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Abstract

The synthesis of programs from linear types is a subject matter that has had a growing interest
in recent years, and, therefore, has seen strong developments. This work aims to study and
implement a program synthesis system from annotated types with computational resources, i.e.,
producing a code given a type and inductively synthesize well-typed programs. These type
systems are based on linear types, originated from linear logic, and are currently available in
programming languages such as Linear Haskell.
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Resumo

A síntese de programas a partir de tipos lineares é um assunto que tem tido um interesse crescente
nos últimos anos e, portanto, tem visto um forte desenvolvimento. Este trabalho visa estudar
e implementar um sistema de síntese de programas a partir de tipos anotados com recursos
computacionais, ou seja, produzir código partindo de um tipo e sintetizando indutivamente
programas bem tipados. Estes sistemas de tipos são baseados em tipos lineares, com origem na
lógica linear, e atualmente estão disponíveis em linguagens como o Linear Haskell.
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Chapter 1

Introduction

Program Synthesis is a subject whose purpose is to generate automatically programs from certain
specifications, in this case type information with resource annotations. This has been a subject
that has increased in popularity and, consequently, growing through studies carried out in recent
years. This thesis is intended to carry out a study and implementation of a system for Program
Synthesis from annotated types resorting to computational resources, that is, producing code in
a system that works as an inversion of Type Inference (Type Inhabitation), starting from a type
and inductively synthesizing well-typed subterms. Our first approach is based on Terms with
Graded Types [1].

1.1 Motivation

Formal type systems are extremely important nowadays in computer science research because,
with these systems, one can prove program properties in a sound setting. We studied type
systems based on linear types, which come from Linear Logic, some of them available in linear
languages such as Linear Haskell [2]. A function to be linear consumes its arguments exactly
once. So one important program property is the number of times an argument (resource) is
consumed. One solution is the use of graded modal types that use both linear and graded types,
i.e., the resources are annotated with a grade or multiplicity, which states the number of times
that the resource still can be used.

The main motivation for this dissertation is to check how difficult it would be to implement
these systems in Prolog following a Type Inhabitation approach [3, 4]. Another motivation is the
fact of enabling resources usage control, by having an initial bound on the number of times the
resource can be consumed, which may help remove several bugs.

1



2 Chapter 1. Introduction

1.2 Objectives

Through this work we want to study and implement a Program Synthesis system from annotated
types, using computational resources. The implementation is performed in the Prolog language.
Therefore, the main objective is to implement a Program Synthesis system for Terms with Graded
Types [1], and a Program Inference system for Graded Linear Types [1] and Linear Haskell [2].
Finally we want to create a new Program Synthesis system for Partial Typed Terms.

1.3 Contribution

In order to achieve all the objectives stated, our approach and contribution are the following:

• Do a review study for the λ-calculus and simple types. The intention is to gain knowledge
with the concepts involved in λ-calculus, to be able to develop this work.

• Study the simple type systems, to comprehend the structure and language of a system
à la Curry and a system à la Church, and their main differences. The study reviews the
type problems, like Type Inhabitation, Type Inference, and Type Checking, to know their
differences and where do they fit, in which system.

• Study and describe the main concepts of the type system Graded Linear Types, and
implement it. This is essential to understand how type systems can provide an infrastructure
for the Program Syntheses systems. This system focus on the linearity of the assumptions,
which are annotated with grades.

• Describe and implement a subset of Linear Haskell (Haskell for linear types). The extension
focus on the linearity of the function arrow, which is annotated with a multiplicity, which
is similar to the grade.

• Study and implement the Program Synthesis system, the system of Terms with Graded
Types. This is the main contribution of this dissertation. It makes use of the same syntax
language of the system of Graded Linear Types.

• Describe and implement the rules based on Type Inhabitation, for the new notion of Partial
Typed Terms, and fill a special term associated with a well typed type.

1.4 Organization

This present dissertation is organized into five chapters, including this introduction aimed at
contextualizing the reader to the present topic of Synthesized Programs from linear types, and
the approach that was made. Chapter 2 begins by reviewing the main concepts of the λ-calculus
and its simple types, by presenting their definitions and some examples. Chapter 3 provides a
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description of two type systems: the Graded Linear Types system, and the Linear Haskell system.
There they are explained in more detail to better understand their mechanism and inference
rules. Chapter 4 is about Program Synthesis, which is the main focus of this dissertation. It
begins by describing the Terms with Graded Types system, and his inference rules and respective
code implementation. Next, it explains the new notion of Typed Partial Terms and why is used,
and describe its implementation rules. Finally, in Chapter 5 the conclusions are provided with
future prospects.





Chapter 2

Lambda-calculus and Simple Types

This chapter is an approach to the λ-calculus and its simple types, following the theoretical
research in [5]. Here, the basis, which guides the work performed through the dissertation, is
explained in more detail by introducing some properties and definitions of the λ-calculus, and its
simple types theory.

2.1 Lambda-calculus

The λ-calculus is a formal system created by the mathematician Alonzo Church [6]. Through
this formal system of mathematical logic, Church defined the computable functions that would
serve as a model for functional programming languages (e.g. Haskell, ML).

The terms of λ-calculus are constructed from an infinite alphabet of type variables and denotes
functions abstraction and functions application. Those functions can be applied to any arguments,
including the functions themselves, making the λ-calculus a type-free theory.

Definition 2.1.1 (Syntax). There are three forms of defining the terms in λ-calculus:

x (Variable)
(λx.t1) (Abstraction)

(t1t2) (Application)

These rules define a λ-term as a variable x, an abstraction function (λx.t1), with a parameter x

and a body t1, and an application function (t1t2), that represents a t1 applied to an argument t2.
Note that x, t1, and t2 are λ-terms.

Abstractions are right-associative, and applications are left-associative, which allows the following
abbreviations:

5



6 Chapter 2. Lambda-calculus and Simple Types

(λx1 . . . xn.t) ≡ (λx1.(. . . (λxn.t)))
(t1t2 . . . tn) ≡ (. . . (t1t2) . . . tn)

The variables of a term can be classified as free variables or bound variables.

Definition 2.1.2 (Free and Bound Variables). If an occurrence of a variable x in a term t

appears in a subterm of the form λx.t, then it is a bound occurrence. Otherwise, it is a free
occurrence.

Definition 2.1.3. The set of free variables of t, fv(t), is defined as follows:

fv(x) = {x}
fv(λx.t) = fv(t)\{x}
fv(t1t2) = fv(t1) ∪ fv(t2)

Definition 2.1.4. The set of bound variables of t, bv(t), is defined as follows:

bv(x) = ∅
bv(λx.t) = bv(t) ∪ {x}
bv(t1t2) = bv(t1) ∪ bv(t2)

Example 2.1.1. The same variable can occur in two ways, bound and free:

(λxy.xzy)y

In the expression above, the first occurrence of y, which appears in the body of the subterm
λxy.xzy, is bound to λy, whereas the second occurrence of y is free.

After the classification of free and bound variables, the definition of the substitution function
arises.

Definition 2.1.5 (Substitution). The result of the substitution of free occurrences x in t by u,
denoted by t[u/x], is defined as follows:

y[u/x] =

u if y ≡ x

y otherwise

(λy.t)[u/x] =

(λy.t) if y ≡ x

(λy.t[u/x]) otherwise
(t1t2)[u/x] = (t1[u/x]t2[u/x])

Definition 2.1.6 (β-conversion). The main computational rule of λ-calculus is β-conversion.
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β : (λx.t1)t2︸ ︷︷ ︸
β−redex

→β t1[t2/x]︸ ︷︷ ︸
β−contractum

The expression (λx.t1)t2, on the left side of the rule, is called a β-redex (reducible expression),
and the t1[t2/x] is its β-contractum.

A term t1 reduces to t2 if t2 is obtained by replacing a redex in t1 with its contractum. Let →
and →∗ be binary relations, then:

• t1 reduces to t2 in one step, and it is written like t1 → t2.

• t1 reduces to t2 in many steps, and it is written like t1 →∗ t2.

Some care is needed with substitution, as the following example illustrates.

Example 2.1.2. Considering the λ-term λxy.x, for any terms t1 and t2, the result should be:

(λxy.x)t1t2 →∗ t1

However, if (t1 ≡ y), the expression will be:

(λxy.x)yt2 →∗ t2

In this situation, when performing the substitution in the λ-term, the free occurrence of y in t1

is captured by a bound occurrence of y, hence the variable capture problem arises. In order to
avoid this, the substitution in a λ-term should only be made if the bound occurrences of the
λ-term are different from the free occurrences of t1. Thus, if there are variables occurrences in
common, one needs to perform α-conversion.

Definition 2.1.7 (α-conversion). The following rule is called α-conversion,

λx.t →α λy.t[y/x],

provided that y does not occur free in t.

Example 2.1.3.
(λx.xw)x →α (λy.yw)x

To avoid the issue of variable capture, the convention of Barendregt [7] will be adopted. This
convention will be followed, as it assumes that the sets of free and bound variables are always
distinct in any context.



8 Chapter 2. Lambda-calculus and Simple Types

Definition 2.1.8 (η-conversion). The notion of η-conversion is given by the following rule:

λx.tx →η t, with x /∈ fv(t)

Definition 2.1.9 (Normalization). A λ-term is in normal form if it does not contain any redex
as a subterm. A term is normalizable if it reaches a normal form.

A λ-term will reach normal form if all its subterms that are not in normal form are erased
by reductions. A strategy that ensures that a normalizable term reaches its normal form is a
normalizing strategy.

Definition 2.1.10. The reduction strategy in normal order, denoted by FL, is defined as follows:

FL =

t1 if t1 is in normal form.

t2 if t1 →β t2, reducing the leftmost redex in t1.

This reduction strategy is normalizable, i.e., if the term has a normal form, then, when using
normal order reduction, it will reach the normal form.

A term may or may not have, and hence, attain a normal form, which is analogous to the
execution of a program, for example, which may either reach its end, returning a result, or enter
a loop.

2.2 Simple Types

In the previous section, the λ-calculus syntax was presented, along with different notions of
reduction. Now, a simple typed formulation, the simple types of λ-calculus, and the Type
Inhabitation will be introduced.

For the simple typed formulation, are referred two systems and their properties: the system à la
Curry and the system à la Church.

2.2.1 Types à la Curry

The type system à la Curry assigns elements, of a given set T of types, to the type-free λ-terms.

Definition 2.2.1. Given an infinite set of type variables V, denoted by X and Y , the set T, of
types, is inductively defined as follows:

X, Y ∈ V ⇒ X, Y ∈ T
A, B ∈ T ⇒ (A → B) ∈ T
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Notation: The arrow type is right-associative, that is: A1 → A2 → · · · → An = (A1 → (A2 →
· · · → (An−1 → An) . . . ))

Definition 2.2.2. Let t be a λ-term, x a term variable in V, and A a type in T, then:

• A statement or a type-assignment is of the form t : A, that is t ∈ A. It has a predicate that
is the type A and a subject, the λ-term t.

• A declaration or an assumption is a statement in which the subject is a term variable, i.e.,
x : A.

• A type-context or basis is a set of declarations {x1 : A1, . . . , xn : An} with distinct variables
as subjects. Γ can be seen as a partial function, such that dom(Γ) = {x1, . . . , xn} and
Γ(xi) = Ai, where 1 ≤ i ≤ n.

• A judgment is of the form Γ ⊢Curry t : A, where Γ is a set of assumptions, and it is
pronounced like "t has type A given the basis Γ".

Definition 2.2.3 (The simple type system à la Curry). In Curry, a statement t : A given a basis
Γ can be produced, if Γ ⊢Curry t : A is obtained from the following inference rules:

(x : A) ∈ Γ ⇒ Γ ⊢Curry x : A (Axiom)
Γ, x : A ⊢Curry t : B ⇒ Γ ⊢Curry (λx.t) : (A → B) (Abs)
Γ ⊢Curry t1 : (A → B), Γ ⊢Curry t2 : A ⇒ Γ ⊢Curry (t1t2) : B (App)

Notation: The notation Γ, x : A represents the set Γ ∪ {x : A}, where x does not appear in Γ.

Usually, those are represented through inference derivation rules:

(Axiom)Γ, x : A ⊢Curry x : A
Γ, x : A ⊢Curry t : B

(Abs)Γ ⊢Curry (λx.t) : (A → B)
Γ ⊢Curry t1 : (A → B) Γ ⊢Curry t2 : A

(App)Γ ⊢Curry (t1t2) : B

Example 2.2.1. For instance, given the λ-term λxyz.y(λu.u), in which Γ = {x : X, y : ((Y1 →
Y1) → Y2), z : Z}, the Curry simple type system produces the following derivation:

Γ ⊢Curry y : ((Y1 → Y1) → Y2)
Γ ∪ {u : Y1} ⊢Curry u : Y1 (Abs)Γ ⊢Curry (λu.u) : Y1 → Y1 (App)

{x : X, y : (Y1 → Y1) → Y2, z : Z} ⊢Curry y(λu.u) : Y2 (Abs)
{x : X, y : (Y1 → Y1) → Y2} ⊢Curry λz.y(λu.u) : Z → Y2 (Abs)

{x : X} ⊢Curry λyz.y(λu.u) : ((Y1 → Y1) → Y2) → Z → Y2 (Abs)
⊢Curry λxyz.y(λu.u) : X → ((Y1 → Y1) → Y2) → Z → Y2

Definition 2.2.4. Consider a basis Γ = {x1 : A1, . . . , xn : An}, then:
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• If V0 is a set of variables, then Γ ↾ V0 = {x : Γ(x) | x ∈ V0}.

• If A, B ∈ T, the result of substituting, by B, all occurrences of variable X in A, is denoted
by A[B/X]. Stretching this substitution notion to a basis, it follows that:

Γ[B/X] = {x1 : A1[B/X], . . . , xn : An[B/X]}, if Γ = {x1 : A1, . . . , xn : An}.

Now, some properties of λ →-Curry are presented. The details and proofs can be found in [5].

These first lemmas analyze the importance of a basis to infer a type assignment.

Lemma 2.2.1 (Basis Lemmas). Let Γ be a basis:

• If Γ′ is a basis, such that Γ ⊆ Γ′, then Γ ⊢Curry t : A ⇒ Γ′ ⊢Curry t : A.

