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On the lattice of polynomials with integer coefficients:
successive minima in L2(0, 1)

Wojciech Banaszczyk (Łódź)

Abstract. Let P Z
n be the additive subgroup of the real Hilbert space L2(0, 1) con-

sisting of polynomials of order ≤ n with integer coefficients. We may treat P Z
n as a lattice

in (n+ 1)-dimensional Euclidean space; let λi(P
Z
n) (1 ≤ i ≤ n+ 1) be the corresponding

successive minima. We give rather precise estimates of λi(P
Z
n) for i & 2

3
n.

1. Introduction. Notation and results. Let P n be the space of poly-
nomials of degree ≤ n, with real coefficients, and let P n,r, where 0 ≤ r
≤ bn/2c, be the subspace consisting of polynomials divisible by the poly-
nomial xr(1 − x)r. Let then P Z

n (resp. P Z
n,r) be the lattice in P n (resp.

in P n,r) consisting of polynomials with integer coefficients. In the previous
paper [BL] we considered the following question: how well can polynomials
in P n,r be approximated in Lp(0, 1) by elements of P Z

n,r? In other words,
what is the covering radius of the lattice P Z

n,r in the space Lp(0, 1)? In [BL]
we gave some estimates of the covering radius for r . n/6; especially precise
estimates were obtained for p = 2.

The present paper is devoted to a deeper analysis of the geometry of
the lattice P Z

n in the space L2(0, 1). The main result is Theorem 1.1, which
gives fairly precise estimates of the successive minima λi(P Z

n) for i &
2
3n. In

Section 5 we give some estimates of the successive minima of the dual lattice
(P Z

n,r)
∗ and derive some transference theorems.

Notation. We use the notation introduced in [BL]. For the reader’s
convenience we recall it below.

Let X be a real normed space. By a lattice in X we mean a non-zero
finite-dimensional discrete additive subgroup of X. Every lattice L in X can
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be represented in the form

L = {k1x1 + · · ·+ knxn : k1, . . . , kn ∈ Z},
where n = dim spanL and x1, . . . , xn is a system of linearly independent
vectors; any such system is called a basis of L.

Let L be a lattice in X. We denote by µ(L) the covering radius of L:

µ(L) := max{d(x, L) : x ∈ spanL},
where d(x, L) is the distance from x to L.

Let n = dim spanL. We denote by λi(L) the successive minima of L:

λi(L) := min{t > 0 : dim span(L ∩ tB) ≥ i}, i = 1, . . . , n.

Here B is the closed unit ball in X. By definition, λ1(L) is the length of the
shortest non-zero vector in L.

In the present paper X will be the real Hilbert space L2(0, 1) or one of
its subspaces.

We denote by P the space of polynomials with real coefficients. We treat
P as a subspace of L2(0, 1), i.e. as an inner-product space with the usual
norm

‖P‖ =
(1�
0

P (x)2 dx
)1/2

and the usual inner product

(P |Q) =

1�

0

P (x)Q(x) dx.

Let P ∈ P and letM be a finite-dimensional subspace of P . The distance
from P toM is denoted by d(P,M). The orthogonal projection of P ontoM
will be denoted by π(P ;M).

Let Φ : P → P be the operator given by
Φ(P )(x) = P (1− x), P ∈ P , x ∈ [0, 1].

Obviously, Φ is a linear isometry and Φ−1 = Φ. We denote
E := {P ∈ P : Φ(P ) = P}, F := {P ∈ P : Φ(P ) = −P}.

It is clear that P is the orthogonal direct sum E ⊕ F .
Throughout the paper, m,n, r are non-negative integers.
Let r ≥ 0. We denote by Ur, Vr, Sr and Tr the polynomials given by

Ur(x) = xr(1− x)r, Vr(x) = (2x− 1)xr(1− x)r,
Sr(x) = xr+1(1− x)r, Tr(x) = xr(1− x)r+1.

Note that Ur ∈ E and Vr ∈ F . By definition we have

(1.1) Sr =
Ur + Vr

2
, Tr =

Ur − Vr
2

.

Observe that Φ(Sr) = Tr.
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We denote by P n (n ≥ 0) the subspace of P consisting of polynomials
of degree ≤ n.

Let m ≥ 0. We denote Em := P 2m∩E and Fm := P 2m+1∩F . It is clear
that Em = span{U0, U1, . . . , Um} and Fm = span{V0, V1, . . . , Vm}. Observe
that P 2m+1 = Em⊕Fm and P 2m = Em⊕Fm−1 (orthogonal direct sums).
Here F−1 := {0}.

Let r ≥ 0. We denote by M r the subspace of P consisting of polynomials
divisible by the polynomial Ur(x) = xr(1− x)r. Thus M0 := P ,

M1 := {P ∈ P : P (0) = P (1) = 0}
and, for r ≥ 2,

M r := {P ∈ P : P (k)(0) = P (k)(1) = 0 for k = 0, 1, . . . , r − 1}.
It is clear that Φ(M r) = M r.

Let m, r ≥ 0. We denote Em,r := Em ∩M r and Fm,r := Fm ∩M r.
Observe that

(1.2) Em,r = span{Ur, . . . , Um}, Fm,r = span{Vr, . . . , Vm}
if 0 ≤ r ≤ m, and Em,r = Fm,r = {0} if m < r.

Let n, r ≥ 0. We denote P n,r := P n ∩M r. Thus

P 2m+1,r = span{Ur, Vr, . . . , Um, Vm}, 0 ≤ r ≤ m,
P 2m,r = span{Ur, Vr, . . . , Um−1, Vm−1, Um}, 0 ≤ r ≤ m− 1,

P 2m,m = span{Um} for m ≥ 0 and P n,r = {0} if n < 2r.
If N is a linear subspace of P , then we denote by NZ the additive

subgroup of N consisting of polynomials with integer coefficients. Clearly,
Φ(P Z) = P Z.

Let 0 ≤ r ≤ m. It is not hard to see that Ur, . . . , Um is a basis of the
latticeEZ

m,r. Similarly, Vr, . . . , Vm is a basis of F Z
m,r. Next, Sr, Tr, . . . , Sm, Tm

is a basis of P Z
2m+1,r, and Sr, Tr, . . . , Sm−1, Tm−1, Um is a basis of P Z

2m,r (the
1-dimensional lattice P Z

2m,m = EZ
m,m is generated by Um). Observe that

EZ
m,r + F Z

m,r ( P Z
2m+1,r ( 1

2(E
Z
m,r + F Z

m,r), 0 ≤ r ≤ m,
EZ

m,r + F Z
m−1,r ( P Z

2m,r ( 1
2(E

Z
m,r + F Z

m−1,r), 0 ≤ r ≤ m− 1.

