
ARTICLE

Towards a hermeneutic definition of software
Luca M. Possati1✉

The paper intends to establish a comprehensive definition of software from a post-

phenomenological and hermeneutic point of view. It intends to show the contribution of

continental philosophy to the study of new technologies. In section “Introduction: why do we

need a comprehensive definition of software?,” I underline the need for a philosophical

analysis that can highlight the multifaceted and paradoxical nature of software. In section

“Engineering in written form: the five criteria,” starting from some remarks on the history of

programming languages, I define a list of minimal requirements (five criteria) that something

needs to meet to be qualified as software. All these requirements share two essential fea-

tures: the written form and the effectiveness, that is, the need to be executed by a physical

machine. In section “Software as text: a hermeneutic model,” I focus on software as form of

writing. I develop this idea by using Ricoeur’s hermeneutic model. I claim that software is a

type of text. In section “The grammatology of microprocessor,” I focus on the second

aforementioned feature: the effectiveness of software. I claim that this effectiveness is based

on the analogy between electric circuitries and Boolean logic. Software is a writing and re-

writing process that implies an interpretation on two levels, epistemological and ontological.

https://doi.org/10.1057/s41599-020-00565-0 OPEN

1 University of Porto, Porto, Portugal. ✉email: lupossati@gmail.com

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |            (2020) 7:71 | https://doi.org/10.1057/s41599-020-00565-0 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-020-00565-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-020-00565-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-020-00565-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1057/s41599-020-00565-0&domain=pdf
mailto:lupossati@gmail.com


Introduction: why do we need a comprehensive
definition of software?

[…] the program is hard to understand from the outside:
It’s a black box (Voosen, 2017, p. 22).

[…] programming languages establish the programmer as a
sovereign subject, for whom there is no difference between
command given and command completed. As a lawgiver
more powerful than a playwright or emperor, the
programmer can “say” “let there be light,” and there is
light (Chun, 2013, p. 47).

The paper intends to establish a comprehensive definition of
software and to show why simply regarding software as a
mere algorithm, or a set of algorithms, is inadequate. I

argue for the need for a philosophical analysis that can highlight
the multifaceted and paradoxical nature of software. In my opi-
nion, one of the tasks of philosophy is to shed light on the
concepts we use. Therefore, the fundamental aim of this paper is
to circumscribe some essential criteria for establishing what is
software. This paper addresses in particular two fields: media
studies and philosophy of technology.

Why do we need a comprehensive definition of software? In
what way would a comprehensive definition of software be useful
and to whom? Am I looking for a definition that is helpful also to
technicians and software professionals (non-academic contexts)?

The first answer is that we need a comprehensive definition of
software because software is pervasive, and it is the foundation of
digital technologies and media widely used in society. As Marc
Andreessen, the founder of Andreessen Horowitz (AH Capital
Management), writes in 2011, “software is eating the world”1, and
this in economic, social, and cultural ways—everything today is
software-mediated.

According to Chun (2013), a comprehensive definition of
software is impossible. Software—she says—has so many different
forms that it is impossible to reach a single definition. “Software
is, or should be, a notoriously difficult concept. Historically
unforeseen, barely a thing, software’s ghostly presence produces
and defies apprehension, allowing us to grasp the world through
its ungraspable mediation” (Chun, 2013, p. 3). There is no single
approach to software. Software is both a tangible and intangible
thing, “a paradoxical combination of visibility and invisibility, of
rational causality and profound ignorance” (Chun, 2013, p. 59).
Hence, there is not an essence of software. But why? How can
Chun argue that?

Chun’s position is symptomatic of a broader issue within
media studies. Two of the most important scholars (Kittler and
Manovich) enter a paradoxical debate, in which they assert that
there is no software and there is only software, respectively.

In a 1995 paper, Kittler has declared: “There is no software.” If
I opened my laptop, I would find neither programs nor numbers.
Software is visible and invisible at the same time. Within the
laptop, there are only electrical circuits and voltages: a certain
arrangement of electrons. Indeed, what I could see if I looked
inside my laptop would not tell me anything about how the
machine works. This is why software is an illusion—the illusion
of immateriality—and everything is reducible to hardware.
According to Kittler, if the computer were not immersed in a
human linguistic context dominated by natural language, there
would be no need for HL (high level) programming, but every-
thing would happen at the machine level, as a simple flow of
electrical impulses. From this point of view, “the signifiers [could]
be considered as voltages […] ultimately everything in a digital
computer [can be reduced] to changes in voltages” (Hayles, 2005,
p. 45).

Kittler writes:

Programming languages have eroded the monopoly of
ordinary language and grown into a new hierarchy of their
own. This postmodern tower of Babel reaches from simple
operation codes whose linguistic extension is still a
hardware configuration passing through an assembler
whose extension is that very assembler. As a consequence,
far reaching chains of self-similarities in the sense defined
by fractal theory organize software as well as hardware of
every writing. What remains a problem is only the
realization of these layers which, just as modern media
technologies in general, have been explicitly contrived in
order to evade all perception. We simply do not know what
our writing does.2

According to Kittler, the software illusion is caused especially
by the strange trend in computer culture to obscure the role and
weight of hardware. The physical machine is forgotten to make
room for programming languages, but without the former, the
latter would make no sense. For this reason, Kittler suggests the
creation of a “non-programmable system,” i.e., a form of hard-
ware so advanced that it does not need a language for organizing
operations, “a physical device working amidst physical devices
and subjected to the same bounded resources.” In such a device,
“software as an ever-feasible abstraction would not exist
anymore.”

Kittler’s thesis was broadly criticized. In Software Takes Com-
mand, Manovich claims that “There is only software.” According
to Manovich, the development of the computer as a meta-med-
ium, i.e., a medium capable of connecting, reproducing and
transforming all previous media, is not due to the transition from
analog to digital, but to the diffusion of programming languages.
Software is more powerful than hardware because of its ubiquity.
The same software can run on several different machines, devices,
and platforms. “There is no such thing as ‘digital media’. There is
only software—as applied to media data” says Manovich. But
what is software? Software is just “a combination of data structure
and set of algorithms” (Manovich, 2013, pp. 207–208). “We can
compare data structures to nouns and algorithm to verbs. To
make an analogy with logic, we can compare [data and algo-
rithms] to subject and predicates” (Manovich, 2013, p. 211; see
Manovich, 2001, pp. 218–225). However, how can the simple
combination of data and algorithm produce so much culture and
imagination? How can this combination “eating the world”?

In my view, many media studies scholars often are “victims” of
their own approach. This approach focuses too much on the role
of software in communication and its effects on the sociological
and cultural level, without tackling seriously the technical aspects
and underlying philosophical questions, such as: How does our
concept of truth change through software? How does language
change through software?, etc. Many arguments are too rhetorical
and useless. Furthermore, these works are “often written without
engagement with the history of technology literature” (Haigh,
2019, p. 15). Although his theses have a remarkable originality,
Kittler remains too tied to the anti-hermeneutic controversy and
his objectives are not clear—his approach is defined “post-her-
meneutics” (Sebastian and Geerke, 1990). In Chun and Mano-
vich, I see two inverse processes. Chun, on the one hand, stresses
too much the paradoxical aspect of software, often giving mar-
ginal aspects an excessive problematic nature. Manovich, on the
other hand, remains too tied to a definition of software that is
flattened on the notion of algorithm, without seeing its intrinsic

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-020-00565-0

2 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |            (2020) 7:71 | https://doi.org/10.1057/s41599-020-00565-0



complexity and multistability. The essence of software is lost in
the multiplicity of media.

