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Abstract

The consumption of antibiotics by humans and animals has increased in recent decades, and
with it their presence in aquatic environments. This presence has caused bacteria to become
resistant to these antibiotics, making treatment more difficult when these resistant bacteria come
into contact with animals or humans. One of these antibiotics is sulfonamides.

These antibiotics are usually detected by taking a water sample to a laboratory and quanti
fying it using expensive methods. Recently, digital colorimetry has emerged as a new method
for detecting sulfonamides in water. When a reagent comes into contact with a water sample,
a color is produced from which we can infer the concentration of sulfonamides. To ensure that
the color is not affected by the illumination when taking a photograph, a color reference target
is positioned next to the sample to correct the colors in the image and obtain a true color of the
sample.

This method has already been implemented in smartphones to provide a faster and more
practical tool that can be used immediately when collecting water samples. Despite this im
provement, the algorithms used can still be outperformed by the use of machine learning, as
they will provide more accurately results.

The best feature of machine learning models is their ability to learn from data. This allows
them to perform tasks such as object recognition as well as or better than humans, and to detect
the concentration of sulfonamides based on the color of a sample.

We developed 4 machine learning models that can be converted to be use in a smartphone
app. A modified SSD MobileNet V2 model to detect the color patches of the color reference
target, a modified SSD MobileNet FPNLite to detect the color of the sample, a machine learning
model to color correct the colors of an image, and a random forest tree regression model to
calculate the sulfonamides concentration based on the corrected color of the sample. These
models improve the accuracy of the older algorithms and allow for more precise analysis of this
hazardous substance in water samples.

Keywords: Computer Vision, Image Processing, Object Detection, Color Correction, Ma
chine Learning, Deep Learning.
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Resumo

O consumo de antibióticos por humanos e animais tem aumentado nas últimas décadas, e com
isso a sua presença em ambientes aquáticos. Essa presença tem vindo a causar bactérias a
tornassemse resistentes a esses antibióticos, dificultando o tratamento quando essas bactérias
resistentes entram em contato com animais ou humanos. Um desses antibióticos são as
sulfonamidas. Estes antibióticos são geralmente detetados levando uma amostra de água a
um laboratório e quantificandoa usando métodos caros. Recentemente, a colorimetria digital
surgiu como um novo método para detetar sulfonamidas na água. Quando um reagente entra
em contato com uma amostra de água, é produzida uma cor da qual podemos inferir a con
centração de sulfonamidas. Para garantir que a cor não seja afetada pela iluminação ao tirar
uma fotografia, um alvo de referência de cor é posicionado próximo da amostra para corrigir as
cores na imagem e obter uma cor verdadeira da amostra. Este método já foi implementado em
smartphones para fornecer uma ferramenta mais rápida e prática que pode ser usada imediata
mente na recolha de amostras de água. Apesar dessa melhoria, os algoritmos utilizados ainda
podem ser superados pelo uso de machine learning, pois estes fornecem resultados commaior
precisão. A melhor característica de machine learning é a capacidade de aprender com os
dados. Isto permite que realizem tarefas como reconhecimento de objetos tão bem oumelhores
que os humanos e também conseguirem detetar a concentração de sulfonamidas com base
na cor de uma amostra. Desenvolvemos 4 modelos de machine learning que podem ser
convertidos para uso num aplicativo de smartphone. Ummodelo SSDMobileNet V2modificado
para detetar as cores do alvo de referência de cor, um SSDMobileNet FPNLite modificado para
detetar a cor da amostra, um modelo de machine learning para corrigir as cores da imagem e
um modelo de random forest tree para calcular a concentração de sulfonamidas com base na
cor corrigida da amostra. Estes modelos melhoram a precisão dos algoritmos mais antigos e
permitem uma análise mais precisa desta substância perigosa em amostras de água.

Palavras Chave: Visão computacional, Processamento de images, Deteção de objectos,
Correção de cor, Machine Learning, Deep Learning.
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Chapter 1

Introduction

Thanks to scientific advances in the mid1900s, there was an improvement in livestock produc
tion that increased the consumption of animal protein per person by 50% from 1961 to 1998 [1].
This scientific knowledge brought new developments in breeding, nutrition, and animal health.
An important development in animal health was the increased use of antibiotics to prevent the
spread of disease. One of these antibiotics was sulfonamides. These antibiotics were and still
are widely used today [2].

Sulfonamides are antibiotics used to treat bacterial infections in humans and animals. When
ingested, these antibiotics concentrate in the urine before being excreted. Once this urine
enters groundwater, they can remain active for a long period of time [3]. When left in water
streams, bacterial populations are exposed to repeated sublethal doses that cause them to
become antibiotic resistant. As these new bacteria spread to humans, their infections will be
more difficult to treat, cause higher medical costs, longer hospital stays, and increased mortality
rates [4]. Thus, the detection and quantification of these sulfonamides is an important task.

Normally, quantification is performed in a laboratory setting, and this makes it difficult to track
and monitor compounds in the wild, so it is important to find a portable method that can perform
tests immediately.

1.1 Motivation

According to European Centre for Disease Prevention and Control, there has been a rapid and
continuing rise in antibioticresistant infections [5] and according to the Centers for Disease
Control and Prevention, at least 2.8 million people in the U.S. contract an antibioticresistant
infection each year [6]. Considering that this antibiotic problem is a worldwide problem, it is
therefore important to find suitablemethods to detect these bacteria so that appropriatemethods
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2 Chapter 1. Introduction

are used to prevent and eliminate their spread.

The conventional method of detecting and quantifying sulfonamides in water involves a
researcher collecting a sample of water, transporting that sample to a laboratory, and then
calculating the concentration using difficult and expensive equipment. This type of method
makes it even more difficult to detect and control substances in a wild environment or in remote
regions where the nearest laboratory is not as close to the water source.

In 2019, Carvalho et al. [7] developed a new method for the detection of sulfonamides in
water. This method is based on digital colorimetry and is simpler and less expensive than
standard methods for detecting antibiotics. While their method was a great advance in detecting
sulfonamides in a wild, the algorithm used can be outperformed by using machine learning
methods. These machine learning models are improving rapidly and can perform faster and
obtain more accurate results.

1.2 Objectives

The objective of this dissertation is to create a computer vision algorithm for the determination of
sulfonamides in water that improves on the work of Carvalho et al. [7] by using machine learning
models that can also be easily adapted in a smartphone application.

Given an image similar to figure 1.1 four machine learning methods will be applied, each
one focusing on each of the following areas:

Figure 1.1: Example of image in the dataset.

• Detection of the color checker patches: Detection of the position of each color patch
in the color checker, so we can use that position to extract the color of each patch (figure
1.1);

• Detection of the disk and its color: Similar to the point above, detection of the position
of the disk and the color, and use the position of the color to determine its color (figure
1.2b);
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• Color correction of the image using the color checker patches: When taking pictures
with a camera, sometimes the colors are not the same that we can see them with our eyes.
Therefore, it is important to correct the image to obtain the true color of the color sample
inside the disk. This color correction makes possible a more accurate determination of
the concentration value of the sulfonamides. The colors extracted from the color patches
are used to color correct the image, and this correction is applied to the color inside the
disk;

• Calculating the concentration of Sulfonamides: Calculation of sulfonamides concen
tration using digital colorimetry, which determines the concentration value based on the
color of the disk.

(a) Patches (b) Disk and color

Figure 1.2: Detections of the machine learning models.

1.3 Contribution

At the end of this dissertation, we have a machine learning model for each of the objectives
defined above:

• Model for the detection of the color checker patches;

• Model for the detection of the disk sample;

• Model for the color correction of the color of the disk;

• Model for quantification of sulfonamides concentration.

