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Abstract 30 

Nephropathia Epidemica (NE) is a zoonotic disease caused by Hantaviruses transmitted from 31 

rodents, endemic in the Republic of Tatarstan, Russia. The disease presents clinically with mild, 32 

moderate, and severe forms, and time dependent febrile, oliguric, and polyuric stages of the 33 

disease are also recognized. The patient’s cytokine responses have been suggested to play a 34 

central role in disease pathogenesis; however, little is known about the different patterns of 35 

cytokine expression in NE in cohorts of different age and sex.  36 

Serum samples and clinical records were collected from 139 patients and 57 controls (healthy 37 

donors) and were used to analyze 48 analytes with the Bio-Plex multiplex magnetic bead-based 38 

antibody detection kits. Principal component analysis of 137 patient and 55 controls (for which 39 

there was full data) identified two components that individually accounted for >15% of the total 40 

variance in results and together for 38% of the total variance. PC1 represented a pro-41 

inflammatory TH17/TH2 cell antiviral cytokine profile, and PC2 a more antiviral cytokine 42 

profile with patients tending to display one or the other of these. 43 

Severity of disease and stage of illness did not show any correlation with PC1 profiles 44 

however, significant differences were seen in patients with high PC1 profiles vs lower for a 45 

number of individual clinical parameters:  High PC1 patients showed a reduced number of 46 

febrile days, but higher maximum urine output, higher creatinine levels and lower platelet levels.  47 

Overall, the results of this study point towards a stronger pro-inflammatory profile occurring 48 

in younger NE patients, this being associated with markers of acute kidney injury and low levels 49 

of high density cholesterol. This is consistent with previous work indicating that the pathology of 50 

NE is immune driven, with an inflammatory immune response being associated with disease and 51 

that this immune response is more extreme in younger patients. 52 

Key words: Nephropathia Epidemica, serum, cytokine, hantaviruses, age 53 

 54 
Introduction 55 

 56 
Nephropathia epidemica (NE) is a mild form of hemorrhagic fever with renal syndrome (HFRS), 57 

a febrile zoonotic disease characterized by hemorrhages and renal pathology [1]. The disease has 58 

an acute onset with fever, headache, nausea, vomiting, hematuria and back pain [2-4] . 59 

Laboratory findings typically include thrombocytopenia, leukocytosis, decreased CD4:CD8 60 

ratio, increased B lymphocytes counts and increased serum creatinine levels [4-9].  Acute kidney 61 
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injury is the major pathological finding and described in all cases. In severe cases, kidney failure 62 

can develop [10]. NE presents in three forms: mild, moderate and severe [11, 12]. Each form of 63 

the disease progression includes febrile, oliguric and polyuric periods, followed by 64 

convalescence.  The severe form of NE is characterized by headache, vomiting, high fever (over 65 

39.5°C) and acute kidney injury. The most prominent clinical features of this form of NE are 66 

hemorrhagic symptoms including petechial, nasal and internal bleeding [11-13]. The moderate 67 

form of the disease has similar symptoms but is more subtle. The mild form often remains 68 

undiagnosed. Symptoms are subtle including mild headache and fever (up to 380C), with the 69 

hemorrhagic syndrome restricted to small petechia on mucosa and skin.  [14, 15].  70 

 NE is endemic in the republic of Tatarstan, Russia [16]. We have previously demonstrated 71 

that Puumala orthohantavirus (PUUV) is  the primary cause of NE in Tatarstan [17]. It is 72 

believed that endothelial cells are the primary targets of PUUV, where the virus can replicate 73 

without a cytopathic effect [18]. This is supported by the lack of tissue damage commonly found 74 

in postmortem specimens [19]. Therefore, immune mechanisms have been suggested to play a 75 

key role in the pathogenesis of NE. We have previously shown activation of proinflammatory 76 

cytokines in the serum of NE patients [20], where the severity of the disease was associated with 77 

high levels of circulating TNF-α and IL-1β. We have also shown that the mild form of NE is 78 

characterized by increased serum levels of IFNγ and IL-12 [21]. Our data corroborate the 79 

findings of several other groups demonstrating cytokine production by infiltrating immune cells 80 

in the kidneys rather than the kidneys themselves. Based on a large body of data, it is generally 81 

considered that the clinical symptoms of NE are the result of a “cytokine storm” in response to 82 

the virus [22, 23]. 83 

There are multiple evidence strands pointing to those cytokines playing a primary role in the 84 

pathogenesis of NE [20, 21, 24, 25]. Nevertheless, our knowledge of the role of cytokines in the 85 

severity of NE disease remains limited. Therefore, in the current work we tested the hypothesis 86 

that patients with NE have a markedly different serum cytokine profile to healthy controls by 87 

screening both groups of subjects for serum concentrations of 48 cytokines associated with 88 

immune responses to infection and we link these responses to markers of pathology experienced 89 

by patients. Our findings support previous work in that a more extreme inflammatory cytokine 90 

profile was associated with markers of acute kidney injury and that this cytokine profile was 91 

more marked in younger patients.  92 
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Materials and Methods 93 

2.1. Subjects 94 

Serum samples were collected from 139 patients (117 males and 22 females) and controls 57 (21 95 

males and 36 females). Clinical records (including clinical pathology records) were also collated 96 

for these patients. Additionally, clinical laboratory test results such as serum levels of potassium 97 

ion triglycerides, cholesterol, very low density cholesterol (VLDCL), low density cholesterol 98 

(LDCL) and high density cholesterol (HDCL), routinely done upon hospitalization were 99 

collected. Data were collected during the acute (VLDCL1, LDCL1 and HDCL1) and 100 

convalescent (VLDCL2, LDCL2 and HDCL2) phases of HFRS. The diagnosis of HFRS was 101 

established based on clinical presentation and was serologically confirmed by the detection of 102 

anti-hantavirus antibodies. Samples were collected following the standard operating procedure 103 

protocol in the hospital for the diagnosis of hantavirus infection and stored at -800C until used. 104 

2.2. Ethics Statement 105 

The ethics committee of the Kazan Federal University approved this study, and signed informed 106 

consent was obtained from each patient and controls according to the guidelines adopted under 107 

this protocol (protocol 4/09 of the meeting of the ethics committee of the KSMA dated 108 

September 26, 2019).  109 

2.7. Hantavirus ELISA 110 

The Hantagnost diagnostic ELISA kit (Institute of Poliomyelitis and Viral Encephalitis, 111 

