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Abstract

Genetic programming (GP) automatically designs programs. Evolutionary programming (EP) is a real-valued global opti-
misation method. EP uses a probability distribution as a mutation operator, such as Gaussian, Cauchy, or Lévy distribution.
This study proposes a hyper-heuristic approach that employs GP to automatically design different mutation operators for
EP. At each generation, the EP algorithm can adaptively explore the search space according to historical information. The
experimental results demonstrate that the EP with adaptive mutation operators, designed by the proposed hyper-heuristics,
exhibits improved performance over other EP versions (both manually and automatically designed). Many researchers in
evolutionary computation advocate adaptive search operators (which do adapt over time) over non-adaptive operators (which
do not alter over time). The core motive of this study is that we can automatically design adaptive mutation operators that
outperform automatically designed non-adaptive mutation operators.

Keywords Hyper-heuristic - Evolutionary programming - Genetic programming - Adaptive mutation

Introduction

Genetic programming (GP) [1] is a branch of evolutionary
computation that can generate computer programs, and is
widely applied in numerous fields [2—10]. Evolutionary pro-
gramming (EP) is a black-box optimiser and mutation is
the only operator in EP. Researchers recommended different
probability distributions as mutation operators and analyse
their characteristics. For example, Yao et al. [11] point out
that a Cauchy mutation performs better than a Gaussian muta-
tion by virtue of a higher probability of making large jumps,
while large step sizes are typically detrimental towards the
end of the search process when the set of current search
points are close to the global optimum. Hong et al. [12] men-
tioned that when using a non-adaptive mutation operator in
EP, more offspring usually survive in the early generations,
and conversely less survive in the later generations of the

<1 Fuchang Liu
liufc@hznu.edu.cn

Libin Hong

libin.hong @hznu.edu.cn

Hangzhou Normal University, Hangzhou, China
Queen Mary University of London, London, UK
University of Nottingham, Nottingham, UK

run. Researchers also proposed different mutation strategies
to promote EP efficiency [12—-17]. ‘A hyper-heuristic is a
search method or learning mechanism for selecting or gen-
erating heuristics to solve computational search problems’
[18]. Researchers classify hyper-heuristics according to the
feedback sources in the learning process: Online learning
hyper-heuristics learn from a single instance of a problem,;
Offline learning hyper-heuristics learn from a set of train-
ing instances and generalise to unseen instances [18]. Both
online [2-5] and offline hyper-heuristics [6—10] are applied
to various research fields.

Hyper-heuristics are an effective and popular technique
which have been applied to a wide range of problem domains.
Cowling et al. [2] used online learning hyper-heuristics to
minimise the number of delegates who actually attend the
sales summit out of a number of possible delegate attendees.
Dowsland et al. [3] used online learning hyper-heuristics to
handle the design and evaluation of a heuristic solution to the
problem of selecting a set of shippers that minimises the total
annual volume of space required to accommodate a given set
of products with known annual shipment quantities. Ochoa
et al. [4] used online learning hyper-heuristics to describe the
number of extensions to the HyFlex framework that enables
the implementation of more robust and effective adaptive
search heuristics. Pisinger et al. [5] used online learning
hyper-heuristics to present a unified heuristic which is able to
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solve five different variants of the vehicle routing problem.
Shao et al. [6] used multiobjective genetic programming as
an offline learning hyper-heuristic to apply the feature learn-
ing for image classification. Hong et al. [7,8] used GP as
an offline learning hyper-heuristic to automatically design a
mutation operator for EP and automatically design more gen-
eral mutation operators for EP [9]. Ross et al. [10] used an
offline learning hyper-heuristic to represent a step towards a
new method of using evolutionary algorithms that may solve
some problems of acceptability for real-world use.

In this study, the heuristics are adaptive mutation oper-
ators generated by GP based on an offline hyper-heuristic.
In other words, we use a GP-based offline hyper-heuristic to
redesign a portion of the EP algorithm (i.e. the probability
distribution) to improve the overall EP algorithm perfor-
mance. The contribution of this study is that this work realises
the ‘automatic’ design of ‘adaptive’ mutation operators, it
realises both ‘automatic’ and ‘adaptive’ at the same time
has been revised and updated. Previous studies either auto-
matically designed static/non-adaptive mutation operators
[7-9], or human/manually designed adaptive mutation opera-
tors/mutation strategies for EP [13,16,17,19-22]. To achieve
this target, a set of adaptive factors was proposed, which
collected and updated historical information during the evo-
lutionary process. The proposed method also contributes to
a group of automatically designed adaptive mutation opera-
tors for function classes. In essence, these adaptive factors
are variables and are provided in terminal sets for GP that
uses these variables to automatically design a mutation oper-
ator (random number generator), which replaces the human
designed mutation operator in the EP algorithm. In EP, each
individual is taken as a pair of real-valued vectors. The vari-
ables can partly reflect the individuals’ current position and
the evolutionary status. These variables change during evo-
lution, and affect the characteristics of mutation, thus we
call them adaptive factors. For example, CUR_MIN_X is
the minimum value of the best individuals up to the current
generation. N(u, CUR_MIN_X) is a mutation operator,
CUR_MIN_X is updated in each EP generation, then the
size of the jumps the mutation operator can make keeps
updating in each EP generation. CUR_M I N_X is an adap-
tive factor type. The adaptive factors are collected and
employed for EP in both the training and testing stages.

The hypothesis of this study, inspired by [8,9,11,12] is that
for a specific class of functions GP can design an adaptive
mutation operator for EP, which outperforms an automati-
cally designed non-adaptive mutation operator. The adaptive
factors collected through the EP run can lead to the size of the
jumps being different. A set of adaptive mutation operators
can be discovered for function classes respectively. For more
details please refer to Sect. 4.