• If Γ ⊢Curry t : A, then fv(t) ⊆ dom(Γ).

• If Γ ⊢Curry t : A, then Γ ↾ fv(t) ⊢Curry t : A.

This lemma examines how terms of different forms get typed.

Lemma 2.2.2 (Generation Lemma).

• If Γ ⊢Curry x : A, then (x : A) ∈ Γ.

• If Γ ⊢Curry λx.t : C, then ∃ A, B [Γ ∪ {x : A} ⊢Curry t : B and C ≡ (A → B)].

• If Γ ⊢Curry t1t2 : B, then ∃ A [Γ ⊢Curry t1 : (A → B) and Γ ⊢Curry t2 : A].

The following lemmas hold for substitution.

Lemma 2.2.3 (Substitution Lemmas).

• If Γ ⊢Curry t : A, then Γ[B/X] ⊢Curry t : A[B/X].

• If Γ ∪ {x : A} ⊢Curry t1 : B and Γ ⊢Curry t2 : A, then Γ ⊢Curry t1[t2/x] : B.

Proposition 2.2.1 (Typability of subterms). Let t2 be a subterm of t1, so if Γ ⊢Curry t1 : A

then ∃ Γ′, A′: Γ′ ⊢Curry t2 : A′, that is, if t1 has a type, for some Γ and A, then all the subterms
of t1 also have a type.

Theorem 2.2.1 (Subject reduction theorem). Suppose that t1 is a λ-term and t1 →∗
β t2, then

Γ ⊢Curry t1 : A ⇒ Γ ⊢Curry t2 : A
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2.2.2 Types à la Church

Both the systems à la Curry and à la Church assign elements, of a given set T of types, to the
type-free λ-terms, however, in addition to that, in the type system à la Church, types are also
assigned explicitly to type annotated terms.

Example 2.2.2. For example, in a type system à la Curry, the following statement is achieved:
⊢Curry (λx.x) : (A → A), whereas in a type system à la Church, it would be: ⊢Church (λx : A.x) :
(A → A).

Definition 2.2.5. Given the set T of types and the set of term variables V, denoted by x, the
pseudo-terms ΛT, also called type annotated λ-terms, denoted by t1, t2, are defined as follow:

t ∈ ΛT, A ∈ T := x | t1t2 | λx : A.t

It should be noted that the syntactic abbreviations, which are used in the λ-calculus, are also
used in the typed λ-calculus.

Definition 2.2.6 (The simple type system à la Church). In Church, a statement t : A is derivable
from the basis Γ, notated as Γ ⊢Church t : A, if it can be produced from the following rules:

(x : A) ∈ Γ ⇒ Γ ⊢Church x : A (Axiom)
Γ, x : A ⊢Church t : B ⇒ Γ ⊢Church (λx : A.t) : (A → B) (Abstraction)
Γ ⊢Church t1 : (A → B), Γ ⊢Church t2 : A ⇒ Γ ⊢Church (t1t2) : B (Application)

Usually, those are represented through inference derivation rules:

(Axiom)Γ, x : A ⊢Church x : A
Γ, x : A ⊢Church t : B (Abs)Γ ⊢Church (λx : A.t) : (A → B)

Γ ⊢Church t1 : (A → B) Γ ⊢Church t2 : A (App)Γ ⊢Church (t1t2) : B

Example 2.2.3. For instance, given the λ-term (λx : (X → X)(λy : Y.y))(λx : X.x), the Church
simple type system produces the following derivation:

{x : X → X, y : Y } ⊢Church y : Y (Abs)
{x : X → X} ⊢Church (λy : Y.y) : (Y → Y ) (Abs)

⊢Church (λx : (X → X)(λy : Y.y)) : (X → X) → (Y → Y )
{x : X} ⊢Church x : X (Abs)

⊢Church (λx : X.x) : (X → X) (App)
⊢Church (λx : (X → X)(λy : Y.y))(λx : X.x) : Y → Y

Definition 2.2.7. On ΛT, the binary relations one-step β-conversion, denoted by →β, and
many-steps β-conversion, denoted by →∗

β, are generated by the contraction rule:

(λx : A.t1)t2 →β t1[t2/x].
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Example 2.2.4.
(λx : X.λy : Y.x)(λz : Z.zz) →β (λy : Y.λz : Z.zz)

Now, some properties of λ →-Church are presented. The details and proofs can be found in [5].

These first lemmas analyze the importance of a basis to infer a type assignment.

Lemma 2.2.4 (Basis Lemmas). Let Γ be a basis:

• If Γ′ is a basis, such that Γ ⊆ Γ′, then Γ ⊢Church t : A ⇒ Γ′ ⊢Church t : A.

• If Γ ⊢Church t : A, then fv(t) ⊆ dom(Γ).

• If Γ ⊢Church t : A, then Γ ↾ fv(t) ⊢Church t : A.

This lemma examine how terms of different forms get typed.

Lemma 2.2.5 (Generation Lemma).

• If Γ ⊢Church x : A, then (x : A) ∈ Γ.

• If Γ ⊢Church λx : A.t : C, then ∃ B [Γ ∪ {x : A} ⊢Church t : B and C = (A → B)].

• If Γ ⊢Church t1t2 : B, then ∃ A [Γ ⊢Church t1 : (A → B) and Γ ⊢Church t2 : A].

The following lemmas hold for substitution.

Lemma 2.2.6 (Substitution Lemmas).

• If Γ ⊢Church t : A, then Γ[B/X] ⊢Church t[B/X] : A[B/X].

• If Γ ∪ {x : A} ⊢Church t1 : B and Γ ⊢Church t2 : A, then Γ ⊢Church t1[t2/x] : B.

Proposition 2.2.2 (Typability of subterms). Let t2 be a subterm of t1, so if Γ ⊢Church t1 : A

then ∃ Γ′, A′: Γ′ ⊢Church t2 : A′, that is, if t1 has a type, for some Γ and A, then all the subterms
of t1 also have a type.

Theorem 2.2.2 (Subject reduction theorem). Suppose that t1 is a λ-term and t1 →∗
β t2, then:

Γ ⊢Church t1 : A ⇒ Γ ⊢Church t2 : A.

In these next lemmas, the equivalence between different types assigned to the same λ-term can
be witnessed.

Lemma 2.2.7 (Uniqueness of type lemmas).
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• If Γ ⊢Church t : A and Γ ⊢Church t : A′ then A ≡ A′.

• If Γ ⊢Church t1 : A, Γ ⊢Church t2 : A′, and t1 =β t2 then A ≡ A′.

Note: When it is clear from the context which type system is used, the annotations ⊢Curry and
⊢Church are omitted, therefore, only the ⊢ will be used.

Now that the definition of important notions of the systems à la Curry and à la Church is finished,
several notions of Type Inhabitaion will be introduced, in order to ease the interpretation of the
following chapters.

2.2.3 Type Inhabitation

When it comes to type systems, there are three typical main questions:

• Given a closed term t and a type A, does t have type A, denoted by ⊢ t : A?.

• Given a closed term t, is there a type A, such that ⊢ t : A, denoted by ⊢ t :?.

• Given type A, is there a closed term t, such that ⊢ t : A, denoted by ⊢? : A.

These problems are respectively known as: Type Checking, Type Inference, and Type Inhabitation.

The solutions to a Type Inhabitation problem ⊢? : A, are called the type inhabitants of type A.
This section follows the analysis found in [3] and [4].

Definition 2.2.8. Given a β-normal inhabitant t of type A, there is one type-assignment-
deduction that assigns the type A to the λ-term t. In the deduction of the form ⊢ t : A, for each
λ-subterm and variable, it is assigned a type, and the result of this process, during the deduction,
is called typed-term and denoted by tA.

mi tw earphones lite

Example 2.2.5. Given a λ-term t = λxyz.zy, it follows that:

Γ ⊢Curry z : B → C Γ ⊢Curry y : B
(App)Γ = {x : A, y : B, z : B → C} ⊢Curry zy : C
(Abs)

{x : A, y : B} ⊢Curry λz.zy : (B → C) → C
(Abs)

{x : A} ⊢Curry λyz.zy : B → (B → C) → C
(Abs)

⊢Curry λxyz.zy : A → B → (B → C) → C

Let X = A → B → (B → C) → C, for the λ-term t = λxyz.zy, then the type inhabitant is:

tX = (λxAyBzB→C .(zB→CyB)C)A→B→(B→C)→C



14 Chapter 2. Lambda-calculus and Simple Types

Note that Type Inhabitation is an inversion of Type Inference, such that, it starts from a type
and synthesizes well-typed subterms.

This chapter covers the background of type-directed program synthesis, which is the main focus
of this dissertation. It reviews the main concepts of λ-calculus so that it can be interpreted, as
well its simple types, with a focus on the two different systems à la Curry and à la Church, and
on the analysis of Type Inhabitation.



Chapter 3

Linear Type Systems

Type Inhabitation is the basis for program synthesis, where the goal is to extract code (terms)
from specifications (types). There is a lot of work in Type Inhabitation for the λ-calculus
[4, 8–11], which corresponds to proof search work for intuitionistic logic, by the Curry-Howard
isomorphism [12]. For type systems that deal explicitly with resources, the corresponding logic,
through the Curry-Howard isomorphism, is the logic of resources, known as linear logic [13].

This chapter presents two type systems related by the Curry-Howard isomorphism with linear
logic. Propositions in linear logic are resources that must be used exactly once. Non-linear
propositions, propositions that can be used more than once, can be denoted using the exponential
operator !, also called bang.

There are several core-type systems based on linear logic explained in [14–17]. Here, the focus is
on the Graded Linear Types [1] and Linear Haskell [2].

In the following sections, it will be formally introduced the type systems and a top-level
implementation in Prolog. The Prolog language was chosen because, in some cases, type
derivation is non deterministic, and the Prolog backtracking search engine fits naturally in this
framework.

3.1 Graded Linear Types

Graded Linear λ-calculus follows the system à la Curry and it is a core linear functional language,
where assumptions are annotated with a grade. These grades are integers describing the use of
variables. In this case, they count the number of times the variable is used. For instance, the
assumption x : [A]3 means that x can be used, with type A, three times.

Definition 3.1.1 (Grammar of Types). The grammar of types, denoted by A, B, in graded
linear types, is defined as follows:

15
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A, B = A ⊸ B | A ⊗ B | A ⊕ B | 1 | □rA

This grammar is constituted by: linear functions, denoted by A ⊸ B, that, when consuming A,
produce B; multiplicative conjunction, characterized by A ⊗ B and additive disjunction, denoted
by A ⊕ B, the first one represents both A and B types, and the second represents a choice,
i.e., it has to choose either A or B; an unit 1, representing the unity; and the graded modality,
designated by □rA, which represents an indexed set of type operators, where r ranges over the
elements of an algebra structure, parameterizing the calculus.

Definition 3.1.2 (Grammar of Terms). Given a term, denoted by t, the grammar of terms is
defined as follows:

t = x (Variable)
| λx.t (Abstraction)
| t1t2 (Application)
| [t] (Construct)
| let [x] = t1 in t2 (Let)
| ⟨t1, t2⟩ (Pair Construct)
| let ⟨x1, x2⟩ = t1 in t2 (Let Pair)
| () (Empty)
| let () = t1 in t2 (Let Empty)
| inl t (Inl)
| inr t (Inr)
| case t1 of inl x1 → t1|inr x2 → t3 (Case)

The first three lines define the λ-calculus, as usual. The Construct syntax constructs a term
typed with a graded modal type □rA, by raising a term t to the graded modality. The Let
[x] = t1 in t2 eliminates a term typed with a graded modal value t1, binding a graded variable x

in the scope of t2. The Pair Construct syntax constructs a pair, whereas the Let Pair syntax
destructs the pair. As it is a linear calculus, both components of the pair must be used. The
Empty syntax is used for the inhabitant of multiplicative unit 1, and the Let Empty syntax
destructs the inhabitant of multiplicative unit 1. The Inl and Inr syntaxes tag the elements
to be able to indicate where they come from. The Case syntax is applied in the sum types to
identify the constructors.

Definition 3.1.3 (Grammar of Contexts). Contexts Γ are defined as follows:

Γ = ∅ | Γ, x : A | Γ, x : [A]r

The contexts can be empty ∅, or sets of assumptions that can be linear, denoted by A, used
exactly once, or intuitionistic (graded), denoted by [A], used any number of times. However, the
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intuitionistic assumption is usually denoted by [A]r, to specify the number of times (r) it could
be used.

As previously mentioned, Γ, x : A means the union of contexts, denoted by Γ ⋃
{x : A}, where x

does not appear in Γ.

There are many operations on contexts to capture the non-linear data flow grading.

Definition 3.1.4 (Context Addition). Given Γ1 and Γ2, the context addition is defined by
ordered cases matching inductively on the structure of Γ2, as follows:

Γ1 + Γ2 =


Γ1 Γ2 = ∅

((Γ′
1, Γ′′

1) + Γ′
2), x : [A](r+s) Γ2 = Γ′

2, x : [A]s ∧ Γ1 = Γ′
1, x : [A]r, Γ′′

1

(Γ1 + Γ′
2), x : A Γ2 = Γ′

2, x : A ∧ x : A /∈ Γ1

The context addition, denoted by Γ1 + Γ2, combines contexts that come from typing multiple
subterms in a rule, and it is undefined if Γ1 and Γ2 overlap on their linear assumptions.

Example 3.1.1. For instance, consider a context Γ1 = {x : A} and a context Γ2 = {x : B},
then the context addition between Γ1 and Γ2 is undefined since it has the same linear variable
associated with different types. Nevertheless, if Γ1 = {x : [A]1, y : [B]1} and Γ2 = {x : [A]3}, the
result of this context addition will be {x : [A](1+3), y : [B]1}.

The context addition Γ1 +Γ2 will be used in App, Let □, Let 1, Pair, Let Pair and Case inference
rules.