Moscow, Russia) was used to determine hantavirus-specific antibody titers as per manufacturer’s 112 

instructions. Briefly, NE patient and control sera were diluted 1:100 (PBS) and incubated for 60 113 

min at 37°C in a 96-well plate with pre-adsorbed hantavirus antigens. Following washes (3x; 114 

0.5% Tween20 in PBS, PBS-T), wells were incubated with anti-human-IgG-HRP conjugated 115 

antibodies (1:10000 in PBS-T, Amerixan Qualex Technologies, USA) for 30 min at 37°C. Post, 116 

incubation and washes (3x; 0.5% Tween20 in PBS), wells were incubated with 3,3',5,5' 117 

Tetramethylbenzidine (Chema Medica, Moscow, Russia). The reaction was stopped by adding an 118 

equal amount of 10% phosphoric acid (TatKhimProduct, Kazan, Russia). Data were measured 119 

Commented [SK1]: Here I added. We did not conduct those 
test. We used these data as part of the clinical lab data 
ok 
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using a microplate reader Tecan 200 (Tecan, Switzerland) at OD450 with reference OD650. OD450 120 

values higher than 0.5 were considered positive results. 121 

2.11. Multiplex Analysis 122 

Serum levels of 48 analytes were analyzed using Bio-Plex (Bio-Rad, Hercules, CA, USA) 123 

multiplex magnetic bead-based antibody detection kits following the manufacturer’s instructions. 124 

Multiplex kits, Bio-Plex Pro Human Cytokine 21-plex, and Bio-Plex Human Cytokine 27-plex 125 

panels were used in the study. Serum aliquots (50 μl) were analyzed where a minimum of 50 126 

beads per analyte was acquired. Median fluorescence intensities were collected using a Luminex 127 

100 or 200 analyzer (Luminex, Austin, TX, USA). Each sample was analyzed in triplicate and 128 

the resulting data were analyzed with MasterPlex CT control software and MasterPlex QT 129 

analysis software (MiraiBio, San Bruno, CA, USA). Standard curves for each cytokine were 130 

generated using standards provided by the manufacturer. Data were analyzed using MasterPlex 131 

CT control software and MasterPlex QT analysis software (MiraiBio, Alameda, CA, USA).  132 

2.17. Statistical Analysis 133 

Clinical symptoms analysis using χ2 criterion. Analysis of clinical symptoms (presence or 134 

absence of each symptom in turn) was by loglinear model selection of contingency tables in IBM 135 

SPSS Statistics version 24, based on maximum likelihood. Initially, full factorial models 136 

comprising symptom (2 levels, presence/absence) x sex (2 levels, male/female) x age (two levels, 137 

≤ 40/>40 years old) were fitted, and then simplified by the backward selection procedure to 138 

generate minimum sufficient models (MSM) for which the likelihood ratio of χ2 was not 139 

significant, indicating that the model was sufficient in explaining the data. The importance of 140 

each individual term in MSMs was assessed by the probability that its exclusion would alter the 141 

model significantly, and relevant χ2 values with associated probabilities are provided. 142 

Quantitative clinical data were analyzed by multivariate GLM models in R version 2.2.1 (R Core 143 

Development Team). 144 

Analysis of individual cytokines.  Preliminary analysis of individual cytokines was done using 145 

the non-parametric Mann–Whitney test with Benjamini-Hochberg (BH) adjustment for multiple 146 

comparisons using R language for statistical computing (R Core Development Team). The 147 

threshold used for statistical significance was p < 0.05.   148 
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 Cytokine analysis using Principal Components Analysis (PCA). Since the data comprised 149 

values for 48 different cytokines and their receptors, in order to avoid the risk of Type I and 150 

Type II statistical errors, we first conducted a PCA in IBM SPSS vs 24. The major principal 151 

components (PCs) responsible for the majority of variance in the data were then subjected to 152 

statistical analysis via two Generalized Linear Models (GLMs) in R version 2.2.1. 153 

 PC1 and PC2 did not conform to Gaussian distributions and all attempts to fit models with 154 

normal error structures failed to generate normally distributed residuals. The best-fit distributions 155 

were negative binomial. Therefore, the data were transformed by the addition of 0.85 to PC1 156 

values and 1.38 to PC2 values to convert all records to positive values, then multiplied by 100 to 157 

avoid decimals, and rounded off to the nearest integer. These values were then used in GLMs. 158 

Summary data are presented as arithmetic means of the PC and standard errors of the 159 

mean (S.E.M.). We fitted models in R with PC1 or PC2 as the dependent variables. Each 160 

subject’s age was fitted as a covariate. Sex (at two levels, males and females), and subject’s 161 

status (at two levels, patient or control) were fitted as fixed explanatory factors. Full factorial 162 

models that converged satisfactorily were simplified using the backward selection procedure and 163 

tested for significance at each step using deletion of terms beginning with the highest order 164 

interaction by comparing models with or without that interaction (3-way interaction).  This was 165 

followed by models based on main effects plus 2-way interactions, and deletion of 2-way 166 

interactions in turn, and so on until each main effect was evaluated in a model that only 167 

comprised all main effects. Models were evaluated by the likelihood ratio (LR) and associated 168 

probability of rejecting the null hypothesis. Minimum sufficient models (MSMs) were then fitted 169 

(all significant main effects and any significant interactions) and the process was repeated to 170 

obtain values for changes in 2 x log-likelihood, test statistic (likelihood ratio [LR]) and 171 

probabilities.  172 

The acceptability of GLMs was evaluated through the goodness of fit of residuals from 173 

MSMs through Q-Q plots and through estimation of the total variance accounted for by the 174 

model. The percentage of variance accounted for by each significant main effect or interaction 175 

was calculated as recommended by Xu (2003), and reported earlier by Behnke et al., (2008) and 176 

more recently by Grzybek et al., (2015a).  177 

Finally, we fitted a multivariate model in R in which we included PC1, PC2, age and sex 178 

as explanatory factors and six markers of pathology that were available for both patients and 179 