1.4 Organization

This dissertation is divided into the following chapters:
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• Chapter 2  Literature Revision: In this chapter we describe the current state of the art on
which our work is based;

• Chapter 3  Baseline: In this section we establish the baseline against which we will
compare our work;

• Chapter 4  Machine Learning Methods: Here we describe how the machine learning
models were created, what datasets they contain and what results they produce;

• Chapter 5  Conclusions and Future Work: The last chapter where we make an evaluation
of the work done and make suggestions for future work.



Chapter 2

Literature Revision

This literature revision will be divided into 3 sections:

• Detection and quantification of sulfonamides  What methods are traditionally used to
detect and quantify sulfonamides;

• Object Detection  Comparing machine learning models versus traditional techniques for
object detection and segmentation;

• Color Correction  Exploring traditional and machine learning methods currently used to
color correct images.

2.1 Detecting and quantifying sulfonamides

There are several methods for the detection and quantification of sulfonamides. The following
are the most common and are all performed in a laboratory.

• High Performance Liquid Chromatography (HPLC) [8]  This method is one of the most
common methods for the detection and quantification of sulfonamides. The method can
be divided into two processes. The first process is to pass a pressurized liquid solvent that
separates the components of the sample, and the second process is a mass spectrometric
analysis of the separated components;

• Capillary Electrophoresis  Separates the components based on their electrophoretic mo
bility (atomic radius, viscosity and charge of the molecule) [9]. This method is a better
alternative to the previous ones as it can be used for small amounts of a sample, gives
faster results and allows a highresolution separation;

5



6 Chapter 2. Literature Revision

• Microbiological Assays  Microorganisms can only grow and multiply under specific condi
tions. Therefore, Bilandžić et al. [10] has developed amethod using sulfonamidesensitive
bacteria to determine the presence of sulfonamides. Since the bacteria are sensitive to
sulfonamides, they are placed in an environment containing milk with suspected sulfon
amides to multiply and we measure how much growth has been suppressed compared to
a normal environment without sulfonamides. This type of approach serves as a screening
method for finding sulfonamides rather than calculating their concentration;

• Spectrophotemetric  Is a technique that measures the amount of chemicals present in a
solution by measuring the light absorbed by the sample and was developed by ElDien
et al. [11]. It is a simple method that, like the previous method, is best suited for screening
sulfonamides;

• Immunoassay  Is a biochemical test that uses an antibody to produce a reaction in which
the antibody binds to a specific target structure. Thanks to Li et al. [12], an antibody
has been developed that can bind to the sulfonamide structure. This type of test can be
performed with small samples and in a short time.

Recently Carvalho et al. [7], develop a method that used digital colorimetry to detect the
concentration of sulfonamides concentration. Digital colorimetry is the method of measuring
the absorbance of wavelengths of light and correlate them to a concentration of the detected
substances of a sample. Their method consisted in:

1. Using a reagent in a water sample to obtained a specific color depending on the concen
tration of sulfonamides in the sample;

2. Taking a photo of the sample with a color reference target (xrite ColorChecker Passport)
next to it to be able to eliminate the illuminations differences when taking a photo;

Figure 2.1: Image of the color checker and the sample Carvalho et al. [7].

3. Segmenting the colors from the reference target to color correct the image  To accomplish
this they needed to first segment the color checker (figure 2.2), then segment the patches
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(figure 2.3) and finally defining a small bounding box inside each patch where the color
will be retrieved (figure 2.4);

Figure 2.2: Segmentation process of the color checker from Carvalho et al. [7].

Figure 2.3: Segmentation process of the patches from Carvalho et al. [7].

Figure 2.4: Bounding boxes of the patches where the color will be extracted from Carvalho et al. [7].

4. Segmentation of the disk and color (figure 2.5);

5. With the colors extracted they performed a least square regression between their RGB
and XYZ values. This regression allow them to color correct the image (figure 2.6);

6. And finally they utilize the G or H color component curves (G for lower concentrations and
H for higher concentrations) to calculate its sulfonamides concentration value.

Their method of performing disk and patches segmentation uses traditional computer vision
image processing methods such as thresholding, dilation and erosion. These techniques can
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Figure 2.5: Segmentation process of the patches from Carvalho et al. [7].

Figure 2.6: Original image(left) and color corrected image (right) from [7].

work well when dealing with very similar images, but they are difficult to adapt to all types of
images like images with different light illuminations, quality of the camera, presence of shadows
and blurriness or inability of the user when taking a photograph.

According to Mahony et al. [13], deep learning now achieves higher accuracy in object
detection and segmentation by overcoming the problem of having different type of images.
Since these models are trained rather than programmed, they are more flexible and can be
retrained and adapted each time different data is encountered.

2.2 Object Detection

This dissertation was developed alongside another student that was developing the app for this
work, and because of that we needed to use models that could be converted into a smartphone
application. The model chosen is the model developed by Howard et al. [14].

In Howard et al. [14] they describe a small and lightweight model name Mobile Net that can
be used for detection of objects. Instead of using convolutional layers, depth wise separable
convolutional layers are used. This type of layer gives almost exactly the same result as the
regular convolutional layer, but instead of using only one layer, they split it into two. First, a
depthwise convolutional layer is used, which performs convolution for each channel separately,
instead of the usual one channel per pixel. The second and final layer is a pointwise convolution,
which sums all channels.

Although this process is a twostep process, the method is actually faster and easier than
the normal convolutions because the normal convolutions require more computational work.
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In 2018, researchers at Google released version 2 of Mobile Net [15], which introduces two
additional features. A linear bottleneck between layers and shortcut connections between
bottlenecks (figure 2.7). With this introduction, the models achieve the same accuracy but are
faster than the first version.

Figure 2.7: Architecture of the MobileNetV2 from Sandler et al. [15].

2.3 Color correction

Before we talk about color correction algorithms, we must first understand what color is and
why we need to correct it. Color is not real and does not exist. In order for our minds to
create color, we need our eyes, an object, and most importantly, light. Light is made up of
electromagnetic waves, and when they hit an object, that object absorbs some and reflects
others. These reflected waves determine the colors we see. To create the color, the light must
interact with the light receptors in our eyes, which then send messages to the brain.

Cameras also work similarly to human eyes as seen in figure 2.8. The creation of a digital
photograph begins with the opening of the shutter, then the light reaches the sensors and the
shutter closes again. The sensors consist of photodiodes that react to the light reflected from
objects and convert this information into an electronic form of millions of bits and bytes.

Figure 2.8: Eye vs Camera from ScienceWithMe! [16].

One big difference between cameras and the human eye is that cameras record light as
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it actually is, while our brains always color correct colors. If we are in a room illuminated
with fluorescent lights that produce a greenishyellow light, all the reflected light will also have
a greenishyellow tint. Our brain can understand that the reflected colors are not the “true”
colors of the image, so it makes some color corrections to remove that greenishyellow tone
(we describe the “true” colors as the colors reflected from white light). If the cameras do not
have a color correction algorithm, they always capture the colors with the tone that the light has.
This causes a problem because if we shoot the same object with the same camera in two rooms
with different light, the colors in the image will be different.

Color correction algorithms help with this problem. They correct colors so that the colors of
an object remain consistent, regardless of the light used to capture them. There are several
different color correction algorithms. We will refer to learning methods as methods that use
machine learning to correct the image, and traditional methods as all other methods.

2.3.1 Traditional methods

2.3.1.1 White Balance

White balance is an algorithm commonly used in image color correction. This algorithm removes
color casts so that objects that appear white to our eyes when photographed remain white in
the image.

There are several ways to implement this type of algorithm. The simplest are those com
monly used in phone cameras, where they have predefined options, such as “cloudy”, “fluores
cent”, “direct sunlight” and “auto” (figure 2.9), where the user can choose the situation in which
to take the photo. The option selected will then add a preset color value to the image to color
correct it. Cameras may also have options to manually set a color temperature for the photo.
These types of options are good for correcting the photos to look natural but they will not color
correct the colors to their true colors.