Scholars in computer science make the same errors, but from a
different perspective. They reduce software to a set of algorithms,
namely a mathematical structure. The predominance of a tech-
nical approach and the excessive formalization produces three
remarkable issues: (a) an excessive intellectualization of software,
that is reduced to a type of formal language based on mechanical
rules; (b) the difficulty of explaining the relationship between the
program and its material execution (parallelism? causality? ana-
logy?); (c) the difficulty of explaining the phenomenon of mis-
computation (bugs, malware, etc.), that is, the errors that are
intrinsic to the programming—in itself the program, as pure
mathematical structure, could not be wrong; (d) an under-
estimation of philosophical issues.

I want to analyze here only the second point, that concerning
the ontological status of software. Colburn (1999) defines soft-
ware by coining the expression “concrete abstraction,” under-
lining its dual, almost contradictory nature. Abstractness and
concreteness are essential properties of software. There is a deep
distance between the binary language and the physical states of
the corresponding machine; “the characterization of physical state
in machine language as zeros and ones is itself an abstraction; the
kinds of physical state that this language ‘abstracts’ are boundless.
They may be the electronic states of semiconductors, or the state
of polarization of optical media, or the states of punched paper
tape, or the position of gears in Babbage’s 18th century analytical
engine.” According to Colburn, we cannot reduce a side to the
other either: a monistic approach is useless in this case. However,
a dualistic approach cannot be causal: how can a string of
numbers and operations give rise to a physical state? Colburn
prefers to speak of “pre-established harmony” (Colburn, 1999, p.
17), namely a parallelism between code and machine established
not by God, but by the programmer.

This conclusion is criticized by Irmak (2012) who prefers to
define software as an “abstract artifact,” that is an abstract object,
built by the human mind for a precise purpose. Software has no
spatial characteristics, but it is placed in a time, as well as in a
historical period—it is created and can be destroyed, unlike
Platonic ideas. Irmak develops his thesis through a comparison
with music: “I think that both software and musical works are
abstract artifacts which are created by software engineers or
composers with certain intentions,” and therefore “computer
programs are not types and thus the relation between computer
programs and their physical copies cannot be understood in
terms of the type/token distinction” (Irmak, 2012, p. 70).
Nevertheless, Irmak’s conclusion also seems problematic or
incomplete. How can the following statement “musical works and
software come into existence by some human being’s act of
creation” (Irmak, 2012, p. 71) help us understand the ontological
status of software? Computer science fails to deal coherently with
the philosophical problem of software ontological status.

I claim that we need a philosophical comprehensive definition
of software because of the lack of clarity on this concept especially
in media studies and computer science. There are too many
different theories about software; a philosophical approach to
software has to analyze the limits of each of them and looking for
a possible synthesis. In this paper, I argue that a philosophical
comprehensive definition of software is possible. Philosophy can
help us to clarify the analysis of media studies and computer
science and propose new solutions to better understand the role
of digital technologies in today’s society. My philosophical
approach will be manly continental, but open to discussing with
analytical tradition.

The paper has the following structure. In section “Engineering
in written form: the five criteria,” starting from some remarks on

the history of programming languages, I will try to define a list of
minimal requirements (five criteria) that something needs to meet
to be qualified as software. All these requirements share two
characteristics: the written form and the effectiveness, that is, the
need to be executed by a machine. In section “Software as text: a
hermeneutic model,” I focus on software as form of writing. I
develop this idea by using Ricoeur’s hermeneutic model. I claim
that software is a type of text. In section “The grammatology of
microprocessor,” I focus on the second aforementioned feature:
the effectiveness of software, i.e., the fact that software is a form of
writing that becomes what it says. I claim that the effectiveness of
software is based on the analogy between electric circuitries and
Boolean logic. This point is underlined also by Sack (2019). I want
to improve this view by claiming that this analogy is the condition
of possibility of the software hermeneutic process. The main
result of this paper is that software cannot be considered as an
object nor as a form of language. Software is a complex herme-
neutic process.

Engineering in written form: the five criteria
The OED defines software as “Programs and other operating
information used by a computer.” The Cambridge dictionary
takes the approach that software is “The instructions that control
what a computer does; computer programs.” Encyclopedia Brit-
annica offers a more detailed explanation by stating:

Software comprises the entire set of programs, procedures,
and routines associated with the operations of a computer
system. The term was coined to differentiate these
instructions from hardware—i.e., the physical components
of a computer system. A set of instructions that directs a
computer’s hardware to perform a task is called a program,
or software program.3

What does “program” mean? How was the concept of software
born? In order to reply to these questions, we have to overcome
the common definitions and go back to Turing:

A simple form of logical control would be a list of
operations to be carried out in the order in which they are
given. Such a scheme […] lacks flexibility. We wish to be
able to arrange that the sequence of orders can divide at
various points, continuing in different ways according to
the outcome of the calculations to date. We also wish to be
able to arrange for the splitting up of operations into
subsidiary operations (Turing, 1946, p. 43).

Turing is completely aware that the program cannot be a mere
list of instructions because this scheme “lacks flexibility.” Pro-
gram has to be flexible. Program has to be able to transform its
own instructions and data storage. Program has to do all these
things as fast as possible. As Priestley (2011, p. 1) says,

Computers possess this flexibility because of the great range
of programs that can be run on them. A program is a set of
instructions telling a computer how to perform a particular
task: the flexibility of the computer is therefore limited only
by the ingenuity of its programmers in describing complex
activities in a way that can be interpreted by the machine.
In fact, a better way of looking at the situation is to notice
that computers perform only the single task of carrying out
the instructions in a program: universality is not an
intrinsic property of computers but is derived from the
range of programs that can be written for them. Programs
are often referred to as software, as opposed to the
electronic hardware that makes up the computer itself.
This terminology marks a basic distinction: whereas
computers are physical devices, programs are linguistic,

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-020-00565-0 ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |            (2020) 7:71 | https://doi.org/10.1057/s41599-020-00565-0 3



or logical, entities. A program can be thought of as a text,
and the conventions governing how program instructions
should be expressed so as to be interpretable by a computer
are thought of as defining a programming language.

The word “program” in programming context was first used
by the ENIAC team (Haigh, 2019, p. 6). The history of pro-
gramming has to be seen as a part of a complex history in
which logic and technology ignored each other for a long time.
“The history of programming is seen to stand at the inter-
section of the two fields of machinery and language, and in
particular to be closely related to attempts to give a mechan-
ical account of language on the one hand, and a linguistic
account of machines on the other” (Priestley, 2011, p. 3;
emphasis added). This is a very important remark. A pro-
gramming language tries to put together two elements:
machinery and language. Logic and mathematics are only
tools that are used to realize this synthesis. They are only
functional for the synthesis between machinery and language.