Definition 3.1.5 (Partial great-lower bound of contexts). Assuming that there is an order
relation ⊑ defined on the set of grades, where r ⊔ s is the great-lower bound of r and s in r ⊑ s,
then the great-lower bound of contexts, denoted by Γ1 ⊔ Γ2, is defined as follows:

Γ1 ⊔ Γ2 =



∅ Γ1 = ∅ ∧ Γ2 = ∅

(∅ ⊔ Γ′
2), x : [A]0⊔s Γ1 = ∅ ∧ Γ2 = Γ′

2, x : [A]s
(Γ′

1 ⊔ (Γ′
2, Γ′′

2)), x : A Γ1 = Γ′
1, x : A ∧ Γ2 = Γ′

2, x : A, Γ′′
2

(Γ′
1 ⊔ (Γ′

2, Γ′′
2)), x : [A]r⊔s Γ1 = Γ′

1, x : [A]r ∧ Γ2 = Γ′
2, x : [A]s, Γ′′

2

Example 3.1.2. For instance, consider a context Γ1 = {x : [A]2, y : [B]3, z : [C]5} and a
context Γ2 = {x : [A]4, y : [B]1}, then the great-lower bound of the two contexts Γ1 and Γ2 is
{x : [A]4, y : [B]3, z : [C]5}.

The great-lower bound of two contexts Γ1 ⊔ Γ2 will be used in Case inference rule.

Definition 3.1.6 (Scalar context multiplication). Given a grade r and a context, the scalar
context multiplication is defined as follows:
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r ∗ ∅ = ∅ r ∗ (Γ, x : [A]s) = (r ∗ Γ), x : [A](r∗s)

Example 3.1.3. For instance, consider a grade r = 3 and a context Γ = {x : [A]1, y : [B]2},
then the scalar context multiplication is equal to {x : [A](3∗1), y : [B](3∗2)}.

The scalar context multiplication will be used in the Pr inference rule, which is applied to
promote the grade r into the assumptions, through the scalar context multiplication between the
grade r and the ambient Γ, that must be graded, [Γ].

Definition 3.1.7 (Typing rules of the Graded Linear λ-calculus). The typing rules are defined
in Figure 3.1.

(Var)
x : A ⊢ x : A

Γ, x : A ⊢ t : B (Abs)Γ ⊢ λx.t : A ⊸ B

Γ1 ⊢ t1 : A ⊸ B Γ2 ⊢ t2 : A (App)Γ1 + Γ2 ⊢ t1t2 : B

Γ ⊢ t : A (Weak)Γ, [∆]0 ⊢ t : A
Γ, x : A ⊢ t : B (Der)Γ, x : [A]1 ⊢ t : B

[Γ] ⊢ t : A (Pr)
r ∗ [Γ] ⊢ [t] : □rA

Γ1 ⊢ t1 : □rA Γ2, x : [A]r ⊢ t2 : B (Let □)Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B

(1)
∅ ⊢ () : 1

Γ1 ⊢ t1 : 1 Γ2 ⊢ t2 : A (Let 1)Γ1 + Γ2 ⊢ let () = t1 in t2 : A

Γ1 ⊢ t1 : A Γ2 ⊢ t2 : B (Pair)Γ1 + Γ2 ⊢ ⟨t1, t2⟩ : A ⊗ B

Γ1 ⊢ t1 : A ⊗ B Γ2, x1 : A, x2 : B ⊢ t2 : C (Let Pair)Γ1 + Γ2 ⊢ let ⟨x1, x2⟩ = t1 in t2 : C

Γ, x : [A]r, Γ′ ⊢ t : A r ⊑ s (Approx)
Γ, x : [A]s, Γ′ ⊢ t : A

Γ ⊢ t : A (Inl)Γ ⊢ inl t : A ⊕ B
Γ ⊢ t : B (Inr)Γ ⊢ inr t : A ⊕ B

Γ1 ⊢ t1 : A ⊕ B Γ2, x1 : A ⊢ t2 : C Γ3, x2 : B ⊢ t3 : C (Case)Γ1 + (Γ2 ⊔ Γ3) ⊢ case t1 of inl x1 → t2| inr x2 → t3 : C

Figure 3.1: Typing rules of the Graded Linear Types.

In the typing rules of graded linear λ-calculus, the first three rules type the linear λ-calculus, as
usual. The Weak rule expresses that assumptions graded by 0 may be discarded. For instance, the
[∆]0 denotes a context with a set of only graded assumptions, graded by 0. The Der (Dereliction)
grants that the linear assumptions, denoted by x : A, can be converted on graded assumptions
x : [A]1, with grade 1.

The Pr (Promotion) rule promotes the graded modality into the assumption, by applying the
scalar context multiplication between the graded context [Γ] and the grade r, making assumptions
usable r times, and the Let □ rule removes the graded modal value □rA and converts it into a
graded assumption x : [A]r. The 1 rule is used for the inhabitant of multiplicative unit 1, and
the Let 1 rule destructs the inhabitant of multiplicative unit 1. The Pair rule adds the contexts
that type the subterms of the pair ⟨t1, t2⟩, and the Let Pair rule types the pair elimination by
binding the pair component to linear variables in the body of the term t2.
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The Approx (Approximation) rule converts a grade s in a grade r if r approximates s (r ⊑ s).
The Inl and Inr rules tag where the elements came from for the sum type A ⊕ B. The Case rule
removes the sums by inducing the great-lower bound of the contexts to type the two branches of
the case.

Example 3.1.4. Given the context Γ = {y : A}, and the term let[x] = [y] in x : [A]3, the
typing rules of the graded linear λ-calculus produces the following derivation:

{y : A} ⊢ y : A (Der)
{y : [A]1} ⊢ y : [A]1 (Pr)3 ∗ {y : [A]1} ⊢ [y] : □3A

{x : A} ⊢ x : A (Der)
{x : [A]1} ⊢ x : [A]1 1 ⊑ 2 (Approx)
{x : [A]2} ⊢ x : [A]2 2 ⊑ 3 (Approx)

{x : [A]3} ⊢ x : [A]3 (Let □)
{y : [A]3} ⊢ let[x] = [y] in x : [A]3

3.1.1 Implementation

In this sub-section, the top-level predicates of the implementation in Prolog of some of the previous
typing rules algorithm are presented. The complete code implementation of the implemented
rules can be consulted in Appendix A.

Type Completion Rule

1 typeC(In_Context,T,A,Out_Context):-

2 type(In_Context,T,A),

3 completion(In_Context,T,Out_Context).

Listing 3.1: Type Completion Rule of the Graded Linear Types.

In Type Completion rule, the code implementation (Listing 3.1) receives an input context
In_Context and a term T , and must return the value of the type A and the value of the output
context Out_Context. Therefore, it starts to call the predicate type, with the input context
In_Context, the term T and type A, then, after receiving the output of this predicate (the
value of type A), it calls the predicate completion (Listing 3.6 and Listing 3.7) with the input
context In_Context, the term T , and the output context Out_Context, to receive the value of
the output context.

Var Rule

The Var rule, represented in Figure 3.1, is implemented in Listing 3.2. It receives an input context
In_Context and a Variable term X, and must return the value of type A. For that to happen,
the first predicate atom checks if the X is a term variable, and the second predicate selects the
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1 type(In_Context,X,A) :-

2 atom(X),

3 select((X,A),In_Context,[]).

Listing 3.2: Var Rule of the Graded Linear Types.

linear assumption (X, A) of the input context In_Context, returning an empty context, and it
is through this selection that it extracts the value of type A that was in the input context.

Note: The select predicate, whenever it selects an assumption from some context, removes it
from that context and creates a new context equal to the context from which the assumption
was removed.

Example 3.1.5. Given the input typeC([(x,grdAssump(M,a))],x,A,Out_Context),
the output produced is composed by the graded assumption type A=grdAssump(M,a) and the
output context Out_Context=[(x,grdAssump(M,a))].

Abs Rule

1 type(In_Context,lam(X,T),impl(A,B)) :-

2 type([(X,A)|In_Context],T,B).

Listing 3.3: Abs Rule of the Graded Linear Types.

The Abs rule, shown in Figure 3.1, is implemented in Listing 3.3. It receives an input context
In_Context and an Abstraction term lam(X, T ), and must return the value of type impl(A, B).
Thus, the predicate type is called with the input context In_Context, extended with a fresh
linear assumption (X, A), the term T , and the type B, to receive the value of type B.

Example 3.1.6. Given the input
typeC([],lam(x,lam(y,app(y,x))),A,Out_Context), the output produced is com-
posed by the type A=impl(A1,impl(impl(A1,B1),B1)) and the output context
Out_Context=[].

App Rule

The App rule, shown in Figure 3.1, is implemented in Listing 3.4. It receives an input context
In_Context and an Application term app(T1, T2), and must return the value of type B. For
that to happen, the first predicate type has as arguments the new context In_Context1, as input
context, the term T 1, and the type impl(A, B), whose value must be returned. In the third line,
the predicate type has the new context In_Context2, as input context, the term T2, and the
type A, whose value must be returned. Finally, it applies the context addition predicate cntxtAdd
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1 type(In_Context,app(T1,T2),B) :-

2 type(In_Context1,T1,impl(A,B)),

3 type(In_Context2,T2,A),

4 cntxtAdd(In_Context1,In_Context2,In_Context).

Listing 3.4: App Rule of the Graded Linear Types.

between the two input contexts In_Context1 and In_Context2, and returns the result in the
input context In_Context.

Example 3.1.7. Given the input
typeC([C,(x,impl(a,b))],app(x,y),A,Out_Context), the output produced is com-
posed by the part of the input context C=(y,a), the type A=b, and the output context
Out_Context=[(y,a),(x,impl(a,b))].

Let □ Rule

1 type(In_Context,let(grdTerm(X),T1,T2),B) :-

2 type(In_Context1,T1,grdType(R,A)),

3 type(In_Context2,T2,B),

4 select((X,grdAssump(R,A)),In_Context2,In_Context3),

5 cntxtAdd(In_Context1,In_Context2,In_Context).

Listing 3.5: Let Rule of the Graded Linear Types.

The Let □ rule, shown in Figure 3.1, is implemented in Listing 3.5. It receives an input context
In_Context and a Let term let(grdTerm(X), T1, T2), and must return the value of type B. For
that to happen, the first predicate type has as arguments the new context In_context1, as input
context, the term T1, and the type grdType(R, A), whose value must be returned. In the third
line, the type has the new context In_Context2, as input context, the term T 2, and the type B,
whose value must be returned. Then, it selects the graded assumption (X, grdAssump(R, A)) of
the input context In_Context2 and returns the rest of the input context in the new context
In_Context3. Finally, it applies the context addition predicate, cntxtAdd, between the two
input contexts In_Context1 and In_Context2, and returns the result in the input context
In_Context.

Example 3.1.8. Given the input
typeC(C,let(grdTerm(x),y,x),A,Out_Context), the output produced is composed by
the input context C=Out_Context, the graded assumption type A=grdAssump(M1, A1), and
the output context Out_Context=[(x,grdAssump(M1,A1)),(y,grdType(M1,A1))].
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1 completion(In_Context,lam(X,T),Out_Context1):-

2 !,

3 completion([X|In_Context],T,Out_Context),

4 select(X,Out_Context,Out_Context1).

Listing 3.6: Completion1 Rule of the Graded Linear Types.

Completion Rule

The Completion rule has three ways to proceed. The first way of the procedure is implemented
in Listing 3.6. It receives an input context In_Context and an Abstraction term lam(X, T ),
and must return the value of the output context Out_Context1. For that to happen, if the term
received is of the form lam(X, T ), then calls the cut !, which prevents backtracking and finding
extra solutions, when finishing this rule. Next, in the third line, the predicate completion is
called with the input context In_Context, extended with a fresh term X, the term T , and the
output context Out_Context, whose value must be returned. Then, it selects the term X of the
output context Out_Context and records the remnant in the output context Out_Context1.

Example 3.1.9. Given the input
completion([(x,impl(a,b)),(y,b)],lam(x,lam(y,x)),Out_Context), the output
produced is composed by the output context Out_Context=[(x,impl(a,b)),(y,b)].

1 completion(In_Context,app(T,U),Out_Context2):-

2 !,

3 completion(In_Context,T,Out_Context1),

4 completion(In_Context,U,Out_Context2).

5 completion(In_Context,X,In_Context).

Listing 3.7: Completion2 Rule of the Graded Linear Types.

When the previous rule fails, before reaching the cut !, it then passes to the next two implemented
in Listing 3.7. In the first rule of Listing 3.7, it receives an input context In_Context and an
Application term app(T, U), and must return the value of the output context Out_Context2.
For that to happen, if the term received is of the form TU , it calls the cut !, and then the next
two predicates completion with the same input context In_Context, each with one term, the
first one has the term T , and the second the term U , and with new output contexts, the first has
the new output context Out_Context1, the second has the new output context Out_Context2,
which values, of the output contexts, must be returned. Finally, the second rule of the Listing
3.7 receives an input context In_Context and a Variable term X, and returns the input context
In_Context.

Example 3.1.10. Given the input
completion([(x,impl(a,b)),(y,b)],app(x,y),Out_Context), the output produced
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is composed by the output context Out_Context=[(x,impl(a,b)),(y,b)].

The Graded Linear Types follows the system à la Curry, where the type-free λ-terms are assigned,
with types. However, in the next section, the Linear Haskell, which follows the system à la
Church, will be enlightened.

3.2 Linear Haskell

More directly based on linear logic, is the Linear Haskell, a system that extends Haskell with
linear types and follows the system à la Church. Here, is defined the subset of Linear Haskell
treated in the dissertation.

Definition 3.2.1 (Grammar of Multiplicities). The grammar of multiplicities, denoted by π, µ,
in the Linear Haskell, is defined as follows:

π, µ = 1 | ω | p | π + µ | π · µ

In Linear Haskell, functions are annotated with a multiplicity that defines how many times the
function consumes its input, similar to the grade. The multiplicity 1 represents a linear function,
i.e., it can consume exactly once its input, and the multiplicity ω represents an unrestricted
function, such that it can consume an infinite number of times its input. The p is a multiplicity
type parameter, that can be 1, or ω, and there are the sum π+µ and product π ·µ of multiplicities.
With this definition, it is also defined an algebra with the multiplicities: the + and ·, which are
associative and commutative relations, the 1, which is the unit of the ·, and the ·, that distributes
over the +.

Definition 3.2.2 (Equivalence of Multiplicities). The equivalence given by the algebraic
properties was extended, with the following rules:

• The result of ω · ω is equal to ω.

• 1 + 1 = 1 + ω = ω + ω = ω

Definition 3.2.3 (Grammar of Types). Given a set of type variables V, denoted by X and Y ,
the grammar of types T, denoted by A, B, in the Linear Haskell is defined as follows:

A, B = X | A →π B

This grammar has the types with multiplicity-annotated arrows.

