require
for training. Therefore, we will narrow down our study to the impact on automated speech
recognition systems (ASR).

To this purpose, using a common framework, several ASR systems will be trained, each with
a specific distribution of vocal traits in their train sets. Indeed, using a given setup of vocal
attributes (eg. pitch), we will identify reference groups in the data set and assure a distribution of
speech data as uniform as possible for those groups. Post-hoc analysis on the systems’ performance
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should give us insights on the impact of the considered vocal traits in the performance of the ASR
systems. To ensure comparability, all ASRs were trained under the same conditions (architecture,
parameters, and number of hours in the train set). For this purpose, five steps were taken:

1. Pool of Recordings - define a pool of recordings from which we will extract the train sets.
2. Feature extraction - extract the predefined set of acoustic features for all recordings in
the base pool.

3. Train set generation - create the train set, extracting a sample from the final pool of
recordings with an uniform distribution across one of the selected balancement criterion.

4. Model training - train the model using a standard architecture.
5. Evaluation - evaluate and compare the performance of the models using a common test
set and evaluation metrics.

The following sections detail the considered methodology for each of the steps above, and the
considered data for all analysis in this chapter.

3.2.1 Pool of recordings

The pool of recordings serves as a repository of speech data to generate the different train sets
needed for our experiments. Considering that each train set follows a specific distribution of vocal
traits, the defined pool must be diverse and large enough to meet several criteria for balancing.
Therefore, we set 500 hours as the minimum size for our final pool of recordings.

The experiments conducted in RQ2 will use the Common Voice Corpus 6.1 English 11 dataset
(hereinafter CV dataset). CommonVoice [37] is part of Mozilla’s initiative to help teach machines
how real people speak, and it currently is one of the largest publicly available voice datasets of
its kind. The voice clips are readings from a bank of donated sentences corresponding to the
dictation/monologue product. Once the recordings are validated, they enter the dataset.

The original CV dataset comprises 1,686 of validated hours speech, from a total of 66,173 speak-
ers. Each entry in the dataset consists of a unique MP3 paired with its transcription. Many of the
recorded hours in the dataset also include demographic metadata like age, gender, and accent.
Therefore, to obtain a more manageable pool of files, we filtered this dataset, using the pipeline
presented in the figure below.

Further, since we analyzed the acoustic features on a speaker-aggregated level, we set a minimum
and a maximum speaker time: 20 seconds and 30 minutes, respectively. Additionally, to overcome
quality issues in the metadata files, we filtered the CV dataset by only considering transcriptions
with English characters (a-z, ”,” and ”’”), and complete gender metadata. All transcriptions were
normalized, using a predefined set of NLP transformations: lower case, contractions expansion,
punctuation removal, removal of consecutive white spaces, and empty word tokens.

By the end of this process, we obtained an Initial Pool of files, from which we extracted two
random samples of 30 hours, which served as dev and test set for all models trained. To ensure

11https://commonvoice.mozilla.org/
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Figure 3.3: Filtering pipeline for our base pool of recordings.

that none of the recordings in these two sets were included in the train set, we excluded these 60
hours of speech data from our pool of recordings and obtained the Train Set Pool – including all
recordings that can be used to form our train sets. This pool contains a total of 585.97 hours of
English, from 13,471 native speakers. Each speaker has, on average, 30.7 recordings in the dataset,
totaling 2 minutes and 28 seconds of recording time. The mean duration of the recordings in our
dataset is thus 4.81 seconds.

The speaker distribution across gender and age groups is not uniform in our dataset: it shows a
prevalence of male speakers (79.3% vs. 20.7% of female speakers) and a significant concentration
of speakers in the 20-40 age range (63.6%). The majority of the individuals in our pool lives in
the United States of America (36.2%), being then followed by England-based speakers. Table 3.2
summarizes the speakers’ metadata profile.

This pool was then complemented with information on a predefined set of acoustic features, for
each of the MP3 files contained in the dataset, as thoroughly explained in the following section of
this document. By the end of this process, as represented in Figure 3.3, we obtained our Final Pool
of Recordings which will then be used to extract the several train sets to use in our experiments12.

12Further details on each of the obtained trains sets are made available in Section 5.1
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Characteristics Speakers
Number %

Gender
Female 2787 20.7
Male 10684 79.3
Age
(0, 20] 1582 11.7
(20, 30] 5698 42.3
(30, 40] 2872 21.3
(40, 50] 1497 11.1
(50, 60] 952 7.1
(60, 100] 783 5.8
Blanks 87 0.6
Living Country
Australia 465 3.5
Canada 593 4.4
England 1509 11.2
Indian 1226 9.1
USA 4878 36.2
Other 1021 7.6
Blanks 3779 28.1
Total 13471 100.00

Table 3.2: Speakers metadata for the Final Pool of Recordings.

3.2.2 Feature Extraction

The considered acoustic features will be the ones identified in RQ1 as relevant for identifying
speakers through voice. Accordingly, all features will meet two different conditions: 1) verifiable
and 2) semantically understandable. These features will then be used to as balancement criterion
for the training sets of the ASR systems. They will, however, be divided in two major groups of
variables:

1. Direct replacements to gender - variables identified as conveying similar information to
gender labels. Systems that use these variables as balancement criterion will be compared
with an ASR model that use gender as balancement criterion.

2. Gender blind representation - variables identified as being relevant for differentiating
individuals through voice, but not necessarily related with the speaker gender.

The selected features were extracted on a utterance-level for all files contained in the Train set
pool, and then aggregated at a speaker level. To this purpose, we considered the aggregation
methods identified in Section 3.1. These methods were chosen with the purpose of maximizing
the inter-speaker variability, i.e., to obtain features with the most differences between speakers.
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All features were extracted using the same tools and methods identified in RQ1. Accordingly,
our feature extraction tool is Surfboard toolkit [36], a Python package for audio feature extrac-
tion. Surfboard either calculates the value of the selected feature or, for variables that use sliding
windows, computes a unique statistic on the feature – in our case, mean.

3.2.3 Train set generation

A crucial step in our experiment pipeline is the selection and generation of the train sets for the
ASR systems. The considered train sets should have an uniform representation for a given setup
variables (hereinafter, balancement criterion), i.e, a similar speech time for k fixed-sized groups.

The number of groups for balancing (hereinafter, reference groups) depends on the variables selected
as balancement criterion. On the one hand, for categorical variables, the number of groups equals the
number of distinct values of the variable. On the other hand, for continuous variables, fixed-sized
discretization was performed. Therefore, the selection of the most promising train sets encloses
two steps. We start by identifying vocal traits carrying relevant information on the speaker, hence
the most promising balancement criterion. Then, for continuous variables, we study the optimal
number of bins for each setup of vocal traits.

For the purpose of our research, we are interested in train sets with a total size of 200 hours
(hereinafter objective), and a number of speech hours as similar as possible for all reference groups.
Therefore, the maximum number of hours to include in each bin is given by the ratio between the
objective, and the number of groups (k). This ratio (hereinafter bin objective) will be an important
variable of our analysis since it sets our objective of hours for each bin in the train set.

We start our study, by setting a minimum of two and a maximum of ten bins for train sets bal-
anced over a single vocal trait. For train sets balanced over two vocal traits (eg. pitch and jitter),
our problem is a two-dimensional one. Considering k1 and k2 as the number of bins for the
discretization of the two vocal traits used as balancement criteria, the total number of groups in
the train set (k) will be given by k1 ∗ k2 – the product of the number of groups for each of the
features contained in the pair.

Fixed-sized discretization process was performed for all extracted features. Further, all features
were transformed to a speaker-level, using the aggregation techniques identified in Section 3.1.1.3.
The bins’ ranges were calculated over a subset of the dataset, removed of any extreme outliers, i.e.,
outside the 1.5 ∗ IQR threshold. Finally, our discretization algorithm also includes a relaxation
mechanism that replaces the limits of the most extreme bins with 0, −∞, or +∞.

Having generated all possible train sets, we focused on ranking the obtained train sets by evalu-
ating their uniformity –i.e., if all bins in the train set have a similar amount of data (measured
by the number of hours of speech recordings). For this purpose, as represented in the equation
below, we created the UniScore, given by the ratio between the total number of hours in the train
set13 and objective of hours in the train set. The score ranges between 0 and 1 – 1 correspond-

13The duration of each recording is measured in seconds. To convert these values to the hour scale, we multiplied
the duration’s values by a factor of 3600.
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ing to a perfectly uniform train set. This measure should capture massive discrepancies in the
distribution of hours in the train set, hence detecting the least promising candidates.

UniScore = 3600 ∗
∑
Duration

Objective
= 3600 ∗

∑
Duration
200

(3.1)

This shortlist, however, may still include train sets with major discrepancies in the distribution
of data across reference groups. Naturally, having such a misrepresented bin compromises our
objective of obtaining a uniform distribution of data across several groups. To detect such cases,
we defined a second filtering criterion: bin uniformity – how similar is the volume of data across
reference groups. To this purpose, we created the BinUniScore, represented in the equation below,
where kmin is the bin with the smallest size in the train set, and k is the number of reference
groups considered. This measure is given by the ratio between the minimum number of hours
per bin in the train set, and the bin objective. The score once again ranges between 0 and 1 - 1
corresponding to training sets where every bin is represented to its maximum.

BinUniScore = k ∗
∑
durationkmin∑

Duration ∗ 3600
= k ∗

∑
durationkmin

Bin Objective
(3.2)

Accordingly, the BinUniScore should identify train sets containing misrepresented groups. Ulti-
mately, if we consider that these misrepresentations stop us from reaching the hour objective for
the train set, this score can be thought of as a measure of how easy one can achieve the 200 hours
objective using a specific setup of vocal traits. Therefore, we are looking for datasets with a score
as close to 1 as possible. To this purpose, we once again set a threshold of 0.8, which identified
train sets with a maximum difference of 20% in the size of each bin in the dataset.

Accordingly, the BinUniScore should identify train sets containing misrepresented bins. Ultimately,
if we consider that these misrepresentations stop us from reaching the hour objective for the train
set, this score can be thought of as a measure of how easy one can achieve the 200 hours objective
using a specific setup of vocal traits. Therefore, we are looking for datasets with a score as close
to 1 as possible. To this purpose, we once again set a threshold of 0.8, which identified train sets
with a maximum difference of 20% in the size of each bin in the dataset.

Finally, we will consider one last measure in our decision process: MaxUniSize – the maximum
size of our train set, with a perfectly uniform bin representations. The equation below details the
formula for such measure, where kmin is the bin with the smallest size in the train set, and k is
the number of groups considering for balancing data.

MaxUniformSize = k ∗
∑

durationkmin (3.3)

Once we apply the referred thresholds we should have a shortlist of datasets with a total size
around our 200 hours objective and a maximum difference of 20% in the distribution of hours
across bins. Therefore, this shortlist of train sets will be referred as the 200 hours group.
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Conversely, when relaxing the Bin and UniScore thresholds to 0.5, we should be able to identify
train sets that meet the uniformity premises, but for a 100 hours objectives. Naturally, all elements
included in the 200 hours groups are also included in this group. Therefore, we will name this
group of datasets as the 100 hours group.

Finally, the previous models will be compared with a gender-balanced and an unbalanced model
(hereinafter, non-vocal models). Considering that we have two groups of train sets with large dif-
ferences in their size (100 and 200 hours), we will only compare models in the same group.
Therefore, we generated two versions for the train set of the non-vocal models: a first one with
100 hours, and a second with 200 hours.

3.2.4 Model training

The next step in our analysis is to train multiple ASR systems, each using a train set with an
uniform distribution for a given setup of vocal traits. To ensure comparability, all ASRs were
trained under the same conditions (architecture, training time, and the number of hours in the
train set).

For this purpose, all systems will follow Mozilla’s DeepSpeech architecture, implemented over
Google’s TensorFlow. The core of the engine is a recurrent neural network (RNN) trained to in-
gest MFCC’s and generate English text transcriptions. This framework does not need a phoneme
dictionary, nor even the concept of a phoneme. Key to DeepSpeech’s approach is a well-optimized
RNN training system that uses multiple GPUs, as well as a set of novel data synthesis techniques
that allow us to efficiently obtain a large amount of varied data for training.