The search for this synthesis dates from the beginning of the
scientific revolution with Francis Bacon and François Viète (see
Priestley, 2011, pp. 17–53). Various elements composed the his-
torical evolution of programming language: (a) the progressive
mechanization of data processing with Babbage’s machines (1822,
1830) or the Hollerith Tabulating System (1890); (b) the logic and
mathematical investigations on the concept of “effective com-
putability”; (c) the theory of formal languages in the works of
Carnap, Tarski and Church; (d) the creation and development of
ENIAC (1946) and EDVAC (1949), the first machines based on
the von Neumann architecture and the logic of stored-program
computers (von Neumann’s Draft Report, 1945). In stored-
program machines the instructions are held in internal memory
(see Haigh and Priestley, 2019, pp. 153–158; Campbell-Kelly
et al., 2018, pp. 56–65; Mahoney, 2011). This approach was
motivated by the need to make instructions available at high
speed, but it also allowed two new coding techniques to be
introduced. “Furthermore, programs could modify data in the
store, a feature that made possible the writing of programs that
could modify their own instructions to a potentially unlimited
extent” (Priestley, 2011, p. 157; emphasis added).

The Draft Report represents a moment of closure as much as a
moment of invention, a point where the efforts of many people
over the preceding decade to design machines capable of large-
scale automatic calculation reached a widely accepted conclusion.
The Draft Report creates a concrete paradigm which, as the
response to it at the Moore School course showed, enabled
workers in the field to agree on the basis of the computer design
and focus in a concentrated and collaborative way on its imple-
mentation. Outside the world of computer builders, however, the
stored-program principle attracted little immediate attention
(Priestley, 2011, p. 154).

Looking for a philosophical comprehensive definition of soft-
ware also means trying to better understand this complex his-
torical process. This definition must provide us with a set of
characteristics that belong to the object to be defined (X) and to it
alone. Such a definition should include the necessary and/or
sufficient conditions. Necessary conditions are those that some-
thing must possess in order to be defined as X. Sufficient con-
ditions are those which it is sufficient for something to possess in
order to be defined as X. In the literature, a necessary and suf-
ficient condition is indicated by the expression “if and only if.”
For example, a prime number is such if and only if its divisors are
1 and itself, and no other. The expression “if and only if” is called
“biconditional.”

Let us try to create a biconditional definition of software based
on the remarks above. I would say that software is:

1. a form of engineering, thus it is an artifact and has
functions;

2. this engineering produces sets of instructions linked to
operations, tasks, and data, i.e., the programs;

3. these programs are connected to a physical machine,
namely the computers that execute them;

4. these programs can be of different types.

Any object that can be called software if and only if it can
satisfy all these conditions.

Let us try to test each of these four criteria. A set of instructions
without any connection to the physical functioning of specific
machines such as computers would make no sense; it would be
just a useless set of rules, but not software. Software has to be
executed by a computer. However, a simple set of instructions
connected to a computer but without the application of relevant
engineering skills cannot be software. In order to produce com-
plex software, a long circular process of analysis, design, devel-
opment, testing, and maintenance is needed, and skilled people to
carry out all these steps. Once tested or released, the user is also
involved in the software process. The user’s knowledge of soft-
ware is very different from that of those who have produced it.
Developers also differ in terms of the roles they occupy within the
software lifecycle, and their experiences differ as a result. Software
is a different thing and a different experience to each of the people
who play a part in its design or use, and one might wonder if
there really is such a thing as an exhaustive knowledge of a
particular software.

Is our biconditional definition satisfactory? It is but only to an
extent. There is a feature that links all the criteria. Software is
engineering in written form; it is a form of writing; designing and
producing software means above all writing, using a written
language. Any programmer recognizes this point. “Software’s
specificity as a technology resides precisely in the relationship it
holds with writing, or, to be more precise, with historically spe-
cific forms of writing” (Frabetti, 2015, p. 68). In software, writing
gains full autonomy with respect to any writer or reader. Software
is a form of writing that is not intended to be read as such, in fact,
“for a computer, to read is to write elsewhere” (Chun, 2013, p.
91). “Software is a special kind of text, and the production of
software is a special kind of writing” (Sack, 2019, p. 35). More-
over, software not only does what it says; it also becomes what it
says: this a crucial idea that the present paper wants to analyze.
Software is not only performative in the sense of natural language.
It is a form of writing that transforms into what it says.

All the criteria we have distinguished are forms of writing: the
programs are writing, the operations performed are forms of
writing, the imagination of the programmer develops into a
writing. Therefore, I propose to add a fifth criterion to our list. I
claim that software is:

1. a form of engineering, thus it is an artifact and has a
function;

2. this form of engineering is realized in a form of writing not
made to be read;

3. this engineering produces sets of written instructions linked
to operations, tasks and data, i.e., the programs to be
executed,

4. connected to the functioning of a physical machine, namely
the computer;

5. and these programs can be of different types.

An objector could reply by saying that our approach is too
superficial, and that writing is only a marginal aspect of software.
According to our potential objector, focusing too much on writing
would be like trying to explain how a car works by saying that it is
made of metal. However, this objection is not appropriate. The

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-020-00565-0

4 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |            (2020) 7:71 | https://doi.org/10.1057/s41599-020-00565-0



written form of software is not comparable to the metal which a car
is made of. An algorithm, a list, a procedure or a formula would not
even be thinkable without writing. This is the point. Writing is not
simply a material phenomenon; it is above all a cognitive structure
which is abstract and concrete at the same time.

Another possible objection is that our thesis (the essence of
software is writing) can also be valid for other forms of human
activity, such as recipes, games, travel plans, etc. However, this
objection does not capture a decisive point. In a recipe, writing is a
means; it is meant to be read and send a message. In software,
writing is the subject. Writing becomes completely independent of
any form of reading. In a laptop, “reading” software means re-
writing it elsewhere. In digital technologies every form of acting is
writing; every action must be written in order to be done. Even the
programming language would make no sense if it were not written.

Writing has transformed the human mind more than any
other invention. In Phaedrus, Plato criticized writing because of
its inhuman pretense at recreating what is only in the mind,
outside of the mind. This is why writing is also illusory,
destroys memory and weakens the mind, according to Plato.
However, as Havelock (1963) has shown, Plato’s epistemology
is based on a rejection of the old oral culture—after all, Plato
writes. In writing, sound is reduced to space and the concept is
separated from the living present. Thanks to its autonomy,
writing improves the level of awareness and analytical thinking
and creates completely new cognitive structures (see Ong, 1982;
Goody, 1977; Serfati, 2005). In the Origins of Geometry, Husserl
(1978) claims that the appearance of writing allows a new level
of development of meaning through the inscription process,
which can be read repeatedly. The connection between writing
and computation has been emphasized by Bachimont (2010)
who develops a “transcendental deduction” of the concept of
computation from that of writing.

Writing has profoundly transformed the structure of our brain, as
Wolf (2008) shows. “Human beings invented reading only a few
thousand years ago. And with this invention, we rearranged the very
organization of our brain, which in turn expanded the ways we were
able to think, which altered the intellectual evolution of our species.
Reading is one of the single most remarkable inventions in history;
the ability to record history is one of its consequences” (Wolf, 2008,
p. 3). The ability of reading is based on “new connections among
structures and circuits originally devoted to other more basic brain
processes that have enjoyed a longer existence in human evolution,
such as vision and spoken language” (Wolf, 2008, p. 5).