The above bases are not especially useful because the norms of the cor-
responding coordinate projections can be large (the elements of these bases
are far from being orthogonal). To obtain bases with better properties we
apply a procedure which might be called lattice orthogonalization.

Let 0 ≤ r ≤ m. We denote

(1.3) Um,r := Ur − π(Ur;Em,r+1), Vm,r := Vr − π(Vr;Fm,r+1).

We have Em,m+1 = Fm,m+1 = {0}, so that Um,m = Um and Vm,m = Vm.
By definition, Um,r (resp. Vm,r) is the shortest vector in the hyperplane
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Em,r+1 + Ur (resp. in Fm,r+1 + Vr), so that

(1.4) d(Ur,Em,r+1) = ‖Um,r‖, d(Vr,Fm,r+1) = ‖Vm,r‖.

The sequence Um,m, Um,m−1, . . . , Um,r is just the orthogonalization of the
sequence Um, Um−1, . . . , Ur. Similarly, Vm,m, Vm,m−1, . . . , Vr is the orthogo-
nalization of Vm, Vm−1, . . . , Vr.

Let r ≥ 0 and n ≥ 2r + 1. We denote

(1.5) Sn,r := Sr − π(Sr;P n,r+1), Tn,r := Tr − π(Tr;P n,r+1).

Then Sn,r (resp. Tn,r) is the shortest vector in the hyperplane P n,r+1 + Sr
(resp. P n,r+1 + Tr). Naturally, Sn,r and Tn,r are both orthogonal to P n,r+1.
Since Φ(Sr) = Tr and Φ(P n,r+1) = P n,r+1, it follows that Φ(Sn,r) = Tn,r
and

(1.6) d(Sr,P n,r+1) = d(Tr,P n,r+1) = ‖Sn,r‖ = ‖Tn,r‖.

The polynomials Sn,r and Tn,r are not orthogonal (see Lemma 2.4). The
angle between them will be denoted by ϕn,r.

Let S̃n,r (resp. T̃n,r) denote the shortest vector in the set P Z
n,r+1 + Sr

(resp. P Z
n,r+1+Tr). If there are two or more such vectors, we fix any of them.

Since Φ(P Z
n,r+1) = P Z

n,r+1 and Φ(Sr) = Tr, we may assume that Φ(S̃n,r)
= T̃n,r. It is clear that S̃2m+1,r, T̃2m+1,r, . . . , S̃2m+1,m, S̃2m+1,m is a basis of
the lattice P Z

2m+1,r. Similarly, S̃2m,r, T̃2m,r, . . . , S̃2m,m−1, T̃2m,m−1, Um is a
basis of P Z

2m,r.
Finally, we denote

Cr :=
√

2(2r)!(2r + 1)!, r ≥ 0,(1.7)

am,r := C2
r

(2m− 2r)!

(2m+ 2r + 2)!
, 0 ≤ r ≤ m,(1.8)

bm,r := C2
r

(2m− 2r + 1)!

(2m+ 2r + 3)!
, 0 ≤ r ≤ m,(1.9)

cn,r := C2
r

(n− 2r − 1)!

(n+ 2r + 2)!
· n+ 1

2
, r ≥ 0, n ≥ 2r + 1.(1.10)

Thus

cn,r =
am,r + bm−1,r

4
, n = 2m, 0 ≤ r ≤ m− 1,(1.11)

cn,r =
am,r + bm,r

4
, n = 2m+ 1, 0 ≤ r ≤ m.(1.12)

The results. To simplify the formulas we denote

χn,k :=

[
(2k/n)2

1− (2k/n)2

]2
, 2k < n.
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Theorem 1.1. Let 0 ≤ r ≤ n/6− 2 and 0 ≤ s ≤ r. Then

c1/2n,r ≤ λn−2r(P Z
n,s) = λn−2r+1(P

Z
n,s) < [1 + 0.26χn,r+1]c

1/2
n,r < 1.0041c1/2n,r .

As a by-product we obtain the following estimate of µ(P Z
n,r):

Theorem 1.2. Let 0 ≤ r ≤ n/6− 2. Then

c
1/2
n,r

κn,r
≤ µ(P Z

n,r) < [1 + 1.026χn,r+1]
c
1/2
n,r

κn,r
< 1.0161

c
1/2
n,r

κn,r
,

where

κn,r := 21/2
(
1 +

2r + 1

n+ 1

)1/2

.

Theorem 1.2 is a slight improvement of [BL, Theorem 1.1].
It follows directly from Theorem 1.2 and (1.10) that, for a fixed r ≥ 0,

µ(P Z
n,r) =

Cr

2n2r+1
(1 +O(n−1)) as n→∞.

This, in turn, is a slight improvement of [BL, Theorem 1.2].

2. Minimal polynomials

Lemma 2.1.

(a) Let n = 2m and 0 ≤ r ≤ m− 1. Then

Sn,r =
Um,r + Vm−1,r

2
, Tn,r =

Um,r − Vm−1,r
2

.

(b) Let n = 2m+ 1 and 0 ≤ r ≤ m. Then

Sn,r =
Um,r + Vm,r

2
, Tn,r =

Um,r − Vm,r

2
.

Proof. (a) We have P n,r+1 = Em,r+1 ⊕ Fm−1,r+1 (the orthogonal di-
rect sum), Ur ⊥ F and Vr ⊥ E. So, π(Ur;P n,r+1) = π(Ur;Em,r+1) and
π(Vr;P n,r+1) = π(Vr;Fm−1,r+1). Hence

Sn,r
(1.5)
= Sr − π(Sr;P n,r+1)

(1.1)
=

Ur + Vr
2

− π
(
Ur + Vr

2
;P n,r+1

)
=
Ur − π(Ur;P n,r+1)

2
+
Vr − π(Vr;P n,r+1)

2

=
Ur − π(Ur;Em,r+1)

2
+
Vr − π(Vr;Fm−1,r+1)

2

(1.3)
=

Um,r + Vm−1,r
2

(to get Vr − π(Vr;Fm−1,r+1) = Vm−1,r we replace m by m− 1 in (1.3)). The
proof of the second equality in (a) is analogous.