Definition 3.2.4 (Grammar of Terms). Given a term, denoted by e, s, t, or u, the grammar of
terms is defined as follows:
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e, s, t, u = x (V ariable)
| λπ(x : A).t (Abstraction)
| ts (Application)
| letπ x1 : A1 = t1 . . . xn : An = tn in u (Let)

In the grammar of terms, the Abstraction is now annotated with its multiplicity π, and the Let
syntax, which is annotated with multiplicity π, performs pattern matching.

Definition 3.2.5 (Grammar of Contexts). Given a judgment of the form Γ ⊢ t : A, Γ ranges
over contexts, and their grammar is defined as follows:

Γ = x :µ A, Γ |˘

The judgment Γ ⊢ t : A implies that the term t : A can be consumed only once. However, the
judgment Γ ⊢ x :µ A will consume each binding x :µ A in Γ, with multiplicity µ. An empty
context is denoted by ˘.

Definition 3.2.6 (Context Addition). Given two contexts, the context addition is defined as
follows:

(x :π A, Γ) + (x :µ A, ∆) = x :π+µ A, (Γ + ∆)
(x :π A, Γ) + ∆ = x :π A, Γ + ∆ (if x /∈ ∆)

() + ∆ = ∆
Example 3.2.1. For instance, consider a context Γ1 = {x : [A]ω, y : [B]1} and a context
Γ2 = {x : [A]1}, the context addition between Γ1 and Γ2 is {x : [A]ω, y : [B]1}.

The scalar context multiplication will be used in Var, App and Let inference rules.

Definition 3.2.7 (Context Scaling). Given a multiplicity and a context, the context scaling is
defined as follows:

π(x :µ A, Γ) = x :πµ A, πΓ

Example 3.2.2. For instance, consider a multiplicity π = 1 and a context Γ = {x : [A]ω, y : [B]1},
then the context scaling is {x : [A]ω, y : [B]1}, but if π = ω for the same context Γ, then the
context scaling is equal to {x : [A]ω, y : [B]ω}.

The scalar context multiplication will be used in Var, App and Let inference rules.

Definition 3.2.8. The operations of addition and multiplication of multiplicities and contexts
are defined as follows:

Γ + ∆ = ∆ + Γ
π(Γ + ∆) = πΓ + π∆

(π + µ)Γ = πΓ + µΓ
(πµ)Γ = π(µΓ)

1Γ = Γ
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Definition 3.2.9 (Typing rules of the Linear Haskell). The typing rules are defined in Figure
3.2.

(Var)
ωΓ + x :1 A ⊢ x : A

Γ, x :π A ⊢ t : B (Abs)Γ ⊢ λπ(x : A).t : A →π B

Γ ⊢ t : A →π B ∆ ⊢ u : A (App)Γ + π∆ ⊢ tu : B

Γi ⊢ ti : Ai ∆, x1 :π A1 . . . xn :π An ⊢ u : C (Let)∆ + π
∑
i

Γi ⊢ letπ x1 : A1 = t1 . . . xn : An = tn in u : C

Figure 3.2: Typing rules of the Linear Haskell.

In the typing rules of Linear Haskell, there is: the Var rule, that expresses that contexts may be
weakened with variables of multiplicity ω; the Abs (Abstraction) rule is explicitly annotated with
multiplicity π, in λπ(x : A).t, and its function is to add to the environment Γ the assumption
(x :π A), before checking the body t of the abstraction; and the App (Application) rule which
consumes t once, yielding the multiplicities in Γ, and u once, yielding the multiplicities in ∆.
However, if the multiplicity π on the function arrow A →π B, is ω, then the function consumes its
arguments ω times. Thus, all the u free variables are also used with multiplicity ω, represented
by scaling the multiplicities in ∆ by π, and then add all the multiplicities in Γ and π∆. Lastly,
the Let rule is a combination of the Abs and App rules, where each let binding is explicitly
annotated with its multiplicity.

Example 3.2.3. For instance, given the context Γ = {y : (A →1 B)}, and the term let1 x :
(A →1 B) = y in x : (A →1 B), the typing rules of the Linear Haskell produces the following
derivation:

{y : (A →1 B)} ⊢ y : (A →1 B) {x :1 (A →1 B)} ⊢ x : (A →1 B) (Let)1{y : (A →1 B)} ⊢ let1 x : (A →1 B) = y in x : (A →1 B)

3.2.1 Implementation

In this sub-section, the top-level predicates of the implementation in Prolog of the previous
typing rules algorithm are displayed. The complete code implementation of the implemented
rules can be consulted in Appendix B.

Type Completion Rule

In Type Completion rule the code implementation, Listing 3.8, does the same as it does in the
Type Completion rule of the Graded Linear Types 3.1. This rule calls the predicate rule type
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1 typeC(In_Context,T,A,Out_Context):-

2 type(In_Context,T,A),

3 completion(In_Context,T,Out_Context).

Listing 3.8: Type Completion Rule of the Linear Haskell.

to get the value of the type argument A, and then it calls the predicate completion to get the
output context.

Var Rule

1 type(In_Context,X,A) :-

2 atom(X),

3 !,

4 cntxtScale(omega,In_Context2,In_Context1),

5 cntxtAdd(In_Context1,[(X,1,A)],In_Context).

Listing 3.9: Var Rule of the Linear Haskell.

The Var rule, shown in Figure 3.2, is implemented in Listing 3.9. It receives an input context
In_Context and a Variable term X, and must return the value of type A. For that to happen,
the first predicate atom checks if the X is a variable term, the second it is the cut !, and the third
and fourth are context predicates. In the first context predicate, the context scaling contxtScale is
applied to the multiplicity omega (ω) and to the new input context In_Context2, and the output
result is returned in the new context In_Context1. Finally, in the last predicate the context
addition cntxtAdd is applied between the context In_Context1 and the linear assumption
(X, 1, A), and the output result returned is the input context itself, In_Context.

Example 3.2.4. Given the input typeC([(x,M,a)],x,A,Out_Context), the output pro-
duced is composed by two results. The first one has the multiplicity M=1, the type A=a, and
the output context Out_Context=[(x,1,a)]. The second has the multiplicity M=omega, the
type A=a, and the output context Out_Context=[(x,omega,a)].

Abs Rule

1 type(In_Context,lam(M,(X,A),T),impl(M,A,B)) :-

2 !,

3 type([(X,M,A)|In_Context],T,B).

Listing 3.10: Abs Rule of the Linear Haskell.
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The Abs rule, shown in Figure 3.2, is implemented in Listing 3.10. It receives an input context
In_Context and an Abstraction term lam(M, (X, A), T ), and must return the value of type
impl(M, A, B). For that to happen, the first predicate it is the cut !, and then, the predicate
type is called with the input context In_Context, extended with a fresh assumption (X, M, A),
the term T , and the type B, whose value must be returned.

Example 3.2.5. Given the input
typeC([],lam(1,(x,B),lam(1,(y,b),app(x,y))),A,Out_Context), the output pro-
duced is composed by the type B=impl(1,b,A1), the type
A=impl(1,impl(1,b,A1),impl(1,b,A1)), and the output context
Out_Context=[].

App Rule

1 type(In_Context,app(T,U),B) :-

2 type(In_Context1,T,impl(M,A,B)),

3 type(In_Context2,U,A),

4 cntxtScale(M,In_Context2,In_Context3),

5 cntxtAdd(In_Context1,In_Context3,In_Context).

Listing 3.11: App Rule of the Linear Haskell.

The App rule, shown in Figure 3.2, is implemented in Listing 3.11. Just like the App rule code
implementation of the Graded linear Types, Listing 3.4, in the Linear Haskell the App rule is just
the same, with the exception of its very own characteristics, with regard to the multiplicities. It
receives the same arguments, and returns the same argument type. However, the first predicate
type has as arguments: the new context In_Context1, as input context, the term T , and the
type impl(M, A, B), whose value must be returned. In the third line, the predicate type has the
new context In_Context2, as input context, the term U , and the type A, whose value must be
returned. Finally, it applies the context addition predicate, cntxtAdd, between the two input
contexts In_Context1 and In_Context2, and returns the result in the input context itself,
In_Context.

Example 3.2.6. Given the input
typeC([(x,1,impl(1,a,b)),(y,1,a)],app(x,y),A,Out_Context), the output pro-
duced is composed by the type A=b and the output context
Out_Context=[(x,1,impl(1,a,b)),(y,1,a)].

Let Rule

The Let rule, shown in Figure 3.2, is implemented in Listing 3.12. It receives an input context
In_Context and a Let term let(M, (X, A), T1, U), and must return the value of type B. For
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1 type(In_Context,let(M,(X,A),T1,U),B) :-

2 type(In_Context1,T1,A),

3 type([(X,M,A)|In_Context2],U,B),

4 cntxtScale(M,In_Context1,In_Context3),

5 cntxtAdd(In_Context3,In_Context2,In_Context).

Listing 3.12: Let Rule of the Linear Haskell.

that to happen, the first predicate type has as arguments: the new context In_Context1, as
input context, the term T1, and the type A, whose value must be returned. In the third line,
the type has the new context In_Context2, as input context, extended with a fresh assumption
(X, M, A), the term U , and the type B, whose value must be returned. Then, the context scaling,
contxtScale, is applied to the multiplicity M and the context In_Context1 and the result output
is saved in the new context In_Context3. Finally, in the last predicate the context addition,
cntxtAdd, is applied between the context In_Context3 and the context In_Context2 and the
output result returned is the input context itself, In_Context.

Example 3.2.7. Given the input
typeC(In_Context,let(1,(x,a),y,x),A,Out_Context), the output produced is com-
posed by the type A=a and the output context and input context:
Out_Context=[(y,1,a)], In_Context=Out_context.

Completion Rule

1 completion(In_Context,lam(M,(X,A),T),Out_Context1):-

2 !,

3 completion([(X,1,A)|In_Context],T,Out_Context),

4 select((X,1,A),Out_Context,Out_Context1).

5 completion(In_Context,app(T,U),Out_Context2):-

6 !,

7 completion(In_Context,T,Out_Context1),

8 completion(In_Context,U,Out_Context2).

9 completion(In_Context,X,In_Context).

Listing 3.13: Completion Rule of the Linear Haskell.

The Completion rule of the Linear Haskell, Listing 3.13, has some similarity to the Completion
rule at the Graded Linear Types, Listing 3.6 and Listing 3.7, with some exceptions. In
the first Completion rule, it receives an input context In_Context and an Abstraction term
lam(M, (X, A), T ), and must return the value of the output context Out_Context. For that to
happen, if the term received is of the form lam(M, (X, A), T ), then calls the cut !. Next, in the
third line, the predicate completion is called, with the input context In_Context, extended with
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a fresh linear assumption (X, 1, A), the term T , and the output context Out_Context, whose
value must be returned. Then, it selects the linear assumption (X, 1, A) of the output context
Out_Context and records the remnant in the output context Out_Context1. In the next two
Completion rules, line five and line nine, it follows the Completion rule of the Graded Linear
Types, in Listing 3.7.

3.2.2 Limitations

There are still some limitations, in the implementation of the Linear Haskell system, for the Let
rule. For instance, for the example given in Example 3.2.7, the output should have been the
output mentioned, but, instead of that output, it was an infinite output:

The output is composed of an infinite number of results, where has always the same and correct
type A=a, but different input contexts and output contexts:

In_Context=Out_Context, Out_Context=[(y, 1, a)|_34126],

In_Context=Out_Context, Out_Context=[_34220, (y, 1, a)|_35380],

In_Context=Out_Context, Out_Context=[_34220, _35378, (y, 1, a)|_36544],

...

Note: The underscore numbers are variables that represent free assumptions.

This happened because of Prolog bactracking, that, sometimes, enters in an infinite loop to
search all the output results, and due to time limitations we could not solve this problem yet.

The Linear Type Systems chapter covers the characteristics and top-level implementation of
the two linear type systems used in this dissertation. As for these two linear type systems, one
(Graded Linear Types system) follows the Type Inference problem since, given the environment
and the term, it tries to find the type of that term, while the other (Linear Haskell system)
follows the Type Checking problem since, given the environment, the term and the type, it tries
to check if that term has that type associated. In the next chapter, it is presented the inverse of
the Type Inference problem, the Type Inhabitation problem, where, given the environment and
the type, it tries to reach the term of that type.





Chapter 4

Program Synthesis

In this chapter, it is exhibited the main contribution of this dissertation: Terms with Graded
Types and Partial Typed Terms. In the first, it is considered some definitions, explained its
inference rules, and displayed and explained the top-level implementation. In the Partial Typed
Terms, it is presented the top-level code implementation.

4.1 Terms with Graded Types

Terms with Graded Types follow the system à la Curry and have the same grammar as the
Graded Linear Types in Section 3.1. So it is a core linear functional language, where assumptions
are also annotated with a grade.

In this system for program synthesis given a judgment in form Γ ⊢ A ⇒ t; ∆, the program
synthesis receives an input, with a context Γ and a type A, and produces (⇒) the respective
output consisting of a term t and a context ∆.

Definition 4.1.1 (Partial least-lower bound of contexts). Assuming that there is an order
relation ⊑ defined on the set of grades, where r ⊓ s is the least-lower bound of r and s in r ⊑ s,
then the least-lower bound of contexts, denoted by Γ1 ⊓ Γ2, is defined as follows:

Γ1 ⊓ Γ2 =



∅ Γ1 = ∅ ∧ Γ2 = ∅

(∅ ⊓ Γ′
2), x : [A]0⊓s Γ1 = ∅ ∧ Γ2 = Γ′

2, x : [A]s
(Γ′

1 ⊓ (Γ′
2, Γ′′

2)), x : A Γ1 = Γ′
1, x : A ∧ Γ2 = Γ′

2, x : A, Γ′′
2

(Γ′
1 ⊓ (Γ′

2, Γ′′
2)), x : [A]r⊓s Γ1 = Γ′

1, x : [A]r ∧ Γ2 = Γ′
2, x : [A]s, Γ′′

2

Example 4.1.1. For instance, consider a context Γ1 = {y : [B]4} and a context Γ2 = {y :
[B]3, x : [A]2, z : [C]2}, then the least-lower bound of the two contexts Γ1 and Γ2 is {y : [B]3, x :
[A]0, z : [C]0}.

