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Abstract 

A new method of supervised clustering with attributed networks is proposed, SUWAN. 

The goal is to obtain class-uniform clusters, while minimizing the number of clusters. This 

method deals with representative-based supervised clustering, where a set of initial 

representatives is randomly chosen. By assigning each observation to the closest 

representative, clusters are obtained. With the new methodology, the way nodes are 

associated to clusters does not only depend on their network distance, but also on the 

distances between their attributes. This can be accomplished through a combination of 

weights between the matrix of distances between nodes and their attributes, when defining 

the clusters. Hence, the method considers both structural and compositional characteristics 

of the network. As a benchmark, we use the subgroup discovery on attributed network 

data. Subgroup discovery focuses on detecting subgroups described by specific patterns 

that are interesting with respect to some target concept and a set of explaining features. 

Therefore, interesting patterns among subgroups can be revealed, for example, by inductive 

and exploratory data analysis tasks that find relations between a dependent and 

independent variable, considering the compositional aspect of the networks. For this work, 

SD-Map, a fast algorithm for exhaustive subgroup discover, will be used to perform 

subgroup discovery on attributed networks. The proposed methodologies are applied to an 

inter-organizational network, denominated by EuroGroups Register, a central register that 

contains statistical information on companies from European countries, provided by 

Statistics Portugal. 

Keywords: Supervised Clustering; Attributed Networks; Subgroup Discovery.  
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Resumo 

Um novo método de clustering supervisionado com redes atribuídas é proposto, 

denominado por SUWAN. O objetivo é obter clusters homogéneos tendo em conta uma 

classe, minimizando ainda o número de clusters obtidos. Este método lida com clustering 

supervisionado baseado em representantes, onde um conjunto de representantes iniciais é 

escolhido aleatoriamente. Ao atribuir cada observação ao representante mais próximo, os 

clusters são obtidos. Com a nova metodologia, a forma como as observações são associados 

aos clusters não depende apenas da distância de rede, mas também das distâncias entre 

atributos. Esta técnica é realizada através de uma combinação de pesos entre a matriz de 

distâncias entre os nós e os atributos, no processo de formação dos clusters. Portanto, o 

método considera as características estruturais e composicionais da rede. Paralelamente, é 

realizada uma análise de outro método, denominado subgroup discovery. O método de subgroup 

discovery foca-se na deteção de subgrupos, descritos por padrões específicos que são 

interessantes com relação a um determinado target e um conjunto de medidas explicativas. 

Deste modo, padrões interessantes entre subgrupos podem ser revelados, por exemplo, por 

tarefas de análise de dados indutiva e exploratória, que encontram relações entre uma 

variável dependente e independente, considerando o aspeto composicional das redes. Para 

este trabalho, SD-Map, um algoritmo rápido para descoberta exaustiva de subgrupos, é 

usado para realizar subgroup discovery em redes atribuídas. As metodologias propostas são 

aplicadas a uma rede inter-organizacional, denominada por EuroGroups Register, um registo 

central que contém informação estatística sobre empresas de países europeus, 

disponibilizado pelo Instituto Nacional de Estatística. 

Palavras-chave: Clustering Supervisionado; Redes Atribuídas; Subgroup Discovery.  
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Chapter 1 

Introduction 

Many real-world interactions now generate data in a network structure, with connections 

among elements. These networks can assume different types, from social networks, such as 

friendship ties, to networks formed between objects, that are not social (Tabassum et al. 

2018). One of the distinguishing characteristics of social networks is their propensity for 

displaying community structure, which means that, groups of densely linked vertices that 

are poorly connected to other groups of vertices may be revealed (Oliveira and Gama, 

2012). According to Harenberg et al. (2014), community detection consists of detecting 

groups of densely connected nodes that typically have fewer connections to nodes outside 

that group.  

Therefore, the aim of community detection algorithms is to find cohesive subgraphs of 

nodes that can be representative of a community, focusing on the structural aspects of the 

network. A remarkable contribution to the field was made by Newman, that developed an 

algorithm that measures the quality over the possible divisions of a network, also known as 

Modularity (Newman, 2006). On the other hand, stands a clustering approach, that allows 

studying a set of elements by splitting it into smaller groups with similar characteristics, 

with focus on the compositional characteristics of the network. For this approach, two 

main methodologies are highlighted, hierarchical and partitional clustering algorithms. 

Partitional clustering methods discover all clusters concurrently and do not enforce a 

hierarchical structure, whereas hierarchical clustering algorithms find nested partitions 

iteratively (Jain, 2010). 

In this work, a new methodology of supervised clustering, that considers both 

structural and compositional characteristics of the network, is developed. The new method 

SUWAN, Supervised clustering With Attributed Networks, is proposed, based on the 

Single Representative Insertion/Deletion Hill Climbing with Restart (SRIDHCR) algorithm 

from Eick and Zeidat (2004).  As a benchmark, subgroup discovery is used to detect and 

identify relevant network patterns (Helal 2016). The goal is to discover interesting 

associations among different variables with respect to a property of interest. In contrast 

with standard community detection methods, SUWAN groups elements of a graph, based 

on their structural and compositional characteristics, while it provides class-uniform 

clusters, based on a predefined target variable. Subgroup discovery on the other hand, can 
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provide a description and identification of communities based on the combination of their 

features. 

On the field of supervised clustering, some authors argue that classical techniques of 

clustering do not guarantee that objects of the same class are grouped together (Al-Harbi 

and Rayward-Smith, 2006). The proposed method can deal with this limitation and 

improve clusters purity. Furthermore, it tackles the unexplored field of supervised 

clustering on attributed networks. Alternatively, other authors claim that classical 

community detection techniques focus only on finding subgroup of nodes with a dense 

structure, lacking an interpretable description. Therefore, subgroup discovery can deal with  

description-orientated community detection. Moreover, this approach can also provide 

insights beyond connectivity within communities, and the relationships between subgroups 

of nodes as well. 

An application of the new method is made on the dynamic of networks in business. 

The inter-organizational network in study, denominated by EuroGroups Register (EGR), 

holds relevant statistical information about organizations and the aim is to find patterns on 

this business register. The dataset contains over 6870 networks for the most recent year of 

2018. For this purpose, social network analysis, graph theory, supervised clustering, and 

subgroup discovery will be applied to extract useful information, in order to discover 

communities among networks, based on a target variable, that measures the business 

performance. 

Business performance from a network perspective is an increasing area of study for 

economists and social scientists. Organizations are in a constant adapting process to the 

changes of the environment (Lechener & Dowling 2003). Every day new firms are brought 

to the surface, and some others just disappear into another company. From a social 

network point of view, the relations between organizations can be perceived as a graph, 

where nodes are representative of companies and their relationship is represented by links. 

The merging and acquisition of firms are an ongoing process for larger companies that aim 

to develop their business. For some cases, a simple join of forces can also be accomplished 

through collaborative strategies that can assume the form of joint ventures, strategic 

alliances, holdings, among others. Hence, organizational networks aim to improve 

performance (Hoberecht et al., 2011). This way, organizations tend to be more connected 

among them, establishing their networking with other organizations.  

Software R, version 4.0.2, was used for the experimental component of this study. 
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1.1  Motivation 

The main focus of this dissertation is to propose a new supervised clustering algorithm for 

attributed networks. The need for such an approach started when we realized that it is 

important to cluster inter-organizational networks according to the structural position and 

also their own characteristics on the network. The employment of supervised clustering in 

attributed networks has not yet been applied. Therefore, the aim is to contemplate the 

structural and compositional characteristics of the network in the clustering process.  

Moreover, subgroup discovery on networks is an underdeveloped topic, and it has been 

studied by few authors like, Lucas et al. (2019), Deng et al. (2020) and Atzmueller & 

Mitzlaff (2011). Furthermore, the application of subgroup discovery on networks has some 

limitations, since it only focuses on finding the most interesting groups of nodes, leaving 

observations with no defined subgroup. This way, a contribution of this work is the 

exploration of supervised clustering using a benchmark with subgroup discovery on inter-

organizational networks.  

Additionally, this work is being developed with a direct cooperation of Statistics 

Portugal (INE), that provides the database in analysis. In fact, there is a clear loophole 

related with data of organizations networks since this information is not easily accessed. 

Given that, the opportunity to explore an inter-organizational network from real-world 

data can provide some useful insights on how organizations are structured and connected 

between themselves and what impacts their performance. Furthermore, the database 

provided by INE has never been explored in this perspective and, therefore a brand-new 

input on a network analysis for organizations can enable new discoveries and set paths for 

future analysis. 

1.2 Organization of  dissertation 

This dissertation is organized in five chapters. The first chapter introduces the topics 

studied in this work and the motivation for this work.  

In Chapter 2, is presented the literature review on the main topic. This way, this 

chapter starts by introducing some basic concepts on the topics of  inter-organizational 

networks, social network analysis, attributed networks, and community detection. Then, on 

the last section of  this section, a more detailed literature review is made on subgroup 

discovery and supervised clustering. 



4 

 

In Chapter 3, the focus is on methodology and data. The first part introduces the 

research questions of  the thesis, followed by a detailed description of  the new 

methodology to be implemented. Next, a description on how the performance of  both 

methods can be compared is presented, through a new evaluation measure, based on the 

clustering purity. At last, the EuroGroups Register data base is presented, describing all the 

important features for analysis. 

In Chapter 4, the methodologies are applied to the EGR data set. The performance of  

both methods is compared, while an interpretation of  the output is made separately for the 

two methodologies. 

In Chapter 5, an analysis on the variables that have more impact on the organization’s 

performance is presented. Moreover, it is analysed the impact of  the network topology on 

the business performance. For that, a correlation analysis between network topology 

measures and the organizational turnover is presented, followed by a multiple linear 

regression model. 

Finally, Chapter 6 presents the conclusions and challenges of  the work developed, 

presenting some final remarks and limitations of  the implemented methods.  
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Chapter 2 

Literature Review 

2.1  Inter-Organizational Networks 

Nowadays, the organizational structure of firms is in constant change. Organizations tend 

to adapt and change in order to gain a competitive advantage. Nevertheless, firms can also 

accomplish their goals through collaboration with other organizations. An increasing area 

of study for economists and sociologists is the varying organizational structures between 

business networks. Whether they are defined as strategic alliances, trade networks, joint 

ventures, or considered to be a result of the nature of the industry or local circumstances, 

they are seen as a mode of economic cooperation (Ebers, 1999). 

According to Ricciardi and Rossignoli (2015), organizations are influenced by their 

inter-organizational relationships. With this, the existing relationships among organizations 

can be represented by a network. Thus, the network concept can also be applied to 

organizational structures. An inter-organizational network represents the relationships 

between different organizations, where organizations are represented as vertices, and their 

relationships by edges. 

Hoberecht et al. (2011) state that organizational networks aim to improve 

performance. According to the authors, there are many reasons for establishing a network. 

For instance, when organizations want to achieve a specific goal that is shared by another 

organization. Moreover, to maximize supply chain efficiency and profitability, the 

corporate community invests in inter-organizational networks. Matous and Todo (2017), 

studied the impact of the network topology and diffusion on Japanese automobile 

production networks, that reveal the reorganization of inter-organizational networks and 

the organization performance coevolution. In a complementary line of thought, according 

to Popp, Milward et al. (2014), there are three types and functions of networks between 

organization – information diffusion and knowledge exchange, network learning and 

innovation. 

The evolution of inter-organizational networks may be perceived as a cyclical 

cooperation system (Greiner & Levati, 2005). However, networks can still develop over 

time, going through four stages of formation, development and growth, maturity, 

sustainability, and resilience and, finally death and transformation (Popp et al., 2014). 
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As a method of evaluating networks, social network analysis remains highly useful, 

particularly as a way to understand the nature and content of relationships of different 

types (Popp et al., 2014). 

2.2  Social Network Analysis and Graph Theory 

Social network analysis (SNA) emerged in the field of social science, and it was used to 

manage theoretical questions and problems, trying to explain the social behavior by means 

of the net-work structure of societies. Indeed, SNA seeks to uncover patterns withing the 

relationships of certain groups, usually, links between human beings, but not necessarily.  

In fact, L. Freeman (2004) states that the social relationships may concern other types 

of connections besides humans, such as animals or even organizations. Social network 

analysis can be perceived as an interdisciplinary field, since that, apart from social science, it 

also established an important role for the fields of biology, business, computer science, 

among others.  

Wasserman and Faust (1994) define social network as a finite set or sets of actors and 

their specified relationship or relationships. Hence, for a social network, there must be 

social entities, also referred as actors, and a relational tie, that links two or more actors. 

Typically, this network is represented by a graph, with vertices and edges as the two 

fundamental elements. 

Different real-world connections can be graphically represented by a set of points and 

their connections. Graphs are therefore a way to map social structures, that can assume 

different forms. In the field of social relations, graphs can show friendship ties between 

actors (Ball & Newman, 2013). On the other hand, it can be representative of an 

information networks (Harvey, Kleinberg, & Lehman, 2006) or even biological networks 

(Alon, 2003).  