Formatted: Underline

Formatted: Underline
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controls, as the dependent variables. In order to illustrate how markers of pathology vary in 180 

relation to increasing values of PC1 and PC2, we divided the values of each into four ranges and 181 

that of the controls, as follows: 182 

PC1 183 

Control subjects range = -0.827 to -0.367 184 

Patients range 1 = -0.703 to -0.369 (all within the control range, n= 57) 185 

Patients range 2 = -0.344 to +0.973 (marginally above control range, n=52) 186 

Patients range 3 = +1.022 to +1.780 (much higher than control range, n=17) 187 

Patients range 4 = +2.035 to 4.195 (very much higher than control range, n=11) 188 

 189 

PC2 190 

Control subjects range = -0.723 to -0.070 (with one extreme exception at 0.548) 191 

Patients range 1 = -1.352 to -0.086 (all within the control range, n= 58 192 

Patients range 2 = -0.074 to +0.492 (marginally above control range, n=46) 193 

Patients range 3 = +0.506 to +1.689 (much higher than control range, n=27) 194 

Patients range 4 = +1.845 to 7.401 (very much higher than control range, n=6) 195 

196 
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Results 197 

Clinical presentation of NE cases.   198 

HFRS diagnosis was based on clinical presentation and epidemiological data as well as 199 

serological confirmation. The average hospitalization period was 9.4±0.4 days and the average 200 

duration of the febrile period 6.8±0.1 days. Clinical and demographic data are summarized in 201 

Table 1. 202 

Table 1. Demographic, clinical and laboratory information for NE. 203 
Variables Value 

Age (years) 38 ±12.9 

Sex (M/F) 117/22 

Age M (years) 38.4±12 

Age F (years) 47.4±14 

Mild form HFRS (%) 10.07 

Moderate form HFRS (%) 58.23 

Severe form HFRS (%) 23.72 

Mild HFRS M/F 17/8 (14.5%/36.4%) 

Moderate HFRS M/F 71/11 (60.7%/50%) 

Severe HFRS M/F 29/3 (24.8%/13.6%) 

Antibody titer (1st) 1:200 

Antibody titer (2nd) 1:800 

Hospitalization (days) 9.4±4.7  

 204 

The clinical form of the disease was classified as mild, moderate or severe. There were more 205 

male patients as compared to female diagnosed with NE. The mild form was characterized by 206 

fever (380C), oliguria (900 ml/day; 39% of patients), micoproteinuria (0.1 g/L), a normal level of 207 

urea (1.7-8.3 mM/L), and increased levels of creatinine (up to 130 mkM/L).  Hemorrhagic 208 

syndrome presented as nose bleeding in 5% of patients. Patients with the moderate form of 209 

HFRS had fever (39.50C), headache, frequent vomiting and abdominal pain, back pain, multiple 210 

petechias, oliguria (300 ml/day; 68.6%), and levels of urea and creatinine up to 18 mM/L and 211 

300 mkM/L, respectively.  The moderate form of HFRS was characterized by pronounced 212 

hemorrhagic syndrome (10.2%), which included nose bleeding (8.8%) and petechias (5.8%). In 213 

contrast, patients with the severe form of HFRS had complications such as shock, acute 214 

cardiovascular insufficiency (22.5%), hemorrhages (74.1%), oliguria (less than 300 ml/day; 215 

100%) or anuria (54.8%), and levels of urea and creatinine higher than 18.5 mM/L and 300 216 

mM/L, respectively. In addition, 16.1% of patients required hemodialysis. Hemorrhagic 217 
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syndrome in these patients included nose bleeding (67.7%), hemorrhages (38.7%), as well as 218 

scleral hemorrhages (25.8%). 219 

Next, we sought to determine whether frequency of clinical symptoms differed depending on 220 

sex and age of NE (Table 2).  As expected, the severity of symptoms worsened with the disease 221 

class (class 1- mild; class 2- moderate and class 3 – severe). We also found a higher frequency of 222 

hemorrhagic (nose bleeding and petechia) and gastro-intestinal (diarrhea and abdominal) 223 

symptoms in male as compared to female patients. Additionally, symptoms of renal dysfunction 224 

(anuria and oliguria) as well as fog in eye were more often described in male as compared to 225 

female patients. Only one symptom, cough, was found more frequently in females as compared 226 

to male subjects. 227 

  228 
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Table 2. Prevalence of clinical symptoms according to severity of disease and age.229 
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 230 
Symptom 

 

Symptom 

Class 

Symptom 

Severity  

Prevalence [CL95]¶¶ 

Sex 

 

Sex 

Prevalence [CL95] 

 

Age 

class 

Age Prevalence [CL95] 

Nose bleed 1 4.0 [0.21-19.56] Male 16.2[11.35-22.47]  1 17.2 [9.27-29.07] 

 2 9.9 [4.44-19.94] Female 0.0 [0.0-15.17]   2 7.7 [3.59-15.03] 

 3 30.3 [18.62-44.92]    

 *  * NS 

Petechia 1 0.0 [0.0-13.36] Male 18.8 [13.51-25.42] 1 23.0 [13.63-35.72] 

 2 4.9 [1.47-13.63] Female 4.5 [0.24-22.21] 2 5.8 [2.46-12.31] 

 3 57.6 [42.87-71.27]    

 ***  NS ** 

Scleral bleed 1 0.0 [0.0-13.36] Male 6.8 [3.89-11.63] 1 6.9 [2.45-16.61] 

 2 2.5 [0.38-10.00] Female 0.0 [0.0-15.17]   2 3.8 [1.27-9.77] 

 3 18.2 [9.31-31.91]    

 **  NS NS 

Bleeding 1 4.0 [0.21-19.56] Male 29.1 [22.67-36.33] 1 32.2 [21.14-45.12] 

 2 17.3 [9.56-28.64] Female 4.5 [0.24-22.21] 2 13.5 [7.73-21.77] 

 3 60.0 [45.93-74.10]    

 ***  ** NS 

Cough 1 28.0 [13.37-47.97] Male 5.1 [2.66-9.50] 1 3.4 [0.69-11.86] 

 2 7.4 [2.85-16.76] Female 31.8 [15.18-54.65] 2 19.2 [12.41-28.34] 

 3 0.0 [0.0-8.04]    

 ***  ** * 

Diarrhoea 1 12.0 [3.36-30.31] Male 35.0 [28.14-42.53] 1 35.6 [24.26-48.58] 

 2 32.1 [21.46-44.55] Female 31.8 [15.18-54.65] 2 23.1 [15.34-32.69] 

 3 42.2 [28.73-57.13]    

