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Abstract

The design of truly autonomous mobile robots is a very complex task, starting from the navigation
to the motion planning and control. The navigation is generally regarded as one of the most im-
portant issues. Without a good perception of the vehicle’s surroundings and localization, the other
tasks would perform poorly. In order to solve this problem, these autonomous agents are typi-
cally aided with SLAM state estimation techniques. There are many different types of algorithms,
for which there is no single best solution. Recent improvements in LiDAR technology brought
more powerful and accessible laser scanners than ever before. Together with its key advantage
of being less insensitive to ambient lighting and optical texture in the scenes, allowed the appli-
cation of LiDAR SLAM technology in a broad field of robotics. This technology is particularly
useful in unstructured environments or where the use of GPS is unreliable, contributing to a better
performance than purely based dead-reckoning strategies.

Motivated by the above, the goal of this thesis is to understand, implement and improve a
recent 3D SLAM navigation system based on Light Detection And Ranging (LiDAR) data by
adding inertial measurements to determine the position and orientation with six degrees of free-
dom (6-DOF), known as pose, hence creating, in the real-time a 3D map of the surroundings with
application to autonomous navigation. To this end, the LiDAR Odometry and Mapping (LOAM)
algorithm was chosen, since it deals with the problems stated before, it is open source and com-
patible with the Robot Operating System (ROS)- the chosen development platform. The LOAM
system receives as an input a 3D point cloud originated from a 3D laser scanner and then divides
the work load into two different algorithms. The LiDAR odometry, that runs at fast speed, in order
to be able to estimate velocity and simultaneously remove motion distortion in the point clouds
in real time. However, it comes with a cost- since the odometry works with fast speed and low
amount of points, it has low-fidelity and cannot ensure accurate mapping. For this purpose, it is
where the LiDAR mapping enters. It works at slower speed, around a tenth of the speed of the
odometry. It receives the undistorted point clouds and performs fine scan matching, with a big
amount of points to ensure accuracy on the map. The combination of both algorithms ensures an
efficient real time performance.

This thesis starts by gathering the necessary background literature, to introduce the relevant
theoretical concepts. Afterwards, the problem to be solved is exposed followed by a careful ex-
planation of the LOAM algorithms. Subsequently, the original LOAM system is implemented,
explained and tested, followed by the proposed improvements. These improvements consist in the
fusion of the inertial measurements, from an IMU sensor with a complementary filter, to obtain 3D
orientation. Then, the new orientation is fused with the laser odometry pose estimate, utilizing an
extended Kalman filter. This improved pose estimate is fed to the mapping algorithm. To finalize,
a GPS estimate is used as ground truth to validate the results.

Overall, the previously stated objectives were accomplished. The obtained results were posi-
tive and further improvements were pointed for a future work.
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Resumo

A concepção de robôs autónomos é uma tarefa muito complexa, desde a navegação até ao planea-
mento e controlo do movimento. A navegação é geralmente considerada como uma das questões
mais importantes. Sem uma boa percepção do ambiente e da localização do veículo, as outras tare-
fas não poderão ter um bom desempenho. Para resolver este problema, estes agentes autónomos
estão tipicamente equipados com técnicas de estimação de estado SLAM. Existem muitos tipos
diferentes de algoritmos, para os quais não existe uma única melhor solução. As recentes mel-
horias na tecnologia LiDAR trouxeram scanners laser mais potentes e acessíveis do que nunca.
Juntamente com a sua principal vantagem de serem mais robustos relativamente à iluminação am-
biente e à textura óptica dos cenários, permitiu a aplicação da tecnologia LiDAR SLAM num vasto
campo da robótica. Esta tecnologia é particularmente útil em ambientes não estruturados ou onde
a utilização de GPS não é fiável, contribuindo para um melhor desempenho do que as estratégias
puramente baseadas em dead-reckoning.

Motivado pelo acima exposto, o objectivo desta tese é compreender, implementar e melhorar
um sistema de navegação SLAM 3D actual, baseado em dados de Light Detection And Ranging
(LiDAR), adicionando medições inerciais para determinar a posição e orientação com seis graus
de liberdade (6-DOF), conhecida como pose. Além disso, um dos objectivos é criar, em tempo
real, um mapa 3D do ambiente com aplicações à navegação autónoma. Para este fim, foi escol-
hido sistema LiDAR Odometry and Mapping (LOAM) e Robot Operating System (ROS) como
plataforma de desenvolvimento. O LOAM recebe como entrada, uma nuvem de pontos 3D prove-
niente de um laser scanner 3D e depois divide o processamento em dois algoritmos diferentes. A
LiDAR odometry, que funciona com uma velocidade rápida, de modo a poder estimar a velocidade
e simultaneamente remover a distorção do movimento nas nuvens de pontos. No entanto, isto
acarreta um custo, uma vez que a LiDAR odometry funciona com velocidade rápida e baixa quan-
tidade de pontos, tem baixa fidelidade e não pode assegurar um mapeamento preciso. Para este
fim, é introduzido o LiDAR mapping. Funciona com uma velocidade lenta, cerca de um décimo
da velocidade da LiDAR odometry. Recebe as nuvens de pontos não distorcidas e efectua uma
correspondência precisa, com uma grande quantidade de pontos, assegurando assim a precisão do
mapa. A combinação de ambos os algoritmos assegura um desempenho eficiente em tempo real.

Esta tese começa pela análise da literatura necessária. Posteriormente, o problema a ser re-
solvido é exposto, seguido de uma explicação profunda do sistema LOAM. Depois, o LOAM
original é implementado, explicado e testado, seguido das melhorias propostas. Estes melhorias
consistem na fusão das medições inerciais, a partir de um sensor IMU com um filtro complemen-
tar, para obter uma orientação 3D. Em seguida, a nova orientação é fundida com a estimativa da
pose da LiDAR odometry, utilizando um filtro de Kalman estendido. Esta estimativa melhorada
da pose é alimentada ao algoritmo LiDAR mapping. Para finalizar, é utilizada uma estimativa
GPS como ground truth para validar os resultados. Em geral, os objetivos anteriormente expos-
tos foram alcançados. Os resultados obtidos foram positivos e foram apontadas melhorias para
trabalho futuro.
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Chapter 1

Introduction

In the field of robotics, the construction of truly autonomous mobile robots is a very complex

task starting from the navigation to the motion planing and control. The navigation is generally

regarded as one of the most important issues. Without a good perception of the vehicle’s surround-

ings and localization the other tasks will perform poorly. One of the key enabling technologies for

this purpose is the Simultaneous localization and mapping (SLAM) [79]. SLAM is the computa-

tional problem of building a map of an unknown environment by a mobile robot while navigating

the environment using the map that is currently being updated. The SLAM problem is divided into

two main components: localization and mapping. There are many different types of SLAM algo-

rithms, for which there is no single best solution, The chosen method should take in consideration

the requirements of the specific application such as; nature of the features in the map, resolution,

time constrains, sensors being used, computation power, etc. One popular type in recent years has

been the visual SLAM [78], which uses visual data from sensors such as RGB or RGB-D (Kinect)

[6] cameras for its main source of information, to obtain rich 3D maps, position and orientation

with six degrees of freedom (6-DOF ). In opposite to previous case in certain applications there is

the need to reduce the complexity of the system, where 2D SLAM[21] is used and in this case the

problem is simplified to the movement in a 2D plane. Commonly 2D Laser scanners are used for

this purpose.

The objective of this thesis is to addresses the SLAM problem exploiting 3D SLAM algo-

rithms that process 3D laser scanner’s data for the navigation of mobile robots. The Sequel, 1.1

highlights the motivation for investigating this problem. Section 1.2 states the main objectives

and contributions. Section 2.1 describes the sensors and coordinate systems. Finally, Section 1.3

addresses the structure of the rest of this document.

1



2 Introduction

1.1 Context and Motivation

The motivation for the exploration of this field comes mainly from the growing use of autonomous

agents in modern day robotics, which many times aided with SLAM state estimation techniques.

In parallel, the recent improvements in LiDAR technology brought more powerful and accessible

laser scanners than ever before. Together with its key advantage of being insensitive to ambient

lighting and optical texture in the scenes, allowed the application of LiDAR SLAM technology

in a broad field of robotics. We can note this technology is particularly useful in unstructured

environments or where the use of GPS is unreliable, performs better than purely based dead-

reckoning strategies.

These applications can start from simple domestic vacuum cleaners robots as: shown in Figure

1.1. This model comes equipped with a 2D laser scanner and with the adding of SLAM, makes this

autonomous cleaner more efficient in terms of battery life and navigation abilities. The figure 1.2

shows an example of an ground agricultural robot, developed by INESCTEC. As opposite of the

previous indoor scenario, agriculture environments are much more complex and challenging. They

tend to be less structured, more dynamic and sensors need to endure adverse conditions. Crop

monitoring and harvesting requires robust and accurate sensing, perception and interpretation.

This robot uses a GNSS-free (Global Navigation Satellite System) to navigate trough steep slope

vineyards, due to its challenge conditions, a special SLAM approach was developed VineSLAM,

which is a hybrid system where LiDAR SLAM is used in combination with Visual SLAM to offer

extra redundancy and increase reliability.

Figure 1.1: Mi Robot Vacuum Cleaner Mop
Pro. [4].

Figure 1.2: Agricultural robotic plat-
form from INESC TEC for steep slopes
vineyards. [50].

The previous example gave us the understanding that in more complex environments the use

of hybrid sensor systems can be more advantageous, by producing more robust results. This is

where the second part of this work comes in. It consists in the exploration of sensor fusion,

where we take in account that in different conditions, one sensor can perform better than other

and consequently we can give it a bigger trust. The fused result achieves a better overall result

than the use of both sensors alone. In this work, it was decided to introduce inertial measurements

to one of the works that will be described in the Chapter 4. This motivation comes from the fact

that the latest developments in Micro-Electro-Mechanical Systems, or MEMS [44] made this kind
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of sensors cheaper and compacter than ever. Creating the interest to evaluate if a loose coupling

of this measurements with a system that wasn’t designed originally with them could be upgraded

to achieve a better performance at low cost and without a complex implementation. Finally for

the implementation of this work, the ROS framework was chosen, due to its open-source set of

software libraries and tools. It is specifically designed for robotics’s applications with its ever

growing community.

1.2 Objectives and Contributions

The final goal of this thesis is to understand, exploit and improve recent 3D SLAM navigation

systems based on Light Detection And Ranging (LiDAR) data by adding inertial measurements to

determine the position and orientation (Pose) with six degrees of freedom (6DOF ), hence creating,

in real-time, a 3D map of the surroundings with application to autonomous navigation. For this

purpose a selection of algorithms will be chosen and implemented in C++/Python using the Robot

Operating System (ROS) framework to be further tested on data recorded from a real wheeled

vehicle 5.4.

These algorithms can be divided in different parts, starting by;

• The 3D LiDAR SLAM- necessary to deal with point cloud registration, odometry and map-

ping. The LOAM algorithm 4.2 was chosen for this purpose since it deals with the problems

stated before, it’s open source and compatible with ROS. The theory and the details can be

found in the 4 paragraph.

• State estimation- that will be used to perform the sensor fusion between IMU odometry and

LiDAR odometry. An extended Kalman filter (EKF) was chosen for this purpose, since it

meets the requirements of our application and also its availability on the ROS platform. The

theory can be found in the 3 section and implementations details on 5 section.

• IMU filtering and fusion, inertial measurements are typically noisy, hence there’s the need

to combine the accelerometer and gyroscope data to obtain the angular position with mini-

mized noise. For this purpose a Complementary filter was chosen due to its simplicity, good

performance and also its availability on the ROS platform. The theory and details can be

found in the 5 section.

• GPS odometry- in this work GPS will be used as ground truth to validate the estimated

trajectory. To accomplish this, the raw messages from the GPS need to be converted from

their original standard form to the local ROS frame, to be matched using the evaluation

algorithm. The theory and implementation details can be found in the 2.1.1 and 5 sections.

• Evaluation- finally, in order to properly evaluate the results, the Absolute trajectory error

(ATE) metrics was chosen. The ATE is well-suited for measuring the performance of visu-

al/LiDAR SLAM systems. The theory and details can be found in the 5 section.
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The work for this dissertation was conducted in two different places starting at FEUP in the

first semester and at Poznan University of Technology (PUT) on the second semester. The work

load was partitioned in two distinct phases:

• Literature review and field tests at FEUP: For the first semester, the goal was to become

familiar with the fundamentals of SLAM (in this case 2D LiDAR SLAM) and with the

software to be used throughout this dissertation, namely ROS. To accomplish this, some

field tests were conducted using a real world robot Details about this tests can be found in

the PDI report [39].

• Practical implementation and evaluation at Poznan: On the second semester, most of

the work presented on this thesis was accomplished. Consisted of the study and implemen-

tation of 3D LiDAR SLAM, namely Lidar Odometry And Mapping (LOAM) 4.2. And the

proposed sensor fusion algorithms: EKF 3 and Complementary filter 5.3.1, necessary to ad-

dress the inertial measurements. These previously assessed techniques were evaluated with

field recorded data at Poznan campus. Finally, a critical analysis of the obtained solutions to

solve the studied and implemented navigation problem were conducted. The last step was

the writing of this document.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows:

Chapter 2: Presents the theory behind the sensors, coordinate systems and necessary coordi-

nate transformations to perform between them.

Chapter 3: Introduces the chosen state estimation method, giving us the necessary theoretical

knowledge to understand and implement the Extended Kalman Filter;

Chapter 4: Introduces the 3D SLAM problem , describes the theory behind the LOAM algo-

rithm;

Chapter 5: Dives into the practical side of this dissertation exposing the original system

overview and developed solution. Describes its implementation using the ROS framework and

the required hardware and software components. As next step, exposes the implementation of

the sensor fusion component’s. Namely the Extended Kalman Filter and Complementary filter;

Finalizing by resenting the chosen Evaluation metrics and results;

Chapter 6: Provides the overall conclusions and possible future research directions.