The outline of this paper is as follows: in Sect. 2, we
describe function optimisation and the basic EP algorithm.
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In Sect. 3, we describe the adaptive mutation operator. Sec-
tion 4 describes connections between GP and EP. Section
5 describes the benchmark functions and their classes, and
how a mutation operator is trained, and also describes the test
results. Here, we contrast the performance of previously pro-
posed automatically designed non-adaptive mutation opera-
tors (ADMs, i.e. not adaptive) with automatically designed
adaptive mutation operators (ADAMs, i.e. are adaptive). In
Sect. 6, we analyse and compare the testing results and in
Sect. 7, we summarise and conclude the paper.

The basic EP algorithm

The EP algorithm evolves a population of numerical vectors
to find near-optimum functional values. Mutation is the only
operator for EP, and recently EP researchers have focussed
primarily on manually designing mutation operators or smart
strategies to use the mutation operators [11-16,23].

Minimisation can be formalised as a pair (S, f), where
S € R" is a bounded set on R”, and f : § — R is an
n-dimensional real-valued function. S is the problem search
space (function f). The aim of EP is to find a point xyj, €
S such that f(xpin) is a global minimum on S or a close
approximation. More specifically, the requirement is to find
an Xmin € S such that

Vx eS: f(xmin) < f(x)

f does not need to be continuous or differentiable, but it must
be bounded (i.e. S is bounded). The EP’s mutation process
is represented by the following equations:

x{(j) = xi(j) + ni()HD;, (1)
n;(j) = ni(jexp(y'N(0, 1) + y N;(0, 1)). @

In the above equations, each individual is taken as a pair
of real-valued vectors, (x;, ;), Vi € {1, ---, u}, u represents
number of individuals in the population, i is the dimensional-
ity of f, and j represents the j —th component of the vectors
xi, X, n;,and n}, the factors y and y’ are set to (v/ 2/n)"'and
/2n)"'. D ; represents the mutation operator; researchers
usually use a Cauchy, Gaussian, or Lévy distribution L, ()
as the mutation operator [11,14,23]. Lee et al. [14] point out
that the Lévy distribution with o = 1.0 is the Cauchy distri-
bution, and that with o = 2.0, it is the Gaussian distribution.
For a complete EP description, refer to [24].

In this study, the hyper-heuristic framework designs an
adaptive mutation operator (can also be seen as an adaptive
mutation strategy) and replaces a probability distribution D;.
The EP algorithm uses this candidate mutation operator on
functions generated from the function classes.
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Adaptive mutation operator

This study focuses on automatically designing adaptive
heuristics (i.e. random number generators which are used
as mutation operators in EP). However, the human designed
adaptive heuristics have already been proposed in numerous
studies, below are examples of human designed heuristics
that relate to adaptiveness, adaptive mutation operator, and
mutation strategies:

The concept of adaptiveness is widely used in many tech-
nologies: in [25] they proposed new local search procedures
combined in an adaptive large neighbourhood search meta-
heuristic to generate solutions for the gate matrix layout
problem. An adaptive charged system search algorithm was
developed to solve economic dispatch problems in [26]. To
make the terminal phase of the standard global positioning
system and inertial navigation system (GPS/INS) landing
system more precise, an adaptive fuzzy data fusion algorithm
was developed yielding more accurate state estimates while
the vehicle approaches the landing surface [27].

A novel adaptive strategy is developed to dynamically tune
the control parameters of the random learning operator so
that the improved adaptive human learning optimisation can
efficiently accelerate the convergence at the beginning of an
iteration, develop diversity in the middle of the searching
process to better explore the solution space, and perform an
accurate local search at the end of the search to find the optima
[28].

A hybrid adaptive evolutionary algorithm was introduced
to improve the performance of the search operators across
the various stages of the search/optimisation process of
evolutionary algorithms [29]. A neighbourhood-adaptive dif-
ferential evolution method was also proposed; in this frame-
work, multiple neighbourhood relationships are defined for
each individual and the neighbourhood relationships are then
adaptively selected for specific functions during the evolu-
tionary process [30].

An adaptive switching particle swarm optimisation algo-
rithm using a hybrid update sequence is proposed, which can
automatically switch to synchronous or asynchronous updat-
ing during the evolutionary process [31]. [32] presented a
method for reusing the valuable information available from
previous individuals to guide later search; in this approach,
prior useful information was fed back to the updating process.

The concept of adaptive mutation operators has been pro-
posed in numerous studies. The adaptive mutation operator
proposed for particle swarm optimisation uses the three muta-
tion operators (Cauchy, Gaussian, and Lévy) in [33]; the
mutation operators that cause lower fitness values for the off-
spring see their selection ratios decreased, and the selection
ratios for mutation operators that cause higher fitness values
for the offspring increase. In [34], they developed an adap-
tive mutation for a particle swarm optimisation for an airfoil

aerodynamic design. In [35] they proposed using an adaptive
strategy in differential evolution, with a Cauchy distribution
(Fm, 0.1), where they use a fixed scale parameter 0.1 and an
adaptive location parameter F,,. The Gaussian (Ciy, 0.1) has
a fixed standard deviation of 0.1 and a mean of Cyy,.

Liu et al. [21] investigated operator adaptation in EP both
at the population and individual levels. The operator adap-
tation at the population level aims to update the rates of the
operator based on the operator performance over the entire
population during the evolution [21].

In [17], a mixed mutation strategy with a local fitness
landscape was proposed: In these strategies, a local fitness
landscape was used as a key factor to determine the muta-
tional behaviour. In [16], ensemble strategies with adaptive
EP was proposed. In this work, EP with an ensemble of Gaus-
sian and Cauchy mutation operators was proposed where
each mutation operator has its own population and param-
eters. In [12], mutation operators with different parameters
were selected in each EP generation according to the step
size of the jumps by individuals. In this strategy, the size
of the jumps the mutation operator can make keeps chang-
ing during the EP evolutionary process. These studies can
be considered as human designed adaptive mutation strate-
gies. Liu [21] proposed that operator adaptation in EP can
be investigated at both the population and individual levels.
In [12], we introduced a mutation strategy for EP, generating
long step size variants at the beginning and short step size
variants later on in the search.

