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ABSTRACT

Anaemia and malaria are the leading causes of sub-Saharan African childhood mor-

bidity and mortality. This thesis aimed to explore the risk factors as well as the

complex relationship between anaemia and malaria in young children across the dis-

tricts or counties of four contiguous sub-Saharan African countries, namely Kenya,

Malawi, Tanzania and Uganda. Nationally representative data from the Demo-

graphic and Health Surveys conducted in all four countries was used. The ob-

served prevalence of anaemia and malaria was 52.5% and 19.7%, respectively, with

a 15.1% prevalence of co-infection. Machine learning based exploratory classifica-

tion methods were used to gain insight into the relationships and patterns among

the explanatory variables and the two responses. The administrative districts are

the level at which public health decisions are made within each of the countries.

Accordingly, the best linear unbiased predictor (BLUP) ranking and selection ap-

proach was adopted to investigate the district-level spatial effects, while controlling

for child-level, household-level and environmental factors. Further to the geoaddi-

tive model, a generalised additive mixed model with a spatial effect based on the ge-

ographical coordinates of the sampled clusters within the districts was applied. The

relationship between the two diseases was further explored using joint modelling

approaches: a bivariate copula geoadditive model and shared component model.

The child’s age, mother’s education level, household wealth index and cluster alti-

tude were found to be significantly associated with both the anaemia and malaria

status of the child. The results of this study can help policy makers target the correct

set of interventions or prevent the use of incorrect interventions for anaemia and

malaria control and prevention. This aids in the targeted allocation of limited dis-

trict health system resources within each of these countries.

Keywords: Adjusted odds ratios; Bayesian inference; Best linear unbiased predic-

tor; Classification methods; Conditional autoregression; Copula model; Geoaddi-

tive model; Joint modelling; Spatial autocorrelation; Spline smoothing; Structured

spatial effect; Unstructured spatial effect.
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CHAPTER 1

INTRODUCTION

Anaemia and malaria are major contributors of childhood morbidity and mortal-

ity, particularly in low-and middle-income countries in sub-Saharan African where

health care resources are limited (Kuziga et al., 2017; WHO, 2018). Anaemia is de-

fined as a significant reduction in hemoglobin (Hb) concentration which decreases

the amount of oxygen reaching the tissues and organs of the body. According to

the World Health Organisation (WHO) definitions for children aged 6-59 months,

a child with an Hb level of 10-10.9 g/dL is considered as having mild anaemia, 7-

9.9 g/dL as having moderate anaemia, and an Hb level of less than 7.0 g/dL as

having severe anaemia (WHO, 2011). The adverse health consequences of child-

hood anaemia include altered cognitive function, impaired motor development and

growth, poor school performance, poor immune function and susceptibility to in-

fections, decreased responsiveness and activity, and increased body tension and fa-

tigue. If left untreated, the long-term effects and consequences of anaemia in early

childhood are irreversible, if mortality has not occurred (WHO, 2013). In 2019, the

global prevalence of anaemia in children aged 6 to 59 months was 39.8%, which was

equivalent to 269 million children with anaemia (WHO, 2021b). The greatest burden

of childhood anaemia is experienced in Africa, where the prevalence stood at 60.2%

in 2019 (WHO, 2021b). While the global prevalence of anaemia in young children

has been on the decline since 2000 from 48%, it has become more stagnant in the last

decade.

The causes of anaemia are multifactorial and interrelate in a complex way. Such

causes include iron deficiency; other micronutrient deficiencies such as folate, vita-

min B12 and vitamin A; intestinal parasites; malaria; HIV infection; and chronic dis-

eases such as sickle cell disease. Iron deficiency is the most common cause of child-
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Introduction

hood anaemia in developed countries, however there are many other contributing

factors in less developed countries. In countries that are highly malaria-endemic,

particularly in sub-Saharan Africa, malaria accounts for the majority of cases of

anaemia in young children (White, 2018). On the other hand, severe anaemia can

increase a child’s susceptibility to malaria in these regions (Adebayo et al., 2016).

Malaria is caused by the Plasmodium parasite that is transmitted via the bite of in-

fected Anopheles mosquitoes. The most severe form of malaria and the majority of

malaria-related deaths are attributed to the Plasmodium falciparum parasite (WHO,

2016). Furthermore, Plasmodium falciparum infection contributes to the etiology as

well as the severity of anaemia through several mechanisms, primarily through the

direct destruction of infected red blood cells (Menendez et al., 1997). Iron absorption

may also be affected by malaria infection, thus resulting in anaemia.

In 2019, the number of malaria cases globally in the general population was esti-

mated at 229 million, with Africa experiencing a disproportionately high share of

the burden at 94% of the cases and deaths (WHO, 2021a). As young children are

yet to develop an immunity to malaria, they are considered most vulnerable. This

is highlighted by children under 5 years of age accounting for 67% of all malaria

deaths worldwide in 2019 (WHO, 2021a). However, in the last decade, significant

progress has been made to scale up interventions and control measures for malaria.

Increased partnerships between governments and other stakeholders in the fight

against malaria have resulted in a substantial reduction in malaria morbidity and

mortality in children with the proportion of infected children having halved in en-

demic areas of Africa since 2000 (Cibulskis et al., 2016). While malaria remains a

major killer of young children, the number of malaria deaths in children has de-

creased from 723 000 globally in 2000 to 274 000 in 2019 (WHO, 2021a). These efforts

in the reduction of malaria is largely attributed to the progress towards achieving

the Millennium Development Goals (MDGs) set out by the United Nations (UN)

and adhered to by all UN Member States. The MDGs ended in 2015 and were super-

2



Introduction

seded by the Sustainable Development Goals (SDGs), which includes goals of end-

ing epidemics of malaria and other communicable diseases by the year 2030 (WHO,

2015b). While it is up to all participating malaria-endemic countries to develop their

own national framework in order to reach this goal, the WHO’s Global Technical

Strategy for Malaria 2016-2030 (GTS) has been developed with the aim of assisting

countries in reducing their malaria burden. Adopted by the World Health Assembly

in 2015, this strategy provides comprehensive technical guidance to countries and

committed partners for the next 15 years, emphasising the importance of scaling up

malaria control measures and moving towards elimination (WHO, 2015a).

While there are well-defined goals and targets for malaria elimination, there are no

such direct goals and targets set for anaemia in children, thus it has not received ad-

equate attention. Rather, goals for anaemia reduction in children coincide with Sus-

tainable Development Goal 3 (Health), which includes ending preventable deaths

of children under 5 years of age by 2030, as well as coincides with Sustainable De-

velopment Goal 2 (Hunger and Food Security), which includes ending all forms of

malnutrition in children by 2030 (WHO, 2015b). It has been recommended by the

WHO and UNICEF (2004) that strategies for anaemia control should be built into

a country’s primary health care system and existing programmes such as maternal

and child health, integrated management of childhood illness, adolescent health,

making pregnancy safer/safe motherhood, roll-back malaria, deworming (includ-

ing routine anthelminthic control measures) and stop-tuberculosis. However, these

strategies should be tailored to local conditions and take into account the specific

etiology and prevalence of anaemia in a given setting and population group (WHO

and UNICEF, 2004). Thus, it is of great importance to identify the groups of a popu-

lation at risk of anaemia, as well as the significant contributing factors of anaemia in

these groups. Targeting the correct interventions to the groups of populations most

at risk would result in a more efficient delivery system of limited national resources.

3
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As the causes of childhood anaemia are multiple and complex, identifying signif-

icant factors associated with an increased risk of anaemia in a child is relevant to

developing appropriate and effective interventions. Such studies aid in identifying

the subpopulations that are most at risk, thus assisting in creating a more targeted

approach to anaemia control and prevention (Soares Magalhães & Clements, 2011).

However, studies identifying these factors should account for spatial heterogeneity

and spatial autocorrelation in the observations. Failure to do so may produce inaccu-

rate estimates and thus misleading results and ineffective anaemia control programs

(Mainardi, 2012; SoaresMagalhães & Clements, 2011).

Spatial autocorrelation arises when observations close in proximity tend to be more

alike than those further apart and is present even if the observations have been

recorded in a standardised way (Kneib et al., 2008). Spatial heterogeneity refers

to the spatial variation or uneven distribution of attributes across a region (Wang

et al., 2016). Climatic and environmental factors, such as temperature, rainfall, and

proximity to waterbodies, among others, are largely responsible for such spatial het-

erogeneity as its effects are usually only partially explained by the covariates that

are available in a model (Kneib et al., 2008). Indeed, many other factors that vary ge-

ographically can also contribute to spatial heterogeneity in observations, such as the

availability and distance to quality child health care, access to a reasonable transport

system, culture and the cost of living, all of which may not always be fully explained

by the available covariates. Various methods of accounting for spatial autocorrela-

tion and spatial heterogeneity have been well established due to the increased ac-

cessibility of spatially indexed data (Kazembe, 2007; Kneib et al., 2008; Besag et al.,

1991).