How can writing help us better understand software? My
argument is that writing constitutes the fundamental mediation
between the two elements that a programming language tries to
put together: machinery and language. The history of computers
and the history of computing must be considered as parts of a
much broader history, which is that of writing.

In the following sections, I analyze the two crucial aspects of
the five requirements that I have distinguished: the written form
and effectiveness (software does not only do with it says but
becomes what it says). I use a specific philosophical model:
Ricoeur’s hermeneutics. I claim that software is a type of text.
This is a way of testing our five requirements. I want to emphasize
the unity of my intent: writing and effectiveness are two funda-
mental characteristics of the aforementioned five criteria of the
software definition. Therefore, in the next sections I discuss these
two features in a philosophical perspective (Ricoeur’s herme-
neutics) in order to better clarify the five criteria.

Software as text: a hermeneutic model
Ricoeur and the philosophy of technology. I have distinguished
five criteria that a good definition of software must respect. I have

then underlined the fact that all these criteria have two char-
acteristics in common: the written form and the effectiveness. In
the present section I further clarify the meaning of the term
“writing” for software by using Ricoeur’s hermeneutic model. In
the next section, I will analyze the other aspect of this particular
form of writing that is software: its effectiveness, or performa-
tivity, i.e., the fact that software becomes what it says.

How can we use Ricoeur’s hermeneutic phenomenology to
understand technology? What do text and software have in
common? As Kaplan (2006) points out, Ricoeur has never been
directly interested in technology; in his work we do not find a
specific analysis of the technological revolution that marked the
twentieth century. In few passages disseminated in his books,
Ricoeur seems to mainly share the Heideggerian vision of
technology which is pessimistic and apocaliptic. Nonetheless,
Ricoeur’s hermeneutics can offer us powerful tools for under-
standing technology, especially digital technology. In fact,
technology creates new cultural and social meanings. “The
empirical approach to technology studies understands it herme-
neutically and contextually: technology must be interpreted
against a cultural horizon of meaning, like any other social
reality” (Kaplan, 2006, p. 49). From this point of view, “Ricoeur’s
work becomes extremely helpful for understanding it philoso-
phically […]. Ricoeur’s hermeneutic philosophy provides a model
for interpreting the meaning of technological practices” (Kaplan,
2006, p. 49). This means that Ricoeur’s hermeneutics provides a
model for analyzing the cultural practical and social meanings of
technology. Furthermore, as other authors point out (Romele,
2015, 2017; Romele and Severo, 2016; Coeckelberg and Reijers,
2016; Gransche, 2017), technology has an intrinsic narrative
dimension and contributes to public and social narratives. From
this point of view, Ricoeur gives us a hermeneutic model to
analyze the narrative and imaginative dimensions of digital
technology.

I share these readings of the Ricoeurian hermeneutics. I think
that Ricoeur can make a very important contribution to one of
the most interesting perspectives in the contemporary philosophy
of technology: post-phenomenology.

Postphenomenology is “a particular mode of science-
technology interpretation” Ihde writes (Rosenberg and Verbeek,
2017, p. 1). This approach combines the style of Husserl’s
phenomenological investigation and the tradition of American
pragmatism. Science and technology are conceived as a funda-
mental mediation between the human being and world. They
shape our way of relating to and thinking of the world. For
example, in Ihde, the main exponent of post-phenomenology, the
relationship between technology and the human being is
conceived in four ways: embodiment relations (when a technol-
ogy is “embodied,” a user’s experience is reshaped through the
device), hermeneutic relations (the use of a device involves an
interpretation), and alterity relations (we relate to the devices in a
manner somewhat similar to how we interact with other human
beings)4 and background relations (the devices define the
environment in which the subject lives). Therefore, technologies
have to be understood in terms of the relations human beings
have with them, not as entities “in themselves.”

By focusing on mediation, postphenomenology reconceptua-
lizes the intentional relation in two distinct ways. “First, it
investigates its fundamentally mediated character. There is no
direct relation between subject and object, but only an ‘indirect’
one, and technologies often function as mediators. The
human–world relation typically is a human–technology–world
relation” (Rosenberg and Verbeek, 2017, p. 12). Secondly,
postphenomenology “does away with the idea that there is a
pre-given subject in a pre-given world of objects, with a mediating
entity between them. Rather, the mediation is the source of the

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-020-00565-0 ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |            (2020) 7:71 | https://doi.org/10.1057/s41599-020-00565-0 5



specific shape that human subjectivity and the objectivity of the
world can take in this specific situation. Subject and object are
constituted in their mediated relation” (Rosenberg and Verbeek,
2017, p. 12). Hence, intentionality is not a bridge between subject
and object, but rather a fountain from with the two of them
emerge. Starting from this rereading of intentionality, postphe-
nomenology develops a relational ontology.

Now, Ricoeur’s hermeneutics arises properly from a critique of
the classical concept of intentionality in Husserl (Ricoeur, 1986).
Language is the fundamental mediation that allows us to get in
touch with ourselves, with others and the world. But language is
first of all symbol, metaphor, and text (Ricoeur, 1975, 1986b); it is
polysemic, ambiguous, and must be interpreted. For Ricoeur,
language is not merely a set of fixed rules, but mainly a product of
the imagination. However imagination is not a subjective
phenomenon; it is an extremely complex social, cultural, and
ontological process, which develops through sedimentation and
innovation (Ricoeur, 1983). This idea can be applied to Ihde’s
notion of mediation: technology is an imaginative process whose
stratigraphy has to be reconstructed. The Ricoeurian theory of
imagination, which is mainly inspired by Kant, is a useful tool for
understanding how digital technology and the “datafication” of
society mediates between humans and the world. It reinforces and
unifies the five criteria we have described above.

Software as text. The purpose of this section is to apply Ricoeur’s
text model to the notion of software. I claim that software itself is
hermeneutic in its structure.

The core concept of Ricoeur’s hermeneutics of text is that of
distancing or “distanciation.” In the case of the text, the distancing
refers to how meaning gains autonomy from (1) the intention of the
original author, (2) the original world of circumstances in which the
author wrote or which s/he wrote about, and (3) the original readers
of the text when it was first produced (for instance, the Greek
community who listened to or read Homer’s Odyssey). Writing is
the condition of possibility of distancing.

For Ricoeur, writing is not simply a technical fact, but an essential
hermeneutical factor. Ricoeur defines the text as “written discourse.”
Through writing, the language becomes autonomous and thus
opens up to endless interpretations: This process is the text.
However, in this process “distanciation” is always connected to
what Ricoeur calls belonging, or, following Gadamer’s terminology,
“appropriation.” The autonomy of the text is the condition for the
text to be read and understood by several readers, who re-read their
own experiences through the text and transform its meaning. From
this point of view, following Heidegger and Gadamer, Ricoeur talks
of a “dialectics between distanciation and appropriation.” He
overcomes the structuralist point of view on text and literature by
arguing that the discourse can never be completely reduced to its
syntactical and grammatical structures. “Structuralism was correct
that texts have a structure. But this structure varies depending on
the kind of discourse inscribed in the text, so discerning that
structure and how it contributes to shaping that discourse helps one
identify the discourse as being of a certain type or genre” (Pellauer,
2016). The language “goes beyond itself” because it is essentially
mediation between the subject and herself/himself, between the
subject and other subjects and between the subject and the world.
Therefore, language is not only a set of symbolic structures that are
“internal” to the text, but also a movement that refers to the external
world and the reader’s praxis (see Ricoeur, 1965, 1969, 1986b).