The proof of (b) is similar; in this case P n,r+1 = Em,r+1 ⊕ Fm,r+1.
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Lemma 2.2. Let m ≥ 0. Then ‖Um‖ = a
1/2
m,m, ‖Vm‖ = b

1/2
m,m and

d(Ur,Em,r+1) = a1/2m,r, d(Vr,Fm,r+1) = b1/2m,r, 0 ≤ r ≤ m− 1.

These are [BL, Lemmas 2.2 and 2.4].

Lemma 2.3. Let r ≥ 0 and n ≥ 2r + 1. Then

d(Sr,P n,r+1) = d(Tr,P n,r+1) = c1/2n,r .

Proof. We give the proof for n even; the proof for n odd is similar. So,
let n = 2m and 0 ≤ r ≤ m− 1. Then d(Sr,P n,r+1)

(1.6)
= d(Tr,P n,r+1) and

d(Sr,P n,r+1)
2 (1.6)
= ‖Sn,r‖2 =

∥∥∥∥Um,r + Vm−1,r
2

∥∥∥∥2
=
‖Um,r‖2 + ‖Vm−1,r‖2

4
=
am,r + bm−1,r

4

(1.11)
= cn,r.

The second equality follows from Lemma 2.1(a). The fourth one follows from
(1.4) and Lemma 2.2.

Lemma 2.4. Let r ≥ 0 and n ≥ 2r + 1. Then

cosϕn,r = (−1)n+1 · 2r + 1

n+ 1
.

Consequently, if n ≥ 6r + 2, then |cosϕn,r| ≤ 1/3.

Proof. We give the proof for n even; for n odd the proof is analogous.
Let n = 2m and 0 ≤ r ≤ m−1. By definition, ϕn,r is the angle between Sn,r
and Tn,r, so that

cosϕn,r =
(Sn,r |Tn,r)
‖Sn,r‖ · ‖Tn,r‖

.

From (1.6) and Lemma 2.3 it follows that ‖Sn,r‖·‖Tn,r‖ = cn,r. Lemma 2.1(a)
yields

(Sn,r |Tn,r) =
(
Um,r + Vm−1,r

2

∣∣∣∣ Um,r − Vm−1,r
2

)
=
‖Um,r‖2 − ‖Vm−1,r‖2

4
.

From (1.4) and Lemma 2.2 it follows that ‖Um,r‖2 = am,r and ‖Vm−1,r‖2
= bm−1,r. Consequently, we may write

cosϕn,r =
am,r − bm−1,r

4cn,r
.

Finally, from (1.8)–(1.10) after direct calculations we obtain

am,r − bm−1,r
4cn,r

= −2r + 1

n+ 1
.
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Let us denote

γn,r := c−1n,r

(
1

2
am,m +

m−1∑
k=r+1

cn,k

)
, n = 2m, 0 ≤ r ≤ m− 2,

γn,r := c−1n,r

m∑
k=r+1

cn,k, n = 2m+ 1, 0 ≤ r ≤ m− 1.

Lemma 2.5. Let r ≥ 0 and n ≥ 6r + 6. Then γn,r < 0.026.

The proof is similar to the proofs of [BL, Lemmas 2.11 and 2.13].

Lemma 2.6. Let r ≥ 0 and n ≥ 6r + 12. Then γn,r < 1.026χn,r+1.

The proof is similar to the proofs of [BL, Lemmas 2.12 and 2.14].
We will denote by P0, P1, P2, . . . the Legendre polynomials on [0, 1]:

Pn(x) =
1

n!

dn(xn(x− 1)n)

dxn
.

The polynomials Pn can be defined by

Pn(x) =
n∑

k=0

(−1)n−k
(
n

k

)(
n+ k

k

)
xk.

Hence

(2.1) P ′n(x) =
n−1∑
k=0

(−1)n−k+1(k + 1)

(
n

k + 1

)(
n+ k + 1

k + 1

)
xk.

Lemma 2.7. Let m ≥ 0. Then

Um,0 =
P ′2m+1

(2m+ 1)(2m+ 2)
,(2.2)

Vm,0 =
P ′2m+2

(2m+ 2)(2m+ 3)
.(2.3)

Proof. We will prove (2.2); the proof of (2.3) is analogous. Let

Q :=
P ′2m+1

(2m+ 1)(2m+ 2)
.

By definition, U0 ≡ 1 and Um,0 is the intersection point of the hyperplane
Em,1 + U0 and the subspace (Em,1)

⊥. Therefore, we need to prove that
(a) Q ∈ Em,1 + U0 and (b) Q is orthogonal to Em,1.

To prove (a) we have to show that Q−U0 ∈ Em,1 ≡ Em ∩M1, i.e. that
(c) Q − U0 ∈ Em and (d) Q − U0 ∈ M1. It is clear that P2m+1 ∈ P 2m+1

and P2m+1 ∈ F . Therefore P ′2m+1 ∈ P 2m and P ′2m+1 ∈ E. So, Q ∈ P 2m∩E
≡ Em, whence (c) follows.
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To prove (d) we have to show that Q(0) = Q(1) = 1. Replacing n by
2m+ 1 in (2.1), we obtain

(2.4) P ′2m+1(x) =
2m∑
k=0

(−1)k(k + 1)

(
2m+ 1

k + 1

)(
2m+ k + 2

k + 1

)
xk.

In particular P ′2m+1(0) = (2m + 1)(2m + 2). Hence Q(0) = 1, and conse-
quently Q(1) = 1, because Q ∈ E.

To prove (b), take any R ∈ Em,1. We have to show that (Q |R) = 0, i.e.
(P ′2m+1 |R) = 0. Integrating by parts we obtain

1�

0

P ′2m+1(x)R(x) dx = [P2m+1(x)R(x)]
1
0 −

1�

0

P2m+1(x)R
′(x) dx.

Since R ∈ Em,1 ⊂ M1, we have R(0) = R(1) = 0, so that the first com-
ponent on the right-hand side vanishes. The second one also vanishes: since
R ∈ Em,1 ⊂ P 2m, we have R′ ∈ P 2m−1, and P2m+1 is obviously orthogonal
to P 2m−1.