With this, a graph G can be defined as a nonempty set of vertices, V, and a set of 

edges, E, denotated by G(V, E). Besides the graphical representation, there are two 

traditional ways of representing a graph G, using an adjacency matrix or list. An adjacency 

list consists in the representation of all edges in graph as a list, while an adjacency matrix is 

a representation of which vertices are adjacent to which other vertices (Singh & Sharma, 

2012). In the matrix structure, all vertices of a graph are displayed, and, when dealing with 

unweighted networks, the matrix can be filled in a binary system, with zeros and ones, 

indicating the absence or presence of a connection between two vertices, respectively. In 
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the case of weighted networks, the matrix is field with the correspondent weights, where 

zero represents a non-existent connection.  

Another distinction can be made between direct and undirect graphs. For undirected 

graphs, a pair of vertices is either connected or not, while in directed graphs, the 

connection can assume a direction, either by a single link or a double link (Palla, Farkas, 

Pollner, Derényi, & Vicsek, 2007). 

2.3  Attributed Networks and Community Detection 

Beyond the structural form, where nodes engage on relationships, defined by links, 

networks may contain additional information, which can be related to the entities and their 

relationships. Therefore, adding these additional feature data to the corresponding nodes 

and/or edges generates an attributed graph (Hewapathirana, 2019). On attributed 

networks, nodes and/or edges are labeled with additional information, allowing further 

dimensions for detecting patterns that describe a specific subset of nodes of the network. 

In the context of attributed networks, some notions can be formalized as the 

following. Let G = (V, E, A) be the denotation for an attributed graph, with n set number 

of vertices (V), m number of edges (E) and A set of attributes. For each attribute ak, a 

range dom(ak) of values is defined, such that, ak (vi) ∈ A, v ∈ dom(ak) and vi ∈ V. 

Community detection, as one social network analysis method, aims to detect 

subgroups of individuals that are densely, or cohesively, connected by a set of links. For 

detection of those cohesive subgroups and communities, some methods can be applied, 

such as, hierarchical clustering, with the single-link and complete-link algorithms, or clique-

based methods that find fully connected subgroups, known as Cliques. These approaches 

are based on the structure of the network, namely how nodes are linked among them. 

Fortunato and Hric (2016) argue that the identification of communities may provide 

insight into how the network is structured. Therefore, it can help to define vertices based 

on their position in relation to the communities to which they belong. Moreover, the 

authors refer that community detection in graphs can identify modules and, perhaps, an 

hierarchical organization, based on the graph topology. Nevertheless, the structure of a 

social network may not be enough to identify its communities (L. C. Freeman, 1996). 

In the past years, numerous algorithms were proposed to solve the issue of community 

detection in attributed networks. Therefore, community detection is applied to find 

communities, such that vertices in the same community are densely connected in the graph 
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and have similar attribute values. Among others, algorithms such as I-Louvain, ANCA and 

SAC2 can be highlighted for this task. The I-Louvain algorithm focus on the optimization 

of a global criterion in order to evaluate the similarity between the vertices’ attribute values 

(Combe et al., 2015). On the other hand, ANCA – Attributed Network Clustering 

Algorithm (Falih et al., 2018), emphasizes the topological information of the network over 

a set of new features. Lastly, the SAC2 algorithm (Dang & Viennet 2012) relies on the 

structure of the graph, as well as the similarity between nodes’ attributes. 

2.4  Subgroup Discovery 

Subgroup discovery (SD) is a data mining technique that focus on discovering interesting 

relationships between different objects (Herrera, Carmona, González, & Del Jesus, 2011). 

In fact, SD is not applied to find all the possible subgroups, but rather to find the best one, 

thus, most interesting, or unusual subgroups (Wrobel, 1997).  

One main advantage of SD is the ability to deal with real-world data, i.e., characterized 

by its large size and complexity, involving many attributes and different data types (Meeng 

& Knobbe, 2020). Therefore, SD is broadly applied to real world problems in the areas of 

Health, with detection of risk groups diseases diagnosis, such as cancer (Mueller et al., 

2009), Marketing (Gamberger & Lavrac, 2002), E-learning (Carmona, González, Del Jesus, 

Romero, & Ventura, 2010) and Spatial subgroup mining, applied for example to 

demographic area (Andrienko, Andrienko, Savinov, Voss, & Wettschereck, 2001). 

According to Atzmueller and Puppe (2006), a subgroup discovery setting depends on 

four main properties: (i) the target, (ii) the subgroup description language, (iii) the quality 

function and (iv) the search strategy. The description language specifies the individuals that 

belong to the subgroup. Therefore, a subgroup description can be defined by the 

conjunction of a set of selection expressions that are part of the attribute’s domain. To 

measure the interestingness of a subgroup, a quality function can be set based on a 

statistical evaluation function. The search method is used to rank the subgroups discovered 

when searching. The disparity in the distribution of the target variable concerning the 

subgroup, the general population, and the size of the subgroup are common quality 

parameters. With this, for a particular target variable, a quality function is used to evaluate a 

subgroup description and to rank the discovered subgroups during the search. 

Different algorithms have been developed and applied to subgroup discovery task 

(Table 2.1). The pioneers in this field were EXPLORA (Klösgen, 1996) and MIDOS 
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(Wrobel, 1997). Both algorithms are extensions of classification algorithms and use 

decision trees as the base method. An extension of these two previous algorithms is 

presented by Klösgen and May (2002), with the SubgroupMiner algorithm, that combines 

decision rules with an interactive search in the space of solutions. Another method 

developed in the extension of classification algorithms is CN2-SD (Lavrač, Kavšek, Flach, 

& Todorovski, 2004), adapted from standard classification rule learning approach CN2 to 

subgroup discovery. 

In association rule algorithms, the aim is to obtain relations between the variables, 

generating rules that can have variables both in the antecedent and consequent form. In 

subgroup discovery, the consequent of the rule consists of the property of interest, that is 

prefixed (Herrera et al., 2011). Thus, this characteristic makes it feasible to adapt 

association rule algorithms to subgroup discovery.  

 Atzmueller and Puppe (2006) propose a fast algorithm for exhaustive subgroup 

discovery, SD-MAP, based on FP-growth algorithm for mining association rules adaptation 

for SD. In the same way, APRIORY-SD algorithm was developed by adapting association 

rule learning to SD task. This method was built under the classification rule learner 

APRIORY-C, using a weighted scheme in rule post-processing, weighted relative accuracy, 

as a quality measure, and a probabilistic classification of instances (Kavšek & Lavrac, 2006). 

Table 2.1 - Examples of  subgroup discovery algorithms according to theirs field of  extension. 

Field of Extension Subgroup Discovery Algorithms 

Classification 

EXPLORA 

MIDOS 

SubgroupMiner 

CN2-SD 

Association 
SD-MAP 

APRIORY-SD 

2.4.1 Subgroup Discovery in Networks 

The need to discover and analyze interesting patterns in data also emerged around 

networks, being social networks the most commonly studied. 

 Lucas, Gomes, Vimieiro, Prudêncio, and Ludermir (2019) investigated how the 

problem of group profiling can be modeled as a subgroup discovery task. For group 

profiling, on traditional univariate methods, a relevance function is needed, that measures 

the importance of each feature to distinguish the members of a community. This method 



10 

 

evaluates features as independent, neglecting possible interesting interactions that could 

enhance the overall description of a community. With this in mind, the authors propose 

that group profiling would benefit on a multivariate approach, which accounts interactions 

between features and could return the best subsets of features describing a community. 

Another characteristic of this method is the incorporation of coverage of a description. 

Descriptions with low coverage only represent a small part of the members of a 

community, therefore, communities may be described by an incomplete or by a pattern 

that occurred by change, that would not describe the entire community. Subgroup 

discovery is used to get a more expressive and comprehensive description that allow for a 

better understanding of groups as a whole. 

Deng, Kang, Lijffijt, and Bie (2020) developed a work on graph mining with a 

subgroup discovery approach. According to the authors, the connectivity structure of a 

network is related with the attributes of the nodes, therefore, it can be understood in terms 

of patterns of subgroups of individuals with certain properties that are differentiated from 

other subgroups of individuals. Therefore, a method that incorporates an interestingness 

measure was proposed, in order to find pairs of node subgroups which the edge density is 

considered to be interestingly high (or low). This method provides an improvement over 

interestingness measures used on subgroup discovery for dense subgraph mining in 

attributed graphs. The main idea of this method was to overcome the classical community 

detection that typically assumes that links only exist because nodes share similar attributes, 

which limits sparce subgraph. Moreover, it extends the research beyond connectivity within 

communities, analyzing the relations between subgroup of nodes. 

 Atzmueller and Mitzlaff (2011) proposed an efficient descriptive community mining 

using subgroup discovery as a pattern mining technique. The authors propose a method 

that collects patterns that describe communities by combination of features. This way, they 

are able to identify and describe interesting communities, in contrast with standard 

community mining approaches that only focus on identifying communities as subsets of 

users. The graphs presented by the BibSonomy system show explicit friendship relations 

between users, therefore they directly indicate communities according to the link structure 

of the network. Additionally, communities of users can be characterized in terms of their 

descriptive features, such as, bookmarks or publications, that can be used as tags. For the 

subgroup discovery, a quality function is defined as an optimistic estimation of a subgroup. 

The proposed method extends the use of optimistic estimates for efficiently searching the 
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description space while optimizing the community measures on the network structure at 

the same time. For this purpose, local modularity and inverse conductance were used as 

optimistic estimates for community mining. For the subgroup discovery task, COMODO 

algorithm was applied for mining community patterns. 

Atzmueller, Doerfel, and Mitzlaff (2016) make a comparison between classical 

community mining methods and subgroup discovery, arguing that community detection 

only identifies subgroup of nodes with a dense structure, lacking an interpretable 

description. Usually, community mining methods only consider the nodes of a network as 

mere strings or ids, and do not provide an intuitive description of the community, for 

example, an easily interpretable conjunction of attribute-value pairs. The aim is to identify 

communities as sets of nodes together with a description, for example, with a logical 

formula on the values of the node’s descriptive features. Therefore, the focus is to present 

description-oriented community detection. For this, an adapted subgroup discovery 

approach was used, with COMODO algorithm (Atzmueller et al. 2016). This method deals 

with, for example, small community sizes, that it is not addressed by standard approaches 

for community detection. Moreover, instead of finding a complete and global partitioning 

of the network, it considers a set of local, potentially overlapping communities. This 

method is based on the assumptions that social graphs are statical and not dynamic, 

overlapping communities are assumed possible, since entities in a network tend to belong 

to different communities, and the focus of the discovery is on local communities. 

Atzmueller (2018) formalizes the problem of detecting compositional patterns in 

attributed networks, capturing dyadic subgroups that have a relevant behavior, based on 

the quality measure. According to the author, typical approaches for community detection 

and graph clustering only focus on the structural information of the network. This work 

allows a compositional analysis of attributed networks by exploiting the attribute 

information. A subgroup discovery and exceptional model mining techniques are put in use 

to detect patterns in subgroups of nodes that show an interesting and/or unusual behavior. 

Unlike classical community detection approaches, the focus is not on the structural aspect 

of the graph, but rather on the described features of the nodes contain in the network. The 

task is to identify communities as sets of densely connected nodes together with a 

description on the node’s features. For this matter, an interestingness measure was defined 

based on two properties, duration and frequency of the interactions. 
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Table 2.2 - Summary of  literature review of  subgroup discovery on networks. 

Authors Objectives Methodology Main Conclusions 

Lucas et 
al. (2019) 

Develop a new method 
for Group profiling based 
on Subgroup Discovery 

Perform a multivariate 
analysis that could capture 
the interactions among 
features. Incorporate a 
coverage of descriptions 
into the community 
detection. 

Test performance on a real-world 
data set of scientific articles from 
Arxiv, to obtain descriptions for 
communities of authors in the 
co-authorship network of 
articles. Performance evaluation 
compared to the univariate 
strategy shows the compromise 
between quality and coverage of 
descriptions. 

Deng et al. 
(2020) 

Propose a method that 

finds pairs of node 
subgroups between which 
the edge density is 
interestingly high or low, 
using an information-
theoretic definition of 
interestingness. 

Formalize a subjective 
interestingness measure that 
allows to find patterns that 
describe the graph density 
between a pair of 
subgroups. 

This method was able to identify 

patterns that provide genuine 
insight into the high-level 
network’s structure based, 
identifying not only dense but 
also sparce subgraphs and 
describing the density between 
subgroups. 

Atzmueller 
and 

Mitzlaff 
(2011) 

Mining descriptive 
patterns in communities 

Pattern mining using 
subgroup discovery. 
Maximizing local quality 
function for single 
communities. Optimistic 
estimates for efficient 
knowledge discovery in the 
context of subgroup 
discovery. 

Application on data from the 
social bookmarking system 
BibSonomy. The results show a 
reduction on the search space 
based on optimistic functions 
used to perform the mining 
descriptive community patterns. 

Atzmueller 
et al. 

(2016) 

Develop a description-
oriented community 
detection based on 
subgroup discovery 

Provide structurally valid 
and interpretable 
communities using 
descriptive features of 
graph’s nodes. COMODO 
algorithm for obtaining the 
k-best community patterns 
based on a community 
evaluation measure 

Application on real-world data 
social systems. The algorithm 
was able to detect communities 
that are typically captured by 
shorted descriptions, leading to a 
lower description complexity. 
The results indicate statistically 
valid and significant outcomes 
that don’t encounter typical 
problems such as small 
community sizes. 