The least-lower bound of two contexts Γ1 ⊓ Γ2 will be used in L ⊕ inference rule, which is used

31
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to synthesize expressions of type case.

Definition 4.1.2 (Context subtraction). Given Γ1 and Γ2, the context subtraction is defined as
follows:

Γ1 − Γ2 =



Γ1 Γ2 = ∅

(Γ′
1, Γ′′

1) − Γ′
2 Γ2 = Γ′

2, x : A ∧ Γ1 = Γ′
1, x : A, Γ′′

1

((Γ′
1, Γ′′

1) − Γ′
2), x : [A]q Γ2 = Γ′

2, x : [A]s ∧ Γ1 = Γ′
1, x : [A]r, Γ′′

1

∧ ∃q.r ⊒ q + s ∧ ∀q′.r ⊒ q′ + s ⇒ q ⊒ q′

The context subtraction, denoted by Γ1 − Γ2, quantifies a variable q to express the subtraction
result of grades on the right, with those on the left.

Example 4.1.2. For instance, consider a context Γ1 = {x : [A]5} and a context Γ2 = {x :
[A]3, z : [C]2}, then the subtraction between the two contexts Γ1 and Γ2 is {x : [A]0, z : [C]2},
{x : [A]1, z : [C]2}, {x : [A]2, z : [C]2}.

The context subtraction will be used in R □ inference rule, which is applied to synthesize a
promotion [t] for the graded modality type □rA, if it is possible to synthesize a linear term t

from type A.

Now, the synthesis rules and their explanation are introduced, following the presentation in [1].
Each subterm has a right R rule and left L rule, which introduces the type in the conclusions, or
in the hypotheses, respectively, i.e., in sequent calculus [18, 19] these R and L rules are like the
constructors and the deconstructors. The right rules construct a synthesis to reach the required
goal, while the left rules deconstruct the assumptions. The complete system can be found in
Figure 4.1.

(LinVar)Γ, x : A ⊢ A ⇒ x; Γ
∃s.r ⊒ s + 1 (GrVar)Γ, x : [A]r ⊢ A ⇒ x; Γ, x : [A]s

The LinVar rule verifies if there is a linear assumption x : A in the context input for a given type
A, and then, if it is verified, produces an output with the synthesized term x and the context Γ
without the x since it has been used.

Example 4.1.3 (LinVar). For instance, consider an input with a context Γ = {y : B, x : A}
and a type A, then the output produced must be a term t = x and the context, without the
assumption x : A, Γ = {y : B}.

The GrVar rule verifies if there is a graded assumption x : [A]r in the context input given a
type A. If verified, tests if there exists a grade s, such that s + 1 approximates the grade r, and
produces the output, which is composed with the synthesized term x, and the output context
that has the context Γ and the new graded assumption context x : [A]s, that can be used s times
more.
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Example 4.1.4 (GrVar). For instance, consider an input with a context Γ = {y : [B]2, x : [A]3}
and a type A, then the output produced is composed by three results, all with the same term
t = x, but different output contexts (∆), where, in each result, ∆ is equal to {x : [A]0, y : [B]2},
{x : [A]1, y : [B]2} and {x : [A]2, y : [B]2}, respectively.

Γ, x : A ⊢ B ⇒ t; ∆ x /∈ |∆| (R ⊸)Γ ⊢ A ⊸ B ⇒ λx.t; ∆

For the R ⊸ rule the λx.t is synthesized from A ⊸ B, if t can be synthesized from B, with a
fresh linear assumption x : A extending the input context Γ, and to guarantee that the x is used
precisely once (linearly) by t, it must not appear in the output context ∆.

Example 4.1.5 (R ⊸). For instance, consider an input with a context Γ = ∅ and a type
(A ⊸ (B ⊸ C)) ⊸ (A ⊸ (B ⊸ C)), then the output produced is composed by three results,
where, in each result, the term t is equal to λx.x, λxyz.xyz, and λxy.xy, respectively, and the
output context is always the same through the results, ∆ = ∅.

Γ, x2 : B ⊢ C ⇒ t1; ∆1 x2 /∈ |∆1| ∆1 ⊢ A ⇒ t2; ∆2 (L ⊸)Γ, x1 : A ⊸ B ⊢ C ⇒ [(x1t2)/x2]t1; ∆2

The L ⊸ rule synthesizes the term [(x1t2)/x2]t1 for type C, through two constructions. The first
construction synthesizes the term t1 for type C, having the input context extended with a fresh
linear assumption x2 : B, taking into account the result of x1, which produces the output context
∆1. To guarantee that the x2 is used precisely once (linearly) by t1, it must not appear in the
output context ∆1. In the second construction, the term t2 is synthesized from type A, under
the input context ∆1. Finally, the term [(x1t2)/x2]t1, means that the term x2 is substituted in
t1 by the Application term x1t2.

Example 4.1.6 (L ⊸). For instance, consider an input with a context Γ = {x : (A ⊸ B), y : A}
and a type B, then the output produced is composed by a term t = xy, and an output context
∆2 = ∅.

Γ, x : [A]s, y : A ⊢ B ⇒ t; ∆, x : [A]s′ y /∈ |∆| ∃s.r ⊒ s + 1 (Der)Γ, x : [A]r ⊢ B ⇒ [x/y]t; ∆, x : [A]s′

The Der rule synthesizes a term [x/y]t for the goal type B, having the input context extended
with the fresh graded assumption x : [A]r. This happens, if it synthesizes a term t for type B,
with the input context extended with a fresh graded assumption x : [A]s and linear assumption
y : A. The r ⊒ s + 1 updates the number of times the term can be used, as it has already been
used once, and the term y should not appear in the output context ∆, since it is linear and,
therefore, has already been used once.
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Example 4.1.7 (Der). For instance, consider an input with a context Γ = {x : [A]2, y : B} and
a type A, then the output produced is composed by two results, all with the same term t = x,
but different contexts, where, in each result, ∆ is equal to {x : [A]0, y : B} and {x : [A]1, y : B},
respectively.

Γ ⊢ A ⇒ t; ∆ (R □)Γ ⊢ □rA ⇒ [t]; Γ − r ∗ (Γ − ∆)
Γ, x2 : [A]r ⊢ B ⇒ t; ∆, x2 : [A]s 0 ⊑ s (L □)Γ, x1 : □rA ⊢ B ⇒ let [x2] = x1 in t; ∆

The R □ rule synthesizes a construct term [t], for the graded modality type □rA, if it synthesizes
the linear term t for type A, producing the output context ∆ for this premise. With the output
context ∆, produces the final output context applying the context subtraction between context Γ
and the scalar context multiplication among the grade r and the context subtraction Γ − ∆.

Example 4.1.8 (R □). For instance, consider an input with a context Γ = {x : A, y : B} and
a graded type □2A, then the output produced is composed by a graded term t = [x], and an
output context ∆2 = {y : B}.

The L □ rule synthesizes a term let [x2] = x1 in t for type B, with the input context extended
with a fresh graded modality x1 : □rA. This happens, if it synthesizes a term t for type B,
with the input context extended with a fresh graded assumption x2 : [A]r, producing an output
context ∆ extended with the fresh graded assumption x2 : [A]s, with the premise that 0 ⊑ s.
From this, it returns the output ∆.

Example 4.1.9 (L □). For instance, consider an input with a context Γ = {x : □2A, y : B} and
a type A, then the output produced is composed by a term t equals to let [z] = x in z, and an
output context ∆ = {y : B}.

Γ ⊢ A ⇒ t1; ∆1 ∆1 ⊢ B ⇒ t2; ∆2 (R ⊗)Γ ⊢ A ⊗ B ⇒ ⟨t1, t2⟩; ∆2

The R ⊗ rule synthesizes the term ⟨t1, t2⟩ from the type A ⊗ B, through two constructions. The
first construction synthesizes the term t1 from A producing an output context ∆1. The second
construction synthesizes the term t2 from B, with the input context ∆1, producing the output
context ∆2.

Example 4.1.10 (R ⊗). For instance, consider an input with a context Γ = {x : [A]2, y : B, z : C}
and a type A ⊗ B, then the output produced is composed by two results, all with the same
term t = ⟨x, y⟩, but different contexts, where, in each result, ∆2 is equal to {x : [A]0, z : C} and
{x : [A]1, z : C}, respectively.

Γ, x1 : A, x2 : B ⊢ C ⇒ t2; ∆ x1 /∈ |∆| x2 /∈ |∆| (L ⊗)Γ, x3 : A ⊗ B ⊢ C ⇒ let ⟨x1, x2⟩ = x3 in t2; ∆
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The L ⊗ rule synthesizes the term let ⟨x1, x2⟩ = x3 in t2 for type C, with the input context
extended with a fresh assumption x3 : A ⊗ B, through one construction. The construction
synthesizes the term t2 for type C, having the input context extended with the fresh linear
assumptions x1 : A and x2 : B, and producing the output context ∆. To guarantee that the x1

and x2 are used precisely once (linearly) by t2, they must not appear in the output context ∆.

Example 4.1.11 (L ⊗). For instance, consider an input with a context Γ = {x : (A ⊗ B), y :
B, z : C} and a type A ⊗ B, then the output produced is composed by two results, where, in each
result, the term t is equal to x, and let ⟨x1, x2⟩ = x in ⟨x1, x2⟩, respectively, and the output
context is always the same through the results, ∆ = {y : B, z : C}.

(R1)Γ ⊢ 1 ⇒ (); Γ
Γ ⊢ C ⇒ t; ∆ (L1)Γ, x : 1 ⊢ C ⇒ let () = x in t; ∆

The R1 rule synthesizes the term () for the unit type 1 and returns the input context Γ as output
context.

Example 4.1.12 (R1). For instance, consider an input with a context Γ = {x : A, y : B} and
a type 1, then the output produced is composed by the term t = () and the output context
Γ = {x : A, y : B}.

The L1 rule synthesizes the term let () = x in t from C, with the input context extended with
a fresh linear assumption x : 1, if t can be synthesized from C, producing the output context ∆.

Example 4.1.13 (L1). For instance, consider an input with a context Γ = {x : 1, y : B} and a
type B, then the output produced is composed by two results. The first one has a term t = y

and an output context ∆ = {x : 1}, and the second one has a term t equal to let () = x in y

and an output context ∆ = ∅.

Γ ⊢ A ⇒ t; ∆ (R ⊕1)Γ ⊢ A ⊕ B ⇒ inl t; ∆
Γ ⊢ B ⇒ t; ∆ (R ⊕2)Γ ⊢ A ⊕ B ⇒ inr t; ∆

The R ⊕1 rule synthesizes the term inl t from A ⊕ B, if t can be synthesized from A (left),
producing the output context ∆.

The R ⊕2 rule synthesizes the term inr t from A ⊕ B, if t can be synthesized from B (right),
producing the output context ∆.

Example 4.1.14 (R ⊕1 and R ⊕2). For instance, consider an input with a context Γ = {x :
A, y : B} and a type A ⊕ B, then the output produced is composed by two results. The first one
(R ⊕1) has a term t = inl x and an output context ∆ = {y : B}, and the second one (R ⊕2) has
a term t = inr y and an output context ∆ = {x : A}.
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Γ, x2 : A ⊢ C ⇒ t1; ∆1 Γ, x3 : B ⊢ C ⇒ t2; ∆2 x2 /∈ |∆1| x3 /∈ |∆2| (L ⊕)Γ, x1 : A ⊕ B ⊢ C ⇒ case x1 of inl x2 → t1| inr x3 → t2; ∆1 ⊓ ∆2

The L ⊕ rule synthesizes the term case x1 of inl x2 → t1| inr x3 → t2 for type C, with the
input context extended with a fresh linear assumption x1 : A ⊕ B, through two constructions.
The first construction synthesizes the term t1 for type C, with the input context extended with
a fresh linear assumption x2 : A. Taking into account the result of x1, this first construction
produces the output context ∆1. To guarantee that the x2 is used precisely once (linearly) by
t1, it must not appear in the output context ∆1. In the second construction, the term t2 is
synthesized for type C, with the input context extended with a fresh linear assumption x3 : B.
Taking into account the result of x1, this second construction produces the output context ∆2.
To guarantee that the x3 is used precisely once (linearly) by t2, it must not appear in the output
context ∆2. Finally, the output context of this rule is the least-lower bound between the contexts
∆1 and ∆2.

Example 4.1.15 (L ⊕). For instance, consider an input with a context Γ = {x : (A ⊕ A)}
and a type A, then the output produced is composed by a term t equals to case x of inl x2 →
x2| inr x3 → x3 and an output context ∆1 ⊓ ∆2 = ∅.

(LinVar)Γ, x : A ⊢ A ⇒ x; Γ
∃s.r ⊒ s + 1 (GrVar)Γ, x : [A]r ⊢ A ⇒ x; Γ, x : [A]s

Γ, x : A ⊢ B ⇒ t; ∆ x /∈ |∆| (R ⊸)Γ ⊢ A ⊸ B ⇒ λx.t; ∆
Γ, x2 : B ⊢ C ⇒ t1; ∆1 x2 /∈ |∆1| ∆1 ⊢ A ⇒ t2; ∆2 (L ⊸)Γ, x1 : A ⊸ B ⊢ C ⇒ [(x1t2)/x2]t1; ∆2

Γ, x : [A]s, y : A ⊢ B ⇒ t; ∆, x : [A]s′ y /∈ |∆| ∃s.r ⊒ s + 1 (Der)Γ, x : [A]r ⊢ B ⇒ [x/y]t; ∆, x : [A]s′

Γ ⊢ A ⇒ t; ∆ (R □)Γ ⊢ □rA ⇒ [t]; Γ − r ∗ (Γ − ∆)
Γ, x2 : [A]r ⊢ B ⇒ t; ∆, x2 : [A]s 0 ⊑ s (L □)Γ, x1 : □rA ⊢ B ⇒ let [x2] = x1 in t; ∆

Γ ⊢ A ⇒ t1; ∆1 ∆1 ⊢ B ⇒ t2; ∆2 (R ⊗)Γ ⊢ A ⊗ B ⇒ ⟨t1, t2⟩; ∆2

Γ, x1 : A, x2 : B ⊢ C ⇒ t2; ∆ x1 /∈ |∆| x2 /∈ |∆| (L ⊗)Γ, x3 : A ⊗ B ⊢ C ⇒ let ⟨x1, x2⟩ = x3 in t2; ∆

(R1)Γ ⊢ 1 ⇒ (); Γ
Γ ⊢ C ⇒ t; ∆ (L1)Γ, x : 1 ⊢ C ⇒ let () = x in t; ∆

Γ ⊢ A ⇒ t; ∆ (R ⊕1)Γ ⊢ A ⊕ B ⇒ inl t; ∆
Γ ⊢ B ⇒ t; ∆ (R ⊕2)Γ ⊢ A ⊕ B ⇒ inr t; ∆

Γ, x2 : A ⊢ C ⇒ t1; ∆1 Γ, x3 : B ⊢ C ⇒ t2; ∆2 x2 /∈ |∆1| x3 /∈ |∆2| (L ⊕)Γ, x1 : A ⊕ B ⊢ C ⇒ case x1 of inl x2 → t1| inr x3 → t2; ∆1 ⊓ ∆2

Figure 4.1: Synthesis rules.
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4.1.1 Implementation

In this sub-section, it is displayed the top level predicates of the implementation in Prolog of the
previous synthesis algorithm. The complete code implementation of the implemented rules can
be consulted in Appendix C.