The standard architecture of the model follows the standard DeepSpeech recipe [27]: 5 hidden
units (4 ReLU + 1 RNN). As represented in Figure14 3.4, the first three are ReLU layers, and
the fourth one is an RNN, which includes a set of hidden units with forward recurrence. Finally,
the fifth (non-recurrent) layer takes the forward units as inputs. The system also uses a standard
softmax output layer, and CTC (Connectivist Temporal Classification) beam search decoding.
Considering that the focus of our research rests on the vocal traits of the speaker, we did not
train any language model and used DeepSpeech’s pre-trained language model15 for all models.
Finally, DeepSpeech uses the Adam method [38] for training.

All systems were trained under the DeepSpeech architecture, using the following parameters:
number of hidden layers (1024), learning rate (0.0005), and dropout rate (0.3)16. In addition to
this, we used a test batch size of 64, a dev batch size of 16 and automatic mixed precision. Each
model was trained over 100 epochs, with a early stopping mechanism with a minimum delta of
0.2, over 10 epochs.

14Figure taken from: https://deepspeech.readthedocs.io/en/v0.9.3/DeepSpeech.html
15https://deepspeech.readthedocs.io/en/v0.9.3/USING.html
16DeepSpeech’s base values for each of the parameters are the following: number of hidden layers (2048), learning

rate (0.001), and dropout rate (0.05).
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Figure 3.4: DeepSpeech’s base architecture.

3.2.5 Evaluation

Concerning evaluation, Word Error Rate (WER) will be our primary performance metric. It is a
measure indicating errors in alignment of text representation (actual vs. perfect) of audio, taking
into account words omitted, inserted, or wrongly replaced.

The performance of each model was measured over three different test sets: 1) a 30 hours ran-
dom sample of the CommonVoice dataset, 2) a 9.5 hours structured sample of the CommonVoice
dataset where each speaker is represented by 5 different files, and 3) the LibriSpeech (test-clean)
test set17 – a 5.5 hours dataset used in literature as a benchmark for speech recognition architec-
tures. Considering the two CommonVoice test sets, it is worth noting that they are independent
from our training data, i.e., all speakers in the test sets were excluded from our Train Set pool.

At this point it is worth reminding the original purpose of this experiment: to assess the impact
of vocal traits in the performance of speech applications. To this end, we will train train several
ASR systems, each with a specific distribution of vocal traits in their train sets, and compare the
performance and bias of the obtained models. Considering that our train sets will either have

17https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean

40

https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean


100 or 200 hours of data, which, according to Chuangsuwanich [39] – represented in Figure 3.5
–, should guarantee a word error rate (WER) around 45% and 40%, respectively. Given this 5
percentage points difference, we will only compare the performance of ASR systems trained with
a similar amount of data.

Figure 3.5: Expected WER with respect to amount of training data.

Instead of obtaining top-of-the-line ASR systems, we will focus on obtaining comparable systems,
i.e., trained in a similar context (system architecture, train set size, and training time). Using a
similar architecture, the only difference between models will be the distribution of vocal traits in
the train set. Hence we should be able to evaluate the individual impact of a specific setup of
vocal traits in the system´s performance and bias.

Therefore, our analysis will focus on detecting significant performance differences betweenASRs,
both on the global systems’ performance, but also by comparing how biased each model is.

Performance will be compared using Wilcoxon pairwise tests [40] (α= 0.05), which will assess
the existence of significant differences in the WER distribution in each of our test sets. To this
purpose, we will consider all three test sets: the two CommonVoice test sets, and LibriSpeech.
Despite independent from the training data, the two CommonVoice test sets are expected to have
a better performance than the LibriSpeech set – the recording conditions in which the system
was trained are similar to the two first test sets, hence impacting the effectiveness of the acoustic
model. Finally, considering that we have three test sets, the weighted average of the WER in each
test set (pondered by the number of hours words in each test set) was was our main performance
measure.
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Bias, on the other hand, will be evaluated by comparing the group performances over twometrics:
age (teens, twenties, thirties, forties, fifties, Over60) and gender (male and female) groups. To this
purpose, we will evaluate the existence of significant differences between groups, using either the
Wilcoxon pairwise test (α= 0.05 – for gender groups, hence with k = 2), or the Kruskal-Wallis
test (α= 0.05 – for age groups, hence with k > 2). The choice of these tests is motivated not only
by the non-normality of our data (non-parametric tests), and by the number and (in)dependence
of the groups for which performance will be compared. Given that LibriSpeech does not make
available the required speaker metadata, our analysis will be limited to the two CommonVoice
test sets (30 hours, and 9.5 hours with a balanced distribution).

By the end of this analysis, we should have insights on the impact of each vocal trait on the
systems performance and bias.
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4 | RQ1: From proxy to actual represen-
tations of the speaker

This chapter covers our first research question: Which voice traits better differentiate and characterize
speakers?. We explore the hypothesis of replacing gender proxies with actual vocal representations
of the speaker to drive the data collection process. To this purpose, we divided our RQ1 in two
major phases. First, we start by identifying the vocal traits that best replace gender. Next, we
go beyond gender labels and look for the vocal traits that best separate speakers in our dataset.
Briefly, our research was guided by the following two intermediate questions:

1. Which observable vocal traits portray the same information as gender labels?
2. Which observable vocal traits best differentiate speakers?

The following sections of this chapter will the pipeline in Section 3.1. Accordingly, we start by
defining a pool vocal traits the most information on the speaker. Then, Section 4.2 identifies the
vocal traits that best emulate the information provided by gender labels. Section 4.3 finds the
acoustic features that best differentiate speakers, while ignoring their dependency with gender.
Finally, Section 4.4 discusses the obtained results and suggests the final set of vocal features to
be used in RQ2.

4.1 Vocal Traits Conveying Speaker Characteristics

To identify the vocal traits conveying the most information on the speaker, as stated in Section
3.1, four steps will be taken. We start by identifying a base set of features from the literature (see
Section 2.2). Then, we extract and aggregate the acoustic features on a speaker level, and finally,
we select and rank the most promising acoustic features using a predefined set of premises.

The base pool of acoustic features considered in your analysis was based on the Sharma et al. [15]
taxonomy described in Section 2.2. In addition, the selected features will must meet two different
conditions: 1) verifiable and 2) semantically understandable.

Once applied these conditions, we obtained a base pool of eleven acoustic features: spectral cen-
troid, spectral spread, spectral kurtosis, spectral skewness, HNR, pitch, jitter, shimmer, loudness,
energy and speaking rate.

Having identified and extracted our initial set of features (on a utterance level), the next step in
our pipeline was the aggregation of the obtained features on a speaker level. To this purpose,
three aggregation methods were tested: mean, median, and trimmed mean. We are looking for
themethod that ensures themaximum inter-speaker variability, i.e., features that show the greatest
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differences between speakers. For this purpose, the coefficient of variation1 is going to be used.

Median proved to be the method with the best behavior for all variables, except for jitter, for
which trimmed mean proved to be the best aggregation technique. Finally, given that the Surf-
board toolkit extracted multiple Shimmer and Jitter implementations, we selected the implemen-
tation of each feature with the highest variability2.

Finally, we moved to the selection of the most promising candidates. We are interested in features
that are well-distributed across the instance space, i.e., with high variability. For this purpose, the
coefficient of variation (CV) was used to represent the variability of a given variable in a compact
and unitless way.

CV, however, can be analyzed across multiple levels, namely intra-utterance3, intra-speaker 4, inter-
utterance4, and inter-speaker 4. To reflect that, as further detailed in Section 3.1.1.3, we defined a
set of four premises to exclude the least promising audio features in each one of the considered
levels. If any of the conditions are verified, the candidate will be excluded.

Table 4.1: CV values for the base pool of acoustic features

Feature Intra-Utterance Intra-Speaker Inter-Utterance Inter-Speaker
Spectral Centroid 0.139 0.265 0.230 0.230
Spectral Spread 0.068 0.160 0.147 0.147
HNR 5 0.250 0.184 0.184
Pitch 0.104 0.234 0.220 0.220
Jitter 5 0.385 0.274 0.274
Shimmer 5 0.557 0.304 0.304
Loudness 5 0.256 0.234 0.234
Energy 5 0.859 0.772 0.772
Speaking Rate 5 0.558 0.200 0.200
Skewness 1.388 6 6 6

Kurtosis 0.045 0.047 6 6

Once applied the defined premises, we obtained the results presented in Table 4.1, from which
we excluded two features from our initial pool: spectral kurtosis and spectral skewness. Spectral
kurtosis showed a 1.388 intra-utterance score (hence an excessively high variability within the
same utterance), while spectral skewness showed variability across recordings, hence reflecting a
low discriminatory power.

All things considered, the initial pool of features was reduced to the following nine features to be
analyzed on a speaker-level: spectral centroid, spectral spread,HNR, pitch, jitter, shimmer,
loudness, energy and speaking rate.

1https://en.wikipedia.org/wiki/Coefficient_of_variation
2Detailed results for each variable and aggregation method available at Figure 7.1, in the Appendix Section.
3Criterion only applicable to variables calculated using sliding windows.
4Criterion only applicable if the previous exclusion condition is not verified.
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4.2 Replacing Gender with Vocal Traits

The first research question of the present work investigates a direct replacement for gender mod-
els, i.e. vocal traits that can accurately emulate the speaker information carried by gender labels.
To this purpose, our analysis was divided in two intermediate experiments: 1) measure traits
correlation with gender, and 2) gender classification via traits.

4.2.1 Measuring traits correlation with gender

The Spearman correlation5 between gender labels and acoustic features captures the level of
dependence between vocal traits and gender. Complementing these insights with non-parametric
tests over themean distribution of vocal traits between gender groups, we should obtain a shortlist
of relevant features to replace the self-reported gender stats.

Only three variables from our pool show strong correlation patterns with gender: pitch (-0.77),
jitter (0.58), and HNR (-0.52). Such finding is reinforced when running the Kruskal-Wallis test6
(α = 0.05), which did not reject the hypothesis of existing mean group differences between
gender groups for each of the three variables. Conversely, no other features in our pool showed
dependency patterns with gender (both correlation and mean group differences).

Figure 4.1: Spearman correlation between vocal traits and gender

Accordingly, the three variables above define our shortlist of relevant features, where we can
identify two different levels of influence. As expected, pitch is the variable that most contributes
to differentiate male and female speakers in the dataset. Not only it shows the highest correlation
with gender, but it also has the greatest mean differences across gender groups7. On a second
level of relevance, we find HNR and jitter, with medium-high correlation with gender (-0.52
and 0.58, respectively). Finally, it is worth noting that jitter and HNR are the two variables that
most correlate with pitch (-0.65 and 0.59, respectively). Such finding is symptomatic of the vital
contribution of pitch to identify gender models, which potentially spread its influence over its
most correlated vocal traits, thus overrating the HNR and jitter contribution to explain gender
vocal models.

Gathering the previous insights, we conclude that pitch is themost promising vocal trait to replace
gender models, being then followed by jitter and HNR.

5https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
6https://statistics.laerd.com/spss-tutorials/kruskal-wallis-h-test-using-spss-statistics.php
7Box-plots containing the gender mean differences for each acoustic feature in the RQ1 shortlist can be found

in Figure 7.3, in the Appendix Section.
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4.2.2 Gender classification via traits

The next step in our analysis is to train an XGBoost model to predict the speaker’s gender from
its vocal traits. Post-hoc analysis on the contribution of each feature for the model should give us
the most informative vocal attributes for identifying the speaker’s gender. Each feature will be
scored by considering the mean information gain in the trained model.

This pipeline was replicated over six iterations of our dataset, each containing a different combi-
nation of acoustic features. All six models were trained using a similar architecture: maximum depth
= 3, random state = 1, number of threads = 4, evaluation metric = AUC, objective function = binary:logistic,
early stopping rounds=10, and learning rate=1. The selected architecture was simplified to the max-
imum, since our purpose was to assess the importance of each feature in an equal context, and
not to obtain a top-of-the-line model for gender recognition.

The latter architecture was implemented over six different iteration of our data set, each corre-
sponding to a specific subset of our shortlist of acoustic features: 1) the complete dataset, 2)
excluding pitch , 3) excluding pitch, jitter and HNR, 4) only pitch, 5) only pitch and jitter, and 6)
only pitch and HNR. The accuracy results for each of the iterations can be found in Table 4.2.