Atzmueller 
(2018) 

Apply a compositional 
perspective for identifying 
compositional subgroups 
patterns on attributed 
social interaction 
networks 

Adapt principles of 
subgroup discovery to the 
dyadic network setting. 
Detecting compositional 
patterns and capturing 
subgroups of nodes that 
show an interesting 
behavior according to their 
dyadic structure, estimated 
by a quality measure. 

Application on a social 
interaction networks, captured at 
two conferences. The results 
indicate interesting findings 
according to common principles 
observed in social interaction 
networks, such as, the influence 
of homophilic features on the 
interaction. Moreover, the quality 
function allows to focus on 
specific properties of interest, in 
both simple attributed networks 
or multigraph representations. 
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2.4.2 Subgroup Discovery in Attributed Networks 

In contrast with standard community detection methods, that only focus on the structure 

of subgroups and communities, subgroup discovery focuses on detecting subgroups 

described by specific patterns that are interesting with respect to some target concept and a 

set of explaining features. For this matter, subgroup discovery aim is to revel interesting 

patterns among subgroups, for example, by inductive and exploratory data analysis tasks 

that find relations between a dependent and (several) independent variables (Atzmueller, 

2015), considering the compositional aspect of the networks. 

In order to define subgroups, two criteria’s can be taken into account, compositional 

and structural. Compositional criteria respects to the node attributes while structure criteria 

focus on tie structures. Cohesive subgroups on social networks may reveal the most 

involved participants of a community (Chin, Chignell, & Wang, 2010). This way, with the 

additional information supplied by attributed networks, subgroup discovery method can be 

applied in order to combine both structural and compositional characteristics of the 

network. 

As previously referred, different types of algorithms can be used on a subgroup 

discovery task. However, some of them can be adapted to perform SD on networks. In 

fact, Atzmueller and Lemmerich (2009) first proposed a subgroup discovery algorithm, 

COMODO, that is an adaptation of SD-MAP algorithm. The developed work uses the 

SD-MAP algorithm with the preprocessing of the COMODO algorithm. A description on 

both methods follows. 

2.4.3 SD-MAP Algorithm 

SD-Map is an exhaustive subgroup discovery algorithm that consists in an adaptation of  

Frequent Pattern Growth method (FP-growth) for the subgroup discovery task. The FP-

growth algorithm uses a compressed representation of  the itemset database. The tree 

growths by tracking each itemset and mapping it to a path. This method has proven to be 

quite efficient, and it is based on a divide-and-conquer frequent pattern growth.  

This way, SD-Map uses a modified FP-growth step that can explicitly compute the 

quality of  the subgroup without referring to other intermediate outcomes (Herrera et al., 

2011). Therefore, an extended prefix-tree-structure is used to store information for patter 

refinement and evaluation, hence, an extending FP-tree structure can be developed towards 

a single and multi-target concepts.  
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This method can deal with both binary and continuous targets. An FP-tree node stores the 

subgroup size and the true positive count of  the respective subgroup definition for the 

binary case, and it considers the number of  values of  the target variable in the continuous 

case, allowing to determine the respective value of  the quality functions accordingly.  

As the associations measure the confidence and the support of  rules, for subgroup 

discovery, a special quality function is used to measure the interestingness of  a subgroup. 

Atzmueller and Puppe (2006) defines the subgroup quality computation based on the true 

positives tp (cases containing the target variable t in the given subgroup s), the false 

positives fp (cases not containing the target t in the subgroup s) and the positives and 

negatives regarding the target variable t in the population size N. A quality function is used 

to assess a subgroup description and rate the identified subgroups during search 

(Atzmueller and Lemmerich, 2009). Examples for quality functions are given by Equations 

2.1, 2.2 and 2.3, where n indicates the size of  the subgroup, while p and p0 are the relative 

frequencies in the target variable and total population, respectively. 

q
WRACC

=
n

N
(p-p

0
) (2.1) 

q
PS

=n(p-p
0
) (2.2) 

q
LIFT

=
p

p
0

 

(2.3) 

2.4.4 COMODO Algorithm 

The SD-MAP algorithm for fast exhaustive subgroup discovery, and the FP-growth 

algorithm for mining association rules form the basis of  COMODO algorithm. This way, 

COMODO is an adaptation of  the SD-MAP algorithm. This method focuses on 

description-oriented community detection, using subgroup discovery (Atzmueller, 2018). 

Using both structural and compositional characteristics of  a graph, it is possible to identify 

communities as set of  nodes together with a description. 

COMODO algorithm is a fast branch-and-bound algorithm that relies on optimistic 

estimates. As referred, COMODO uses an extended FP-tree structure to efficiently 

navigate the solution space. 

The inputs for this algorithm are the graph structure and the descriptive information 

of  the attributed graph. Therefore, this information can be contained in two different data 
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structures, a graph structure encoded in a graph G and the attributed information 

contained in a database D. In a first step of  preprocessing data, these two data sources are 

merged, creating a new transformed dataset where each data record represents an edge 

between two nodes. This method can be applied if  there are no isolated nodes in the 

network, therefore nodes can be described as sets of  edges. Each data record's attribute 

values are the common attributes of  the edge’s two nodes. 

Afterwards, it is generated an initial community pattern tree (CP-tree), where each CP-

node of  the CP-tree captures information about the aggregated edge information 

concerning the dataset and the respective graph. 

The result of  the COMODO algorithm is then the set of  the top-k community 
patterns. 

2.5  Supervised Clustering 

Clustering is a methodology consists of grouping data according to a desired criterion, 

allowing finding a structure in a dataset (Sinaga & Yang, 2020). This way, the main goal of 

clustering analysis is to classify a set of items into homogenous groups, also referred as 

clusters, with a pre-determined measure of similarity. When clustering is performed, the 

similarity measure should be higher within groups, when comparing to the similarity 

between different groups (Jain, Murty, & Flynn, 1999).  

The problem of supervised clustering may be presented as a pair (X, C), where X 

denotates a limited set of items X={x1,…,xn} and C denotates a group of distinct and 

nonempty subsets C1,…,Ck of X. Similarly to traditional clustering, a distance function can 

be formalized as dist(x,y), where x and y represent two distinct data points. Depending on 

the type of data, different functions can be used to measure the distance between data 

points. For numerical data, the most commonly used are Euclidean distance (Equation 2.4) 

and Manhattan distance (Equation 2.5). On the other hand, for nominal attributes, the 

most used measure is based on a simple matching method, denominated by Hamming 

distance (Equation 2.6), where dH(x,y) corresponds to the number of places where x and y 

are different (Pandit & Gupta, 2011). 

dE(x,y)=√(x-y)2  (2.4) 

dM(x,y)=|(x-y)2| (2.5) 
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dH(x,y)=|{i:xi≠y
i
}| (2.6) 

Unlike traditional clustering methodology that works around non-labeled data, the 

assumption in supervised clustering is that the items are classified. The objective of 

supervised clustering is to find class-uniform groups of items,that have a high probability 

density with respect to a single class (Eick & Zeidat, 2004). Next, a summary of the work 

developed on supervised clustering is presented.  

Eick and Zeidat (2004) present a k-medoid-style clustering algorithms for supervised 

clustering. The k-medoid model aims to search for k representative objects, known as 

medoids, that reduce the average dissimilarity of all the data set’s objects to the closest 

medoid (Kaufman & Rousseeuw, 1987). This way, the clusters are obtained based on the 

group of objects that have been assigned to the same medoid. One of the proposed 

algorithms, based on k-medoid model, is Supervised Partitioning Around Medoids 

(SPAM). This technique uses a fitness function, instead of the dissimilarity measure, and 

the number of clusters k, as an input parameter. The fitness function is presented in 

Equation 2.7, where n represents the total number of examples, c the number of classes and 

β defines the penalty associated with the number of clusters k. The class impurity measures 

the percentage of minority examples in the different clusters of a certain clustering. The 

goal is to minimize q(X), to obtain class-uniform clusters, while minimizing the number of 

associated clusters. 

q(X)=Impurity(X)+βPenalty(k) (2.7) 

Where Impurity(X)=
# of Minority Examples

n
 and Penalty(k)={

√
k-c

n
 , k≥c

0 , k<c

 

This way, the algorithm builds an initial solution, using as representative objects, the 

members of the most frequent class in the data set. Then, the algorithm repeatedly and 

greedily inserts non-representative objects to the current set of representatives that yields 

the lowest value for the fitness function q(X). Another algorithm proposed by the authors 

is the Single Representative Insertion/Deletion Steepest Decent Hill Climbing with 

Randomized Starting (SRIDHCR). In the same way as SPAM, this method tries to 

minimize the quality function q(X). It starts by randomly selecting a number of objects as 

an initial set of representatives. Then, by inserting and deleting single items from the 
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existing collection of cluster representatives, it greedily seeks for solutions. The major 

difference in this algorithm relies on the fact that the k number of clusters is not fixed, as 

the algorithm searches for an optimized value of clusters.  

Similar work was developed by Gan et al. (2018), that employed a novel graph-based 

classification method, called Supervised clustering-based Regularized Least Squares 

Classification (SuperRLSC). The proposed methodology is based on the idea that 

supervised clustering may uncover more genuine data structures, when compared with the 

traditional clustering. This way, a supervised k-means algorithm is used, in order to 

partition the dataset into different meaningful clusters. Similar to Eick and Zeidat (2004), a 

fitness function is designed, as described in Equation 2.8, that allows to find as many 

homogeneous clusters as possible, while minimizing the number of clusters. The optimal 

solution is then obtained by computing the values of J(X,M,β), with different number of 

cluster, M, and picking the ideal number of clusters that minimizes that fitness function. 

J(X,M,β)=-Purity(X)+βPenalty(M) (2.8) 

Finley and Joachims (2008), present a method of supervised clustering with k-means 

algorithm. This work is based on the idea that, in order to successfully implement k-means, 

a similarity measure that reflects the properties of the cluster must be chosen prudently. 

Hence, a structural Support Vector Machines (SSVM) method is implemented to perform 

the k-means algorithm as a supervised task. This methodology uses a SSVM approach to 

learn a parameterized distance measure such that k-means may provide the preferred 

clusters and maximize the cluster accuracy. This way, the similarity measure is learned 

through given training examples of item sets with proper clustering so that future sets of 

items are grouped similarly. 

In the same line of thought, Al-Harbi and Rayward-Smith (2006), propose a new 

method of adapting k-means for supervised clustering. The authors argue that the 

traditional k-means algorithm for unsupervised clustering does not guarantee to group the 

same classes of objects together. Therefore, it proposes an adaptation of k-means, as a 

classifier clustering algorithm. The proposed method attempts to partition the objects that 

have the same label into the same cluster, by modifying strategic steps of the traditional k-

means algorithm, namely, the Euclidean metric and the objective function. The Euclidean 

metric used on k-means (Equation 2.9) is transformed into a weighted Euclidean metric 

(Equation 2.10), partition the data according to the different labels, and assigning a greater 
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weight to a chosen field, which has a more significant relationship whit those class labels. 

The process of choosing the appropriate set of weights can be seen as an optimization 

problem, addressed by any metaheuristic technique. In this case, Simulated Annealing is 

used to find the best set of weights for the clustering problem. The goal is to make the k-

means algorithm's divisions as confident as possible. 

δ(x,y)=√∑(xi-yi
)

2
n

i=1

 (2.9) 

δw(x,y)=√∑wi(xi-yi
)

2
n

i=1

 (2.10) 

Table 2.3 - Summary of  literature review of  supervised clustering. 

Authors Objectives Methodology Main Conclusions 

Eick and 
Zeidat 
(2004) 

Find the best k class-
uniform clusters, while 
minimizing the 
number of associated 
clusters. 

Representative-based 
supervised clustering 
with implementation of 
a quality function that 
measures the purity and 
number of clusters. 

Supervised clustering allows 
background knowledge of data, that 
can be used to retrieve subclasses 
and enhance classification 
algorithms. 

Gan et al. 
(2018) 

Build graphs of data 
through supervised 
clustering to uncover 
the intrinsic patterns 
and discriminative 
information hidden in 
the data. 

Supervised clustering-
based Regularized Least 
Squares Classification 
with implementation of 
a quality function. 

Application on several UCI datasets 
that demonstrated that the data 
structure revealed by supervised 
clustering aids in the construction of 
more effective graphs, and the 
technique employed outperforms 
both traditional graph-based and 
state-of-the-art supervised 
classification methods. 

Finley and 
Joachims 
(2008) 

Train k-means 
unsupervised 
clustering by 
enhancing the 
partition of data and 
the similarity measure 
to obtain the desired 
clusterings. 

Structural Support 
Vector Machines 
method implementation 
on k-means algorithm. 

In comparison to naïve pairwise 
learning or unsupervised k-means, 
the proposed methodology 
performed better in experiments. 

Al-Harbi and 
Rayward-
Smith (2006) 

Adapting k-means 
algorithm for use as a 
classifier. 

Supervised k-means 
employed with a 
combination of 
Simulated Annealing 
and weighted k-means 
algorithm. 

Simulated Annealing is used to 
discover the best weights for fields, 
and the k-means algorithm is used to 
construct clusters using the 
appropriate weighted Euclidean 
metric; The method proved to be 
efficient in mixed data, that contains 
both numerical and categorical 
variables. 
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Chapter 3 

Methodology, the SWAN Algorithm and Data 

3.1  Research Questions 

This study follows a methodological approach to answer the following research questions: 

− Can networks be clustered based on their performance? 