Chapter 2

Sensors and coordinate systems

Autonomous vehicles can be equipped with a broad variety of sensor systems. Each particular

sensor can have its own specific norms and coordinate systems. This must be carefully taken

into account, to make sure all the sensors are "speaking" the same language and conversion steps

should be added if necessary. We can mention the infamous example of the Mars Climate Orbiter

that burned up in the Martian atmosphere in 1999 [30] because of the use of the wrong unit system

in the acceleration data. The following section gives an overview of the sensors chosen for this

work and its systems relevant for navigation.

2.1 Coordinate systems

2.1.1 Poses and Coordinate Frames

A key requirement to any robotics application, is the efficient track of the positions and velocities

of objects in space. For this purpose the concept of coordinate frames was introduced. Its function

is to allow the efficient exchange of information between interfacing systems. This chapter will

give an introduction to the systems relevant to this work.

As first step conventions need to be defined, for describing locations and orientations in three

dimensions. This need emerges from the fact that depending on how the axes are initially ar-

ranged, two possible incompatible coordinate systems can be created. This two systems are know

as the left-handed coordinate system and the right-handed coordinate system, figure 2.1. Both

conventions can be accepted, although right-handed systems are more common in the world of

robotics, including on ROS- making the right-handed coordinate system the default of this work.

The direction of the z axis can be determined on a right handed coordinate system, by pointing

the index finger of the right hand along the positive x axis, the curved palm toward the positive y

axis. Finally, the thumb will point to the direction of positive z. The same procedure is valid for

the left-handed coordinate system, using the left hand.

After this, the robot pose can be address , that is the common abbreviation for position and

orientation of an object in space. This description must always be made in relation to a coordinate

frame. Typically in robotics application this track is needed to be done through multiple coordinate

5
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Figure 2.1: Right-hand rule for determining the direction of positive rotations around an axis. [16].

frames. The frames are typically organized in a tree, starting by the "World" frame. This frame is

know as the Inertial Reference Frame. An inertial reference frame is a frame in which Newton’s

laws of motion are valid. It is a well known fact of classical mechanics that any frame moving at

constant velocity and without rotation with respect to an inertial frame is also inertial [72].

There are different inertial coordinate systems that can be used depending on the type of the

application. Figure 2.2 gives the example of the Geodetic, ECEF and Scene ENU coordinate

systems.

In case of the global absolute position, there is the Geodetic (Lat/Long) Coordinate System,

used for example on the GPS systems. The "geodetic" coordinate system, divides the planet in

an imaginary grid, constituted of parallel East/West lines of latitude and North/South lines of

longitude that intersect at the poles. The Latitude and longitude lines are sorted by the angle they

form with respect to a reference. The Latitude reference is the Equator and longitude reference is

the Prime Meridian, where both start at zero. Due to the spherical shape of the planet the longitude

lines are not parallel, the horizontal distance for a degree of longitude depends on the location.

For local frames we have the Scene East-North-Up (Scene ENU) Coordinate System. This

is the most basic coordinate system. That defines a simple plan, that uses linear X, Y and Z

coordinates to locate elements with respect to the origin. This coordinate system doesn’t have a

direct attention to the curvature of the earth, being better used for smaller areas (less than 4 km).

This frames and the remaining non inertial frames, follow the REP-105 [56] (Coordinate

Frame Conventions). This convention defines four principal coordinate frames: base_link, odom,
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Figure 2.2: Representation of the Geodetic and the ECEF coordinate systems. [18].

map, and earth. As can be seen in the 2.3 figure. This tree allows the connection of multiple robots

to the same system on the earth frame. The base_link frame is rigidly affixed to the robot. The

map and odom frames are world-fixed frames whose origins are typically aligned with the robot’s

start position. The map frame can have discontinuities, but it’s the frame with the most accurate

position estimate for the robot and should not suffer from drift. The odom frame drifts over time,

but is guaranteed to be continuous and is accurate enough for local planning and navigation. Any

other secondary frames created by sensors mounted rigidly on the robot should be connected to

the base link frame. Ideally, this tree should mirror close as possible the real physical connections

between the objects involved. Its important also to refer the REP-103[55] convention (Standard

Units of Measure and Coordinate Conventions), as it defines remaining details and the drawing

convention, the x-axis in red, the y-axis in green and the z-axis in blue. This definitions will be

followed carefully for the implementation of this work.

Figure 2.3: Relationship between Frames, followed by the REP-105 convention. [18].

2.1.2 Coordinate Transformation

Consider now that a tree can be created and connected with the previous standards. The mechanism

to translate a point between any two coordinate frames needs to be created. To accomplish this, the

representation of the pose needs to be defined together with the mechanism for converting from

parent to child coordinate frames and vice-versa. This is where the coordinate transformations
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comes in. The pose of an object, robot or simply a coordinate frame, needs to include both position

and orientation relative to its parent coordinate frame. The position representation is simple, three

coordinates can be used to represent a translation of the object referent to the axes of the parent

coordinate frame. On the other side, the orientation representation is more complex, the following

norms and conventions will describe this problem.

2.1.2.1 Euler Angles

There are several approaches to represent orientation, each with its own advantages and disadvan-

tages. Euler angles are the most intuitive form of representation. Figure 2.4 illustrates the basic

idea. Orientation is expressed as a sequence of three rotations around the three coordinate axes.

These three rotations are traditionally referred to as roll, pitch and yaw. Working with Euler an-

gles, requires special attention, since the order that the rotations are applied affects the final result.

According to this it is necessary to define the order that the rotations are executed, together with the

reference frame, if it is the relative to the parent coordinate frame or performed around the axes

aligned with the previous rotations. After combining all the possibilities, there are twenty four

possible conventions for specifying Euler angles. Although being intuitive and easy to visualize,

Euler angles are inconvenient to implement from a mathematical point of view. The mapping from

spatial orientations to Euler angles is discontinuous. In certain cases small changes in orientation

can cause big jumps. This can be a problem if a smoothly update the orientation is needed.

Figure 2.4: Axis-angle representation of orientation. [16].

2.1.2.2 Axis Angle

The axis angle approach encodes the orientation as a single rotation θ around a vector unit vector

[kx,ky,kz]T . Simplifying the three rotations system presented by Euler angles. This representation

can be better seen in the figure 2.4. This system will be useful in order to better understand the

Quaternions system.

2.1.2.3 Quaternions

Quaternions are the most widely used method for encoding orientation. They aren’t as intuitive as

Euler angles, but they support efficient computation and a spatial mapping without discontinuities.
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Similar to the Axis Angle representation a quaternion can be presented as an four element array

q = (x,y,z,w) where we can obtain the individual components by the following equations;

x = kxsin(θ/2) (2.1)

y = kysin(θ/2) (2.2)

z = kzsin(θ/2) (2.3)

w = cos(θ/2) (2.4)

This type of representation obtained by equations (2.1)-(2.4) is also know as unit-quaternion

since the |q| is equal to 1.

2.1.2.4 Rotation Matrices

For a more efficient implementation this rotations can be accomplished through matrix operations

[70]. This can be done by encoding the desired rotation around an axis as a 3 × 3 rotation matrix.

Then the multiplication of this matrix by a point will create the desired rotation around the origin.

The following three matrices correspond to rotations around the x axis or roll (φ), y axis or

pitch (θ), z axis or yaw (ψ) axes respectively:

Rx(φ) =

1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

 (2.5)

Rx(θ) =

 cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

 (2.6)

Rx(ψ) =

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0)

0 0 1

 (2.7)

The product of this three Rx,Ry,Rz matrices, results in the Rxyz matrix. Along with it, it is

possible to represent any desired orientation. This matrix will be responsible for the rotations,
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from the body frame of the robot to the world frame, in the implementation of this work.

Rxyz(φ ,θ ,ψ)=

cos(ψ)cos(θ) sin(ψ)sin(θ)− cos(ψ)cos(θ) sin(ψ)sin(θ)cos(θ)+ cos(ψ)sin(θ)

sin(ψ)cos(θ) sin(ψ)sin(θ)+ cos(ψ)cos(θ) sin(ψ)sin(θ)cos(θ)− cos(ψ)sin(θ)

−sin(θ) cos(θ)sin(φ) cos(θ)cos(φ)


(2.8)

In this work the body-frame angular rates also need to be converted to the world frame. This

can be solved by expressing the angular rates, represented by (p,q,r) in terms of the derivatives

of the Euler angles, this rotational transformations are carried out as follows:

p

q

r

=

φ ′

0

0

+

1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)


 0

θ ′

0

+

+

1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)


 cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)


 0

0

ψ ′



=

1 0 −sin(θ)

0 cos(φ) sin(φ)cos(θ)

0 −sin(φ) cos(φ)cos(θ)


φ ′

θ ′

ψ ′



(2.9)

After this, a inversion is performed on the matrix 2.9 and results in the final matrix 2.10. This

matrix expresses the derivatives of the three angular position states in terms of the angular positions

φ and θ and the body rates p, q and r. This matrix allows the computation of the necessary rotations

on the angular components. As well as the previous matrix, it will be used on a practical work to

allow the conversion from the body frame of the robot to the world frame.

φ ′

θ ′

ψ ′

=

1 sin(φ)sin(θ)/cos(θ) cos(φ)sin(θ)/cos(θ)

0 cos(φ) −sin(φ)

0 sin(φ)/cos(θ) cos(φ)/cos(θ)


p

q

r

 (2.10)

In the implementation of this work, the geodetic coordinate system needs to be converted to

the local frame, to the ENU standard. This conversion is performed in two steps [25], first the

geodetic coordinates latitude φ , longitude λ and , height h are converted to Earth Centred Earth

Fixed (ECEF) using the following formulas:

X = (N(φ)+h)cos(φ)cos(λ ) (2.11)

Y = (N(φ)+h)cos(φ)sin(λ ) (2.12)
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Z = (
b2

a2 N(φ)+h)sin(φ) (2.13)

N(φ) =
a√

1− e2sin2φ
e2 = 1− b2

a2 (2.14)

Where, a is the the equatorial radius (semi-major axis) and b is the polar radius.

The second step is to convert the ECEF coordinates to ENU, this is achieved using a a rota-

tion matrix, where the displacements in ECEF coordinates are transformed to ENU coordinates.

The orientation of ENU (de,dn,du) coordinates is determined by rotating the ECEF (dx,dy,dz)

coordinates: firstly about the z axis by λ degrees and then the new y axis b φ represented in the

following matrix:

de

dn

du

=

 −sin(λ ) cos(λ ) 0

−sin(φ)cos(λ ) −sin(φ)sin(λ cos(φ))

cos(φ)cos(λ ) cos(φ)sin(λ ) sin(λ )


dx

dy

dz

 . (2.15)

2.2 Sensors

2.2.1 LiDAR

Figure 2.5: LiDAR physics principles representation. [3].

The term LiDAR (Light Detection And Ranging) appeared first in 1963. It was a combination

of the words “light” and “radar". Its initial use mostly fell in military and aerospacial fields and its

development fell mostly into remote sensing applications [38]. Today LiDAR technology matured

much since then, especially thanks to the latest race towards the autonomous car and robotic

vehicles. New tighter requirements were created, giving the example of automotive systems that

require a combination of long range, high spatial resolution and real time performance with the
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addition of tolerance to solar background noise. This leads to the development of different working

principles for different possible use cases, including the modern rotating scanners, with higher

scanning frequency and multiple stacked detectors.

The working principle continues to be the same, the reflection of light and calculation of

the time-of-flight (TOF), as can be better seen on the 2.5. By projecting an optical signal onto

an object/surface the reflected backscattered signal is received and processed to determine the

distance. This allows the creation of 3D point clouds of the soundings. The formula is very

simple, distance D to the target is measured based on the round-trip delay of light waves that

travel to the target.

D = c ·∆T (2.16)

where: D = The distance of the object c = Speed of light ∆ = Time required by the light to

travel

2.2.1.1 Modulation Methods

There are 3 main methods that can be applied [3]; modulation of the intensity, phase and frequency

of the transmitted signal. The final step is the measurement of the delay for that modulation pattern

to appear at the receiver.

• The modulation of the intensity consists of the emission of a short light pulse onto a tar-

get, the arrival time of the pulse’s reflection at the detector determines the distance. This

approach provides resolutions around the centimeter-level over a large window of ranges.

This pulses can have high instantaneous peak power, but very short duration, on the nanosec-

ond level. This enables the reach of long distances, maintaining average power under eye

safety limits.

• The second approach uses the amplitude modulation of a continuous wave (AMCW). The

phase modulated on the amplitude of the emitted and received waves are compared and it’s

offset measured to calculate the distance. The precision is similar to the previous mentioned

method but only to medium ranges. The worst performance comes due to the limited range

imposed by the 2Pi ambiguity [71], in frequency modulation. Also the reflected signal

coming from distant objects is strongly attenuated. Since the emission is continuous, the

amplitude is lowered to remain below the eye-safe limit.

• The third approach applies the technique of frequency modulated continuous wave (FMCW).

Within this method the modulation and demodulation are done on the frequency domain,

this allows the detection by a coherent superposition of the emitted and revived waves. This

method is more robust and consequently, it achieves resolutions, between 150 µm to 1 µm

at long distance.

Independent of the modulation method, LiDAR can also be classified on the basis of the output

dimensions,that can be 1D,2D or 3D. The typical output data format and file extension from the
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scanned LiDAR point cloud data comes in the (.LAS), derived from laser. As all physical sensing

systems, LiDAR also suffers from noise, creating 2 types of erros: Systematic error: This kind

of error creates permanent deviations on the measurements in a systematic and predictable way.

These errors can’t be eliminated, but their influence can be compensated. Statistical error: A sta-

tistical error occurs when for the exact same measurement experiment the LiDAR reads different

values. This typically occurs due to the environment and physics parameters, like; refractions,

diffraction, etc.