Table 4.2: Gender Prediction - Test Accuracy

# Iteration % Test
1 Complete dataset 96.3
2 Excluding Pitch 81.7
3 Excluding Pitch + Jitter + HNR 70,1
4 Pitch only 87.3
5 Pitch + Jitter 89.1
6 Pitch + HNR 81.8

The first model (trained over the complete dataset) obtained a 96.3% test accuracy by considering
all nine features in our pool. Regarding this model, when looking into the contribution of each
feature, pitch revealed as the most informative variable (5.36 score). Following pitch, showing
up once again in a second level of relevance, we find jitter with a 0.63 score. It is worth noting
that the HNR score is quite similar to the one obtained by jitter (0.5 vs. 0.63), which once again
sets these two variables on similar level of relevance for predicting gender through voice.

Having identified such a supremacy from pitch, we replicated the experiment pipeline over a train
set deprived of information on pitch8. In such scenario, the test accuracy went down about 14
p.p (81.7%). Also in this model, we found jitter and HNR as the two most informative variables,
with 1.78 and 1.40 scores, respectively. Therefore, in the absence of pitch, the model looks for
indirect representations of the speaker’s pitch, i.e., prioritizing information from its two most

8Feature contribution results for the models 2 – excluding pitch – and 3 – excluding pitch, jitter and HNR – can
be found in the Appendix Section, Figures 7.5 and 7.4, respectively.
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correlated variables. Finally, when training the model without any of the three variables in our
shortlist (pitch, jitter, and HNR), we obtained a test accuracy of 70%, being shimmer the most
influential variable for such prediction with a 0.77 score.

The obtained results for the three initial models confirmed the previously obtained insights: pitch
is the most important vocal trait for the construction of vocal gender models, being then followed
by HNR and jitter, both in a second level of relevance. Accordingly, to better understand their
individual contribution for the prediction, we produced three additional models, each trained
with a maximum of two acoustic features from our shortlist. Given the undisputed influence of
pitch for the prediction, all combinations will include it. Accordingly, our final three models were
trained over the following subsets of features: pitch, pitch + jitter, and pitch + HNR.

Figure 4.2: Feature contribution for the complete model to predict the gender of the speaker.

Pitch alone is capable of accurately predicting the speaker’s gender for 87.3% of the individuals
in our test set. Indeed, pitch alone is more effective in predicting gender than all the remaining
eight variables combined (87.3% vs. 81.7%). To better understand the classification errors for
the solution using only the pitch trait, its performance was measured through a grid search on
the thresholds of 95% accuracy for the label ”male” and ”female” (using 5Hz steps). Through
this process, the region between 128-148Hz was identified as having the most misalignment (27
speakers, 10% of the speakers). Indeed, such region contains 12 female and 15 male speakers,
i.e., a 44%-56% gender distribution. For pitch values over 148 Hz, 94% of the speakers were
females, and for pitch values under 128 Hz, 97% of the speakers were identified as male.

Such results9 show us that pitch is quite efficient in separating gender, except for a grey area
located in the 128-148Hz range, for which the gender distribution was close to perfectly balanced
(143-148 Hz and 128-133 Hz showed a 50-50 gender distribution). Hence, 128-148Hz defines a
grey area for which pitch is less competent in separating genders. This insight is consistent with
the literature on voice gender perception, which state that the adult woman’s average range is
from 165 to 255 Hz, while a man’s is 85 to 155 Hz [13]. The grey area seems thus to be located
in the frontier of the two intervals.

At this point, it is worth reminding one of the original purposes of this experiment: obtain a small
9Detailed results can be found in Figure A, in the Appendix Section
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Figure 4.3: Scatter plots for the two pairs of gender relevant variables: Pitch + Jitter, and Pitch + HNR.

set of vocal traits that is accurate enough to replace the gender criterion when balancing training
sets for speech applications. With that in mind, if we set an overly ambitious criterion, we may
ultimately force data providers to exclude a large amount of valuable data, thus increasing the cost
of the data collection jobs. Therefore, given this constraint, we defined a maximum of two vocal
traits to be used as criteria. Our problem is now reduced to selecting the most informative pair
of vocal features for gender recognition. Given the undisputed discriminatory power of pitch,
all considered pairs of variables will include it. Again, this reduces our problem to the selection
of one variable from the following group: HNR and jitter. The graphical representation of such
hypothesis is presented in Figure 4.3.

Both scatter plots showed a good distribution across the instance space. Indeed, in both graphs,
one can identify the 128-148 Hz pitch grey area, for which the gender separation across genders
is not obvious. From a graphical point of view, jitter seems to be more effective at separating
those individuals, by mapping male speakers to higher jitter values. Conversely, HNR appears to
have a lower entropy for the speakers in that region. Thus, HNR seems to be less relevant for
categorizing gender through voice.

These insights are also reinforced if we compare the test performance of the pitch solution (pitch
model ), with the two models that individually add information on jitter and HNR. When adding
each of these two features to the pitch model, we obtained opposite results: jitter improved
performance by 1.9 p.p (89.1%); whilst HNR decreased performance by 5.6 p.p. Accordingly,
HNR seems to introduce noise into the prediction, generating a worse separation of the speakers
in the instance space.

Gathering these insights, we are now in a good position to state that pitch and jitter are themost
promising vocal traits for replacing gender vocal proxies.
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4.3 Beyond Gender Labels

Having identified direct replacements for gender labels, we moved our focus towards our second
research question: finding vocal traits not necessarily related with gender but still conveying
valuable information to differentiate speakers.

To do so, we divided our experiment pipeline into two steps. First, we identify the major corre-
lation patterns in our pool of acoustic features. Then, using clustering algorithms, we determine
which vocal traits better differentiate vocal profiles.

4.3.1 Measuring the traits overall correlation

Correlation captures the degree to which two variables move in relation to each other. In this
section, we start by looking into the Pearson correlation10 between vocal traits and then identify
the vocal features most correlated with gender (using Spearman correlation). Figure 4.4 presents
the heat-map with the correlation values for all pairs of variables in our pool (namely the ones
including gender).

Only two pairs of acoustic features show strong correlation: the loud pair (containing loudness
and energy, with a 0.83 correlation) and the spectral pair (containing spectral centroid and spectral
spread, with a 0.84 correlation). Such findings are, however, expected. Volume represents how
humans perceive the energy carried by the sound wave. Hence it can be thought of as a transfor-
mation of the energy variable. Similarly, spectral spread captures deviations of energy from the
spectral centroid.

Figure 4.4: Correlation values for Gender-traits pairs,
and traits-traits pairs.

Figure 4.5: Standardized mean cluster differ-
ences for the complete dataset.

10ttps://statistics.laerd.com/spss-tutorials/pearsons-product-moment-correlation-using-spss-statistics.php
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On a medium-high level of correlation, three major patterns were identified: 1) spectral centroid
and energy (-0.4); 2) pitch, HNR, and jitter (each pair with absolute correlation values over 0.5);
and 3) jitter and speaking rate (-0.44). It is worth noting that the second group of variables
includes the three variables identified in Section 4.2 as the best replacements for gender vocal
models. Additionally, these three variables also show the strongest correlation with gender: pitch
(-0.77), jitter (0.58), and HNR (-0.52).

4.3.2 Differentiating vocal profiles

The next step in our analysis focus on identifying the vocal traits that best differentiate vocal pro-
files. To do so, we ran clustering over speakers in our dataset. Post-hoc analysis over the mean dif-
ferences between clusters should capture the vocal traits that better explain between groups, i.e.,
variables with the greatest discriminatory power. To generate and analyze the obtained groups,
we defined the following clustering pipeline:

1. Standardize the vocal traits’ measures for all speakers.
2. Run hierarchical clustering and identify the optimal number of clusters (k). Cut the dataset
in the optimal number of groups.

3. Calculate the mean vocal traits for the cluster.
4. Calculate the mean differences between each pair of clusters and identify the variables with
the greatest standardized differences.

We started our analysis by looking into the obtained clusters for the complete dataset. The ob-
tained dendogram11 suggests two partition levels at k = 2 or k = 4, for which we computed the
mean standardized differences between clusters. Figure 4.5 contains the obtained heat-map12.

The two heatmaps show a common pattern: two pairs of highly correlated variables are respon-
sible for the greatest mean differences between clusters. Spectral centroid and spectral spread
show the greatest mean differences (0.3 mean absolute differences for k = 2), followed by en-
ergy and loudness (-0.19 mean absolute differences for k = 2). None of the remaining variables
showed significant mean differences between clusters.

No gender pattern was identified for both partition levels (as an example, for k = 2, cluster
one showed a 73F/34M gender distribution, while cluster two showed a 104F/64M distribution).
This finding is consistent with the results presented in Section 4.2, since none of the three relevant
variables for the gender voice perception (pitch, HNR, and jitter) show significant mean group
differences between clusters (Kruskal-Wallis, α= 0.05).

To validate these insights, we ran the clustering pipeline over four additional iterations of the original
dataset: 1) a 50-50 gender-balanced sample, 2) the subset of male speakers, 3) the subset of
female speakers, and 4) the subset of speakers located in the pitch grey area, identified in Section
4.2. For all four, the same two pairs of variables showed the greatest mean differences: the

11Dendogram available in Figure 7.6 in the Appendix Section.
12The obtained heatmaps for the subset of female speakers, and speaker in the 130-150 Hz pitch range can be

found in the Appendix Section, Figures 7.8, and 7.7, respectively.
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loud pair (containing loudness and energy), and the spectral pair (containing spectral centroid and
spectral spread). Such results thus prove that these variables have a strong discriminatory power
at different granularity levels and within each of the binary gender groups.

Figure 4.6: Four most informative pairs of variables for separating vocal profiles

Finally, we considered redundant to use more than one variable from each pair, given that both
pairs contain highly correlated vocal traits. Therefore, our initial problem was now reduced to
selecting the most informative pair of vocal traits from a shortlist of four hypotheses: A) spectral
centroid and loudness, B) spectral centroid and energy, C) spectral spread and loudness, and D)
spectral spread and energy. The scatter plots for each pair are available in Figure 4.6.

As one can see in the figure above, pairs A and C show the highest entropy, i.e., pairs of variables
containing loudness seem better distributed across the space compared to pairs containing en-
ergy. Conversely, no graphical differences were found over the distribution of the two variables
from the spectral pair: spectral centroid and spectral spread. To address this issue, we recovered
the inter-speaker premise presented in Section 3.1.1.4: variables with low variability between speakers show
a low discriminatory power and should be excluded. Once again, variability was evaluated using the coef-
ficient of variation, being the obtained results presented in Table 4.1. Spectral spread showed the
lowest inter-speaker variability in comparison with spectral centroid (0.147 vs. 0.23). Therefore,
spectral centroid was the variable selected from the pair.

Gathering the previous insights, we are now in a good position to conclude that spectral cen-
troid, and loudness are the two most informative variables to separate vocal profiles.
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4.4 Most informative acoustic features

Our investigation was divided into two major phases. First, we identify the vocal traits that
best replace gender. Next, we go beyond gender labels and look for the vocal traits that best
differentiate speakers through voice.

Results show that pitch is the most relevant vocal trait to identify the gender of the speaker, being
then followed by jitter. Indeed, pitch is quite efficient in predicting the gender in our data except
for speakers located in the 128-148 Hz pitch range. For such interval, jitter provides important
information to separate genders by mapping male speakers to higher jitter values.

Gender, however, may not be the most accurate representation of the speaker. Accordingly,
our second research question looks for vocal traits not necessarily related with gender but still
conveying valuable information to differentiate speakers. Our hypothesis is that themost accurate
representation of the vocal traits of the speaker is not necessarily related with their gender. The
obtained results indicate spectral centroid and loudness as the key variables discriminate vocal
profiles - both weakly correlated with gender. Indeed, when running hierarchical clustering, the
two explained most of the differences between the obtained groups. This finding was confirmed
over four subsets of our dataset: 50-50 gender-balanced sample, male speakers, female speakers and the
subset of speakers in the previously identified of gender grey area (128-148 Hz pitch).

The clustering experiment also provided important insights regarding the accuracy of gender
representations of the speaker: none of the obtained clusters showed gender patterns, and none
of the best replacements to gender (pitch and jitter) showed relevant mean differences between
clusters. Such findings indicate that the most informative representation of the vocal traits of the
speaker is not necessarily related with his gender.

Therefore, our final proposal is to move from gender models to one of two representations on
the speaker:

1. Direct replacement to gender - each speaker would be represented by a (pitch, jitter)
vector. This representation emulates the distribution obtained by gender labels but now
using verifiable and measurable traits of the speaker’s voice.