− How can the structural and compositional characteristics of the networks be 

contemplated in the clustering process? 

− Can the methodologies be evaluated compared based on the cluster’s purity? 

− Which method produces higher quality class-uniform clusters/subgroups? 

− Are there crucial attributes that have an impact on the organizational performance? 

− Does the topology of the network have an impact on the business performance? 

3.2  SUWAN – Supervised clustering algorithm With Attributed 

Networks 

SUWAN is a supervised algorithm for attributed networks. This new methodology 

employs SRIDHCR algorithm (Eick & Zeidat, 2004) that consists of representative-based 

supervised clustering with the addition of a quality function that assesses cluster purity and 

quantity. SUAWN allows clustering groups of nodes, considering the structural and 

compositional characteristics of the network. Additionally, it is suitable for either 

categorical or numerical attributes. 

For this purpose, a fitness function is defined, as described in Equation 3.1. The input 

parameters concern the target variable, the penalty, β, associated with the number of 

clusters, and the weight of the network distances, α. The number of classes, t, is established 

by the number of unique values that the target variable can assume. The target variable 

should be selected to reflect a characteristic of interest when forming clusters. 

𝑄(𝑥)=Impurity(𝑥)+β×Penalty(k) (3.1) 

The pseudocode for SUWAN algorithm is presented below. The first step of the algorithm 

refers to the application on attributed networks that considers both structural and 

compositional characteristics of the network. Thereby, two matrixes are computed, one 
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that measures the distances between nodes attributes, D1, and other that measures the 

distance between all nodes in the network, D2. With this, a weighted matrix is obtained, 

with a ponderation defined by α, that determines the weight given to the distances between 

the nodes on the network.  

The SRIDHCR algorithm (Eick & Zeidat, 2004) is employed based on k-means, which 

uses Euclidean metric, consequently, it is suitable only for numeric variables. To work 

around this limitation, a new dissimilarity measure for categorical variables, named 

Hamming distance (Equation 2.6), is incorporated in SUWAN algorithm. This measure is 

used to obtain the distances between nodes attributes (D1). Hence, SUWAN employs either 

k-modes or k-means algorithms, according to the type of data. 

SUWAN PSEUDOCODE 

Input  
 A={An×m}   //Dataset, with n nodes and m attributes 
 E=E⊆{(x,y)|(x,y)∈V2 and x≠y} // Edge list, with V as the set of  vertices 
 Target Variable 
 Beta 0<β≤2  //Penalty 
 Alpha 0≤α≤1  //Weight of  network distances 
Output  
 R= f: V →C, where V is the set of  nodes and C the set of  clusters 
 C={C1,..,CK}   //Clusters 
Algorithm  
 1. Calculate D={Dn×n}  //Weighted distance matrix 
 2. Repeat r times 
 2.1. curr = a randomly created set of  representatives, t+1≤ curr ≤ 2t 
 2.2. WHILE NOT DONE DO 
 2.2.1. Create new solutions S by adding a single non-representative to curr 

and by removing a single representative from curr 
 2.2.2. Determine the element s in S for which q(s) is minimal; In case of  tie 

chose first one 
 2.2.3. IF q(s) < q(curr) THEN curr = s 
 2.2.4. ELSE IF q(s) = q(curr) AND |s|<|curr| THEN curr = s 
 2.2.5. ELSE terminate and return curr as the solution for this run 

2.3. Assign remaining nodes to curr based on D. 
 3. Report the best out of  the r solutions found. 

As in the SRIDHCR algorithm, the proposed method starts by randomly selecting a set of 

initial representatives, denominated by curr (Step 4.1). The number of elements contain in 

this solution define the number of clusters k.  As previously referred, the goal is to 

minimize Q(x), to obtain class-uniform clusters, while minimizing the number of associated 

clusters. Therefore, k is not fixed, as the algorithm searches for an optimized number of 

clusters. By assigning each node to the closest representative with a weighted matrix, 
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clusters are obtained. 

The algorithm then starts to generate new possible candidates, s, by adding and 

removing a single non-representative node from the current solution, keeping the solution 

that improves the quality function. The algorithm then terminates when Q(x) reaches an 

optimum. Nevertheless, the algorithm can still keep iterating while reducing the number of 

clusters and without improving Q(x) (Step 4.2.4). 

Table 3.1 – Cluster representatives iteration process on SUWAN algorithm, with a toy example. 

Iteration Representatives Q(x) 

0 A, B, C, D, E 0.090 

1 A, B, C, D, E, F 0.050 

2 A, B, C, D, E, F, G 0.040 

3 A, B, C, D, E, F, G, H 0.035 

4 A, B, C, D, E, F, G, H, I 0.033 

5      B, C, D, E, F, G, H, I 0.031 

6          C, D, E, F, G, H, I 0.030 

7          C,     E, F, G, H, I 0.020 

 

The process of adding and removing single non-representatives from the current set of 

cluster representatives can be observed in Table 3.1, where it demonstrates the 

optimization on the quality function. From the initial set of representatives randomly 

chosen, A, B, C, D and E (Iteration 0), the algorithm starts to add and/or remove 

representatives, saving the sets that produce a lower value of Q(x) for the first iteration, 

where it added element F. The algorithm then starts to iterate again from that current 

solution (Iteration 1), until it reaches the optimized solution at iteration 2. This process 

goes on to the point that, adding and/or deleting items from the current solution does not 

improve the value of Q(x). 

3.3  Evaluation Measures 

In this section, we introduce some Evaluation Measures to measure the quality of the 

methodology implemented. Measuring the quality of the clustering it is an important step 

of the method’s implementation since it enables the comparison with other procedures. 

However, evaluating the quality of a clustering is challenging, as the correct clusters are not 

known. 
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The implemented methodology works around labeled data. The cluster evaluation can be 

accomplished through the purity of the clusters, and therefore, a new measure of the 

overall quality based on the cluster’s purity was computed to achieve the quality of the 

clustering. 

Let the classes in the data set A be T=(t1,…,ti), and the number of  clusters C be 

C={C1,..,Ck}. The clustering output is presented in a table format, with k lines and i 

columns, indicating the number of clusters and classes, respectively. For each cluster, the 

purity is determine as presented in Equation 3.1, where PRk(ti) is the proportion of class ti 

in cluster Ck.The overall quality measure is then computed by the total purity of the whole 

clustering, given by Equation 3.2, where |Ck| is the total number of  nodes in cluster k, 

and |C| the total number of  nodes of  the network. 

Purity(Ck)= max
i

(PRk(ti)) (3.1) 

Purity
total

(C)=∑
|C

k
|

|C|
×

j

k=1
Purity(Ck) (3.2) 

3.4  Data: the EuroGroups Register 

The European Union's Member States have embarked on a project to integrate and 

develop their national company registries for statistics reasons (Eurostat 2010). Eurostat 

coordinates this initiative, with goals set and success reported at the Business Registers — 

Statistical Units Working Group's yearly meetings. Other European nations, notably those 

in the European Free Trade Association (EFTA) and candidate countries, are welcome to 

participate in the initiative.  

The EuroGroups Register (EGR) is a system of registers that includes a central register 

maintained by Eurostat as well as registers in each EU Member State and EFTA country. 

Information regarding international company groups is kept in the central registry. The 

central register keeps track of multinational corporations with statistically significant 

financial and non-financial transnational operations in at least one European country. The 

EGR database is composed by a several distinct groups of firms, that form multinational 

corporations. Those multinational groups correspond to networks, making the EGR 

database suitable for a network analysis. 

The EGR network's goal is to maintain a comprehensive, accurate, consistent, and up-
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to-date collection of connected and coordinated statistics registries, which provides 

compilers with a standard framework of multinational enterprise groups, both global and 

truncated national groupings, functioning in the EU and EFTA economies, as well as their 

constituent legal units and companies, and also ownership and control connections 

between legal units. Enterprise group structures are built by using control relationships 

(more than 50% of ownership) between two legal units. Enterprise groups are compiled by 

subsidiary-parent control relationships linked with direct or indirect control relationships. 

In order to fully understand how the EGR network is formed, some basic concepts 

such as Multinational Enterprise Group, Legal Unit, Enterprise, Global Group Head and 

Global decision Center, must be disclosed. Therefore, a summary of concepts is presented 

below in Table 3.2, and a detailed description is followed. 

Table 3.2 - Summary of  basic concept of  EGR database. 

Concept Abbreviation Definition 

Multinational 
Enterprise Group 

MNE 
Enterprise group that has at least two enterprises or legal units. 

Can be domestic or foreign controlled 

Legal Unit LEU 
Individuals or institutions legally recognized by law or that are 

engaged in an economic activity 

Enterprise ENT Legal Unit producing economic goods and services 

Global Group Head GGH 
Parent legal unit of  an enterprise that is not controlled by any 
other legal unit. Unit on top of  the control chain of  the group 

Global Decision 
Center 

GDC 
Unit where strategic decisions are taken. The goal is to 

produce meaningful statistics Ultimate Controlling 
Institutional Unit 

UCI 

A multinational enterprise group is one that consists of at least two businesses or legal 

entities that are based in separate countries. These multinational groups can be 

differentiated as Domestic Multinational and Foreign Multinational, depending on if the 

country of the group is Portuguese or not. 

In most cases, the Legal Unit (LEU) is documented in one or more administrative 

sources. Legal units are not always represented in the same way by the sources used for 

statistical business registrations. These units might differ across nations and between 

various sources within a country. As a result, the LEU is ineffective as a statistical unit, 

especially in international comparisons. The following characteristics define a LEU: (i) it 

owns things or assets, (ii) it has obligations, and (iii) it makes contracts. The legal unit is 

always the foundation for the statistical unit known as the "enterprise", either alone or in 
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conjunction with other legal units. LEUs are legal entities whose existence is recognized by 

law independent of the individuals or institutions that may own or be members of them, as 

well as natural persons who participate in economic activity on their own. 

An Enterprise is a Legal Unit that produces economic products and services and has 

financial and investment decision-making autonomy, as well as power and responsibility for 

allocating resources for the creation of such goods and services. It may be engaged in more 

than one productive activity, and it can assume the form of a company, non-profit 

organization, or unincorporated business. The enterprise is the statistical unit at which 

information about its transactions is kept, including financial and balance-sheet accounts, 

and from which international transactions, an international investment position (if 

applicable), consolidated financial position, and net worth can be calculated. 

The Global Group Head (GGH) is an enterprise group's parent legal entity that is not 

controlled by any other legal unit, either directly or indirectly. Global and domestic group 

heads can be recognized in multinational company groupings. The GGH is the 

multinational enterprise group's group head, whereas the domestic group head oversees the 

multinational enterprise group's abbreviated national portion. As a result, it symbolizes the 

unit at the top of the group's control chain. 

The Global Decision Center (GDC) is the unit in charge of making strategic choices 

for a business group. This role is equivalent to UCI, which stands for Ultimate Controlling 

Institutional Unit. The UCI is an institutional unit that works its way up the chain of 

command of a foreign affiliate that is not controlled by another institutional unit. The goal 

of the definition of the UCI is to produce meaningful statistics. The GDC=UCI relation is 

the core requirement for EGR to serve the related statistical fields. 

The EGR data base is accessed through relational tables, which hold information on 

the Multinational Enterprise Groups networks. As presented in Figure 3.1 below, each 

table contains a primary key that identifies the groups, legal units, and enterprises, with the 

attributes GEG_EGR_ID, LEU_EGR_ID and ENT_EGR_ID, accordingly. Also, these 

variables allow identifying the connections within tables, as secondary keys. This way, the 

network is established by affiliation relationships between organizations, that can be 

perceived as a “parent” and “child” relationship between organizations. 
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Figure 3.1 - EuroGroups Register database representation as relational tables between the groups, 

legal units, and enterprises. 

For each main group presented in the first table of Figure 3.1, there is a parent legal unit 

that assumes the overall control, denominated as Global Group Head. This group detains a 

certain number of legal units and enterprises, identified by the attributes GEG_N_LEU 

and GEG_N_ENT, respectively. Figure 3.2 illustrates the graphical representation three 

different Global Group Head networks. 

 

Figure 3.2 - Examples of  networks topologies of  different Group Heads and their Legal Units, 

with igraph package from R. 
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Among all variables available in the ERG database (Figure 3.1), only a few are relevant for 

the analysis performed. Therefore, in table 3.3 below, it is presented the list of attributes 

used to perform SUWAN and subgroup discovery on attributed networks, where some 

attributes are a result of a categorization. 

Table 3.3 - Description of  relevant attributes of  EGR database. 

Attribute Description 

LEU_LEID ID of  the Legal Unit 

LEU_TYPE List of  type of  Legal Unit (Brach or not) 

LEU_LFORM List of  legal forms of  Legal Units 

LEU_COUNTRY_CODE List of  2-digit ISO country codes 

SIZE_CLASS Size of  the enterprise based on persons employed 

TURNOVER_CLASS Turnover class based on the enterprise turnover values 

NACE_DIV 2-digit NACE Rev. 2 activity codes for the main activity of  enterprises 

A LEU can assume different forms, such as, limited liability company (LL), sole proprietor 

(SP), partnership (PA), government (GO), nonprofit body (NB), natural person (NP) or 

not defined (ND). The size of the Legal Unit is defined by the number of persons 

employed (LEU_PERS_EMPL), and it includes the total number of persons who work in 

the observation unit, as well as persons who work outside the unit but belong and are paid 

by it, such as sales representatives. Moreover, persons that are absent for a short period, on 

strike, part-time and seasonal workers, apprentices, and home workers on payroll are 

included in the counting.  

