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On the lattice of polynomials with integer coefficients:
successive minima in Ly(0,1)

.

WoJciECH BANASzCzYK (Lodz)

Abstract. Let PZ be the additive subgroup of the real Hilbert space Lo (0,1) con-
sisting of polynomials of order < n with integer coefficients. We may treat PZ as a lattice
in (n 4 1)-dimensional Euclidean space; let A\;(P%) (1 < i < n+ 1) be the corresponding
successive minima. We give rather precise estimates of A;(P%) for i > %n

1. Introduction. Notation and results. Let P, be the space of poly-
nomials of degree < n, with real coefficients, and let P, ,, where 0 < r
< |n/2], be the subspace consisting of polynomials divisible by the poly-
nomial z"(1 — z)". Let then PZ (resp. P%ﬂa) be the lattice in P, (resp.
in P, ,) consisting of polynomials with integer coefficients. In the previous
paper [BL] we considered the following question: how well can polynomials

in P,,, be approximated in L,(0,1) by elements of P?T? In other words,

what is the covering radius of the lattice P%J in the space L,(0,1)? In [BL]
we gave some estimates of the covering radius for r < n/6; especially precise
estimates were obtained for p = 2.

The present paper is devoted to a deeper analysis of the geometry of
the lattice PZ in the space Lo(0,1). The main result is Theorem which
gives fairly precise estimates of the successive minima )\i(P%) for ¢ 2 %n In
Section 5 we give some estimates of the successive minima of the dual lattice
(P%,r)* and derive some transference theorems.

Notation. We use the notation introduced in [BL]. For the reader’s
convenience we recall it below.

Let X be a real normed space. By a lattice in X we mean a non-zero
finite-dimensional discrete additive subgroup of X. Every lattice L in X can
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be represented in the form
L:{]{:1$1+'~—|—kn$n:]ﬁ,...,]{?n EZ},

where n = dimspan L and z1,...,x, is a system of linearly independent
vectors; any such system is called a basis of L.
Let L be a lattice in X. We denote by p(L) the covering radius of L:

w(L) := max{d(x,L) : © € span L},
where d(z, L) is the distance from x to L.
Let n = dimspan L. We denote by \;(L) the successive minima of L:
Ai(L) == min{t > 0 : dimspan(L NtB) > i}, i=1,...,n.

Here B is the closed unit ball in X. By definition, A1 (L) is the length of the
shortest non-zero vector in L.

In the present paper X will be the real Hilbert space Ly(0,1) or one of
its subspaces.

We denote by P the space of polynomials with real coefficients. We treat
P as a subspace of L9(0,1), i.e. as an inner-product space with the usual
norm

Pl = (P )"
0

and the usual inner product
1

(PQ) = | P(x)Q(x) da.
0
Let P € P and let M be a finite-dimensional subspace of P. The distance

from P to M is denoted by d(P, M ). The orthogonal projection of P onto M
will be denoted by 7(P; M).
Let &: P — P be the operator given by
&(P)(x)=P(1—z), PeP,xzec]0,1]
Obviously, @ is a linear isometry and ¢~! = &. We denote
E={PeP:9(P)=P}, F:={PeP:p(P)=—P}.
It is clear that P is the orthogonal direct sum E & F'.
Throughout the paper, m,n,r are non-negative integers.
Let r > 0. We denote by U,, V;., S, and T, the polynomials given by
Ur(z) =2"(1—2)", Vi(z) = 2z —1)z"(1 —2)",
Sp(z) =" (1 —2)", Tp(z)=2"(1—z)"
Note that U, € E and V,. € F. By definition we have
(1.1) &:w;? ﬂ:w;w.

Observe that &(S,) = T.
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We denote by P,, (n > 0) the subspace of P consisting of polynomials
of degree < n.

Let m > 0. We denote E,, := P, NE and F,, := Py, 1 NF. It is clear
that E,, = span{Up, U, ...,U,} and F,, = span{Vp, Vi,...,V;,}. Observe
that Poy,+1 = E,, @ Fy, and Pa,, = E,, @ Fpy,—1 (orthogonal direct sums).
Here F_; := {0}.

Let > 0. We denote by M, the subspace of P consisting of polynomials
divisible by the polynomial U,(z) = z"(1 — x)". Thus M := P,

M, ={PeP:P0)=P(1) =0}
and, for r > 2,
M, ={PeP:P®0)=P*1)=0 for k=0,1,...,7r —1}.
It is clear that &(M,) = M.

Let m,r > 0. We denote E,,, := E,, "N M, and F,,, := F,, N M,.
Observe that
(1.2) E,., =span{U,,...,Up}, Fu,=span{V,,...,Vp}
if0<r<m,and Ey,, =Fp,, ={0}if m <r.

Let n,r > 0. We denote Py, , := P,, N M,. Thus

P2m+1,’r :Span{UTav;‘)"'?Umvvm}7 0 S r S m,
Py =span{U;, Vi, oo U1, V-1, U}, 0<r <m — 1,
Py = span{Upy, } for m > 0 and P,,, = {0} if n < 2r.