2. Gender blind representation - each speaker would be represented by a (spectral centroid,
loudness) vector. This representation would also be based on verifiable and measurable
acoustic features but now providing a depiction of the speaker that is not necessarily related
with his gender.

These insights will then be transported to the following research question, by training four dif-
ferent ASR speakers, each containing an uniform distribution over one of following pairs of
features: pitch; pitch and jitter; spectral centroid; and spectral centroid + loudness.
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5 | RQ2: Measurable balancing in
speech applications’ train sets

This chapter covers our second research question: What is the impact (performance and bias) of bal-
ancing vocal traits in training datasets for speech applications?. We explore the hypothesis of using actual
vocal representations of the speaker (such as pitch, and loudness) to ensure a more effective and
measurable balancing on speech data collections.

To this purpose, we considered the pipeline presented in Figure 5.1. Using a similar architecture,
we will train several ASR systems, each with an uniform distribution over a given setup of acoustic
features. The only difference between models will be in the distribution of vocal traits in the train
set. Hence, we should be able to evaluate the individual impact of a specific setup of vocal traits
in the system´s performance and bias. Post-hoc analysis on the systems’ performance should give
us insights on the impact of balancing each of the acoustic features.

Figure 5.1: High-level experiment pipeline for RQ2.

The remainder of this chapter is structured as follows: Section 5.1 presents the considered train
sets, detailing not only the selected vocal traits but also the discretization process of each of the
variables; 5.2 presents and discusses the obtained results for the ASR models.

5.1 Selected Vocal Traits for Balancing Speech Data

A key step in our pipeline is the selection and generation of the train sets for the different ASR
models. The considered train sets should have an uniform representation for a given setup of
variables (hereinafter, balancement criterion), i.e, a similar speech time for k fixed-sized groups.

The number of groups considered for balancing (hereinafter, reference groups) depends on the
variable selected as balancement criterion: for categorical variables, the number of groups equals the
number of distinct values of the variable; for continuous variables, fixed-size discretization. was
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performed. The latter introduces a new variable into our problem: the number of fixed-sized
bins to consider in the discretization.

All in all, the selection of the most promising train sets encloses two steps. We start by identifying
vocal traits carrying relevant information on the speaker – the most promising balancement criteria.
Then, for continuous variables, we study the optimal number of bins for each setup of vocal traits.
The following subsections detail the obtained results for each of the referred steps. Further details
on the considered methodology can be found in Section 3.2.

5.1.1 Criteria for balancing speech data

Considering the insights obtained in Section 4.4, we will explore four acoustic features carrying
relevant information on the speaker: pitch (how high and how low a voice is), jitter (pitch fluctua-
tions within the utterance), spectral centroid (a proxy for the brightness of a signal), and loudness
(volume). Such variables were, however, divided into two different groups:

1. Direct replacements to gender – pitch is the most relevant vocal trait to identify the
gender of the speaker, being then followed by jitter. We will consider two balancement criteria
on this topic: pitch, and the combination of pitch and jitter.

2. Gender blind representation – spectral centroid and loudness – identified as relevant for dif-
ferentiating individuals through voice, but not necessarily related with the speaker’s gender.
From these two variables, spectral centroid was identified as showing the most information
on the speaker. Therefore, regarding this group of variables, we will consider two balance-
ment criteria: spectral centroid, and the combination of spectral centroid and loudness.

The four features above were analyzed on a speaker level, which implied an aggregation of the
features values for all recordings of the same speaker. To this purpose, we considered the aggre-
gation methods identified in Section 4.1: for pitch, spectral centroid, and loudness, median will
be used; and for jitter, trimmed mean will be used. These methods were chosen with the pur-
pose of maximizing the inter-speaker variability, i.e., to obtain features with the most differences
between speakers.

In addition to the models balanced over vocal traits, we will train a gender-balanced model, and
an unbalanced model – i.e., with a random distribution in the training set. These two models, re-
ferred to asNon-Vocal Models, served as a measure on the impact of balancing datasets over gender
labels, and on the impact of maintaining the original distribution of vocal traits, respectively.

All in all, we will consider six different criteria for balancing our train sets: 1) pitch, 2) pitch and
jitter, 3) spectral centroid, 4) spectral centroid and loudness, 5) gender and 6) unbalanced/random.
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5.1.2 Optimal number of bins

For train sets balanced over vocal traits (pitch, jitter, spectral centroid, and loudness), discretiza-
tion will be performed. As a result, the number of bins to consider in the discretization is a
relevant variable in our analysis, which ultimately needs to be optimized.

For the purpose of our research, we are mostly interested in train sets with a total size of 200
hours (hereinafter objective), and a number of speech hours as similar as possible for all reference
groups. Therefore, the maximum number of hours to include in each group is given by the bin
objective – the ratio between the objective, and the number of groups (k). Finally, it is important to set
naming conventions for the here presented train sets. Since all sets were balanced over a specific
combination of vocal traits and bins, each data set will be named with the concatenation of these
two elements. As an example, the pitch train set with two reference groups will be referred to as
pitch2.

We start our study, by setting a minimum of two and amaximum of ten bins for train sets balanced
over a single acoustic feature. For train sets balanced over two features (pitch/jitter, and spectral
centroid/loudness), the number of bins is given by the product of the number of bins for each
of the variables contained in the pair (k1 and k2). For this case, we considered bin combinations
that assured a minimum of four, and a maximum of twelve bins1.

Given these constraints, we obtained a total of 34 train sets for vocal models, each with a specific
distribution of vocal traits. Then, we focused on ranking the obtained datasets by evaluating their
uniformity – i.e., if the bins have a similar amount of data (measured by the number of hours
of speech recordings). For this purpose, we created the UniScore, given by the ratio between the
total number of hours in the train set and the objective of 200 hours2. The score ranges between
0 and 1 – 1 corresponding to a perfectly uniform train set. This measure should capture massive
discrepancies in the distribution of hours in the train set, hence detecting the least promising
candidates. The scores obtained by each of the 34 train sets are listed in Table 5.1.

As an example, consider an objective of 200 hours, a setup of pitch and jitter as balancement criterion,
and a total of 12 bins (k1 = 3 and k2 = 4). In a perfect scenario, all 12 bins would fulfill the
bin objective, and the total number of hours in the train set would be equal to the objective. For
such a scenario, the UniScore would be equal to one, representing the maximum of uniformity.

Such a scenario is, however, quite unusual. For instance, the pitch and jitter train set balanced
over 3 and 4 bins, respectively, has a total of 115 hours, and a UniScore of 0.57. To avoid such
situations, we defined a minimum of 0.8 for the uniformity score, which reduced our choices to
21 datasets.

Nonetheless, this shortlist may still include train sets with major differences in the distribution
of data between reference groups. For instance, the pitch9 set contains a group that only meets
4.3% of the hours objective, (0.91 hours of a 22.2 bin objective). Having such a misrepresentation
compromises our objective of obtaining a uniform distribution of data in the dataset.

1Possible combinations are the following: 2-2, 2-3, 3-2, 3-3, 3-4, 4-2, 4-3.
2Further details on each of the uniformity scores can be found in Section 3.2.
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Balancement Criterion # Bins Train
Size

Bin
Objective

Uni
Score

BinUni
Score

MaxUni
Size

Pitch 2 200.00 100.00 1.00 1.00 200.00
Pitch 3 200.00 66.67 1.00 1.00 200.00
Pitch 4 172.95 50.00 0.86 0.46 91.83
Pitch 5 167.47 40.00 0.84 0.19 37.37
Pitch 6 170.08 33.33 0.85 0.10 20.53
Pitch 7 172.69 28.57 0.86 0.04 8.84
Pitch 8 172.96 25.00 0.86 0.04 8.36
Pitch 9 168.48 22.22 0.84 0.04 8.21
Pitch 10 167.47 20.00 0.84 0.04 8.36
Pitch+Jitter 2*2=4 194.98 50.00 0.97 0.90 179.91
Pitch+Jitter 2*3=6 141.86 33.33 0.71 0.13 26.21
Pitch+Jitter 2*4=8 125.24 25.00 0.63 0.04 7.59
Pitch+Jitter 3*2=6 173.61 33.33 0.87 0.21 41.67
Pitch+Jitter 3*3=9 139.04 22.22 0.70 0.02 4.21
Pitch+Jitter 3*4=12 115.44 16.67 0.58 0.00 0.93
Pitch+Jitter 4*2=8 150.64 25.00 0.75 0.11 21.47
Pitch+Jitter 4*3=12 138.05 16.67 0.69 0.00 0.39
Spectral Centroid 2 200.00 100.00 1.00 1.00 200.00
Spectral Centroid 3 200.00 66.67 1.00 1.00 200.00
Spectral Centroid 4 175.01 50.00 0.88 0.64 127.51
Spectral Centroid 5 159.38 40.00 0.80 0.32 64.42
Spectral Centroid 6 159.81 33.33 0.80 0.21 42.37
Spectral Centroid 7 162.29 28.57 0.81 0.14 28.39
Spectral Centroid 8 166.52 25.00 0.83 0.12 24.06
Spectral Centroid 9 163.21 22.22 0.82 0.11 21.90
Spectral Centroid 10 159.38 20.00 0.80 0.10 20.53
Spectral Centroid+Loudness 2*2=4 179.33 50.00 0.90 0.59 117.32
Spectral Centroid+Loudness 2*3=6 155.20 33.33 0.78 0.13 26.69
Spectral Centroid+Loudness 2*4=8 160.48 25.00 0.80 0.06 11.93
Spectral Centroid+Loudness 3*2=6 164.70 33.33 0.82 0.16 32.98
Spectral Centroid+Loudness 3*3=9 155.20 22.22 0.78 0.04 7.13
Spectral Centroid+Loudness 3*4=12 143.06 16.67 0.72 0.02 3.78
Spectral Centroid+Loudness 4*2=8 166.18 25.00 0.83 0.07 13.33
Spectral Centroid+Loudness 4*3=12 146.53 16.67 0.73 0.01 2.04

Table 5.1: Train sets possibilities - UniScore and BinUniScore

To detect such cases, we defined a second filtering criterion: bin uniformity – all bins within the
train set should have a similar volume of data. To this purpose, we created the BinUniScore –
the ratio between the minimum number of hours per bin in the train set, and the bin objective.
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The score once again ranged between 0 and 1 – 1 corresponding to training sets where every
group contains a number of hours equivalent to the bin objective. Accordingly, we are looking for
train sets with a BinUniScore as close to 1 as possible, i.e., with a similar number of hours for all
reference groups. To this purpose, we once again set a threshold of 0.8, which identified train
sets with a maximum difference of 20% in the size of each bin in the dataset.

By the end of this process, we obtained two sets of train sets:

1. 200 hours - the train sets have a total size around our 200 hours objective (UniScore>0.8)
and a maximum difference of 20% in the distribution of hours across bins (BinUnis-
core>0.8). This set contains five train sets: pitch – using 2 and 3 bins –, pitch + jitter –
using a 2-2 combinations –, and spectral centroid - using 2 and 3 bins.

2. 100 hours - the train sets have a total size around our 100 hours objective (UniScore>0.45)
and a maximum difference of 20% in the distribution of hours across bins (BinUnis-
core>0.45). This set contains not only all combinations in the 200 hours group, but also
the following combinations: pitch – using 4 bins –, spectral centroid - using 4 bins –, and
spectral centroid + loudness – using a 2-2 bin combination.

Finally, the previous models will be compared with a gender-balanced and an unbalanced model
(hereinafter, non-vocal models). Considering that we have two groups of train sets with large dif-
ferences in their size (100 and 200 hours), we will only compare models in the same group.
Therefore, we generated two versions for the train set of the non-vocal models, with a total size
of either 100 or 200 hours. By the end of this process, we were left with a total of 17 train sets,
as represented in Table 5.2.

5.1.3 How different are the obtained train sets?

Considering that we used distinct criteria for selecting the recordings to include in each of the
train sets, it is expected that they show significant differences in the distribution of the vocal
traits. Ultimately, if the train sets are significantly different, it is our expectation that the same
train sets will also generate ASR models with significant differences in their performance. There-
fore, guaranteeing that these differences are significant is crucial to ensure that the conclusions
retrieved on the ASRs performance and bias are also significant.