Remark 2.8. Lemma 2.7 has the following generalization. Let us denote

σr,i = (2r + 1)!P (i−1)
r (0) = (−1)r−i+1 (2r + 1)!

(i− 1)!
· (r + i− 1)!

(r − i+ 1)!

for r ≥ 0 and 1 ≤ i ≤ r + 1. It can be shown that

Um,r = (2m− 2r)!

r+1∑
i=1

σr,i
(2m+ 2i)!

P
(i)
2m+i,

Vm,r = (2m− 2r + 1)!

r+1∑
i=1

σr,i
(2m+ 2i+ 1)!

P
(i)
2m+i+1

for m ≥ 0 and 0 ≤ r ≤ m.
The derivatives of Legendre polynomials can be represented as linear

combinations of Legendre polynomials themselves:

P
(i)
2m+i = 2

i∑
j=1

(−1)jP (i−j)
2m+i(0)

m∑
k=0

(4k + 1)P
(j−1)
2k (0)P2k,

P
(i)
2m+i+1 = 2

i∑
j=1

(−1)jP (i−j)
2m+i+1(0)

m∑
k=0

(4k + 3)P
(j−1)
2k+1 (0)P2k+1

for m ≥ 0 and i ≥ 1. Consequently, the polynomials Um,r and Vm,r can
be represented as linear combinations of Legendre polynomials. Thus, in
particular,
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Um,0 =
2

(2m+ 1)(2m+ 2)

m∑
k=0

(4k + 1)P2k,

Vm,0 =
2

(2m+ 2)(2m+ 3)

m∑
k=0

(4k + 3)P2k+1,

Um,1 =
12(2m)(2m+ 3)

(2m− 1) · · · (2m+ 4)

m∑
k=0

(4k + 1)P2k

− 24

(2m− 1) · · · (2m+ 4)

m∑
k=0

(2k)(2k + 1)(4k + 1)P2k,

Vm,1 =
12(2m+ 1)(2m+ 4)

(2m) · · · (2m+ 5)

m∑
k=0

(4k + 3)P2k+1

− 24

(2m) · · · (2m+ 5)

m∑
k=0

(2k + 1)(2k + 2)(4k + 3)P2k+1.

We do not prove these facts because we are not going to use them.

Proposition 2.9. The polynomials Um,0 and Vm,0 (m ≥ 0) have integer
coefficients.

Proof. Fix m ≥ 0. We will prove that Um,0 ∈ P Z; for Vm,0 the proof is
analogous. Let Um,0(x) =

∑2m
k=0 akx

k. We are to prove a0, a1, . . . , a2m ∈ Z.
We have a0 = Um,0(0) = 1, therefore it is enough to prove that ak−ak−1 ∈ Z
for k = 1, . . . , 2m.

From (2.2) and (2.4) it follows that

ak =
(−1)k(k + 1)

(2m+ 1)(2m+ 2)

(
2m+ 1

k + 1

)(
2m+ k + 2

k + 1

)
=

(−1)k

k + 1

(
2m

k

)(
2m+ k + 2

k

)
, k = 0, 1, . . . , 2m.

So, for each k = 1, . . . , 2m the difference ak − ak−1 is equal to

(−1)k

k + 1

(
2m

k

)(
2m+ k + 2

k

)
− (−1)k−1

k

(
2m

k − 1

)(
2m+ k + 1

k − 1

)
=

(−1)k

k + 1

(
2k

k

)(
2m+ k + 1

2k

)
= (−1)kCk

(
2m+ k + 1

2k

)
,

where Ck is the kth Catalan number.

Remark 2.10. In a similar way one can show that the polynomials
S2m+1,0 and T2m+1,0 (m ≥ 0) have integer coefficients. The coefficients of
the polynomials S2m,0 and T2m,0 (m ≥ 1) need not be integers.
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3. Auxiliary lemmas. In this section m ≥ 1 is a fixed integer and
w, x1, y1, . . . , xm, ym is some fixed sequence of linearly independent vectors
in L2(0, 1). We assume that

(3.1) Φ(w) = w and Φ(xi) = yi for i = 1, . . . ,m.

Let us denote

L0 := Zw, M0 := spanL0 ≡ Rw, h0 := ‖w‖, s0 := h0

and, for i = 1, . . . ,m,

Li := Zw + Zx1 + Zy1 + · · ·+ Zxi + Zyi,
Mi := spanLi ≡ span{w, x1, y1, . . . , xi, yi},
hi := d(xi,Mi−1),

si := (h20 + 2h21 + · · ·+ 2h2i )
1/2.

From (3.1) it follows that

(3.2) Φ(Li) = Li, Φ(Mi) =Mi, i = 0, 1, . . . ,m.

Hence, for each i = 1, . . . ,m,

d(yi,Mi−1) = d(Φ(xi), Φ(Mi−1)) = d(xi,Mi−1) = hi.

For i = 1, . . . ,m let ui (resp. vi) be the shortest vector in the hyperplane
Mi−1 + xi (resp. in Mi−1 + yi). If there are two or more such vectors, we
fix any of them. Since Φ is an isometry, Φ(ui) is the shortest vector in the
hyperplane

Φ(Mi−1 + xi) = Φ(Mi−1) + Φ(xi)
(3.2),(3.1)

= Mi−1 + yi.

Therefore Φ(ui) = vi. Note that ‖ui‖ = ‖vi‖ = hi. Let Ki := Zui + Zvi and
let K0 := L0 = Zw.

For i = 1, . . . ,m let ũi (resp. ṽi) be the shortest vector in the coset
Li−1 + xi (resp. in Li−1 + yi). Since Φ is an isometry, Φ(ũi) is the shortest
vector in the coset

Φ(Li−1 + xi) = Φ(Li−1) + Φ(xi)
(3.2),(3.1)

= Li−1 + yi.

Therefore we may and will assume that Φ(ũi) = ṽi; hence, in particular,
‖ũi‖ = ‖ṽi‖. Observe that w, ũ1, ṽ1, . . . , ũi, ṽi is a basis of the lattice Li.

For i = 1, . . . ,m let Ni := Mi 	Mi−1 be the orthogonal complement of
Mi−1 in Mi. Thus

ui = π(xi;Ni) = π(ũi;Ni), vi = π(yi;Ni) = π(ũi;Ni), Ki = π(Li;Ni).