There have been a considerable number of studies assessing the risk factors and de-

terminants of anaemia in children (Gari et al., 2017; Kuziga et al., 2017; Moschovis

et al., 2018; Phyllis Atta Parbey et al., 2019, and references therein), some of which

4



Introduction

have also assessed the spatial variation of anaemia (Mainardi, 2012; Soares Mag-

alhães et al., 2013a; Ngwira & Kazembe, 2015; Habyarimana et al., 2017). However,

few studies have focused on countries in eastern sub-Saharan Africa which experi-

ences a high burden of childhood anaemia (Stevens et al., 2013). In particular, there is

a lack of studies on the risk factors and spatial variation of anaemia, as well as its re-

lationship with malaria in young children in Kenya, Malawi, Tanzania and Uganda.

Numerous individual studies on childhood anaemia have been carried out in Kenya

(Ngesa & Mwambi, 2014), Malawi (Ngwira & Kazembe, 2015; Kazembe, 2007), Tan-

zania (Kejo et al., 2018) and Uganda (Kuziga et al., 2017), all of which differ in scope

and coverage. However, the advantage of focusing on multiple countries that form

contiguous regions is to be able to investigate the spatial heterogeneity between the

countries. This assists in determining whether the significant drivers of childhood

anaemia are country specific or whether they cross the borders of the countries and

are thus shared between neighbouring countries.

In addition to the direct causes of anaemia, numerous studies have shown that in-

dividual, household and environmental factors have a significant effect on the risk

of anaemia in young children. Various studies have evidenced an increased risk of

anaemia among children whose caregivers are less educated, as well as among those

who reside in low-income households and households with poor sanitation (Kuziga

et al., 2017; Nambiema et al., 2019; Gayawan et al., 2014; Ngesa & Mwambi, 2014).

The age and gender of the child has also been demonstrated to have a significant

effect on their risk of anaemia (Habyarimana et al., 2017; Gari et al., 2017; Ngwira

& Kazembe, 2015; Ngesa & Mwambi, 2014). Many of these risk factors of child-

hood anaemia overlap with those of malaria (White, 2018; Adebayo et al., 2016). In

addition, such risk factors vary across geographical locations, which in turn con-

tributes to the spatial patterns and variation in the prevalence and risk of both dis-

eases. Thus, identifying the geographical locations associated with an increased risk

would aid in formulating targeted interventions. This thesis therefore set out to
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Introduction

investigate anaemia and malaria and the relationship between the two diseases in

children aged 6 to 59 months in Kenya, Malawi, Tanzania and Uganda. The specific

objectives were:

• To perform exploratory data analysis to examine the patterns and relationships

among numerous explanatory variables and the two diseases in order to iden-

tify the appropriate statistical techniques to be applied.

• To identify the significant risk factors associated with childhood anaemia and

malaria in the four countries.

• To investigate the spatial variation of childhood anaemia and malaria across

the four countries, with particular interest in the district-level spatial effect.

• To jointly model the spatial variation of childhood anaemia and malaria in

young children across the districts of the four countries.

The remainder of this thesis is organised as follows: Chapter 2 introduces and de-

scribes the characteristics of the data that was used in the analyses. Chapter 3

presents the results of exploratory data analyses using various supervised machine

learning techniques. Chapter 4 presents an overview of the geoadditive model and

its application to investigate the spatial variation and risk factors of childhood anaemia.

Chapter 5 provides a description of the best linear unbiased prediction (BLUP) tech-

nique that was applied in order to rank the performance of the districts on the like-

lihood of childhood anaemia. A review of the copula geoadditive model to jointly

model childhood anaemia and malaria is presented in Chapter 6. Furthermore, the

chapter discusses the results of the association between the two responses, which

was set to vary according to the district of residence across the four countries. Chap-

ter 7 provides an overview and the results of a child-level shared component model

used to jointly model the residual spatial variation in the likelihood of childhood

anaemia and malaria. Lastly, the discussion and conclusion is provided in Chapter

8.
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CHAPTER 2

THE DATA

2.1 Study Regions

The four countries considered in this study consist of Malawi, Kenya, Tanzania and

Uganda. These four countries are situated on the east of sub-Saharan Africa and

together form one contiguous region as shown in Figure 2.1.

Figure 2.1: Study Regions

2.2 Data Sources

This thesis uses data collected in the Demographic and Health Surveys (DHS) and

Malaria Indicator Surveys (MIS) carried out in Kenya, Malawi, Tanzania and Uganda

between 2015 and 2017, namely the 2015 Kenya Malaria Indicator Survey (KMIS2015),
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2.3. Sampling Design and Data Collection

the 2017 Malawi Malaria Indicator Survey (MMIS2017), the 2015-2016 Tanzania De-

mographic and Health Survey and Malaria Indicator Survey (TDHS2015) and the

2016 Uganda Demographic and Health Survey (UDHS2016).

2.3 Sampling Design and Data Collection

The DHS and MIS were designed to provide national, regional, urban and rural es-

timates of key health indicators (The DHS Program, 2017). These surveys were na-

tionally represented and utilised a stratified two-stage cluster design. The samples

from each country were not spread geographically in proportion to their respective

populations, but rather equally across the regions. The first stage of the survey de-

sign involved selecting clusters from a list of enumeration areas (EA) which made

up the primary sampling units (PSUs). Clusters were selected with a probability

proportional to their size. The second stage of the selection process involved sys-

tematic sampling of households from the list of households in each cluster, with an

equal number of households selected from the clusters. The selected households

were visited and interviewed by trained staff. A thorough review of the sampling

methodology is presented in the DHS Sampling Manual (ICF International, 2012).

Three questionnaires, the Household Questionnaire, Women’s Questionnaire and

Men’s Questionnaires, were carried out in the selected households. These ques-

tionnaires were designed to collect information regarding the characteristics of the

household and eligible women and men. The Household Questionnaire collected

basic information on the characteristics of each member and recent visitors of the

household, including age, sex, and relationship to the head of the household. This

questionnaire also collected information on characteristics of the household’s dwelling

unit, such as source of water; type of toilet facilities; materials used for the floor, roof

and walls of the house; and ownership of various durable goods. The Women and

Men’s Questionnaires were used to collect a range of information from all eligible

women and men in the selected households.
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2.4. Variables of Interest

With the consent of a parent or guardian in the household, all children between the

ages of 6 and 59 months were tested for anaemia and malaria using blood specimens

collected from a finger- or heel-prick. A child’s Hb concentration was measured us-

ing a portable HemoCue analyser. Based on the Hb levels adjusted for altitude, a

child was diagnosed as anaemic if their Hb level was less than 11 g/dl, and non-

anaemic otherwise (WHO, 2011). At altitudes from 1000m above sea level, Hb lev-

els increase to compensate for lower partial pressure of oxygen and reduced oxy-

gen saturation of blood. This results in a compensatory increased production of red

blood cells that enables sufficient supply of oxygen to the tissues (Centers for Dis-

ease Control and Prevention, 1989). Therefore, with this upward shift in Hb levels

from higher altitudes, the Hb cut-off points for anaemia would be higher. However,

rather than changing the cut-off points, for the purpose of determining a child’s

anaemia status in the demographic and health surveys, the Hb levels are adjusted

for altitude using a calculation based on the original measured Hb level (Croft et al.,

2018b).

Malaria in children was diagnosed using a rapid diagnostic test (RDT) which con-

sisted of testing a drop of blood using the SD Bioline Pf/Pv RDT, which tests for

the presence of the parasite Plasmodium falciparum, the most dangerous Plasmodium

parasite, as well as tests for the presence of other Plasmodium species. The result of

the test was available in 15 minutes. This type of test has become more widely used

as a diagnostic test where a reliable microscopy test is not available (Nas et al., 2020).

2.4 Variables of Interest

The two child health outcomes of interest were the their anaemia status and malaria

status, where both responses were binary. The explanatory variables considered

were based on those found in literature to have some association with anaemia

and/or malaria, as well as those expected to be determinants of each outcome.
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These variables, which are displayed in Figure 2.2, comprised of a number of de-

mographic, socio-economic and environmental factors, including the gender and

age of the child, the mother’s highest education level, the number of members in

the household (size of the household), the type of place of residence (rural or ur-

ban), the household wealth index, the type of toilet facility, the age and gender of

the head of the household, three environmental factors: cluster altitude, day land

surface temperature and the enhanced vegetation index, as well as the country of

residence.