If N is a linear subspace of P, then we denote by N? the additive
subgroup of IN consisting of polynomials with integer coefficients. Clearly,
o(P%) = PZ.

Let 0 < r < m. It is not hard to see that U,,...,U,, is a basis of the
lattice E%M. Similarly, V,., ..., V,, is a basis of F%,r. Next, Sy, Ty ..oy Sy T,
is a basis of P%m—&-l,r’ and S,, Ty, ..., Sm—1, Tim—1,Upn is a basis of P%mw (the
1-dimensional lattice Pgm?m = E%L,m is generated by U,,). Observe that

Z Z Z 1 Z Z
Em,r+F CP2m+1,r - E(Em,r+Fm,r)v 0<r<m,

m,r -+

B +FL CPY,  CLEL +FL ), 0<r<m-1

m—1,r = 2m,r = 2 m—1,r
The above bases are not especially useful because the norms of the cor-
responding coordinate projections can be large (the elements of these bases
are far from being orthogonal). To obtain bases with better properties we
apply a procedure which might be called lattice orthogonalization.
Let 0 <r < m. We denote

(13) Um,r =U, — W(Ur; Em,r—i—l)u Vm,r =V, = 7['(‘/7“; Fm,r—‘rl)-

We have Ep, i1 = Fpyme1 = {0}, so that Uy, = Uy, and Vi, = Vi
By definition, U, (resp. V) is the shortest vector in the hyperplane
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E,, 41+ U, (vesp. in Fyypq1 + V), so that
(1-4> d(UmEm,r—&-l) = HU , d(%aFm,r-&-l) = va,rH‘

The sequence Uy, m, Upm—1,--.,Un, is just the orthogonalization of the
sequence Uy, Upm—1, ..., U,. Similarly, Vi, m, Vi m—1, ..., V; is the orthogo-
nalization of Vi, Vin—1,..., V;.

Let » > 0 and n > 2r + 1. We denote

(15) Sn,r =S5 — 77(57“; Pn,r-l—l)’ Tn,r =1, - W(Tr; Pn,r—i—l)-

Then S, (resp. Tp,) is the shortest vector in the hyperplane Py, ;1 + S,
(resp. Py r41+T;). Naturally, S, , and T;, , are both orthogonal to P, ,41.
Since &(S,) = T, and @(Ppy41) = Ppyy1, it follows that &(S,,) = T,
and

(1'6) d(SraPn,rJrl) = d(TT7P’n,T‘+1) = HSTL,T'H = HTn,TH'

The polynomials S, , and T}, , are not orthogonal (see Lemma [2.4)). The
angle between them will be denoted by ¢, ;.

Let gn,r (resp. Tn,r) denote the shortest vector in the set P%,’/"f'l + S,
(resp. P% r+1+ 7). If there are two or more such vectors, we fix any of them.
Since &(PZ 1) = pZ P and @(S ) = Ty, we may assume that &(S,, )

= an It is clear that ng+1 T,sz“ - ng+1 ms ngH m 1s a basis of
the lattice szHT Similarly, ngT,Tgmr,.. Smem 1,T2m7m 1,Un is a
basis of P2m -

Finally, we denote

(1.7) C, = /2027 1(2r + 1), r>0,
2m — 2r)!
1.8 = 02(— 0<r<
( ) m.r r(2m+27“+2) Ssrsm,
o (2m — 2r + 1)
1.9 b = C —_— 0<r<
(19) T (9m 4 21 + 3) =r=m
—2r—1)! n—l—l
1.10 — 2l >0.n> 2 + 1.
( ) Cnr r(n—|—2r+2) 5 r>0,n=>2r+
Thus
by
(1.11) Cny = w n=2m,0<r<m-—1,
b
(1.12) Cny = %wa’ n=2m+1,0<r<m.

The results. To simplify the formulas we denote

_ [ (@k/m)* 7
Xn,k = [1—(21{:/71)2] , 2k < n.
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THEOREM 1.1. Let 0 <r <n/6—2 and 0 < s <r. Then
eM2 < Ny on(PLL) = Map1 (PL) < [140.26x0 4 1)cl/2 < 1.0041cY2.

As a by-product we obtain the following estimate of M(P%,r):
THEOREM 1.2. Let 0 <r <mn/6—2. Then

L2 /2 AL/2
< u(PE Y < [141.026x0041] — < 1.0161 ",
Kn,r ’ n,r Rn,r
where
2r 4+ 1\ /2
=221+ == .
Rn,r ( + n+1 >

Theorem [1.2]is a slight improvement of [BL, Theorem 1.1].
It follows directly from Theorem and ((1.10) that, for a fixed r > 0,

M(P%,r) = %(1 +0(n™1) asn— oo

This, in turn, is a slight improvement of [BL, Theorem 1.2].