 NS  ** NS 

Vomiting 1 8.0 [1.45-25.59] Male 35.0 [28.14-42.53] 1 41.4 [29.15-54.36] 

 2 34.6 [23.60-47.03] Female 31.8 [15.18-54.65] 2 23.1 [15.34-32.69] 

 3 54.5 [39.81-68.37]    

 **  NS * 

Nausea 1 36.0 [19.57-56.08] Male 57.3 [49.76-64.51] 1 41.4 [29.15-54.36] 

 2 48.1 [35.63-60.69] Female 31.8 [15.18-54.65] 2 23.1 [15.34-32.69] 

 3 78.8 [64.27-88.59]    

 **  NS * 

Abdominal 

pain 

1 28.0 [13.37-47.97] Male 67.5 [60.08-74.20] 1 70.1 [57.20-80.62] 

 2 59.3 [46.76-71.06] Female 27.3 [12.61-50.00] 2 46.2 [36.45-56.34] 
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 3 90.0 [78.91-96.71]    

 ***  ** * 

Back pain 1 44.0 [25.60-64-25] Male 65.8 [58.32-72.55] 1 69.0 [56.05-79.75] 

 2 63.0 [50.48-74.10] Female 59.1 [38.26-77.78] 2 57.7 [47.53-67.39] 

 3 84.8 [71.35-93.03]    

 **  NS NS 

Anuria 1 0.0 [0.0-13.36] Male 14.5 [9.91-20.59] 1 17.2 [9.27-29.07] 

 2 0.0 [0.0-6.07] Female 4.5 [0.24-22.21] 2 5.8 [2.46-12.31] 

 3 54.5 [39.81-68.37]    

 ***  *** *** 

Oliguria 1 20.0 [8.23-39.84] Male 72.6 [65.46-78.85] 1 75.9 [63.12-85.47] 

 2 70.4 [57.93-80.52] Female 45.5 [26.05-66.17] 2 55.8 [45.60-65.46] 

 3 100.0[91.96-100.0]    

 *  NS * 

Fog eye¶ 1 16.0 [5.66-35.74] Male 54.7 [47.19-62.00] 1 59.8 [46.79-72.00] 

 2 44.4 [32.65-56.96]  Female 13.6 [3.83-33.82] 2 28.8 [20.64-38.90] 

 3 81.8 [68.09-90.69]    

 *** *** *** 

 231 
 232 
* P = 0.05-0.01; ** P=0.099-0.001; *** P<0.001 233 
 234 
 For severity classes 1- mild, 2- moderate and 3- severe. The sample sizes for each class were 25, 81 and 33 respectively. Number of 235 
male patients =117 and females=22. Number of patients for age classes 1 (≤40 years old) and 2 (>40 years old) were 87 and 52. 236 
respectively. 237 
 238 
Prevalence is the percentage (%) of subjects showing the symptom in the relevant data subset. Cl95 are the 95% confidence limits. 239 
For further details see text. 240 
 241 
In the case of fog eye there were also two significant interactions. Age x sex P=0.017 and sex x severity. P<0.001. 242 

Commented [RT2]: are these the initial chi squared 
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We acknowledge, that the number of samples in sex groups differ, having more male as 243 

compared to females, which is characteristic for NE [1, 26]. Therefore, this discrepancy in 244 

number of samples could be a factor affecting the analysis.  245 

When NE symptoms were analyzed based on age of the patient, we found that younger 246 

patients (≤40 years old) had a higher frequency of hemorrhagic (petechia), gastro-intestinal 247 

(vomiting, nausea, abdominal pain) and eye fog symptoms as compared to older (>40 years old) 248 

NE. Also, younger patients presented with kidney dysfunction (anuria and oliguria) symptoms 249 

more often as compared to older NE. Cough was the only symptom which was more frequent in 250 

older as compared to younger NE patients. These data indicate that clinical presentation of NE 251 

depends on sex and age of the patient. Although multiple factors could contribute to variation of 252 

NE, activation of cytokines could play a substantial role.  253 

 254 

Analysis of cytokine levels 255 

The mean values of cytokine and receptor levels detected in the sera are given in Table 3, 256 

which also shows the arithmetic difference between values in patients and the control group, as 257 

well as the relative change in value between these groups (mean value of patients divided by that 258 

of controls). With the exception of IL-1α and CCL27, the mean levels of all the other cytokines 259 

were arithmetically higher in patients relative to controls. 260 

Table 3 261 
Table 3. Mean values (± S.E.M.) for all cytokines and receptors and the arithmetic difference 262 
between the mean values of patients and control subjects. 263 
In order of the magnitude of the change 264 

 Patients Controls Mean 
difference 

X change  Mann-
Whitney U 
test 

 (n=139) (n=57) Patients 
minus 
controls  

Patients/controls P value 

IL-1α 0 62±0.08 1.292±0.12 -0.67 0.48 0.0001* 

CCL27 69.89±7.03 125.19±10.00 -55.303 0.56 0.0001* 

CXCL12 45.85±9.41 36.284±6.14 9.563 1.26 0.38318 

CXCL1 65.07±6.034 51.481±4.88 13.585 1.26 0.66127 

CCL7 29.12±2.75 18.724±3.04 10. 394 1.56 0.02323* 

IL-8 63.04±12.26 37.918±15.57 25.123 1.66 0.00011* 

IL-16 215.12±34.78 122.418±9.91 92.703 1.76 0.04059* 

TNFβ 2.23±1.16 1.196±0.27 1.035 1.87 0.23723 
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SCF 72.24±7.04 33.774±2.39 38.464 2.14 0.00066* 

IFN-α2 21.574±3.40 8.958±0.90* 12.616 2.41 0.00012* 

TRAIL 43.553±4.61 16.397±2.52 27.156 2.66 0.00002* 

IL-3 201.265±26.20 66.724±5.96 134.541 3.02 0.00015* 

IFN-γ 100.881±15.60 32.643±4.32 68.238 3.09 0.0001* 

IL-18 27.441±3.10 8.631±1.48 18.78 3.18 0.0001* 

IL- 12p40 288.664±32.77 88.116±12.51 200.548 3.28 0.0001* 

MIF 518.034±65.86 145.137±25.43 372.897 3.57 0.0001* 

LIF 8.739±2.68 2.404±0.44* 6.335 3.64 0.00004* 

M-CSF 5.809±2.02 1.491±0.14 4.318 3.90 0.0001* 

G-CSF 32.999±2.22 8.074±0.92 24.925 4.09 0.0001* 

HGF 402.173±37.50 97.191±13.56 304.982 4.14 0.0001* 

IL-1 ra 141.589±30.78 31.442±5.42 110.147 4.50 0.0001* 
IL-2RA 

133.927±15.07 28.862±3.24 105.065 4.64 0.0001* 
SCGF - b 8486.585±868.14 1564.75±242.42 6921.838 5.42 0.0001* 