Figure 2.9: Example of automatic white balance options from Icon Photography School [17].
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Some other more complex than the previous white balance algorithms are:

• The gray world assumption: Buchsbaum [18] states that the given a white light source
the average of the red blue and green values of a image average to a gray color. So given
a new image we can calculate the average color and compare it to the gray color;

• GrayEdge: Van De Weijer et al. [19] developed a similar hypothesis to the above, but
instead of using all the scene to calculate the different, it assumes that the edge different
from that scene averages to a gray color;

• White patch: Land [20] searches for a white pixel and uses the difference between that
pixel and a true white pixel and applies that difference to the rest of image.

Normally white balance algorithms are used automatically before others algorithms such as
in He et al. [21] where white balance is used before an algorithm of dehazing in Jingchun Zhou
and Zhang [22] uses an automatic white balance based on the work of ChingChih Weng et al.
[23]. White balance can also be adapted to like in Gasparini and Schettini [24]. They propose
an unsupervised way to distinguish between a true cast or a predominant color in an image and
remove the cast when found. The white balance algorithm is used after the determination of
the cast and is not applied only to a single point, to prevent choosing the wrong region. Their
algorithm chooses several points that on average are white and applies the white balance to
those points.

2.3.1.2 Other Methods

Regression models can also be used to color correct images. Li et al. [25] wanted to create
a model to quantify the number of days a bruise has. Their experiment consisted of taking a
photo of the color chart, obtaining the color profile information (ICC), taking a photo of the skin,
correcting the color of the skin with the ICC profile, and analyzing the color of the bruise shown
in figure 2.10. The ICC profile is obtained using a polynomial regression calculation method
and the photographs were taken using a LED ring light to obtain more uniform illumination. A
dark chamber module was also used between the lens and the sample. While their experiments
produced excellent results, they had a very controlled environment. Unfortunately, our model
needs to be more robust than this. We need to develop a system that will allow us to photograph
in a wild environment and still get excellent results. So, we will have to use a color correction
algorithm that is stronger than the proposed one.

In You et al. [26], the authors aim to develop a method to evaluate the quality of chicken
meat. Their experiment consisted in taking a photo of the chicken with a color tester next to it,
then a color correction algorithm is applied and finally the color is classified into one of the 3
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Figure 2.10: Diagram of the procedure from Li et al. [25].

clusters representing the freshness of the meat. A multivariate linear regression model is used
in for color correction. The parameters are calculated by comparing the color values of the
extractor with the standard colors of the color tester. Since they only want to cluster the colors,
there is no need to accurately represent the true color value.

2.3.2 Learning Methods

In recent years, there has been increasing interest in deep learning, a subfield of machine
learning in which machines learn by example. This technology involves a multilayered structure
of algorithms called neural networks. These networks consist of node layers that contain an
input layer, several hidden layers, and an output layer as seen in figure 2.11. Each node has
a weight and data is sent through the nodes based on certain thresholds. If this threshold is
not met, the data is not forwarded to other nodes. By filtering the data in this manner, neuro
networks function in a similar way to the human brain.

Figure 2.11: Example of a neuro networks from Bre et al. [27].
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The reason why this type of learning became so popular is because of the networks ability
to perform feature extraction for us. Feature extraction require a very detailed knowledge of
the problem domain to extract pertinent features and sometimes it is even impossible to extract
some features. Because the layers of the neuronetwork learn these features implicitly, we
have much more complex features than a human could ever extract. It is this feature that
allows these types of learning to achieve excellent results and even outperform humans. In
2019, for example, Ardila et al. [28] developed a Deep Learning algorithm that could accurately
predict the risk of lung cancer based on computed tomography scans, outperforming all six
expert radiologists.

In Chinese medicine, the patient’s tongue is used as a diagnostic method. Therefore, Lu
et al. [29] wanted to develop a model that color corrects the images for quantitative analysis or
to display in the doctor’s computer. They use a convolutional neuro network (figure 2.12) with
two phases. In the offline phase, they trained the network with a color checker where it learns
how to correct colors in the image, and then in the online phase, they use the network to correct
the image of the tongues.

Figure 2.12: Architecture of the model from Lu et al. [29].

The devices used to capture the tongue images are not normal handheld cameras. These
devices were developed by the Signal and Information Processing Lab at Beijing University of
Technology. They are specially designed so that the patient’s head rests on a support and the
brightness of the device can be adjusted as show in figure 2.13. This means that their algorithm
does not have to be very robust, as there will not be much variation in the photos taken, unlike
our problem.

(a) Cameras (b) Photos taken with the special camera

Figure 2.13: Camera and dataset from Lu et al. [29].
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Robin Kips and Perrot [30] wanted to estimate the color of the skin of an image taken in a
wild environment. They take photos with multiple phones in different lighting conditions, with
the participant holding a color checker. Their model, which they called LabNet, is divided into 2
parts. The first part is a neuronetwork inspired by the ResNet architecture [31] and the second
part is a dense layer with ReLU activations as show in figure 2.14. Their aim with their model is
to implicitly learn to color correct and segmentate the skin, so the only preprocessing step used
is to do a face alignment. The results were impressive and even outperformed conventional
skin color estimation techniques. They concluded that this kind of models can be used for color
estimation problems even without explicit color correction.

Figure 2.14: Architecture of the model from Robin Kips and Perrot [30].

And finally, Lou et al. [32] proposes a new deep learning model that could estimate the light
source. Their model uses Deep Neural Networks (DNNs) with five convolutional layers and
three fully connected layers as seen in figure 2.15. Their results show that they were able to
obtain accurate results in real world datasets, outperforming the state of the art results by 9%.

Figure 2.15: Architecture of the model from Lou et al. [32].

2.4 Summary

The detection of sulfonamides in water has become an important issue in recent years because
of the health problems that arise when people come into contact with bacteria that are resistant
to these antibiotics. Therefore, several methods have been developed to detect sulfonamides in
water. These methods can only be performed in a laboratory, which limits their practicality if the
environment in which the tests are performed is far from these laboratories. Fortunately, a new
practical method has been developed in the form of digital colorimetry. Although this method
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gives good results, it can be replaced by machine learning models. Machine learning models
have been improving at a rapid rate allowing them to perform detections and color correcting
images more accurately than the old algorithms.





Chapter 3

Baseline Method for Color Correction
on Uncontrolled Lighting Conditions1

In Carvalho et al. [7], they proposed a new approach for antibiotic pollution monitoring, using
digital colorimetry in conjunction with smartphones for an accessible and mobile application.
The study focused on the estimation of sulfonamides (a family of antibiotics) concentration in
contaminated water samples. The color of the sample was corrected using a reference target,
so that there is color constancy between images with different illuminations and from different
devices. To estimate the concentration of sulfonamides, a calibration curve is used, correlating
concentrations to a color value. They found that the a∗ color value from the CIELab color space
and the hue (H) color value from the HSV color space provided the best correlation between
color and sulfonamide concentrations [7].

For Carvalho et al. [7], a dataset with photographs of the xrite ColorChecker Passport next
to a sample of contaminated water was prepared in a laboratory setting, with the color chart
used as the reference for the color correction and the target being the sample. Figure 3.1 is an
example of a photograph from this dataset and figure 3.2 shows the colors the samples assume
depending on the concentration of sulfonamides.

Although they achieved good results, they still detected a high standard deviation between
color corrected images, especially when more contrasting illumination conditions were present.
Therefore, we wanted to explore other variations of our color correction method to minimize the
influence of different illuminations, providing a more stable color correction even in extreme con
ditions. Besides, we wanted to validate this approach by testing independently of the samples.
Using water samples might contribute to more variance in the results, since it’s preparation in
a laboratory is more prone to human error. To do this, we used different patches from the xrite
ColorChecker Passport as the targets, instead of the samples.

1Parts of this chapter were published as a scientific paper
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Figure 3.1: Example photograph from dataset of Carvalho et al. [7].