2. Minimal polynomials
LEMMA 2.1.

(a) Let n =2m and 0 <r <m—1. Then

Sn,r _ Um,r + mel,r, Tn,r _ Um,r - mel,r )
2 2
(b) Let n=2m+1 and 0 <r <m. Then
Sn,r _ Um,r ‘2“ Vm,r’ Tn,r — Um,r ; Vm,r

Proof. (a) We have Py, 41 = Ep, 11 @ Fpy—1,41 (the orthogonal di-
rect sum), U, L F and V; L E. So, n(Up; Py r41) = ©(Up; Epy 1) and
(Ve Ppyy1) = 7(Ve; Frpm1041). Hence

Sn,rsrfﬂ'(sr;Pn,T+l> UT;V} W<UT_2|_W;Pn,T+1>
U, — W(Ur; Pn,r-i—l) Ve — W(‘/;“; an—&-l)
U, — 7T(Ur; Em7r,~+1) V. — W(‘/;"; Fm—l,r+1) Um,r + Vm—l,'f‘

(toget Vi, — (Vs Frpp—1p41) = Vip—1,» we replace m by m — 1 in (1.3])). The
proof of the second equality in (a) is analogous.
The proof of (b) is similar; in this case Py 41 = Ep i1 @ Frypy1. w
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LEMMA 2.2. Let m > 0. Then ||Up|| = asl2n, ||Vinll = bot2 and

d(Ura Em,r—i—l) = a1/2 d(‘/ra Fm,r-l—l) = b1/2 0<r<m-—1.

m,r» m,rs

These are [BL, Lemmas 2.2 and 2.4].
LEMMA 2.3. Letr >0 and n > 2r +1. Then
d(Sy, Ppys1) = d(Tp, Ppyin) = /2.
Proof. We give the proof for n even; the proof for n odd is similar. So,

let n = 2m and 0 < r < m — 1. Then d(S,, Ppy41) = d(T}, Pprs1) and

Um,r + mel,r 2

d(SraPn,r+l)2 ||Sn,r||2 = H 9

2

— ||Um77‘H2 + va—l,T _ Omp + bm—l,r
= = = Cpr-
4 4
The second equality follows from Lemma[2.1[(a). The fourth one follows from
(1.4) and Lemma[2.2 =
LEMMA 2.4. Letr >0 and n > 2r + 1. Then
2r+1
= (=1t 2T
cos pny = (1)1 200

Consequently, if n > 6r + 2, then |cos py | < 1/3.

Proof. We give the proof for n even; for n odd the proof is analogous.
Let n =2m and 0 < r < m — 1. By definition, ¢, , is the angle between S, ,
and 75, ., so that

(S | Tr)
1Snr - 1T

From ([L.6) and Lemmal2.3]it follows that || Sy, ||| T, || = cn,r. Lemma[2.1](a)

yields
(Sor | Tor) = U+ Vintr | Ung = Vi1 U = Vim0 12
n,r n,r) — ) 5 = 1 .

From (1.4) and Lemma it follows that |Up.,|?> = am, and ||Vip—1.,?
= byp—1,-. Consequently, we may write

COS Ppr =

Finally, from (1.8)—(1.10) after direct calculations we obtain

Qmr — bm—l,r - _2T +1

.
dcp n+1
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Let us denote

m—1
T, = CT_L} <;am,m + Z Cn,k>7 n=2m,0<r<m-2,
k=r+1
m
Ynr = CT_L} Cnk n=2m+1,0<r<m-—1.
k=r+1

LEMMA 2.5. Letr > 0 and n > 6r + 6. Then v,, < 0.026.
The proof is similar to the proofs of [BL, Lemmas 2.11 and 2.13|.
LEMMA 2.6. Letr > 0 and n > 6r + 12. Then v, < 1.026X7,r+1-

The proof is similar to the proofs of [BL, Lemmas 2.12 and 2.14].
We will denote by Py, Py, P, ... the Legendre polynomials on [0, 1]:
1 d"(z"(z—1)")

n! dz" '

The polynomials P, can be defined by

Pu(z) = zn:(—m—’f (Z) <" Z k) ",

P, (x) =

k=0
Hence
n—1
+k+1
2.1 P)=S (=) g+ " ) (" k.
@y Aw=Sereen( ) (")
LEMMA 2.7. Let m > 0. Then

Pl
2.2 Upmo = mt :
(22) 0T em+1)(2m +2)

Pl
(23) Vm,O _ 2m+2

(2m+2)(2m+3)’
Proof. We will prove ([2.2)); the proof of (2.3) is analogous. Let

Q — Pém+1
T 2m+1)(2m+2)

By definition, Uy = 1 and U,, o is the intersection point of the hyperplane
E,,1 + Uy and the subspace (Em,l)L. Therefore, we need to prove that

(a) Q € Eyy1 + Up and (b) Q is orthogonal to E,, ;.

To prove (a) we have to show that Q — Uy € Ey, 1 = E,, N M7y, i.e. that
(¢c) Q—=Up € E,, and (d) Q@ — Uy € M. It is clear that P11 € Popy1
and Py, 11 € F. Therefore Py, | € Py, and Py, € E. So, Q € Py, NE

= E,,, whence (c) follows.
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To prove (d) we have to show that Q(0) = Q(1) = 1. Replacing n by
2m + 1 in (2.1)), we obtain

2m

/ o) — Y 2m+1\ 2m +k + 2 o
20 Pt =0 () ()

In particular Pj,,1(0) = (2m + 1)(2m + 2). Hence Q(0) = 1, and conse-
quently Q(1) = 1, because Q € E.