Regardless of the type of adaptive or non-adaptive muta-
tion operators used in state-of-the-art algorithms, the essence
of the adaptive mutation operator is the following:

— Use different mutation operators, or a combination of
them, for each generation.

— Change the jump sizes for different generations according
to the feedback from the current generation or historical
information (i.e. each EP generation has a best fitness
value, the best fitness values of each generation can be
stored in an array, the array fitness values are an example
of historical information).

The proposed hyper-heuristic GP algorithm

In this section, we describe how GP is used to build EP
mutation operators. In previous work, the GP framework suc-
cessfully designed non-adaptive mutation operators for EP
[7,9]. In [7,9], Hong et al. used GP as an offline learning
hyper-heuristic to automatically design a mutation opera-
tor for EP and automatically design more general mutation
operators for EP. In [7], a group of mutation operators were
designed for function classes. In [9], function classes were
classified into several groups, and each group is assigned
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an independent automatically designed mutation operator.
In both works, the automatically designed mutation operator
is fixed at each EP generation. The automatically designed
mutation operator is a probability distribution. Once the prob-
ability distribution is automatically designed, the form of the
equation with the values are fixed when an EP is used; thus,
the search region is fixed at each EP generation.

However, itis obvious that dynamically updating the prob-
ability distribution during the evolutionary process can lead
to a more efficient search. In this study, we employ the
improved framework in Fig. 1 by more creative GP termi-
nal settings, while using GP as an offline hyper-heuristic to
automatically design adaptive mutation operators for EP on
specific function classes. In the framework, GP sits at the
hyper-level to generate a piece of code (which acts as a
mutation operator by generating random numbers accord-
ing to a probability distribution), and secondly, generate
functions from the function classes to optimise. The auto-
matically generated program is actually an automatically
designed probability distribution with adaptive factors. For
example, CUR_M I N_X represents the absolute minimum
value of the best individual in an EP run up to the current
generation, which is updated at each EP generation; thus, the
jump sizes of the ADAM change dynamically at different
EP generations. The settings in Table 1 are adaptive factors
that exist in the mutation operator. At the base-level, EP opti-
mises functions and EP is treated as a fitness function by GP
in the framework. The fitness value used in GP is the value
calculated, averaged over nine runs by EP.

In Fig. 1, the blue arrow between ‘Function class’ and
‘Function to optimise’ represents functions are generated
from the function class. The blue arrow between ‘Function to
optimise’ and ‘Evolutionary programming’ represents func-
tions that are taken by EP and optimised. The blue arrow
between ‘Evolutionary programming’ and ‘Adaptive muta-
tion operator generator’ represents the insertion of an ADAM
which is inserted into EP. The adaptive mutation operator is
generated by GP and inserted into EP where it is tested on a
set of functions.

In the experiments, we perform comparisons of the two
types of automatically designed mutation operators: A non-
adaptive mutation operator (ADM), which is a random
number generator according to a fixed probability distribu-
tion, and an adaptive mutation operator (ADAM), which is
a random number generator according to a probability dis-
tribution that dynamically changes during the EP run. This
means that the mutation operator could be different at each
EP generation. To identify the hypothesis proposed in this
study, in contrast with the framework we proposed in [7,9],
we propose two significant improvements:

— The adaptive factors, are proposed and recalculated at
each EP generation, added to the terminal set for GP.
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Fig.1 Overview of the improved hyper-heuristic framework proposed,
GP sits at the hyper-level to generate heuristics, EP sits at the base-level
to validate the heuristics

— In [7-9], the GP framework uses EP as a fitness func-
tion, which is used to evaluate the performance of GP
individuals, through non-adaptive mutation operators. In
this work, the adaptive factor values are used as part of
the adaptive mutation operator for EP. Due to the adaptive
factors added, EP needs to calculate and update values of
adaptive factors at each generation. The updated values
of adaptive factors lead to the probability distribution of
the possible step sizes to which a mutation operator can
make changes.

Experimental design

We call a random number generator produced by GP without
adaptive factors an automatically designed mutation opera-
tor (ADM) [7], and a random number generator produced by
GP with adaptive factors an automatically designed mutation
operator (ADAM). The experiment is designed to test the
following hypothesis: ADAM can search different regions
at different EP generations. The ADAM achieves better per-
formance than an ADM for EP on specific function classes.
Thus, the adaptive factors are calculated and used by EP
when evolution is being processed. In the experiment, 168
functions are generated from each function class. Eighteen
functions are used in the training stage, 50 functions are used
in the testing stage, 100 functions are used in the exchange
testing (50 for ADAM and 50 for ADM).
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Table 1 The adaptive factors

included in the GP terminal set Symbol

Terminal

N(u,0?)

U

GEN

CUR_MIN_X
CUR_MAX_X
CUR_STD_X
CUR_MIN_Y
CUR_MAX_Y
CUR_STD_Y

N(u, CUR_MIN_X)
N(u, CUR_MAX_X)
N(u, CUR_STD_X)
N(u, CUR_MIN_Y)
N(u, CUR_MAX_Y)
N(u, CUR_STD_Y)

Normal distribution

~[0, 3]

Current EP generation number

Absolute minimum value of the best individual in an EP run
Absolute maximum value of the best individual in an EP run
Standard deviation of the best individual in an EP run

Best fitness value of all individuals in an EP run

Worst fitness value of all individuals in an EP run

Standard deviation of the fitness values in an EP run
CUR_MIN_X used as o2 for normal distribution
CUR_MAX_X used as o2 for the normal distribution
CUR_STD_X used as o2 for the normal distribution
CUR_MIN_Y used as o2 for the normal distribution
CUR_MAX_Y used as o2 for the normal distribution
CUR_STD_Y used as o2 for the normal distribution

The training stage

The algorithm proposed in [7,9] demonstrates automatically
designed non-adaptive mutation operators have better per-
formance than human designed mutation operators. In these
experiments, we train mutation operators for each function
class with two different terminal sets. In one experiment, the
GP terminal set contains adaptive factors (see Table 1) that
are generated by EP. In the other experiment, the terminal set
of GP excludes adaptive factors (see Table 4). Both training
processes use the same set of functions generated from func-
tion classes. In the experiments, ADAM denotes adaptive
factors with automatically designed mutation operators. The
tailored ADM automatically designed for the function class
Fg is represented with ADM,, where g is the function class
index. ADMg is called a dedicated ADM for the function
class F,. The tailored ADAM automatically designed for a
function class Fy is represented by ADAM,, where g is the
function class index. ADAM is called a dedicated ADAM
for function class Fj.