Figure 2.2: Potential risk factors of anaemia and malaria among young children

The household wealth index was based on the composite measure of a household’s

cumulative living standard and was calculated according to the ownership of vari-

ous household assets (Croft et al., 2018a). The household was assigned a standard-

ised score for each asset, the scores were then summed for each household to obtain

a household wealth index Z-score, which is a continuous measure and the form of

the wealth index used here. The DHS program has made available standardised

files of the most commonly used geospatial covariates up to the year 2015, which

can be linked to DHS datasets via the cluster ID (Mayala et al., 2018). Therefore,

as no information regarding intestinal parasites (a known risk factor for anaemia

(Alemu et al., 2017)) was collected in the surveys, selected spatially indexed envi-
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ronmental covariates were considered as a proxy (Banhela et al., 2017; Michael et al.,

2010). Specifically, the cluster level average day land surface temperature (LST) and

the cluster level average Enhanced Vegetation Index (EVI) for 2015. These environ-

mental factors also impact malaria transmission as they affect both the Plasmodium

parasite and the host (the Anopheles mosquito). Plasmodium parasites are sensitive

to changes in temperature where their development slows with a drop in tempera-

ture and stops at high temperatures (Weaver, 2014). However, rainfall expands the

breeding ground of the mosquito and also indirectly contributes to the longevity of

the adult mosquito by increasing relative humidity (Yamana TK, 2013). For the pur-

pose of our study, we used the enhanced vegetation index as an indicator for rainfall,

as it is correlated with rainfall (NASA Earth Observatory, 2020).

In addition, the spatial variation of childhood anaemia and malaria across the ad-

ministrative levels of the countries will be investigated. These administrative levels

were chosen based on the levels for which public health decisions are made within

each country, which is represented by the districts/counties. We examine the spa-

tial effect of all 47 counties or districts for Kenya; 26 out of 28 districts for which

data was available for Malawi; 176 out of 184 districts for which data was available

for mainland Tanzania; and 121 out of 122 districts for which data was available for

Uganda. Thus, a total of 370 districts are considered.

2.5 Descriptive Statistics

The total sample size combined consisted of 18196 children from the four countries.

Table 2.1 shows the distribution of the sample according to the categorical character-

istics and Table 2.2 presents some descriptive measures of the continuous character-

istics. Over 40% of the sample came from Tanzania, which is also the largest of the

four countries (Table 2.1). The majority of the children in the sample had mother’s

with only a primary school level of education (53.6%) and resided in households

with PIT Latrine toilet facilities (80.2%). Furthermore, the sample primarily con-
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sisted of children from rural areas (74.7%). The average age of the children in the

sample was 32.48 months (Table 2.2). The average household wealth index Z-score

was -0.23, which is unsurprising considering that the majority of the children resided

in rural areas.

Table 2.1: Sample size (%) according to categorical characteristics

Characteristic Sample Size (%)

Country

Kenya 3424 (18.8%)

Malawi 2270 (12.5%)

Tanzania 7819 (42.97%)

Uganda 4683 (25.7%)

Gender

Male 9143 (50.2%)

Female 9053 (49.8%)

Mother’s Highest Education Level

No education 2893 (15.9%)

Primary 9757 (53.6%)

Secondary and Higher 3110 (17.1%)

Unknown 2436 (13.4%)

Type of Place of Residence

Urban 4605 (25.3%)

Rural 13591 (74.7%)

Type of Toilet Facilities

No Toilet Facility 2367 (13.0%)

PIT Latrine 14587 (80.2%)

Flush Toilet 1242 (6.8%)

Gender of Head of Household

Male 13869 (76.2%)

Female 4327 (23.8%)
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Table 2.2: Descriptive measures of continuous characteristics

Characteristic Minimum Maximum Mean SD

Child’s age in months 6 59 32.48 15.55

Age of household head 13 95 41.20 14.17

Household size 2 48 6.61 3.53

Wealth index Z-score -2.46 4.7 -0.23 0.90

Cluster altitude (in 100m) 0.05 29.9 11.52 4.93

EVI (in thousands) 1.36 5.3 3.25 0.66

LST 16.1 34.2 24.50 2.39

Table 2.3 presents the observed anaemia and malaria prevalences. The observed

prevalence of anaemia was 52.5%, while the malaria prevalence was 19.7%, with

a 15.1% prevalence of both anaemia and malaria in the children. The uncorrected

Kendall’s tau correlation between anaemia and malaria was estimated at 0.239, which

was statistically significant at a 5% significance level. Based on Table 2.3, 76% (2750

out of 3592) of the children who tested positive for malaria, had anaemia as well.

This is an indication of the contribution that malaria has on the burden of anaemia.

Table 2.3: Cross-tabulation of the sample according to anaemia and malaria status

Result of malaria rapid test
Total

Positive Negative

Anaemia Status
Anaemic 2750 (15.1) 6809 (37.4) 9559 (52.5)

Non-anaemic 842 (4.6) 7795 (42.8) 8637 (47.5)

Total 3592 (19.7) 14604 (80.3) 18196

Figure 2.3 displays the observed prevalences of anaemia (a), malaria (b) and both

anaemia and malaria (c) according to the district of residence. This figure highlights

the significant burden of anaemia compared to malaria. What is interesting to note,

there were numerous districts with a high prevalence of anaemia but a low preva-

lence of malaria. This suggests that there were other contributing factors of anaemia

in these districts. The patterns of the prevalence of malaria and the prevalence of

both were fairly similar, therefore indicating that children with malaria are most

likely to have anaemia as well.
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Figure 2.3: Observed prevalence of a) anaemia; b) malaria c) both anaemia and malaria ac-
cording to district of residence

Figure 2.4 presents the observed prevalence of anaemia, malaria and both anaemia

and malaria among the children residing in each country. To aid in the assessment of

anaemia as a public health problem, the WHO categorises anaemia into four, where

it is considered a severe health problem if the prevalence is 40% or more, moder-

ate from 20% to 39.9%, mild from 5% to 19.9%, and no public health problem if

the prevalence is less than or equal to 4.9% (Challa & Amirapu, 2016). According

to these classifications, Malawi, Tanzania and Uganda have a severe public health

problem. Kenya had the lowest observed prevalence of anaemia (38.3%), malaria

(9.3%) and both (6%) in children. Uganda had the highest observed prevalence of

malaria (33.6%) as well as both (25.3%) in children. The observed prevalences ac-

cording to the gender of the child are displayed in Figure 2.5. No large differences

were seen between male and female children.
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Figure 2.4: Observed prevalence of anaemia, malaria and both according to the country of
residence

Figure 2.5: Observed prevalence of anaemia, malaria and both according to the child’s gen-
der
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Figure 2.6 provides the observed prevalences according to the mother’s highest edu-

cation level as well as the gender of the head of household. The observed prevalence

of anaemia, malaria and both anaemia and malaria decreased with an increase in

the mother’s education level. Very similar patterns were evident between children

in households headed by males and females.

Figure 2.6: Observed prevalence of anaemia, malaria and both according to the mother’s
education level and gender of household head

The observed prevalence of anaemia, malaria and both according to the type of place

of residence and type of toilet facility is displayed in Figure 2.7. While the observed

prevalence of anaemia was lower among children residing in urban areas compared

to those in rural areas, the difference was not substantial. However, a more promi-
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nent difference was seen in the prevalences of malaria and both anaemia and malaria

between children residing in urban and rural areas. Specifically, these prevalences

were considerably higher among children residing in rural areas compared to those

in urban areas. The observed prevalence of anaemia, malaria and both decreased

with an improvement in the type of toilet facility.

Figure 2.7: Observed prevalence of anaemia, malaria and both according to the type of place
of residence and type of toilet facility

Boxplots for each of the continuous covariates are presented in Figure 2.8. These

boxplots display the minimum, first quartile, median, third quartile, maximum and

the mean of each covariate based on all the children in the sample, the children with

anaemia, the children with malaria and the children with both anaemia and malaria.

Children with anaemia had a lower age, on average, compared to those with malaria.

Not much difference in the distributions of the age of the household head and the
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household size was seen between the different samples of children. Children with

malaria, on average, resided in clusters at a lower altitudes. On average, children

with anaemia or malaria or both anaemia and malaria resided in households with a

slightly lower wealth index compared to the full sample of children. The environ-

mental factor EVI had the highest mean and median for those children with malaria.

Not much difference in the mean or median of LST was evident between the sam-

ples.

2.6 Summary

This chapter introduced the data sources from the four countries and provided an

overview of the sample as well as the categorical and continuous factors of inter-

est. These factors were then explored in relation to the child’s anaemia status, their

malaria status and whether or not the child had both anaemia and malaria. Anaemia

was considerably more prevalent in the children compared to malaria, and the ma-

jority of the children who tested positive for malaria had anaemia as well. The preva-

lences were notably lower among children residing in Kenya compared to the other

three countries. In addition, the prevalence of anaemia was fairly heterogeneous

across the districts of the four countries. The patterns of all three prevalences varied

substantially across the child’s mother’s highest education levels as well as the type

of toilet facilities. However, only the prevalence of malaria and the prevalence of

both anaemia and malaria in a child were considerably higher among those residing

in rural areas compared to urban areas. On average, children with anaemia had a

lower age compared to those with malaria.