2.2.2 Inertial Measurement Unit

Figure 2.6: Interior of a inertial measurement unit, using MEMS technology. [31].

The inertial measurement unit, known as IMU, typically consist of two 3-axis sensors, an

accelerometer and a gyroscope. Optionally, a third sensor can be present- a magnetometer. In the

first form they are capable of 6 Degrees of Freedom (6-DOF), by measuring acceleration (ms−2)

and angular velocity (rad/s). In the second case by adding the magnetic orientation (µTesla) the

degrees of Freedom increase to 9-DOF. A system composed of an IMU and a navigation computer

can also be known as INS.

This sensing systems are very popular in robotics: being exploited from inertial-only naviga-

tion [11], attitude estimation [5], and visual-inertial navigation [19]. Also, they are used in all

types of smart mobile devices in motion and orientation tracking [75],[51]. The typical sensors

widely used nowadays are micro-electro-mechanical-systems more known as MEMS. Advance-

ments in the field produced cost effective accelerometers, gyroscopes and magnetometers with the

advantage of reducing cost, size and weight. A disadvantage that should be referred in the case of

low cost MEMS based IMUs is that they are usually affected by non accurate scaling, sensor axis

misalignments, cross-axi sensitivities, and non zero biases. This creates the need of a careful cali-

bration in order to try to identify these quantities. Even though the sensors are typically calibrated

in the factory, (possibly time-varying) errors can still remain.
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2.2.2.1 Accelerometer

An accelerometer works by measuring the specific force f b associated with the body. This force

is the difference between the true acceleration in space with the acceleration caused by gravity.

The most common MEMS accelerometer is constituted by a small plate attached to torsion levers.

The acceleration changes, moving these plates and changing the capacitance between them. Con-

sequently, the capacitance change is proportional to the linear acceleration.

f b = r′′−G (2.17)

where: G = Is acceleration due to gravity r = the position vector

2.2.2.2 Gyroscope

The function of the gyroscope is to obtain the orientation of the body. It achieves this by measur-

ing the angular rate that corresponds to the rotation of body within respect to the inertial frame

expressed in body frame. The typical sensing mechanism of a MEMS gyroscope is a vibrating,

resonating ring or lever. When an angular rotation is applied the vibration frequency is changed

due to the Coriolis force [17]. This force is described by the following equation;

Fc =−2m ·ω · v (2.18)

where: Fc = The vector sum of the physical forces acting on the object. m = Mass of the object.

ω = The angular velocity, of the rotating reference frame relative to the inertial frame. v = Velocity

relative to the rotating reference frame.

2.2.2.3 MEMS IMUs errors

As sated before MEMS IMUs are vulnerable to errors, that can be partitioned as follows;

• Accelerometer Bias error; This error affects the output of the accelerometer with a constant

offset. This offset can change slightly after each run.

• Misalignment and Non orthogonality; In the other words it means that the axis of the sensors

can be slightly misaligned relatively to the body, producing deviations on the real measure-

ments.

• Accelerometer Scale Factor error; In this case the error is caused by the scaling factor that

is used to convert the actual reading of the sensor to the measurement unit. This error is

proportional to the acceleration measured.

• Gyroscope Drift; This drift or also known by bias error, results from a constant offset from

the real measurement. Like in the case of the accelarometer, this bias varies after each run.
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• Gyroscope Scale Factor error; The error is caused by the scaling factor that is used to convert

the actual reading of the angular rate to the measurement unit. This error is proportional to

the sensed.

• Random Noise; This error is the random noise associated with all the measurements of

physical quantities.

• Nonlinearity due to Temperature variations; Due to is small size, the operation of the MEMS

technology can be affected by temperature variations.

2.2.3 Global Positioning System

Figure 2.7: Global positioning system (GPS), satellites orbits representation. [27].

The global positioning system [26], more known as GPS, is a satellite based navigation system

originally developed for military purposes that entered in full service in 1995. As legacy from

its initial development, there are two different modes of quality of service, one for military and

another for civilian uses. Initially, there was the policy of “selective availability” that allowed

the degradation of the quality of the signals whenever and wherever was defined by the military.

Nowadays this policy was removed, making any person with a simple GPS-enabled smartphone

able to reach accuracy’s within 4.9 meters.

The GPS system has three distinct components; the satellites or space segment, the control

centers or control segment and GPS receiver modules or user segment.

The modern GPS space component consists of 27 satellites, from 24 original, orbiting in six

different orbital planes. Each plane has four satellites- as can be seen in the figure 2.7. The

average orbital radius of the satellites is of 20200 km. This arrangement was planed to make

sure that at least four satellites are visible in any point of earth. The GPS satellites communicate
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by sending continually navigation messages at rate of 50 bit/s. The information contained on this

messages starts from; the time when message was sent, precise orbital information and eventually-

the general system health and rough orbits of all GPS satellites. The data format received follows

the NMEA [49] message standard. The control center function is to continuously check the health

of the satellites and to performs corrections when needed. Finally, the receiver calculates the

transit time of each message and with the use of it, computes the distance to each satellite.

2.2.3.1 Calculation of Position

Figure 2.8: GPS trilateration technique . [29].

GPS receivers use the Trilateration technique, that can be better seen on the figure 2.8. After

the calculation of the distance from one satellite, the receiver can assume that is on a surface of

a sphere centered by the satellite. with the radius equal to it’s distance. As can be understood,

one satellite is not enough to discover the real position of the receiver. But with the addition of

more spheres, the initial area of the sphere can be reduced to the area of a circle in case of the

intersection of two spheres (if it intersection happens at more than one point). If three spheres

intersect, the result will be two points. Finally, with the intersection of four spheres the position of

the GPS receiver will only be one point, with the assumption of no errors. In reality, this is a bad

assumption since the GPS system is affected from a broad range of errors.

2.2.3.2 Errors in GPS

• Clock and Calculation Errors; GPS satellites, are equipped with highly accurate atomic

clocks. Although, in reality there is also a particular inaccuracy problem derived from the

synchronization of all clocks in satellites. In the other end of the clock in the receiver side,

there is usually a low cost quartz oscillator, which has bad accuracy. The calculations on the

microprocessors in the receivers also cause round off errors.
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• Atmospheric Effects; The atmosphere has a considerable influence on the accuracy of the

GPS signal. The major effects occur from delay in ionosphere and troposphere. In iono-

sphere, the presence of electrons and other charged particles affect the propagation of the

signals- these charges distribution often are affected by the solar activities. In the tropo-

sphere the water vapor causes the refraction of the signals, creating phase delay.

• Multipath; Reflections from geographical objects and buildings are also received in the GPS

receiver. These received reflected signals interfere with the pure signals and add errors in

real estimated position. Multipath is a major issue in navigation in cities.

• Relativity; Relativity effects have certain contribution to the GPS inaccuracies. The grav-

itational time dilation makes a satellite clock run slightly faster than an earth based clock.

The Sagnac effect [63] also creates time discrepancies due to rotation relative to receivers

on earth.

• Measurement Noise; The measurement noise is created in the stages of signal propagation

and processing. Some sources of this error are the receiver noise and quantization noise.

The previous errors can be added in the worst case and accumulate up to ±15m, without con-

sidering the case of selective availability. Trying to contradict this effects, satellite based augmen-

tation systems, as EGNOS [20], are being deployed and can improve accuracy erros up to or less

than ±5 m. These systems work by compensating the ionospheric effects and also improve orbit

and clock errors.
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Chapter 3

Stochastic Estimation

Robotics is the science of perceiving and manipulating the physical world through computer-

controlled mechanical devices. In general, this robotic systems need to face the enormous amounts

of uncertainty of the physical world. These uncertainties can be divided in three major elements:1)

Sensors, which are limited in range, resolution and simultaneity subject to measurement noise; 2)

Actuators that are subjected to wear-and-tear, with limited precision and subject to control noise;

and the model of the system, which is used for the control software of the robot, that is an abstrac-

tion of the real world, making it just an approximation due to unknown variables, correlations or

computational limitations. Robots are real-time systems, which limits the amount of computation

that can be carried out. The accuracy is often a question of the costs of a system. Traditionally,

in the past many of this uncertainties have mostly been ignored in robotics. However, as robots

complexity increases, the ability to cope with uncertainty is critical for building successful robots.

This chapter gives an introduction and overview of stochastic estimation topics that are relevant to

this thesis.

3.1 Basic Stochastic and Robot concepts

3.1.1 Stochastic Robot Model

In a Stochastic system, typically all the relevant characteristics of robot state are encoded in a so

called state vector X . This state vector may contain (depending on the specific robotic system)

static and dynamic variables such as:

• Pose (location and orientation).

• Velocities and accelerations (of the robot itself, but also of its manipulators).

• Configuration of its manipulators.

• Environmental variables such as landmarks.

• Condition of robot battery, heat, etc.
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In this work the characteristics of robot state are encoded in a 15-dimensional state vector, X .

That comprises the vehicle’s 3D pose, 3D orientation, and their respective velocities, and linear

acceleration. Rotational values are expressed as Euler angles. The state vector is represented as

follows:

X = [x,y,z,roll, pitch,yaw,x′,y′,z′,roll′, pitch′,yaw′,x′′,y′′,z′′]. (3.1)

Typically, the robotic model is described after the discretization by a discrete-time system.

In this case, it is a standard 3D kinematic model derived from Newtonian mechanics, where the

following equations represent the heterogeneous system model:

Xk+1 =



xk + x′k ·∆T + 1
2 · x

′′
k ·∆T 2

yk + y′k ·∆T + 1
2 · y

′′
k ·∆T 2

zk + z′k ·∆T + 1
2 · z
′′
k ·∆T 2

rollk + roll′k ·∆T

pitchk + pitch′k ·∆T

yawk + yaw′k ·∆T

x′k +X ′′k ·∆T

y′k +Y ′′k ·∆T

z′k + z′′k ·∆T

roll′k

pitch′k

yaw′k

x′′k

y′′k

y′′z

. (3.2)

3.2 The Kalman Filter

The Kalman filter (KF) was invented in the 1950s by Rudolph Emil Kalman [61], as a technique

for filtering and prediction in linear systems, which is based on the implementation of the Bayes

filters [53]. It is an optimal estimator for linear systems, subject to zero mean Gaussian noise. The

Kalman filter addresses the general problem of trying to estimate the state X of a discrete-time

controlled process that is governed by the linear system state transition equation 3.3.

x−k+1 = Akxk +Bkuk +wt (3.3)

Where A is the n × n system matrix , B is the n × m input gain matrix, with m dimension equal

to the input vector uk , xk is a n-dimensional state. wk is a n-dimensional vector of the zero mean
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Gaussian plant noise. which is added to take in consideration the uncertainty of the model and the

actuators.

The measurement equation is given by

zk = Hxk + vk (3.4)

H is an q × n matrix, that relates the state to the measurement zk, q has the same dimension

of the measurement vector zk. vk is a q-dimensional zero mean Gaussian noise vector, known by

measurement noise vector. This vector incorporates the uncertainty of the measurement.

The algorithm, consists of two parts: the prediction step and the update step. In the update

step, the state is projected forward using the equation 3.3 However, the uncertainty in the state also

needs to be propagate forward. Since the state is a Gaussian distribution, and is fully parameterized

by a mean x̂k and covariance PK , we can update the covariance as in equation 3.5.

P−k = A ·Pk ·AT +Q (3.5)

where, A is the same matrix used to propagate the state, and Q is random Gaussian noise.

Equations 3.3 and 3.5 explore the property of Gaussian’s distributions: adding two Gaussians

results in a Gaussian, and applying a linear transformation to a Gaussian also results in a Gaussian.

After the predict phase, the original Gaussian distribution defined by by xk and Pk becomes a new

Gaussian, now characterized by xk+1 and Pk+1. This concludes the prediction step of the algorithm.

The update is also the correction step of the Kalman Filter. Where a measurement of an

observable variable is made and fused with the previous estimate. First, the measurement of the

system is made using a linear measurement model in the equation 3.4 After this, the Kalman Gain

is calculated, depicted in Equation 3.6

K = P−HT (HP−HT +Q)−1 (3.6)

Next , the calculation of the difference between the expected observation, and the actual ob-

servation is performed, this is known as residual or innovation equation 3.7.

rk = (zk−Hx̂−k ) (3.7)

Finally, by combining Equations 3.6 and 3.7. The Equation 3.8 corrects the mean, while

equation 3.9 corrects the covariance.

x̂k = x̂−k + rk (3.8)

Pk = (I−KkHk)P−k (3.9)

The figure 3.1 summarizes the previous steps.
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Figure 3.1: The Kalman Filter algorithm.[37].

3.3 The Extended Kalman Filter

The extended Kalman filter (EKF) is also a Gaussian filter and consists basically in the applying

a linearization around the current value of the state estimate when the process is nonlinear. In

this case, it is considered a nonlinear dynamic system, described by the nonlinear state transition

function 3.10.

xk+1 = f (xk,uk)+wk (3.10)

The xk+1 term represents the robots system state at time k, f is a nonlinear state transition func-

tion and wk is the process noise, which is assumed to be normally distributed. The uk represents

the control inputs. The measurements can be described as in equation 3.11

zk = h(xk)+ vk (3.11)

zk is the measurement at time k, h is a nonlinear sensor model that maps the state into mea-

surement space, and vk is the normally distributed measurement noise.

The first stage in the algorithm, is the prediction step, that projects the current state estimate

and error covariance forward in time, shown as equations, 3.12 and 3.13.

x̂−k = f (x̂k−1,0) (3.12)

P−k = AkPk−1AT
K +WKQk−1W T

k (3.13)

f can be better described as a standard 3D forward kinematic model derived from Newtonian

mechanics. The estimate error covariance, P, W and A are the process jacobians at step k, and

perturbed by Q, the process noise covariance.
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The next step is to calculate the Kalman gain, K, this is achieved by using H and V , that are

the measurement Jacobians at step k, the measurement covariance, R, and P̂K , equation 3.14.