In the experiments, where a subtree crossover is applied,
nodes are randomly selected from both parent trees, and the
related branches are exchanged creating two offspring. A
one-point mutation with the grow initialisation method is
applied in GP to generate a new offspring [1,38]. During
training, the GP fitness value is derived from the averaged
fitness values of the nine EP runs. Each ADM, or ADAM,
is used as an EP mutation operator on nine functions drawn
from a given function class. The fitness value of an ADM, or
ADAM is the average of the best values obtained in each of
the individual nine EP runs on the nine functions. We use the
same nine functions from each function class for the entire
GP run on a given function class. In general, for one function

Table 2 Parameter settings for EP

Parameter Settings
Population size 100
Tournament size 10

The initial value of the strategy parameter 3.0

class, 18 functions are taken for training, nine of which are
used to calculate the fitness value, and nine others to monitor
over-fitting.

To ensure that the experimental data is more traceable
and easier to compare, the function classes and number of
generations for each function class used in this study follow
the settings in study [9]. The EP parameters follow [11,14,
23], and are presented in Table 2: the population size is set
to 100, the tournament size is set to 10, the initial standard
deviation is set to 3.0. The settings for the dimension 7, and
the number of domains § are listed in Table 6. To reduce
the cost of training, in our experiment the maximum number
of EP generations was set to 1000 for F1—F13 and Fis5. The
maximum number of EP generations was set to 100 for Fi4
and Fig—F»3.

The terminal set includes the adaptive factors outlined
in Table 1, and excluding the adaptive factors outlined in
Table 4. In both tables, N is a normal distribution for which
the value of u is a random number in [—2, 2]. This value
may cause the designed mutation operator to not be Y-
axis symmetric. o2 is a random number in [0, 5]. U is the
uniform distribution in the range [0, 3]. In Table 1, GEN
is the current EP generation index: It is an integer in the
range [1, 1000] or [1, 100], which depends on the function
classes we selected. CUR_M I N _Y is the best fitness value
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Table 3 Parameter settings for GP

Parameter Value
Population size 20
Initial number of generations 25
Crossover proportion 45%
Mutation proportion 45%
Reproduction proportion 10%
Selection method Lexictour [36]
Depthnodes 21[37]
Maximum initial size of tree 28
Maximum size of tree 512
Number of EP iterations 9

Table 4 Terminal set of GP without the adaptive factors

Symbol Terminal
N(u, 02) Normal distribution
U ~[0, 3]

Table 5 Function set for GP

Symbol Function Arity
+ Addition 2
— Subtraction 2
X Multiplication 2
= Protected division 2
power Power 2
exp Exponential function 1
abs Absolute 1

of the individuals up to the current generation, and the frame-
work records the following for a given EP individual (each
individual is taken as a pair of real-valued vectors in EP)
[23]: CUR_MIN_X, as the absolute minimum value for
this individual, CUR_M AX_X, as the absolute maximum
value for this individual, and CU R_ST D_X as the standard
deviation of this individual. CUR_M AX _Y is the worst fit-
ness value of the individuals in the current generation, and
CUR_ST D_Y is the standard deviation of all fitness values
in the current generation. All these values constitute useful
information, and will change during the EP runs.

The GP parameter settings are listed in Table 3.
depthnodes is set to 2, indicating that restrictions are to
be applied to the tree size (number of nodes) [36]. The GP
function sets are listed in Table 5. The other GP settings
are: The population size is 20, and the maximum number of
generations is 25. The algorithm framework to automatically
design ADAM is described in Algorithms 1 and 2.
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Testing the ADAMy, ADMy, and human designed
mutation operators

We use ADAMs (in Table 9), ADMs (in Table 10), and human
designed EP mutation operators, and test them on each func-
tion class Fy. For each ADAM or ADM, we record 50 values
from 50 independent EP runs, each being the lowest value
over all EP generations, and we then average them: This is
called the mean best value. The results of testing in Tables 7,
8, and 11 are based on the same 50 functions generated from
each function class Fj,. Thus, in total 68 functions are used
for both training and testing stages.

Algorithm 1 Algorithm Framework to Generate ADAM for

A Given Function Class.
1: Initial parameters of GP including MaxGPGen, function set and
terminal set;

2: Initial the GPPOP;

3: Setp=0; Setm =0; Set N =09;

4: Generate N function instances from a function class;

5: while p < GPpopsize do

6:  whilem < N do

7. Evaluate fitness value bestEPFit,, by EP for GPPOP,, for mth
function instance;

8: m=m+1;

9:  end while

10:  Calculate mean value GPFit, = Y N_( best E P Fity /n as fit-
ness value for GPPOP ,;

11: p=p+1;

12: end while

13: Record best GP fitness value bestG P Fit and best GP individual
bestGPInd,

14: Set g =0;

15: while g < MaxGPGen do

16: g=g+1;

17: Set p=0; Set m = 0;

18:  while p < GPpopsize do

19: while m < N do

20: Evaluate fitness value bestEPFit,, by EP for GPPOP, for
mth function instance;

21: m=m+ 1;

22: end while

23: Calculate mean value GPFit, = ZZ_:IO bestEPFit, /n as
fitness value for GPPOP ;

24: if GPFit, < bestG PFit then

25: Update best GP individual bestG P Ind,;

26: Update best GP fitness value bestG P Fit;

27: end if

28: p=p+1;

29:  end while

30: Crossover, mutation or reproduction for next GPPOP;
31: end while

32: return bestG P Ind,

The testing stage

In[11,13,17,23], a suite of 23 benchmark functions are com-
monly used to test the different EP variants, where f—f7 are
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unimodal functions, fs—f13 are multimodal functions with
many local optima, fi4— f>3 are multimodal functions with a
few local optima [11].