CCL11 89.706±10.47 15.50±2.90 74.21 5.79 0.0001* 

CCL2 89.357±25.09 13.02±1.33 76.34 6.85 0.0001* 

IL-7 14.519±3.14 2.08±0.40 12.44 6.98 0.0001* 

IL-5 8.067±1.19 1.02±0.24 7.043 7.88 0.0001* 

GM-CSF 23.25±4.03 2.58±0.69 20.67 9.01 0.0001* 

IL-15 53.60±13.06 5.40±0.86 48.196 9.92 0.0001* 
IL-

12(p70) 
38.73±5.5 

3.73±0.48 35 10.38 0.0001* 
TNF-α 43.66±9.10 4.17±0.76 39.495 14.48 0.0001* 

VEGF 175.55±25.20 15.15±2.45 160.402 11.59 0.0001* 
Β-NGF 8.54±3.96 0.73±0.06 7.809 11.67 0.0001* 

IL-6 39.42±5.95 2.90±0.65 36.516 13.58 0.0001* 
CXCL9 1797.09±253.08 124.22±18.93 1672.868 14.47 0.0001* 

FGF b 19.53±2.12 1.29±0.31 18.233 15.10 0.0001* 

IL-2 29.14±9.54 1.78±0.30 27.357 16.33 0.0001* 

IL-10 58.92±11.58 3.56±0.65 55.361 16.55 0.0001* 

IL-4 19.01±2.54 1.10±0.09 17.906 17 16 0.0001* 
IL-17 42.65±8.87 2.27±0.56 40.376 18.76 0.0001* 

IL-1β 15.81±2.07 0.81±0.15 15.007 19.60 0.0001* 
IL-9 96.2±22.78 3.50±0.51 92.698 27.47 0.0001* 

IL-13 36.93±5.71 1 34±0.13 35.588 27.60 0.0001* 
CCL3 47.83±8.62 0.97±0.34 46.857 49.31 0.0001* 

CCL5 3062.01±398.29 60.99±8.72 3001.024 50.21 0.0001* 

PDGF-bb 8105.64±5756.86 144.56±23.81 7961.073 56.07 0.0001* 

CXCL10 3497.04±390.01 49.05±7.17 3447.989 71.29 0.0001* 
CCL4 1020.56±144.66 10.27±2.13 1010.289 99.37 0.0001* 

 265 
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n=numbers of control subjects in this case is 56. 266 
Mean difference - the arithmetic difference between the mean level of each cytokine in 267 
patients and controls (patient value minus control value). Numbers in red are negative values 268 
indicating that the level of the cytokine was higher in controls relative to patients. Those in 269 
black show cytokine levels higher in patients compared to controls 270 
X change - the ratio of the mean value in patients and that in controls (patient value divided by 271 
the control value). Here numbers in red have values less than 1, indicating that the level of the 272 
cytokine in each case was lower in patients than in controls. Numbers in blue show cytokine 273 
levels >1 to 5 times higher in patients relative to controls. Numbers in black show cytokine 274 
levels >5 to 10 times higher in patients relative to controls and those in green show cytokine 275 
levels >10 times higher in patients relative to controls.  276 
*- significantly different cytokines between NE and controls, p < 0.05, Mann-Whitney U test 277 
p<0.05 278 

Analysis was based on PCA to avoid statistical errors arising from multiple tests, as explained 279 

above (Materials and Methods). PCA identified in total 13 components as quantifiable 280 

(collectively accounting for 80% of variance). PC1 was the dominant component accounting for 281 

almost a quarter of total variance (23.1%), and PC2 explained the next 15.3%.  Between them, 282 

therefore these two accounted for 38% of the variance. None of the other PCs accounted for 283 

more than 7% of variance, and these were not studied further. 284 

 Twenty eight of the cytokines and receptors contributed positively to PC1 (Fig. 1), with 285 

values ranging from 0.898 to 0.101. The greatest positive contribution was from IL-1β (0.898), 286 

IL-4 (0.862), IL-12 (0.828), CCL5 (0.809) and GM-CSF (0.801).  Three cytokines (CXCL1, IL-287 

1α and CCL27) made negative contributions to PC1 (-0.109, -0.307 and -0.417, respectively). 288 

Twenty-seven cytokines and receptors contributed positively to PC2, the greatest contributions 289 

being from IL-3 (0.873), SCF (0.805), CCL7 (0.794), TRAIL (0.793), IFNγ (0.771), IL-1ra 290 

(0.763) and IL-12p40 (0.718). There were nine negative contributions greater than -0.1, as shown 291 

in Fig. 1. 292 

 293 

Frequency distributions of PC1 and PC2 294 

The frequency distributions of PC1 and PC2 are illustrated in Figs 2A and 2B, respectively. 295 

The values of PC1 in controls did not exceed -0.3, and 56 patients also had values in the control 296 

range (Fig. 2A). The remaining patients had higher values, the first of which form an extension 297 

to the peak that includes controls, and then perhaps up to 2-3 peaks at higher values of PC1. 298 

These suggest different degrees of responsiveness to infection. The difference between patients 299 

and controls was highly significant (GLM with negative binomial errors, main effect of subject 300 
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status, LR1,189=108.75, P<0.0001), accounting for 5.22% of the variance in the data. Fig. 2B 301 

shows that values of PC2 in controls, with just one exception, were restricted to values less than -302 

0.06. Twenty-five patients had values in the control range and some even lower and, as with 303 

PC1, there appeared to be several clusters in patients at higher values. The difference between 304 

patients and controls was highly significant (GLM with negative binomial errors, main effect of 305 

subject status, LR1,190=26.378, P<0.0001), accounting for 1.2% of the variance in the data. 306 