Figure 3.2: Examples of samples of varying sulfonamide concentrations, from 0 µg/L (left) to 150 µg/L
(right).

3.1 Methodology

The objective of this work is to improve upon the color correction algorithm of Carvalho et al. [7].
Color correction is needed to ensure color is consistent between photographs under different
illuminations or from different devices. In Carvalho et al. [7], color correction is done using
the classic color chart of an xrite ColorChecker Passport, which is a reference chart with 24
patches of different colors arranged in a 6 by 4 grid, with known ground truth values. With a least
squares method, they minimize the difference between the detected color of the 24 patches and
the ground truth. Other works have demonstrated different approaches such as:

• Using only 13 of the 24 color chart patches: Alsam and Finlayson [33] showed that
color correction with only 13 patches is comparable to using the 24 patches;

• Using more parameters in the least squares minimization: In Finlayson et al. [34], it
is shown that more parameters in the least squares minimization for the color correction
leads to better results.

Inspired by these two works, we hypothesize that choosing the 13 patches closest to the
color of the target and using more parameters in the least squares minimization will improve
upon their previous work.
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3.1.1 Data

For this work, a database was built with 24 photographs (see figure 3.3 for examples) of the
xrite ColorChecker Passport in various illumination conditions:

• inside with different white lights (9 images);

• inside with different yellow lights (6 images);

• inside by the window (3 images);

• outside in the sun (3 images);

• outside in the shade (3 images).

These new images provide more contrasting conditions of illumination when compared to the
first dataset that was captured in a laboratory setting, making the color correction more challen
ging, but more prepared for real world use. To further simulate practical use, the photographs
were captured free hand, with the only restriction being encompassing the reference and target
color patches from above, as close to 90 degrees as possible.

Figure 3.3: Example photographs from the new dataset. Taken inside with a white light (left), inside with
a yellow light (middle) and outside in the sun (right).

In Carvalho et al. [7], the target of the color correction was the sample of contaminated water.
Here, the targets are the 8 colored patches (red, orange, yellow, green, cyan, blue, violet and
magenta) in the page opposite of the classic color chart that is used for the color correction, see
figure 4.6.
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Figure 3.4: Example of the 8 targets of the color correction (top) and the 24 patches used as reference
for the color correction (bottom).

3.1.2 Color Correction

A color correction matrix Mcc is used to transform the original image I, resulting in a color
corrected image Icc, as shown in equation (3.1).

Icc = MccI (3.1)

Mcc is found by solving the following minimization problem:

Mcc = arg min
T

∥CXY Z − MccCRGB∥2 (3.2)

Mcc is calculated using a leastsquares method to find the difference between the measured
RGB values of the color chart patches, CRGB, in each image and the corresponding ground truth
XYZ values, CXY Z , see equation (3.3). Transforming the image using Mcc will result in a color
corrected image in the XYZ color space, which is a device independent color space.

Mcc = (CT
RGBCRGB)−1CT

RGBCXY Z (3.3)

For a 3×3 color correction matrix and using all color chart patches, CRGB and CXY Z are both
the same size, 24 × 3 matrices. Each line represents a patch RGB or XYZ value. In Carvalho
et al. [7], all 24 patches were used to find Mcc, and for this work, we compare it with using only
13 patches, making CRGB and CXY Z 13 × 3 matrices.

3.1.2.1 13 Patches

To choose the 13 patches, the RGB values of each patch are assumed as a 3dimensional
coordinate and the euclidean distance between each of the 24 patches and the RGB value of
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each of the 8 target colors is calculated, and the 13 closest patches are chosen. Equation (3.4)
shows how each distance D is calculated, with PR,PG and PB being the RGB values of each
patch and TR, TG and TB the RGB values of the targets. figure 3.5 shows the 13 patches chosen
for each target.

D =
√

(PR − TR)2 + (PG − TG)2 + (PB − TB)2 (3.4)

Figure 3.5: Selected patches for each of the 8 targets. Each target indicated on the top left, and the
black dots indicating the 13 chosen patches from the 24 color chart.

3.1.2.2 Polynomial Extensions

More complex least squares minimization can be done by adding polynomial terms to CRGB,
making it a 24×N or 13×N matrix, withN depending on the number of parameters added. In this
work, the more commonly used {R, G, B} (P1) is tested along with the polynomial extension
(P2) and the rootpolynomial extension (P3). The terms for these extensions are shown in
equations (3.6) and (3.7), respectively.

P1 = {R, G, B} (3.5)

P2 = {R, G, B, R2, G2, B2, RG, GB, RB} (3.6)

P3 = {R, G, B,
√

RG,
√

GB,
√

RB} (3.7)
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Other polynomial terms were tested, however the results were consistently worse than these
three and, therefore, discarded from this study.

The baseline method employing all 24 patches of the color chart and with CRGB = {R, G, B}
is compared with the use of only the 13 closest patches to the target and the polynomial and
rootpolynomial extensions.

3.1.2.3 Metrics

The metric used to compare the results is the standard deviation (Std) of the target values
between images. Lower values meaning that the colors of the targets in different color corrected
images are closer to each other.

3.2 Results

In [7], we found that the color components that can best differentiate sulfonamides concentra
tions are the a* component from the CIELab color space and the hue (H) from the HSV color
space, therefore the results are focused on these two values.

Tables 3.1 and 3.2 showcase the Std of the target values when using 24 or 13 patches and
different polynomial terms:

• P1: {R, G, B}

• P2 the polynomial extension: {R, G, B, R2, G2, B2, RG, GB, RB}

• P3 the rootpolynomial extension: {R, G, B,
√

RG,
√

GB,
√

RB}

Table 3.1 shows that, for a*, 13 patches usually provide better results, with only the orange,
yellow and violet patches having the best result with 24 patches. The polynomial extension P2
with 13 patches has the lowest average, with a 2.56% improvement over the baseline (P1 with
24 patches). The Std for this method shows a 32.01% improvement relative to the baseline.
Table 3.2 shows that for H, the results are similar, with 13 patches providing lower standard
deviations, with the exception of the Red target. On average the best case for H is the simplest,
P1 with 13 patches. Compared to the baseline, the average improves by 18.58%, while the Std
improves by 59.85%. These results prove that the new methods are more stable, as the Std is
significantly lower than in the baseline.

With these results, it is clear that using the 13 patches closest to the target’s RGB values
produces a more precise color correction, with less variation between the targets in different
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a* Patches Red Orange Yellow Green Cyan Blue Violet Magenta Average (Std)

P1
24 2.632 0.613 0.915 0.830 1.100 1.205 0.825 1.242 1.170 (0.628)
13 2.554 1.035 0.987 0.558 0.675 0.947 1.329 1.72 1.226 (0.648)

P2
24 1.477 1.309 1.275 1.196 1.417 2.046 0.651 0.919 1.286 (0.410)
13 1.111 0.803 1.382 1.606 0.884 1.848 0.696 0.791 1.140 (0.427)

P3
24 3.552 1.135 1.031 0.826 0.916 1.271 1.007 1.640 1.422 (0.896)
13 0.905 1.614 1.046 1.751 0.785 1.912 0.936 0.863 1.227 (0.454)

Table 3.1: Standard deviations of the a* color value for each of the target patches.

H Patches Red Orange Yellow Green Cyan Blue Violet Magenta Average (Std)

P1
24 0.635 0.947 0.552 1.628 0.439 0.758 1.259 0.759 0.872 (0.396)
13 0.880 0.796 0.547 0.716 0.436 0.640 0.788 0.880 0.710 (0.159)

P2
24 0.550 0.530 0.562 0.869 0.741 1.233 0.708 0.818 0.751 (0.232)
13 0.627 0.427 0.651 1.812 0.435 0.900 0.544 0.534 0.741 (0.458)

P3
24 1.265 0.639 0.548 1.021 0.507 0.934 1.518 0.800 0.904 (0.356)
13 0.561 0.569 0.513 1.532 0.436 1.105 0.611 0.494 0.728 (0.386)

Table 3.2: Standard deviations of the H color value for each of the target patches.

photographs. However, the best polynomial extension varies for each color target, making it a
case by case selection.