In this study, we built function classes based on the fol-
lowing function classes [7]. We use function classes instead
of single functions for benchmark function optimisation. In
other words, we are specially designing an ADAM for a class
of functions.

The set of functions can be considered as a set of training
instances of offline learning hyper-heuristics. The framework
generates functions (instances) from the function class to
train an ADAM or ADM. We then draw an independent set
of functions (unseen instances) from the function class to test
the ADAMs and ADMs produced from the training stage.

Based on the 23 functions, we have constructed 23 func-
tion classes in Table 6, with the index of each function class
corresponding to the original functions of [23]. In Table 6, a;,
bi, and ¢; are uniformly distributed in range [1, 2], [—1, 1],
and [—1, 1], respectively. The definition of the function class
has been proposed in [7,9]. In this study, we use the symbol
[ for a function, and F, for a function class.

To observe the performance of the ADAM,, ADM, and
human designed mutation operators, we tested the functions
drawn from on Fy. The mean best values and standard devi-
ations are listed in Table 7. The highest mean best values are
in boldface. Each mean value is averaged

Algorithm 2 EP Evaluation with Adaptive Factors for
GPPOP, on mth Function Instance.

1: Initial parameters of EP including MaxEPGen, EPpopsize and
dimension size D;

2: Generate the initial population of p individuals. Each individual is
taken as a pair of real-valued vectors, (x;, n;), Vi € {1,..., u};

3: Evaluate the fitness value for each (x;, 1;), according to mth function
instance generated in Algorithm 1;

4: Calculate  CUR_MIN_X, CUR_MAX_X, CUR_STD_X,

CUR_MIN_Y,CUR_MAX_Y,CUR_STD_Y;

:Set GEN =0;

: while GEN < MaxEPGen do
GEN=GEN +1;
Each parent (x;, n;), Vi € {1, ..., u}, creates a single offspring

(x/,n}) by: for j = 1,..., D, the factors y and y’ have set to

(V2y/n)~"and (vV2n) 7!
x{(j) = xi()) +ni()YGPPOP, ;
n'(j) = ni(j)exp(y’'N(0, 1) + yN; (0, 1))
9:  Calculate the fitness value of each offspring (xlf , n;) by the mth
function instance;
10:  Conduct pairwise comparison and select the p individuals out
of the union of parents (x;, ;) and offspring (xlf, ;7;) [23];
11:  Update CUR_MIN_X, CUR_MAX_ X, CUR_STD_X,
CUR_MIN_Y,CUR_MAX_Y,CUR_STD_Y;
12: Update best fitness value best E P Fit;
13: end while
14: return best EPFit;

over 50 runs. To improve the observation, we retain more
decimal places for Fg, Fi¢, F17, F1g, and Fig.

We also performed the Wilcoxon signed-rank test for
ADAM, versus ADM,, Lévy (1.0, 1.2, 1.4, 1.6, 1.8, 2.0),
the results of which are given in Table 8. The Lévy distribu-
tion, where o = 1.0 is a Cauchy distribution, whereas o = 2.0
yields a Gaussian distribution [14]. Due to diverse features
of different distributions, they have different performance on
different benchmark functions.

Exchange testing for ADAM,; and ADM, on each
function class

The exchange testing evaluates the performance of ADAM,
and ADM;, on all function classes. An ADAM, designed for
the function class Fj is called a tailored adaptive mutation
operator, while an ADAM, tested on F; is called a non-
tailored adaptive mutation operator; here g # j. An ADM,
designed for the function class Fy is called a tailored non-
adaptive mutation operator, while an ADM, tested on F;
is called a non-tailored non-adaptive mutation operator. For
example, ADAM| is a tailored adaptive mutation operator
for Fp, but it is a non-tailored adaptive mutation operator
for the function class F>. ADM] is a tailored non-adaptive
mutation operator for Fi, but it is a non-tailored non-adaptive
mutation operator for the function class F;. To observe the
performance of both tailored (or dedicated) and non-tailored
(or non-dedicated) ADAM, and ADM, on F;, we tested
ADAM, and ADM, on F; over 50 runs, and a function is
generated from the function class in each run. Fifty functions
are used for ADAMg, 50 functions are used for ADM,. Thus,
100 functions are used in total. The mean best values and
standard deviations are given in Tables 11, and 12. We display
more decimal places for Fg, Fie, F17, F13, and Fig, as the
results are otherwise too close to distinguish. The values of
the tailored ADAM and ADM are in boldface, and the values
that are better than those of the tailored ADAM and ADM
are also in boldface.

Analysis of the performance of ADAMy and
ADM,

In this section, we compare ADAM, ADMg, and the human
designed mutation operators. From the experiment, both
ADAM, and ADM, achieve better performance than the
human designed mutation operators on Fg, and ADAM,
achieves an outstanding performance on most of Fj.

In Table 7, ADAM7, ADAM >, ADAM |9, and ADAM;g
are the exceptions: the experimental results for ADMy,
ADMj,, and ADM;( show that they achieve better per-
formance than ADAMy, ADAMj;, and ADAMjyg; The
performance of ADAMj9, and ADMjg is the same; In this
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Table 6 Function Classes with n dimensions and domain S, a; € [1, 2], b;, ¢; € [—1, 1]