For i = 1, . . . ,m let ξi (resp. ξ̃i) be the angle between ui and vi (resp.
between ũi and ṽi).
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Lemma 3.1. Let 0 ≤ i ≤ m. Then

(3.3) µ(Ki) ≤ µ(Li) ≤
( i∑
j=0

µ(Kj)
2
)1/2

.

Proof. For i=0 there is nothing to prove because K0 = L0. Assume i≥1.
The first inequality in (3.3) is obvious: Ki = π(Li;Ni) and the orthogonal
projection does not increase distances. We prove the second one by induction
on i. It is enough to show that µ(Li)

2 ≤ µ(Li−1)
2+µ(Ki)

2 for i = 1, . . . ,m.
Let x ∈Mi. We have to show that d(x, Li)

2 ≤ µ(Li−1)
2 + µ(Ki)

2. There
is some y ∈ Ki with

(3.4) ‖π(x;Ni)− y‖ ≤ µ(Ki).

We have y = π(z;Ni) for some z ∈ Li. Next, there is some t ∈ Li−1 with

(3.5) ‖π(x− z;Mi−1)− t‖ ≤ µ(Li−1).

Then

d(x, Li)
2 ≤ ‖x− (z + t)‖2 = ‖π(x− z − t;Mi−1)‖2 + ‖π(x− z − t;Ni)‖2

= ‖π(x− z;Mi−1)− t‖2 + ‖π(x;Ni)− y‖2
(3.5),(3.4)

≤ µ(Li−1)
2 + µ(Ki)

2.

Lemma 3.2. Let u, v ∈ L2(0, 1) be linearly independent vectors with
‖u‖ = ‖v‖ = h and let ξ be the angle between u and v. Let then K be
the lattice generated by u and v.

(a) One has

µ(K) =
h√

2(1 + |cos ξ|)
.

Consequently, 1
2h < µ(K) ≤

√
2
2 h.

(b) Assume that |cos ξ| ≤ 1/2. Then λ1(K) = λ2(K) = h.
(c) Assume that |cos ξ| ≤ 1/3 and let p, q ∈ Z be such that |p|+ |q| ≥ 2. Then
‖pu+ qv‖ ≥ 2

√
3

3 h.

The proof is an elementary exercise in plane geometry. If 0 < ξ ≤ π/2,
then µ(K) is equal to the circumradius of the triangle with vertices 0, u, v.

Lemma 3.3. Let 0 ≤ i ≤ m. Then µ(Li) ≤ 1
2si.

Proof. First observe that µ(L0) = µ(K0) = µ(Zw) = 1
2‖w‖ =

1
2h0 =

1
2s0.

Assume i ≥ 1. By Lemma 3.2(a) we have µ(Kj) ≤
√
2
2 hj for j = 1, . . . , i.

Hence, by Lemma 3.1,

µ(Li) ≤
( i∑
j=0

µ(Kj)
2
)1/2

≤
(
1

4
h20 +

1

2

i∑
j=1

h2j

)1/2

=
1

2
si.
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Lemma 3.4. Let 1 ≤ i ≤ m. Then

hi√
2(1 + |cos ξi|)

≤ µ(Li) <
hi√

2(1 + |cos ξi|)

(
1 +

s2i−1
2h2i

)
.

Proof. Let us write µ0 = 1
2h0 and

µj =
hj√

2(1 + |cos ξj |)
, j = 1, . . . , i.

Observe that

(3.6) h2j/4 < µ2j ≤ h2j/2, j = 1, . . . , i.

We have µ(K0) = µ0 and µ(Kj) = µj for j = 1, . . . , i according to Lemma 3.2.
Hence

µi ≤ µ(Li) ≤
( i∑
j=0

µ2j

)1/2
by Lemma 3.1. Next, we may write

i∑
j=0

µ2j = µ2i

(
1 +

1

µ2i

i−1∑
j=0

µ2j

)
= µ2i

(
1 +

1

µ2i

(
µ20 +

i−1∑
j=1

µ2j

))
(3.6)
< µ2i

(
1 +

4

h2i

(
h20
4

+
1

2

i−1∑
j=1

h2j

))
= µ2i

(
1 +

s2i−1
h2i

)
(if i = 1, the sum

∑i−1
j=1 is treated as 0). Hence( i∑

j=0

µ2j

)1/2
< µi

(
1 +

s2i−1
h2i

)1/2

< µi

(
1 +

s2i−1
2h2i

)
.

Lemma 3.5. Let L be a lattice in L2(0, 1) and let M = spanL. Let
x ∈ L2(0, 1) \M and let h = d(x,M). Let u (resp. ũ) be the shortest vector
in M + x (resp. in L+ x), let a = π(ũ;M) and let η be the angle between ũ
and M . Then ũ = u+ a,

‖a‖ ≤ µ(L),(3.7)

h ≤ ‖ũ‖ ≤ (h2 + µ(L)2)1/2 < h

(
1 +

µ(L)2

2h2

)
(3.8)

and cot η ≤ µ(L)/h.

Proof. By assumption, u is the orthogonal projection of 0 onto the hy-
perplane M + x; therefore u ⊥ M and ‖u‖ = h. Since u ∈ M + x and
ũ ∈ L+ x ⊂M + x, it follows that ũ− u ∈M ; hence

ũ− u = π(ũ− u;M) = π(ũ;M)− π(u;M) = a.
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Since ũ is the shortest vector in L+x and u ⊥M , it follows that a = ũ−u is
the shortest vector in L+x−u. This implies (3.7) (the length of the shortest
vector in a shifted lattice does not exceed the covering radius of the lattice;
observe that x− u ∈ spanL).

The first inequality in (3.8) is obvious: ‖ũ‖ ≥ ‖u‖ = h. As ũ = u + a
and u ⊥ a, we have ‖ũ‖2 = ‖u‖2 + ‖a‖2 ≤ h2 + µ(L)2 by (3.7). The last
inequality in (3.8) is immediate:

(h2 + µ(L)2)1/2 = h

(
1 +

µ(L)2

h2

)1/2

< h

(
1 +

µ(L)2

2h2

)
.

Finally, cot η = ‖a‖/‖u‖ ≤ µ(L)/h by (3.7).