To prove (b), take any R € E,, 1. We have to show that (Q |R) =0, i.e.
(P3,41 | R) = 0. Integrating by parts we obtain

1 1
| Ps,i1 (2)R(2) d = [Pomy1(2)R(2)]§ — | Pamy1(2) R () da.
0 0

Since R € E,,1 C My, we have R(0) = R(1) = 0, so that the first com-
ponent on the right-hand side vanishes. The second one also vanishes: since
R e E,,1 C Py, we have R’ € Py, 1, and Pyy,1 is obviously orthogonal
to Pmel. | |

REMARK 2.8. Lemma [2.7 has the following generalization. Let us denote
2r+ 1) (r4i—1)!

i—1! (r—i+1)!
forr>0and 1 <i<r+1. It can be shown that

Orj = (27" + 1)[ Pqﬂ(z‘fl)(o) — (_1)r7i+1(

r+1
Or,i (3)
Upr = (2m—27‘)!27,P2 .
s | m-+1?
pot (2m + 21)!
r+1 o )
Ve = (2m — 2r + 1)! Z I e P2(2L+z‘+1

(2m +2i 4 1)!

1
form>0and 0 <7r <m.

The derivatives of Legendre polynomials can be represented as linear
combinations of Legendre polynomials themselves:

Péinﬂ—?Z 17 Py 1(0) Y (4k + 1) P (0) Pa,
k=0

m

(@) (i—j) -1)

Pyyiv1 = 22 ) Py i1 (0 Z (4k + 3) P 2k+1 (0) Poge1
j=1 k=0

for m > 0 and ¢ > 1. Consequently, the polynomials U,,, and V,,, can

be represented as linear combinations of Legendre polynomials. Thus, in

particular,
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Umo = G 1)2(2m +2) kio(% + 1) P,
Vino = (2m + 2)2(2m +3) i)<4k +3)Poksa,
Ui = (277112(_2;';)(272;?; 5 i) (4k + 1) Py
(2m—1 2m+4 gjo )(2k + 1)(4k + 1) Py,
Vm,1 = 12(;?;3 f‘l();;mﬁ;;l) kz—()(4k + 3) Pary1
2 Zm:(%: + 1)(2k + 2)(4k + 3) Pog41-

~(2m)---(2m+5) ~

We do not prove these facts because we are not going to use them.

PROPOSITION 2.9. The polynomials Up, o and Vi, o (m > 0) have integer
coefficients.

Proof. Fix m > 0. We will prove that U,,o € PZ: for Vim,0 the proof is
analogous. Let Uy, o(x) = Zi’ﬁo apx®. We are to prove ag,ai,...,am € Z.

We have ag = Uy,,0(0) = 1, therefore it is enough to prove that ay, —ay—; € Z
fork=1,...,2m.

From ([2.2) and (2.4)) it follows that

anin () ()

—1k /2 2 k+2
:(k+)1<£1><m+k+ ) k=0,1,...,2m.

So, for each k =1,...,2m the difference a — ay_1 is equal to
(=D* 2m\ (2m+k+2\ (D' 2m \ (2m+ k41
E+1\ k k k k—1 E—1
(—DF (2k\ (2m + k+1 e (2m+k+1
= = (—1) C ,
E+1\k 2k 2k

where C}, is the kth Catalan number. =

ap =

REMARK 2.10. In a similar way one can show that the polynomials
Som+1,0 and Topmi10 (m > 0) have integer coefficients. The coefficients of
the polynomials So,, 0 and To, 0 (m > 1) need not be integers.
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3. Auxiliary lemmas. In this section m > 1 is a fixed integer and

W, L1, Y1, - - - Tm, Ym i some fixed sequence of linearly independent vectors
in L2(0,1). We assume that
(3.1) S(w)=w and P(x;)=y, fori=1,...,m.

Let us denote
Ly :=Zw, Mpy:=spanLy=Rw, hy:=|wl|, so:=ho

and, fori=1,...,m,

L =72w+ Zz1 + Zy1 + - - - + Lx; + Zy;,

M; := span L; = span{w, x1,y1, ..., %, Yi},

hi = d(zi, M;-1),

si = (h2 4+ 2h2 + -+ 2h2)1/2,
From it follows that
(3.2) &(L;) =L;, D&(M;)=M;, i=0,1,...,m.
Hence, for each i =1,...,m,

d(y;, Mi—1) = d(P(z;), P(M;—1)) = d(zi, M;—1) = h;.
For i =1,...,m let u; (resp. v;) be the shortest vector in the hyperplane

M;_1 + x; (resp. in M;_1 + y;). If there are two or more such vectors, we

fix any of them. Since @ is an isometry, @(u;) is the shortest vector in the
hyperplane

DO(M;—1 + x;) = P(M;—1) + D(z) M1+ y;.
Therefore @(u;) = v;. Note that ||u;|| = ||vi|| = hi. Let K; := Zu; + Zv; and
let Ky := Lo = Zw.
For i = 1,...,m let @; (resp. ;) be the shortest vector in the coset

Li—1 + x; (resp. in L;—1 + ;). Since @ is an isometry, ®(4;) is the shortest
vector in the coset

D(Li—1 + x;) = P(Li—1) + () Li—1+ vy

Therefore we may and will assume that ®(4;) = 0;; hence, in particular,
|@;|| = ||vi]|. Observe that w,ay,v1,. .., 0; is a basis of the lattice L;.