 307 

Relationship of PC1 with PC2 308 

The relationship of PC1 to PC2 is shown in Fig. 3, where it can be seen that values for control 309 

subjects cluster tightly in the bottom left-hand corner. This figure shows that many of the 310 

subjects with high PC1 values kept PC2 values in the control range, although some with 311 

relatively low PC1 values had high PC2 values, outside the control range. Moreover, there were 312 

just two patients with very high values for both. In order to provide more clarity of the 313 

clustering, part of this figure, spanning the range from -1.0 to +1 for PC1, and -1.5 to 2 for PC2, 314 

is magnified in Fig. 6B. If we take the control values as -0.827 to -0.367 for PC1 and -0.723 to-315 

0.076 for PC2, only 15 (10.8%) patients had PC1 and PC2 values that lie in this area on the 316 

figure, and therefore 89.2% had increased serum levels of both the cytokines reflected in PC1 317 

and PC2.  318 

 319 

Age-dependent variation in PC1 and PC2 320 

The mean value of PC1 in male (-0.642 ± 0.016) and female (-0.640 ± 0.017) controls was 321 

almost identical. Among patients, the mean value of PC1 was arithmetically higher in male 322 

subjects (0.306 ± 0.104) compared with females (-0.011 ± 0.177). However, the S.E.M.s are 323 

large and therefore, with age taken into account, there was no overall significant difference 324 

between the sexes (GLM with negbin errors, main effect of sex, LR1,188=0.579, P=0.447) and no 325 

significant interaction between subject status (patient or control) and sex (LR1,185=0.399, 326 

P=0.528). Post hoc analysis by the Mann-Whitney U test confined to patients confirmed that 327 

PC1 did not differ between the sexes (U 116,21 =975.0, P=0.147). Nevertheless, many of the high 328 

values for PC1 were from male subjects. In 95% of female subjects for which PC1 could be 329 

calculated, PC1 ranged from -0.656 to 0.947, and with only one exception of a female subject 330 
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with a value of 2.547. In contrast, among male subjects 28 subjects (24.1%) had values 331 

exceeding 0.947, and seven (6.0%) values exceeding 2.547.  332 

 The data in Fig. 2C show that there is a tendency for younger patients to have high values 333 

of PC1, and with subject status taken into account, there was a significant effect of host age 334 

(GLM with negbin errors, subject status x age, LR1,189=7.524, P=0.0061) accounting for 0.379% 335 

of the variance in the data. As patients aged, their PC1 values decreased (ß=-0.02, R2=0.058, t=-336 

2.873, P=0.005). However, among controls, there was a very subtle increase in PC1 values with 337 

age but this was not significant (ß=0.001, R2=0.025, t=1.167, P=0.248). These different slopes in 338 

the relationship between age and PC1 values generated a significant 2-way interaction (GLM 339 

with negbin errors, subject status x age, LR1,188=6.136, P=0.0132) accounting for 0.311% of the 340 

variance in the data. 341 

 For PC2, the values in control subjects were also very similar in the two sexes (males = -342 

0.422 ± 0.037, females = -0.410 ± 0.041). Although this time the values were arithmetically 343 

higher for female patients (0.278 ± 0.211) compared with males (0.146 ± 0.108), the difference 344 

between the sexes was not significant (GLM with negbin errors, main effect of sex, 345 

LR1,188=0.129, P=0.719), nor was the 2-way interaction significant (subject status x sex, LR1,185 346 

<0.001, P=0.993). Post hoc analysis by the Mann-Whitney U test confined to patients confirmed 347 

that PC2 did not differ between the sexes (U116,21 = 1397.0, P=0.285). 348 

The age-distribution of PC2 is illustrated in Fig. 2D. Neither the main effect of age 349 

(LR1,188=0.992, P=0.319) nor the 2-way interaction, age x subject status (LR1,185=1.500, P=0.221) 350 

were significant in the case of PC2. The slope for patients is ß= 0.009 (R2=0.010, t=1.160, 351 

P=0.248) and that for the controls ß= -0.003 (R2=0.033, t= -1.338, P=0.187). Two huge outliers 352 

can also be seen in Fig. 2D, presumably subjects that have over-reacted. 353 

 354 

Age-dependent variation in specific cytokines 355 

To examine how individual cytokine levels differ between age classes, we separated patients 356 

into two groups: younger (≤40 years old) and older (>40 years old) (Figure 4; Table S1). The 357 

relative response of each age class to their respective controls was calculated from the ratio of 358 

these responses (i.e mean values in age class 1[patients minus controls] divided by mean value in 359 

age class 2, [patients minus controls], and these are illustrated in the form of a heat map in Fig. 360 

4). The majority of cytokines were upregulated in both groups of patients as compared to 361 
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controls (positive values in Table S1; column: Arithmetic difference), suggesting that 362 

pathogenesis of the disease was mainly similar in both groups. Post HocThe Mann-Whitney 363 

analysis revealed that 43 cytokines differed significantly between NE and controls in the younger 364 

age class, while among older subjects 41 differed. 365 

Among the resulting ratios twenty six cytokines were higher, while twenty two cytokines 366 

were lower in younger as compared to older NE (Table S1; column: X difference). One cytokine 367 

in particular, IL-8, had a particularly high value indicating that young male subjects responded 368 

much more intensively compared to their age matched controls, than did older subjects (in older 369 

subjects the mean levels of IL-8 were only marginally higher than those of their age matched 370 

controls). However, there were three cytokines (CXCL1, CXCL12 and TNFβ), which were lower 371 

in the sera of younger patients as compared to their age-matched controls, while in older patients 372 

the levels of these cytokines were higher than among their respective controls. Of note, only two 373 

cytokines, IL-1α and CCL27, were lower in both age classes relative in each case to their age-374 

matched controls.  Post Hoc aAnalysis using Mann-Whitney U test identified three cytokines 375 

which were significantly higher in younger as compared to older NE (Table S1). 376 

 377 

The relationship of PC1 and PC2 to measures of pathology. 378 

We fitted a multivariate model in R, with six measures of pathology as the dependent 379 

variables. In the first run of this model sex was not a significant factor (Pillai trace statistic = 380 

0.043, F6,167=1.24, P=0.287). Therefore, sex was removed from the model and all remaining 381 

explanatory factors retained significance. The strongest effect was from PC1 (Pillai trace statistic 382 

= 0.233, F6,169=8.53, P<0.0001). Age (Pillai trace statistic = 0.089, F6,167=2.74, P=0.014) and 383 