In the next chapter, we further explore the data and the relationships between the

explanatory variables and the two child health outcomes using supervised machine

learning techniques.
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Figure 2.8: Boxplots for the continuous covariates by the outcome categories
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CHAPTER 3

EXPLORATORY DATA ANALYSIS

This chapter sets out to apply a variety techniques to identify the patterns and rela-

tionships among the variables as well as to identify the most influential factors on

the child health outcomes, namely anaemia and malaria. We first consider multi-

ple correspondence analysis (MCA) to graphically explore the patterns among the

categorical variables. Following MCA, classification techniques are applied as the

outcomes considered are binary, consisting of two classes. Such techniques include

logistic regression, classification and regression trees (CART), support vector ma-

chines (SVMs) and artificial neural networks (ANNs). These techniques are super-

vised machine learning methods where they model the relationships and depen-

dencies between the target output (the response variable) and the input features/at-

tributes (the explanatory variables) using a set of labelled training data. The trained

models can be used to gain insight into which attributes contribute the most or the

least in predicting each child health outcome. These models can further be used to

predict the class label of the child health outcome for new, unseen data based on

those relationships learned from the training data.

3.1 Multiple Correspondence Analysis

Correspondence analysis (CA) is another form of exploratory data analysis that pro-

vides a graphical representation of cross-tabular data. This statistical technique al-

lows one to explore the structures and relationships among the categorical variables

based on data given in a contingency table (Greenacre, 2017). The relationship be-

tween the categories given in the rows and columns of the table can be represented

using correspondence analysis plots. In such plots, the distance between category

points represent the relationships between the categories, where similar categories
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are plotted closer to each other for each variable. Multiple correspondence analysis

(MCA) is an extension of CA and allows the relationship of three or more categorical

variables to be explored (Greenacre, 2017). This multivariate technique distributes

values of a relative frequency table, known as a Burt table, in an n-dimensional

space, and then establishes the similarity degree of the variables based on the dis-

tance between them in each dimension (Rodriguez-Sabate et al., 2017).

MCA is performed by applying simple CA on an indicator matrix (Greenacre, 2017).

Suppose we have n observations with k categorical variables. Assume variable j has

lj distinct categories. Then, we define an n × lj indicator matrix, Xj . Concatenat-

ing the Xj ’s forms the n× l matrix X , which is an observations-by-categories table

that has as many rows as observations, and l is the sum of lj (Greenacre, 2017). The

elements of X are equal to 1 in the positions to indicate the categories of response

of each observation and zero elsewhere. X can be divided up by its grand total nk

to obtain a probability matrix Z = 1
nkX , which contains the relative frequencies.

This gives 1′nZ1l = 1, where 1i is an i × 1 vector of ones. The vectors r = Z1l and

c = Z ′1n are called the row and column marginals, respectively. These marginals

are collectively called masses for the rows and columns. Assume the diagonal ma-

trices of the masses are defined by Dr = diag(r) for the rows and Dc = diag(c)

for the columns. The factor scores are obtained from the following singular value

decomposition

D
− 1

2
r (Z − rc′)D−

1
2

c = P∆Q′,

where ∆ represents the diagonal matrix of singular values,P = D
− 1

2
r andQ = D

− 1
2

c ,

and Λ =∆2 is the matrix of eigenvalues. The row and column factor scores are

obtained respectively as

F = D
− 1

2
r P∆, (3.1)

and

G = D
− 1

2
c Q∆. (3.2)
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Equations 3.1 and 3.2 will then lead to the calculation of the squared (χ2) distance of

the rows and columns to their respective barycentre, which is given in the following

form

dr = diag{FF ′},

and
dc = diag{GG′},

respectively. In CA, the total variance, referred to as inertia, of the factor scores is

proportional to the independence Chi-square statistic of a cross-tabulation (Greenacre,

2017). Using this Chi-square distance between the row-points and that between

the column-points, a graphical representation of the points in a reduced-dimension

space can be obtained. The optimal space is based on that which maximizes the in-

ertia, the measurement of the dispersion of the set of computed distances, between

the points (Di Franco, 2016).

The contributions of the ith row and the jth column to factor m are obtained in the

following manner, respectively

bi,m =
f2i,m
λm

,

and
bj,m =

g2j.m
λm

.

These contributions of the rows and columns help locate the observations or vari-

ables that are of importance to a given factor. Supplementary elements can be pro-

jected onto the factors using the transition formula (Greenacre, 2017). Suppose we

let i′sup be the supplementary row and jsup be the supplementary column to be pro-

jected, then the coordinates of supplementary functions f sup and gsup are given as

f sup = (i′sup1)i′subG∆−1,

and
gsup = (j′sup1)j′subF∆−1,

respectively.
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Performing CA on the indicator matrix will provide the factor scores for the rows

and columns, however MCA requires these scores to be re-scaled. The Burt matrix

is the l × l table, which is obtained by B = X ′X . This matrix serves to give CA

the same factors as the analysis ofX , however in a computationally easier way. The

Burt matrix also plays an important role in providing eigenvalues which provide a

better approximation of the of inertia described by the factors than the ones of X

(Greenacre, 2017).

MCA uses an indicator matrix to create several binary columns for each variable by

partitioning the indicator matrix, such that only one column contains the value 1.

This method creates additional dimensions as one nominal variable is coded with

multiple columns. The additional dimensions cause the solution space variance (in-

ertia) to be artificially inflated, which causes the inertia described by the first di-

mension to be under-scaled (Greenacre, 2017). This leads to the variation produced

by the first dimension to be under-estimated. However, this under-scaling can be

corrected using correction formulae provided by Greenacre (2017), which allows for

evaluation of the percentage of inertia respective to the average inertia of the off-

diagonal blocks of Burt matrix.

3.1.1 Results of Multiple Correspondence Analysis

Here we applied MCA to visualise the associations between the categorical char-

acteristics presented in Table 2.1 and the child’s anaemia status, their malaria status

and whether or not they had both anaemia and malaria. The CORRESP procedure in

SAS Version 9.4 with the MCA option was used for this analysis. The inertiae were

adjusted according to Greenacre (1984), which results in a more realistic percentage

of the inertia explained along each axis. Figure 3.1 presents the Greenacre adjusted

inertia decomposed into six components. The total inertia explained by these com-

ponents was 72.03%. Note that a property of the Greenacre adjustment is that the

total inertia is not 100% (Greenacre, 1984).
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Figure 3.1: Inertia adjusted by Greenacre’s correction

A multiple correspondence plot projects all categories onto a Euclidean space where

the first two dimensions can be plotted to assess the association among categories.

This plot is presented in Figure 3.2. The first dimension accounted for 16.7% of the

variation in the data and the second dimension explains 10.48% of the variation.

From Figure 3.2, it is observed that having both anaemia and malaria was mostly

associated with testing positive for malaria. Furthermore, children with mothers

who had no education were associated with residing in households with no toilet

facilities. Similarly, those with mothers who had secondary or higher education

levels were associated with residing in urban areas. Children in Uganda were most

associated with having anaemia, and those in Kenya were most associated with not

having anaemia.

3.2 Training and Evaluation of Classification Models

Model Training

Unlike model parameters, such as weights and biases which are learned during

model training and cannot be set arbitrarily, hyperparameters are required to be

set prior to training the model. Such hyperparameters include the cost complexity

parameter in CART models, the cost function in SVMs and the regularisation param-

eter in ANNs. There is no rule or solution to finding optimum hyperparameters as
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Figure 3.2: Multiple correspondence analysis for dimensions one and two

one model may perform well for one set of hyperparameters and poorly on another

set. A possible way to select the ideal hyperparameter value is to train the model us-

ing different values, evaluate the model’s performance on each and select the value

of the hyperparameter that produces the best performing model. This process can

be achieved automatically through a technique called K-fold Cross-Validation (CV).

This method starts off by separating the training set into k subsets, where the model

is trained using k − 1 subsets and validated on the last one. This process is repeated

k times, such that each time, one of the k subsets is used as the validation set and the

other k− 1 subsets are put together to form a training set. Each split is trained using

different values of the hyperparameters, which are either based on a random search

or a grid search across Cartesian products of sets of hyperparameters. Figure 3.3

illustrates the process of 5-fold CV. For our models, we use a 10-fold CV to tune the

hyperparameters. The hyperparameter value that produced the highest accuracy
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was used in training the final model.

Figure 3.3: 5-fold Cross-Validation

Performance Measures

To evaluate the performance of machine learning models, it is customary to use the

train-test data split technique. This involves dividing the full dataset into two sub-

sets. The first subset is used to fit/train the model and is referred to as the training

set. The second dataset is referred to as the test set. This test set is not used in the

training of the model, thus it is considered as new, unseen data by the model. It is

rather used to evaluate the performance of the trained model. In the application of

each of the classification models to our data, a 75:25 split was considered, where 75%

of the data was used for training and the remaining 25% was used for testing.