LinVar Rule

1 synthesis(In_Context,A,X,Out_Context) :-

2 nonvar(A),

3 var(X),

4 select((X,A),In_Context,Out_Context).

Listing 4.1: LinVar Rule.

The LinVar rule, shown in Figure 4.1, is implemented in Listing 4.1. It receives an input context
In_Context and a type A, and must return the value of the Variable term X and the value of
the output context Out_Context. For that to happen, the predicates begin to verify if the A

is a type and X a term variable, and selects the linear assumption (X, A) of the input context
In_Context, recording the remnant in the output context Out_Context.

Note: As previously mentioned, the select predicate, whenever it selects an assumption from
some context, removes it from that context and creates a new context equal to the context from
which the assumption was removed.

Example 4.1.16. Given the input synthesis([(y,b),(x,a)],a,T,Out_Context), the
output produced is composed by the term T=x and the output context
Out_Context=[(y,b)].

GrVar Rule

1 synthesis(In_Context,A,T,[(T,grdAssump(S,A))|Out_Context]) :-

2 select((T,grdAssump(R,A)),In_Context,Out_Context),

3 R #>= S+1,

4 S #>= 0,

5 indomain(S).

Listing 4.2: GrVar Rule.

The GrVar rule, shown in Figure 4.1, is implemented in Listing 4.2. It receives an input context
In_Context and a type A, and must return the value of the term T and the value of the output
context Out_Context, with the extended fresh graded assumption (T, grdAssump(S, A)). For



38 Chapter 4. Program Synthesis

that to happen, the predicate selects the graded assumption (T, grdAssump(R, A)), from the
input context In_Context, recording the remnant in the output context Out_Context. Then,
it checks if the grade R is greater or equal to the grade S + 1, and if the new grade S is a positive
number. Finally, checks if the grade S is finite and bind the grade S to all the values of his
domain on backtracking (indomain(S)).

Example 4.1.17. Given the input
synthesis([(y,grdAssump(2,b)),(x,grdAssump(3,a))],a,T,Out_Context), the
output produced is composed by three results, all with the same term T=x, but different output
contexts, where, in each result, the Out_Context is equal to
[(x,grdAssump(0,a)),(y,grdAssump(2,b))],
[(x,grdAssump(1,a)),(y,grdAssump(2,b))], and
[(x,grdAssump(2,a)),(y,grdAssump(2,b))], respectively.

R ⊸ Rule

1 synthesis(In_Context,impl(A,B),lam(X,T),Out_Context) :-

2 synthesis([(X,A)|In_Context],B,T,Out_Context),

3 \+(belongs((X,_),Out_Context)).

Listing 4.3: R ⊸ Rule.

The R ⊸ rule, shown in Figure 4.1, is implemented in Listing 4.3. It receives an input
context In_Context and a type impl(A, B), and must return the value of the Abstraction term
lam(X, T ) and the value of the output context Out_Context. For that to happen, the first
predicate synthesis is called with the input context In_Context, extended with the fresh linear
assumption (X, A), the type B, the term T , and the Out_Context, whose value, of the last two,
must be returned. Then, it checks if an assumption with a term X, for any type, does not appear
in the output context Out_Context.

Example 4.1.18. Given the input
synthesis([],impl(impl(a,impl(b,c)),impl(a,impl(b,c))),T,Out_Context),
the output produced is composed by three results, where, in each result, the term T is equal to
lam(x,x), lam(x,lam(y,lam(z,app(app(x,y),z)))), and to
lam(x,lam(y,app(x,y))), respectively, and the output context is always the same through
the results, Out_Context=[]

L ⊸ Rule

The L ⊸ rule, shown in Figure 4.1, is implemented in Listing 4.4. It receives an input context
In_Context and a type C, and must return the value of the term T and the value of the
output context Out_Context. For that to happen, the first predicate selects the assumption
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1 synthesis(In_Context,C,T,Out_Context) :-

2 select((X1,impl(A,B)),In_Context,In_Context1),

3 synthesis([(X2,B)|In_Context1],C,T1,Out_Context1),

4 var(X2),

5 \+(belongs((X2,_),Out_Context1)),

6 synthesis(Out_Context1,A,T2,Out_Context),

7 subs(X2,app(X1,T2),T1,T).

Listing 4.4: L ⊸ Rule.

(X1, impl(A, B)) from the input context In_Context, recording the remnant in the new context
In_Context1. Then, it calls the function synthesis with the input context In_Context1,
extended with a linear assumption (X2, B), the type C, and return the value of the new term T 1
and the value of the new output context Out_Context1. In the line 4 and line 5, it verifies if
the term X2 is a variable, and tests if the assumption with the term X2, for any type, does not
belong to the Out_Context1. Next, it calls the function synthesis with the Out_Context1 as
input context, the type A, and returns the value of the new term T 2 and the value of the output
context Out_Context. Finally, the predicate subs substitutes the term X2 by the application
term app(X1, T2), in T1 and save it in the term T .

Example 4.1.19. Given the input
synthesis([(x,impl(a,b)),(y,a)],b,T,Out_Context), the output produced is com-
posed by the term T=app(x,y) and the output context Out_context=[].

Der Rule

1 synthesis(In_Context,B,T,Out_Context) :-

2 select((X,grdAssump(R,A)),In_Context,In_Context1),

3 R #>= S+1,

4 S #>= 0,

5 indomain(S),

6 synthesis([(Y,A),(X,grdAssump(S,A))|In_Context1],B,T1,

Out_Context),

7 \+(belongs((Y,_),Out_Context)),

8 subs(Y,X,T1,T).

Listing 4.5: Der Rule.

The Der rule, shown in Figure 4.1, is implemented in Listing 4.5. It receives an input context
In_Context and a type B, and must return the value of the term T and the value of the output
context Out_Context. For that to happen, the first predicate selects the graded assumption
(X, grdAssump(R, A)) from the input context In_Context, recording the remnant in the new
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context In_Context1. The next three lines of predicates (lines 3-5) do the exact same thing
that the GrVar rule do in Listing 4.2 (lines 3-5). Next, the predicate synthesis is called with
the input context In_Context, extended with the linear assumption (Y, A) and with the graded
assumption (X, grdAssump(S, A)), the type B, and return the value of the new term T1 and
the value of the output context Out_Context. Then, it verifies if the assumption with the term
Y , for any type, does not belong in the output context Out_Context. Finally, the predicate
subs substitutes the term Y , by the term X in T1 and record it in the term T .

Example 4.1.20. Given the input
synthesis([(x,grdAssump(2,a)),(y,grdAssump(2,b))],a,T,Out_Context), the
output produced is composed by two results, all with the same term T=x, but different output
contexts, where, in each result, the Out_Context is equal to
[(x,grdAssump(0,a)),(y,grdAssump(2,b))], and
[(x,grdAssump(1,a)),(y,grdAssump(2,b))], respectively.

R □ Rule

1 synthesis(In_Context,grdType(R,A),grdTerm(T),Out_Context) :-

2 synthesis(In_Context,A,T,Out_Context1),

3 cntxtSub(In_Context,Out_Context1,Out_Sub),

4 cntxtMult(R,Out_Sub,Out_Mult),

5 cntxtSub(In_Context,Out_Mult,Out_Context).

Listing 4.6: R □ Rule.

The R □ rule, shown in Figure 4.1, is implemented in Listing 4.6. It receives an input context
In_Context and a graded type grdType(R, A), and must return the value of the Construct
term grdTerm(T ) and the value of the output context Out_Context. For that to happen, the
first predicate synthesis it is called with the input context In_Context, the type A, and must
return the value of the term T and the value of the new context Out_Context1. Next, the
context subtraction predicate, cntxtSub, is applied between the input context In_Context and
the output context Out_Context1, and the result is recorded in the new context Out_Sub. In
the fourth line, the predicate cntxtMult applies the context multiplication between the grade R

and the output context Out_Sub, recording the result in the new context Out_Mult. Finally,
the predicate cntxtSub is used again between the input context In_Context and the output
context Out_Mult, and the result is returned in the output context Out_Context.

Example 4.1.21. Given the input
synthesis([(x,a),(y,b)],grdType(2,a),T,Out_Context), the output produced is
composed by the graded term T=grdTerm(x) and the output context
Out_Context=[(y,b)].
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L □ Rule

1 synthesis(In_Context,B,let(grdTerm(X2),X1,T),Out_Context) :-

2 select((X1,grdType(R,A)),In_Context,In_Context1),

3 R #>= S+1,

4 S #>= 0,

5 indomain(S),

6 synthesis([(X2,grdAssump(R,A))|In_Context1],B,T,Out_Context1)

,

7 select((X2,grdAssump(S,A)),Out_Context1,Out_Context).

Listing 4.7: L □ Rule.

The L □ rule, shown in Figure 4.1, is implemented in Listing 4.7. It receives an input context
In_Context and a type B, and must return the value of the Let term let(grdTerm(X2), X1, T )
and the value of the output context Out_Context. For that to happen, the first predicate selects
the graded assumption (X1, grdType(R, A)) from the input context In_Context, recording the
remnant in the new context In_Context1. The next three lines of predicates (lines 3-5) do the
exact same thing that the GrVar rule do in Listing 4.2 (lines 3-5). Next, the predicate synthesis
is called with the input context In_Context1, extended with the fresh graded assumption
(X2, grdAssump(R, A)), the type B, and must return the value of the term T and the value
of the new context Out_Context1. Finally, the last predicate selects the graded assumption
(X2, grdAssump(S, A)) of the output context Out_Context1, and returns the remnant of the
context in the output context Out_Context.

Example 4.1.22. Given the input
synthesis([(x,grdType(2,a)),(y,b)],a,T,Out_Context), the output produced is
composed by the term T=let(grdTerm(x1),x,x1) and the output context
Out_Context=[(y,b)].

R ⊗ Rule

1 synthesis(In_Context,product(A,B),pair(T1,T2),Out_Context) :-

2 synthesis(In_Context,A,T1,Out_Context1),

3 synthesis(Out_Context1,B,T2,Out_Context).

Listing 4.8: R ⊗ Rule.

The R ⊗ rule, shown in Figure 4.1, is implemented in Listing 4.8. It receives an input context
In_Context and a product type product(A, B), and must return the value of the Pair term
pair(T1, T2) and the value of the output context Out_Context. For that to happen, the first
predicate synthesis is called with the input context In_Context, the type A, and must return
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the values of the term T1 and the value of the new output context Out_Context1. The second
predicate synthesis is called with the context Out_Context1, the type B, and must return the
value of the term T2 and the value of the output context Out_Context.

Example 4.1.23. Given the input
synthesis([(x,grdAssump(2,a)),(y,b),(z,c)],product(a,b),T,Out_Context),
the output produced is composed by two results, all with the same term T=pair(x,y), but
different output contexts, where, in each result, Out_Context is equal to
[(x,grdAssump(0,a)),(z,c)], and
[(x,grdAssump(1,a)),(z,c)], respectively.

L ⊗ Rule

1 synthesis(In_Context,C,let(pair(X1,X2),X3,T2),Out_Context) :-

2 select((X3,product(A,B)),In_Context,In_Context1),

3 synthesis([(X1,A),(X2,B)|In_Context1],C,T2,Out_Context),

4 \+(belongs((X1,_),Out_Context)),

5 \+(belongs((X2,_),Out_Context)).

Listing 4.9: L ⊗ Rule.

The L ⊗ rule, shown in Figure 4.1, is implemented in Listing 4.9. It receives an input context
In_Context and a type C, and must return the value of the Let Pair term let(pair(X1, X2), X3,

T2) and the value of the output context Out_Context. For that to happen, the first predicate
selects the linear assumption (X3, product(A, B)) from the In_Context, and save the remnant
in the new context In_Context1. Next, it calls the predicate synthesis with the context
In_Context1, extended with the linear assumptions (X1, A) and (X2, B), the type C, and
returns the value of the term T2 and the value of the output context Out_Context. The last
two lines, verify if the assumptions with the terms X1 and X2, for any types, do not appear in
the output context Out_Context.

Example 4.1.24. Given the input
synthesis([(x,product(a,b)),(y,b),(z,c)],product(a,b),T,Out_Context), the
output produced is composed by two results, where, in each result, the term T is equal to x,
and let(pair(x1,x2),x,pair(x1,x2)), respectively, and the output context is always the
same through the results, Out_Context=[(y,b),(z,c)].

R1 Rule

The R1 rule, shown in Figure 4.1, is implemented in Listing 4.10. It receives an input context
In_Context and a type unit, and must return an Empty term empty and the input context
itself, In_Context, as output context.
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1 synthesis(In_Context,unit,empty,In_Context).

Listing 4.10: R1 Rule.

Example 4.1.25. Given the input
synthesis([(x,a),(y,b)],unit,T,Out_Context), the output produced is composed
by the term T=empty and the output context Out_Context=[(x,a),(y,b)].

L1 Rule

1 synthesis(In_Context,C,let(empty,X,T1),Out_Context) :-

2 select((X,unit),In_Context,In_Context1),

3 synthesis(In_Context1,C,T1,Out_Context).