For i = 1, . . . ,m let ηi be the angle between ũi and Mi−1; naturally,
it is the same as the angle between ṽi and Mi−1, because Φ(ũi) = ṽi and
Φ(Mi−1) =Mi−1.

Lemma 3.6. Let 1 ≤ i ≤ m. Then:

(a) hi ≤ ‖ũi‖ = ‖ṽi‖ ≤
(
h2i +

s2i−1
4

)1/2

< hi

(
1 +

s2i−1
8h2i

)
;

(b) cot ηi ≤ si−1/(2hi);
(c) |cos ξ̃i| ≤ |cos ξi|+ s2i−1/(4h

2
i ).

Proof. From Lemma 3.3 we obtain

(3.9) µ(Li−1) ≤ si−1/2.
By Lemma 3.5 we have

hi ≤ ‖ũi‖ = ‖ṽi‖ ≤ (h2i + µ(Li−1)
2)1/2 < hi

(
1 +

µ(Li−1)
2

2h2i

)
and cot ηi ≤ µ(Li−1)/hi, so that (a) and (b) follow from (3.9).

(c) Denote a = π(ũi;Mi−1) and b = π(ṽi;Mi−1). By Lemma 3.5 we have
ũi = ui + a and ṽi = vi + b; moreover a, b ⊥ ui, vi. Hence
|(ũi | ṽi)| = |(ui + a | vi + b)| ≤ |(ui | vi)|+ |(a | b)| ≤ |(ui | vi)|+ ‖a‖ · ‖b‖.

By (a) we have ‖ũi‖ = ‖ṽi‖ ≥ hi; from Lemma 3.5 and (3.9) we obtain
‖a‖, ‖b‖ ≤ µ(Li−1) ≤ 1

2si−1. Consequently,

|cos ξ̃i| =
|(ũi | ṽi)|
‖ũi‖ · ‖ṽi‖

≤ |(ui | vi)|
‖ui‖ · ‖vi‖

+
‖a‖ · ‖b‖
‖ui‖ · ‖vi‖

≤ |cos ξi|+
s2i−1
4h2i

.

Lemma 3.7. Let 0 ≤ i ≤ m. Then λ2i+1(Li) ≤ si.
Proof. We have λ1(L0) = ‖w‖ = h0 = s0. Let i ≥ 1. Then w, ũ1, ṽ1, . . . ,

ũi, ṽi are linearly independent vectors in Li. According to Lemma 3.6(a), for
j = 1, . . . , i we have

‖ũj‖2 = ‖ṽj‖2 ≤ h2j + s2j−1/4 < 2h2j + s2j−1 = s2j ≤ s2i ,
so that ‖ũj‖, ‖ṽj‖ < si.
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Let B (resp. B) denote the open (resp. closed) unit ball in L2(0, 1).

Lemma 3.8. Let 1 ≤ i ≤ m and si−1 ≤ hi. Then λ2i+1(Li) ≤ ‖ũi‖.
Proof. Denote r = ‖ũi‖. We may write λ2i−1(Li−1) ≤ si−1 ≤ hi ≤

‖ũi‖ = r; the first inequality follows from Lemma 3.7, the third one follows
from Lemma 3.6(a). So, the ball rB contains 2i − 1 linearly independent
elements of Li−1. Moreover, rB contains the vectors ũi, ṽi ∈ Li \Mi−1. Thus
λ2i+1(Li) ≤ r.

Lemma 3.9. Let 1 ≤ i ≤ m. Assume that

‖ũi‖ ≤ 2
√
3

3 hi,(3.10)
‖ũi‖ ≤ hj , i+ 1 ≤ j ≤ m,(3.11)
|cos ξi| ≤ 1/3,(3.12)
|cos ξj | ≤ 1/2, i+ 1 ≤ j ≤ m.(3.13)

Then λ2i(Lm) ≥ ‖ũi‖.
Proof. Denote r = ‖ũi‖. It is enough to show that rB ∩ Lm ⊂ Mi−1.

First we prove that

(3.14) rB ∩ Lm ⊂ rB ∩ Li.

If i = m, there is nothing to prove. Assume i < m. From (3.11) we get
r ≤ hm, whence rB ⊂ hmB. From (3.13) we get |cos ξm| ≤ 1/2, whence
λ1(Km) = hm due to Lemma 3.2(b). Next, it is not hard to see that
λ1(Km)B ∩ Lm ⊂ Lm−1. Consequently,

rB ∩ Lm ⊂ hmB ∩ Lm = λ1(Km)B ∩ Lm ⊂ Lm−1,

and therefore rB ∩ Lm ⊂ rB ∩ Lm−1.
If i < m − 1, we can repeat the above argument, with m replaced by

m − 1, to get rB ∩ Lm−1 ⊂ rB ∩ Lm−2; and so on. After m − 1 such steps
we obtain (3.14).

It remains to show that rB ∩Li ⊂Mi−1. Let x ∈ Li \Mi−1. We have to
show that ‖x‖ ≥ r. We may write

Li = Li−1 + Zxi + Zyi =
⋃

p,q∈Z
(Li−1 + pxi + qyi).

So, x ∈ Li−1 + pxi + qyi for some p, q ∈ Z with |p| + |q| ≥ 1. If p = 1
and q = 0, then ‖x‖ ≥ ‖ũi‖ = r, because ũi is, by definition, the shortest
vector in Li−1 + xi. If p = −1 and q = 0, then −x ∈ Li−1 + xi, so that
‖x‖ = ‖−x‖ ≥ r. In the same way we prove that ‖x‖ ≥ r if p = 0 and
q = ±1. Finally, if |p|+ |q| ≥ 2, then, by (3.12) and Lemma 3.2(c), we have
‖pui + qvi‖ ≥ 2

√
3

3 hi. Thus

‖x‖ ≥ ‖π(x;Ni)‖ = ‖pui + qvi‖ ≥ 2
√
3

3 hi
(3.10)

≥ r.
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4. The proofs. We will prove Theorems 1.1 and 1.2 for n even. For n
odd the proofs are almost the same and need only minor modifications; one
needs analogues of the lemmas from Section 3. The difference between the
two cases is the following. If n = 2m, then in the proofs below we consider
the lattice P Z

n with the basis S0, T0, . . . , Sm−1, Tm−1, Um. For n = 2m + 1
one should consider the basis S0, T0, . . . , Sm, Tm instead.