Function Class n S
Fi(x) = Y [(aixi — bi)* +¢i] 30 [—100, 100]"
Fy(x) =0y laixi | +[Ti=; | bixi | 30 [-10, 10]"
F3(x) =Y""_la; le:l xj]2 30 [—100, 100]"
Fy(x) = max;{| ajx; |,1 <i <n} 30 [—100, 100]"
Fs(x) = Y7 lai (xig1 — )C,-z)2 +bi(xi — D? +¢] 30 [-30, 30]"
Fo(x) = 3{_ (laixi +0.5))% + b; 30 [—100, 100]"
Fr(x) = Z?:l a,-ix;‘ + random|0, 1) 30 [—1.28, 1.28]"
Fy(x) = Y1 —(x; sin(v/Ixi]) + a;) 30 [—500, 500]"
Fo(x) = Z?zl[a,-xl.z + b; (1 — cos2mx;))] 30 [-5.12,5.12]"
Fio(x) = —exp(—0.2,/ % > a,-xiz) - exp(% > bicos2mwx;) +e 30 [—32, 32]"
Fui(x) = g565 211 7 = bi [Tz cos(2) 30 [—600, 600]"
Fia(x) = F{10sin(ryi) + a; Y12 (yi = D?[1+ 10sin (7 yi41)

0w = D} + X1 uxi, 10,100, 4),

1
yi:1+z(xi+l) 30 —50. 501"
k(x; —w)™, x; >w, [ +301
u(xi, w,k,m)= 10, —w=<x < w,
k(=x;i —w)™, x; < —w.

Fi3(x) = 0.1{sin®Grxy) + a; Y (i — D21 + sinBrxip)]+ 30 (50, 50]"

(xn — DL + sin?Qax)]} + Z?:] u(x;, 5,100, 4) ’

T R 25 1 —1 _ n
Fra(x) =[50 + @i 212y 7j+2?:1(x;—w,j)6] 2 [—65.536, 65.536]
ol axi 0P 4vin) < oam

Fis(x) = Zizl[wz m] 4 [-5,5]
Fio(x) = aj(4x} — 2.1x} + $x0 + x1xp — 4x3 + 4x3) + by [-5,5]"

Fi7(x) = a1(x2 — 25x2 + 2x1 — 6)2 4+ 10b; (1 — g-)cosx; + 10

472
Fig(x) = ai[1 + (x1 + x2 + D2(19 — 14x; + 3)(12 — 14x;
+6x1x2 + 3x22)] % [30 + (2x1 — 3x2)%(18 — 32x;
+12x7 4 48x3 — 36x1x2 4+ 27x3)] + by

Fio(x) = — Y1, yiexpl—3j_y ajwi(vj — pij)” + bi]

Fao(x) = — Y0 yiexpl— Y02, ajwij(x; — pij)* + bi]

Fu(x) == Y7 ail(x —wi)T (x —wi) + yi + b1~}

Fu(x) ==Y ail(x —w)T (x —w) + yi + b1~

F3(x) = = Y12 ail(x — w)T (x = wi) + yi + b1~ where y; = 0.1

[—5,10] x [0, 15]

2 [=2,2]"

(o, 11"
(o, 11
[0, 101"
[0, 101"
[0, 101"

~ B2 B~ O W

particular case, the adaptive factors selected may not well
match with F7, F;, F1g9, and Fpg. In the future we will anal-
yse and collect more adaptive factors for EP, and import the
new adaptive factors to design ADAMs for F7, F12, F19, and
Fy.

Table 8 lists the results of the Wilcoxon Signed-Rank Test
at the 5% significance level, comparing a tailored ADAM,
with an ADM, and human designed mutation operators,
using Lévy distributions (with «=1.0, 1.2, 1.4, 1.6, 1.8, 2.0).
In this table ‘>’ indicates that the ADAM, performs better
on Fy than ADM, or the human designed mutation opera-
tors on average. ‘>’ means that the difference is statistically
significant, and ‘=" means that there is no difference. In
the majority of the cases, the ADAM; outperform ADM,

Lisllase cllad .
bes Shenas Q) Springer

and human designed mutation operators. ‘<’ indicates that
ADAM;, performs worse on F, than ADM,.

Table 11 lists the experimental results from using all
ADAMSs given in Table 9, testing all function classes. ‘N/A’
means ADAM, may lead to generating value out of range
of the machine’s representation. For non-tailored function
classes in certain generations. From this table we find that
tailored ADAMs achieve much better performance than non-
tailored ADAMs on F; in most cases. The reason is the
following: ADAMs can make different jump sizes in differ-
ent EP generations; however, non-tailored ADAMs usually
cannot fit in function classes, once an (non-tailored) ADAM
fails to make an EP search in the entire space in the early
generations, it will fall into local optima with no ability to
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tT:s'f'&l&ﬁfi&lﬁ“ﬁ%ﬁgk F, ADM, a=10 =12 a=14 =16 a=18  «=20
and Lévy distribution (with o = F > > > N - - N
1.0,1.2,1.4,1.6, 1.8,2.0)

P > > > > > > >

F3 > > > > > > >

Fy > > > > > > >

Fs > > > > > > >

Fe > > > > > > >

I > > > > > > >

Fy > > > > > > >

Fy > > > > > > >

Fio > > > > > > >

F1p > > > > > > >

F < > > > > > >

Fi3 > > > > > > >

Fq = > > > > > >

Fis > > > > > = =

Fie = > > > > > >

Fi7 = > > > > > >

Fig = > > > > > >

Fo = > > > > > >

Fy > > > > > > >

Fa = = = = = ke =

F = = = = = > =

Fa3 = = = = = > =

TG*‘;'e 9 ADAMs discovered by s iy sy Best ADAM found by GP

ADAM| +(N(0.90415,GEN),N(0.56635,GEN))

ADAM, N(0.0058876,CUR_MIN_Y)

ADAM;3 X(GEN  +(x(+=(x(GEN N(1.6806,CUR_MAX_X)) CUR_MAX_Y) N(-
0.70715,CUR_M AX_X)) GEN))

ADAMy =+(N(0.11157,GEN) N(-1.3787,CUR_M AX_X))

ADAM; +(N(-0.96806,CUR_MAX_X) —(N(-0.62258,CUR_M AX_X) N(-1.9713,1.6321)))

ADAMg —(N(-1.4874,4.6908) ~-(CUR_MIN_Y N(0.076592,CUR_ST D_Y)))

ADAM7; ~(CUR_MAX_Y N(0.11449,CUR_MAX_Y))