Fori=1,...,mlet N; := M; © M;_1 be the orthogonal complement of
Mi—l n Mi- Thus

w; = w(wy; Ny) = w(ts; Ni),  vp = w(ys Ni) = w(ag; Ny), Ky = m(Lg; Ny).

For i = 1,...,m let & (resp. &) be the angle between u; and v; (resp.
between u; and v;).
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LEMMA 3.1. Let 0 <1 <m. Then

1/2

(3.3) plr) < (L) < (30 n(is)?)
j=0

Proof. For i=0 there is nothing to prove because Ky = Lg. Assume ¢ >1.
The first inequality in is obvious: K; = w(L;; N;) and the orthogonal
projection does not increase distances. We prove the second one by induction
on 4. It is enough to show that u(L;)? < u(Li—1)? + pu(K;)? fori=1,...,m.

Let € M;. We have to show that d(x, L;)? < u(L;—1)? + u(K;)?. There
is some y € K; with

(3.4) (|7 (; Ni) — yl| < p(EG).

We have y = n(z; V;) for some z € L;. Next, there is some ¢ € L;_; with
(3.5) (@ — 2 Miy) — )] < u(Liy).

Then

d(z,Li)* < [lo = (z + )|I* = |m(z — 2 = &, Mi—1)|* + ||m(2 — 2 — & N3)||?

E3.63
= |lm(x — 2 Mima) = tl* + w2 No) = yl? < plLio1)® + p(Ki)?. m

LEMMA 3.2. Let u,v € Ly(0,1) be linearly independent vectors with

|lul| = |lv]] = h and let £ be the angle between w and v. Let then K be
the lattice generated by u and v.
(a) One has
h
p(K) =

V2(1+ [cos€])
Consequently, th < p(K) < ?h.
(b) Assume that |cos&| < 1/2. Then M\ (K) = \a(K) = h.
(c) Assume that |cos&| < 1/3 and let p,q € Z be such that |p|+|q| > 2. Then
lpu + gv|| > 23h.
The proof is an elementary exercise in plane geometry. If 0 < £ < 7/2,
then p(K) is equal to the circumradius of the triangle with vertices 0, u, v.

LEMMA 3.3. Let 0 <i <m. Then pu(L;) < %si.

Proof. First observe that u(Lo) = pu(Ko) = p(Zw) = 3||w|| = $ho = 4 s0.

Assume i > 1. By Lemma a) we have p(Kj;) < ghj for j =1,...,i.
Hence, by Lemma [3.1

1/2

Jj=0 j=1
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LEMMA 3.4. Let 1 <i<m. Then
hi hi 57
< u(L;) < <1 + - |.
2(1 + |cos &) Z 2(1 + [cos &) 2h;
Proof. Let us write pg = %ho and
hj

i = . j=1,...,1.
J 2(1 + Jcos &])

Observe that
(3.6) RI/A<pd <hij2, j=1,...,i
We have u(Ko) = po and p(K;) = pjfor j = 1,... i according to Lemma/3.2]

Hence
1/2
pi < p(Li) < (Z u])

by Lemma [3.1] Next, we may write

j:ZOMj =m( +22u]> —uz< 3(u0+2uj)>

(43 80) oo B

(if i = 1, the sum Z _, is treated as 0). Hence

1/2 s\ 571
(Z,u]> < i(l-i- h2> <,U,Z‘<1+2h2).l

LEMMA 3.5. Let L be a lattice in L2(0,1) and let M = span L. Let
x € Ly(0,1)\ M and let h = d(x, M). Let u (resp. 4) be the shortest vector
in M +x (resp. in L+ x), let a = w(a; M) and let n be the angle between 4
and M. Then = u+ a,

(3.7) lall < u(L),

(38) h < |lall < (W + u(L)*)'? < h<1 n MLV)

2h?
and cotn < u(L)/h.

Proof. By assumption, u is the orthogonal projection of 0 onto the hy-
perplane M + x; therefore w L M and |ju|| = h. Since v € M + x and
€ L+xC M+ x, it follows that & — u € M; hence

t—u=mn(t—u;M)=n(t; M) —7(u; M) =a
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Since 4 is the shortest vector in L+x and v 1L M, it follows that a = 4 —u is
the shortest vector in L 4z —w. This implies (the length of the shortest
vector in a shifted lattice does not exceed the covering radius of the lattice;
observe that © — u € span L).

The first inequality in is obvious: ||a|| > ||ul]| = h. As @ =u+a
and u L a, we have ||@]? = |Jul®* + [la]|* < h? 4+ u(L)? by (3.7). The last
inequality in is immediate:

1/2
(h% + p(L)?)V/? = h<1 + “(hLQ)2> < h(l + “2(22)2>

Finally, cot n = [ja||/||u| < p(L)/h by (B.7). =

For ¢ = 1,...,m let n; be the angle between u; and M,;_1; naturally,
it is the same as the angle between v; and M;_1, because @(u;) = v; and
D(Mi—1) = M;_.