Nonetheless, all train sets were obtained from a similar pool of recordings, which, as thoroughly
detailed in Section 3.2, contains 585.97 hours of speech data, from 13,471 different speakers. As
a result, in the process of obtaining 17 different samples (either 200 or 100 hours long), it may
happen that some of the train sets are not significantly different from others. Indeed, considering
that the 200 hours train sets have on average 12,522 different speakers, and that the 100 hours
train sets average 10,773 speakers, it is impossible to not repeat speakers between train sets.
Indeed, all 200 hours train sets repeat over 90% of their speakers, whilst the 100 hours train sets
repeat over 85% of the speakers in their train sets 3.

3Further details on the percentage of speakers common to each train set is made available in 7.11, in the Appendix
Section
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Balancement Criterion # Bins # Hours # Utter. #Speakers MeanDur
Gender 2.00 200.00 147,014 12,302 4.90
Gender 2.00 100.00 73,344 10,599 4.91
Pitch 3.00 200.00 148,788 12,730 4.84
Pitch 3.00 200.00 148,113 12,268 4.86
Pitch 2.00 100.00 74,426 11,209 4.84
Pitch 3.00 100.00 73,996 10,709 4.86
Pitch 4.00 97.96 72,536 10,331 4.86
Pitch+Jitter 2*2=4 194.97 146,458 12,575 4.79
Pitch+Jitter 2*2=4 100.00 74,918 10,926 4.81
Random 1.00 200.00 149,266 12,818 4.82
Random 1.00 100.00 74,899 11,251 4.81
Spectral Centroid+Loudness 2*2=4 100.00 76,814 10,368 4.69
Spectral Centroid 2.00 200.00 149,630 12,797 4.81
Spectral Centroid 3.00 200.00 149,403 12,167 4.82
Spectral Centroid 2.00 100.00 74,760 11,306 4.82
Spectral Centroid 3.00 100.00 74,660 10,685 4.82
Spectral Centroid 4.00 100.00 74,419 10,348 4.84

Table 5.2: Shortlist of train sets for ASR.

Nonetheless, each speaker can be represented in our pool of recordings by multiple recordings.
Therefore, even if we have a large percentage of repeated speakers between the train sets, they can
be represented by a different number of recordings, hence creating differences in the distribution
of vocal traits. To test such hypothesis, we computed the number of files per speaker for each of
the 17 train sets, and ran a Wilcoxon signed-rank test (α=0.05) for each pair of train sets. P-values
over 0.05 will thus indicate us that the pair of train sets not only repeats the speakers, but also
their representation in the train set. The obtained p-values for each pair of train sets are presented
in Figure 5.2.

This exercise was reproduced separately for the 100 and 200 hours groups, given the discrepancy
in the total number of speakers between the 100 and 200 hours train sets. Nonetheless, despite
analyzed separately, we will only consider pairs of train sets that are maintained for each of the
groups.

Finally, to complement the insights obtained by the previous analysis, we compared the distribu-
tion of vocal traits between train sets. To this purpose, for each pair of train sets, the distribution
of each acoustic feature (pitch, jitter, spectral centroid and loudness) using a Mann-Whitney U
test (α=0.05). This test should thus provides us insights on which vocal traits have a similar
distribution, for each pair of train sets4.

Therefore, the combination of the results from these two tests should not only identify train sets
4The obtained results for the 100 and 200 hours train sets are made available in Figures 7.9 and 7.10, in the

Appendix Section
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Figure 5.2: Distribution of files per speaker – Wilcoxon Signed Rank test’s p-values.

with a similar representation of speakers – hence similar –, but also to identify which vocal traits
are mostly responsible for such similarity. Given these conditions, we were able to find three
pairs of train sets with a similar representation of speakers:

• Spectralcentroid2 and the random train sets, with 0.24 (200 hours) and 0.62 (100 hours)
p-values. — similar both in pitch and jitter.

• Pitchjitter22 and the pitch3 train sets, with 0.42 (200 hours) and 0.24 (100 hours) p-values
— similar in the spectral centroid distribution.

• Gender and spectralcentroid3, with 0.94 (200 hours) and 0.42 (100 hours) p-values —
similar in the spectral centroid and loudness distribution.

All things considered, the major finding from the list above is the similarity between the spectral
centroid 2 and the random train sets, which indicates us that balancing data over two groups of
spectral centroid has little impact over the original distribution of vocal traits of the train set.

Moreover, it is worth noting that all pairs of train sets showed significant differences in the dis-
tribution of at least one vocal trait, and thus may still lead to significant performance differences
when training ASR models over these train sets. For such reason, we will maintain our shortlist
of 17 different train sets, and train an ASR model over each of the referred train sets.
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5.2 ASR Training

Having identified the most impactful vocal traits for balancing speech data, we will now focus
on assessing actual impact of balancing the identified setups of vocal in the train sets for ASR
systems. To this purpose, using a common framework, we will train several ASR systems, each
with an uniform distribution over one of the four setups of vocal features above – vocal models.
Post-hoc analysis on the systems’ performance should give us insights into the impact of vocal
traits in the performance of the ASR systems.

For this purpose, we will use the DeepSpeech standard architecture, composed of 5 hidden units
(4 ReLU and 1 RNN). The first three are ReLU layers, and the fourth one is an RNN, which
includes a set of hidden units with forward recurrence. Finally, the fifth (non-recurrent) layer
takes the forward units as inputs. Considering that the focus of our research rests on the vocal
traits of the speaker, we did not train any language model and used DeepSpeech’s pre-trained
language model for all iterations. Further details on the chosen model’s parameters can be found
in Section 3.2.

Regarding evaluation, Word Error Rate (WER) is our primary performance metric. Considering
that our train sets will either have 100 or 200 hours of data, which, as detailed in Section 3.2.5,
should guarantee a word error rate (WER) around 45% and 40%, respectively. Given this 5 pp
difference in performance, we will only compare the performance of ASR systems trained with
a similar amount of data. Instead of obtaining top-of-the-line ASR systems, we will focus on
obtaining comparable systems, i.e., trained in a similar context (system architecture, train set size,
and training time). Using such a similar setup5, the only difference between models will be the
distribution of vocal traits in the train set, hence we will be able to evaluate the individual impact
of a specific setup of vocal traits in system´s performance and bias.

Additionally, it is worth noting that all considered models were trained with a relatively scarce
number of hours when compared to state-of-the-art ASR models. Therefore, our analysis will
focus on detecting significant performance differences between ASRs, both on the global sys-
tems’ performance, but also by comparing how biased each model is.

The systems’ global performance will be compared using Wilcoxon pairwise tests [40] (α= 0.05),
which will evaluate the existence of significant differences in the WER distribution for three
different test sets: 1) a 30 hours random sample of the CommonVoice dataset – cv30, 2) a 9.5
hours structured sample of the CommonVoice dataset where each speaker is represented by 5
different files – cvBal, and 3) the LibriSpeech (other-clean) test set – libri. Despite independent
from the training data, the two first test sets are expected to have a better performance than the
libri set – the recording conditions in which the system was trained are similar to the two first
test sets, hence impacting the effectiveness of the acoustic model. Finally, since we have multiple
test sets, we used the average of the WER in each test set as our final performance measure.

Bias, on the other hand, will be evaluated by comparing the group performances over twometrics:
age (teens, twenties, thirties, forties, fifties, Over60) and gender (male and female) groups. To this

5Detailed model architecture can be found in Section 3.2.4
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purpose, we will evaluate the existence of significant differences between groups, using either the
Wilcoxon pairwise test (α= 0.05 – for gender groups, hence with k = 2), or the Kruskal-Wallis
test (α= 0.05 – for age groups, hence with k > 2). Given that LibriSpeech does not make available
the required speaker metadata, our analysis will be limited to the two CommonVoice test sets (30
hours, and 9.5 hours with a balanced distribution).

The following subsections detail the performance results for the aforementioned models. The
following subsections detail the obtained performance and bias results for each of the 17 models.

5.2.1 Performance

As stated in Section 5.1.1, we will be working with 17 different train sets (13 vocal models, and
4 non-vocal models), with either 100 or 200 hours of speech data. Given the 100% difference in
the size of the train sets, we will only compare models with a similar size. Accordingly, we divided
the obtained ASR systems into two groups:

1. 100 hours group, containing ten different models: pitch (with 2, 3 and 4 reference groups),
spectral centroid (with 2, 3 and 4 reference groups), pitch and jitter (with 2-2 bin combi-
nation), spectral centroid and loudness (with a 2-2 bin combination), gender and a model
with a random distribution.

2. 200 hours group, containing 7 different models: pitch (with 2, 3 reference groups), spec-
tral centroid (with 2, 3 reference groups), pitch and jitter (with 2-2 bin combination), gender
and a model with a random distribution.

Each group is composed not only by models balanced over a given vocal characteristic of the
speaker (hereinafter, vocal models), but also by two additional ones: gender and random. The
latter two (hereinafter non-vocal models) served as a measure on the impact of balancing datasets
over gender labels, and on maintaining the original distribution of vocal traits, respectively.

Performance was measured over three different test sets: cv30, cvBal and libri. Considering that
we will calculate the WER for each of the considered test sets, we aggregated the test results by
considering an average of the WER. The obtained results are listed in Tables 5.3 and 5.4.

Balancement Criterion # Hours WERcv30 WERcvBal WERlibri WERmean
Gender 200 44.59% 44.06% 58.67% 49.11%
Random 200 43.01% 42.70% 58.24% 47.98%
Pitch+Jitter 22 200 43.13% 42.76% 57.88% 47.92%
Pitch2 200 43.09% 42.77% 57.38% 47.75%
Pitch3 200 42.63% 42.41% 56.38% 47.14%
Spectral Centroid 2 200 45.64% 45.07% 61.11% 50.61%
Spectral Centroid 3 200 42.12% 41.77% 57.14% 47.01%

Table 5.3: Performance results for the 200 hours ASR models
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Balancement Criterion # Hours WERcv30 WERcvBal WERlibri WERmean
Gender 100 50.14% 49.96% 66.16% 55.42%
Random 100 53.19% 52.96% 69.39% 58.51%
Pitch+Jitter 22 100 48.27% 47.85% 63.35% 53.16%
Pitch2 100 50.41% 50.25% 66.04% 55.57%
Pitch3 100 49.91% 49.75% 65.17% 54.94%
Pitch4 100 49.44% 49.06% 64.23% 54.24%
SpectralCentroid 2 100 50.89% 50.67% 64.94% 55.50%
SpectralCentroid 3 100 49.51% 49.43% 62.57% 53.84%
SpectralCentroid 4 100 49.87% 49.82% 63.64% 54.44%
SpectralCentroid+Loudness 100 48.45% 48.28% 63.27% 53.33%

Table 5.4: Performance results for the 100 hours ASR models

The two CommonVoice test sets show, on average, a 15 pp. lower error rate in comparison to
the LibriSpeech set, since these were also obtained from the CommonVoice 6.1 English dataset.
Despite independent from the training data, the recording conditions of these two tests are closer
to the recording conditions in which the model was trained, hence impacting the effectiveness
of the acoustic model. Conversely, performance on the two CommonVoice test sets is similar:
41-46% for the 200 hours models, and 48-53% WER for the models trained with 100 hours of
data. Models with 100 hours of data show, on average, a performance 7 p.p. worse than models
trained with 200 hours of data.

Further, it is worth noting that no pair of balancement criteria confirmed the null hypothesis of
our Wilcoxon pairwise tests [40] (α= 0.05): the median distribution of WER between the two
models is similar. Accordingly, no pair of balancement criteria obtained consistent (i.e., for both
100 and 200 hours iterations) and significant p-values results (p-value > 0.05). Hence, all selected
balancement criteria lead to significantly different ASR systems.

Vocal models with a minimum of three reference groups are the best performing ones both for
the 100 (pitch and jitter, spectral centroid + loudness, pitch 3) and the 200 hours (spectral centroid
3, pitch 3 and pitch and jitter) groups. Indeed, the pattern is clear: three best performing systems
are vocal models, with a minimum of three reference groups.