In this section m ≥ 1 is a fixed integer and n = 2m. We set w := Um

≡ Um,m and
xi := Sm−i, yi := Tm−i, i = 1, . . . ,m.

Let then Li, Mi, hi, si, ui, vi, ũi, ṽi and ξi be defined as in Section 3. Thus

L0 = ZUm, M0 = spanL0 = RUm, h0 = s0 = ‖Um‖

and, for i = 1, . . . ,m,

Li = ZUm + ZSm−1 + ZTm−1 + · · ·+ ZSm−i + ZTm−i = P Z
n,m−i,

Mi = span{Um, Sm−1, Tm−1, . . . , Sm−i, Tm−i} = P n,m−i,

hi = d(Sm−i,P n,m−i+1),

si =
(
‖Um‖2 + 2

i∑
j=1

d(Sm−j ,P n,m−j+1)
2
)1/2

,

ui = Sn,m−i, vi = Tn,m−i, ũi = S̃n,m−i, ṽi = T̃n,m−i, ξi = ϕn,m−i.

By Lemma 2.2 we have ‖Um‖ = a
1/1
m,m. By Lemma 2.4, for i = 1, . . . ,m we

have d(Sm−i,P n,m−i+1) = c
1/2
n,m−i, so that hi = c

1/2
n,m−i and

si =
(
am,m + 2

i∑
j=1

cn,m−j

)1/2
=
(
am,m + 2

m−1∑
k=m−i

cn,k

)1/2
.

Therefore for i ≥ 2 we may write

s2i−1
2h2i

= c−1n,m−i

(
am,m

2
+

m−1∑
k=m−i+1

cn,k

)
= γn,m−i.

Lemma 2.6 says that γn,r < 0.026 if 3r + 3 ≤ m. In other words, we have
s2j−1/h

2
j < 0.052 if 3j ≥ 2m+ 3, which implies in particular that

(4.1) sj−1 < hj if 3j ≥ 2m+ 3.

Proof of Theorems 1.1 and 1.2. By assumption we have

(4.2) r ≤ n/6− 2,

i.e. n ≥ 6r + 12. Hence, by Lemma 2.7,

(4.3) γn,r < 1.026χn,r+1.
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Condition (4.2) implies that 2(r + 1)/n < 1/3, whence

(4.4) χn,r+1 =

[
(2(r + 1)/n)2

1− (2(r + 1)/n)2

]2
<

(
1/9

1− 1/9

)2

=
1

64
.

Let us denote i = m− r. Then n− 2r = 2i and

c1/2n,r = hi, P Z
n,r = Li, P Z

n ≡ P Z
n,0 = Lm,

S̃n,r = ũi, T̃n,r = ṽi, γn,r =
s2i−1
2h2i

.

We begin with the proof of Theorem 1.1. Condition (4.2) may be written
as 3r ≤ m− 6, whence

(4.5) 3i = 3m− 3r ≥ 2m+ 6.

Now from (4.1) it follows that

(4.6) si−1 < hi.

Hence, by Lemma 3.8, we obtain λ2i+1(Li) ≤ ‖ũi‖, i.e.
(4.7) λn−2r+1(P

Z
n,r) ≤ ‖S̃n,r‖.

To apply Lemma 3.9 we have to verify (3.10)–(3.13). Lemma 3.6(a) yields

‖ũi‖2 ≤ h2i + s2i−1/4
(4.6)
< h2i + h2i /4 <

4
3h

2
i ,

which proves (3.10). To prove (3.11) suppose that i + 1 ≤ j ≤ m. Then

3j > 3i
(4.5)

≥ 2m+ 6 and, by (4.1),

(4.8) sj−1 < hj .

Now, by Lemma 3.6(a),

‖ũi‖2 ≤ h2i + s2i−1/4 < h2i + s2i−1/2 = s2i /2 ≤ s2j−1/2
(4.8)
< h2j/2 < h2j ,

which proves (3.11). Finally, if j ≥ i, then (4.5) implies 3j > 2m+ 1, which
may be written as 3(m − j) + 1 < m. Hence, by Lemma 2.5, |cos ξj | =
|cosϕn,m−j | ≤ 1/3. This proves (3.12) and (3.13). Thus, by Lemma 3.9,
λ2i(Lm) ≥ ‖ũi‖, i.e.
(4.9) λn−2r(P

Z
n,0) ≥ ‖S̃n,r‖.

Now, as 0 ≤ s ≤ r, we may write

‖S̃n,r‖
(4.9)

≤ λn−2r(P
Z
n,0) ≤ λn−2r(P Z

n,s)

≤ λn−2r+1(P
Z
n,s) ≤ λn−2r+1(P

Z
n,r)

(4.7)

≤ ‖S̃n,r‖,
which gives

λn−2r(P
Z
n,s) = λn−2r+1(P

Z
n,s) = ‖S̃n,r‖.
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From Lemma 3.6(a) we obtain

hi ≤ ‖ũi‖ <
(
1 +

s2i−1
8h2i

)
hi,

which means that

c1/2n,r ≤ ‖S̃n,r‖ <
(
1 +

γn,r
4

)
c1/2n,r .

To complete the proof of Theorem 1.1 it remains to observe that

1 + γn,r/4
(4.3)
< 1 + 0.26χn,r+1

(4.4)
< 1.0041.

The proof of Theorem 1.2 is very short. From Lemma 2.5 we get

κn,r =
√
2(1 + |cosϕn,r|) =

√
2(1 + |cos ξi|).

So, according to Lemma 3.4,

c
1/2
n,r

κn,r
≤ µ(P Z

n,r) < (1 + γn,r)
c
1/2
n,r

κn,r
.

To complete the proof it remains to observe that

1 + γn,r
(4.3)
< 1 + 1.026χn,r+1

(4.4)
< 1.0161.

Remark 4.1. The sequence

(4.10) S̃n,0, T̃n,0, S̃n,1, T̃n,1, . . . , S̃n,m−1, T̃n,m−1, Um

is a basis of the lattice P Z
n. Let ϕ̃n,r denote the angle between S̃n,r and T̃n,r.