In his most influential works on hermeneutics, Ricoeur
mentions two concepts: “explaining” and “understanding.” The
first is taken up by Dilthey and Weber and indicates the method
of exact sciences, while the second is taken up by Heidegger and
Gadamer and has an ontological and existential sense. The aim of

“explaining” is objectification and causal explanation. The
“understanding” concerns meanings and the relation between
meanings and subject’s existence. Ricoeur tries to overcome a
merely dualistic view of these two concepts. He proposes to
articulate them into a single hermeneutical model: it is necessary
to “explain more in order to understand better.” This means that
the methods of disciplines such as linguistics and literary
criticism, which treat the text as an object by analyzing its
structures, must be integrated into a broader ontological under-
standing. The text is written and thus it is an object with specific
structures. This justifies the possibility of the objectifying
approaches. However, the text is not just an object. Thanks to
its structures, the text “projects a world,” says Ricoeur. In this
world, the subject recognizes himself/herself and his/her way of
being. Imagination plays an essential role in this process (see
Ricoeur, 1983–1985). The imaginative work of the reader
responds to the imaginative work of the text. As we read in
Ricoeur (1975), the text is defined as “a heuristic model” given to
the reader, i.e., a tool that allows the reader to discover new
aspects of her/his experience and praxis. Imagination makes the
reader able to translate what the text tells him/her into his/her
existence and praxis. As Kearney (2006, p. 16) claims, Ricoeur
“argue[s] that the meaning of Being is always mediated through
an endless process of interpretations—cultural, religious, political,
historical, and scientific. Hence Ricoeur’s basic definition of
hermeneutics is the art of deciphering indirect meaning”.

By using Ricoeur’s hermeneutical model, I underline three
points:

(a) Software can be interpreted as a higher degree of
“distanciation”: In software, a language (a set of characters and
rules) becomes autonomous with respect to its author, the
circumstances and the original readers. Hence it becomes an
autonomous subject capable of acting in the world and
establishing relationships with human beings or other machines.
In software, writing is independent of any possible reading. I have
already quoted Chun (2013, p. 91), but it is useful to repeat that
“for a computer, to read is to write elsewhere.” Software is then
the realm of pure writing.

(b) Software behaves like a text: In software the dialectics
between “distanciation” and “appropriation” is realized through
different layers. Some layers are material, others immaterial, some
visible, others invisible, some imply the participation of the
human being, others do not. I propose an overview in the Fig. 1.
A movement of increasing abstraction is realized through these
levels. The language becomes less human and closer to the
machine, until it becomes pure machine code, that is, binary
language. The binary code is included and executed by the
machine, the CPU. Through these levels a translation process
takes place: the user gives a command, this command is defined
by an interface and then expressed in HL language. The code
string in HL language is translated into a compiler, that is, in
another language, which completely restructures the code in
order to make another translation possible, the one in to the
machine code. These steps are purely “internal,” syntactic and
structural—as computer science shows (see Turner, 2018).

The lowest level, “Users,” is the level of all those—humans or
machines—who have not designed and built software, but only
use it. It is a visible level as it involves all the social, psychological,
economic, and political effects of using software. “Code costs
money and labor to produce, and once it is written requires
continual inputs of energy, maintenance, and labor to keep
functioning. […] the political economy of software cannot be
ignored” (Berry, 2011, p. 61). Software is a social reality deeply
connected to the last decades of capitalist economy.

The next level is that of design, i.e., the iterative loop that
involves software creation (the planning, analysis, design,

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-020-00565-0

6 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |            (2020) 7:71 | https://doi.org/10.1057/s41599-020-00565-0



development, testing, etc.) and marketing. Here I refer to Latour’s
“trial of strength” (Latour, 1987) to emphasize how essential the
testing phase is in particular. Software is never the product of an
individual, but always a collective and collaborative endeavor,
which involves different kinds of activities and actors. These
documents translate the design phase into a written form.

At the next level we have the code itself, consisting of a formal
language for the description and the realization of the software
tasks. The HL language is written in a specific code and its strings
still contain the interpolation of the comments of programmers in
natural language that explain in detail how the code works.

There are two intermediate levels between the HL language and
the machine core, the CPU. The first one is the operating system,
which “forms the host machine on which a high-level program-
ming language is implemented” (Gabbrielli and Martini, 2010, p.
22). The second is the set of languages that translate—re-write—
the HL language into machine language, or machine code.
Indeed, the machine code must be binary because the CPU can
understand only strings of 1s and 0s. Therefore the HL programs
must be “translated” into machine code to be implemented. Then
the machine code is translated into electrical voltages. “Pro-
grammers use high-level language to develop application
program; in order for the program to become an executable
form, it must be converted in machine code (binary)” (Elahi,
2018, p. 161).

As I said above, re-writing the HL program into machine code
is the task of another language, the compiler, which restructures
and re-write the entire program.

Through a complex procedure of lexical, syntactic and
semantic analysis, the compiler produces an intermediate code,
the assembly language, which is subjected to an optimization
process. The assembly is called a low-level language”.5 This is not
an exact translation: the compiler integrates the program by
modifying it—for example, by identifying errors or making
interpolations. The compiler/assembler allows the translation of
the HL program into machine code. These strings correspond to
the operations to be performed by the CPU. At this point
software is actually realized; it performs its function. “Each of
these instructions tells the computer to undertake a simple task,
whether to move a certain piece of data from A to B in the
memory, or to add one number to another. This is the simplest
processing level of the machine, and it is remarkable that on such
simple foundations complex computer systems can be built to
operate at the level of our everyday lives” (Berry, 2011, p. 96).

The process is summarized in Fig. 2.
(c) As we can see, software is a network of writing and re-

wrting: pre-code→HL language→ compiler/assembler→ code
machine. From praxis (design loop) to praxis (actions imple-
mented by a machine) through a series of translations. Now, this
movement of internal structuring of software that proceeds from
the the user to the code, from the world to the machine, is
connected to another movement, another level of translation,

which goes in the opposite direction: from the code to the user,
from the machine to the world. The machine code is translated
into electrical impulses and, therefore, into actions in the world.
This is a hermeneutical circle. Software distances itself from the
world (HLL-assembly-machine code), but only in order to return
to the world and transform the concrete experience of the subject,
i.e., the user.

Like a novelist, the programmer defines a sequence of actions
and interactions and, by using writing, gives a certain autonomy
to her/his history/program. The program is then translated into a
series of actions. It becomes alive and acts like any other agent in
the social world. In the translation of the machine code into
electrical impulses, software returns to the user and therefore to
the world. This is the “software appropriation.” The modality of
this appropriation is not reading: The user does not read the code.
The user interacts with the machine. Appropriation is interaction.
Software gives us new model of praxis by acting. In other words, I
would say that software realizes the deep desire that animates
every type of text.

Now, as Ricoeur says, the wider the distancing, the more
intense the movement of belonging. The distancing movement
of software corresponds to new forms of appropriation, much
more complex than simply reading the text. Software “projects”
an imaginative world in front of us simply “doing it,” i.e.,
“building it.” The subject interacts with software and this
mutual shaping transforms her/his experience of the world,
namely, her/his way of acting and thinking of- and in-
this world.