Conversely, non-vocal (gender and random), and pitch 2 show, on average, the worst perfor-
mances for each of the hour groups. The most extreme example comes from the random model
trained with 100 hours, which obtained a 5 point difference in performance when compared to
the pitch+jitter model – the top performer in this group.
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5.2.1.1 Differences to the Gender-Balanced Model

As noted in Section 2.5.2, data providers focus on balancing speech datasets by assuring uniform
distribution gender groups, with the purpose of not only improving performance, but also to
prevent the existence bias – i.e., systematic differences in performance between groups of speak-
ers –, when compared to a train set with a random distribution. Thus, the gender model served
as baseline for our experiment: our goal is to obtain a performance at least good as the gender
model.

To this purpose, the difference in performance to the gender model was calculated (hereinafter,
GenderDiff ). Considering that most of our balancement criterion) were tested for the 100 and 200
hours groups, we calculated the mean difference for the two groups. Accordingly, by simultane-
ously considering the two sets of train sets, this should provide us a final measure to evaluate the
global impact of each vocal trait over performance.

Balancement Criterion WER GenderDiff
100h 200h mean 100h 200h mean

Random 58.51% 47.98% 53.25% 3.09 -1.12 0.99
Pitch2 55.57% 47.75% 51.66% 0.15 -1.36 -0.61
Pitch3 54.94% 47.14% 51.04% -0.48 -1.97 -1.22
Pitch4* 54.24% - 54.24% -1.18 - -1.18
Pitch+Jitter 22 53.16% 47.92% 50.54% -2.27 -1.19 -1.73
Sdloudness 22* 53.33% - 53.33% -2.09 - -2.09
Spectral Centroid 2 55.50% 50.61% 53.05% 0.08 1.5 0.79
Spectral Centroid 3 53.84% 47.01% 50.42% -1.58 -2.1 -1.84
Spectral Centroid 4* 54.44% - 54.44% -0.98 - -0.98

Table 5.5: Mean Performance Differences to the Gender-Balanced Model

Spectral centroid + loudness (-2.09), spectral centroid 3 (-1.84) and pitch + jitter (-1.73) improved
performance the most. On a second level of relevance, we find pitch 3, pitch 4, and spectral
centroid 4, which improved performance by 1 pp. Therefore, patterns identified in the previous
section were maintained: vocal models with at least 3 reference groups improved, on average, the
performance of the gender model in 2 pp.

Conversely, the randommodel and spectral centroid 2 are the worst performing criteria, obtaining
a performance a performance 1 pp greater than the one obtained by gender. Indeed, such results
are aligned with the work of Garnerin et al. [5] which suggested that balancing the train set across
gender labels improves the performance of speech applications when compared to the original
distribution of vocal traits in our pool of recordings.

In addition to this, we see that spectral centroid 2 and the random model show, on average, a
similar performance. Such finding is coherent with the insights obtained in Section 5.1.3, where
these two train sets were identified not having significant differences, namely on the pitch and
jitter distributions.
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Finally, vocal models balanced over two reference groups (pitch 2 and spectral centroid 2) showed
the most similar performances to gender, with -0.61 and 0.79 differences, respectively. Such
pattern is symptomatic of the binary pattern that gender-balanced datasets show: having such
a clear division of speakers in two groups reflects on the presence of two major poles in the
distribution of vocal traits, each corresponding to a given gender. As identified in Section 4.4
such pattern is more obvious for pitch, which alone is 87.3% accurate in predicting the gender
of the speaker.

5.2.2 Bias

Balancing training sets over vocal traits shows thus significant improvements in the global perfor-
mance of the model. Such improvements could, however, be more significant for specific groups
of speakers, hence creating bias. In the context of AI, a biased system is one that shows system-
atic errors “against” specific sub-groups of people. Conversely, an unbiased system is one that
do not show systematic and significant differences in the performance of specific sub-groups.

As stated in Section 3.2, all train sets were obtained by sampling a common pool of recordings.
Such pool, however, contains a clear imbalance both in the gender and age representation of
speakers: there is a prevalence of male speakers (80-20 ratio), and the 20-30 age range is the
dominant one (40%). Such differences may thus provoke significant differences in the perfor-
mance between groups, hence bias.

Accordingly, it is our interest to analyze if the obtained vocal models are biased towards or against
a specific sub-group of individuals. To this purpose, for each of the trained models, we will
compare the group performances over two self-reported metrics: age (teens, twenties, thirties,
forties, fifties, Over60) and gender (male and female) labels. Given that LibriSpeech does not
make available any speaker metadata, our analysis will be limited to the two CommonVoice test
sets (30 hours, and 9.5 hours with a balanced distribution).

5.2.2.1 Gender groups

As noted in Section 2.5.2, Garnerin et al. [5] identified bias against women in the performance
of speech recognition systems by analyzing the gender representation in four major corpora of
French broadcast. The authors concluded that the disparity of available data for both genders
caused performance to decrease on women. Accordingly, guaranteeing a similar fair and unbiased
systems for gender groups has been a priority not only for the speech industry, but for the AI
industry itself.

For the purpose of our experiment, we will consider the binary gender definition (male and fe-
male speakers). According to the self-assigned gender labels from the CommonVoice dataset,
our original pool of recordings has a 80% males - 20% females distribution, which ultimately
might provoke differences in the obtained train sets. To analyze such situation, we will com-
pare the mean performance of each model between gender groups, by calculating, in percentage
points, the mean difference in the WER of the two groups. The obtained results are presented
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in Table 5.6. Further, we will evaluate the significance of the identified differences using Mann-
Whitney U tests (α=0.0.1), hence testing the hypothesis of male and female speakers having a
similar WER distribution. The Mann-Whitney test was applied over the concatenation of the
two CommonVoice test sets.

Balancement Criterion Performance Pvalues
Female Male MeanDiff 100H 200H

Gender 45.19% 48.04% -2.848 0.00 0.00
Random 49.02% 48.07% 0.946 0.03 0.32
Pitch3 45.52% 46.25% -0.731 0.08 0.00
Pitch2 46.36% 46.95% -0.59 0.00 0.01
Pitch4 49.54% 49.67% -0.129 0.07 –
Spectralcentroid2 48.33% 48.42% -0.094 0.01 0.49
Spectralcentroid3 46.56% 46.46% 0.106 0.24 0.06
Spectralcentroid4 50.47% 49.85% 0.614 0.27 –
Sdloudness22 49.71% 48.05% 1.663 0.04 –

Table 5.6: Mean performance per binary gender groups.

As one can see in Table 5.6, only four models reveal the most differences in performance between
male and female speakers: the gender, the random model, and the vocal models balanced by the
combination of two vocal characteristics: pitch and jitter; and spectral centroid and loudness.
There are, however, opposite behaviours within this group of our models: the gender model
favours female speakers (3.72 pp lower error rate in comparison to the male group), whereas the
other three models favour male speakers (1-2 pp. lower error rate in comparison to the female
group).

The Mann-Whitney U test was reproduced both for the 100 and 200 hours iterations of each
balancement criterion. Accordingly, we will only consider significant the differences that are main-
tained for iterations of the criteria. Given these constraints, we see that gender (0.00 p-value for
both groups), pitch 2 (0.00 and 0.01 p-values for the 100 and 200 hours iterations) and the com-
bination of spectral centroid and loudness (0.04) are the criteria that consistently show significant
differences in performance between gender groups.

Conversely, spectral centroid 3 and 4, and pitch 4 are the only criteria that consistently reject the
hypothesis of existing significant differences in performance between gender groups. Indeed,
models balanced over a single criterion with at least 3 reference groups proved to be the most
efficient in preventing performance differences between gender groups.

Differences in the gender model were related with an original gender imbalance of the pool of
recordings, which creates a much larger diversity of vocal profiles in the male group. Considering
that the gender model was trained with a similar amount of speech data for each of the gender
groups, and that the female group shows a smaller diversity of vocal profiles, the obtained model
will be optimized for female speakers. Therefore, instead of following the initial behaviour, the
gender model seem to favour the minority group. This pattern is clearly identifiable in Figure
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Figure 5.3: Mean performance per binary gender groups.

5.3, where we see that the blue line (corresponding to the gender model), follows the opposite
direction to all other models.

Apart from the previous four models, we find that vocal models balanced over a single vocal
characteristic have a similar performance across gender groups. Indeed, all models balanced over
pitch or spectral centroid seem to be effective in neutralizing performance differences, even if
the original pool of recordings is biased towards a specific gender.

5.2.2.2 Age groups

The models’ performance across age groups follows a common pattern for all 17 models: speak-
ers in the teens age range (7 pp above the models’ average performance) show, on average, a
worse performance than all other age groups. Such pattern was reinforced, by conducting a
Kruskal-Wallis test which compared the median WER across age groups in each of our test sets.
Indeed, all 17 models obtained a p-value under 0.05 for both tests sets, i.e., showed significant
performance differences across age groups6.

Ideally, we are looking for models with a similar performance across each one of these groups,
i.e., unbiased both against age and gender groups. Nonetheless, considering the substantial dif-
ferences in the representation of each of age group in the original pool of recordings, it was not
possible to achieve such objective. Therefore, instead of looking for the unbiased models, we fo-
cused on identifying the models that were most effective on mitigating performance differences
across age groups.

To assess this, for each balancement criterion), we estimated the sum of squared differences between
the group performance and the model’s overall performance (hereinafter scoreagedifferences). This
should give us an idea on how heterogeneous the model’s performance is between groups. The
obtained results are presented in the table below.

Pitch 4 and spectral centroid 3 are the two balancement criteria with the lowest score, i.e., with
6Detailed p-value results available in Table 7.2 in the Appendix Section
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Balancement Criterion Teens Thirties Fourties Fifties Over60 Score
Gender 5.66 -3.05 -5.12 -3.45 -7.08 134.1
Random 7.13 -3.12 -4.51 -2.77 -6.14 132.45
Pitch+Jitter 22 7.26 -2.52 -4.66 -1.85 -6.35 131.18
Pitch2 7.79 -2.53 -4.33 -2.55 -5.59 129.51
Pitch3 6.87 -2.38 -3.91 -2.02 -6.24 120.00
Pitch4 6.12 -2.1 -4.74 -1.62 -4.88 96.32
Spectral centroid + loudness (22) 7.09 -2.88 -4.48 -1.33 -5.72 117.76
Spectral centroid2 7.37 -2.67 -4.26 -2.07 -6.37 130.19
Spectral centroid3 8.51 -0.84 -2.35 -0.64 -3.25 105.89
Spectral centroid4 8.47 -2.1 -3.51 -1.9 -5.45 125.54

Table 5.7: Mean performance per age groups, and scoreagedifferences.

the smallest differences in the performance across age groups. On a second level of relevance,
we find a group of vocal models with at least 3 reference groups for balancing – spectral centroid
loudness, pitch 3, and spectral centroid 4. Indeed, those three models show a difference of about
15 units in the SumSquareDiff score.

On the contrary, the two non-vocal models (random and gender) show the greatest differences
between age groups with 134.099 and 132.447 scores, respectively. Differences in the gender
model were once again related with an original imbalance of the pool of recordings, specifically
concerning the distribution of genders for each of the age groups.

Finally, it is worth noting the results obtained by the pitch 2, spectral centroid 2 and the pitch +
jitter models, which obtained a score very close to the obtained by the two non-vocal models.
Accordingly, similarly to the insights obtained in the performance section, the vocal models bal-
anced with 2 groups seem to not have a behaviour too different from the obtained by the gender
model.

Gathering these insights, we conclude that vocal models with a minimum of three reference
groups have the least differences in performance across age groups, hence being the most effec-
tive setups of vocal traits in mitigating age bias.
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5.3 Most impactful acoustic features

This chapter focused on answering our second research question: What is the impact (performance
and bias) of balancing vocal traits in training datasets for speech applications?. Our hypothesis is that using
actual vocal representations of the speaker (such as pitch, and loudness) to drive the speech data
collections offers a more effective solution than prevalent methods that based on self-reported
gender labels.

Results show that vocal models with a minimum of three reference groups show a 1-2 pp. signif-
icant improvement in performance when compared to the gender-balanced model. Conversely,
the randommodel and spectral centroid 2 were the worst performing models, obtaining a perfor-
mance one point greater than the gender-balanced model. Such differences are indeed coherent
with our baseline hypothesis that balancing the train set across gender improves the performance
of the ASR systems. Further, as stated by Garnerin et al. [5], we see that the gender-balanced
model still produces better performance results than systems trained over random distributions
of vocal traits.