In our case, the real world samples can vary in color from yellow to a dark magenta, almost
red, in the highest sulfonamides concentrations (figure 3.2). We decided to study the results
with only the closest targets to our samples. Using the euclidean distance shown in equa
tion (3.4), we calculated the distance of the 8 targets to random samples (with concentrations 0
µg/L, 20 µg/L, 50 µg/L and 100 µg/L) and found the closest targets to our real world application
to be the red, orange, yellow, violet and magenta patches. Tables 3.3 and 3.4 show the results
focused on these 5 targets.

For the a* color value, the polynomial extension P2 with 13 patches gives the lower average,
while, for the H color value, the rootpolynomial extension P3 with 13 patches is the lowest. In
this case, the improvement for a* is 23.21% on average and 64.81% on the Std. As for H, we
can see a decrease of 33.73% on average and 83.33% for the Std. These improvements are
proof that these methods are more stable, meaning less influenced by contrasting illumination
conditions.

Thus, for our application, the best setup for color correction depends on which color value
provides the best correlation between color and sulfonamides concentration.



24 Chapter 3. Baseline Method for Color Correction on Uncontrolled Lighting Conditions

a* Patches Red Orange Yellow Violet Magenta Average (Std)

P1
24 2.632 0.613 0.915 0.825 1.242 1.245 (0.807)
13 2.554 1.035 0.987 1.329 1.721 1.525 (0.645)

P2
24 1.477 1.309 1.275 0.651 0.919 1.126 (0.335)
13 1.111 0.803 1.382 0.696 0.791 0.956 (0.284)

P3
24 3.552 1.135 1.031 1.007 1.640 1.673 (1.081)
13 0.905 1.614 1.046 0.936 0.863 1.073 (0.310)

Table 3.3: Standard deviations of the a* color value for the red, yellow, violet and magenta target
patches.

H Patches Red Orange Yellow Violet Magenta Average (Std)

P1
24 0.635 0.947 0.552 1.259 0.759 0.830 (0.282)
13 0.880 0.796 0.547 0.788 0.880 0.778 (0.136)

P2
24 0.550 0.530 0.562 0.708 0.818 0.634 (0.125)
13 0.627 0.427 0.651 0.544 0.534 0.557 (0.088)

P3
24 1.265 0.639 0.548 1.518 0.800 0.954 (0.419)
13 0.561 0.569 0.513 0.611 0.494 0.550 (0.047)

Table 3.4: Standard deviations of the H color value for the red, yellow, violet and magenta target
patches.

3.3 Conclusions

Promising results were achieved in this work, with a lower standard deviation between different
color corrected images compared to previous work. Confirming that, with fewer but more
relevant patches, the color correction has more resolution in the targets color range. This
improvement means that smaller differences in sulfonamides concentration can be detected,
making digital colorimetry a more reliable method for monitoring environmental water pollution.
As for the polynomial expansions, the results are not as straight forward, with each choice (P1,
P2 and P3) being the best for different targets. This makes it a case by case decision on which
to use, depending on the real world application.
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Machine Learning Models

This thesis was developed as part of the INESC TEC SMODE project, so we had some con
straints and limitations to consider:

• We could not modify the original dataset  We had to work with the images that were
provided to us, and could not change how the images were taken to possible facilitate the
development of the machine learning models;

• We want to be able to measure the concentration of sulfonamides in an environment
outside of a lab  So we need to be able to develop a solution that can be converted and
run on a smartphone since its portable and their computational power has been increasing;

• To facilitate the conversion to a smartphone app, each step of the algorithmwill be modular
 So that in the future, as new solutions emerge, we can simply replace one old machine
learning model with another.

Our methodology is similar to Carvalho et al. [7]. Since we have an image as a color checker
and a disk, we will use the same detection ideas to detect and extract the colors, and we will
also use the colors from the color checker to create a model that learns how to color correct
them. The thought process to solve our problem started with detecting the color checker and its
patches, detecting the disk and its color, and then color correction. This color correction model
will be different that was done before. We want to create a machine learning model that receives
an image and color corrects it. So, we will create an image with the colors of the patches and
the color of the disk, and create a model that receives that image and color corrects it. Then
all we have to do is extract the color of the disk and pass it to the model that calculates the
sulfonamides concentration. The solution thus developed is shown in figure 4.1.

In order to compare Carvalho et al. [7] results with ours, we converted their MATLAB code to
Python to familiarize ourselves with the problem, understand if there are some issues that can
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Figure 4.1: Flowchart Methodology.

be solved by machine learning, and help create the datasets between processes. The decision
to convert to python was because we were more familiar with this language.

The SMode project partners created the original image dataset by photographing the disks
and color checkers with different smartphones under different lighting conditions, as shown in
figure 4.2.

Figure 4.2: Example of different lighting conditions.

And in the following results sections we will refer the machine learning models as Machine
Learning Model (MLM), the segmentation algorithms as Traditional Segmentation Techniques
(TST) and the algorithm that we develop in chapter 3 as Traditional Correction Model (TCM).
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4.1 TensorFlow and TensorFlow Lite

The TensorFlow Object Detection API [35], shown in figure 4.3, was used to build the machine
learningmodels. This framework has several pretrainedmodels that were trained on the COCO
2017 dataset [36]. These models can be used outofthebox if we want to detect objects that
appear in the COCO dataset, but we can also train the models from scratch using our own
objects. Since the objects we want to detect are not the objects normally used in machine
learning, such as cats, dogs, people, cars, and so on. We will train the models from scratch
using our own datasets to detect patches and disks.

Estimators

High-Level
TensorFlow

APIs

Mid-Level
TensorFlow

APIs

Low-Level
TensorFlow

APIs

TensorFlow
Kerner

Training

Prediction

Evaluation

Exporting
model

Keras TF Learn TF-Slim
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Python Java, C++, Go ,...

TensorFlow Distributed Execution Engine

Figure 4.3: TensorFlow Object Detection API.

Since we are using the TensorFlow API, its models use a specific input type. This input is a
TFRecords. These TFRecords are a proprietary binary storage format of TensorFlow and it is
this binary data that is fed into the model. This conversion to TFRecords improves the training
time of our models because binary data is smaller, faster to read, and optimized for use with
TensorFlow so that data from larger datasets only needs to be loaded when needed.

Once we have trained our models, we need to convert them into a smartphonecompatible
model. To do this, we convert our model into a TensorFlow Lite model, as shown in figure 4.4.
These models are specifically designed for use on mobile devices, as they are faster, smaller,
and less computationally intensive. When converting to a TFLite model, TensorFlow Lite takes
the SavedModel output of our machine learning model as input, compresses it, and interprets
it for a mobile application. There are some optimizations and operators that can be used in this
conversion to improve the performance of the model on a smartphone, but we will get into that
later when describing the machine learning model conversion.
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Figure 4.4: TensorFlow Lite Converter from TensorFlow [37].

4.2 Patches Detection

The goal of this model is to be given an image of a color checker and detect the position for
each color patch (figure 4.5), so that when integrated into a mobile application, segmentation
methods can be applied to obtain the color from the color checker positions.

Figure 4.5: Detection of the patches.

4.2.1 Building training dataset

To make the training phase faster and less computationally intensive, we downsize all images
captured by the Smode project partners to a width of 512 and a height of 384 before processing
them.