The turnover class variable, groups into 6 classes the turnover values of each 

Enterprise. A Legal Unit may not have an associated turnover. On the other hand, an 

Enterprise has always an associated turnover, since that an Enterprise is a Legal Unit 

producing economic goods and services. These cases represent the Legal Units that are not 

Enterprises. From the network point of view, each LEU represents a node, so some nodes 

will not have a defined turnover class but still belong to the network structure. A more 

detailed description of the relevant attributes is presented in Annex A. 
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Figure 3.3 - TreeMap with hierarchical distribution of  UCI countries codes for the year of  2018. 

The groups covered by the ERG data base are based in different regions of the map, and 

the same group can hold companies from different countries. Despite that, the residence 

country of natural person that controls the group can be identified through the country 

code of the Ultimate Controlling Institutional Unit (UCI). For the year of 2018, there are 

over 90 countries covered by the EGR database. The distribution of the most frequent 

UCI countries is presented above, in Figure 3.3. It is noticeable that, more than half of the 

UCIs are settled in Portugal (PT), Spain (ES), France (FR) and United States (US), with 

number of UCIs per country of 1313, 1200, 836 and 458, accordingly. Other UCIs are 

spread amongst the remaining countries, with a smaller incision in countries like Andorra 

(AD), American Samoa (AS), Chile (CL), Romania (RO), among others. 
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Chapter 4 

Results and Analysis 

In this chapter, an application of the described methodology is performed on the 

EuroGroups Register. The available data for the EGR network, relates to the years 2016, 

2017 and 2018. The analysis performed is made for the most recent year of 2018, that 

contains over 6870 groups of networks, even though not all of them are suitable for the 

analysis. 

In order to present a detailed analysis of results, a subset of the total number of 

networks for the year of 2018 was created, based on the information retrieved from the 

TreeMap presented in Section 3.4. This way, the groups under analysis concern the 

networks which have an UCI based in Portugal. Moreover, the selected groups are also 

filtered by a minimum number of nodes of 20. In total, SUWAN and subgroup discovery 

were applied in 67 networks, that contain a total of 3848 LEUs. A list with the information 

about the networks under analysis is presented in Annex B, where the variable 

GEG_N_LEU indicated the number of nodes of each network. For confidentiality 

reasons, the networks are identified through numbering. 

As previous described, clusters are obtained by associating nodes to the closest 

representative. Thus, the way clusters are formed depend on the weighted metric, that 

merges the weights of nodes attributes and network distances. This weight is defined by the 

parameter α, that sets the importance of the network distances, and its impact for clustering 

is illustrated in Table 4.1. It is noticeable that, when α is set to zero, clusters are formed 

based solely on the properties of the attributes, resulting in a significant dispersion between 

nodes from the same cluster on the network representation. On the opposite side, when 

only considering the networks distances, α=1, nodes are grouped by closeness and clusters 

can be visually distinguished from each other. 

To determine the optimized value for α, an analysis on the proportion of explained 

pseudo inertia was performed. For this, it was computed the partitions generated for a 

range of possible values of α, and a certain number of clusters k, of the distances between 

nodes attributes, D1, and the distances between nodes D2 (Chavent et al., 2018). To achieve 

this, a plot of the quality criterion Q1 and Q2 of the partitions Pk
α , obtained with varying 

values of α, was executed, as described in Equation 4.1, where β=1 represents the total 

proportion of the total pseudo inertia, based on the matrix of distances between the nodes 
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attributes (D1), and β=2 represents the proportion of the total pseudo inertia, based on the 

matrix of distances between nodes (D2). The higher the value of the criterion Q
0
(Pk

α), the 

more homogenous the partition 𝑃𝑘
𝛼 is, from the node’s attributes point of view. In the 

same way, the higher the value of the criterion Q
1
(Pk

α), the more homogeneous the 

partition Pk
α from the node’s distances point of view. 

Q
β
(Pk

α)=1-
Wβ(Pk

α)

Wβ(P1)
∈[1,2] (4.1) 

The optimized value of α is the trade-off point between the loss of nodes attributes 

distances and the gain of nodes distances. Figure 4.1 gives an example of a plot for the 

normalized proportion of explained pseudo-inertia calculated with the matrix of attributes 

distances (D1) and the matrix of nodes distances (D2).  

 
Figure 4.1 – Normalized proportion of  explained pseudo-inertia for the distances between nodes 
attributes (D1) and the distances between nodes (D2). 

For each one of the 67 networks under analysis, it was calculated the proportion of 

explained pseudo-inertia between D1 and D2, with α ranging between [0,1], and the number 

of clusters given by the number of class labels t, in the network, using ClustGeo package 

from R. The obtained average number of α on the 67 networks was 0.651. Therefore, the 

following analysis are performed with a weight of network distances of α=0.7. 

 

 

  

based on D1 

based on D2 
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Table 4.1 - Impact of  α variation on clustering analysis, with network representation. 

Parameters Network Representation 

α = 0 

 

α = 0.7 

 

α = 1 

 

For both methods, SUWAN and subgroup discovery (SD), a target variable is defined to 

obtain the class labels. For the EGR network, the focus is to form cluster of enterprises 

that have the same turnover class. 

Table 4.2 – Summary table of  average performance of  SUWAN and SD methods. 

Algorithm 
Average 

#Clusters/Subgroups 
Average Overall Quality 

SUWAN 3,299 0,532 

SD 3,761 0,726 

The results on the Portuguese UCI networks produced an average overall quality of 0.532 

and 0.726 for the algorithm of SUWAN and SD, accordingly (Table 4.2). This means that, 
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on average, SD produced more purer clusters, when comparing with SUWAN. Concerning 

the number of clusters/subgroups produced, SD produces 3.8 subgroups, while SWUAN 

produced 3.3 clusters, on average. A table with the complete results per network on the 

overall quality of both methods is presented in Annex C.  

4.1 Analysis of SUWAN results 

Although SUWAN algorithm produced, on average, lower quality clusters, more that 11% 

of the networks achieved an overall quality higher than 70%. The results for these eight 

networks (38, 25, 48, 51, 32, 21, 41, and 50), are presented in Table 4.3 below. 

Table 4.3 - SWUAN results on ERG network, with Portuguese UCI. 

Network ID #Clusters #Nodes Overall Quality 

38 4 24 1 

25 5 39 0,923 

48 3 21 0,905 

51 5 23 0,870 

32 4 23 0,783 

21 4 33 0,758 

41 4 24 0,750 

50 4 32 0,719 

Network number 38 (Figure 4.2) composed by 24 LEUs, achieved the maximum overall 

quality of 1, meaning that, the clusters obtained are all class-uniform. In this case, the 

network presents only four class labels, that correspond to the number of levels assumed 

by the target variable turnover class and the number of associated clusters. 

 

Figure 4.2 - Graphical representation of  SUWAN on Network_ID 38, with cluster identification. 
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From Table 4.4, it can also be retrieved that this network presents the same type of Legal 

Unit (L), and Limited Liability form (LL) for all observations. The majority of LEUs are 

from Portugal (PT), with the exception of one, that is settled in Spain (ES). 

Furthermore, cluster 1, is composed by two LEUs that belong to class 4 of turnover, 

that ranges between 10 and 50 million euros. Cluster 2 is classified by turnover class 3, with 

a range between 2 and 10 million euros. On the other hand, cluster 3 is classified by 

turnover class of 1, that corresponds to a turnover of zero. This cluster if formed by LEUs 

with the lowest size class and with the majority of economic activity related to the financial 

service activities (K.64).  

Lastly, cluster 4 is classified by turnover class of 2, categorized by less than 2 million 

euros of turnover. This could be explained by the fact that most LEUs of this cluster 

dedicate their economic activity to agriculture and have the lowest size class, corresponding 

to 0-1 persons employed. 

Table 4.4 - Attribute list of  nodes from Network_ID 38. 

Cluster Type Form Country Code Size Class Turnover Class NACE Div 

1 L LL ES 1 4 C.10 

1 L LL PT 4 4 A.01 

2 L LL PT 4 3 A.01 

3 L LL PT 1 1 K.64 

3 L LL PT 1 1 K.64 

3 L LL PT 1 1 K.64 

3 L LL PT 1 1 A.01 

3 L LL PT 1 1 A.01 

3 L LL PT 1 1 K.64 

4 L LL PT 1 2 A.01 

4 L LL PT 1 2 A.01 

4 L LL PT 1 2 A.01 

4 L LL PT 1 2 A.01 

4 L LL PT 1 2 A.01 

4 L LL PT 1 2 A.01 

4 L LL PT 1 2 A.01 

4 L LL PT 1 2 A.01 

4 L LL PT 1 2 A.01 

4 L LL PT 1 2 A.01 

4 L LL PT 1 2 A.01 

4 L LL PT 1 2 A.01 

4 L LL PT 2 2 M.69 

4 L LL PT 1 2 A.01 

4 L LL PT 1 2 K.64 
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For network number 25, the SUWAN algorithm grouped the 39 nodes into five clusters, 

with an overall quality of 0.923. The first cluster has a majority turnover class of 1, with 12 

cases. This cluster contains LEUs from type L and form LL. Apart from one case, which 

operates in Morocco, all LEUs from this cluster operate in Portugal. Also, the size class of 

the cluster is dispersed around classes 1 and 2, with one observation belonging to class 3. 

The economic activities of this cluster vary between agriculture and financial service 

activities.  

On the other hand, clusters 2 and 5, with 7 and 14 nodes, respectively, are pure 

clusters, with turnover class 2. Also, this clusters only contains LEUs with the attributes of 

type L, form LL, country PT, size class 2 and NACE div A.01.  

Cluster 3 just contains a node, that corresponds to the only observation with a 

turnover class of 4. Finally, cluster 4, with 5 nodes, is also a pure cluster of turnover class 3. 

This cluster contains LEUs from types L and B, form LL, countries of Portugal and Spain, 

size class of 4 and 3 and economic activity of agriculture and manufacture of food 

products. 

Network number 48 resulted in 3 clusters, where cluster 1 contains turnover classes of 

1 and 2, while clusters 2 and 3 are pure, with turnover classes of 2 and 4, accordingly.  

The clustering of network number 51 also revealed the majority of clusters class 

uniform, except for cluster 4, that contains turnover classes of 1, 5 and 99.  

A graphical representation of the networks is followed in Figure 4.3, and the output 

tables with the observations, attributes and clusters are included in Annex D. 
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Figure 4.3 - Graphical representation of  SUWAN on Networks 25, 48, 51, 32, 21, 41 and 50, with 

cluster identification. 

Network_ID 25 

 

Network_ID 48 

 
Network_ID 51 

 

Network_ID 32 

 
Network_ID 21 

 

Network_ID 41 

 
Network_ID 50 
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4.2 Analysis of Subgroup Discovery results 

We used Subgoup Discovery (SD) as a benchmark for SUWAN. The results obtained with 

subgroup discovery method, for the same set of networks, are presented below in Table 

4.5. With this algorithm, there are several differences to highlight, like the number of nodes 

used in each network, that differs from the ones obtained from SUWAN. The reason 

behind this difference lies in the fact that SD does not group all nodes in clusters, but 

instead, it finds subgroups of nodes with an associated description. Besides that, the 

algorithm allows an overlapping of nodes between subgroups, that affects the number of 

unique nodes used on the SD task. 

Table 4.5 - Subgroup discovery results on ERG network, with Portuguese UCI. 

Network ID #Subgroups #Nodes #Unique Nodes Overall Quality 

38 4 24 5 0,800 

25 4 39 11 0,688 

48 3 21 20 0,531 

51 3 23 21 0,303 

32 4 23 22 0,525 

21 4 33 9 0,800 

41 4 24 7 0,750 

50 1 32 29 0,655 

This way, for network number 38, SD generated 4 subgroups, where from the 24 existing 

nodes, only 5 were grouped. In this specific case, the same five nodes were grouped in four 

different subgroups, with different descriptions. In fact, the subgroups found are 

subgroups of each other, with more specific descriptions for the same set of nodes (Table 

4.5). The overall quality of this network with subgroup discovery is 80% since there is only 

one node with a different class label between each subgroup. 

From the set of networks presented in Table 4.5, subgroup discovery produced 

different outcomes from the previous referred. In the case of network number 50, it 

produced a unique subgroup with 29 observations, based on the description on the 

economic activity of the LEUs, that correspond to the Human and Health activities. The 

target class of this subgroup ranges between the values of 2, 3, 4 and 99, with the majority 

of observations belonging to class 2. 
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Table 4.6 - Subgroup discovery output for Network_ID 38. 