Vocal models balanced over two reference groups (pitch 2 and spectral centroid 2) showed the
most similar performances to gender. Such pattern is symptomatic of the binary pattern that
gender-balanced datasets show: having such a clear division of speakers in two groups reflects
on the presence of two major poles in the distribution of vocal traits, each corresponding to a
given gender. As discussed in Section 4.4 such pattern is more obvious for pitch, which alone is
87.3% accurate in predicting the gender of the speaker.

Balancing training sets over vocal traits shows thus significant improvements in the global perfor-
mance of the model. Such improvements could, however, be more significant for specific groups
of speakers, hence creating bias. To this purpose, for each of the trained models, we analyzed the
group performances for two self-reported metrics: age (teens, twenties, thirties, forties, fifties,
Over60) and gender (male and female) labels.

Concerning gender, only four balancement criteria reveal significant differences in performance
between male and female speakers: the gender, the random model, and the two vocal models
balanced by two vocal traits (pitch and jitter; and spectral centroid and loudness). There are,
however, opposite behaviors within this group of our models: the gender-balanced model favors
female speakers, whereas the other three models favor male speakers (1-2 pp. lower error rate in
comparison to the female group). Differences in the gender-balanced model were related with an
original imbalance of the pool of recordings (80% males – 20% females), which creates a much
larger diversity of vocal profiles in the male group.

On the other hand, results show that vocal models balanced over a single vocal characteristic have
a similar performance across gender groups. Indeed, all models balanced over pitch or spectral
centroid seem to be effective in neutralizing performance differences, even if the original pool of
recordings is biased towards a specific gender.

Regarding age groups, vocal models with a minimum of three groups showed the least differences
in performance across age groups, hence contributing to mitigate prevailing bias in the input data.
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On the contrary, the two non-vocal models (random and gender) show the greatest differences
between age groups. Differences in the gender-balanced model were once again related with an
original imbalance of the pool of recordings, specifically concerning the distribution of genders
for each of the age groups.

Overall, jointly considering the two evaluation dimensions (performance and bias), the best per-
forming models were the ones balanced over a single vocal characteristic of the speaker (pitch or
spectral centroid), with a minimum of three reference groups. Indeed, all models balanced over
pitch or spectral centroid seem to be effective in neutralizing performance differences, even if the
original pool of recordings is biased towards a specific gender. Within this group, the setup com-
posed by spectral centroid and three reference groups (spectral centroid 3) consistently showed
the most improvement over performance and bias.

69



6 | Discussion

As algorithms drive more decision-making processes, machine learning models’ tendency to learn
our input data biases is a massive problem. Furthermore, the wide range of new diverse, and
heterogeneous users demands robust and unbiased solutions that perform successfully regardless
of their individual characteristics or demographics.

In the specific case of speech applications, research identified systematic errors against social
groups of our society, such as female speakers, elderly speakers, or even misrepresented ethnic
groups. To fight this, data providers’ most prevalent interventions focus on assuring uniform
distributions over the same aspects in which bias is detected, particularly across binary gender
groups. However, balancing data along these features has three major drawbacks. First and
foremost, as detailed in Section 2.4, these features are hard to test against when collecting audio
for training such systems (particularly in a remote collection scenario). Secondly, they do not
represent the individual’s actual vocal traits (being only proxies of that). Finally, if used incorrectly,
these proxies can be dangerous in the sense that they may be perpetuating social stereotypes (for
instance, what a male voice is expected to sound like).

Figure 6.1: Research hypothesis: moving from proxy to actual vocal traits as balancement criterion.

Given this background, this work explored the hypothesis of replacing gender proxies with actual
vocal representations of the speaker to drive the data collection process. Recalling the Figure
presented in Chapter 3, we can think of a hypothetical situation where a speech dataset containing
100 speakers is adjusted to ensure a 50-50 binary gender distribution. Figure 6.1 replicates this
scenario by mapping the speaker distribution in the instance space using two vocal traits: pitch
and amplitude. In an ideal scenario, this intervention would guarantee a similar representation
of voice profiles in the dataset. The actual scenario is, however, a lot different: despite existing
a dominant vocal profile within each gender group, the distribution of the vocal traits is not
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homogeneous. As one can see, there is a broader diversity spectrum for which gender proxies
are relatively short in representing, which ultimately leads to a misrepresentation of speakers that
fail to follow the typical vocal profile of their gender group. In addition, as stated in Section 2.4,
the considered gender stats are quite hard to verify and contest in a crowdsourcing context.

Hence, our hypothesis is that using actual vocal representations of the speaker (such as pitch, and
loudness) to drive the speech data collections offers a more effective solution (performance and
bias) than prevalent methods that are based on self-reported gender labels. To test this, we divided
our research in two major phases. First, we identified a shortlist of acoustic features (representing
vocal traits) that are capable of characterizing and identifying individuals through voice. Then,
we evaluated the impact (performance and bias) of balancing such features in training datasets
for speech applications. Thus, our baseline objective was to identify a uniform distribution of
vocal traits that can at least ensure a similar performance to a speech application trained over a
dataset with a 50-50 gender distribution (hereinafter, gender-balanced models). Even if we obtain
the same results, vocals should offer a more objective, hence verifiable method for the collection
process than the gender-balanced model.

The identification of relevant acoustic features was the first milestone in our study. From the
Sharma et al. [15] taxonomy described in Section 2.2, we explored the subset of acoustic features
that meet two conditions: 1) verifiable and 2) semantically understandable. In addition to this,
we focused on identifying features that are capable of ensuring diversity in the train set, i.e., that
show high variability in the instance space. Once these conditions were applied, we obtained an
initial list of nine acoustic features: spectral centroid, spectral spread, HNR, pitch, jitter, shimmer,
loudness, energy and speaking rate.

All features were extracted on a utterance level, i.e., for each audio file in our dataset. Features
on this level, however, revealed an extremely high variability – an expected pattern considering
that the files have a five seconds average duration. Indeed, acoustic features computed over files
with such a small length typically show a great fluctuation, hence affecting the significance of
the obtained measures. To overcome this limitation, we aggregated the features on a speaker-
level, i.e., aggregated the features values for all recordings of the same speaker. To this purpose,
we imposed a minimum of 20 seconds of recordings per speaker, corresponding to an average
of 4 entries per speaker. Such threshold may, however, be optimized in future work. Indeed,
increasing the total duration per speaker may lead to more stable and significant features, and
ultimately provide an even more objective of the speaker.

Having defined our pool of acoustic features, we divided our investigation for the most informa-
tive vocal traits into two intermediate milestone: 1) direct replacements to gender – identify features
that mimic the distribution of vocal traits between gender groups, – and 2) gender blind – iden-
tify features not necessarily related with gender, but capable of distinguishing speakers through
voice. The reason for this division was once again aligned with our baseline objective of obtain-
ing a similar performance and bias results of a model trained with a 50-50 gender distribution.
Accordingly, our expectation was that the features in the direct replacement to gender group ensure a
performance and bias impact similar to the one obtained to gender labels, and that the gender blind
features offer a blind, hence independent representation of the vocal traits. To this purpose, two
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major experiments were conducted: 1) gender classification via traits, 2) building clusters over
the speaker-aggregated features, and identify the acoustic features explaining most differences
between clusters.

Results show that pitch and jitter emulate 89.1% of the speaker information provided by gender
labels, and that pitch alone conveys 87.3% of the gender information. Pitch, indeed, is quite
efficient in predicting the gender in our data except for speakers located in the 128-148 Hz pitch
range. For such interval, jitter provides important information to separate genders by mapping
males to higher jitter values. Such results are aligned with the work of Singh [13] which states
that the adult woman’s average pitch range is from 165 to 255 Hz, while a man’s is 85 to 155 Hz.

Gender, however, may not be the most accurate representation of the speaker. Accordingly, our
second group of features – gender blind representations – contains vocal traits not necessarily related
with gender but still conveying valuable information to differentiate speakers. The obtained
results indicate spectral centroid and loudness as the key variables discriminate vocal profiles -
both weakly correlated with gender. Indeed, when building clusters of speakers, the two explained
most of the differences between the obtained groups. This finding was confirmed over four
subsets of our dataset: 50-50 gender-balanced sample, male speakers, female speakers and the subset of
speakers in the previously identified of gender grey area (128-148 Hz pitch). Accordingly, spectral
centroid and loudness revealed as the most relevant features for separating and differentiating
individuals through voice.

When comparing the obtained clusters with gender groups, we see that none of the identified
gender replacements (pitch, jitter) showed significant differences between clusters. Further, no
gender pattern was identified in the obtained, even for a two cluster partition which ultimately
should correspond to a gender partition of the individuals. Instead of showing a clear separa-
tion between male and female speakers, the obtained clusters were consistently separated by two
acoustic features independent from gender: spectral centroid and loudness. These findings were
not only maintained for different granularity levels (subsets of speakers with different dimensions
and profiles, and for different partition levels), but also for each of the gender groups. Therefore,
these results reinforce our hypothesis that gender labels are not the optimal representation of the
speaker, offering a narrow depiction of the individual. Ultimately, that a collection driven by
vocal traits like spectral centroid and loudness would be more diverse than one based on gender
labels.

By the end of this analysis, we obtained a shortlist of four setups of vocal features: pitch, pitch
+ jitter – emulating the distribution of vocal traits obtained by gender labels –, and spectral
centroid and spectral centroid + loudness – the most effective and important acoustic features
to differentiate speakers through voice.
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Figure 6.2: Mean performance per balancement criterion and train set size

Having defined our shortlist of acoustic features, we evaluated the impact of balancing such
variables in the train sets for speech applications. To this purpose, using a common framework,
we will train several ASR systems, each with an uniform distribution over one of the four setups
of vocal features above – vocal models. Using such a similar setup, the only difference between
vocal models will be the distribution of vocal traits in the train set, hence we will be able to
evaluate the individual impact of a specific setup of vocal traits in system´s performance and
bias. Additionally, to obtain a performance and bias baseline, two more models were trained: a
gender-balancedmodel, and an unbalancedmodel – i.e., with a random distribution in the training
set. These two models, referred to as Non-Vocal Models, served as a measure on the impact of
balancing datasets over gender labels, and on the impact of maintaining the original distribution
of vocal traits, respectively.

A crucial step in our experiment pipeline is the selection and generation of the train sets for the
vocal models. The considered train sets should have an uniform representation for the selected
setup of features (hereinafter, balancement criterion), i.e, a similar speech time for k fixed-sized
groups (hereinafter, reference groups). Considering that all acoustic features are continuously-valued,
the definition of our reference groups was made by applying fixed-sized discretization, using a
variable number of reference groups. As a result, the number of reference groups to consider in
the discretization is a relevant variable in our analysis, ultimately compromising the uniformity
of the obtained train sets. Given this context, uniformity requirements were introduced in the
train sets, having we obtained a shortlist of 17 train sets, with either 100 or 200 hours of speech
data, and a maximum of 4 reference groups. Finally, since all sets were balanced over a specific
combination of vocal traits and bins, each data set was be named with the concatenation of these
two elements. As an example, the pitch train set with 2 reference groups was be referred to as
pitch2.
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Results show that vocal models with a minimum of three reference groups show a 1-2 pp. signif-
icant improvement in performance when compared to the gender-balanced model. Conversely,
the randommodel and spectral centroid 2 were the worst performing models, obtaining a perfor-
mance one point greater than the gender-balanced model. Such differences are indeed coherent
with our baseline hypothesis that balancing the train set across gender improves the performance
of the ASR systems. Further, as stated in 2.5.2, we see that the gender-balanced model still pro-
duces better performance results than systems trained over random distributions of vocal traits.

Vocal models balanced over two reference groups (pitch 2 and spectral centroid 2) showed the
most similar performances to gender. Such pattern is symptomatic of the binary pattern that
gender-balanced datasets show: having such a clear division of speakers in two groups reflects
on the presence of two major poles in the distribution of vocal traits, each corresponding to a
given gender. As discussed in Section 4.4 such pattern is more obvious for pitch, which alone is
87.3% accurate in predicting the gender of the speaker.

Balancing training sets over vocal traits shows thus significant improvements in the global perfor-
mance of the model. Such improvements could, however, be more significant for specific groups
of speakers, hence creating bias. To this purpose, for each of the trained models, we analyzed the
group performances for two self-reported metrics: age (teens, twenties, thirties, forties, fifties,
Over60) and gender (male and female) labels.