In order for the machine learning models to learn to detect the patches, we need to annotate
each image in the training dataset with the location of each patch. To avoid the need for humans
to annotate each image, we modified the code developed by Carvalho et al. [7], which already
performs the patch segmentation, to help us annotate our images.
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The Carvalho et al. [7] program is written in MATLAB, but we translated it to Python and
used the OpenCV library to replace all the functions that perform traditional image processing
techniques. The original MATLAB program outputs the mean color of each patch used in the
color correction algorithm, but for our model we needed the position, not the color. Therefore,
we modified the Python code to stop before extracting the colors and use the positions of the
patches to create the annotation files. Since the program could not perfectly segment all images,
the images where the segmentation was not correct were manually labeled. Figure 4.6 shows
an example of the labeled images.

Figure 4.6: Example of image annotation.

To train the model, we split the images and annotations into a training set (70%) and a test
set (30%) and converted them to TFRecords.

4.2.2 Model

The model used was the SSD Mobilenet V2, described in chapter 2. This model was already
built using the TensorFlow API, so we only need to change the input in the configuration file to
make it work. So as a first experience, we only changed the input to use our dataset. You can
see the result in the figure 4.7

Unfortunately, as we can see, the model had difficulty detecting only the 24 colors and
detected the same color several times in different positions. So, we decide to experiment more
with the configuration file.

Since the model is already created, only some changes were made to the configuration file:

• Limit the number of classes to detect to 24  We only had 24 different patches and these
patches show up every time, so we changed the model to always detect all 24 patches.

• Limit the model to only one detection per class  The model detected the same colors
more than once, so we limit the model to only detect one patch for each color.
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Figure 4.7: Result of the first experience to detect the color checker.

• Due to the memory available for training the model, we had to reduce the batch size to
32;

• And finally, we change the type of the fine  tuning checkpoint from classification to detec
tion.

With these changes, the new model began to detect all 24 patches in the correct location
without any of them appearing in an incorrect location. After the model completed training,
we converted it to a TFLite model. It was necessary to add two postprocessing operators,
the TensorFlow Lite operators and the TensorFlow operator. When converting the model to the
TFLite model, we did not use optimizers because the model would not run on a IOS smartphone.

4.2.3 Results

In the model TST, three operations must be performed to segment the patches:

• Detection and segmentation of the color checker;

• Detection and segmentation of each patch of the color checker;

• Output of an Excel file with the coordinates for each patch;

The MLM performs the patches detection in one step and its output does not consist of an
Excel file, but of three components:

• Bounding boxes  the position of the detected patches;

• The class of the bounding box  the name of the detected color;

• The score of the this prediction  how sure is the model that this bounding box belongs to
this class.
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The three components can be seen in figure 4.8. This MLM model only performs the
detection of the patches and it is the smartphone application that receives these components
and performs the segmentation of the patches.

Since we restricted the MLM model to detect only one box for each of the 24 classes,
we sometimes have prediction values of less than 30% confidence, as in figure 4.8b. If the
confidence value is greater than 20%, we do not consider this a problem. Even if the prediction
is lower, the model will detect the correct patch corresponding to this class. If the prediction
is so low that the model detects the patch in the wrong place, as in figure 4.8c, the user can
use the mobile application to check that the model has made a mistake and perform a manual
segmentation.

(a) Good detection (b) Detection with a low prediction score

(c) Bad detection

Figure 4.8: Examples of detection results.

To test which model was the best, we took 930 images and ran the two models to see how
many images were poorly detected. The results are shown in table 4.1.

As illustrated in table 4.1, the method that performed with fewer errors was the MLM. When
running this model on a smartphone, will allow the user to perform an automatic segmentation
and only needing to intervene on 0.5% of the images.
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Models Percentage of wrong detection
TST 12%
MLM 0.5%

Table 4.1: Result of patches detection TST vs MLM.

4.3 Disk and Color Detection

This model works similarly to the patches detection model. Given an image, we want to detect
the position of the disk and, if possible, the position of the color within the disk (figure 4.9).

Figure 4.9: Disk and color close up.

4.3.1 Building training dataset

This dataset was created in a similar manner to the patches detection dataset. Using the
same images taken by the SMode project partners, they were resized and annotated using
the modified translated Python code (which stops at disk and color detection) from the MATLAB
disk and color segmentation program. Figure 4.10 shows an example of the annotated images.

Figure 4.10: Example of train disk image annotation.

This annotation process was more difficult than the one for the patches. As can be seen
in figure 4.11, we have a color gradient that gets more pink the higher the concentration of
sulfonamides is and at a sulfonamides concentration of 0 µg/L it is sometimes difficult to dis
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tinguish what is the disk and what is the color of the sample being tested. The Python code
detected and annotated each image and a manual annotation was done especially for this lower
concentration.

Figure 4.11: Examples of samples of varying sulfonamides concentrations, from 0 µg/L (left) to 150 µg/L
(right).

The images and their annotations were split into a training set (70%) and a test set (30%)
and converted to TFRecords that were used to train the model.

4.3.2 Model

This detection model was not as easy to build as the patch detection model. Several experi
ments were conducted, which eventually led to the choice of a different TensorFlow model for
the detection of the patches.

The first experiment was conducted using the same training images in the format used for
the patch detection (figure 4.12a) and the same SSD Mobilenet V2 model template. This model
had the same changes to the configuration file that we had discovered in the patches detection
model, except for the option to detect the 24 classes, which was changed to detect only 2: Disk
and Color. After training, this model could not detect the disk or the color in any of the images
(figure 4.12b).

318

512 

 

(a) Input image (b) Example of output image

Figure 4.12: Input and output of the first experiment of the detection model.

We did not know if the model had problems detecting the disk and color because the color
checker next to it, so for the second experiment, we split the training image in half and selected
the right part of the image (figure 4.13a). We can split the image in half because the color
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checker is always on the left side of the target, and the color checker is large enough to cover
the left part of the image. Thus, we know that the right part of the image contains part of the
color checker and the disk. This model configuration was the same as in experiment 1 and
again the model could not detect the disk or the color (figure 4.13b).

256

384 

 

(a) Input image (b) Example of
output image

Figure 4.13: Input and output of the second experiment of the detection model.

In the third experiment, we try to find out if the failed trials are related to the objects in the
image being too small to be detected by the model. To test this, we split the original image
taken by the SMode in two and reduced it to a height of 576 and a width of 384 (figure 4.14a).
The result was an image that was almost as large as the images used in the first experiment,
but now the disk and color were larger. This model configuration was also the same as the
past experiments. With this model, there was a small percentage of images where the model
could detect the disk (figure 4.14b), others were the disk was detected in the wrong place (figure
4.14c) and there were even fewer images where the color was detected. We trained the model
with a higher number of steps, but the accuracy did not improve.

For the fourth and final experiment, we decided to use a new model SSDMobileNet FPNLite
with the half images used in the second experiment (figure 2.13b). This model is also part of
the TensorFlow API, so we can modify its configuration file and training in the same way as
the SSD Mobilenet V2. We decided to experiment with this model because it uses a feature
pyramid network, which increases accuracy for small objects [38]. This feature extractor accepts
an image of arbitrary size as input and produces appropriately sized feature maps. Using this
model and the same configuration file as the previous models, we were finally able to detect
both the disk and the color inside these disks.

One drawback of this model is that it is 2 seconds slower than the SSD MobileNet V2, but
at this point we were willing to sacrifice a little time for accuracy because although the model
is slower when it is running, it is faster than a user performing a manual segmentation when a
model performs a bad detection,
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576 

 

(a) Input image

(b) Detection of the disk (c) Bad detection of the
disk

Figure 4.14: Input and output of the third experiment of the detection model.

The final disk detection model was trained with the following changes to its configuration:

• Limit the number of classes to detect to 2  Detect the disk and its color;

• Limit the model to only one detection per class;

• Due to the memory available for training the model, we had to reduce the batch size to
32;

• Change the type of the fine tuning checkpoint from classification to detection;

• Adding a data augmentation option  Due to the issues we were having with the models,
we decided to add a data augmentation option that flips the image vertically to help the
model learn to detect the disk and color.