Hence, I claim that software is a hermeneutical process which
is organized in two phases: (1) the explaining, i.e., the internal
structuring in several layers of writing; (2) the understanding, i.e.,
the execution, that is the interaction with the subject-user. I
explore this second layer in the next section.

The grammatology of microprocessor
Let us examine now the connection between software and
machine, and therefore the enigma of the effectiveness of soft-
ware. I said above that software “projects” an imaginative world
in front of us simply “doing it,” i.e., “building it.” In order to do
that, software has to intervene in the world. But how? How can a
text produce concrete actions by itself and interact with human
subjects? The enigma lies in the relationship between symbolic
and reality: How can a series of symbols produce real effects?
How can a symbol, in itself, change the world? As I said above,
software is not only performative in the sense of natural language.
Software does not say what it does, but it becomes what it says.
This aspect is fundamental to explain the application of the
“software-text” to the real life, namely, the understanding, the
execution, and the interaction with the subject-user.

Let us look inside the CPU and see what happens. All the CPU
activities can be described as a series of translation, namely,
writing and re-writing.

The assembly language is used to re-write the HL program
faster. A string of assembly includes a series of fixed operations
(ADD, addition, SUB, subtraction, etc.) and the positions in CPU
registers (R1, R2, etc.). For instance, the string “ADD R1, R2, R3”
means adding up the contents of R1 and R2 and then storing the
result in R3. In more technical terms, assembly language contains
three main elements: (a) the command, (b) the position in the
registers (more on this below), and (c) the position of the data in
the random access memory (RAM). Furthermore, the assembly
language is based on the nature of the processor in use: “Each
CPU has a known instruction set that a programmer can use to
write an assembly language program. Instruction sets are specific
to each type of processor” (Elahi, 2018, p. 162).

Fig. 1 The different layers that compose a software system. Some layers
are material, others immaterial; some are visible, others invisible. From top
to bottom the abstraction increases.

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-020-00565-0 ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |            (2020) 7:71 | https://doi.org/10.1057/s41599-020-00565-0 7



Only when the program is re-written by the assembly language,
the CPU can understand it. But what does “understand” mean for
the CPU?

Let us consider the fundamental activity of the CPU, the so-
called FDE cycle (Fetch, Decode, Execute; see Gabrielli and
Martini, 2010, pp. 8–9; Elahi, 2018, p. 204; Bindal, 2017, p. 156).
The PC register (Program counter, instruction pointer) receives
the memory address that allows the CPU to access, through the
Address Buses, to the main memory and find the data, which is
then transferred to the CPU through the Data Buses. The data
and the relative memory address are then stored in CPU mem-
ories, i.e., the data memory register (MDR) and the memory
address register (MAR), which are the interfaces between the
main memory and the CPU. MAR and MDR are memories that
CPU can access quickly and directly. The instruction is stored in
the instruction register (IR) until it is decoded by the control unit
(CU). The CU controls the clock in relation to which all the CPU
parts work, checks the status of the CPU by means of the so-
called flag signals, and reads the signals passing through the
control buses (interrupts, acknowledgments). The CU decodes
the instruction and translate it into a sequence of operations that
the arithmetic-logic unit (ALU) can perform. In many cases we
also talk about “microprogramming,” or firmware, microcode, or
circuit-level operations. “Microcode is generally not visible to a
‘normal’ programmer, not even to programmers who deal with
assembler code. It is also strictly associated with the particular
electronic circuitry for which is designed—in fact, it is an inherent
part of that circuitry” (Frabetti, 2015, p. 164). The microcode
allows CPU to perform more complex actions. Each instruction
corresponds to a sequence of micro-operations performed
directly by the machine. Thus, the same machine code string can
refer to one or more sets of micro-operations.6

We can summarize the entire FDE process in Fig. 3.
The string of machine code does not “tell” the CPU what to do;

the FDE is not a communication process. The CPU is not the
“interlocutor” to whom the programmer speaks by using soft-
ware. The CPU does not “answer” to the code machine string.
Once a string is received, the CPU re-writes that string: this is its
way of understanding. For the CPU, understanding means writ-
ing elsewhere. Every operation is the manipulation and re-
combination of data stored in the memory, where “stored” means
“written in the hard drive.” Storage is another form of inscription
(Kirschenbaum 2004). Manipulating and moving data mean
writing them elsewhere. All the main CPU logical operations
(ADD, SUB, MUL, Or, Exclusive Or, Nand, Nor, Exclusive Nor,
Shift Right, Shift Left, etc., see Bindal, 2017, pp. 280–300) are only
a re-writing of data stored in the CPU memories.

This process is possible because the CPU is already “written,” it
is an Ur-writing. For this reason, I mention Derrida’s concept of
“grammatology” which means the importance of writing in
human experience (Derrida, 1967). From this point of view,
Ricoeur and Derrida are not so far. In both, the concepts of trace
and inscription have an essential role. Here I use the concept of

grammatology in order to highlight the ontological nature of
writing in software.

The fact of “being already written” is precisely what allows the
CPU to write and rewrite the code, and therefore to carry out all
its fundamental operations. But what does it mean “to be already
written”? The microprocessor is the extreme inscription because
in it writing reaches the depth of matter, that is, its atomic
structure. The microprocessor is in fact a set of millions of
integrated circuits: the transistors. The basic material of inte-
grated circuits is silicon. To become a transistor, silicon must
undergo a long purification process. After the purification pro-
cess, silicon is melted to obtain pure crystals. The crystals
obtained from the fusion of the raw silicon are cut into thin disks,
the so-called “wafers.” The wafers are then cleaned until they are
completely free of defects. At this point, silicon disks are covered
by photosensitive material and exposed to ultraviolet rays. The
material is poured onto the wafers while they are rotating in order
to guarantee uniform arrangements. The reaction that occurs
during the exposure of the wafers to ultraviolet rays is like what
happens to film when taking a photograph. The exposition is
realized using a filter thanks to which it is possible to impress
precise shapes on the silicon—this is the inscription process. The
impressed shapes correspond to the project, to the design of
the microprocessor. A lens projects the image of the filter onto
the wafer in such a way that the projected and imprinted image is
at least four times smaller than the original. The exposed but not
imprinted parts of the wafer are then dissolved and eliminated
using a special solvent. The exposed parts of the wafer are then
bombarded with ions. After the bombardment, the photosensitive
material is eliminated. The wafers are placed in a copper solution.
The last phase is the application of metal layers to connect the
transistors according to the design.

What allows this physical reality to act in a computational
manner, that is, to perform increasingly complex operations?
What allows the relationship between physical structure and
abstract structure in any digital device?

I want to emphasize only one essential aspects of the CPU
making process, namely, the regulative analogy that lies at the
origin of the microprocessor. I call this analogy “regulative” fol-
lowing Kant’s terminology. I claim that this analogy gives a
meaning to everything that happens in the microprocessor. This
is the analogy between Boolean logic and electrical circuits, as
theorized first by Peirce (1993). This point is underlined also by
Sack (2019). I want to improve this view by claiming that this
analogy is the condition of possibility of the hermeneutic
appropriation of software.