After a classification technique has been applied to the data, one can assess the

goodness-of-fit of the classifier using a range of different measures. Such measures

can be calculated from a confusion matrix given by
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Table 3.1: Structure of a confusion matrix

True Class

Positive Negative

Predicted Class
Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

The entries in the confusion matrix are defined as follows

- True Positive (TP): the number of cases correctly identified for those that have

the disease.

- False Positive (FP): the number of cases incorrectly identified for those that

have the disease.

- True Negative (TN): the number of cases correctly identified as not having the

disease.

- False Negative (FN): the number of cases incorrectly identified as not having

the disease.

The following measures can then be calculated for the classifier:

• Accuracy measures the proportion of actual positives and negatives that are

correctly identified as such.

Accuracy =
TP + TN

TP + TN + FP + FN

• Sensitivity measures proportion of actual positives that are correctly identified

as such.

Sensitivity =
TP

TP + FN

• Specificity measures the proportion of actual negatives that are correctly iden-

tified as such.

Specificity =
TN

TN + FP
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3.2. Training and Evaluation of Classification Models

• Precision measures the proportion of actual positives out of all those that are

predicted to be positive.

Precision =
TP

TP + FP
.

Such performance measures can be obtained for both the training and test sets. A

large discrepancy between the performance of the model on the training and test

sets can be indicative of high variability and thus possible instability of the model.

Furthermore, if a model performs well on the training set and poorly on the test set,

the model is overfitted and should not be considered for making predictions on fu-

ture, unseen data.

Each of the four classification models were applied to the child’s anaemia status and

their malaria status, separately, where the explanatory variables considered were

based on those presented in Figure 2.2. These same models were fitted again, how-

ever the child’s malaria status was included as an explanatory variable for anaemia,

and the child’s anaemia status was included as an explanatory variable for malaria.

The accuracy of the models for anaemia improved by approximately 3%, and that of

the models for malaria improved by approximately 1%. This highlights the relation-

ship between the two diseases and how they may be important predictors of each

other. The results for each technique considered in the subsequent sections are based

on those models with anaemia and malaria included as predictors of each other.

The R Caret, e1071 and rminer packages were used to fit the logistic regression, CART,

SVM and ANN models to the data. The following sections provide an overview and

the results of each technique.
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3.3 Logistic Regression

The logistic regression model is a special case of a generalised linear model and is

widely used to a model binary response. Suppose the response is defined as

Yi =


1 if the event has occurred, e.g. the child has anaemia or malaria,

0 if the event has not occurred, e.g. the child does not have anaemia or malaria.

Thus, Yi follows a Bernoulli distribution where P (Yi = 1) = πi is the probability that

the event occurs and P (Yi = 0) = 1 − πi is the probability that the event does not

occur. It therefore follows that the mean and variance of the response is respectively

given by
E(Yi) = πi,

V ar(Yi) = πi(1− πi).

As πi is a probability, it is limited by 0 ≤ πi ≤ 1. Thus, a model forE(Yi) that restricts

its values in this domain is required. Such a model is the logistic regression model,

given by

logit(πi) = ln

(
πi

1− πi

)
= x′iβ,

where the left hand side is referred to as the logit link function and represents the

log of the odds of the event of interest occurring; xi is a vector of covariates and β

is a vector of the unknown regression coefficients. The logit can take on any value

from −∞ to ∞ while restricting πi between 0 and 1. The predictors, xi, have no

restrictions and may consist of qualitative and quantitative variables.

The predicted probability, π̂i, of the event occurring can be computed from the fitted

model as follows

π̂i =
exp(x′iβ̂)

1 + exp(x′iβ̂)
.

This predicted probability can then be used to classify the class label of the response
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for a given set of predictors, xi, based on some cut-off value, c. Thus

Ŷi =


1 if π̂i > c,

0 otherwise.

It is common to use a cut-off of c = 0.5. The parameters of the logistic regres-

sion model can be estimated using maximum likelihood estimation, a probabilistic

framework. Thus, in addition to classification predictive modelling, the logistic re-

gression model can also be used for statistical inference concerning the significance

of the effect of the predictors on the likelihood of the event of interest occurring.

3.3.1 Results of Logistic Regression Models

Table 3.2 presents the results of the fitted logistic regression model for each re-

sponse. This model produced an accuracy of 67.8% and 82.6% on the training sets

for anaemia and malaria, respectively. A cut-off of 50% was used where those with

a predicted probability greater than 0.5 were classified as having the disease, oth-

erwise they were classified as not having the disease. This model revealed that

anaemia and malaria were significant predictors of each other. The child’s gender

was not significantly associated with the likelihood of malaria, however it was sig-

nificant factor for anaemia. In fact, the majority of the attributes considered were

significant predictors of anaemia, whereas malaria had fewer significant predictors.

The age and gender of the head of household did not have a significant association

with either response.

While logistic regression can be used to assess the significance of the association be-

tween an attribute and the response, the parameter estimates cannot be compared

and ranked between the different factors. Rather, the parameter estimates can only

be used to make a comparison with respect to the reference category for a qualitative

predictor or for one unit increase in a quantitative predictor. Thus, logistic regres-

sion cannot be used to determine the most or least influential predictors. For this

purpose, we consider CART, SVM and ANNs in the subsequent sections.
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Table 3.2: Parameter estimates, standard errors and p-values for the logistic regression
models

Variable
Anaemia Malaria

Estimate St. Error P-value Estimate St. Error P-value

Anaemia status (ref = Negative)

Positive NA 1.495 0.056 <.001∗

Malaria status (ref = Negative)

Positive 1.503 0.056 <.001∗ NA

Gender (ref = Male)

Female −0.135 0.038 <.001∗ −0.009 0.049 0.849

Type of place of residence (ref = Urban)

Rural −0.163 0.055 0.003∗ 0.686 0.087 <.001∗

Mother’s education level (ref = No Education)

Primary −0.198 0.058 0.001∗ −0.025 0.068 0.707

Secondary and Higher −0.239 0.076 0.002∗ −0.202 0.105 0.055

Unknown −0.171 0.075 0.022∗ 0.211 0.090 0.019∗

Household head gender (ref = Male)

Female 0.053 0.045 0.238 −0.077 0.059 0.189

Type of toilet facility (ref = No Facilities)

PIT Latrine −0.328 0.064 <.001∗ −0.111 0.073 0.127

Flush Toilet −0.475 0.111 <.001∗ 0.104 0.220 0.636

Country of residence (ref = Kenya)

Malawi 0.785 0.076 <.001∗ 0.210 0.106 <.001∗

Tanzania 0.704 0.056 <.001∗ 0.229 0.090 0.011∗

Uganda 0.321 0.066 <.001∗ 1.521 0.094 <.001∗

Child’s age in months −0.043 0.001 <.001∗ 0.026 0.001 <.001∗

Age of the household head −0.001 0.002 0.558 −0.002 0.002 0.267

Household size 0.020 0.006 0.001∗ 0.028 0.007 <.001∗

Wealth index Z-score −0.092 0.033 0.005∗ −0.770 0.009 <.001∗

Cluster altitude (in 100 metres) −0.001 0.006 0.994 −0.046 0.009 <.001∗

EVI 0.109 0.051 0.031∗ 0.335 0.067 0.001∗

LST 0.048 0.016 0.003∗ 0.019 0.021 0.387
∗significant at 5% level of significance
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3.4 Classification and Regression Trees

Classification and regression trees (CART) were first introduced by Breiman et al.

(1984). CART is a decision-tree procedure that is used to classify cases and make

predictions, where it can be thought of as a flow chart of a sequence of questions

and answers (Ma, 2018). A classification tree is produced if the response is cate-

gorical and a regression tree is produced if the response is quantitative. During the

training procedure of such trees, the data is recursively split into mutually exclusive

subgroups based on a set of ‘yes/no’ answers to questions pertaining to the state of

the explanatory variables. CART is an effective exploratory procedure that can cap-

ture complex interactions and non-linear relationships in the data, which traditional

statistical techniques cannot easily deal with (Ma, 2018). CART does not rely on any

statistical models and does not contain any complex mathematical equations, thus

it is easy to interpret and understand. In addition, the tree structure automatically

indicates the most important explanatory variables and how they interact with one

another to split the sample into the different subgroups pertaining to the different

classes of the response variable.

Each box or group in a CART is called a node. The node on the top of a tree is called

the root node as the analysis starts from this node and descends until it reaches the

terminal nodes after the tree has concluded growing. To construct a tree, the CART

algorithm starts at the root node where it partitions all of the observations into two

mutually exclusive groups according to the best value of any explanatory variable.