ADAMg +(exp(N(-1.1665,4.4708)) +(+-(CUR_MAX_Y plus(—(x(N(-1.3502,1.0327)
+(exp(N(-1.8983,1.7794)) CUR_STD_Y)) —(x(N(-0.017172,3.3643)
=—(exp(N(0.41282,1.5366)) CUR_STD_Y)) CUR_STD_Y)),+(+(GEN
CUR_MAX_Y)N(-0.9974,GEN)))) N(0.6046,0.33266)))

ADAMy X(CUR_MAX_X x(+(N(-1.6727,GEN) N(-0.47283,GEN)) —(CUR_MAX_X
+(CUR_MAX_X CUR_MAX_Y))))

ADAM o +(-(N(-0.52805,3.0285) X (abs(N(0.27085,2.434)) CUR_STD_Y)) X(N(-
1.2256,2.4922) abs(exp(exp(CU R_ST D_Y)))))

ADAM +(+(CUR_MAX_Y,CUR_STD_Y)N(-1.1546,4.3386))

P4

y
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Table 9 continued ADAM

Best ADAM found by GP

ADAM »

x(abs(CUR_STD_X) x(N(-1.9085,CUR_MAX_X) =(N(-1.5148,CUR_MAX_X)

N(-0.10725,CUR_M AX_X))))

ADAM |3
ADAM 4
ADAM;5

+(+(CUR_STD_X N(-0.17603,CUR_ST D_X)) +(N(-0.66198,2.4311) 1.8755))
x(N(0.16457,CUR_ST D_X),power(N(-0.4513,CUR_M AX _X),N(0.75071,1.674)))
X(CUR_MIN_Y power(—(N(-1.568,CUR_MAX_X) abs(CUR_MAX_X)),abs(N(-

0.34848,CUR_ST D_X,1,1))))

ADAM ¢

~—(power(CUR_MIN_X
X (x (power(N(0.15272,CUR_MIN_X)

—(0.67663 N(-1.1373,CUR_MAX_X)))

N(-1.8514,CUR_MAX_X))

N(0.3968,CUR_MAX_X)) abs(exp(CUR_MIN_Y))))

ADAM 7
ADAM 3
ADAM9

= (=(N(-1.7474,CUR_MIN_X) N(0.53761,CUR_M AX_Y)) GEN)
~(CUR_MIN_X N(1.2301,CUR_MIN_Y))

~(+=(CUR_STD_X
+(—(x(N(-0.92113,3.8014)

N(0.062251,4.7214))
=(«(0,CUR_MIN_Y)

+(N(1.2588,4.8929)
N(-0.28818,0.71497)))

N(0.9943,0.61349)),CU R_ST D_X)))

ADAM»g
ADAM,;

+~(CUR_MAX_X,N(0.28085,GEN))
+(+(+(+(=+(CUR_STD_X 2.5725) N(-0.95096,GEN)) N(-0.35258,GEN)) N(-

1.9889,GEN)) N(-1.069,GEN))

ADAM;»

~—(—(power(power(CUR_MAX_Y exp(—exp(CUR_ST D_X))) abs(CUR_ST D_X))
power(power(CUR_MAX_Y

N(-0.77135,0.6816)) N(-0.89184,0.5241)))

power(minus(N(0.21547,1.8121)
,CUR_MIN_Y) exp(exp(N(0.58382,2.6967)))))

ADAM>»3

+(—(—(abs(2.3552) 0.70777) 1) x(exp(power(1.4883 power(N(1.0712,CUR_ST D_Y)

2.5113))) exp(abs(normrnd(0.59628,GEN)))))

subsequently jump out and escape them. As the values gen-
erated by ADAM are probably too short to allow individuals
to jump out. In the future we can search for smarter adaptive
factors to design ADAMs to avoid falling into local optima
earlier, or establish a mechanism to avoid this problem, such
as importing long step size mutation operators occasionally
in a later EP generation.

The results in Tables 11, and 12 demonstrate that ADAM;,
ADAM3, ADAMy, ADAMs, ADAMg, ADAMg, ADAMy,
ADAMj9, ADAM;;, ADAMi4, ADAM;s, ADAMj7,
ADAM;i3, ADAM19, ADAM2;, ADAMj,, and ADAM;3
achieve the best performance when acting as tailored oper-
ators, i.e. acting on their own F,. ADAM;, ADAM7,
ADAM,, ADAM3, ADAM;5, and ADAMj( achieve satis-
factory performance, albeit not the best.

The large variation in a single mutation enables EP to glob-
ally search a wider area of the search space [14]. Researchers
attempted to design mutation strategies that can generate
larger variations, especially when local optima have deep and
wide basins, in early EP generations, and smaller variations
in the later EP generations. Otherwise, mutation strategies
can generate smaller variations in early EP generations and
reduced size large variations, still have chances to jump out
of local optima in the later evolutionary process if they fall
into early generation local optima, in the later EP genera-
tions. The ADAM can perform well on functions generated
from function classes.

Lisllase cllad .
bes Shenas Q) Springer

In Figs. 2, 3 and 4, ADAM;3;, ADAM4, ADAMyi,
ADAM;3, ADAM;;, ADAM>;, and ADAM»3 achieve sig-
nificant performance for EP. ADAM,, ADAMg, ADAM,,
and ADAM14 do not perform well in the early EP genera-
tions. However, ADAM,, ADAMg, ADAM |5, and ADAM 4
lead to an acceleration in the convergence rate in the later
EP generations due to the significant effectiveness of the EP
adaptive factors. The experiments also demonstrate that these
adaptive factors have positive impact, especially in later EP
generations.