Listing 4.11: L1 Rule.

The L1 rule, shown in Figure 4.1, is implemented in Listing 4.11. It receives an input context
In_Context and a type C, and must return the value of the Let Empty term let(empty, X, T1)
and the value of the output context Out_Context. For that to happen, the first predicate selects
the linear assumption (X, unit) from the input context In_Context and records the remnant in
a new context In_Context1. Next, it calls the synthesis with the input context In_Context1,
the type C, and returns the value of the term T1 and the value of the Out_Context.

Example 4.1.26. Given the input
synthesis([(x,unit),(y,b)],b,T,Out_Context), the output produced is composed by
two results. The first one has the term T=y and the output context Out_Context=[(x,unit)],
and the second has the term T=let(empty,x,y) and the output context Out_Context=[].

R ⊕1 Rule

1 synthesis(In_Context,or(A,B),inl(T),Out_Context) :-

2 synthesis(In_Context,A,T,Out_Context).

Listing 4.12: R ⊕1 Rule.

The R ⊕1 rule, shown in Figure 4.1, is implemented in Listing 4.12. It receives an input context
In_Context and a type or(A, B), and must return the value of the Inl term inl(T ) and the
value of the output context Out_Context. For that to happen, the predicate synthesis is called
with the In_Context as the input context, the type A, and must return the value of the term T

and the value of the Out_Context.
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R ⊕2 Rule

1 synthesis(In_Context,or(A,B),inr(T),Out_Context) :-

2 synthesis(In_Context,B,T,Out_Context).

Listing 4.13: R ⊕2 Rule.

The R ⊕2 rule, shown in Figure 4.1, is implemented in Listing 4.13. It receives an input context
In_Context and a type or(A, B), and must return the value of the Inr term inr(T ) and the
value of the output context Out_Context. For that to happen, the predicate synthesis is called
with the In_Context as the input context, the type B, and must return the value of the term T

and the value of the Out_Context.

Example 4.1.27. Given the input
synthesis([(x,a),(y,b)],or(a,b),T,Out_Context), the output produced is com-
posed by two results. The first one has the term T=inl(x) and the output context
Out_Context=[(y,b)], and the second has the term T=inr(y) and the output context
Out_Context=[(x,a)].

L ⊕ Rule

1 synthesis(In_Context,C,case(X1,inl(X2),T1,inr(X3),T2),Out_Context

) :-

2 select((X1,or(A,B)),In_Context,In_Context1),

3 synthesis([(X2,A)|In_Context1],C,T1,Out_Context1),

4 synthesis([(X3,B)|In_Context1],C,T2,Out_Context2),

5 \+(belongs((X2,_),Out_Context1)),

6 \+(belongs((X3,_),Out_Context2)),

7 cntxtLowBound(Out_Context1,Out_Context2,Out_Context).

Listing 4.14: L ⊕ Rule.

The L ⊕ rule, shown in Figure 4.1, is implemented in Listing 4.14. It receives an input context
In_Context and a type C, and must return the value of the Case term case(X1, inl(X2), T1,

inr(X3), T2) and the value of the output context Out_Context. For that to happen, the first
predicate selects the assumption (X1, or(A, B)) from the In_Context and records the remnant
in a new context In_Context1. Next, the predicate synthesis is called with the input context
In_Context1, extended with a fresh linear assumption (X2, A), the type C, and must return
the value of the term T 1 and the value of the new context Out_Context1. In the fourth line, the
predicate synthesis is called with the input context In_Context1, extended with a fresh linear
assumption (X3, B), the type C, and must return the value of the term T2, and the value of
the new output context Out_Context2. In the lines 5 and 6, it verifies if the assumptions with
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the terms X2 and X3, for any type, do not appear in the output contexts Out_Context1 and
Out_Context2, respectively. Finally, the predicate cntxtLowBound applies the partial least-lower
bound of contexts between the contexts Out_Context1 and Out_Context2 and returns the result
in the output context Out_Context.

Example 4.1.28. Given the input
synthesis([(x,or(a,a))],a,T,Out_Context), the output produced is composed by the
term T=case(x,inl(x1),x1,inr(x2),x2), and the output context Out_Context=[].

The Terms with Graded Types follows the system à la Curry, where the type-free λ-terms are
assigned with types, and it is a problem of Type Inhabitation, since, given a type, it tries to find
out which term it is associated to that type.

In this dissertation, so far, we have shown the coding of three systems, two of which given a
term return the type of that term (Graded Linear Types and Linear Haskell), and in the third
program, Terms with Graded Types, given a type returns the term for that type. Thus, for
graded types, there is always a way to obtain a type or a term. However, for Linear Haskell, it
can only get the type, for a given term, but never the other way around. In the next section we
will present an implementation that allows obtaining a term from a given linear type. This is a
first attempt to synthesize terms typed in Linear Haskell.

4.2 Partial Typed Terms

This section presents an original work consisting of a synthesis algorithm for a language with
Partial Typed Terms, based on Linear Haskell. For this language with Partial Typed Terms, the
system will not be presented formally, but there are new syntactic elements.

In this section, the predicates of the implementation in Prolog of this system are presented. The
complete code implementation of the implemented rules can be consulted in Appendix B.

This program synthesis implementation is performed for a subset of Linear Haskell. A new type
of terms was added, which is the Hole term, for which we call the synthesis algorithm for Terms
with Graded Types. Therefore, for this subset of Linear Haskell it is possible to get the term for
a given type, filling the Hole term.

Completion Rule

The forth way of the Completion rule of the Linear Haskell 3.2.1, is implemented in Listing 4.15.
This procedure is for the terms that are of the form hole(X, A). It receives an input context
In_Context and a new kind of term (a Hole term) hole(X, A), and returns the value of the
output context Out_Context. For that to happen, it first calls the remvInt and, then, the
eraseMult predicates. The first one, remvInt, is used to remove the integers (multiplicities) of
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1 completion(In_Context,hole(X,A),Out_Context):-

2 remvInt(In_Context,NewContext),

3 eraseMult(A,A1),

4 ground(A1),

5 !,

6 synthesis(NewContext,A1,X,Out_Context).

Listing 4.15: Completion Rule of the Linear Haskell.

the input context In_Context and records the new context in the New_Context, whereas, the
second, eraseMult, is used to remove the multiplicities specifically from a type A and save the
new type in A1. After removing all the multiplicities, it runs the predicate ground, which checks
if the type A is composed by only bound variables. In the next line, the ! certificates that, in the
end of this rule predicates, it does not continue running to the next rules. Finally, it calls the
function synthesis of the Program Synthesis, chapter 4.1.1, with the input context In_Context,
the type A, and return the value of the Variable term X and the value of the output context
Out_Context.

Example 4.2.1. Given the input
completion([(x,1,impl(1,a,b)),(y,1,b)],lam(1,(x,impl(1,a,b)),lam(1,(y,

b),app(hole(X,impl(1,a,b)),y))),Out_Context), the output produced is composed
by two results, where, in each result the term X is equal to x , and lam(z,app(x,z)), respect-
ively, and the output context is always the same through the results, Out_Context=[(x,1,
impl(1,a,b)),(y,1,b)].

Example 4.2.2. Given the input
completion([(x,1,impl(1,a,b)),(y,1,b)],app(hole(X,impl(1,a,b)),y),

Out_Context), the output produced is composed by two results, where, in each result the
term X is equal to x , and lam(z,app(x,z)), respectively, and the output context is always
the same through the results, Out_Context=[(x,1,impl(1,a,b)),(y,1,b)].

This rule is included in Linear Haskell, and, therefore, that is why it is called through the Type
Completion rule in Listing 3.8, and which consequently executes the Completion rule, that calls
the synthesis rules of the Terms with Graded Types, to fill out the term X.

Hole Rule

1 type(In_Context,hole(X,A),A).

Listing 4.16: Hole Rule of the Linear Haskell.

The Hole rule is implemented in Listing 4.16. It receives an input context In_Context, and a
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type A, and returns the Hole term hole(X, A), with his arguments values filled. This is only
successful if the term in question is a linear term, with multiplicity 1.

Example 4.2.3. Given the input
typeC([(x,1,impl(1,a,b)),(y,1,a)],hole(X,A),impl(1,a,b),Out_Context), the
output produced is composed by two results, where, in each result the term X is equal to x, and
lam(z, app(x,z)), respectively, and the type is always the same through the results, as well
as the output context, A=impl(1,a,b) and Out_Context=[(y,a)].

In future work the aim is to arrive at a system, this can be generalized, to fill not only one term,
but several. Whenever the programmer easily knows which the multiplicity is, it is not necessary
to write the term, in case it has multiplicity 1, i.e, if it is linear.

To summarise, in this chapter it was introduced the Terms with Graded Types system, which
follows the problem of Type Inhabitation, since given a type it should find the respective term for
that type. It was introduced and explained its inference rules and top-level implementation. It
was also presented the Partial Typed Term that follows the same problem type, Type Inhabitation,
and fills the "holes" of the Hole term with the respective term for the given type. For that to
result, it resorts to the Terms with Graded Types system. For the Partial Typed Terms, it was
revealed its top-level code implementation.





Chapter 5

Final Remarks

In this last chapter, we will summary what was done, the main goals and contributions, explaining
the main concepts that should have been retained throughout the reading of this dissertation.
We finish with the future work.

The study carried out trough this dissertation intended to create synthesis of programs from
linear types. For this we began to study some previous works: [2] and [1]. Then we began by
studying the systems of Graded Linear Types and starting to implement it, and then make the
same, to implement the main system, the system for Terms with Graded Types, which makes use
of the syntax of a language of the previous system. Next we studied and implemented the system
for Linear Haskell, and finally we implemented Program Synthesis for the Partial Typed Terms.

Through this study, we could verify similarities and differences between different systems. While
the type system, denoted by Graded Linear Types, follows the type system à la Curry because
it assigns types to the free λ-terms, and has assumptions annotated with grades, denoted by
natural numbers that tell how often the assumptions can be used, the type system, denoted
by Linear Haskell, follows the type systems à la Church, as types are explicitly assigned to
annotated type terms, and use multiplicities, which are annotated in the type arrows and in
the Abstract and Let terms. Instead of grades, the multiplicities are denoted by 1, or ω (means
an infinite number), to express how many times it can be used. Our implementation of these
systems given a term is able to discover which type is associated to that term. Graded Linear
Type system was easier to implement, due to its lower complexity, as it has only grade annotated
in the assumptions, instead of the other system, which has the multiplicities, which can also be
infinite (ω), annotated both in types and in terms.

We also implemented a new notion of Partial Typed Terms, that applied ideas from the Linear
Haskell, following the Type Inhabitation problem approach: given a type, it founds the term
associated to the given type, and fills the "holes" (typed sub-terms in fault) with the respective
term and type.

The main focus of our work was the system with Graded Types, which follows the types à la
Curry approach. For this system we also implemented a program synthesis algorithm following
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the Type Inhabitation problem that given a type, discovers the term associated with that type.

With regard to the Partial Typed Terms, for the time being, only the implementation has been
performed. It is not expected to be difficult from the top level of the implementation to do the
opposite and get to a formal system, but due to the time limitations, this part was not done.

Another problem occurred due to the use of the Prolog language. Although it is very useful, due
to its backtracking framework, it can sometimes be disadvantageous, as it runs backtracking
infinitely and ends up in a loop. This was a problem that occurred sometimes, and took time to
correct, and ended up subsisting, at least in one case, for lack of time to correct it.

Regarding future studies, there are several ways to improve this dissertation. Still, the main
objectives would be to finish rectifying any problems that may exist in the implementation code,
and formalize the system and demonstrate the correction for the Partial Typed Terms.

To conclude, taking into account all the positive and negative aspects of this dissertation, I think
the result was positive. The main objectives have been completed and the results are in sight. I
hope this thesis may help someone that wants to know in more detail systems for the Synthesis
of Programs from Linear Types.
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Appendix A

Graded Linear Types

The implementation presented is referring to the chapter 3, section 3.1.

1 :- use_module(library(simplex)).

2 :- use_module(library(pairs)).

3 :- use_module(library(clpfd)).

4

5 %%%%%%%%%%%%%%%%%%%

6 % Functions

7 %%%%%%%%%%%%%%%%%%%

8 belongsAdd(_,L) :-

9 var(L),

10 !,

11 fail.

12 belongsAdd((X,_),[(Y,_)|R]) :-

13 X == Y,

14 !.

15 belongsAdd(X,[Y|R]) :-

16 belongsAdd(X,R).

17

18 sortX(C1,C1):-

19 var(C1),

20 !.

21 sortX(C1,C):-

22 sort(C1,C).
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1 %%%%%%%%%%%%%%%%%%%

2 % Contexts

3 %%%%%%%%%%%%%%%%%%%

4 % Addition

5 cntxtAdd(C1,C2,C3):-

6 var(C2),

7 !,

8 cntxtAdd(C2,C1,C3).

9 cntxtAdd(C,[],C):- !.

10 cntxtAdd(C1,C2,[(X,grdAssump(R+S,A))|C3]) :-

11 select((X,grdAssump(R,A)),C1,NewC1),

12 select((X,grdAssump(S,A)),C2,NewC2),

13 !,

14 cntxtAdd(NewC1,NewC2,C3).

15 cntxtAdd(C1,C2,[(X,A)|C3]) :-

16 select((X,A),C2,NewC2),

17 \+(belongsAdd((X,A),C1)),

18 !,

19 cntxtAdd(C1,NewC2,C3).

20 cntxtAdd(C1,C2,C) :-

21 select((X,A),C2,NewC2),

22 \+(belongsAdd((X,A),C1)),

23 !,

24 select((X,A),C,C3),

25 cntxtAdd(C1,NewC2,C3).

26 cntxtAdd(C1,C2,C3) :-

27 !,

28 sortX(C3,NewC3),

29 cntxtAdd(C2,C1,NewC3).

30

31 %%%%%%%%%%%%%%%%%%%

32 % Top Level

33 %%%%%%%%%%%%%%%%%%%

34 typeC(In_Context,T,A,Out_Context):-

35 type(In_Context,T,A),

36 completion(In_Context,T,Out_Context).
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1 % Completion

2 completion(In_Context,lam(X,T),Out_Context1):-

3 !,

4 completion([X|In_Context],T,Out_Context),

5 select(X,Out_Context,Out_Context1).