LEMMA 3.6. Let 1 <i<m. Then:

~ ~ 2 i 12 571

) o < il =l < (84 221 ) <14 53 )
(b) cotn; < s-1/(2hi);
(c) leos&| < Jeos&| + s7_y/(4h3).

Proof. From Lemma [3.3] we obtain
(3.9) /L(Li_l) S Si_1/2.
By Lemma |3.5| we have

~ ) 2 2\1/2 H(Li—l)Q
hi < Jlaill = 9]l < (hi + p(Liz1)”)" < hi{ 14 =55
i

and cotn; < u(L;—1)/hs, so that (a) and (b) follow from (3.9).

(¢) Denote a = m(@;; M;—1) and b = 7(%;; M;_1). By Lemma [3.5 we have
u; = u; + a and v; = v; + b; moreover a,b L u;,v;. Hence

(@i [00)] = |(ui + alvi + b)] < |(ui[vi)| + [(a | )] < [(uilvi)| + [la] - [[b]]-

By (a) we have ||;|| = ||o;]| > hs; from Lemma and (3.9) we obtain
lall, 116l < p(Li—1) < $si—1. Consequently,
(@i o] _ [(uifv)| ol - [|] Si 4
— - < < |cos&;| + . m
| - Tl = Ml - ol el - [l booang
LEMMA 3.7. Let 0 <1 <m. Then )\2i+1(Lz') < 8.
Proof. We have A\1(Lg) = ||w|| = ho = so. Let @ > 1. Then w, 41,01, ...,

U;, ; are linearly independent vectors in L;. According to Lemma [3.6(a), for
j=1,...,7 we have

1311 = [19]1* < B3 + 571 /4 < 2h5 + 57y = 57 < si,

so that ||ﬂj||, ||1~1j|| < S;. m

\COS&\ =
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Let B (resp. B) denote the open (resp. closed) unit ball in Ly (0, 1).
LEMMA 3.8. Let 1 <i<m and Si—1 < hz Then )\2i+1(Li) < ||1~LZH

Proof. Denote r = ||@;||. We may write Agi—1(Li—1) < si—1 < h; <
|l@;|| = r; the first inequality follows from Lemma the third one follows
from Lemma (a). So, the ball rB contains 2i — 1 linearly independent
elements of L;_1. Moreover, rB contains the vectors @;, ; € L; \ M;_1. Thus
A2ip1(Li) < 7. m

LEMMA 3.9. Let 1 <4 <m. Assume that

(3.10) il < 2$3hs,
(3.11) lal <h;,  it1<j<m,
(3.12) |cos &;| < 1/3,
(3.13) lcos&i| <1/2, i+1<j<m.

Then Aai(Lim) > [t

Proof. Denote r = ||@;||. It is enough to show that rB N L, C M;_;.
First we prove that

(3.14) rBA Ly, C rBN L.

If ¢+ = m, there is nothing to prove. Assume ¢ < m. From we get
r < hp, whence B C h,, B. From (3.13]) we get |cos&,,| < 1/2, whence
M(Kp) = hy due to Lemma [B.2(b). Next, it is not hard to see that
M (Ky)B N Ly, C Ly,—1. Consequently,

rBN Ly ChypBN Ly, =AM(Ky)BN Ly, C L1,
and therefore rBN Ly, CrB N Ly,_1.

If ¢ < m — 1, we can repeat the above argument, with m replaced by
m—1,toget rBN Ly, _1 CrBNL, 3 and so on. After m — 1 such steps

we obtain (3.14)).

It remains to show that rBN L; C M;_. Let x € L; \ M;_1. We have to
show that ||z| > r. We may write

Li=L,_ 1+ Zx; + Zy; = U (Li—1 + pxi + qus).
P.qEL

So, x € Li—1 + px; + qy; for some p,q € Z with [p| +|q| > 1. If p = 1
and g = 0, then ||z|| > ||@;|| = r, because 4; is, by definition, the shortest
vector in L;_1 + x;. If p = —1 and ¢ = 0, then —x € L;_1 + x;, so that
lz|| = ||—=| > r. In the same way we prove that ||z|| > r if p = 0 and
q = £1. Finally, if |p| + |q| > 2, then, by (3.12]) and Lemma (c), we have
lpui + qui|| > 2£3h;. Thus

2]l > Il (z; N) | = llpws + quil| > 252h; > 7.
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4. The proofs. We will prove Theorems [I.1] and [I.2] for n even. For n
odd the proofs are almost the same and need only minor modifications; one
needs analogues of the lemmas from Section 3. The difference between the
two cases is the following. If n = 2m, then in the proofs below we consider
the lattice P% with the basis Sy, 7o, ..., Sm—1,Tm—1,Um. For n = 2m + 1

one should consider the basis Sy, 1o, . . ., Sm, I instead.
In this section m > 1 is a fixed integer and n = 2m. We set w := U,
= Up,m and
;= Sm—i, Yi'=Tm, 1=1,...,m.