Subgroup Nodes_ID Target Class Description 

1 

1 1 

NACE Div = K.64 
2 2 

3 1 

4 1 

5 1 

2 

1 1 

NACE Div = K.64  
+ 

Country Cod=PT 

2 2 

3 1 

4 1 

5 1 

3 

1 1 NACE Div = K.64  
+ 

Country Cod=PT  
+ 

Size Class=1 

2 2 

3 1 

4 1 

5 1 

4 

1 1 

NACE Div = K.64  
+ 

Size Class=1 

2 2 
3 1 

4 1 

5 1 

On the other hand, for network number 48 (Figure 4.3), it grouped 20 of the nodes, with 

an overlapping of 37.5%. These subgroups are described based on the size class and 

country code. The first subgroup of size 6, has observations with turnover class of 1 and 2, 

and it is described by a size class of 2. The second subgroup is a subgroup of the first one, 

with the addition of the country code (PT) in description. The last subgroup, with 20 

nodes, is described by the country code (PT). In this case, the target class varies among the 

values 1, 2 and 4. Figure 4.4 shows the three subgroups in the same network, separately, 

due to the overlapping of nodes in the different subgroups. The output tables for subgroup 

discovery output on networks 25, 48, 51, 32, 21, 41 and 50 are presented in Annex E. 

 

Figure 4.4 - Graphical representation of  subgroup discovery on network 48, with colour 

identification of  the subgroups. 
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Chapter 5 

Inter-organizational Performance Analysis 

5.1  Variables impact on performance 

During the results’ analysis for the networks under study it was possible to observe that the 

variables with higher impact to determine the LEU’s turnover class are size class and the 

economic activity of the group (NACE Div). 

For the NACE Div attribute, it is possible to infer that, turnovers of less than 2 million 

euros (classes 1 to 2) have the most frequent activities of financial services (K.64), real 

states (L.68) and Professional and scientific and technical activities (M.70). On the other 

hand, for higher turnover classes of 4 and 5, with more than 10 million euros, the activities 

with more frequency are in the field of wholesale and retail trade, repair of motor vehicles 

and motorcycles (G.46, G.45 and G.47), electricity, gas, steam, and air conditioning supply 

(D.35), manufacturing (C.10, C.16) and construction (F.42 and F.41). 

 

Figure 5.1 - Distribution of  LEU’s frequencies according to the size class and the turnover class of  
1 to 2 and 3 to 4, from ERG network with Portuguese UCI and minimum number of  connections 
of  20. 

For the size class, it was possible to observe that the majority of LEU’s, with lower 

turnover classes of 1 and 2, are more condensed in lower size classes of 1 to 2. On the 

opposite side, LEUs with higher turnover classes have more observations for the size 

classes of 5 and 6. This dispersion can be observed in Figure 5.1, where the graphs indicate 

the dispersion of observations of turnover classes from 1 to 2, and 3 to 4, accordingly, with 

the variation. 

Due to the selection of networks with Portuguese UCI, the variables concerning the 

type and legal form of LEU’s proved to be irrelevant for the SUWAN, since that are fewer 

cases where the attributes type and form are different from L and LL, respectively. 
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5.1  Network topology impact on performance 

In order to analyze the impact of  the network’s topology on the group’s performance, 

some network topology measures, and the group total turnover were exploited. This way, 

to study the networks topology, some essential measures can be examined to study the 

networks compactness, centrality, and density (Table 5.1).  

Table 5.1 - Summary on essential network topology measures used to study the impact on the 
organizational performance. 

Measure Description 

Diameter Measures how compact the network is 

Density Measures the connectivity of  the network 

Average Degree Centrality Measures the connectivity of  nodes, on average 

Average Betweenness Centrality Measures the capacity of  information flow between nodes, on average 

Average Closeness Centrality Measures the influence of  nodes in the entire network, on average 

The group performance can be measured by its turnover. Hence, a new variable, that 

indicates the total turnover of  the group, was computed, denominated by sum_ent_turnov. 

Based on the turnover presented by each enterprise that composes the group, the total 

turnover was obtain through the sum of  those values. 

 

Figure 5.2 - Correlation plot between the variable’s diameter, average degree, average closeness, 

average betweenness, density and total turnover. 
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Analyzing the correlation between variables in Figure 5.2, it is possible to retain that the 

pairs of  variables average closeness/density and diameter/average betweenness are 

positively correlated, with correlation values of  0.93 and 0.88, respectively. On the other 

hand, with a negative correlation value of  -0.93 and -0.7, are the pairs of  variables average 

degree/average closeness and diameter/average closeness. Although neither of  the 

variables seems to be correlated with the total turnover of  the group, an analysis of  a 

multiple regression model was performed to the 67 networks under analysis. This way, the 

variables of  the total turnover and the network topology measures were placed as 

dependent and independent variables, accordingly. 

Table 5.2 - Multiple linear regression model with network topology measures as independent 

variables and total turnover as dependent variable. 

Residuals Min 1Q Median 3Q Max 

 -2.126e11 -3.546e10 -8.559e9 8.225e9 1.322e12 

      
Coefficients  Estimate Std.Error t value Pr(>|t|) 

 (Intercept) 5.302e11 4.814e12 0.110 0.913 
 diameter 1.188e10 3.256e10 0.365 0.717 
 aver_degree -3.066e11 2.404e12 -0.128 0.899 
 aver_closeness 7.524e11 1.137e13 0.066 0.947 
 aver_betweenness 1.449e10 1.712e10 0.846 0.401 
 density NA NA NA NA 

Residual Std error 1.767e11 on 62 degrees of  freedom 

Multiple R-squared 0.08537 

Adjusted R-squared 0.02636 

F-statistics 1.447 on 4 and 62 DF,  p-value: 0.2294 

When analyzing the multiple linear regression output of  Table 5.2, it is possible to observe 

that the variable that has more impact in the group’s turnover is the average closeness, with 

an estimate value of  7.524e11, although it does not present a significant p-value. In the same 

way, none of  the variables proved to be significant to the model. Looking at the F-statistics 

and the overall p-value, it can be concluded that we reject the hypothesis of  a relationship 

between the dependent variables and the independent variables. Therefore, there is no 

significant evidence that a relationship the total turnover variable and network topology 

variables exists. 
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Chapter 6 

Conclusions and Challenges 

The approach of using both the information about the network structure and the attributes 

of the nodes in the clustering process proved to be feasible. It enabled the creation of 

clusters/subgroups that are not only densely linked, but also class-uniform, in terms of the 

target class that describe those vertices. A characteristic of interest is defined beforehand, 

denominated by target class, that allows to obtain clusters/subgroups based on a class 

label. 

The application of supervised clustering on attributed networks revealed to be an 

underdeveloped topic. Atzmueller (2018) applied the subgroup discovery task on attributed 

social interaction networks. For this, it adapted the principles of subgroup discovery to the 

dyadic network setting, detecting compositional patterns and capturing subgroup of nodes, 

estimated by a quality measure. The subgroup discovery was implemented on the EGR 

networks with the SD-MAP algorithm, using the preprocessing of COMODO algorithm, 

that combines the graph structure and the descriptive information of the vertices.  

On the supervised clustering approach, the SRIDHCR algorithm proposed by Eick 

(2004), was adapted to consider both structural and compositional characteristics of the 

EGR network. Moreover, the original algorithm was also adapted for the implementation 

on categorical variables, through a variation of the k-means, known by k-modes. 

In a preliminary analysis of the outputs produced by both methodologies, it was 

concluded that subgroup discovery produced better clusters/subgroups, with higher overall 

quality, in comparison with SUWAN. However, subgroup discovery achieved better results 

due to the lack of nodes grouped, and by allowing an overlapping of nodes between 

subgroups. On the other hand, the main focus of subgroup discovery is to find subgroups 

of nodes, described by patterns and with a determined quality measure. 

The SUWAN method also produced quite good results, with high-level cluster purity, 

among the studied cases. This method groups into clusters all nodes of the network, 

contrary to subgroup discovery. 

The focus of the work was to obtain class-uniform clusters, based on the LEUs 

turnover class, using SUWAN. The analysis of results allowed to verify certain patterns in 

the nodes that compose the clusters. Clusters with the majority class of turnovers that 

range between 1 and 2, are formed by LEUs that employ less persons. Similarly, clusters 
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with class labels of turnover ranging between 5 and 6, are assembled by legal units with size 

classes of higher levels. Therefore, the turnover is clearly affected by the size of the legal 

unit. 

Additionally, the analysis on the network topology impact on performance proved that 

there is no significant evidence of  a relationship between the total turnover variable and 

network topology measures of  diameter, average degree, closeness and betweenness. 

Furthermore, this study revealed that SUWAN in attributed networks involves certain 

challenges. One of the challenges is the parameterization of variables that influence the 

clustering output. For example, the importance of the network topology, established by α, 

has a strong influence and it can provide several different outcomes. Also, the developed 

methodology works on representative-based supervised clustering, that randomly choses 

the first k set of representatives. Although this process allows to explore the solution space, 

the clustering process is still compromised by this randomness. Another challenge is the 

evaluation method. Evaluating the quality of a clustering is challenging, as the correct 

clusters are not known. Also, the proposed evaluation method gives more focus on the 

node’s attribute, since it evaluates the overall quality based on the cluster’s purity. This may 

result in circumstances where certain algorithms perform better in terms of network 

topology but worse in terms of node characteristics, making it difficult to determine which 

method performs better in the long run. 
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Annex A 

Attributes description for the EGR data base 

Table A.1 - Description of  types of  LEUs. 

LEU_TYPE Description 

B Branch 

L Legal unit (not branch) 

Table A.2 - Description of  forms of  LEUs. 

LEU_LFORM Description 

LL Limited liability company - include limited liability partnerships and public 
corporations 

SP Sole proprietor 

PA Partnership - exclude limited liability partnerships 

GO Government - local and central government - exclude public corporations 

NB Nonprofit body or mutual association 

NP Natural person - include only if not involved in any economic activity 

ND Not defined - units should be coded here only temporarily 

Table A.3 - Description of  2-digit ISO country codes. 

COUNTRY_CODE Country Name 

AD Andorra 

AE United Arab Emirates 

AF Afghanistan 

AG Antigua And Barbuda 

AI Anguilla 

AL Albania 

AM Armenia 

AO Angola 

AQ Antarctica 

AR Argentina 

AS American Samoa 

AT Austria 

AU Australia 

AW Aruba 

AX Aland Islands 

AZ Azerbaijan 

BA Bosnia And Herzegovina 

BB Barbados 

BD Bangladesh 

BE Belgium 

BF Burkina Faso 

BG Bulgaria 

BH Bahrain 

BI Burundi 

BJ Benin 

BL Saint Barthelemy 

BM Bermuda 

BN Brunei Darussalam 

BO Bolivia 

BR Brazil 

BS Bahamas 
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COUNTRY_CODE Country Name 

BT Bhutan 

BV Bouvet Island 

BW Botswana 

BY Belarus 

BZ Belize 

CA Canada 

CC Cocos (Keeling) Islands 

CD Congo, The Democratic Republic Of 

CF Central African Republic 

CG Congo 

CH Switzerland 

CI Côte D'ivoire 

CK Cook Islands 

CL Chile 

CM Cameroon 

CN China 

CO Colombia 

CR Costa Rica 

CU Cuba 

CV Cape Verde 

CX Christmas Island 

CY Cyprus 

CZ Czech Republic 

DE Germany 

DJ Djibouti 

DK Denmark 

DM Dominica 

DO Dominican Republic 

DZ Algeria 

EC Ecuador 

EE Estonia 

EG Egypt 

EH Western Sahara 

ER Eritrea 

ES Spain 

ET Ethiopia 

FI Finland 

FJ Fiji 

FK Falkland Islands (Malvinas) 

FM Micronesia, Federated States Of 

FO Faroe Islands 

FR France 

GA Gabon 

GB United Kingdom 

GD Grenada 

GE Georgia 

GF French Guiana 

GG Guernsey 

GH Ghana 

GI Gibraltar 

GL Greenland 

GM Gambia 

GN Guinea 

GP Guadeloupe 

GQ Equatorial Guinea 

GR Greece 

GS South Georgia And The South Sandwich Islands 

GT Guatemala 

GU Guam 

GW Guinea-Bissau 

GY Guyana 
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COUNTRY_CODE Country Name 

HK Hong Kong 

HM Heard Island And Mcdonald Islands 

HN Honduras 

HR Croatia 

HT Haiti 

HU Hungary 

ID Indonesia 

IE Ireland 

IL Israel 

IM Isle Of Man 

IN India 

IO British Indian Ocean Territory 

IQ Iraq 

IR Iran, Islamic Republic Of 

IS Iceland 

IT Italy 

JE Jersey 

JM Jamaica 

JO Jordan 

JP Japan 

KE Kenya 

KG Kyrgyzstan 

KH Cambodia 

KI Kiribati 

KM Comoros 

KN Saint Kitts And Nevis 

KP Korea, Democratic People's Republic Of 

KR Korea, Republic Of 

KW Kuwait 

KY Cayman Islands 

KZ Kazakhstan 

LA Lao People's Democratic Republic 

LB Lebanon 

LC Saint Lucia 

LI Liechtenstein 

LK Sri Lanka 

LR Liberia 

LS Lesotho 

LT Lithuania 

LU Luxembourg 

LV Latvia 

LY Libyan Arab Jamahiriya 

MA Morocco 

MC Monaco 

MD Moldova, Republic Of 

ME Montenegro 

MF Saint Martin (French Part) 