Concerning gender, only four balancement criteria reveal significant differences in performance
between male and female speakers: the gender, the random model, and the two vocal models
balanced by two vocal traits (pitch and jitter; and spectral centroid and loudness). There are,
however, opposite behaviors within this group of our models: the gender-balanced model favors
female speakers, whereas the other three models favor male speakers (1-2 pp. lower error rate in
comparison to the female group). Differences in the gender-balanced model were related with an
original imbalance of the pool of recordings (80% males – 20% females), which creates a much
larger diversity of vocal profiles in the male group.

On the other hand, results show that vocal models balanced over a single vocal characteristic have
a similar performance across gender groups. Indeed, all models balanced over pitch or spectral
centroid seem to be effective in neutralizing performance differences, even if the original pool of
recordings is biased towards a specific gender.

Regarding age groups, vocal models with a minimum of three groups showed the least differences
in performance across age groups, hence contributing to mitigate prevailing bias in the input data.
On the contrary, the two non-vocal models (random and gender) show the greatest differences
between age groups. Differences in the gender-balanced model were once again related with an
original imbalance of the pool of recordings, specifically concerning the distribution of genders
for each of the age groups.

Given this background, both evaluation dimensions (performance and bias) confirm our initial
hypothesis that using actual vocal representations of the speaker (such as pitch, and loudness)
to drive the speech data collections offers a more effective solution (performance and bias) than
prevalent methods that are based on self-reported gender labels. Models balanced over a single
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vocal characteristic of the speaker (pitch or spectral centroid), with a minimum of three refer-
ence groups. Indeed, all models balanced over pitch or spectral centroid seem to be effective in
neutralizing performance differences, even if the original pool of recordings is biased towards a
specific gender. Within this group, the setup composed by spectral centroid and three reference
groups (spectral centroid 3) showed the most improvement in performance and bias.

Vocal models balanced over two reference groups (pitch 2 and spectral centroid 2) showed the
most similar performances to gender. Such pattern is symptomatic of the binary pattern that
gender-balanced datasets show: having such a clear division of speakers in two groups reflects
on the presence of two major poles in the distribution of vocal traits, each corresponding to a
given gender. As discussed in Section 4.4 such pattern is more obvious for pitch, which alone is
87.3% accurate in predicting the gender of the speaker, hence validating the insights obtained in
RQ1.

Finally, as stated in section 1, we do not deny that measuring systems’ performance across so-
cial groups (like the ones provided by gender information) is still relevant. Indeed, our results
are aligned with the work of Garnerin et al. [5], which recommends a similar representation of
genders in the train sets for speech applications: when compared to the random model, the
gender-balanced model showed a better performance and bias results. However, this kind of
sensitive self-reported metadata must not be contested on the basis of normative (and potentially
offensive) approaches, and for that reason, are not fit to drive data collection.

When compared to the prevalent method based on self-reported gender labels, the here identified
vocal traits (particularly pitch and spectral centroid) offer a more verifiable, ethical and effective
approach to collection of speech data. Verifiable since they are measurable and objective depic-
tions of the speakers instead of self-reported and hardly verifiable labels. Effective since they
improved performance and reduced bias across gender and age groups. Ethical in the sense that
they actual and fact-based depictions of the individual, independent of its ethnicity, age, gender,
etc.

Accordingly, our hypothesis that using actual vocal representations of the speaker (such as pitch,
and loudness) to drive the speech data collections offers a more effective solution (performance
and bias) than prevalent methods that are based on self-reported gender labels was verified for
train sets balanced with a single vocal train set, and at least two reference groups. Indeed, the
proposed technique guaranteed a 1-2 pp. reduction in the models’ error rate, and proved to be
effective in mitigating bias conflicts that were identified in the gender-balanced model. Pitch and
spectral centroid, calculated on a speaker-level, proved to be the most impactful vocal traits, with
a specific highlight on spectral centroid which not only obtained the best performance, but also
produced the most unbiased models.
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7 | Conclusion and Future Work

As the machine learning industry expands to more natural forms of interaction with everyday de-
vices and services, such as communication via natural language, the need for robust and unbiased
solutions that perform successfully regardless of their individual characteristics or demographics.

In the specific case of speech applications, literature unveiled systematic errors against social
groups of our society, such as female speakers [5], elderly speakers [41, 9], or even misrepre-
sented ethnic groups [10]. As an answer to these conflicts, data providers have been focusing on
balancing speech datasets by assuring uniform distributions over binary gender groups. Such in-
terventions, however, pose three major limitations. First and foremost, gender is only a proxy for
actual vocal characteristics of the speaker, and for that reason, may not represent the complete
spectrum of speaker diversity. Secondly, as previously referred, these interventions are based
on self-reported data, which is hard to contest. Finally, limiting speaker classification to gender
labels perpetuates social stereotypes, for instance, of what a male voice is expected to sound like.

Given this context, this work explored the hypothesis of replacing gender proxies with actual
vocal representations of the speaker to drive the data collection process. Our hypothesis is that
using actual vocal representations of the speaker (such as pitch, and loudness) to drive the speech
data collections offers a more effective solution (performance and bias) than prevalent methods
that are based on self-reported gender labels.

To this purpose, our research was driven using a concrete speech application (an automatic speech
recognizer), concluding on which vocal traits should be uniformly represented in the training
dataset and measuring the impacts of such distribution in the model’s performance and biases.
Briefly, we considered the following two research questions: 1) Which voice traits better differ-
entiate and characterize speakers?, and 2) What is the impact of balancing such features in the
training dataset of a speech application? Our contributions are the following:

1. Which voice traits better differentiate and characterize speakers?
Four setups of acoustic features were identified as effective and measurable descriptors of
the speaker: pitch, pitch + jitter – emulating the distribution of vocal traits obtained by
gender labels –, and spectral centroid and spectral centroid + loudness – the most effective
and important acoustic features to differentiate speakers through voice.

2. What is the impact (performance and bias) of balancing vocal traits in training
datasets for speech applications?
Results show that balancing vocal traits with at least three reference groups leads to signif-
icant improvements in performance of the models and mitigates bias conflicts in the origi-
nal model. In comparison to a model balanced over gender labels, performance improved
by two percentage points, and bias was reduced both across age and gender groups. Fur-
ther, considering that prevailing balancing interventions are based on self-reported speaker
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metadata (such as gender and age), this method offers a more effective and variable method
to drive the collection process of speech data.
Overall, jointly considering the two evaluation dimensions (performance and bias), the best
performing models were the ones balanced over a single vocal characteristic of the speaker
(pitch or spectral centroid), with a minimum of three reference groups. Indeed, all models
balanced over pitch or spectral centroid seem to be effective in neutralizing performance
differences, even if the original pool of recordings is biased towards a specific gender.
Within this group, the setup composed by spectral centroid and three reference groups
(spectral centroid 3) consistently showed the most improvement over performance and
bias.
Vocal models balanced over two reference groups (pitch 2 and spectral centroid 2) showed
the most similar performances to gender. Such pattern is symptomatic of the binary pat-
tern that gender-balanced datasets show: having such a clear division of speakers in two
groups reflects on the presence of two major poles in the distribution of vocal traits, each
corresponding to a given gender. As discussed in Section 4.4 such pattern is more obvious
for pitch, which alone is 87.3% accurate in predicting the gender of the speaker.

When compared to the prevalent method based on self-reported gender labels, the here identified
vocal traits (particularly pitch and spectral centroid) offer a more verifiable, effective and ethical
approach to the collection of speech data: verifiable since they are measurable and objective
depictions of the speaker; effective since they improve performance by two percentage points
and reduce bias both across gender and age groups; and ethical in the sense that they are actual
and fact-based representations, blind to the speaker´s ethnicity, age, gender, etc.

Also worth noting is that the concept of gender is a subjective, hence evolving one. If we con-
sider that the self-reported gender labels offer a binary representation of the speaker (male or
female), the usage of gender labels to drive the collection process is itself discriminatory against
all individuals who identify with non-binary gender identities. An approach based on vocal traits
would be blind to all social groups, hence ensuring that speakers are represented as an individual
element, and not by the typical voice of their social group.

In a crowdsourcing context, this approach could not only prevent quality issues in the collected
data (eg. a misalignment between the self-reported gender labels, and the actual gender of the
speaker), but also represent important savings, by reducing the number of validation tasks intro-
duced in the collection pipeline.

The results of this study, while interesting, should not be taken as generalizations for all indi-
viduals. Further research is needed in order to assess if these findings are maintained for other
languages, nationalities and recording conditions (which may, for instance, impact the loudness
of the recording). Future work also includes testing alternative setups for the train sets, namely
by considering a different distribution (eg. playkurtic distribution, or the normal distribution) for
the balancing process. Additionally, it is worth noting that the usage of a larger and more diverse
pool of recordings may allow a greater number of reference groups for balancing. Ultimately,
the obtained train sets would not only be larger (hence more accurate), but also more balanced –
potentially leading to even more significant impacts over the systems’ performance and bias.
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Appendix

A Research Question 1

Figure 7.1: Inter-speaker variability per variable, for each aggregation method.
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Figure 7.2: Box-plots for each acoustic feature in our RQ1 shortlist.

Figure 7.3: Gender mean differences for each acoustic feature in the RQ1 shortlist.
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Pitch range Female Male Fabs CumFemale CumMale CumInterval %IntervalF %IntervalM %CumF %CumM
228-223 2 0 2 2 0 2 100 0 100 0
223-218 1 0 1 3 0 3 100 0 100 0
218-213 6 0 6 9 0 9 100 0 100 0
213-208 8 0 8 17 0 17 100 0 100 0
208-203 4 0 4 21 0 21 100 0 100 0
203-198 9 0 9 30 0 30 100 0 100 0
198-193 19 1 20 49 1 50 95 5 98 2
193-188 16 0 16 65 1 66 100 0 98 2
188-183 21 0 21 86 1 87 100 0 99 1
183-178 18 1 19 104 2 106 95 5 98 2
178-173 20 1 21 124 3 127 95 5 98 2
173-168 17 1 18 141 4 145 94 6 97 3
168-163 5 1 6 146 5 151 83 17 97 3
163-158 3 1 4 149 6 155 75 25 96 4
158-153 9 2 11 158 8 166 82 18 95 5
153-148 5 2 7 163 10 173 71 29 94 6
148-143 4 5 9 167 15 182 44 56 92 8
143-138 1 2 3 168 17 185 33 67 91 9
138-133 2 3 5 170 20 190 40 60 89 11
133-128 5 5 10 175 25 200 50 50 88 12
128-123 0 10 10 175 35 210 0 100 83 17
123-118 1 13 14 176 48 224 7 93 79 21
118-113 0 15 15 176 63 239 0 100 74 26
113-108 1 10 11 177 73 250 9 91 71 29
108-103 0 12 12 177 85 262 0 100 68 32
103-98 0 5 5 177 90 267 0 100 66 34
98-93 0 5 5 177 95 272 0 100 65 35
93-88 0 3 3 177 98 275 0 100 64 36

Table 7.1: Male and female distribution for 5Hz fixed-sized pitch intervals.
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Figure 7.4: Feature contribution for the model excluding acoustic features highly correlated with gender.

Figure 7.5: Feature contribution for the model excluding pitch information.

Figure 7.6: Dendogram for the complete dataset.
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Figure 7.7: Standardized mean cluster differences
for speakers in the 130-150 Hz pitch range.

Figure 7.8: Standardized mean cluster differences
for the female subset of speakers.
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B Research Question 2

Figure 7.9: Mann-Whitney U p-values for each pair of 100 hours train sets and acoustic feature.

Figure 7.10: Mann-Whitney U p-values for each pair of 200 hours train sets and acoustic feature.
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Figure 7.11: Percentage of speakers repeated for each pair of train sets.

Figure 7.12: Wilcoxon performance results - 100 and 200 hours train sets.

Balancement Criterion P-values
100H 200H

Gender 1.23E-62 1.50E-73
Pitch2 2.89E-71 4.45E-79
Pitch3 7.20E-77 1.17E-79
Pitch4 2.81E-65 NaN
Pitchjitter 1.06E-73 2.91E-83
Random 9.90E-68 1.53E-80
Sdloudness22 3.67E-80 NaN
Spectralcentroid2 2.59E-69 2.21E-78
Spectralcentroid3 4.42E-70 2.79E-80
Spectralcentroid4 5.40E-69 NaN

Table 7.2: Mann-Whitney U results, p-value results per balancement criterion.
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