Let then L;, M;, h;, s;, u;, v;, U;, U; and & be defined as in Section 3. Thus
Ly =2U,,, My=spanLy=RU,, ho=s0=|Unl
and, fori=1,...,m,
Li = ZUp + ZSm—1 + ZTrn—1 + - + LSm—i + ZTrn—i = PL .,
M; = span{Up,, Sm—1, Trn—1, - - - » Sm—is Tm—i} = Py m—i,
hi = d(Sm—i, Prm—it+1),

i 1/2
8i = (HUmHQ +2 Zd(s’”_j’ P”’m_j+1)2) ’
=1

Uq = Sn,m—h U = Tn,m—i; U; = Sn,m—i; U = Tn,m—i: é-z = Pn,m—i-

By Lemmaﬁ we have || Uy, || = a,ln/}m. By Lemmam fori=1,...,m we

have d(Spm—i, Pnm—it1) = C:l/;_iﬂ so that h; = crll/;_i and
i 1/2 -1 1/2
= (o2 ennes) = (w42 X enr)

j=1 k=m—i

Therefore for ¢ > 2 we may write

2 m—1
Si—1 . —1 Am,m .
22 = Cnom—i T + g Cnk | = Tnm—i-
i k=m—i+1

Lemma [2.6] says that v, < 0.026 if 37 + 3 < m. In other words, we have
s?_l/iﬁ < 0.052 if 37 > 2m + 3, which implies in particular that

(41) Sj—1 < hj if 35 > 2m + 3.
Proof of Theorems and[I.3 By assumption we have
(4.2) r<n/6—2,

i.e. n > 6r + 12. Hence, by Lemma [2.7]
(4.3) Yo < 1.026Xp 011
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Condition (4.2)) implies that 2(r +1)/n < 1/3, whence
2(r+1)/n)? 1° 1/9 \* 1
4.4 nr+l = = —.
(44) Xnrtl = 1T 00+ 1)/m)2) ~\1-1/9 64
Let us denote ¢ = m — r. Then n — 2r = 27 and

1/2 Z 7 —
clt=h;, PL =L; PL=PL =L,
2
Gur i Ty = S
n,r = Uj, n,r — Ui, Ynor = 3 -
2h3

We begin with the proof of Theorem Condition (4.2)) may be written
as 3r < m — 6, whence

(4.5) 3t =3m—3r>2m+6.
Now from it follows that
(4.6) $i—1 < hi.
Hence, by Lemma [3.8] we obtain Ao 11(L;) < ||, ie.
(4.7) Mneari1(PZ,) < 110l
To apply Lemmawe have to Verify mfm Lemma (a) yields

u A2 <2452y /a D 24 n2/a < A2,
which proves . To prove (3.11)) suppose that ¢ + 1 < 57 < m. Then
3j > 3i2m+ 6 and, by (4.1)),
(4.8) sj—1 < hj.
Now, by Lemma [3.6]a),
]2 < b2 +sl JA<BE st /2= 52/2 <52, 2 n22 < 12,

which proves . Finally, if 7 > ¢, then (4.5)) implies 35 > 2m + 1, which
may be Written as 3(m —j) + 1 < m. Hence by Lemma [2.5] |COS§J| =

|cos n,m—j| < 1/3. This proves and - Thus, by Lemma
A2i(Lin) > ||, i-e.

(4.9) Ancar (P o) 2 (1S |l-

Now, as 0 < s < r, we may write

~
HSn,rH < )‘n—2r(P%0) < )‘n—2r(P% )

47

< )\n 2T+1(P ) < )\n 2r+1(P ) HSH TH
which gives
)\anT(P%,s) = )‘n 2r+1(P ) HSn TH
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From Lemma a) we obtain

8h?

)

he < ] < <1+ i )h
which means that
~ v, ;
2 <13, < (14 2 )2

To complete the proof of Theorem [I.1] it remains to observe that

1+ 'Yn,r/4 14 0.26xp,4+1 < 1.0041.

The proof of Theorem is very short. From Lemma [2.5| we get

Koy = \/2(1 + |cos onr|) = V2(1 + |cos&).

So, according to Lemma
1/2 1/2
Cn,r 7 Cn,r
S /J‘(Pn,r) < (1 + ’77177“)

Rn,r Rn,r

To complete the proof it remains to observe that

1+ Yp, < 1+ 1.026x5,41 < 1.0161. =

REMARK 4.1. The sequence

(41()) S’n,Oa Tn,Oa Sn,la Tn,la C) Sn,mfla Tn,mfla Um

is a basis of the lattice P%. Let ¢y, denote the angle between S’mﬂ and Tmr.

Next, let ’([er denote the angle between S’n,r (or Tnﬂ«) and the subspace
P, ;41. From the above proof and from Lemma [3.6(b),(c) one can deduce
that if 0 <r <n/6 — 2, then
cot P < (nr/2)Y? < VOBI3 XY, < 0.09,

Yrn.r 2r+1 1 0.513

: 0.513 -+ —— < 0.342.
2 STl o UPPXmril S g TS
So, if r is small compared to n, then the polynomial S’nvr (resp. Tmr) is almost
orthogonal to the other polynomials of the basis (4.10)).