6 completion(In_Context,app(T,U),Out_Context2):-

7 !,

8 completion(In_Context,T,Out_Context1),

9 completion(In_Context,U,Out_Context2).

10 completion(In_Context,X,In_Context).

11

12 %%%%%%%%%%%%%%%%%%%

13 % Typing Rules

14 %%%%%%%%%%%%%%%%%%%

15 % Var

16 type(In_Context,X,A) :-

17 atom(X),

18 select((X,A),In_Context,[]).

19

20 % Abs

21 type(In_Context,lam(X,T),impl(A,B)) :-

22 type([(X,A)|In_Context],T,B).

23

24 % App

25 type(In_Context,app(T1,T2),B) :-

26 type(In_Context1,T1,impl(A,B)),

27 type(In_Context2,T2,A),

28 cntxtAdd(In_Context1,In_Context2,In_Context).

29

30 % Let Graded

31 type(In_Context,let(grdTerm(X),T1,T2),B) :-

32 type(In_Context1,T1,grdType(R,A)),

33 type(In_Context2,T2,B),

34 select((X,grdAssump(R,A)),In_Context2,In_Context3),

35 cntxtAdd(In_Context1,In_Context2,In_Context).





Appendix B

Linear Haskell

The implementation presented is referring to the chapter 3, section 3.2, and to chapter 4, section
4.2.

1 :- use_module(library(simplex)).

2 :- use_module(library(pairs)).

3 :- use_module(library(clpfd)).

4

5 :- consult(termsGrTypes).

6 %%%%%%%%%%%%%%%%%%%

7 % Functions

8 %%%%%%%%%%%%%%%%%%%

9 multplScale(1,1,1).

10 multplScale(1,omega,omega).

11 multplScale(omega,1,omega).

12 multplScale(omega,omega,omega).

13

14 multplAdd(1,1,omega).

15 multplAdd(1,omega,omega).

16 multplAdd(omega,1,omega).

17 multplAdd(omega,omega,omega).
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1 belongsAdd(_,L) :-

2 var(L),

3 !,

4 fail.

5 belongsAdd((X,_),[(Y,_)|R]) :-

6 X == Y,

7 !.

8 belongsAdd(X,[Y|R]) :-

9 belongsAdd(X,R).

10

11 sortX(C1,C1):-

12 var(C1),

13 !.

14 sortX(C1,[(X,M,A)]):-

15 select((X,M,A),C1,C),

16 var(C),

17 !.

18 sortX(C1,C):-

19 sort(C1,C).

20

21 remvInt([], []).

22 remvInt([(A,X,B)|T], [(A,B)|T2]):-

23 atom(B),

24 !,

25 remvInt(T,T2).

26 remvInt([(A,X,impl(M,C,D))|T], [(A,impl(C,D))|T2]):-

27 remvInt(T,T2).

28

29 eraseMult(T,T):-

30 var(T),

31 !.

32 eraseMult(impl(M,A,B),impl(A1,B1)):-

33 !,

34 eraseMult(A,A1),

35 eraseMult(B,B1).

36 eraseMult(T,T).
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1 %%%%%%%%%%%%%%%%%%%

2 % Contexts

3 %%%%%%%%%%%%%%%%%%%

4 % Addition

5 cntxtAdd(C1,C2,C3):-

6 sortX(C1,NewC1),

7 sortX(C2,NewC2),

8 sortX(C3,NewC3),

9 cntxtAddX(NewC1,NewC2,NewC3).

10 cntxtAddX(C1,C2,C3):-

11 var(C1),

12 !,

13 cntxtAddX(C2,C1,C3).

14 cntxtAddX([],C,C):- !.

15

16 cntxtAddX([(X,M1,A)|C1], C2, C) :-

17 \+belongsAdd((X,M2,A),C2),

18 select((X,M1,A),C,C3),

19 cntxtAddX(C1, C2, C3).

20

21 cntxtAddX([(X,M1,A)|C1], C2, C) :-

22 \+belongsAdd((X,M2,A),C2),

23 select((X,M1,A),C,C3),

24 cntxtAddX(C1, C2, C3).

25

26 cntxtAddX([(X,M1,A)|C1],C2,[(X,omega,A)|C]):-

27 select((X,M2,A),C2,C3),

28 !,

29 multplAdd(M1,M2,omega),

30 cntxtAddX(C1,C3,C).

31

32 % Scaling

33 cntxtScale(M,[],[]).

34 cntxtScale(M,[(X,M1,A)|C],[(X,M2,A)|C2]):-

35 multplScale(M,M1,M2),

36 cntxtScale(M,C,C2),

37 !.

38

39 %%%%%%%%%%%%%%%%%%%

40 % Top Level

41 %%%%%%%%%%%%%%%%%%%

42 typeC(In_Context,T,A,Out_Context):-

43 type(In_Context,T,A),

44 completion(In_Context,T,Out_Context).
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1 % Completion

2 completion(In_Context,hole(X,A),Out_Context):-

3 remvInt(In_Context,NewContext),

4 eraseMult(A,A1),

5 ground(A1),

6 !,

7 synthesis(NewContext,A1,X,Out_Context).

8 completion(In_Context,lam(M,(X,A),T),Out_Context1):-

9 !,

10 completion([(X,1,A)|In_Context],T,Out_Context),

11 select((X,1,A),Out_Context,Out_Context1).

12 completion(In_Context,app(T,U),Out_Context2):-

13 !,

14 completion(In_Context,T,Out_Context1),

15 completion(In_Context,U,Out_Context2).

16 completion(In_Context,X,In_Context).

17

18 %%%%%%%%%%%%%%%%%%%

19 % Typing Rules

20 %%%%%%%%%%%%%%%%%%%

21 % Var

22 type(In_Context,X,A) :-

23 atom(X),

24 !,

25 cntxtScale(omega,In_Context2,In_Context1),

26 cntxtAdd(In_Context1,[(X,1,A)],In_Context).

27

28 % Hole

29 type(In_Context,hole(X,A),A).

30

31 % Abs

32 type(In_Context,lam(M,(X,A),T),impl(M,A,B)) :-

33 !,

34 type([(X,M,A)|In_Context],T,B).

35

36 % App

37 type(In_Context,app(T,U),B) :-

38 type(In_Context1,T,impl(M,A,B)),

39 type(In_Context2,U,A),

40 cntxtScale(M,In_Context2,In_Context3),

41 cntxtAdd(In_Context1,In_Context3,In_Context).
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1 % Let

2 type(In_Context,let(M,(X,A),T1,U),B) :-

3 type(In_Context1,T1,A),

4 type([(X,M,A)|In_Context2],U,B),

5 cntxtScale(M,In_Context1,In_Context3),

6 cntxtAdd(In_Context3,In_Context2,In_Context).





Appendix C

Terms with Graded Types

The implementation presented is referring to the chapter 4, section 4.1.

1 :- use_module(library(simplex)).

2 :- use_module(library(pairs)).

3 :- use_module(library(clpfd)).

4

5 %%%%%%%%%%%%%%%%%%%

6 % Functions

7 %%%%%%%%%%%%%%%%%%%

8 subs(X,Q,X1,Q) :-

9 var(X),

10 X == X1,

11 !.

12 subs(X,Q,Y,Y):-

13 var(X),

14 var(Y),

15 !.

16 subs(X,Q,lam(X1,T),lam(X1,T)) :-

17 var(X),

18 X == X1,

19 !.

20 subs(X,Q,lam(Y,T),lam(Y,TNew)) :-

21 var(X),

22 !,

23 subs(X,Q,T,TNew).
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1 subs(X,Q,app(M,N),app(MNew,NNew)) :-

2 var(X),

3 !,

4 subs(X,Q,M,MNew),

5 subs(X,Q,N,NNew).

6

7 belongs((X,_),[(Y,_)|R]) :-

8 X == Y,

9 !.

10 belongs(X,[Y|R]) :-

11 belongs(X,R).

12

13 %%%%%%%%%%%%%%%%%%%

14 % Contexts

15 %%%%%%%%%%%%%%%%%%%

16

17 % Subtraction

18 cntxtSub(T1,[],T1).

19 cntxtSub([],T2,T2).

20 cntxtSub(T1,T2,T3) :-

21 select((X,A),T1,NewT1),

22 select((X,A),T2,NewT2),

23 cntxtSub(NewT1,NewT2,T3).

24 cntxtSub(T1,T2,[(X,grdAssump(Q,A))|T3]) :-

25 select((X,grdAssump(R,A)),T1,NewT1),

26 select((X,grdAssump(S,A)),T2,NewT2),

27 R #>= Q+S,

28 (R #>= Q1+S -> Q #>= Q1; fail),

29 Q #>= 0,

30 indomain(Q),

31 cntxtSub(NewT1,NewT2,T3).

32

33 % Multiplication

34 cntxtMult(R,[],[]).

35 cntxtMult(R,[(X,grdAssump(S,A))|List],[(X,grdAssump(S*R,A))|List1

]) :-

36 !,

37 cntxtMult(R,List,List1).

38 cntxtMult(R,[(X,A)|List],[(X,A)|List1]) :-

39 cntxtMult(R,List,List1).
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1 % Partial least-lower bound

2 cntxtLowBound([],[],[]).

3 cntxtLowBound([],T2,[(X,grdAssump(0,A))|T3]) :-

4 select((X,grdAssump(S,A)),T2,NewT2),

5 cntxtLowBound([],NewT2,T3).

6 cntxtLowBound(T1,T2,[(X,A)|T3]) :-

7 select((X,A),T1,NewT1),

8 select((X,A),T2,NewT2),

9 cntxtLowBound(NewT1,NewT2,T3).

10 cntxtLowBound(T1,T2,[(X,grdAssump(Min,A))|T3]) :-

11 select((X,grdAssump(R,A)),T1, NewT1),

12 select((X,grdAssump(S,A)),T2, NewT2),

13 Min #= min(R,S),

14 cntxtLowBound(NewT1,NewT2,T3),

15 !.

16 cntxtLowBound(T1,[],T3) :-

17 cntxtLowBound([],T1,T3),

18 !.

19

20 %%%%%%%%%%%%%%%%%%%

21 % Syntax Rules

22 %%%%%%%%%%%%%%%%%%%

23 % LinVar

24 synthesis(In_Context,A,X,Out_Context) :-

25 nonvar(A),

26 var(X),

27 select((X,A),In_Context,Out_Context).

28

29 % GrVar

30 synthesis(In_Context,A,T,[(T,grdAssump(S,A))|Out_Context]) :-

31 select((T,grdAssump(R,A)),In_Context,Out_Context),

32 R #>= S+1,

33 S #>= 0,

34 indomain(S).

35

36 % R Implication

37 synthesis(In_Context,impl(A,B),lam(X,T),Out_Context) :-

38 synthesis([(X,A)|In_Context],B,T,Out_Context),

39 \+(belongs((X,_),Out_Context)).
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1 % L Implication

2 synthesis(In_Context,C,T,Out_Context) :-

3 select((X1,impl(A,B)),In_Context,In_Context1),

4 synthesis([(X2,B)|In_Context1],C,T1,Out_Context1),

5 var(X2),

6 \+(belongs((X2,_),Out_Context1)),

7 synthesis(Out_Context1,A,T2,Out_Context),

8 subs(X2,app(X1,T2),T1,T).

9

10 % Der

11 synthesis(In_Context,B,T,Out_Context) :-

12 select((X,grdAssump(R,A)),In_Context,In_Context1),

13 S #>= 0,

14 R #>= S+1,

15 indomain(S),

16 synthesis([(Y,A),(X,grdAssump(S,A))|In_Context1],B,T1,

Out_Context),

17 \+(belongs((Y,_),Out_Context)),

18 subs(Y,X,T1,T).

19

20 % R Graded

21 synthesis(In_Context,grdType(R,A),grdTerm(T),Out_Context) :-

22 synthesis(In_Context,A,T,Out_Context1),

23 cntxtSub(In_Context,Out_Context1,Out_Sub),

24 cntxtMult(R,Out_Sub,Out_Mult),

25 cntxtSub(In_Context,Out_Mult,Out_Context).

26

27 % L Graded

28 synthesis(In_Context,B,let(grdTerm(X2),X1,T),Out_Context) :-

29 select((X1,grdType(R,A)),In_Context,In_Context1),

30 R #>= S+1,

31 S #>= 0,

32 indomain(S),

33 synthesis([(X2,grdAssump(R,A))|In_Context1],B,T,Out_Context1)

,

34 select((X2,grdAssump(S,A)),Out_Context1,Out_Context).

35

36 % R Product

37 synthesis(In_Context,product(A,B),pair(T1,T2),Out_Context) :-

38 synthesis(In_Context,A,T1,Out_Context1),

39 synthesis(Out_Context1,B,T2,Out_Context).
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1 % L product

2 synthesis(In_Context,C,let(pair(X1,X2),X3,T2),Out_Context) :-

3 select((X3,product(A,B)),In_Context,In_Context1),

4 synthesis([(X1,A),(X2,B)|In_Context1],C,T2,Out_Context),

5 \+(belongs((X1,_),Out_Context)),

6 \+(belongs((X2,_),Out_Context)).

7

8 % R1

9 synthesis(In_Context,unit,empty,In_Context).

10

11 % L1

12 synthesis(In_Context,C,let(empty,X,T1),Out_Context) :-

13 select((X,unit),In_Context,In_Context1),

14 synthesis(In_Context1,C,T1,Out_Context).

15

16 % R Or1

17 synthesis(In_Context,or(A,B),inl(T),Out_Context) :-

18 synthesis(In_Context,A,T,Out_Context).

19

20 % R Or2

21 synthesis(In_Context,or(A,B),inr(T),Out_Context) :-

22 synthesis(In_Context,B,T,Out_Context).

23

24 % L Or

25 synthesis(In_Context,C,case(X1,inl(X2),T1,inr(X3),T2),Out_Context

) :-

26 select((X1,or(A,B)),In_Context,In_Context1),

27 synthesis([(X2,A)|In_Context1],C,T1,Out_Context1),

28 synthesis([(X3,B)|In_Context1],C,T2,Out_Context2),

29 \+(belongs((X2,_),Out_Context1)),

30 \+(belongs((X3,_),Out_Context2)),

31 cntxtLowBound(Out_Context1,Out_Context2,Out_Context).
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