These groups form two child nodes, whereas the producing node is called the parent

node. At each node, the observations are split such that those in the same group are

as similar as possible and those in different groups are as different as possible. The

split is based on determining the best explanatory variable to split as well as the best

split point for that variable. This splitting criterion can either be based on a statisti-

cal test or based on maximising the decrease in node impurity. We will consider the

splitting based on the node impurity.
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The impurity of a parent node, i(τ), is defined as a non-negative number that is

equal to zero for a pure node, which is a node that consists of observations that have

the same value in the response variable. The impurity becomes large if an equal

number of cases belong to different categories of the response variable (Ma, 2018).

The objective when using an impurity measure as a splitting criterion is to produce

the highest reduction in impurity, given by

∆i(s, τ) = i(τ)−
B∑
b=1

p(τb|τ)i(τb),

where τb denotes the bth child node, p(τb|τ) is the proportion of observations in τ

that are assigned to τb, and B is the number of branches after splitting τ . There are

different impurity reduction criteria, such as entropy, Gini index and residual sum

of squares. We will consider the Gini index criterion given by

i(τ) = 1−
J∑
j=1

pj .

Here i(τ) is defined as the Gini index that corresponds to the average square error

(ASE) of a class response. After all explanatory variables are considered, the vari-

able with the largest reduction in impurity is selected to partition the root node into

the two child nodes. The same procedure is then applied for partitioning each child

node into two child nodes. Thus, the CART tree keeps growing new branches, each

based on the reduction in a certain impurity measure (Ma, 2018).

A problem associated with an impurity measure is that it becomes smaller as the

tree grows larger. In fact, any tree can have a zero impurity if the tree keeps grow-

ing a large number of terminal nodes with a single case in each terminal group. In

this case, the number of terminal nodes in the tree will be equal to the number of

observations in the sample. This is because increasing the size of the tree is mono-

tonically related to decreasing the degree of the impurity at the terminal nodes (Ma,
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2018). Thus, when using an impurity measure to grow a tree, the challenge is to do

so while preventing the tree from growing too large. A solution to this is to obtain

a smaller subtree from the full tree, where such a subtree produces a low error rate.

However, the subtree must not be so small that it fails to capture important struc-

tural information. An optimal subtree is achieved by applying an approach called

the cost-complexity pruning method (Breiman et al., 1984). Pruning the tree also

aids in preventing overfitting, where the tree becomes too specific to the data that it

has grown from and thus cannot generalize well to new data.

CART trees can also be used to determine the importance of an explanatory variable

on the response. This measure is obtained by calculating the relative influence of

each variable which is based on whether the variable was selected to split during

the tree building process as well as how much the error was improved/decreased as

a result.

3.4.1 Results of CART Models

To obtain the classification tree for each response, the Gini index criterion was used

as the impurity function. At each non-terminal node, if the answer to the question

used to split the node was affirmative, the case was assigned to the child node on

the left, otherwise it was assigned to the child node on the right. As it is not known

whether a node will become terminal during pruning, each node is assigned a class

label according to the predominant class in that node. During pruning, a node be-

comes terminal if the change in the Gini index during the split of that node is less

than the cost complexity (cp) parameter. The optimal value of cp was 0.00185 and

0.00296 for the anaemia and malaria classification trees, which produced an accu-

racy of 67.9% and 83.8% on the training sets for each model, respectively.

The optimal classification tree for anaemia is presented in Figure 3.4 and that for

malaria is presented in Figure 3.5. The root node for the anaemia classification tree
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was based on the child’s age. If a child is at least 24 months old, they are assigned

to a child node with a non-anaemic class label. The nodes in the second layer of

the tree were based on the child’s malaria status (Figure 3.4). However, considering

Figure 3.5, the root node for the malaria classification tree was based on the child’s

anaemia status, where if the child does not have anaemia, they are immediately

classified as being negative for malaria (a terminal node). However, if the child does

have anaemia, they are further split based on the country of residence, specifically

whether or not the they reside in Uganda (the attribute considered in the second

layer of the tree).

Both classification trees are primarily split based on the environmental covariates

(cluster altitude, EVI and LST) as well as the household’s wealth index Z-score and

the child’s age. One of the properties of CART models is that it can reuse variables

for splitting of the nodes, which aids in describing complex relationships among the

variables. This is seen in the results of our classification trees for both responses,

where many of the variables are reused.

Table 3.3 provides the variable importance measures for each response. Attributes

not listed in the table resulted in a variable importance of 0. However, if the trees

were allowed to grow larger, more predictor variables would have a chance to play a

role in the tree construction process and thus would have non-zero importance mea-

sures. The child’s age and a positive malaria status were of very high importance

in growing the classification tree for anaemia. The variable importance measures of

these two attributes by far exceeded any of the variable importance measures for

the malaria classification tree. However, the environmental attributes contributed

substantially more to the malaria classification tree compared to that of the anaemia

classification tree. These results also revealed common important predictors of each

response. Furthermore, the classification tree for anaemia revealed far fewer im-

portant predictors out of those considered compared to the classification tree for

malaria.
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Figure 3.4: Optimal classification tree for anaemia
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Figure 3.5: Optimal classification tree for anaemia
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Table 3.3: Variable importance (V P ) based on classification trees

Attribute V P

Anaemia

Child’s age in months 512.16

Malaria status (Positive) 465.72

LST 36.83

EVI 25.65

Wealth index Z-score 22.46

Cluster altitude 16.47

Country of residence (Uganda) 7.85

Country of residence (Tanzania) 5.70

Type of toilet facility (None) 2.73

Type of place of residence (Rural) 2.73

Mother’s highest education level (Secondary or higher) 2.11

Age of the household head 0.89

Malaria

Anaemia status (Positive) 262.00

Wealth index Z-score 258.73

EVI 250.32

Cluster altitude 197.02

LST 174.29

Country of residence (Uganda) 156.86

Child’s age in months 133.63

Type of place of residence (Rural) 48.04

Mother’s Highest Education Level (Secondary or higher) 32.43

Type of toilet facility (None) 25.18

Type of toilet facility (PIT Latrine) 21.06

Country of residence (Tanzania) 12.50

Country of residence (Malawi) 10.56

Mother’s highest education level (Unknown) 8.26

Age of the household head 3.60

Household size 3.03
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3.5 Support Vector Machines

A support vector machine is a machine learning model that is used to perform clas-

sification by constructing a set of hyperplanes that maximizes the margin between

two classes. SVMs have multiple advantages in that they can handle high dimen-

sional data as well as data that are not linearly separable (Kantardzic, 2020). SVMs

use a nonlinear mapping to transform the original training data into a higher dimen-

sion, then within this new dimension, it searches for the linear optimal separating

hyperplane, a decision boundary separating the values of one class from another.

This optimal separating hyperplane is called the maximum marginal hyperplane as

its associated margin gives the largest separation between the two classes.

Consider a set of training examples consisting of n pairs (x1, y1), . . . , (xn, yn), where

xi = (xi1, . . . , xip) ∈ Rp is the input data with yi ∈ {+1,−1} as the corresponding

class label. A separating hyperplane is defined by

w′xi + b = 0, (3.3)

wherew = (w1, w2, . . . , wp) is a weight vector; p is the number of attributes and b is a

scalar referred to as a bias. This bias can be considered as an additional weight given

by w0. Any set of attribute values xi located along the separating hyperplane should

satisfy Equation 3.3. The goal of SVMs is then to find a set of weightsw and the bias

b that specify two hyperplanes, given by Equation 3.4, such that the distance, known

as the margin, between the two hyperplanes is maximised

w′xi + b =


≥ 1 for yi = +1,

≤ −1 for yi = −1.

(3.4)

The conditions in Equation 3.4 impose the requirements that all training data points

from class yi = +1 fall above the first hyperplane and all the points of the class

yi = −1 fall below the second hyperplane, as long as the data are linearly separable.
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Both inequalities in Equation 3.4 can be summarized in a more compact form as

follows

yi × (w′xi + b) ≥ 1, ∀xi, i = 1, . . . , n. (3.5)

Vector geometry defines the distance between the two planes as
2

||w||
. Therefore, to

maximise the margin between the two planes, the following optimisation problem

needs to be solved
min
w,b
||w||2,

subject to Equation 3.5 being satisfied. The training points that satisfy Equation 3.5

are called support vectors. Support vectors are the only data points required by

the SVM to be trained. No data points are allowed in the margin between the two

hyperplanes. This type of linear classification is known as hard margin classifica-

tion (MLMath.io, 2021). However, this strict requirement can lead to a very narrow

margin where the classifier will be sensitive to noisy data points, resulting in poor

generalisation for new data. A solution around this is to allow for a more flexible

classifier, where some data points are either allowed within the margin area or on

the incorrect side of the decision boundary, which is a contrast to a hard margin

classifier. This type of classification is referred to as soft margin classification where

the constraints of Equation 3.5 are relaxed slightly by introducing a positive-valued

slack variable, ξi, as follows

yi(w
′xi + b) ≥ 1− ξi, ∀xi, i = 1, . . . , n, (3.6)

which is subject to ξi ≥ 0 for i = 1, . . . , l and
l∑

i=1
ξi = C, where C is a hyper-

parameter that controls the trade-off between the width of the margin and the num-

ber of training data points misclassified. The optimal value of C is obtained using

techniques such as cross-validation. When C = 0, no data points are allowed to be

misclassified, which results in a hard margin classifier. For the soft margin classifier,

the new optimisation problem that needs to be solved is given by

min
w,b
||w||2 + C

l∑
i=1

ξi, (3.7)
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subject to Equation 3.6 being satisfied. The estimated weights, ŵ, represent the rela-

tive importance of each corresponding attribute/covariate on the response.