REMARK 4.2. Let m > 1. From Proposition [2.9]it follows that the lattice
EZ = E%%O is the orthogonal direct sum of the m-dimensional lattice E7Zn71

|cos @n,r| < [0S | +

and the 1-dimensional lattice ZU,, o. Similarly, F' %1 is the orthogonal direct
sum of F%z,l and ZV, 0.

REMARK 4.3. Little is known about the successive minima \;(PZ) for
i < 2n/3. The only exception is the first minimum, A\;(PZ). By definition
we have
M (Py) = min{||Pl|,0.) : 0 # P € P}
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Let us denote
0n = min{|[Pllogqy : 0 # P € Py }.
The limit
tz([0,1]) := lim o)/"

n—o0

is called the integer Chebyshev constant for the interval [0, 1] and was inves-
tigated in many papers; see e.g. [P1l [P2] for historical and bibliographical
information. The best known bounds are

0.4213 < tz(]0,1]) < 0.42291334
(see [P2, p. 3]). It is a standard fact that
1PNl y0,1) < [I1Pllcpoy < (04 DIIPlLo0,1)

for P € P,,. Hence it follows that lim, e A1 (PZ)Y™ = t5([0,1]).

5. Dual lattices and transference theorems. Let L be a lattice in
L(0,1). By the dual lattice we mean the set

L*:={PespanL: (P|Q) € Zforall Qe L}.
THEOREM 5.1.

(a) Let r >0 and r < n/6. Then

—-1/2
* * Cn,
NP )) = Nal(PE)) = 22—
n,r
(b) Let r >0, s> 1 and r + s < n/6. Then
L2
T+ * *
ﬁ < Aasi1((P%)*) = Aasi2((PL 1))
—-1/2 —-1/2
< |:1 + 1 ) Xn,r+s :| cn,rérs < @ ) Cn,r/+s
4 1= Xnpts|SIN@p s — 252 Sin@pits

Note that, by Lemma [2.5

. 2r+2s+1 2
S gnrs =\ =\ )

Theorem [5.1] is a relatively simple consequence of the estimates of the
quantities ¢, and 7, which we used in the proof of Theorem @ We omit
the proof; it is long and consists in labourious calculations. In some sense it
is dual to the proof of Theorem
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Let L be a d-dimensional lattice. Then the following transference theo-
rems are valid:

(5.1) 1 <Agp1-i(L)-N(L*) <d, i=1,....d,

(5.2) 2 < (L) AL*) < 3d.

The lower bounds are trivial and the upper bounds were obtained in [B];
see also |Gl Sect. 5, p. 751]. A result of Conway and Thompson (see [MH])
shows that there exist d-dimensional (even self-dual) lattices Ly such that
M (La) - M(L})) > vd, where v > 0 is some numerical constant. This means
that the upper bounds in and are the best possible up to some
multiplicative constants.

The 2-dimensional lattice P% = P%O is a hexagonal lattice generated by
the polynomials 2 and 1 — z of the same length 1/3/3; the angle between
them is equal to 7/6. It is easy to see that Aj((P%)*) = 2, so that A (PZ) .
M ((P%)*) = 24/3/3, and this is the maximal possible value of this product
for 2-dimensional lattices. This observation led to the following questions:
how ‘twisted’ (far from orthogonal) can the lattices PZ be and how big can
the products /\n_gr+2_i(P%7r)-)\,;((P%r)* and M(P%m)')\l((P%,r)*) be? (The
dimension of the lattice P%T is equal to n — 2r +1.)

Let us replace r by r 4+ s and s by r in Theorem Then we get

1/2 1/2
Cn{,«_;,_s < A’n—QT—QS(P%,T) = )‘n—27’—25+1(P%,7") < [1 + 0'26X7117’+8+1]cn{r+s

provided that r + s < n/6 — 2. Combined with Theorem this yields
1 *

m < /\n—2r—i+2(P%,r) ’ /\z’((Pg,r) )
<[1+026X 1]. 1+1 X’IL,T-I-S ) 1
. et 4 1- Xn,r+s sin Spn,r-l—s
for i = 2541, 25+ 2. Hence it follows that if 7 and r are small compared to n,
then the product )\n_gT_Hg(PZ’T) -)\Z-((P%,r)*) is close to 1. In particular, if
2r +i <mn/3 —2, it is less than 1.07.

Theorem [1.2] combined with Theorem [5.1] yields

1
sin @y, - \/2(1 + |cospnr|)

< [1 + 1'026Xn,r+1] :

WPy ) M((Pag)")

1
sin @pp - 1/2(1 + [cos on])
So, if r is small compared to n, then the product ,u(PTZw_) M ((Ppy)*) is

close to v/2/2.

The above remarks show that if r is small compared to n, then from the
point of view of transference theorems the lattices P% are not especially

r
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interesting. This is due to the fact that in a certain sense they are almost
orthogonal (see Remark [4.1)). It is not clear what happens for r 2 n/3.
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