Kk = P−k HT
k (HkP−K HT

k +VkRkV T
k )−1. (3.14)

On the correction step the gain is used to update the state vector and covariance matrix, equa-

tion 3.15.

x̂k = x̂−k +Kk(zk−h(x̂−K ,0)) (3.15)

As final step the Joseph form covariance update equation is used to promote filter stability by

ensuring that PK remains positive semi-definite, equation 3.16.

Pk = (I−KkHK)P−K . (3.16)

Figure 3.2: The Extended Kalman Filter algorithm.[12].

The figure 3.2 summarizes the previous steps.
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Chapter 4

3D Simultaneous Localization and
Mapping

4.1 Problem

Simultaneous localization and mapping (SLAM), is the computational problem of building a map

of an unknown environment by a mobile robot while navigating the environment using the map

that is currently being updated. In practical terms this is a process that fuses sensor observations

of features, landmarks and dead-reckoning information over time. Simultaneously the location of

the robot in an unknown area is estimated and a map is built that includes the detected feature

locations. This process is affected from both noisy controls and observations. The figure 4.1 illus-

trates this problem, where a robot moving through an environment is taking relative observations

of a number of unknown landmarks, that are used for navigation reference.

Figure 4.1: The of essential the SLAM problem.[68].

This process can be described with a probabilistic approach, as can be seen in the equation

4.1. where; m is the probability distribution describing the map, xk the robot’s pose, Z0:k the set

of previously observed measurements, U0:k the set of control inputs already applied to the robot,
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x0 it’s initial pose. The objective is to compute an estimate of x and the map m over the discrete

time steps k. For this purpose the simultaneous estimate of both robot and landmark locations is

required, but in reality the true locations are never known or measured directly.

P(xk,m|z0:k,U0:K ,X0) (4.1)

As the example used before shows, there are many proposed systems, which use different

kind of sensors and algorithms, for which there is no single best solution. In this work the 3D

LiDAR SLAM is explored. LiDAR was the preferred technology, because of the advantages of

the laser sensors, that have high measurement accuracy, strong anti-interference ability as well

as wide sensing range. It allows laser-based SLAM to have higher positioning accuracy and bet-

ter robustness. In this work, no reference landmarks are previously given to the system and the

position estimation relies mainly in online extracted features. The pose update is calculated by

the matching points and consequently features extracted between consecutive frames of the point

cloud provided by the laser scanner. For this purpose the LOAM algorithm is introduced. In this

chapter, the inner working and main features of Loam algorithm that are considered important for

this work will be analysed and explained. For more detailed explanation, the original LOAM [80]

article should be consulted.

4.2 LOAM

The LiDAR Odometry and Mapping in Real-time (LOAM) [80] algorithm, was initial proposed

to solve the problem of real-time odometry and mapping using range measurements from a 3D

LiDAR system. This problem is complex since the range measurements are received at different

times, together with motion estimation errors. This can cause miss-registrations on the result-

ing point cloud. Previously this problem was only solved efficiently with off-line batch methods,

often using loop closure to correct for drift over time [9][15]. The LOAM algorithm is able to

achieve both low-drift and low-computational complexity, without the requirement of high accu-

racy ranging or inertial measurements. This level of performance comes from the division of the

complex problem of simultaneous localization and mapping in two algorithms. Instead of opti-

mizing a large number of variables simultaneously. One algorithm performs odometry at a high

frequency, with less accuracy, having the objective of estimating the velocity of the LiDAR. The

other algorithm runs at a lower rate performing fine matching and registration of the point cloud.

The combination of both algorithms allows the mapping in real-time. The problem addressed by

LOAM is commonly known as ego-motion estimation- that is the motion estimation using visual

data. In this case, this data is a point cloud perceived by a 3D LiDAR, where simultaneously a map

for the traversed environment is built. It starts by assuming that the LiDAR is pre-calibrated, the

angular and linear velocities of the LiDAR are smooth, continuous over time and without abrupt

changes. The authors defined as convention, a sweep as being one complete LiDAR scan, Where
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k indicates the individual sweeps, and Pk is the point cloud perceived during a sweep k. Two

coordinate systems are defined as follows;

• LiDAR coordinate system L : This is a 3D coordinate system with it’s origin at the geometric

center of the LiDAR. The x-axis is pointing to the left, the y-axis is pointing upward, and

the z-axis is pointing forward. The coordinates of a point i, i ∈ Pk, in Lk are denoted as XL
(k,i).

• World coordinate system W : It is also a 3D coordinate system coinciding with L at the initial

position. The coordinates of a point i, i ∈ Pk , in Wk are XW
k,i .

After this, the LiDAR odometry and mapping problem can be better defined as: given a se-

quence of LiDAR clouds Pk , compute the ego-motion of the LiDAR during each sweep k, and

build a map with Pk for the traversed environment.

Figure 4.2: Block diagram represents the different algorithms which constitutes the LOAM sys-
tem. [7].

The figure 4.2 presents a diagram of the LOAM system. Where first, the P̂ points received in a

laser scan are registered during each sweep in L. This combined point Laser cloud, acquired dur-

ing the sweeps k forms Pk. At this point the further processing of Pk is divided in two algorithms.

First, the LiDAR odometry receives the point cloud and estimates the motion of the LiDAR be-

tween two successive sweeps. With this motion, the distortion present in Pk is corrected. This

algorithm performs the previous steps at a frequency around 10Hz. After this, the LiDAR map-

ping receives the final output from the odometry and performs the further processing. It consist in

the fine matching and registering of the undistorted point cloud onto a map, this process runs at

a frequency of 1Hz. The last step consist in the pose transforms integration, where the published

pose from both algorithms is integrated, generating a transform output with the same frequency as

the odometry, regarding the LiDAR pose with respect to the map.

4.2.1 LiDAR Odometry

The odometry algorithm can be divided in three distinct steps; the first is the feature point extrac-

tion, followed by feature Point Correspondence and motion estimation step.

4.2.1.1 Feature Point Extraction

This step consist in the extraction of feature points present on the LiDAR cloud, Pk. The feature

points are extracted from individual scans Pk and selected depending on it’s co-planar geometric
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relationships. The desired points to be selected, are the ones present on sharp edges and planar

surface patches. This process starts by analysing the smoothness of the local surface, this is

accomplished by sorting the points present in a scan, using a defined threshold called C values.

The feature points inside the defined maximum threshold, are labeled as edge points, in opposition

the points within the minimum threshold, correspond to the planar points. The default threshold

for C defined by the authors is 5 ·10−3.

c =
1

|S| · ||XL
(k,i)||

∑
j∈S. j 6=i

||(XL
(k,i)−XL

(k, j))|| (4.2)

The equation 4.2 represents the calculation of the C values, where;

i is a point in Pk.

S is the set of consecutive points i returned by the laser scanner in the same scan.

XL
k,i The coordinates of a point.

The individual scans are divided into four identical sub-regions. Where each one only can

provide in maximum two edge points and four planar points. The selection of these points needs

to obey the following restrictions to ensure an even distribution of the feature points in the envi-

ronment;

• The selected edge or planar points cannot exceed the maximum quantity defined for the

equivalent sub-region.

• The surrounding points were not selected yet.

• Cannot make part of a surface patch perpendicular within 10◦ to the laser beam, or on the

boundary of an obstructed region.

The figure 4.3 shows an example of the extracted feature points from a corridor, using this

method. The edge points can be seen in yellow and planar points in red color.

Figure 4.3: An example of extracted edge points (yellow) and planar points (red) from LiDAR
cloud taken in a corridor. The LiDAR is moving towards a wall on the left side of the figure,
resulting in motion distortion on the wall. [22].
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4.2.1.2 Feature Point Correspondence

This step starts by estimating the motion of the LiDAR within a sweep. This process can be seen

on the figure 4.4. The current time stamp of a sweep k is represented by tk. After receiving a sweep,

the point cloud Pk is projected to the future, to tk+1. Then, this projected point cloud represented

by P̄k, is compared during the next sweep k+1 with the newly received point cloud, Pk+1 and the

motion of the LiDAR is estimated. The motion estimation is a recursive process where the 6 DOF

motion is determined using the points received on the on going sweep, where at the beginning of

sweep k+ 1, the cloud Pk + 1 is empty and grows as more points are received. At each iteration,

the detected edges εk+1 and planar points Hk+1 are projected to the beginning of the sweep using

the currently estimated transform. For this purpose the projected edge’s ε̃k+1 and planar points

H̃k+1 are stored on P̄k in a 3D KD-tree [13]. This allows higher efficiency in the calculation of the

closest neighbour positions of the featuring points in P̄k.

To be considered an edge line, two edge feature points need to be found. For this purpose, the

correspondent close neighbour of a point i, present in the projected point cloud ε̃k+1 needs to be

compared with its closest neighbor in P̄k represented by j, and l that is the closest neighbor in the

two consecutive scans. This two points ( j, l) form the correspondence of i. To confirm the correct

relation, the local surface is verified using the equation 4.2.

To be considered a planar patch, three feature points need to be found. Similar to the previous

method, this points need to be verified. Starting by the closest neighbor of i in P̄k, referred as j.

Then, another two points, l as the closest neighbors of i, in the same scan of j and m as the other,

in the two consecutive scans to the scan of j. This ensures that the three points are non-collinear.

To confirm this relation, the local surface is verified again using the equation 4.2.

After finding the correspondences of the feature points, the following equations are used to

compute the feature points distance to its respective correspondences;

For a point i ∈ ε̄k+1, if ( j, l) is the corresponding edge line, j, l ∈ P̄k, the point to line distance

can be computed as:

dε =
|(X̃L

(k+1,i)− X̄L
(k, j)) · (X̃

L
(k+1,i)− X̄L

(k, j))|
|X̄L

(k,i)− X̄L
(k, j)|

(4.3)

where X̃L
(k+1,i) , X̃L

(k, j)) , and X̃L
(k,l)) are the coordinates of points i, j and l in L.

Then, for a point i ∈ H̃k+1, assuming ( j, l,m) is the corresponding planar patch, j, l,m ∈ P̃k

,the point to plane distance can be:

dH =
|(X̃L

(k+1,i)− X̄L
(k, j)) · ((X̄

L
(k, j)− X̄L

(k,l)) · (X̄
L
(k, j)− X̄L

(k,m)))|
|(X̄L

(k,i)− X̄L
(k,l)) · ((X̄

L
(k, j)− X̄L

(k,m))|
(4.4)

where X̃L
(k,m)) is the coordinates of point m in L.
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Figure 4.4: Projected point cloud. The blue segment represents the point cloud perceived during
sweep k, Pk . At the end of sweep, this cloud is projected to the time stamp tk+1 to obtain P̄k (green
segment). Then, during sweep k+ 1, P̄k is compared with the newly perceived point cloud tk+1
(orange segment) and the LiDAR motion is estimated.[54].

4.2.1.3 Motion Estimation

To reduce the complexity of the problem, the motion during a sweep is modeled with constant

angular and linear velocities. This allows the use of linear interpolation to calculate the pose

transform, for points that are being received at different times. The LiDAR 6-DOF pose transform

is stored in a state vector, that contains the translations and rotations. This vector also encondes

the motion of the LiDAR and is represented by T L
k (t) = [τL

k (t),θ
L
k (t)], where t is the current time

stamp, and as stated before, tk represents the starting time of the current sweep k. The translations

are represented by τL
k (t) = [tx, ty, tz]T and the rotation by θ L

k (t) = [θx,θy,θz]T in Lk. The rotations

θ L
k (t) can be enconded in a rotation matrix, defined with the help of the Rodrigues formula [41].

This results in following formula

RL
K(t) = eθ̂ L

k (t) = I +
θ̂ L

k (t)
||θ L

k (t)||
· sin||θ L

k (t)||+(
θ̂ L

k (t)
||θ L

k (t)||
)2 · (1− cos||θ L

k (t)||) (4.5)

where, θ̂ L
k (t)) is the skew symmetric (or anti symmetric ) matrix of θ L

k (t) and I the identity

matrix . The pose transform Tk(k,i)(t) between [tk, t(k,i)], can be found using linear interpolation of

Tk(t), using the following equation;

T L
(k,i) =

t(k,i)−tk

t− tk
·T L

k (t) (4.6)

where, i is a point belonging to Pk and t(i,k) the equivalent time stamp. Since T L
k (t) is not static

and changes over time, the interpolation method uses the transform of current time t.

Defined the rotations and translations, the previous edges εk and planar HK sets of points, can

be projected to the beginning of the sweep (ε̃k and H̃K) , using the following equation

X̃L
(k,i) = RL

(k,i) ·X
L
(k,i)+ τ

L
k (4.7)

where, XL
(k,i) is a point in εk or HK and X̃L

(k,i) is the correspondent point ε̃k and H̃K . τL
k represents

the translation vector corresponding to T L
(k,i) and RL

(k,i) the equivalent rotation matrix.

The geometric relationship between an edge point in εk and the corresponding edge line, is

stated by

fε(XL
(k,i),T

L
(k,i)) = dε (4.8)
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Where, i is a point belonging to εk. This relation results from the combination of the equation

presented in 4.3 and 4.7.

Equivalently, the geometric relationship between a planar point in HK and the corresponding

planar patch, is given by

fH(XL
(k,i),T

L
(k,i)) = dH (4.9)

Similarly to the previous case, i is a point belonging to Hk and this relation results from the

combination of the equation presented in 4.4 and 4.7.

The problem of the LiDAR motion estimation is solved with the Levenberg-Marquardt method

[47] using a special adaptation for robust fitting from [45]. The two previous functions are con-

densed and form the non linear function

f (T L
k (t)) = d (4.10)

As presented here, each row of f corresponds to a feature point, and equivalently d corre-

sponds to its distance. This function presents a minimization problem. It is solved using nonlinear

iterations by minimizing the distance d toward zero;

T L
k (t)≈ f (T L

k (t))− (JT · J+λ ·diag(JT · J))−1 · JT ·d (4.11)

For this purpose, the Jacobian matrix of f with respect to T L
k (t) is calculated J = ∂ f

∂T L
k (t) . The

λ is a damping parameter adjusted at each iteration and determined by the Levenberg-Marquardt

method.