In the case that the original data is not linearly separable, a kernel trick is applied

where some non-linear transformation function, φ(xi), is used to map the origi-

nal space to a higher dimensional feature space such that the data is separable.

A kernel K(X1,X2) is a real valued function K : G × G → R for which there

exists a function φ : X → Z, where Z is a real vector space, with the property

K(X1,X2) = φ(X1)
′φ(X2). The kernel K(X1,X2) acts as a dot product in the

space of Z. G is referred to as the input space and Z is referred to as the feature

space.

The optimal hyperplane using a kernel transformation is given by

w′φ(xi) + b = 0.

This new form of the hyperplane can be obtained by solving the optimisation prob-

lem given in Equation 3.7, however, subject to yi(w′φ(xi) + b) ≥ 1− ξi and ξi ≥ 0 for

i = 1, . . . , n. Common kernel functions are

dth-Degree polynomial: K(X1,X2) = (1 +
〈
X ′1,X2

〉
)d,

Radial basis: K(X1,X2) = exp(−γ||X1 −X2||2),

where γ is a parameter that sets the spread of the kernel and the polynomial kernel

is valid for all positive integers d ≥ 1 (Kantardzic, 2020).

After the SVM has been trained, the decision function to determine the predicted

class label for a new set of attributes, zi, from unseen data is given by

ŷi = sgn(w′φ(zi) + b).
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3.5.1 Results of SVM Models

Some classification techniques are able to handle categorical explanatory variables,

however some can only be applied to continuous numeric data. Among the four

classification techniques applied here, only logistic regression and CART models

can handle the categorical explanatory variables. Thus, in order to apply SVMs and

ANNs, the data was first preprocessed where dummy variables were introduced to

represent the different outcomes of the categorical variables. In addition, SVMs and

ANNs also require numeric attributes to be normalised or standardised so that the

data is on a common scale, without distorting the differences in the ranges of val-

ues. This is due to these techniques giving more emphasis to attributes with larger

values. Thus, scaling all of the numeric attributes allows them to contribute equally

to the analysis.

Two types of SVM models were considered for each response, one with a linear ker-

nel and one with a radial basis function (RBF) kernel. The accuracy of the RBF SVM

for anaemia was over 30% higher than that of the linear SVM for the training set.

The linear SVM for malaria produced a sensitivity of 0 on the test set. This complete

lack of ability of the trained model to predict positive malaria cases suggests that the

model is highly inappropriate for classifying the child’s malaria status. However,

the RBF SVM for malaria performed much better, suggesting that it provides more

sufficient fit for classifying a child’s malaria status. In fact, the RBF kernal for SVM

models are known for their good general performance (Meyer, 2021). Thus, only the

results of the RBF SVM for both responses are presented and discussed.

In addition to the cost function (C) that is required to train a SVM model, the RBF

SVM requires a value for γ, which decides how much curvature we want in a deci-

sion boundary. Generally, γ can range from 0.001 to 100, where a high value means

more curvature. These two hyperparameters were tuned prior to training the mod-

els. For both responses, the optimal cost function was 4 and the optimal value of
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γ was 0.5, which produced an accuracy of 93.9% and 96.5% on the training set for

anaemia and malaria, respectively. Table 3.4 presents the relative variable impor-

tance for the RBF SVMs based on the estimated weights in the model. The higher the

absolute value of these variable importance measures, the more important the pre-

dictor is. The attributes in Table 3.4 are listed in order of their importance. Similar

to the classification tree, the child’s age and malaria status were considered the most

important predictors for anaemia. However, unlike the classification tree, EVI was

among the least important variables for anaemia. For malaria, the child’s anaemia

status was one again among the top most influential variables, as well as the house-

hold’s wealth index and the Uganda country of residence. The child’s gender was

the least influential factor for malaria.

The sign of the variable importance measures determines whether the attribute con-

tributes to a positive or negative predicted class label. The results of the SVM mod-

els for both responses are generally in agreement with the exploratory data analysis.

As one would expect, a positive malaria status contributed to a positive predicted

anaemia status, and visa versa. Kenya was the only country of residence to con-

tribute to a negative predicted anaemia status, which is unsurprising as it had the

lowest observed anaemia prevalence. Uganda had the highest contribution to a pos-

itive predicted malaria status, which is also unsurprising as it had the highest ob-

served prevalence on malaria.
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Table 3.4: Variable importance (V P ) based on RBF SVM models

Attribute V P

Anaemia

Child’s age in months -1505.76

Malaria status (Positive) 1066.13

Malaria status (Negative) -1066.13

Wealth index Z-score -730.06

Country of residence (Kenya) -728.40

Type of toilet facility (Flush) -432.72

Type of toilet facility (None) 432.00

Country of residence (Tanzania) 410.73

Household size 399.76

Cluster altitude -398.86

Mother’s highest education level (None) 381.53

Type of place of residence (Rural) 374.23

Type of place of residence (Urban) -374.23

LST 355.27

Mother’s highest education level (Unknown) -301.26

Mother’s Highest Education Level (Secondary or higher) -293.05

Country of residence (Malawi) 220.39

Mother’s Highest Education Level (Primary) 149.70

Gender (Female) -93.31

Gender (Male) 93.31

Type of toilet facility (PIT Latrine) -87.81

Age of the household head 80.57

EVI -61.15

Household head gender (Male) -21.94

Household head gender (Female) 21.94

Country of residence (Uganda) 19.04

Continued on the next page
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Table 3.4 – Continued from the previous page

Attribute V P

Malaria

Wealth index Z-score -900.59

Country of residence (Uganda) 680.99

Anaemia status (Negative) -632.42

Anaemia status (Positive) 632.42

Type of place of residence (Rural) 609.10

Type of place of residence (Urban) -609.10

Type of toilet facility (Flush) -498.76

Country of residence (Kenya) -440.42

Type of toilet facility (None) 438.38

EVI 423.75

Child’s age in months 395.98

Country of residence (Tanzania) -385.64

Mother’s Highest Education Level (Secondary or higher) -340.32

Cluster altitude -290.11

Mother’s highest education level (None) 268.63

Household size 214.16

Country of residence (Malawi) 198.44

Mother’s highest education level (Unknown) 126.98

LST 111.64

Age of the household head 103.55

Household head gender (Male) -65.70

Household head gender (Female) 65.70

Type of toilet facility (PIT Latrine) -56.13

Mother’s Highest Education Level (Primary) -27.05

Gender (Female) -2.39

Gender (Male) 2.39
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3.6 Artificial Neural Networks

Artificial neural networks (ANNs) are multi-layered models where each layer con-

sists of nodes called neurons. The capacity of an ANN to learn is rooted in its archi-

tecture. Although there are many forms of network architecture, three key character-

istics differentiate them: the number of layers; whether information in the network

is allowed to travel backward; and the number of nodes within each layer of the

network. An ANN consists of at least two layers: an input layer and an output layer.

The input layer contains nodes equal to the number of input features/attributes. The

output layer contains nodes equal to the number of classes in the response. How-

ever, in the case of a binary response, one output node is sufficient.

To allow for more complex relationships between the attributes and response, hid-

den layers can be added in between the input and output layers. These hidden

layers process the signals from the input nodes prior to reaching the output nodes.

The number of nodes in the hidden layer is generally specified by the user prior to

training the model. Most multilayer networks are fully connected, which means that

every node in one layer is connected to every node in the next layer, however, this

is not a requirement (Hastie et al., 2008). All nodes in an ANN are connected via

weighted connections, wj . These connection weights reflect the patterns observed

over time. Training a ANN amounts to adapting the weights of the connections be-

tween the nodes until they fit the input-output relationships of the underlying data.

The inputs of an ANN are weighted according to their importance and then summed.

A bias is then applied to this weighted sum, which is then passed through an acti-

vation function given by f . The output of this activation function becomes the input

signal of the nodes in the next layer. This process is continued until the output

node(s), the output signal of which represents the predicted response. A simple ar-

tificial neuron with p input attributes can be represented by the following formula

ŷ = f

(
p∑
i=1

wixi + b

)
.
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The bias b can be considered as an additional weight, where w0 = b and x0 = 1.