PC2 (Pillai trace statistic = 0.076, F6,167=2.31, P=0.036) had weaker effects on the six dependent 384 

variables (the six measures of pathology).  385 

 In order to illustrate these effects of PC1 and PC2 on measures of pathology, each PC was 386 

divided into four ranges and plotted alongside the values from control subjects (Fig. 7). Thus, 387 

with age and subject status (patient and control) taken into consideration, for potassium levels, 388 

the effect of PC1 was positive and significant (ß= 3.284, t=6.605, P<0.0001), while that of PC2 389 

was negative and significant (ß= -1.259, t= -2.738, P=0.0068). The levels of triglycerides did not 390 

vary significantly with PC1 or PC2 despite the higher means when age and subject status had 391 

been controlled for. Cholesterol levels did not vary significantly with PC1 but showed significant 392 
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negative decline with increasing values of PC2 (ß= -0.375, t= -2.728, P=0.0070). Neither PC1 393 

nor PC2 affected the levels of VLDCL1 significantly. The levels of LDCL1 varied positively 394 

with increasing PC1 (ß= 0.402, t= 2.710, P=0.0074) and negatively with increasing values of 395 

PC2 (ß= -0.334, t= -2.43, P=0.0160), while those of HDCL1 fell significantly with increasing 396 

values of PC1 (ß= -0.252, t= -4.402, P=0.0001) but did not vary significantly with PC2. 397 

 398 

Discussion 399 

Cytokines play an important role in the pathogenesis of NE [20, 21]. We have previously 400 

demonstrated upregulation of pro-inflammatory cytokines in NE patients, including increased 401 

levels of CXCL8 and IL-10 as compared to controls [21]. Previously, we have shown also that 402 

serum TNFα and IL-1β were upregulated in severe HFRS [20] and we have demonstrated that 403 

levels of IL-6, CXCL10, CCL2 and CCL3 are associated with clinical presentation of the 404 

disease. In this earlier study, the serum level of only a limited number of cytokines was analyzed. 405 

Therefore, building on our previous work, in the current analysis we included 48 cytokines and 406 

receptors, including leukocytes, chemokines, growth factors as well as interferons and 407 

proinflammatory cytokines. We found marked changes in the levels of a large number of 408 

cytokines especially in subjects with the severe form of NE as compared to mild and moderate 409 

forms of the disease at the febrile stage of the disease.  410 

The results here demonstrate that the cytokine profile does indeed vary with disease with a 411 

pro-inflammatory profile (PC1) being associated with several markers of acute kidney injury 412 

(hyperkalaemia, oliguria, elevated creatinine and perturbations in cholesterol ratio). This pro-413 

inflammatory profile was more marked in younger patients, a finding that is concordant with the 414 

known over-representation of younger patients in those with clinical disease, and the known 415 

higher prevalence of hantavirus infection in younger compared with older patients. [31-33]. It 416 

has been suggested that “cytokine storm” best explains the pathogenesis of hantavirus infection 417 

[22, 25]; however, little is known about how serum cytokine levels vary with host age.  NE is 418 

diagnosed in patients of all ages [16, 34], however, it appears that recovery is more prolonged in 419 

young female patients [35], and young male patients have a higher risk of developing serious 420 

complications of the central nervous system [31]. The mechanisms underlying these serious 421 

consequences remain largely unknown but our findings of an association between pro-422 

inflammatory cytokines and the young age of patients could provide an explanation. This 423 
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activation of the pro-inflammatory profile fits the “cytokine storm” model, where strong 424 

activation of cytokines is linked to tissue damage and, potentially a fatal outcome [36]. Multiple 425 

cytokines and chemokines, such as IL-1β, IL-6, CXCL10, CCL2, CCL11, G-CSF and GM-CSF, 426 

have been shown to be associated with cytokine storms [37]. These cytokines we found 427 

upregulated in young patients (Supplemental Table 1), suggesting their contribution to the 428 

pathogenesis of the disease in this NE subset of the study group.  429 

A high male to female ratio in the disease has been demonstrated in multiple studies [16, 33, 430 

38].  Krautkramer et al suggested that a higher risk of exposure among male compared to female 431 

subjects may explain the male bias in NE diagnoses [39]. In another study, the difference 432 

between male and female subjects in the risk of contracting hantavirus infection was 433 

hypothesized to be attributable to sex-related differences in expression of various estrogen 434 

receptors [40]. The role of cytokines in sex-associated pathogenesis of hantavirus infection has 435 

been demonstrated by Klingstrom et al  where high  levels of IL-8 and CXCL10 were identified 436 

in male as compared to female NE [41] . Our results concur with the results of this study in that 437 

we also found that the levels of IL-8 and CXCL10 in NE differ between the sexes. One of the 438 

most intriguing findings in our study was a substantial increase in IL-8 level in the serum of 439 

younger as compared to older NE patients.  This cytokine is a potent chemokine, attracting 440 

neutrophils to the site of infection [42] and favors the formation of neutrophil extracellular traps 441 

[43]. IL-8 exposed neutrophils have higher adhesion to endothelial cells [44], transendothelial 442 

migration [45] and tissue damage [46]. IL-8 may cause tissue damage by releasing matrix 443 

metalloproteases degrading extracellular matrix components [47]. Supporting the pathogenic role 444 

of IL-8 in NE is data presented by Strandin et al, where a positive correlation between the serum 445 

level of this cytokine and kidney dysfunction was demonstrated [48]. Increased serum levels of 446 

IL-8 in NE were shown also by Sadeghi et al [49]. These authors demonstrated that cytokine 447 

serum levels were positively correlated with creatinine and C reactive protein, indicators of 448 

kidney dysfunction and inflammation. Our data expand understanding of the role of IL-8 in NE 449 

pathogenesis by identifying that younger patients respond most intensively with this cytokine. 450 