4.2.1.4 LiDAR odometry algorithm

Due to the complexity of the LiDAR odometry algorithm, it is presented in a format of a pseudo-

code, Algorithm 1, to allow the easier understanding. An extra step is taken to filter outlier points,

the algorithm assigns a bi-square weight for each feature point, described on the equation 4.12.

This method attributes smaller weights w to the feature points that have larger distances to their

correspondences, in the opposite side the feature points with distances larger than a threshold are

assigned with zero weights.

w =

{
(1−α2)2 −1 < α < 1,

0 otherwise,
(4.12)

α =
r

6.9459σ
√

1−h
(4.13)

Where, r is the corresponding residual from the least square problem, σ is the absolute de-

viation of the residuals on the median and h is the corresponding element on the diagonal of the

matrix (J · (JT · J))−1 · JT where J is the Jacobian matrix, present on 4.11.

eq4.12
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Algorithm 1: LiDAR Odometry
Data: Point cloud from the last sweep P̄k−1,
The growing point cloud of the current sweep Pk,
Pose transform from the last recursion as initial guess T L

k (t).
Result: P̄k and newly computed T L

k (t)
initialization;
if new sweep is started then

T L
k (t) = 0

end
Detect edge points and planar points in Pk, construct εK and Hk.
while number of iterations < max defined iterations do

for each edge point in εK do
Find an edge line as the correspondence, then compute point to line distance

based on 4.8 and stack the equation to 4.10.
end
for each planar point in HK do

Find a planar patch as the correspondence, then compute point to plane distance
based on 4.9 and stack the equation to 4.10.

end
Compute a bi-square weight for each row of 4.10
Update T L

k (t) for a nonlinear iteration based on 4.11
if the nonlinear optimization converges then

break
end

end
if at the end of a sweep then

Project each point in Pk to tk+1 and form P̃k,
Return T L

k (t) and P̃k.
else

Return T L
k (t) for the next round of recursion.

end
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4.2.2 LiDAR mapping

The odometry algorithm performs multiple interactions during each sweep of the LiDAR. In con-

trast, the mapping algorithm runs at a frequency around ten times slower, being only called once

per sweep. At the end of a sweep k, the odometry generates an undistorted point cloud, P̄k, to-

gether with the equivalent pose transform, T L
k . This transform contains the LiDAR motion during

two consecutive sweeps, tk to tk+1. In parallel, the mapping algorithm performs the matching and

registers P̄k in the world coordinates, W . This process can be seen in the figure 4.5.

As standard required for the mapping algorithm, the following parameters were defined;

• The transformation of P̄k to world coordinates, W , is represented with ρ̄K .

• A point cloud accumulated until sweep k−1 on the map, is denoted by ρK−1.

• The pose of the LiDAR on the map at the end of sweep k−1, tk is defined by T w
K−1(tk).

• A set of surrounding points around a feature point inside ρK−1 is known as S′.

After receiving the output from the odometry, the mapping algorithm starts by extending the

T w
K−1(tk) from the sweep tk to tk+1 and gets the T w

K (tk+1). Afterwards, the P̄k is converted to world

coordinates, ρ̄K . Then, the LiDAR pose T w
K (tk+1) is optimized and the matching of ρ̄K with ρK−1

is performed. The feature point extraction is accomplished in identical way as in the odometry

algorithm in Section 4.2.1.2, with the particularity that in this case the number of feature points

used is 10 times bigger. Due to the bigger amount of points and for more efficient matching,

the feature points present in the cloud ρK−1 are stored in 10m cubic areas, then these points are

intersected with ρ̄K . The matches are extracted and stored in a 3D KD-tree [13], corresponding to

the W frame. This matching is performed inside ρK−1 within regions of (10×10×10 cm) around

the feature points. This process is based on the smoothness of the local surface, where the points

are sorted based on their c values using the same threshold as in section 4.2.1.1. The points are

filtered, in case of edges, by only keeping the points on edge lines in S′. The same happens in the

case of the planar points- by only keeping the points on planar patches. The next step preformed

by the mapping algorithm, is to compute the covariance matrix of ρK−1. This matrix is represented

by M, the eigenvalues E and eigenvectors V from this matrix are also calculated. These values

are used to determine the poses of the point clusters and it’s equivalent distances to a point-to-line

or point-to-plane. This positions are calculated in a manner that the line or the plane must pass

through the center of S′ and obey to the following rules;

• If S′ is surrounding an edge line, V must contain one eigenvalue, considerably larger than

the other two. The eigenvector in E bonded to the largest eigenvalue exposes the orientation

of correspondent edge line.

• Equivalently, if S′ is distributed on a planar patch, V includes two large eigenvalues, where

the third one is significantly smaller than the other two. The eigenvector, present in E,

connected to the smallest eigenvalue, represents the orientation of the planar patch.
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The calculation of distances is based in the same principles used in the chapter 4.2.1.2. First

the distance from a feature point to it’s correspondence is based on the selection of two points on

an edge line and three points on a planar patch. In the next step, these distances are computed

using the same equations as 4.3 and 4.4, equivalently. Then, the equation correspondent for each

feature point 4.8 or 4.9 is used. With the particularly that those points present in ρ̄k share the same

time stamp, tk+1 . As next step the same method based on the Levenberg-Marquardt [47] using

a special adaptation for robust fitting [45] is used to solve the problem of nonlinear optimization.

After this the ρ̄k point cloud is finally registered on the map. The mapping algorithm performs an

extra step to ensure evenly distributed points through the map. Every time a new scan is merged

on the map, the map cloud is downsized by voxel-grid filters [1]. This voxel-grid filters work by

making an average of all points in each voxel, and leaving just the averaged point in the voxel.

The size of the voxel’s varies, where the edge points, have a voxel size of 5×5×5 cm. And the size

corresponding to the planar points, is 10×10×10 cm.

Figure 4.5: Representation of the mapping process. The pose on the map,T w
K−1(tk) is pictured

by the blue curve belonging to the sweep k− 1. In the same way, the LiDAR motion estimated
by the odometry algorithm is represented with the orange curve, equivalent to an entire sweep k,
T L

K (tk+1). Having the pose on the map T w
K−1(tk), the odometry motion T L

K (tk+1), the undistorted
point cloud P̄k can be published on the map, represented by ρ̄K and the green segments. Finally
this cloud is matched to the existing cloud from the map, ρK−1 depicted by the black segments.
[33].

4.2.2.1 Integration of pose transforms

The integration of the pose transforms can be visualized on the figure 4.6. The pose originating

from the mapping algorithm, TW
K−1(tk) and created once per sweep is represented with the blue

region. The LiDAR motion estimated by the odometry algorithm within the current sweep,T L
K (tk),

is represented by orange colored region. The final motion estimation of the LiDAR is the fusion

of the two transforms at the frequency of T L
K (tk).

Figure 4.6: Integration of the pose transforms. The pose originating from the mapping, TW
K−1(tk),

is represented with the blue region. The LiDAR motion estimated by the odometry algorithm,
T L

K (tk), is represented by orange colored region.[36].
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Table 4.1: Computation break-down for accuracy tests [80].

Algorithm
Build Match

Others (ms) Total (ms)
KD-tree (ms) Features (ms)

Odometry 11 23 14 48
Mapping 58 134 117 309

4.2.3 Results and performance

The following results are based in a custom built 3D LiDAR, based on a 2D Hokuyo UTM-30LX

laser scanner [64], that was the main tested hardware originally used by the authors. As explained

before, the LOAM system divides the work load in two different algorithms. The responsibility

of LiDAR odometry is to be fast, in order to be able to estimate velocity and simultaneity remove

motion distortion in point clouds in real time. But this comes with a cost- since the odometry

works with fast speed and low amount of points, it has low-fidelity and cannot ensure accurate

mapping. In the other side, the LiDAR mapping, works at slower speed, about a tenth of the of

the odometry. It receives the undistorted point clouds and performs fine scan matching, with a big

amount of points to ensure accuracy on the map.

Figure 4.7: Comparison between (a) LiDAR odometry output and (b) final LiDAR mapping, on a
corridor scene, with a trajectory of 32m in length, at a speed of 0.5m/s output.[10].

Understanding this, it can be easily assumed that the LiDAR odometry and mapping have

different outputs. In the figure 4.7, the output of both algorithms can be compared, where (a)

represents the odometry output achieved with direct registering of the laser points and on (b) the

further output optimized by the LiDAR mapping. The higher distortion can be seen on the odome-

try output. Both algorithms were running using the same computational power, where the LiDAR

odometry was called 10 times, while LiDAR mapping only once. On table 4.1 the comparison of

both algorithms in terms of Computation break-down and accuracy can be observed.

Table 4.2: Motion estimation drift relative errors [80].

Environment
Test 1 Test 2
Distance (m) Error (%) Distance (m) Error (%)

Corridor 58 0.9 46 1.1
Lobby 52 2.3 67 2.8
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Table 4.3: Motion estimation errors with and without inertial measurements [80].

Environment Distance (m)
Error
IMU (%) Original (%) Original+IMU (%)

Corridor 32 16.7 2.1 0.9
Lobby 27 11.7 1.7 1.3
Vegetated road 43 13.7 4.4 2.6
Orchard 51 11.4 3.7 2.1

This system was also tested in indoor and outdoor environments. The figure 4.8 represents the

matching errors comparison between different environments. Overall, the indoor tests achieved a

relative accuracy around 1% and 2.5% for the outdoor tests. This result indicates that for indoor

environments there is a smaller number of matching errors compared with outdoor. The relative

errors in motion estimation drift can be seen in the table 4.2, for one indoor and one outdoor test.

This result is expectable, since the feature matching in natural environments is less exact. For

instance, it is harder to extract feature points from surfaces as: leafs, grass and tree logs, rather

than from walls, doors and corners on manufactured environments.

Figure 4.8: Matching errors in different test environments. Starting from: a tight and long corridor
represented in red, a large room or lobby in green, a vegetated road in blue and an orchard among
two rows of trees on black. The tests were performed at a speed of 0.5m/s. [40].

One of the purposes of the design of the LOAM system was to rely on laser range measure-

ments with independence of inertial measurements. Even though not necessary, if an IMU is

present, it can help to provide a better motion estimation for fast velocity changes. With this

objective, a small test implementation with an IMU was made. This implementation consists in

use of the orientation provided by the IMU, to pre-process the point cloud, before delivering it to

the forward algorithms. The orientation is used to align the point cloud received from one sweep

with the initial orientation of the LiDAR in that sweep. The acceleration measurements, are also

used to remove part of the motion distortion. The IMU orientation is computed with the aid of

a Kalman filter [53], by integrating angular rates provided by the gyroscopes and readings from

the accelerometers. After this extra pre-processing step, the point cloud is then feed to the LiDAR

odometry and mapping and processed as explained previously, on 4.2.1 and 4.2.2.

In the Table 4.3 the relative errors in motion estimation with the use and without use of the

IMU can be compared. As previous tests the LiDAR is moving at a speed of 0.5 m/s. The overall
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results show that, the use of the IMU assisted method gave the highest accuracy. While the use of

IMU orientation only returned the lowest accuracy. This result shows that the IMU is effective in

the handling of nonlinear motion. Whereas, the original method is a design to deal with the linear

motion. This result is important to note, since the objective of this work is to explore a similar

solution. It proves that the use of sensor fusion with inertial measurements can indeed help to

improve the accuracy of the system. This implementation can be found in the next chapter 5.
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Chapter 5

System implementation and results

As explained before, the LOAM system receives as input a 3D point cloud originating from a 3D

laser scanner, then divides the work load into two different algorithms. The LiDAR odometry runs

at fast speed, in order to be able to estimate velocity and simultaneously remove motion distortion

in the point clouds in real time. But this comes with a cost- since the odometry works with fast

speed and low amount of points, it has low-fidelity and cannot ensure accurate mapping. For this

purpose, it is where the LiDAR mapping comes in. It works at slower speed, around a tenth of the

speed of the odometry. It receives the undistorted point clouds and performs fine scan matching,

with a big amount of points to ensure accuracy on the map. The combination of both algorithms

ensures an efficient real time performance. The detailed theoretical explanation of the LOAM

system can be found in the previous chapter 4.

The objective of this chapter is to explain in practical terms how the original loam system

works and how it was implemented, jointly with the proposed improvements, as well as to present

the obtained results. Firstly, the used hardware is revealed in the section 5.1.1, followed by the soft-

ware 5.1.2. Secondly, the implementation and testing of the original loam algorithm is presented

in the section 5.1.2.2. Finally, the implementation of the proposed improvements and results is

shown in the section 5.3.

5.1 System overview

5.1.1 Hardware

A brief description for each hardware component is presented as follows:

39
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Figure 5.1: Ouster OS1,
Mid-Range High-Resolution
Imaging LiDAR.

Figure 5.2: Xsens MTi-
30 AHRS IMU.

Figure 5.3: GPS C099-F9P
board kit. [8].

• Ouster OS1 Ultra-Wide View High-Resolution Imaging LiDAR [70]. This sensor is de-

signed for indoor and outdoor all-weather environments. With a Range from 45m to 120m

with accuracy of ±3 cm to ±10 cm depending on conditions. It is capable of a scanning Rate

10 or 20 Hz. The resolution is of 2,621,440 Points Per Second.

• InvenSense ICM-20948 IMU [32]. This IMU is integrated in the OS1 LiDAR and is capable

of 9 DOF motion tracking. It is MEMS based and constituted from: a 3-axis gyroscope,

3-axis accelerometer, 3-axis compass and a Digital Motion Processor. It is designed for

Smartphones, Tablets, Wearable Sensors, and IoT applications.