Next, let ψ̃n,r denote the angle between S̃n,r (or T̃n,r) and the subspace
P n,r+1. From the above proof and from Lemma 3.6(b),(c) one can deduce
that if 0 ≤ r ≤ n/6− 2, then

cot ψ̃n,r ≤ (γn,r/2)
1/2 <

√
0.513χ

1/2
n,r+1 < 0.09,

|cos ϕ̃n,r| ≤ |cosϕn,r|+
γn,r
2

<
2r + 1

n+ 1
+ 0.513χn,r+1 <

1

3
+

0.513

64
< 0.342.

So, if r is small compared to n, then the polynomial S̃n,r (resp. T̃n,r) is almost
orthogonal to the other polynomials of the basis (4.10).

Remark 4.2. Let m ≥ 1. From Proposition 2.9 it follows that the lattice
EZ

m ≡ EZ
m,0 is the orthogonal direct sum of the m-dimensional lattice EZ

m,1

and the 1-dimensional lattice ZUm,0. Similarly, F Z
m is the orthogonal direct

sum of F Z
m,1 and ZVm,0.

Remark 4.3. Little is known about the successive minima λi(P Z
n) for

i . 2n/3. The only exception is the first minimum, λ1(P Z
n). By definition

we have
λ1(P

Z
n) = min{‖P‖L2(0,1) : 0 6≡ P ∈ P Z

n }.
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Let us denote
%n := min{‖P‖C[0,1] : 0 6≡ P ∈ P Z

n }.

The limit
tZ([0, 1]) := lim

n→∞
%1/nn

is called the integer Chebyshev constant for the interval [0, 1] and was inves-
tigated in many papers; see e.g. [P1, P2] for historical and bibliographical
information. The best known bounds are

0.4213 < tZ([0, 1]) < 0.42291334

(see [P2, p. 3]). It is a standard fact that

‖P‖L2(0,1) ≤ ‖P‖C[0,1] ≤ (n+ 1)‖P‖L2(0,1)

for P ∈ P n. Hence it follows that limn→∞ λ1(P
Z
n)

1/n = tZ([0, 1]).

5. Dual lattices and transference theorems. Let L be a lattice in
L2(0, 1). By the dual lattice we mean the set

L∗ := {P ∈ spanL : (P |Q) ∈ Z for all Q ∈ L}.

Theorem 5.1.

(a) Let r ≥ 0 and r ≤ n/6. Then

λ1((P
Z
n,r)
∗) = λ2((P

Z
n,r)
∗) =

c
−1/2
n,r

sinϕn,r
.

(b) Let r ≥ 0, s ≥ 1 and r + s ≤ n/6. Then

c
−1/2
n,r+s

sinϕn,r+s
≤ λ2s+1((P

Z
n,r)
∗) = λ2s+2((P

Z
n,r)
∗)

<

[
1 +

1

4
· χn,r+s

1− χn,r+s

]
c
−1/2
n,r+s

sinϕn,r+s
≤ 253

252
·

c
−1/2
n,r+s

sinϕn,r+s
.

Note that, by Lemma 2.5,

sinϕn,r+s =

√
1−

(
2r + 2s+ 1

n+ 1

)2

.

Theorem 5.1 is a relatively simple consequence of the estimates of the
quantities cn,r and γn,r which we used in the proof of Theorem 1.1. We omit
the proof; it is long and consists in labourious calculations. In some sense it
is dual to the proof of Theorem 1.1.
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Let L be a d-dimensional lattice. Then the following transference theo-
rems are valid:

1 ≤ λd+1−i(L) · λi(L∗) ≤ d, i = 1, . . . , d,(5.1)
1
2 ≤ µ(L) · λ(L

∗) ≤ 1
2d.(5.2)

The lower bounds are trivial and the upper bounds were obtained in [B];
see also [G, Sect. 5, p. 751]. A result of Conway and Thompson (see [MH])
shows that there exist d-dimensional (even self-dual) lattices Ld such that
λ1(Ld) · λ1(L∗d) ≥ γd, where γ > 0 is some numerical constant. This means
that the upper bounds in (5.1) and (5.2) are the best possible up to some
multiplicative constants.

The 2-dimensional lattice P Z
1 ≡ P Z

1,0 is a hexagonal lattice generated by
the polynomials x and 1 − x of the same length

√
3/3; the angle between

them is equal to π/6. It is easy to see that λ1((P Z
1 )
∗) = 2, so that λ1(P Z

n) ·
λ1((P

Z
1 )
∗) = 2

√
3/3, and this is the maximal possible value of this product

for 2-dimensional lattices. This observation led to the following questions:
how ‘twisted’ (far from orthogonal) can the lattices P Z

n be and how big can
the products λn−2r+2−i(P

Z
n,r) ·λi((P Z

n,r)
∗ and µ(P Z

n,r) ·λ1((P Z
n,r)
∗) be? (The

dimension of the lattice P Z
n,r is equal to n− 2r + 1.)

Let us replace r by r + s and s by r in Theorem 1.1. Then we get

c
1/2
n,r+s ≤ λn−2r−2s(P Z

n,r) = λn−2r−2s+1(P
Z
n,r) < [1 + 0.26χn,r+s+1]c

1/2
n,r+s

provided that r + s ≤ n/6− 2. Combined with Theorem 5.1, this yields
1

sinϕn,r+s
≤ λn−2r−i+2(P

Z
n,r) · λi((P Z

n,r)
∗)

< [1 + 0.26χn,r+s+1] ·
[
1 +

1

4
· χn,r+s

1− χn,r+s

]
· 1

sinϕn,r+s

for i = 2s+1, 2s+2. Hence it follows that if i and r are small compared to n,
then the product λn−2r−i+2(P

Z
n,r) · λi((P Z

n,r)
∗) is close to 1. In particular, if

2r + i ≤ n/3− 2, it is less than 1.07.
Theorem 1.2 combined with Theorem 5.1 yields

1

sinϕn,r ·
√

2(1 + |cosϕn,r|)
≤ µ(P Z

n,r) · λ1((P n,r)
∗)

< [1 + 1.026χn,r+1] ·
1

sinϕn,r ·
√

2(1 + |cosϕn,r|)
.

So, if r is small compared to n, then the product µ(P Z
n,r) · λ1((P n,r)

∗) is
close to

√
2/2.

The above remarks show that if r is small compared to n, then from the
point of view of transference theorems the lattices P Z

n,r are not especially
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interesting. This is due to the fact that in a certain sense they are almost
orthogonal (see Remark 4.1). It is not clear what happens for r & n/3.
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