The analogy seems obvious, but it is not the case. The com-
puter is built by this analogy. We are used to thinking of the
computer as a mathematical machine, but it is not at all. The
computer is just a collection of electrical material and voltages.
We interpret this series of voltages as logical operations. Through
this primitive hermeneutic act, the set of silicon and voltages
becomes a computer. This analogy works well, but it is only an

Fig. 2 The software translation process. The diagram represents the transition from a HL program to its restructuring in terms of a compiler language and
then of machine code.

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-020-00565-0

8 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |            (2020) 7:71 | https://doi.org/10.1057/s41599-020-00565-0



analogy—and therefore leaves open the space of possible errors—
and is not explicable.

In the Critique of Pure Reason, the distinction between reg-
ulative and constitutive concepts marks the distinction between
the faculty of reason and the faculty of understanding. The
understanding—with all its pure concepts and categories—con-
stitute the possibility of experience. Every experience must
necessarily conform to the categories and forms of pure intuition.
Reason, on the other hand, has a purely regulative role: the
concepts of reason are not categories to which each datum of
experience must conform. The ideas of reason do not have any
correspondence in the world of experience. However, these
concepts may have another function for knowledge, namely, a
regulative and methodological function. In other words, the
reason gives us a horizon of reference, which cannot be experi-
enced, in relation to which we can give meaning to our knowl-
edge, to all our experience (Friedman, 1992).7

The analogy between electrical circuits and Boolean logic gives
a meaning to all computer operations, but cannot be experienced.
This analogy makes the effectiveness of software possible.
Through this analogy the software not only does what it says, but
also becomes what it says. The voltages are nothing more than the
last translation of the code, its final re-writing.

Conclusions
This paper claims that a comprehensive definition of software is
possible from a hermeneutic point of view. I have chosen
Ricoeur’s model of text in order to understand how software work
and interact with human subjects. I claim that software is a
writing and re-writing process that implies an interpretation on
two levels, epistemological and ontological. The main conclusion
of the paper is that continental philosophy can help us under-
stand aspects of software that are often not considered by a
merely logical-mathematical approach. The hermeneutic process
involves two moments: (1) the explaining, i.e., the internal
structuring of software in its various layers; (2) the under-
standing, i.e., the execution, the interaction with the subject-user.

The first dimension is epistemological, the second ontological.
Software redefines our knowledge and our being-in-the-world.

The hermeneutic analysis of software opens the way to new
research on the cultural and existential dimension of digital
technology. From a Ricoeurian point of view, an important line of
research would be to understand how the narrative identity
transforms in contact with software and artificial intelligence. The
concept of narrative identity has a crucial importance in Ricoeur
(1990) because it represents the synthesis between the two fun-
damental senses of identity, namely the selfhood (ipse) and the
sameness (idem). Taking advantage of the potential of the nar-
rative function, the narrative identity puts selfhood and sameness
together. Personal identity is therefore based on the narrative, on
the constant reconfiguration of the experience of time and
memory. It is within the framework of the narrative theory ela-
borated in Ricoeur (1983–1985) that the “concrete dialectics” of
selfhood and sameness reaches its full development. Selfhood is
the temporal identity that admits changes, while sameness is
identity in the sense of permanence, of fixity.

Now, digital technologies are deeply narrative, in the sense
that, thanks to their pervasiveness, they bring about narratives
about humankind and the world. Narratives and above all self-
narratives, i.e., narratives that the subject must tell himself/herself
to give continuity and meaning to his/her existence, have
expanded and complicated. This is why digital technologies
generate new conflicts of the self.

The narrative function of new technologies is demonstrated in
particular by Coeckelbergh and Reijers (2016) that investigates
how blockchain technologies such as cryptocurrencies can
transform social world. The blockchain produces plots through
financial transactions. “Like texts, technologies have the capacity
to configure our narrative understanding by organizing events
into a meaningful whole: a plot that encompasses both humans
and technologies” (Coeckelbergh and Reijers, 2016, p. 11). The
blockchain is an example that can be applied to many other
different things: machine learning, Big Data, self-driving cars,
chatbots, etc. But how do the narrative resources of new

Fig. 3 The FDE cycle, the fundamental activity of the CPU. Once a string of code is received, the CPU re-writes that string elsewhere.

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-020-00565-0 ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |            (2020) 7:71 | https://doi.org/10.1057/s41599-020-00565-0 9



technologies affect the self? My hypothesis is that digital tech-
nologies build a new form of self, which is precisely an “algo-
rithmic self” (Elliott 2020, chapter 6). Today the construction of
personal identity is based on multiple narratives conveyed by
large AI systems that define habits, dispositions and preferences.
The problem is that these large AI systems entail also forms of
surveillance and limitation of human freedom, as Zuboff (2018)
has shown. Does this mean that the risk of narrative technologies
is to produce an “algorithmic self” based more on the sameness
(stasis) than on the selfhood (change), thus blocking the
Ricoeurian dialectic? I am not convinced of this. As Elliott (2020)
and Lupton (2019) show, Zuboff’s theses can be criticized: AI
(even its forms of surveillance) does not always have the effect of
limiting human freedom. The “algorithmic self” is not the end of
the self, but a challenge to the self. Today narrative and self-
narrative—in the Ricoeurian sense of the synthesis of hetero-
geneous—are much more complex tasks. I claim that the con-
struction of the self in the digital world passes through narratives
and self-narratives that are capable of revealing and challenging
new forms of surveillance, and thereby creating new spaces of
autonomy and freedom.

Data availability
All data generated or analyzed during this study are included in
this published article.

Received: 10 December 2019; Accepted: 30 July 2020;

Notes
1 https://a16z.com/2011/08/20/why-software-is-eating-the-world/
2 https://journals.uvic.ca/index.php/ctheory/article/view/14655/5522.
3 https://www.britannica.com/technology/software
4 “One common form is computer interface schemes that pose direct questions to the
user, such as the ATM machine that displays questions on its screen (‘Would you like
to make a withdrawal?’), or the ‘dialog box’ that opens on a computer screen to
provide program installation instructions. This is not to claim that we mistake these
devices for actual people, but simply that the interface modes take an analogous form”

(Rosenberg and Verbeek, 2017, p. 18).
5 Let us therefore call low-level, those languages whose abstract machines are very close
to, or coincide with, the physical machine. “Starting at the end of the 1940s, these
languages were used to program the first computers, but they turned out to be
extremely awkward to use. Because the instructions in these languages had to take into
account the physical characteristics of the machine, matters that were completely
irrelevant to the algorithm had to be considered while writing programs, or in coding
algorithms. It must be remembered that often when we speak generically about
‘machine language,’ we mean the language (a low-level one) of a physical machine. A
particular low-level language for a physical machine is its assembly language, which is a
symbolic version of the physical machine (that is, which uses symbols such as ADD,
MUL, etc., instead of their associated hardware binary codes). Programs in assembly
language are translated into machine code using a program called an assembler”
(Gabbrielli and Martini, 2010, p. 5).

6 Microprogramming “is at an extremely low level and consists of microinstructions
which specify simple operations for the transfer of data between registers, to and from
main memory and perhaps also passage through the logic circuits that implement
arithmetic operations. Each instruction in the language which is to be implemented
(that is, in the machine language that the user of the machine sees) is simulated using a
specific set of microinstructions. These microinstructions, which encode the operation,
together with a particular set of microinstructions implementing the interpretation
cycle, constitute a microprogram which is stored in special read-only memory (which
requires special equipment to write). This microprogram implements the interpreter
for the (assembly) language common to different computers, each of which has
different hardware” (Gabbrielli and Martini, 2010, p. 10).