• Xsens MTi-30 AHRS IMU [35]. This IMU is a Industry grade, MEMS based, with full-

featured sensor fusion algorithm, capable 9-DOF motion tracking. constituted from: 3-axis

gyroscope, 3-axis accelerometer and a Magnetometer.

• C099-F9P board with zed-f9p ublox module[8]. The zed-f9p positioning module is capable

of multi-band GNSS, and rubust for high-volume industrial applications. It has an update

rate up t0 20hz, position accuracy 0.01 m + 1 ppm CEP and Convergence time2RTK < 10

sec.

• Melex 385H [42]. This is a small electric powered vehicle with differential drive, used for

ground tests at PUT [23]. The roof was adapted and a rigid frame was built for the assembly

of a previously referred sensors.
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Figure 5.4: Melex 385H electric vehicle.

Figure 5.5: Rigid frame assembly,
monted on the Melex veicle with the:
LiDAR, GPS and IMU sensors.

5.1.2 Software

5.1.2.1 The mobile robotic platform

For the implementation of this work the The Robot Operating System framework (ROS) [60] was

used. It is an open-source set of software libraries and tools specifically designed for robotics

applications and for an easy integration of several software parts needed for robot operation, from

drivers to state-of-the-art algorithms. The main software libraries and tools used on this imple-

mentation, can be divided as follows:

• Ubuntu 18.04.5 LTS (Bionic Beaver) [76]: Operating system used on this work, chosen do

to it’s open source and stable build and good compatibility of the other chosen software

libraries and tools.

• ROS Melodic Morenia [43]: The Ros distribution used on this work, chosen do to the stable

build and good compatibility of the other chosen software libraries and tools.

• Robot localization [57]: This package is a collection of state estimation nodes, each of

which is an implementation of a nonlinear state estimator for robots moving in 3D space. It

is used to run the EKF node responsible of the sensor fusion.

• Imu tools [34]: Contains various tools for IMU devices, it is used to run the Complementary

filter node responsible for the creation of orientation from the Ouster Imu data.

• LOAM Velodyne [24]: This is the main package containing the implementation of the algo-

rithms necessary for the LiDAR Odometry And Mapping, namely LOAM.

• Gps umd [28]: This package is a space to stage messages and common GPS-processing

routines. It is used to convert the raw GPS data, (longitude, latitude ) in to odometry on the

local frame.

• Rviz [62]: Main 2D/3D visualizer tool in ROS, used to visualize in 3D, the recorded data,

live odometry and mapping trajectories.
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• Plotjuggler [52]: It is a time series visualization tool. Used for 2D plotting and validation.

• RGB-D benchmark [14]: This is a collection of tools used to pre-process datasets and eval-

uate SLAM/tracking results. From here the Absolute trajectory error (ATE) scrip is used, in

order to properly evaluate the results.

5.1.2.2 Architecture

Figure 5.6: ROS basic computation concept.[59].

Since the implementation of this work is based on ROS, as first step, the basic principles of

the ROS architecture are introduced. The figure 5.6 exposes the basic ROS computation concept

[59]. This concept includes different elements, being the most notable: nodes, Master, messages,

services, topics, and bags. Briefly, the nodes are the programs that are continually running and

performing computations while simultaneously interchanging or not data between them, this pro-

cess follows a publish-subscribing messaging system. The topics can be seen as communication

channels, that contain the messages published (written) by nodes. The nodes can be publishers, in

the case they intend to write messages, or subscribers if they want to have access (to read) the mes-

sages published on the topics of interest. On the diagram 5.6, this process is exemplified, where

the node on the left wants to establish communication to the one on the right. It does it firstly by

publishing a message on a topic, so afterwards the other node, that is subscribing to that topic,

can read the message. The arrow pointing from a node to a topic means that the node publishes

in the topic. The arrow pointing from a topic to a node means that the node is subscribed to the

topic. The Master, which is the main node, stores topics and services registration information for

nodes, ensuring their communication. The services are basic functions that can be called on ROS

to ensure basic interactions on the system. Finally, the ROS bags are files of recorded information,

that can be used to play ROS message data. They are very useful when it comes to the developing

and testing of algorithms.

5.2 Original Implementation

With the ROS introduction accomplished, the original LOAM implementation can now be ad-

dressed. The UML-based illustration presented in the figure 5.7 exposes the implemented archi-

tecture sustained by ROS based concepts. This diagram represents the different elements of the

system: ROS-nodes, ROS-topics and the interactions between them. Primarily, the nodes are rep-

resented by the ellipse shape and topics shown as rectangular boxes. In this implementation the
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Figure 5.7: UML-based illustration of the implemented LOAM-ROS system. In the figure, the
nodes are represented by the ellipse shapes and the topics are the rectangular boxes. The green
color represents the Ros-bag play node and the related published data topics, the GPS node and
GPS odometry are represented in blue. The LOAM nodes and respective published/subscribed
topics are illustrated in pink, the orange color represent the transform topic and and Rviz node,
respectively. Arrows represent the flow of information, in the form of subscribe-publish relations
between nodes and topics.
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access to live sensor data wasn’t available, instead recorded data was used in the format of Ros-

bags [58], this data contains all the data obtained simultaneously from all the sensors exposed

previously. Starting by:

• The Ouster LiDAR: 3D point cloud.

• The InvenSense IMU: 3D linear accelerations, angular velocities and associated co-variances.

• The ublox GPS: geodetic location, latitude, longitude altitude and associated co-variances.

• External Xsens IMU: orientation and associated co-variances.

This data comes in the format of ROS-messages [46] that have their own standards, depending on

the type of data. These bag files can be played and can publish messages exactly as the original

sensors do. The ROS-bag play node and the previous referred published topics are the first element

in the system, represented in green color. The following element in the system is the GPS odometry

node and the published topic illustrated in blue. Here, the role of the GPS is not to improve the

system by aiding in the pose estimation, but to provide a ground truth. Since this tests were

performed in an open environment, the GPS provides an absolute trajectory with a good accuracy.

Later on, this trajectory can be matched with the LOAM estimated trajectory and evaluate its

performance. This node starts by subscribing to the ublox GPS topic, where it reads the published

NavSatFix messages [65]. These messages encode the location in geodetic latitude φ , longitude

λ and altitude h. This standard is converted to the local Ros-Map frame, in the ENU standard

using the equations and matrix (2.11 to 5.1 ) presented in the chapter 2.1. Afterwards, the GPS

node publishes the GPS estimated 6-DOF pose in the format of nav_msgs/Odometry [48] in the

respective topic. Due to the fact that the GPS is not able to estimate orientation, this pose includes a

"dummy" 3D orientation, represented with quarternion (x:0, y:0, z:0, w:1). Simultaneously, a T F

message is published containing the associated geometry transformations between frames. The

next element is the Loam system, denoted with pink. It is the most complex element, constituted

by 4 distinct nodes and 6 topics that run the algorithms responsible for different computation steps

in the Loam. The first step starts with the Scan registration node. This node is responsible for

filtering the outlier points. It removes invalid points, which are considered to be too close or at

infinity. Simultaneously, it assigns the time of registration of each point. These time stamps will

be required later for the undistortion of the point cloud. This node subscribes to the ouster point

cloud messages, that are encoded in the velodyne_cloud_2 format [66]. Afterwards, it performs

the previous computations and publishes the new filtered cloud in the topic called Laser cloud 2.

The next steps involve the Laser odometry node. This node starts by subscribing the laser cloud

2 topic. From this point, it reads the previous filtered laser clouds. As explained in the previous

chapter 4.2.1, this node is responsible for estimating velocity and simultaneity remove motion

distortion in the point cloud, after performing the need computations, it publishes the undistorted

point cloud in the laser cloud 3 topic. At the same time, it publishes its estimated 6-DOF pose

on the Internal laser odometry topic and the associated geometric transform on the TF topic. At

this point the Laser mapping node comes in, this node starts by subscribing the Internal laser
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odomerty and Laser cloud 3 topics. At this point, it is able to read the laser odometry published

estimated pose and the undistorted point cloud. As explained in the previous chapter 4.2.2, this

pose is used as initial guess, for the fine matching performed with the undistorted point clouds.

As a final step, the mapping node publishes the matched point clouds, that represent the map itself

in the topic Laser cloud surround and the estimated 6-DOF pose in the topic Internal mapping

odomertry, along with the equivalent geometrical transform on the TF topic. To finalise, the last

element is the Transform maintenance node, this node subscribes both pose estimates topics, from

odometry and mapping, Internal mapping odomertry and Internal laser odomerty, respectively.

It is responsible for integrating both poses estimates, as explained in the section 4.2.2.1. Both

estimates are received at difference frequencies, the odomerty is received at 10hz and mapping at

1hz. To ensure smooth output and best accuracy, this node picks the mapping output at 1hz and fills

the gaps with the fastest output from the odometry. This results in a final fast and smoother output

at 10hz. This final pose is published in the Integrated topic and simultaneously the geometric

transform is published in the TF topic. The TF topic is noted in a distinct color, orange. This

topic is common to all the other elements in the system for publishing geometric pose transforms

between frames. Finally, the last element in this system is the Rviz node, this node is responsible

for creating a 2D/3D visualizing environment and displaying all chosen elements from system, as

the estimated poses and point clouds. It accomplishes this by subscribing to all the output topics

of the different elements in the system and by reading its equivalent geometric transform in the TF

topic.

After this explanation, most of the work of the system should be well understood. To cover

any other doubts, the figure 5.8 represents the ROS-transform tree of the system. This tree follows

the standards introduced in the section 2.1.1 and exemplified on the figure 2.3. ROS defines a

frame by default [74], as a coordinate system, that is always in 3D, right-handed, with X-forward,

Y-left, and Z-up. The relation among two frames is represented by a 6- DOF relative pose, a

translation proceeded by a rotation. Given an example if W and B are two distinct frames, the pose

of B in W is represented by the translation from W origin to B origin, followed by the rotation of

B coordinate axes in W . This rotations are calculated internally by ROS using rotation matrices,

in similar ways and presented in the section 2.1.2.4. This tree represents the main frames used

in this ROS implementation, where as explained in the previous paragraph, always when a node

publishes pose data, it is associated to a frame and with its equivalent geometric transform to his

parent frame. The LOAM system creates 2 different inertial coordinate systems, named as, map

and loam_map, both right-handed. This can be better observed on the figure 5.10 where the map

frame is the first as the ROS standards defines 2.1.1, and the loam_map is the second connected to

it. The loam_map, as the name suggests, is the map frame that is used internally by loam topics,

it serves to compensate mounting translations and rotations of the Laser sensor and allow better

visualization on Rviz. Due to this fact, this frame uses a standard typically used on visual sensors,

where the axis are organized as follows: the positive Y-axis pointing up, X-axis pointing left and

Z-axis pointing forward to the direction the of motion. In practical terms this represents a positive

rotation of 90 degrees around the x-axis compared to the parent frame map, the same happens
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Figure 5.8: This figure represents the ROS main frames used actively for he system computations.
Here the direction of the arrows are pointing from a parent to a child frame. The blue color
represents the frames using the map standard, the positive Z-axis pointing up, X-axis pointing left
and Y-axis pointing back. The pink frames are equivalent to the Loam map, the positive Y-axis
pointing up, X-axis pointing left and Z-axis pointing forward.
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Figure 5.9: This diagram represents the different type of transforms between the frames and it’s
respective publishers nodes together with the published topics. The arrows represent the connec-
tions between frames, the pointing direction goes from the parent frame to the respective child
frame. The blue represent the frames using the Map standard and the pink represents the loam
map, respectively.

with all the frames connected after, this is represented by the pink color on the figure 5.8. The

transforms that represent this relations can be static or dynamic, given as example, the transform

between the map and loam_map is a static transform, defined bye the hardware assembly. In

opposite the next transforms between the frames laser_odom and a f t_mapped are calculated by

the odometry and mapping nodes, respectively. The frames associated with sensors are also static

transforms defined by the hardware assembly related to the center of the vehicle, this frame is

represented as the moving_base frame. This frame is a auxiliary frame, added with the objective

of attach the inertial sensors need for the next step of implementation, since the ROS Standard

does not let sensors to be attached directly to a odom frame, it is created using a static transform,

the physical frame can be seen in the picture 5.5. The map frame is not used by the LOAM nodes

to perform computations, but as output for the ”external” world. This is the function of the Odom

and Base link frame, in case of a external entity needs to have access to the odometry pose or the

center of the vehicle’s pose. Here the odometry node publishes the Base link transform referent

to Odom frame and the mapping node also publishes mapping estimated pose referent to the Base

link frame. This creates a problem since the convention doesn’t allows a ROS-transform tree to

have two parents. Instead the transform between the map to Base link is calculated internally by

the mapping node taking in account the previously computed transform from the Odom to Base

link frame. The pose estimate in the Odom frame is an improved version of the internal odometry

corrected by the mapping algorithm. This problem is better represented in the figure 5.9. The
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Figure 5.10: This figure is a Rviz screenshot taken on the map frame plane, exposing the main
frames of the system. The x-axis is represented in red, followed by the y-axis in green and z-axis
in blue. The arrows represent the connections between frames, the pointing direction indicates the
parent frame.

remaining GPS ublox and Loam integrated frames represent the GPS odometry and Transform

Maintenance node output frames, its transforms are produced by the respective nodes.

5.2.1 Experimental Results

With the Hardware 5.1.1 and software 5.1.2 presentation finished, the experimental results from

the original system implementation can be exposed. Coming along with difficulties connected

to implementations which were needing the correction in order to run correctly the system. The

figure 5.11, represents an untreated point cloud from the LiDAR scanner.