MG Madagascar 

MH Marshall Islands 

MK The Republic Of North Macedonia 

ML Mali 

MM Myanmar 

MN Mongolia 

MO Macao 

MP Northern Mariana Islands 

MQ Martinique 

MR Mauritania 

MS Montserrat 

MT Malta 

MU Mauritius 

MV Maldives 
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COUNTRY_CODE Country Name 

MW Malawi 

MX Mexico 

MY Malaysia 

MZ Mozambique 

NA Namibia 

NC New Caledonia 

NE Niger 

NF Norfolk Island 

NG Nigeria 

NI Nicaragua 

NL Netherlands 

NO Norway 

NP Nepal 

NR Nauru 

NU Niue 

NZ New Zealand 

OM Oman 

PA Panama 

PE Peru 

PF French Polynesia 

PG Papua New Guinea 

PH Philippines 

PK Pakistan 

PL Poland 

PM Saint Pierre And Miquelon 

PN Pitcairn 

PR Puerto Rico 

PS Palestine, State Of 

PT Portugal 

PW Palau 

PY Paraguay 

QA Qatar 

RE Reunion 

RO Romania 

RS Serbia 

RU Russian Federation 

RW Rwanda 

SA Saudi Arabia 

SB Solomon Islands 

SC Seychelles 

SD Sudan 

SE Sweden 

SG Singapore 

SH Saint Helena 

SI Slovenia 

SJ Svalbard And Jan Mayen 

SK Slovakia 

SL Sierra Leone 

SM San Marino 

SN Senegal 

SO Somalia 

SR Suriname 

ST Sao Tome And Principe 

SV El Salvador 

SY Syrian Arab Republic 

SZ Swaziland 

TC Turks And Caicos Islands 

TD Chad 

TF French Southern Territories 

TG Togo 

TH Thailand 
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COUNTRY_CODE Country Name 

TJ Tajikistan 

TK Tokelau 

TL Timor-Leste 

TM Turkmenistan 

TN Tunisia 

TO Tonga 

TR Turkey 

TT Trinidad And Tobago 

TV Tuvalu 

TW Taiwan, Province Of China 

TZ Tanzania, United Republic Of 

UA Ukraine 

UG Uganda 

UM United States Minor Outlying Islands 

US United States 

UY Uruguay 

UZ Uzbekistan 

VA Holy See (Vatican City State) 

VC Saint Vincent And The Grenadines 

VE Venezuela 

VG Virgin Islands, British 

VI Virgin Islands, U.S. 

VN Viet Nam 

VU Vanuatu 

WF Wallis And Futuna 

WS Samoa 

YE Yemen 

YT Mayotte 

ZA South Africa 

ZM Zambia 

ZW Zimbabwe 

ZZ Neutral Zone 

II Supranational 

BQ Bonaire, Sint Eustatius And Saba 

CW Curacao 

SX Sint Maarten (Dutch Part) 

SS South Sudan 

Table A.4 - Size of  the enterprise based on number of  persons employed. 

SIZE_CLASS Description 

1 0-1 

2 2-9 persons employed 

3 10-19 persons employed 

4 20-49 persons employed 

5 50-249 persons employed 

6 250 or more persons employed 

99 Not defined 

Table A.5 - Turnover class based on the enterprise turnover values. 

TURNOVER_CLASS Description 

1 0 

2 Less than 2 million 

3 Between 2 and 10 million 

4 Between 10 and 50 million 

5 More than 50 million 

99 Not defined 
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Table A.6 - NACE Rev. 2 activity codes for the main activity of  enterprises, with junction of  section and 
division code. 

NACE SEC+DIV CODE Description 

A.01 Crop and animal production, hunting and related service activities 

A.02 Forestry and logging 

A.03 Fishing and aquaculture 

B.05 Mining of coal and lignite 

B.06 Extraction of crude petroleum and natural gas 

B.07 Mining of metal ores 

B.08 Other mining and quarrying 

B.09 Mining support service activities 

C.10 Manufacture of food products 

C.11 Manufacture of beverages 

C.12 Manufacture of tobacco products 

C.13 Manufacture of textiles 

C.14 Manufacture of wearing apparel 

C.15 Manufacture of leather and related products 

C.16 
Manufacture of wood and of products of wood and cork, except furniture; 
manufacture of articles of straw and plaiting materials 

C.17 Manufacture of paper and paper products 

C.18 Printing and reproduction of recorded media 

C.19 Manufacture of coke and refined petroleum products 

C.20 Manufacture of chemicals and chemical products 

C.21 Manufacture of basic pharmaceutical products and pharmaceutical preparations 

C.22 Manufacture of rubber and plastic products 

C.23 Manufacture of other non-metallic mineral products 

C.24 Manufacture of basic metals 

C.25 Manufacture of fabricated metal products, except machinery and equipment 

C.26 Manufacture of computer, electronic and optical products 

C.27 Manufacture of electrical equipment 

C.28 Manufacture of machinery and equipment n.e.c. 

C.29 Manufacture of motor vehicles, trailers and semi-trailers 

C.30 Manufacture of other transport equipment 

C.31 Manufacture of furniture 

C.32 Other manufacturing 

C.33 Repair and installation of machinery and equipment 

D.35 Electricity, gas, steam and air conditioning supply 

E.36 Water collection, treatment and supply 

E.37 Sewerage 

E.38 Waste collection, treatment and disposal activities; materials recovery 

E.39 Remediation activities and other waste management services 

F.41 Construction of buildings 

F.42 Civil engineering 

F.43 Specialized construction activities 

G.45 Wholesale and retail trade and repair of motor vehicles and motorcycles 

G.46 Wholesale trade, except of motor vehicles and motorcycles 

G.47 Retail trade, except of motor vehicles and motorcycles 

H.49 Land transport and transport via pipelines 

H.50 Water transport 

H.51 Air transport 

H.52 Warehousing and support activities for transportation 

H.53 Postal and courier activities 

I.55 Accommodation 

I.56 Food and beverage service activities 

J.58 Publishing activities 

J.59 
Motion picture, video and television program production, sound recording and 
music publishing activities 

J.60 Programming and broadcasting activities 

J.61 Telecommunications 

J.62 Computer programming, consultancy and related activities 
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NACE SEC+DIV CODE Description 

J.63 Information service activities 

K.64 Financial service activities, except insurance and pension funding 

K.65 Insurance, reinsurance and pension funding, except compulsory social security 

K.66 Activities auxiliary to financial services and insurance activities 

L.68 Real estate activities 

M.69 Legal and accounting activities 

M.70 Activities of head offices; management consultancy activities 

M.71 Architectural and engineering activities; technical testing and analysis 

M.72 Scientific research and development 

M.73 Advertising and market research 

M.74 Other professional, scientific and technical activities 

M.75 Veterinary activities 

N.77 Rental and leasing activities 

N.78 Employment activities 

N.79 Travel agency, tour operator reservation service and related activities 

N.80 Security and investigation activities 

N.81 Services to buildings and landscape activities 

N.82 Office administrative, office support and other business support activities 

O.84 Public administration and defense; compulsory social security 

P.85 Education 

Q.86 Human health activities 

Q.87 Residential care activities 

Q.88 Social work activities without accommodation 

R.90 Creative, arts and entertainment activities 

R.91 Libraries, archives, museums and other cultural activities 

R.92 Gambling and betting activities 

R.93 Sports activities and amusement and recreation activities 

S.94 Activities of membership organizations 

S.95 Repair of computers and personal and household goods 

S.96 Other personal service activities 

T.97 Activities of households as employers of domestic personnel 

T.98 
Undifferentiated goods-and services-producing activities of private households 
for own use 

U.99 Activities of extraterritorial organizations and bodies 
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Annex B 

EGR Networks of 2018 under analysis 

Table B.1 - Networks of  2018, with Portuguese UCI and minimum number of  nodes of  20. 

Network_ID GEG_N_LEU GEG_N_ENT 

1 31 31 

2 37 37 

3 43 43 

4 41 37 

5 24 23 

6 61 59 

7 42 36 

8 45 35 

9 21 21 

10 52 51 

11 26 25 

12 23 21 

13 30 28 

14 33 24 

15 108 99 

16 92 82 

17 73 69 

18 34 29 

19 38 37 

20 22 22 

21 33 29 

22 23 21 

23 21 21 

24 109 96 

25 39 37 

26 27 26 

27 28 27 

28 44 41 

29 40 36 

30 80 77 

31 22 21 

32 23 23 

33 95 35 

34 42 39 

35 31 29 

36 46 43 

37 50 48 

38 24 24 

39 24 23 

40 24 22 

41 24 24 

42 95 91 

43 40 37 

44 88 83 

45 146 71 

46 42 41 

47 41 32 

48 21 21 

49 23 22 

50 32 31 

51 23 23 

52 37 36 
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Network_ID GEG_N_LEU GEG_N_ENT 

53 28 28 

54 29 27 

55 46 40 

56 79 63 

57 133 98 

58 52 52 

59 49 49 

60 45 42 

61 51 48 

62 23 21 

63 39 39 

64 327 265 

65 276 187 

66 235 217 

67 123 119 
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Annex C 

Comparison of performance between methods 

Table C.1 - Quality results of  SUWAN and subgroup discovery on ERG networks with Portuguese UCI. 

  SUWAN Subgroup Discovery 

Network 
ID 

#Nodes #Clusters Overall Quality #Subgroups 
#Unique 

Nodes 
Overall 
Quality 

1 31 2 0,581 4 19 0,939 

2 37 4 0,541 3 16 0,591 

3 43 1 0,535 4 25 0,808 

4 41 5 0,610 4 16 0,700 

5 24 4 0,500 4 21 0,487 

6 61 3 0,377 4 4 0,500 

7 42 4 0,500 4 38 0,595 

8 45 2 0,378 4 5 1,000 

9 21 4 0,524 4 18 0,500 

10 52 4 0,385 4 45 0,392 

11 26 5 0,654 4 3 1,000 

12 23 4 0,696 3 3 1,000 

13 30 2 0,367 4 9 0,750 

14 33 5 0,545 4 5 1,000 

15 108 3 0,417 4 97 0,262 

16 92 5 0,478 4 4 1,000 

17 73 2 0,329 3 14 0,545 

18 34 3 0,412 4 9 0,800 

19 38 2 0,421 4 2 1,000 

20 22 2 0,364 1 2 1,000 

21 33 4 0,758 4 9 0,800 

22 23 1 0,304 4 18 0,542 

23 21 1 0,619 4 3 1,000 

24 109 3 0,404 4 96 0,265 

25 39 5 0,923 4 11 0,688 

26 27 2 0,444 4 4 1,000 

27 28 2 0,500 4 12 0,950 

28 44 1 0,523 4 31 0,625 

29 40 3 0,375 4 9 0,750 

30 80 3 0,688 4 61 0,538 

31 22 2 0,409 4 8 0,682 

32 23 4 0,783 4 22 0,525 

33 95 2 0,558 4 50 1,000 

34 42 3 0,643 4 33 0,857 

35 31 2 0,548 4 28 0,625 

36 46 3 0,348 4 12 0,833 

37 50 4 0,620 4 43 0,415 

38 24 4 1,000 4 5 0,800 

39 24 4 0,458 3 20 0,423 

40 24 3 0,375 4 2 1,000 

41 24 4 0,750 4 7 0,750 

42 95 2 0,305 4 2 1,000 

43 40 1 0,375 1 36 0,417 

44 88 5 0,432 4 37 0,627 

45 146 6 0,651 4 70 0,869 
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  SUWAN Subgroup Discovery 

Network 
ID 

#Nodes #Clusters Overall Quality #Subgroups 
#Unique 

Nodes 
Overall 
Quality 

46 42 3 0,524 4 19 0,789 

47 41 4 0,683 4 3 1,000 

48 21 3 0,905 3 20 0,531 

49 23 2 0,261 4 8 0,938 

50 32 4 0,719 1 29 0,655 

51 23 5 0,870 3 21 0,303 

52 37 2 0,270 3 34 0,303 

53 28 3 0,571 4 16 0,500 

54 29 4 0,552 4 23 0,586 

55 46 5 0,500 4 6 1,000 

56 79 5 0,405 4 12 1,000 

57 133 6 0,489 4 7 1,000 

58 52 3 0,615 4 3 1,000 

59 49 2 0,592 4 25 0,804 

60 45 4 0,667 4 39 0,321 

61 51 4 0,529 4 2 1,000 

62 23 3 0,609 4 12 0,783 

63 39 2 0,359 4 17 0,444 

64 327 3 0,514 4 21 1,000 

65 276 5 0,536 4 72 0,389 

66 235 3 0,455 4 8 1,000 

67 123 6 0,593 4 81 0,416 
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Annex D 

SUWAN output tables 

Table D.1 - List of  attributes for the observations of  network number 25, with cluster identification. 