Therefore, we suggest that IL-8 may contribute to variation in clinical presentation in these 451 

groups of patients.  452 

In agreement with Klingstrom et al  [41] , we found also that younger males had higher levels 453 

of CXCL10 as compared to the same age group females (4330 vs 179, respectively). Male 454 
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subjects of both age classes had higher values than their respective age-matched controls (138.2 455 

times higher than age-matched controls for younger males and 35.51 for the older males), while 456 

the younger females did not respond as well with his cytokine (only 3.5 times higher than age 457 

matched controls). In contrast, the older females responded almost as well as the males (72.5 458 

times higher than age matched controls). It should be noted that the sex groups were unequal, 459 

with more female as compared to male NE included. This is characteristic for NE as it is 460 

diagnosed more often in male as compared to female subjects [1, 26]. Therefore, this discrepancy 461 

in the number of samples could be a factor affecting the analysis. More samples from female NE 462 

in future studies will strengthen the robustness of analyses and resulting conclusions as to the 463 

role of sex in disease pathogenesis. 464 

 465 

Although the levels of many of the cytokines that we measured were arithmetically higher in 466 

male as compared to female NE, our study did not reveal overall a significant difference in PC1 467 

and PC2 between the sexes. The overriding importance of age in the cytokine profiles likely 468 

masks the complex interactions of host sex and age. A greater tendency towards a PC1 profile 469 

was demonstrated in male patients in this study with a more detailed scrutiny of individual 470 

cytokines indicating that the responses of young men and women differed in many cases to older 471 

patients of the same sex. While this study was of a reasonable size it is likely that much larger 472 

age and sex matched cohort studies will be necessary to fully characterize these differences. 473 

Future studies would also need to take into account likely confounding factors such as the pre- 474 

and post-menopausal status of female patients in their cytokine responses.  475 

Aging has profound effects on the functioning of the immune system. Declining antibody 476 

production is well documented in elderly populations [50], supporting the overall impaired 477 

response typical of this sub-set of the population.  Some of the  more striking differences are 478 

associated with reductions in T cell function and lowered IL-2 production [51, 52]. Lower IL-2 479 

production in older as compared to younger NE patients was evident in our study (Figure 3; 480 

Supplemental Table 3). Also, five common γ chain cytokine family members (IL-2, IL-4, IL-7, 481 

IL-9 and IL-15) were found upregulated in younger patients (Figure 4; Table S2). As these 482 

cytokines play a pivotal role in the development, survival, proliferation and differentiation of the 483 

innate and adaptive immune responses [53], the lower level of these cytokines in older NE 484 

patients  could contribute to disease pathogenesis in this cohort of patients.  485 
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It should be pointed out that genetic factors could contribute to age dependent differences in 486 

NE severity. Genetic mechanisms have been suggested also to play role in cytokine storms, the 487 

leading factor in pathogenesis of hantavirus infection [25, 54, 55]. Recent studies of genetic 488 

factors have implicated several IL6 gene variations in pathogenesis of coronavirus infection 2019 489 

(COVID-19) [56], a disease where severity has a strong association with the likelihood of a 490 

cytokine storm [57]. Severity of influenza, another disease with cytokine storm based 491 

pathogenesis, has been associated also with IL1B gene polymorphism [58]. The contribution of 492 

genetic factors to pathogenesis of hantavirus infection has been investigated also [59]. Multiple 493 

Human Leukocyte Antigen alleles (HLA) have been shown as connected to the severe form of 494 

infection [60, 61]. Additionally, a haplotype associated with high production of TNF-α has been 495 

correlated with the severe form of NE [62]. Also, IL-1RA allele 2 and IL-1b allele 2 have been 496 

found to be less frequent in hantavirus infected patients as compared to seronegative controls 497 

[63]. The contribution of these genetic factors to pathogenesis of NE could be modified by age, 498 

environment and ethnicity [64-66].  499 

 500 

We found some associations between biochemical laboratory data and cytokine PCs, notably, 501 

the serum potassium levels (a marker of acute kidney injury) positively correlated with pro-502 

inflammatory PC1 cytokines. Interestingly, IL-1β, a major pro-inflammatory cytokine, has been 503 

shown to inhibit the inwardly rectifying K+ channel in human proximal tubule cells [67, 68]. 504 

This could avert the intake of potassium leading to accumulation of this ion in the interstitial 505 

space and in the serum. In the kidneys, IL-1β causes suppression of K+ channels which could 506 

lead to lower reabsorption of Na+ [69] and glucose [69] , contributing to oliguria, the main 507 

symptom of NE [14]. Interestingly, glucosurea is detected in PUUV infected patients and it has 508 

been shown to correlate with disease severity [70]. Therefore, it could be suggested that the 509 

markers of NE severity could be the result of the effects of pro-inflammatory cytokines on 510 

kidney cell potassium transport function. 511 

We found also that LDCL1 and HDCL1 have positive and negative associations with PC1 512 

cytokines, respectively. Changes in the serum level of lipids have been demonstrated in 513 

hantavirus infected patients [2, 71, 72]. Our results provide more data contributing to the 514 

understanding of the role of lipids in pathogenesis of NE. The association between LDL and pro-515 

inflammatory cytokines has been demonstrated in multiple studies, where IL-1 and TNFα, the 516 

Commented [JB3]: Should this be LDCL1 or just LDL, i.e 
generically expressed rather than specifically as in LDCL1? 
SK: I agree, it should be LDL; however, technically cholesterol  
is lipid as well 
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main contributors to “cytokine storms” in model organisms or pathology were shown to increase 517 

plasma low density lipids [73, 74]. In turn, low density lipids can activate production of IL-1β 518 

and IL-18 by engaging Toll like receptors (TLRs) and triggering the formation of 519 

inflammasomes [75]. In contrast, HDL were shown to have anti-inflammatory effects by 520 

reducing expression of TLRs and reduced IFN receptor signaling [76]. Our data also support the 521 

notion that HDL could have an anti-inflammatory effect as a negative association was found in 522 

NE between HDL and PC1 cytokines. These data suggest that serum LDL and HDL could 523 

contribute to the pathogenesis of NE; however, the mechanisms remain to be determined. 524 

Conclusion. NE is an acute zoonotic disease which is characterized by kidney insufficiency 525 

and hemorrhages. Although diagnosed in both sexes, higher male to female ratios in NE are 526 

often reported [39]. The pathogenesis of the disease remains largely unknown; however, 527 

excessive cytokine activation, known as “cytokine storm,” is suggested to play a role. Finally, we 528 

identified that high serum levels of potassium and LDL were associated with PC1 cytokines, 529 

while serum HDL had an opposite association with the pro-inflammatory cytokine profile. These 530 

associations between the PC1 cytokine profile and HDL, as well as LDL, are recorded for the 531 

first time. Our data suggest an important role for pro-inflammatory cytokines in the pathogenesis 532 

of NE, especially, in young patients.  533 
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