During the first attempts to run the system, a problem was found that didn’t allow to visu-

alize the data from different sensors simultaneous, on Rviz. After close inspection of the data

inside of the bag, it was found that messages coming from different sensors had different start-

ing timestamps. This as due to the fact, that each sensor has it’s own internal clock and they

weren’t previously synchronized. This would represent a problem, since the hardware step wasn’t

available, this synchronization couldn’t be performed. Having only this data available, this would

create problems specially in the case of the implementation of the improved version of the system,

since the inertial measurements need to be synchronized with the point clouds, to successfully

perform its integration on to the system. This problem was address by rewriting the timestamps

of the messages inside of the bag. Using a simple algorithm represented in pseudo code 3. That

reads each message and attributes a new timestamp using the global bag time.

After solving the previous problem, the first successful testing runs were performed. Here

other problem was detected, with the alignment of the trajectories. Namely the GPS and the

LOAM trajectory, these errors were mainly visible in the yaw angle or in the rotation of the ground

floor around the Z-axis. This error can be seen on figure 5.12. In this place, the LOAM estimated

trajectory follows the mapped road correctly and the GPS estimation goes diagonal to their side.
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Figure 5.11: This figure is a Rviz screenshot taken on the map frame plane, exposing the output
of the laser scanner. While performing the scanning of an outdoor environment, namely a street.
Where the raw point cloud can observed, without any filtering and the capability of this scanner
can noted, where there is enough resolution to identify several objects like cars, trees, walls etc.
The colors represent the altitude of the points, start from cold colors in the ground, to warmer as
the altitude increases.

Algorithm 2: LiDAR Odometry
Data: Read message timestamps from bag:

• The Ouster LiDAR 3D point cloud.

• The Ouster internal IMU.

• The ublox GPS.

• External Xsens IMU.

Result: Rewrite: all the previous messages timestamps.
initialization;
Open the bag file.
Start to read messages from bag.
while Didn’t reach Bag end do

for each message topic on the bag do
if New message found then

Read current global time of the bag T.
Rewrite message timestamp with T.

end
Move to next topic.

end
end
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Figure 5.12: This figure is a Rviz screenshot taken on the map frame plane. While performing the
scanning of an outdoor environment, namely a street. Here, the live laser output can be observed,
noted by the colored points, simultaneity the mapped points are represented in white. The LOAM
estimated trajectory can be seen, as the one aligned with the street. The GPS estimated trajectory
is the one going diagonally with the street.

With a closer inspection, it was found that both algorithms were working as expected and above

mentioned problem was originated from their own different mechanism of pose estimation. When

it comes to the case of the GPS, it estimates an absolute pose on the planet, that is aligned with the

Cardinal points. The LOAM does not have any feedback from where it is related to the earth, it’s

local map will have it’s origin and alignment with the starting point of the run. After apprehension

of the problem, it was decided that the best way to solve it, in order to be able to correctly mach

the the points of both trajectories and calculate the accuracy of LOAM trajectory, was to edit the

GPS node algorithm. It was done after the conversions from geodetic coordinates to Earth Centred

Earth Fixed (ECEF) and ECEF coordinates to ENU. Since the rotation to be performed was only

in the 2D plane, the problem was fixed by applying a 2D rotation with the desired offset (θ) on

the the X-coordinate and Y-coordinate, using the following matrix.

[
Xaligned

Yaligned

]
=

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

][
X

Y

]
(5.1)

Finally, after the correction of the alignment of the previous obstacle, the system should be

ready for accuracy testing. However, after many repetitive runs, another problem was discovered.

In every run the output of the odometry and consequently the mapping were showing slightly dif-

ferent trajectory drifts, in the exactly same conditions. The first hypothesis, was that the computer

used for running the algorithms did not have enough processing power to ensure the computation
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Figure 5.13: This figure is a Rviz screenshot taken on the map frame plane. Taken in the same
conditions as the figure 5.12. With the particularity that the mapped points were removed for
better visualization and the the figure was aligned with the trajectories. Here, the GPS estimated
trajectory is the straightest or the one identified with red in the left side, the LOAM is the one
making the small curve or with blue on the Right side. This behaviour is expected since the GPS
trajectory should be the one containing less distortion.
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needed to perform the runs with the data being played at full speed. Even tough the computer used

in the current work is equipped with a similar hardware (Intel Core i7-4700HQ 2.4GHz processor

and 8GB RAM), than the one originally used when LOAM was firstly developed (2.5GHz quad

core processor and 6GB RAM), the LiDAR used here has much more dense point clouds. This

could result in a slower processing speed. After this conclusion, the first solution was to slow

down the playing of the bag. It was performed by using the rate parameter on the Ros-bag play

node. However, after several tests with a speed slowed 10 times and after with 100 times, there

was still occurring significant difference. Knowing those results, the conclusion was that it did not

constitute the problem. The next candidate was the Ros-bag player node itself, since every time

the system is being run, there is a sequence of events that start by: the system nodes initializing,

them the bag starts playing, after this the nodes finish to subscribing to respective topics and finally

the first messages are received by the nodes callbacks. With this, the timing of the messages being

played, combined with time the nodes actually completes initialization, means that there will be

always some variation from run to run. Affecting mainly the odometry algorithm were exact points

being perceived will arrive with slightly different timestamps resulting in different point matching

and and motion distortion. After apprehension of the problem, it was decided that the best way

to solve it, would be to implement a custom Ros-bag player, that cloud wait for the mapping or

odometry nodes to finish the processing of a scan, and them release the next set of messages. For

this a feedback loop was introduced, were the Bag playing node subscribes to the outputs topics of

the odometry. This new algorithm is presented in a format of a pseudo code, Algorithm 3, to allow

the easier understanding. With this new bag player, the previous problem was solved. It allowed

the playing of the bag at full speed, while maintaining consistent results, for runs performed in the

same conditions.

The figure 5.14 represents the resulting Loam, odometry and mapping trajectory estimates,

together with the GPS ground truth in the form of 2D plots using the Plotjuggler tool. Here on

the top, the 2D ground plane (x/y) is represented and in the bottom the altitude (z). Can be easily

observed that at the ground level, the mapping (blue) is almost overlapped witht the GPS (green),

this means that the mapping achieved a good estimate, for the other side the odometry (pink)

shows a big drift especial in the Y-axis. At the altitude estimate, clearly the odometry achieved

a poor performance. To better compare the mapping estimate, on the figure 5.15 the odometry

was removed. It can be seen that, although the mapping achieved a better performance it is far

from perfect since the GPS indicates that the ground has a small slope, less than 2m, the mapping

estimate a slop of more than 6m.

5.3 Improved implementation

Upon the original LOAM implementation explained and tested, the next step is to start implement-

ing the proposed improvements. As it was observed in the previous runs, the Z-axis is the one that

suffers from more drift. In this approach, the inertial measurements will be used to give a more

accurate orientation heading to try to minimize this effect. The initial idea is to experimentally
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Figure 5.14: This figure represents the resulting LOAM liDAR odometry (pink) and mapping
(blue) trajectory estimates, together with the GPS (green) ground truth in the form of 2D plots
using the Plotjuggler tool. Here on the top, the 2D ground plane (x/y) is represented and in the
bottom the altitude (z).

Figure 5.15: This figure represents the resulting LOAM liDAR mapping (blue) trajectory estimate
and the GPS (green) ground truth in the form of 2D plots using the Plotjuggler tool. Here on the
top, the 2D ground plane (x/y) is represented and in the bottom the altitude (z).
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Algorithm 3: LiDAR Odometry
Data: Read messages from bag:

• The Ouster LiDAR 3D point cloud.

• The Ouster internal IMU, 3D linear accelerations and angular velocity’s.

• The ublox GPS, geodetic location, latitude, longitude altitude and associated co-variances.

• External Xsens IMU, 3D linear accelerations, angular velocity’s and orientation.

Result: Publish: all the previous messages.
initialization;
while odometry node not initialized do

if odometry node initialized then
Subscribe to Lasercloud3 topic.
Start to read and store messages from bag.
if Point cloud message found then

publish the previously stored set of messages,
including the current Point cloud message.

end
break

end
end
while Didn’t reach Bag end do

if New Lasercloud3 message received then
Start to read and store messages from bag.
if Odometry message found then

publish the previously stored set of messages,
including the current Point cloud message.

end
end

end
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Figure 5.16: This figure exposes a plot using the Plotjuggler tool. Here, the linear accelarations
and angular velocities can be observed. These measurements were taken at the beginning of the
trajectory with the vehicle in an immobile state, using the InvenSense IMU 5.1.1.

evaluate if the IMU integrated on the LiDAR has enough precision to be used for this purpose.

Bearing that in mind, the IMU output can be observed in the figure 5.16. The figure 5.16 presents

a plot of the linear accelarations and angular velocities. These measurements were taken in the

beginning of the trajectory with the vehicle in a immobile state. At this point, the plotted corre-

sponding accellarations and angular velocities should be 0, excluding the gravity vector. However,

as it can be observed, there is considerable amount of high frequency noise. This result is expected,

since it was known from the previous chapter 2.2.2- this technology is very vulnerable to noise.

In order to minimize this, the measurements will not be fused directly, they will be pre-processed

first.

Figure 5.17: This figure exposes a simplified block diagram, representing the complementary
filter.
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5.3.1 Complementary filter

For this purpose a Complementary filter was chosen, due to its simple implementation, light com-

putation demand compared with other approaches using Kalman filters [77], while simultaneously

achieving a good performance. The working principle [67] of this filter is summarized in the fig-

ure 5.17, where it starts by extracting the angles from the gravity vector from the accelerometer

measurements. Then the angles are filtered with a low-pass filter. In parallel, the angular rate

measurements from the gyroscope are integrated and to finalize, filtered through a high-pass filter.

Since the frequency response of the low-pass and high-pass filters need to add up to 1 at the fre-

quency domain, a scaling factor is multiplied to ensure this requirement. The final step is to sum

both outputs. The following equation 5.2 summarizes this relations:

θnew = α · (θold +θ ·∆t)+(1−α) ·β (5.2)

where,

θnew = new output angle

α = scaling factor.

θold = previous output angle.

∆t = sample time.

θ = gyroscope rate.

β = accelarometer angle.

For the implementation of this filter, the previously exposed IMU tools [34] Ros-package was

used. It offers a configurable implementation of a complementary filter, with ability to perform

auto bias estimation and remove noise within chosen thresholds. The scaling factor used was a α

of 0.99, that corresponds to a gain of 0.99 to the gyroscope rate and 0.1 to the accelarometer angle.

The chosen thresholds were equal to, 0.2rad/s for angular Velocity and 0.1m/s2 for acceleration.

The considered gravity is 9.81m/s2. After the configuration, the filter was successfully tested and

the plot of a small trajectory (90s) can be seen on the figure 5.18 and 5.19. This output should result

in a more reliable and precise orientation compared with the one provided by the laser odometry

itself. To verify this, the output of the complementary filter was compared with the output of the

Xsens IMU. Since this IMU is considered industrial grade, it should have better precision than the

InvenSense IMU present in the Ouster LiDAR, that is a simpler cheaper consumer grade IMU. In

the first figure, the existence of a constant offset in the yaw and pitch angles can be easily observed.

This can be due to differences in the mouthing position of both IMUs and also due to the fact that

Xsens IMU is equipped with a Magnetometer that can set the reference of the yaw angle to be

relative to the orientation of the earth magnetic field. Since these offsets are static they can be

removed for better comparison of the orientations, after the compensation of these offsets ( +138

degrees to yaw and +4 degrees to the pitch in the Xsens IMU). It can be observed that besides a

small expected noise on the complementary filter, both outputs match, confirming that the filter is

working properly.
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Figure 5.18: This figure exposes the output orientation of the complimentary filter, labeled as
(imu/data) and the Xsens IMU labeled as (xsens/data). The orientation is exposed in Euler angles
( pitch , roll and yaw) measured in degrees.

Figure 5.19: This figure exposes the output orientation of the complimentary filter, labeled aas
(imu/data) and the Xsens IMU labeled as (xsens/data). The orientation is exposed in Euler angles
( pitch , roll and yaw) measured in degrees. In this case the offsets in the yaw and pitch angles
were compensated for a better comparison.
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Figure 5.20: This figure exposes the parameters of the ekf localization node, used in this work.

5.3.2 Extended Kalman Filter

In the moment that the orientation from the IMU is ready to use, there is still the lack of the

mechanism to fuse the new orientation estimate. It will be done with the objective of improving

the pose estimated through the odometry algorithm. At this point, the extended kalman filter is

introduced. The theoretical explanation of this filter can be found in the 3.3 section. Here, only the

practical implementation will be addressed. For the implementation of this filter, the previously

exposed Robot localization [57] Ros-package was used. From this package the ekf localization

node was used, this node offers configurable fusion of an arbitrary number of sensors with different

modes of operation. This node is based in the implementation of an extended kalman filter using

the ROS-framework, that uses an omnidirectional motion model to project the state forward in

time, and corrects that projected estimate using perceived sensor data. This internal model is a

standard 3D kinematic model derived from Newtonian mechanics. The characteristics of robot

state are encoded in a 15-dimensional state vector, X . That comprises the vehicle’s 3D pose,

3D orientation, and their respective velocities, and linear acceleration. This details can be better

viewed in the 3.1.1 section.
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The configuration of the sensors is made using a configuration matrix that has the same vari-

ables as the state vector, where simply a false or true is filed to tell to the filter that the specific

measurement should be fused. For easier explanation, the configuration parameters used in this

work can be seen on the following figures 5.20 and 5.21. First, for the correct working of the filter

the desired frames need to be specified, that follow the previous explained Ros-standards 2.1.1.