After completing the training, we use the same operators as for the patch detection model
to convert it into a TFLite model.
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4.3.3 Results

The two disk and color detectionmodels TST andMLM for disk and color detection work similarly
to patches detection counterpart, and their outputs are the same as the previous models. The
SSD MobileNet FPNLite model is a different model than the one used in the patches detection,
but since we used the same TensorFlowAPI, the input, training and their output type are identical
for both models. The result of the detection can be seen in figure 4.15.

Figure 4.15: Example of disk and color detection results.

Similar to the results of the patches detection models, we also tested the two disk and color
detection models with the same 930 images. Table 4.2 shows the results of these tests.

Percentage of wrong detection
Models Disk Color
TST 12.7% 15.5%
MLM 0.0% 0.86%

Table 4.2: Result detection disk and color  TST vs MLM.

It is important to note that the goal of this model was not to have a model that could detect
the color of the disk 100% of the time. Rather, it was more important to first detect the disk and
then see if we could detect the color. Fortunately, our model performs very well in detecting the
disk and the color, as it detects the disk in all images and failed to detect the color only 0.86%
of the time.

4.4 Color correction

The objective of this model is to receive an image filled with the colors from the color checker
patches and the color of the sample, and then correct it to get the correct colors as shown in
figure 4.16.
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Figure 4.16: Colors taken from a photo (left) vs ground truth colors (right).

4.4.1 Building training dataset

To create this dataset, we used the result data from the color patch detection model. Based on
the position of the color patches, we calculate the position of 5 points within the patch. These
points are top left, top right, bottom left, bottom right, and center, as shown in figure 4.17. Five
points were chosen instead of just the center point to add to the data and cover the possibility
that the colors were not captured evenly. Once these points are calculated, we calculate the
mean of 25 pixels around that point, as shown in Figure 4.18.

Figure 4.17: Example image of where the color is extracted from the color checker.

Figure 4.18: Average of a color point.

After collecting all the colors from the 24 patches, we combine them into 5 images. Each
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image contains an arrangement of colors from the position where they were retrieved. That is,
no colors are repeated in any of the images created and all images will have all 24 colors. Each
color occupies an area of 20x20 pixels and the position of the colors within the created images
is chosen randomly. An example of images created from a single photo of the color checker is
shown in figure 4.19.

Figure 4.19: Training images created by a single photo of the color checker.

In the first iteration of the dataset, the training images had the format of 6 rows and 4 columns,
as shown in the figure 4.19. Since we have 24 colors in the color checker, all 24 colors in the
image appeared in the training images, but when we wanted to correct the color of the disk, one
of those colors had to be excluded to make room for the color of the disk.

Since we wanted to give themodel the best change in color correction, we decided to change
the format of the training image so that we could add the disk color without sacrificing any of
the other colors. This new format consisted of the same 20x20 pixels for each color, but now
we have 5 rows and 5 columns. In the training images, we only have 24 colors to fill the image.
Therefore, the area where the color of the disk would be located is filled with a white square
in the training phase and the corresponding disk color in the testing phase. The new training
images are shown in figure 4.20.

Figure 4.20: Colors taken from the original photo (top), the true value the colors should had (bottom).

4.4.2 Model

We could not build this model in the same way as the previous one because there is no color
correction model in the TensorFlow repository. So, we had to create our ownmodel from scratch.
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To create a deep learning model, we need to select several objects such as the shape of
input and output, the number of layers, the type of layers used (convolution, pooling, dense,
etc.) and the type of arguments used (filters, kernel size, padding, activation, etc.) and finally
we need to select an optimizer and a loss function to compile and run our model. To find out
which model is best, we experimented with several models, all of which had the same following
characteristics:

• Input  RGB image (the square images created in the dataset creation phase) with a size
of 100 px width and 100 px height and with 3 color channels;

• Optimizer  The Adam optimization [39] was used. This optimizer is an extension of
stochastic gradient descent and is widely used in deep learning due to the good and fast
results that can be obtained with it;

• Sequential  Models are built in a sequential mode where each layer has only one input
and one output;

• Padding  All convolutional layers are padded with zeros around the input so that the
output has the same dimension as the input.

The architecture of the models can be seen in table 4.3. Each smaller model has 6 variants
in which we experiment with three activation layers and two loss functions. The three activation
layers are: Rectified Linear Unit activation function (Relu), Sigmoid activation function and the
Softmax activation function. The two loss functions are Mean Square Error (MSE) and Mean
Absolute Error (MAE). The larger models have 4 variants with two activation layers and the
same two loss functions used in the smaller models. The two activation layers used are the
Relu and Softmax activations.

Layers
Models 2D Convolution Dense
Model 1 32 32 32 32 32   
Model 2 64 64 64 64 64   
Model 3 92 92 92 92 92   
Model 4 32 64 256 196 196 1024 128 3
Model 5 64 128 512 392 392 1024 128 3

Table 4.3: Representation of the layers for each model. All layers have a kernel size of 3x3.

Model 1, 2, and 3 were based on Lu et al. [29] models, and we decided to test with 3 different
sized filters to see if the number of filters affected the accuracy of the model. Model 4 and 5
were based on Lou et al. [32]. We did not have the computational power to train our models
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with the filters used in their model, so we reduced them to two sizes. The description of how
the functions are distributed can be found in table 4.4.

Activation Function
Error Function

Models l1 l2 l3 l4 l5 l6 l7 l8
Model [13].1

Relu   
MSE

Model [13].2 MAE
Model [13].3

Softmax   
MSE

Model [13].4 MAE
Model [13].5

Sigmoid   
MSE

Model [13].6 MAE
Model [45].1

Relu
MSE

Model [45].2 MAE
Model [45].3

Relu Softmax
MSE

Model [45].4 MAE

Table 4.4: Representation of the activation and error function use in our models.

4.4.3 Results

Before we look at the results of the color correction models, we would like to point out that
there were some models that had problems during training, resulting in models where all the
lighter colors were corrected to the same color (figure 4.21b) or the image was corrected to all
the same color (figure 4.21c). These models were the ones where softmax was enabled in all
layers. They are not considered here in the discussion of the results.

(a) Input image (b) Correction where
the light colors were
color corrected to

same color

(c) Correction where
all the image was color

corrected to same
color

Figure 4.21: Example images of the color correction models that had troubles learning.

To avoid overfitting, the training of models was stopped if they did not improve during 20
epochs. There were 16000 images used for training and the batch size was 32. In figure 4.22
we see some of the color corrected images from the models described in the above subsection.



4.5. Calculation sulfonamides concentration 41

Figure 4.22: Example of color corrected images. From left to right model 2.1, model 1.4, model 4.4,
model 3.2 and model 4.5.

To compare the machine learning models with the baseline results in chapter 3, we calcu
lated the standard deviation of the 8 colors used to test the color correction. These results can
be found in the table 4.5, where we can see the standard deviation of all models. The color
components that obtained the best results were: G from the RGB color space, Z from the XYZ
color space, H and S from the HSV color space, and finally a* and b* from the CIELab color
space. These were the components we chose to present the results. And as we can see, the
best model is the model 5.4 which had 5 layers with a relu activation function, 3 layers with the
softmax activation and a MAE error function. This model has the lowest standard deviation for
the color components H, S and a*.

In the table 4.6 we can see the comparison between model 5.4 (MLM) and the model we
develop in chapter 3 (TCM). In the previous work and in this model, the color components a*
and H have the lower standard deviation, so we will only compare the models with these color
components. The machine learning model could achieve lower standard deviation for both H
component and a*.

4.5 Calculation sulfonamides concentration

The aim of this model is to receive a color of the disk represented in 4 color spaces (RGB, XYZ,
HSV and CIELab) and predict its sulfonamide concentration.