Cluster Type Form Country Code Size Class Turnover Class NACE Div 

1 L 99 MA 1 99 99 
1 L LL PT 3 3 A.01 
1 L LL PT 2 1 A.01 
1 L LL PT 1 1 A.01 
1 L LL PT 1 1 K.64 
1 L LL PT 1 1 A.01 
1 L LL PT 1 1 A.01 
1 L LL PT 2 3 A.01 
1 L LL PT 1 1 K.64 
1 L LL PT 1 1 K.64 
1 L LL PT 1 1 A.01 
1 L LL PT 1 1 A.01 

2 L LL PT 2 2 A.01 
2 L LL PT 2 2 A.01 
2 L LL PT 2 2 A.01 
2 L LL PT 2 2 A.01 
2 L LL PT 2 2 A.01 
2 L LL PT 2 2 A.01 
2 L LL PT 2 2 A.01 

3 L LL PT 2 4 C.10 

4 L LL ES 4 3 A.01 
4 L LL ES 4 3 A.01 
4 B LL ES 4 3 C.10 
4 L LL PT 3 3 A.01 
4 L LL PT 4 3 A.01 

5 L LL PT 2 2 A.01 
5 L LL PT 2 2 A.01 
5 L LL PT 2 2 A.01 
5 L LL PT 2 2 A.01 
5 L LL PT 2 2 A.01 
5 L LL PT 2 2 A.01 
5 L LL PT 2 2 A.01 
5 L LL PT 2 2 A.01 
5 L LL PT 2 2 A.01 
5 L LL PT 2 2 A.01 
5 L LL PT 2 2 A.01 
5 L LL PT 2 2 A.01 
5 L LL PT 2 2 A.01 
5 L LL PT 2 2 A.01 
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Table D.2 - List of  attributes for the observations of  network number 48, with cluster identification. 

Cluster Type Form Country Code Size Class Turnover Class NACE Div 

1 L LL PT 1 1 R.93 

1 L LL PT 1 1 I.56 

1 L LL PT 2 2 R.93 

1 L LL PT 1 1 I.55 

1 L LL PT 2 1 H.50 

1 L LL PT 3 2 R.93 

1 L LL PT 1 1 I.55 

1 L LL PT 2 1 R.93 

1 L LL PT 1 1 M.70 

1 L LL PT 1 1 K.64 

1 L LL PT 2 1 I.55 

1 L LL PT 1 1 R.93 

1 L LL PT 1 1 R.93 

2 L LL PT 1 2 H.52 

2 L LL PT 2 2 K.64 

2 L LL PT 2 2 L.68 

2 L LL PT 5 2 I.55 

3 L LL DE 5 4 N.79 

3 L LL PT 6 4 R.93 

3 L LL PT 5 4 R.93 

3 L LL PT 5 4 R.93 

Table D.3 - List of  attributes for the observations of  network number 51, with cluster identification. 

Cluster Type Form Country Code Size Class Turnover Class NACE Div 

1 L LL FR 3 3 G.46 
1 L LL PT 4 3 C.10 
1 L LL PT 1 3 A.01 
1 L LL PT 2 3 A.01 

2 L LL PT 3 2 A.01 
2 L LL PT 1 2 D.35 
2 L LL PT 1 2 M.70 
2 L LL PT 3 2 I.56 

3 L LL PT 5 4 A.01 
3 L LL PT 6 4 H.49 
3 L LL PT 1 4 A.01 
3 L LL PT 4 4 G.46 
3 L LL PT 5 4 A.01 
3 L LL PT 5 4 G.47 

4 L LL LU 1 99 G.46 
4 L LL PT 5 5 C.10 
4 L LL PT 6 5 C.10 
4 L LL PT 6 5 C.10 
4 L LL PT 6 5 G.47 
4 L LL PT 5 5 C.10 
4 L LL PT 1 1 C.10 
4 L LL PT 1 1 C.10 

5 L LL PT 2 2 G.45 
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Table D.4 - List of  attributes for the observations of  network number 32, with cluster identification. 

Cluster Type Form Country Code Size Class Turnover Class NACE Div 

1 99 99 AO 1 99 99 
1 L LL LU 1 99 K.64 
1 L LL PT 1 2 L.68 
1 L LL PT 2 3 M.70 
1 L LL PT 1 2 M.70 
1 L LL PT 3 3 G.47 
1 L LL PT 2 2 L.68 
1 L LL PT 1 1 L.68 
1 L LL PT 2 2 N.82 
1 L LL PT 1 2 M.70 
1 L LL PT 1 2 M.70 
1 L LL PT 1 2 L.68 

2 L LL PT 2 1 C.23 
2 L LL PT 1 1 K.64 
2 L LL PT 1 1 G.47 
2 L LL PT 1 1 M.70 
2 L LL PT 4 1 M.70 
2 L LL PT 1 1 K.64 
2 L LL PT 1 1 H.52 
2 L LL PT 1 1 B.08 

3 L LL PT 1 2 G.46 

4 L LL PT 5 4 G.46 
4 L LL PT 6 4 G.47 

Table D.5 - List of  attributes for the observations of  network number 21, with cluster identification. 

Cluster Type Form Country Code Size Class Turnover Class NACE Div 

1 L LL PT 1 2 A.01 
1 L LL PT 1 2 A.01 

2 L LL ES 6 5 C.10 
2 L LL PT 5 5 C.10 
2 L LL US 5 5 G.46 

3 L PA BR 2 5 G.46 
3 L LL ES 6 5 C.10 
3 L LL ES 6 5 C.10 
3 L LL ES 6 5 C.10 
3 L LL 99 99 99 99 
3 L LL PT 1 1 K.64 
3 L LL PT 1 1 C.10 
3 L LL PT 5 5 C.10 
3 L LL PT 3 2 M.70 
3 L LL PT 1 1 L.68 
3 L LL PT 1 1 M.70 
3 L LL PT 1 1 K.64 
3 L LL PT 1 1 K.64 
3 L LL PT 1 1 K.64 
3 L LL PT 1 1 K.64 
3 L LL PT 2 1 K.64 
3 L LL PT 1 1 M.70 
3 L LL PT 2 2 L.68 
3 L LL PT 1 1 F.41 
3 L LL PT 1 1 K.64 
3 L LL PT 1 1 L.68 
3 L LL PT 1 1 K.64 
3 L LL PT 1 1 N.77 
3 L LL PT 1 1 K.64 
3 L LL PT 1 1 D.35 
3 L LL PT 1 1 C.10 

4 L LL PT 1 4 C.10 
4 L ND TN 1 4 G.46 
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Table D.6 - List of  attributes for the observations of  network number 41, with cluster identification. 

Cluster Type Form Country Code Size Class Turnover Class NACE Div 

1 L LL PT 1 2 A.01 
1 L LL PT 2 2 G.46 
1 L LL PT 2 2 L.68 
1 L LL PT 1 2 A.01 
1 L LL PT 1 2 F.41 
1 L LL PT 2 2 G.47 

2 L LL PT 3 3 G.47 

3 L LL PT 2 3 H.49 
3 L LL PT 3 3 G.46 

4 L LL ES 1 2 G.46 
4 L LL PT 5 4 G.47 
4 L LL PT 4 4 G.46 
4 L LL PT 1 2 G.47 
4 L LL PT 2 2 G.47 
4 L LL PT 2 1 K.64 
4 L LL PT 1 2 G.47 
4 L LL PT 1 1 K.64 
4 L LL PT 1 2 L.68 
4 L LL PT 2 3 G.46 
4 L LL PT 1 1 M.73 
4 L LL PT 2 2 M.75 
4 L LL PT 4 2 M.69 
4 L LL PT 2 2 M.70 
4 L LL PT 3 2 J.62 

Table D.7 - List of  attributes for the observations of  network number 50, with cluster identification. 

Cluster Type Form Country Code Size Class Turnover Class NACE Div 

1 L LL PT 5 3 Q.86 

2 L LL #N/D 99 99 Q.86 
2 L LL PT 5 4 Q.86 
2 L LL PT 6 4 Q.86 
2 L LL PT 4 3 Q.86 
2 L LL PT 5 3 Q.86 
2 L LL PT 2 2 Q.86 
2 L LL PT 2 2 Q.86 
2 L LL PT 5 3 Q.86 
2 L LL PT 2 2 Q.86 
2 L LL PT 4 3 Q.86 
2 L LL PT 4 2 Q.86 
2 L LL PT 2 2 Q.86 
2 L LL PT 2 2 Q.86 
2 L LL PT 4 3 Q.86 
2 L LL PT 2 2 Q.86 
2 L LL PT 5 3 Q.86 
2 L LL PT 3 2 Q.86 
2 L LL PT 2 2 Q.86 
2 L LL PT 3 2 M.75 
2 L LL PT 1 2 M.69 
2 L LL PT 1 2 Q.86 

3 L LL PT 1 1 K.64 

4 L LL PT 2 2 Q.86 
4 L LL PT 2 2 Q.86 
4 L LL PT 2 2 Q.86 
4 L LL PT 2 2 Q.86 
4 L LL PT 3 2 Q.86 
4 L LL PT 2 2 Q.86 
4 L LL PT 3 2 Q.86 
4 L LL PT 4 2 Q.86 
4 L LL PT 1 2 Q.86 
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Annex E 

Subgroup Discovery output tables 

Table E.1 - Subgroup discovery output for network number 25, with subgroup identification. 

Nodes ID Subgroup Target Class Description 

7 

1 

2 

NACE Div = A.01 

5 3 
4 2 
6 2 
11 2 
8 1 
9 1 
3 2 
10 1 
2 2 
1 3 

7 

2 

2 

NACE Div = A.01 
+ 

Type = L 

5 3 
4 2 
6 2 
11 2 
8 1 
9 1 
3 2 
10 1 
2 2 
1 3 

7 

3 

2 
Size Class = 2 

+ 
NACE Div = A.01 

6 2 
4 2 
3 2 
2 2 

7 

4 

2 Size Class = 2 
+ 

NACE Div = A.01 
+ 

Type = L 

6 2 
4 2 
3 2 
2 2 
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Table E.2 - Subgroup discovery output for network number 48, with cluster identification. 

Subgroup Nodes_ID Target Class Description 

1 

1 2 

Size Class=2 

2 2 

3 1 

4 2 

5 1 

6 1 

2 

1 2 

Size Class=2 
+ 

Country Code=PT 

2 2 

3 1 

4 2 

5 1 

6 1 

3 

7 1 

Size Class=2 
+ 

Country Code=PT 

8 4 

9 1 

1 2 

10 1 

11 2 

2 2 

3 1 

4 2 

12 2 

13 2 

14 4 

15 4 

16 1 

5 1 

17 1 

18 1 

6 1 

19 1 

20 1 
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Table E.3 - Subgroup discovery output for network number 51, with cluster identification. 

Nodes ID Subgroup Target Class Description 

14 

1 

2 

Country Code = PT 

13 4 
12 4 
10 4 
1 2 
21 2 
7 5 
16 2 
4 5 
6 2 
9 5 
3 3 
5 5 
15 4 
19 3 
20 1 
17 4 
2 5 
11 3 
8 4 
18 1 

14 

2 

2 

Size Class = 1 

12 4 
6 2 
20 1 
11 3 
18 1 

14 

3 

2 

Country Code = PT 
+ 

Size Class = 1 

12 4 
6 2 
20 1 
11 3 
18 1 
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Table E.4 - Subgroup discovery output for network number 32, with cluster identification. 

Nodes ID Subgroup Target Class Description 

5 

1 

1 

Size Class = 1 
+ 

Country Code = PT 

10 1 
7 2 
19 2 
11 2 
14 1 
18 1 
21 1 

5 

2 

1 

Country Code = PT 

17 1 
21 1 
10 1 
4 4 
7 2 
19 2 
11 2 
14 1 
18 1 
13 2 
2 1 
15 2 
3 4 
22 2 
6 2 
9 1 
8 3 
12 3 
20 1 

5 

3 

1 

Size Class = 1 

1 99 
10 1 
7 2 
19 2 
11 2 
14 1 
18 1 
16 2 
21 1 

5 
1 

1 NACE Div = K.64 
+ 

Country Code = PT 
18 1 
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Table E.5 - Subgroup discovery output for network number 21, with cluster identification. 

Nodes ID Subgroup Target Class Description 

1 

1 

5 

NACE Div = C.10 

2 5 
3 5 
4 1 
5 4 
6 5 
7 5 
8 5 

1 

2 

5 

NACE Div = C.10 
+ 

LForm = LL 

2 5 
3 5 
4 1 
5 4 
6 5 
7 5 
8 5 

7 
3 

5 
Country Code = ES 

8 5 

1 
4 

5 
Size Class = 5 

9 5 

 

Table E.6 - Subgroup discovery output for network number 41, with cluster identification. 

Nodes ID Subgroup Target Class Description 

4 
1 

1 
NACE Div = K.64 

3 1 

4 
2 

1 NACE Div = K.64 
+ 

Country Code = PT 
3 1 

3 

3 

1 

Size Class = 2 

1 2 
2 3 
5 2 
6 2 
7 2 

3 

4 

1 

Size Class = 2 
+  

Country Code = PT 

1 2 
2 3 
5 2 
6 2 
7 2 
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Table E.7 - Subgroup discovery output for network number 50, with cluster identification. 

Subgroup Nodes_ID Target Class Description 

1 

1 99 

NACE Div = Q.86 

2 2 
3 3 
4 4 
5 4 
6 2 
7 2 
8 2 
9 3 
10 3 
11 2 
12 2 
13 3 
14 2 
15 2 
16 2 
17 2 
18 3 
19 2 
20 2 
21 2 
22 2 
23 3 
24 2 
25 3 
26 2 
27 2 
28 2 
29 2 

 

 

 