The loam_map was chosen to represent the map frame, this was specified because the measure-

ments that are going to be computed in the filter are going to be given back to the mapping node

This node is using the frame as reference, creating the need to keep the vectors of the measured

components in agreement to the respective original axis. The same is true for the odom frame

defined as laser_odom and base link frame moving_base. The world-frame is a special parameter

that defines the internal mode of working. In the case of fusing only continuous position data, such

as odometry or IMU data, that is the present case, the world frame needs to be defined as the same

value of the odom frame. If the sensor fusion is to be performed with global absolute position

data, that is subject to discrete jumps, like in the use of GPS. The world frame should be defined

with the same value as the map frame. This two modes will define in which frame the estimated

output pose should be published and which respective transform to compute and publish. As next,

there are the optional parameters, where the f requency parameter can be noted, that is the opera-

tion rate, in frequency (Hz), at which the filter produces a state estimate. The two_d_mode, that

defines if the internal model will work only in two dimensions. The explanation of the remaining

parameters can be found at [73]. The following parameters, are the sensor configuration, where

the first step is to specify the topic to be subscribed in order to successfully read the desired sensor

messages. In this case, the first sensor is the Xsens IMU, being the topic to be subscribed the

xsens/data, then on the matrix the desired measurements to be fused should be set to true having

in attention the order of the variables. In the case of the Xsens IMU, it was not currently been

used, with this all the components are false. As next, the di f f erential parameter defines the fu-

sion mode, if it is set to true, the measurement is fused deferentially. In practical terms, this means

for a measurement at time t from the sensor in question. Firstly, it is subtracted from the previous

measurement at time t− 1, then the result is converted to a velocity and finally fused. This pa-

rameter is not currently being used. The queue_size is the size of messages to store in the buffer.

Last but not least, the remove_gravitational_acceleration is a parameter that allows the automatic

removal of the acceleration due to gravity, from linear acceleration data. Since only orientation is

fused, this parameter is not used. The next sensor is the orientation from the complementary filter,

that has the same configurations as the previous IMU. With the exclusion of the subscribed topic,

that in this case is /imu_ordered/data and the components related to the orientation, pitch, roll

and yaw, respectively are set to true. As final input of the filter, there is the laser odometry at the

topic /laser_odom_to_init. On the matrix only the pose, x, y and z components are set to true.

The remaining parameters are the same of the previous sensors with the exclusion of the relative

parameter, that can be used, if defined to true, to set the initial conditions to 0. As last, on the

figure 5.21 the noise covariance matrices can be observed namely, the process noise known as Q

and the initial estimate referred as P0.
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Figure 5.21: This figure exposes the noise covariance matrices parameters of ekf localization node,
used in this work.

These covariances were defined experimentally with high values, in order to help the filter

converge fast when new measurements were added. With the parameterization explained, the

figure 5.22 exposes the computation steps, namely rotations or necessary conversions, to perform

by the EKF node to fuse a new measurement. This is required due to the fact, that the state vector

components are referenced to Wold frame, by opposite the sensors measurements are referent to

the body frame of the vehicle, with the exception of the LiDAR linear position. Now, that the

necessary components to fuse with the inertial measurements were added to the system, namely

the complementary filter and extended kalman filter nodes. The final system architecture can be

observed in the new UML-based illustration presented in the figure 5.23. It exposes the improved

implemented architecture sustained by ROS based concepts. In this diagram the recently added

complementary filter node and topic can be observed with violet color, subscribing to the Ouster

IMU topic and publishing on the IMU data topic and the corresponding geometric transform. The

Extended kalman filter node and the related topic are illustrated with gray color. This node starts

by subscribing the output of the complementary filter (3D orientation) and the estimated output

of the odometry node (6-DOF pose) and then reads the associated geometric transforms from the

TF topic. After performing the necessary computations explained in the previous section 5.3.2,

the filter publishes its new 6-DOF pose estimate at the Improved odometry simultaneity with the

respective transform at the TF topic. Now, the Laser mapping and the Transform maintenance

nodes instead of subscribing to the odometry estimated pose, they receive the new improved pose

from the Improved odometry topic. Here is also visible the new Ros bag play node, with the

addition of feedback from the Internal laser odometry topic, as explained on the section 5.2.1.

Providing all the explanation, the improved system was finally tested. The figure 5.24 is a Rviz

screenshot, on the map level, that displays the estimated trajectories- from the GPS, LiDAR map-

ping, LiDAR odometry and improved odometry nodes, in a outdoor scenario. It can be noticed,

that in this case both odometry estimates are overlapped, meaning that the new estimate did not
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Figure 5.22: This figure exposes the computation steps performed by the ekf localization node, in
a flowchart style, necessary to apply to the measurements in order to fuse them on the system.

show improvements. After a closer look to the problem, it was discovered that the odometry esti-

mates were overlapped in terms of position, however the pose estimated with the Kalman had the

improved orientation from the complementary filter. This means, that the EKF node is performing

the fusion. However, the original purpose of improving the LiDAR odometry location estimate

was not working. The reason behind this was the internal model of the Kalman itself. After a

more detailed evaluation of the equations present at 4.10, that represent the kinematic model of

the system and also after analysing the rotations matrices (2.8 and 2.10), that perform the necessary

geometric transformations between frames, it was found that on the linear position equations, that

depend from: the position, velocity and acceleration. Only the position was being given, refereed

to the map frame, this value does not require any rotation and is independent of the orientation.

This means, that in order to correct the problem, the internal model needs to be changed or the

measurements need to be fused in a different mode. At this point, the di f f erential mode can help,

by fusing the position as velocity. It will be depending also on the angular components. Knowing

this, the di f f erential parameters were turned on and the system run again, achieving the desired

results.

5.4 Evaluation

Having all the previous problems solved, the system can be finally successfully evaluated. At this

point, to be able to compare the different trajectories, firstly they need to be run and saved as a file.
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Figure 5.23: UML-based illustration of the improved implemented LOAM-ROS system. In the
figure, the nodes are represented by the ellipse shapes and the topics are the rectangular boxes. The
green color represent the Ros-bag play node and the related published data topics, the GPS node
and GPS odometry are presented in blue. The LOAM nodes and respective published/subscribed
topics are illustrated in pink, the orange color represent the transform topic and Rviz node, respec-
tively. The violet color represents the complementary filter node and topic. To finalize, the gray
color shows the extended kalman filter node and topic. Arrows represent the flow of information,
in the form of subscribe-publish relations between nodes and topics.
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Figure 5.24: This figure is a Rviz screenshot taken on the map frame plane. Exposing the estimated
trajectory, from the GPS, LiDAR mapping, LiDAR odometry and improved odometry nodes in a
outdoor scenario. Both odometry estimates are overlapped.

For this purpose, a small modification to the odometry, mapping and GPS nodes need to be

performed. That consists in saving all the estimated trajectories in a text file during each run.

With the trajectories acquired, the next step is to chose the evaluation metric. In order to do

that, the absolute trajectory error (ATE) is used. This metric consists of the direct measure of

the difference between points of the ground truth and the estimated trajectory. Before this dif-

ference can be measured, it is necessary to perform a pre-processing step. This process starts

with the use of each timestamp, to associate the estimated individual poses with the individ-

ual poses from the ground truth. Afterwards, both of the trajectories are aligned, using singu-

lar value decomposition [69]. With this algorithm, the difference between each pair of poses

can be computed, such as the mean, median and standard deviation of these differences. For

this purpose, scripts presented at the website of the Computer Vision Group Department of In-

formatics, from the Technical University of Munich (TUM) [14], were used. This website pro-

vides openly available tools, for performing the previously explained evaluations. These tools

can be used to pre-process the data and to evaluate SLAM/tracking results and offer the option

of plotting both trajectories. In the following tables (5.1, 5.2 and 5.3) the errors of the origi-

nal system, the improved one and the comparison between both, respectively, can be observed.

They were calculated from a trajectory of 250m in an open environment, using a threshold of

500ms to match the trajectories’ points. The figures 5.25 to 5.36 represent the difference (in

red) between these trajectories in the form of 2D plots, the distance. The final figure 5.37 rep-

resents a 2D plot, where the original Lidar odometry and the improved one can be better com-

pared. An interactive 3D plot comparing the mapping output and GPS trajectories is available at

[2]. With this data, it can be observed that on both, original and improved system, the LiDAR

odometry estimate, as it was expected, achieves the worst performance. Followed by the inte-

grated mapping estimate, that shows slightly worse results than the lone mapping estimate, due to
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the integration of the odometry to fill its gaps. As last, the mapping achieves the best estimate.

Finally, comparing both results shows a significant improvement on the performance of the im-

proved LiDAR odometry estimate, specially in the altitude estimation, meeting the initial expec-

tations. On the other side, the improved mapping and final integrated output are just marginally

improved. It shows that a better initial estimate is not enough for improving, in an acceptable

amount, the mapping performance.

Figure 5.25: 2D plot representing the ATE error, of
the odometry estimate of the x/y plane compared
with GPS x/y plane ground truth.

Figure 5.26: 2D plot representing the ATE error, of the
mapping estimate of the x/y plane compared with GPS x/y
plane ground truth.

Figure 5.27: 2D plot representing the ATE error, of the in-
tegrated mapping estimate of the x/y plane compared with
GPS x/y plane ground truth.
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Table 5.1: ATE estimation errors, of the original system compared with GPS ground truth.

Tragectory (m) Lidar Odometry Lidar Mapping Integrated
RMS (Root-mean-square deviation) 4.95 0.72 0.78
Mean 4.57 0.65 0.73
Median 4.39 0.59 0.69
STD (standard deviation) 1.9 0.29 0.3
Min 0.72 0.17 0.038
Max 12.55 1.29 1.44

Figure 5.28: 2D plot representing the ATE error, of
the odometry estimate of the x/z plane compared
with GPS x/z plane ground truth.

Figure 5.29: 2D plot representing the ATE error, of
the mapping estimate of the x/z plane compared with
GPS x/z plane ground truth.

Figure 5.30: 2D plot representing the ATE error, of the in-
tegrated mapping estimate of the x/z plane compared with
GPS x/z plane ground truth.



66 System implementation and results

Figure 5.31: 2D plot representing the ATE error, of
the odometry estimate of the x/y plane compared
with GPS x/y plane ground truth.

Figure 5.32: 2D plot representing the ATE error, of the
mapping estimate of the x/y plane compared with GPS x/y
plane ground truth.

Figure 5.33: 2D plot representing the ATE error, of the in-
tegrated mapping estimate of the x/y plane compared with
GPS x/y plane ground truth.
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Table 5.2: ATE estimation errors, of the improved system compared with GPS ground truth.

Tragectory (m) Lidar Odometry Lidar Mapping Integrated
RMS (Root-mean-square deviation) 3.11 0.7 0.77
Mean 2.75 0.64 0.72
Median 2.37 0.59 0.69
STD (Standard deviation) 1.45 0.28 0.28
Min 0.26 0.16 0.038
Max 8.45 1.25 1.4

Figure 5.34: 2D plot representing the ATE error, of
the odometry estimate of the x/z plane compared
with GPS x/z plane ground truth.

Figure 5.35: 2D plot representing the ATE error, of
the mapping estimate of the x/z plane compared with
GPS x/z plane ground truth.

Figure 5.36: 2D plot representing the ATE error, of the in-
tegrated mapping estimate of the x/z plane compared with
GPS x/z plane ground truth.
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Figure 5.37: The figure on top exposes a 2D plot of the ground plane (x/y) representing the es-
timated trajectory, from the GPS, LiDAR mapping and LiDAR odometry, in a outdoor scenario,
in meters. The odometry_filtered is the improved version of the laser_odom, the aft_mapped the
mapping and the GPS_odom the GPS estimate, respectively. On the bottom, one dimensional plot
of the altitude compares the previous odometry estimates with the GPS.

Table 5.3: Error comparison, of the original system and the improved one.

Trajectory (%) Lidar Odometry Lidar Mapping Integrated
RMS (Root-mean-square deviation) 37 2.7 1.3
Mean 39 1.5 1.4
Median 46 0 0
STD (Standard deviation) 23 3.4 6.7
Min 63 5.9 0
Max 32 3.1 2.8



Chapter 6

Conclusions

After the realization of this work, a deep knowledge about motion estimation and mapping, using

point clouds from a 3D LiDAR system, was acquired. Together with the advantages and limita-

tions of the use of inertial measurements sensors, combined with sensor fusion through the use of

Extended Kalman filters. Here, the matching of point clouds is a challenging problem, for the rea-

son that it involves recovery of motion and correction of motion distortion. In order to use inertial

measurements sensors (IMUs) correctly, this sensors should be carefully calibrated, since they are

very vulnerable to noise. Also, the extended kalman filters are easy to use but if the data is biased

or not properly calibrated, its estimation can easily start to drift. Nevertheless, the main objective

of this work was accomplished. First goal was to understand and implement a state estimation

algorithm that relied only on 3D LiDAR data and a second one to verify if the use of inertial mea-

surements could indeed improve its performance. Several limitations affected the final results in

this work, especially the access to the Laboratories at Poznan University of Technology. Due to

the COVID-19 pandemic, its access was limited. In consequence, the direct use and experimenta-

tion of the hardware was limited, which led to the poor calibration of the IMU’s. Even though, the

obtained results were positive, the odometry pose estimation showed improvements especially in

the drift of the altitude estimation and the Ouster IMU revealed to be accurate enough for the task.

Several improvements can be pointed as future work, starting by the calibration of the IMU’s, to

properly find any offsets that can create drift, especially in the yaw angle. In case of the use of the

same data, it is possible to extend further the state of the extended kalman filter, to take into the ac-

count the offset in the yaw angle and converge to the real value. Despite the fact that the odometry

estimate was improved and could achieve even further improvements, the noticeable improvement

on mapping results showed that this is not optimal approach. This comes from the fact that the

odometry pose estimate is only used as initial guess for the point could matching. Even with the

best initial point, the mapping algorithm converged typically to a similar result. Along with that,

other approach can be used to take the maximum advantage of the inertial measurements. That is

instead of the use of a motion estimation model, at the odometry algorithm that considers constant

angular and linear velocities during a scan. This could be replaced with a model closer to reality,

that could use the real measurements from the IMU sensor. Due to that, the motion distortion of

69
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the point cloud could be better corrected. This improved point cloud could be given to the further

algorithms and from there, achieve a best performance event at the mapping level.
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