4.5.1 Building training dataset

This model differs from the others in that the model does not receive an image. An array is
received. This training dataset is created using the results of the color correction model. All the
images that have passed through the models are divided into a training set (70%) and a test set
(30%). For each set, we created a csv file containing the concentration of the sample and the
color corrected color of the disk represented in 4 color spaces: CIELab, RGB, HSV and XYZ
(figure 4.23). With the csv file created, we can easily convert it into an array and pass it to the
model



42 Chapter 4. Machine Learning Models

Model G Z H S a* b*
Model 1.1 2.1497 2.0757 0.5473 1.8480 0.4802 1.0700
Model 1.2 2.8118 2.8815 2.5995 2.6460 0.8119 1.4581
Model 1.5 2.4033 1.7207 0.5664 1.9299 0.3270 0.9388
Model 1.6 2.6246 2.5797 1.1405 2.0511 0.4132 1.2231
Model 2.1 2.6796 2.5860 0.8420 1.8355 1.0328 1.1412
Model 2.2 1.6824 1.1741 1.5910 3.0009 0.8244 1.9689
Model 2.5 2.0249 2.0405 0.6804 2.3352 0.1435 1.5046
Model 2.6 2.1255 2.2037 1.9798 2.1895 0.1671 1.4284
Model 3.1 1.4871 1.0947 7.5292 2.7160 0.4932 1.1856
Model 3.2 2.0287 1.6808 0.7427 2.3291 0.9389 1.2867
Model 3.5 2.7216 3.4469 0.0981 2.1541 0.2914 1.4219
Model 3.6 1.8577 1.4204 2.2497 3.3458 0.4355 1.4179
Model 4.1 1.6777 1.1974 0.8322 1.9214 0.9100 1.5009
Model 4.2 1.0503 0.5331 0.7815 2.1650 0.8590 1.4768
Model 4.3 1.4471 1.5678 1.7126 2.3819 1.9107 1.7216
Model 4.4 1.4223 0.9488 1.5257 2.4584 1.4453 1.6503
Model 5.1 1.6784 0.9657 0.1123 1.2657 0.5678 1.6347
Model 5.2 1.4158 0.4782 0.0898 0.7205 0.0245 1.7893
Model 5.3 1.2790 0.6355 0.0686 0.8534 0.2680 1.5678
Model 5.4 1.9657 0.5236 0.0457 0.6895 0.1985 1.8324

Table 4.5: Results of the color correction models.

Standard Deviation
Models H a*
TCM 0.047 0.284
MLM 0.046 0.199

Table 4.6: Result of color correction  TCM vs MLM.

4.5.2 Model

Carvalho et al. [40] used linear and polynomial regression to find the best color component
curve that can be used to calculate the sulfonamides concentration. Instead of using only one
component, we wanted to find out which components can be combined to get better accuracy.

To know which other components could be used, we tested the correlation between the
components. The result is shown in figure 4.24. The color components that better correlate
with the sulfonamides concentration values are (in order of importance): a*, S, V, R, X. This
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Figure 4.23: Example of data array created.

correlation helps us to get an idea of which group of components we could use to calculate the
concentration.

va
lu

e
R G B X Y Z H S V L A BB

value
R
G
B
X
Y
Z
H
S
V
L
A

BB 0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.24: Correlation of the color components and concentration value.

The models used were traditional regression models:

• Linear, Quadratic, Cubic and Quartic Regression  These types of regressions are equa
tions that combines a set of input values to a set of predicted values;

• Ridge and LassoRegression  Thesemodels prevent overfitting and reduce the complexity
that can be generated by a simple linear regression. In Ridge regression, a penalty equal
to the square of the coefficients is added to the cost function. And lasso regression uses
shrinkage, where the data values are shrunk to a central point as the mean;

• Linear, Polynomial and Radial Basis Function (RBF) Support Vector Machines (SVM) 
These algorithms use a set of N features to find a hyperplane in an Ndimensional space
that uniquely classifies the data points;

• Elastic Net  It uses two types of penalties: the L2 penalty, where the model is penalized
based on the sum of squared coefficient values, and the L1 penalty, where penalties are
applied based on the sum of absolute coefficient values;
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• Decision Tree  These are models that use a tree structure to predict the data;

• Forest Tree  This model combines the prediction of multiple decision trees to make a
more accurate prediction.

4.5.3 Results

The models we trained with several times with several variables and we chose the best results
from each model. To obtain the score of the models, we run each model 1000 times. In each
run, we split the data into a training (70%) and a testing (30%) dataset and average all the
scores.

In table 4.7 we show the results of testing the models with all the color components and the
color components in order of greater correlation.

Score
Models All components a* a* S a* S V a* S V R a* S V R X

Linear Regression 82.4% 78.8% 85.0% 84.2% 84.0% 83.3%
Ridge Regression 84.3% 79.0% 83.1% 83.7% 84.2% 84.3%

Quadratic Regression 76.9% 85.3% 84.3% 85.9% 86.7% 86.4%
Cubic Regression 54575.1% 84.4% 85.3% 76.9% 9.6% 9.3%
Quartic Regression 815368.6% 84.3% 45.1% 25.6% 264.0% 476.2%

Linear SVM 82.0% 76.1% 76.2% 76.0% 81.5% 82.1%
Polynomial SVM 13.4% 76.9% 77.5% 77.3% 28.3% 18.8%

RBF SVM 11.5% 0.2% 1.4% 1.6% 10.8% 10.6%
Lasso 84.7% 79.0% 84.7% 84.7% 84.4% 84.2%

Elastic Net 84.6% 79.1% 84.6% 84.5% 84.1% 84.8%
Decision Tree 90.1% 71.0% 89.6% 89.7% 89.5% 87.5%
Forest Tree 90.3% 76.8% 90.1% 90.2% 88.8% 90.5%

Table 4.7: Result of the regression models with different type of color components.

As we can see, the regression forest tree scores best with the 5 color components that
correlate best with its concentration value. Because of this discovery we decided to focus the
forest tree regression more to see if the result can be improved. So, we created a forest tree
model with the same training options as before, but with all the color components. Once the
model was trained, we extracted the importance of each color component. The results are
shown in figure 4.25.

With this data, we repeated the above process to obtain the scores of the models, but
we focused only on the decision and forest tree models, since these models are similar and
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Figure 4.25: Graph of the importance of each color component.

performed well before. The results are shown in the table 4.8.

Score
Models S, Y S, Y, R S, Y, R, L S, Y, R, H

Decision Tree 90.7% 91.0% 91.3% 91.0%
Forest Tree 91.5% 91.1% 91.4% 91.2%

Table 4.8: Result of Decision Tree and Forest Tree with the most important color components.

Looking at the results, we concluded that using a forest tree with color components S, Y
provides the best accuracy in predicting the concentration value of sulfonamides.

4.6 Summary

In this chapter, we have described how the machine learning models were created and trained,
and we also show how these models produce better results compared to the traditional methods
developed so far.





Chapter 5

Conclusions and Future Work

5.1 Conclusions

The detection of sulfonamides is an important task for which several methods have been in
vestigated using laboratory equipment. The work of Carvalho et al. [7] introduces a new mobile
work where the detection can be performed wherever it is needed. We have shown with this
work that their traditional methods have been outperformed by using machine learning models.
We had some limitations in the form of the original dataset, but even with that our models were
able to produce good results. And since the models are modular, when new models appear,
they can be easily replaced and we continue to have a working application.

5.2 Future Work

Since our work was limited by the original dataset, we propose to develop a new dataset in the
future that could be developed specifically for machine learning. One of the changes we would
make would be to use a color checker that has a larger number of color patches. As Lu et al. [29]
suggests in their paper, color correction works better when we have a larger number of colors,
especially when we do color correction with machine learning because the more data it has,
the better it learns. Another suggestion for future work is to test the models with contaminated
water, especially the color correction model, to see if the models can adapt to water that is not
uniformly crystalline.
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