Let us further analyse the ADAMs. In Fig. 3, ADAMj,
does not perform well in the early EP generations and shows
the worst performance among all mutation operators in early
generations (where the generation index is less than approx-
imately 500). This situation changes in the later generations.
The adaptive factors in ADAMj, does not help EP establish
efficient convergence in the early generations. The values
in Table 13 show random numbers generated by ADAM |,
that are large in early EP generations, and much smaller in
the later generations. It is obvious that the fit for ADAM,
improves in the later EP generations, as the jump sizes the
mutation operator can make is significantly more precise due
to the variability in mutation operators. We also notice that
the processing shapes of ADMj; appear as ‘punctuated equi-
libria’, with F>» as a multimodal function class with a few
local optima. This is because the evolutionary process makes
no improvement in some generations.
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Table 10 ADMs discovered by

GP ADM Best ADM found by GP
ADM; X (= (+H(+(+(N(-0.3842,2.5211) 1.5461) N(-1.6217,1.3702)) N(1.3287,4.6137)) N(-
0.54092,4.4922)) 0.43652)
ADM, =(=+(exp(N(-0.38136,0.86466)) exp(N(1.5842,0.84216))) N(0.21558,3.8436))
ADM3 —(—(—(N(1.535,1.3136) N(0.14157,1.5186)) N(0.11891,2.4488)) —(N(1.9467,2.6814)
N(0.69438,1.4041)))
ADMy +(+(—  (+(abs(N(1.0534,1.9781)) N(-0.83315,1.0421)) N(-0.76623,1.4908)) —

(abs(N(0.047489,1.7402)) abs(=(abs(N(1.8085.4.8537)) exp(N(-0.28834,1.8282))))))
abs(N(1.865,0.91793)))

ADM;5 —(N(1.5968,4.6973) —(x(x(N(1.7932,1.3455) N(0.86795,0.32284)) N(1.3364,3.623))
x(N(-0.11477,4.0585) N(-1.6811,2.0561))))

ADMg power(—(abs(N(-0.21175,0.7145)) exp(1.0128)) N(0.8463,3.0375))

ADM; +(1 +(N(0.086792,1.8674) abs(0.19647)))

ADMg +(—(N(1.0741,4.0709) +(N(-0.85632,3.3886) exp(1.1719))) —(exp(N(-
0.71554,3.1857)) abs(N(1.5423,4.2601))))

ADMy +(<(=(=(abs(N(-1.346,3.5533)) abs(exp(1.9001))) N(-0.99667,2.831))
abs(exp(1.5705))) N(1.6685,4.6269))

ADMjo +(=(exp(1) N(1.085,3.0345)) x (exp(exp(—N(-0.516,0.081374))) N(1.5994,2.5965)))

ADMj; =(1 N(-0.059745,0.11982))

ADMi2 +(+(N(-0.3992,4.7626) +(+(+(N(0.40938,1.2675) +(+(N(0.14379,4.7507)

N(-1.7051,1.4454))  N(-1.7518,0.68855))) 2.0986) +(N(0.31538,0.73037) N(-
1.8513,0.79594)))) +(N(-0.4157,4.2054) N(0.84778,4.1008)))

ADMy3 +(—(N(-0.014005,1.326) N(-0.046516,2.7121)) % (N(0.079839,2.6104) N(-
0.92208,3.1112)))

ADM 4 —(N(0.24476,0.87804) power(N(-1.9097,4.9483) N(0.90134,2.2834)))

ADM;s x (power(+(N(-1.7387,0.35176)  N(-1.1476,2.7704)) —(x(power(N(1.2007,2.8697)

x (power(N(-1.3949,1.2935) 1.2768) 1.5861)) N(1.5794,3.4152)) N(-0.84802,4.8521)))
N(0.38249,1.5269))

ADM 4 =+ (—(abs(—(N(0.23803,2.3456) 1)) 1) times(N(-1.7843,3.2233), x (power(—(N(-
1.7408,4.4291) exp(N(1.3749,0.065262))) 2.8202),—(N(0.012852,1.9296)
abs(—(abs(—(abs(N(-0.73909,0.48735)) 1)) 1))))))

ADM,7 +(+(N(0.83974,3.9232)  N(-1.4048,4.0869)) -—(exp(power(exp(0.2235) =(1.0388
N(1.3618,3.822)))) +(x(0.049985 N(0.84732,0.95156)) exp(exp(0.39089)))))

ADM 3 = (=(exp(N(-0.27187,4.8309)) +(N(0.10832,3.7946) = (exp(x(0.67132

+(N(0.59398,3.6087) exp(abs(2.2088))))) x (N(-0.035766,2.1464) N(-
0.7089,0.76699))))) x (N(-0.68692,2.8237) +(exp(times(1.3702,--(N(1.2854,0.12994)
exp(abs(1.2545))))) exp(abs(0.15397)))))

ADMj9 +(x(0.021879 =(exp(N(-1.8043,2.246)) 1.3902)) minus(2.0914,N(1.9211,3.3417)))

ADM;q —(abs(=(1 +(power(2.4325 2.45) 1.8624))) times(2.497,N(-0.58376,4.5423)))

ADMy; (X (—==(4+(—(N(-0.04211,0.96206) N(0.39053,1.8724)) N(0.3999,0.94149)) +(N(-
1.5001,1.9898) 0.55696)) abs(abs(abs(N(-0.62885,3.1442))))) ~+(power(exp(abs(—(N(-
1.5485,2.9356) “—(+(abs(+(N(-1.9603,4.9185) X (abs(N(-1.4353,3.2339))
abs(abs(abs(N(-0.14118,0.60787))))))) +(N(-0.51722,4.3085) 0.81261))
plus(N(1.0337,4.685),0.999))))) exp(2.8301)) +(0.17287 N(0.7288,0.29907))))

ADM»y) exp(—exp(abs(—(0.25891 abs(exp(exp(N(1.0338,0.63885))))))))

ADM>3 —(power(0.22581 0) power(power(abs(1.1746),~(abs(N(-1.7643,4.076)) abs(N(-

0.7083,0.10633)))) +(exp(plus(2.5618,N(1.9801,2.0706))) abs(exp(=(=(N(-
1.5338,2.7202) +(power(N(1.5824,

2.5102)  abs(N(1.4242,4.6976)))  abs(exp(—(N(-0.46107,4.8761)  2.4629)))))
0.079465))))))
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