7 The reference to Kant is not an inconsistency. I do not see the contradiction between
the hermeneutic position that I have defined above and the use of some Kantian
concepts. The concept of analogy in Kant is very complex and presents numerous
nuances. However, I do not use here the Kantian concept of analogy, but the Kantian
concept of “regulative use,” in the sense of a non-constitutive use of concepts for our
knowledge. Hence, in this context my use of the term “analogy” is very general: “An

analogy is a comparison between two objects, or systems of objects, that highlights
respects in which they are thought to be similar. Analogical reasoning is any type of
thinking that relies upon an analogy” (Bartha, 2019).

References
Bachimont B (2010) Le sens de la technique. Les Belles Lettres, Paris
Bartha P (2019) Analogy and analogical reason. In: Stanford Encyclopedia of

Philosophy. Stanford University Press
Berry D (2011) The philosophy of software. Palgrave McMillan, New York
Bindal A (2017) Fundamentals for computer architecture design. Springer, Berlin
Campbell-Kelly M, Aspray W, Ensmenger N, Jeffrey RY (2018) Computer: a his-

tory of information machine. Westview Press, Boulder
Chun W (2013) Programmed visions. Software and memory. MIT Press,

Cambridge
Coeckelbergh M, Reijers W (2016) Narrative technologies: a philosophical inves-

tigation of the narrative capacities of technologies. Hum Stud 39:325–346
Colburn T (1999) Software, abstraction, and ontology. Monist 82:3–19
Derrida J (1967) De la grammatologie. Seuil, Paris
Elahi A (2018) Computer systems. Digital design, fundamentals of computer

architecture and assembly language. Springer, Berlin
Elliott A (2020) Concepts of the self, 4th edn. Polity Press, Cambridge
Frabetti F (2015) Software theory. Rowman&Littlefield (Media Philosophy),

London-New York
Friedman M (1992) Regulative and constitutive. South J Philos 30:73–102
Gabbrielli M, Martini S (2010) Programming languages: principles and paradigms.

Springer, Berlin
Goody J (1977) The domestication of the savage mind. Cambridge University

Press
Gransche B (2017) The art of staging simulations: Mise-en-scène, social

impact, and simulation literacy. In: Resch M, Kaminski A, Gehring P
(eds) The science and art of simulation. Vol. I. Springer, Berlin

Haigh T (2019) Exploring the early digital. Springer, Berlin
Haigh T, Priestley M (2019) The media of programming. In: Haigh T (ed.),

Exploring the early digital. Springer, Berlin, p. 135–158
Havelock E (1963) Preface to plato. Cambridge University Press
Hayles C (2005) My mother was a computer. Digital subjects and literary texts.

University of Chicago Press
Husserl E (1978) Origin of geometry. An introduction by Jacques Derrida. Uni-

versity of Nebraska Press
Kaplan D (2006) Paul Ricoeur and the philosophy of technology. J French Philos

16:42–56
Kearney R (2006) Introduction: Ricoeur’s philosophy of translation. In: Ricoeur P

(ed.) On translation. Routledge, London
Kirschenbaum M (2004) Extreme inscription: toward the grammatology of the

hard drive. Text. Technology 2:91–125
Kittler F (1995) There is no software. ctheory.net. https://journals.uvic.ca/index.

php/ctheory/article/view/14655/5522
Irmak N (2012) Software is an abstract artifact. Grazer Philos Stud 86:55–72
Latour B (1987) Science in action. Harvard University Press
Lupton D (2019) Data selves. Polity Press, Cambridge
Mahoney M (2011) Histories of computing. Harvard University Press
Manovich L (2001) The language of new media. MIT press, Cambridge
Manovich L (2013) Software takes command. Bloomsbury, London
Ong W (1982) Orality and literacy: the technologizing of the word. Routledge,

London
Peirce C (1993) Writings of Charles S. Peirce: A Chronological Edition: 1884-1886.

Indiana University Press
Pellauer D (2016) Paul Ricoeur. In: Stanford encyclopedia of philosophy. Stanford

University Press
Priestley M (2011) A science operations. Machines. Logic and the invention of

programming. Springer, Berlin
Ricoeur P (1965) De l’interprétation. Essai sur Freud. Seuil, Paris
Ricoeur P (1969) Le conflit des interprétations. Seuil, Paris
Ricoeur P (1975) La métaphore vive. Seuil, Paris
Ricoeur P (1983–1985) Temps et récit. 3 vol. Seuil, Paris
Ricoeur P (1986) A l’école de la phénoménologie. Vrin, Paris
Ricoeur P (1986b) Du texte à l’action. Seuil, Paris
Ricoeur P (1990) Soi-même comme un autre. Seuil, Paris
Romele A(2015) Digital memory and the right to be forgotten. Ricoeurian per-

spectives Tropos 8(2):105–118
Romele A (2017) Imaginative machines. Techné 22:98–125
Romele A, Severo M (2016) From philosopher to network. Using digital traces

for understanding Paul Ricoeur’s legacy Azimuth 4(7):113–128
Rosenberg R, Verbeek P (2017) Postphenomenological investigations. Routledge,

London
Sack W (2019) The software arts. MIT Press, Cambridge
Sebastian T, Geerke J (1990) Technology romaticized: Friedrich Kittler’s discourse

networks 1800/1900. MLN 105(3):583–595

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-020-00565-0

10 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |            (2020) 7:71 | https://doi.org/10.1057/s41599-020-00565-0

https://a16z.com/2011/08/20/why-software-is-eating-the-world/
https://journals.uvic.ca/index.php/ctheory/article/view/14655/5522
https://www.britannica.com/technology/software
https://journals.uvic.ca/index.php/ctheory/article/view/14655/5522
https://journals.uvic.ca/index.php/ctheory/article/view/14655/5522


Serfati M (2005) La révolution symbolique. La constitution de l’écriture symbolique
mathématique. Editions Petra, Paris

Turing A (1946) Proposal for development in the Mathematics Department of an
Automatic Computing Engine (ACE). Technical report. National Physical
Laboratory, Teddington

Turner R (2018) Computational artifacts. Towards a philosophy of computer
science. Springer, Berlin

Voosen P (2017) The AI detectives. As neural nets push into sciences, researchers
probe back. Science 357:22–27

Wolf M (2008) Proust and the squid. The story and science of reading mind. Icon
Books, London

Zuboff S (2018) The age of the surveillance capitalism. Profile Books, London

Competing interests
The author declares no competing interests.

Additional information
Correspondence and requests for materials should be addressed to L.M.P.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-020-00565-0 ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |            (2020) 7:71 | https://doi.org/10.1057/s41599-020-00565-0 11

http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Towards a hermeneutic definition of software
	Introduction: why do we need a comprehensive definition of software?
	Engineering in written form: the five criteria
	Software as text: a hermeneutic model
	Ricoeur and the philosophy of technology
	Software as text

	The grammatology of microprocessor
	Conclusions
	Data availability
	References
	References
	Competing interests
	Additional information