Figure 3.6 presents common activation functions for ANNs. Such functions must be

differentiable as this is a requirement in training the model. The goal of the ANN

learning algorithm is to determine a set of weights w that minimises the total sum

of squared errors

SSE = E(w) =
1

n

n∑
i=1

(yi − ŷi)2. (3.8)

Equation 3.8 is referred to as a loss function. If the activation function f is linear, then

the global minimum solution can be easily obtained. However, if the activation func-

tion f is some non-linear function, then the solution is not as straightforward. Thus,

optimisation techniques are required. Specifically, the gradient descent method is

used to iteratively update each weight as follows

wk+1
j = wkj − λ

∂E(w)

∂wj
,

where λ is a hyperparameter, referred to as a regularisation parameter that con-

trols the learning rate of the model and
∂E(w)

∂wj
is the gradient, which measures the

change in the total error due to the change in the weightwj . The backpropagation al-

gorithm is used to compute this gradient, where it uses the derivative of each node’s

activation function to identify the gradient in the direction of each of the incoming

weights. This backpropagation algorithm starts with forward propagation based on

initial random starting values for the weights (and biases) as well as the values of

the input attributes to obtain the predicted response. Forward propagation works

from the input node through to the output node to obtain the predicted response.

To calculate the updated weights based on the gradient descent method, backprop-

agation then works in the reverse direction, computing all the partial derivatives

starting from the output node. The algorithm then iterates through many cycles of

these two phases (forward and backward) and continues until a stopping criteria is

met. The last iteration then determines the estimated weights and biases of the fi-

nal neural network model, which can then be used in predicting/classifying future

unseen classes (Hastie et al., 2008).
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Figure 3.6: Common activation functions

3.6.1 Results of ANN Models

A single hidden layer ANN was fitted to each response. As the responses were

binary, the sigmoid activation function was used. In training these models, two hy-

perparameters were required to be tuned; the number of units in the hidden layer

and the value of the decay, which is a regularization parameter to avoid over-fitting.

The optimal ANN model for anaemia was based on 3 nodes in the hidden layer and

a decay of 0.1. This produced an accuracy of 68.9% on the training set. The optimal

ANN model for malaria was based on 7 nodes in the hidden layer and a decay of

0.1, which produced an accuracy of 83.8% on the training set.

Table 3.5 displays the variable importance measures for the ANN models for each

response. These measures are based on Gevrey et al. (2003), which uses combina-

tions of the absolute values of the estimated weights. Once again, the child’s age

and malaria status ranked as the most influential predictors for anaemia. The child’s

anaemia status was of lower importance for malaria compared to the classification

tree and SVM model. The household size and age of the head of household were the

least influential attributes for both responses. Cluster altitude and EVI played larger

roles in malaria compared to anaemia.
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Table 3.5: Variable importance (V P ) based on ANN models

Attribute V P

Anaemia

Child’s age in months 11.49

Malaria status (Positive) 8.15

Malaria status (Negative) 7.97

Country of residence (Malawi) 7.66

Country of residence (Kenya) 7.57

Type of toilet facility (None) 6.16

LST 5.20

Mother’s Highest Education Level (Secondary or higher) 4.92

Country of residence (Tanzania) 4.29

Gender (Female) 3.22

Type of toilet facility (Flush) 2.98

Wealth index Z-score 2.89

Type of place of residence (Rural) 2.62

Household head gender (Female) 2.56

Type of place of residence (Rural) 2.56

Type of toilet facility (PIT Latrine) 2.53

Household head gender (Male) 2.43

EVI 2.40

Country of residence (Uganda) 2.27

Mother’s highest education level (None) 2.00

Cluster altitude 1.90

Gender (Male) 1.89

Mother’s highest education level (Unknown) 1.66

Mother’s Highest Education Level (Primary) 1.27

Household size 1.05

Age of the household head 0.36

Continued on the next page
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Table 3.5 – Continued from the previous page

Attribute V P

Malaria

Country of residence (Uganda) 6.82

Country of residence (Kenya) 6.81

Cluster altitude 6.21

Anaemia status (Negative) 6.05

EVI 5.99

Country of residence (Malawi) 5.14

Anaemia status (Positive) 5.05

Type of place of residence (Rural) 4.64

LST 4.24

Country of residence (Tanzania) 4.11

Mother’s Highest Education Level (Primary) 4.08

Type of toilet facility (Flush) 3.99

Child’s age in months 3.79

Type of toilet facility (PIT Latrine) 3.74

Wealth index Z-score 3.68

Household head gender (Female) 3.29

Mother’s Highest Education Level (Secondary or higher) 3.02

Type of toilet facility (None) 2.88

Gender (Female) 2.75

Gender (Male) 2.52

Type of place of residence (Rural) 2.52

Mother’s highest education level (None) 2.37

Household head gender (Male) 2.21

Mother’s highest education level (Unknown) 2.08

Age of the household head 1.20

Household size 0.83
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3.7 Summary and Discussion

This chapter provided further insight and understanding into the relationships among

the explanatory variables and the child’s anaemia and malaria statuses. As our data

consists of multiple categorical variables, MCA was used to explore the patterns

and associations between them. In addition, four classification techniques were con-

sidered to explore the possible predictors of each response. Logistic regression is a

popular technique for modelling a binary response. It allows for statistical inference

concerning the association between the predictors and the response as well as clas-

sification. Further to the logistic regression model for classifying the outcome of the

disease, we also considered classification trees, SVMs and ANNs, where such tech-

niques allowed for the relative importance of the predictors to be obtained.

The results of the classification models revealed that the responses were important

predictors of each other. However, the child’s malaria status had a higher contribu-

tion to anaemia compared to the contribution of the anaemia status on malaria. In

addition, the responses shared common important predictors in some of the models,

such as the child’s age, the household’s wealth index Z-score and the environmen-

tal factors; cluster altitude, EVI and LST. Although the logistic regression model

revealed that the cluster altitude had an insignificant effect on the child’s anaemia

status, the classification tree and SVM model ranked this predictor among the most

important factors for anaemia. The country of residence ranked higher up in impor-

tance in the SVM and ANN models compared to the classification tree. While all

three models consistently revealed the child’s age and malaria status as the top most

important predictors of anaemia, the results for malaria were less consistent, where

the top most important variables differed among the three models. The child’s gen-

der was not significantly associated with their malaria status, in addition, this factor

was among the least important predictors for malaria. The age of the head of house-

hold did not have a significant effect of the child’s anaemia status or malaria status.

This was also confirmed by the SVM and ANN models where this factor was among
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the least important. While the gender of the household head also did not have a sig-

nificant effect on either response, the ANN model ranked this factor slightly higher

in importance for anaemia compared to the SVM model and classification tree.

Each of the trained models were applied to the test sets. The performance measures

for each model on the test set are presented in Table 3.6. While the accuracy of the

models for malaria were notably higher than those for anaemia, the sensitivity of

the models were poor. This may be as a result of the lower observed prevalence of

malaria in the sample, as the sensitivity of a predictive model is known to be affected

when the proportion of events to non-events is less than 50% (Blagus & Goeman,

2016). A low sensitivity means that many children would be incorrectly classified as

not having malaria, the effects of which could be detrimental.

All of the models for each response produced similar performance measures, with

none substantially outperforming another. However, compared to the accuracy of

the SVM model on the training set (93.9% and 96.5%, respectively for anaemia and

malaria), the SVM model’s accuracy was considerably lower on the test set (61.71%

and 80.15%, respectively for anaemia and malaria). Thus, this model suffers from

a large variance and poor generalisability on new data. The results of this model

should therefore be considered with caution.

Table 3.6: Performance measures for the fitted classification models on the test set

Measure
Anaemia Malaria

Logistic
CART SVM ANN

Logistic
CART SVM ANN

regression regression

Accuracy 0.6876 0.6777 0.6171 0.6872 0.8206 0.8378 0.8015 0.8283

Sensitivity 0.7381 0.7021 0.6619 0.6987 0.2706 0.3486 0.3218 0.3998

Specificity 0.6381 0.6508 0.5674 0.6744 0.9559 0.9581 0.9195 0.9337

Precision 0.6900 0.6900 0.6288 0.7038 0.6015 0.6717 0.4957 0.5973
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Each model for anaemia had a consistently poor accuracy compared to those for

malaria. This suggests that the available predictors may not be sufficient in predict-

ing the outcome of anaemia compared to malaria. This was also seen in the result

of the classification tree for anaemia, which produced fewer important attributes for

the growth of the tree compared to that of malaria. Thus, there may be numerous

unmeasured factors that are contributing to anaemia in a child. A shortcoming of

such classification models is that they are unable to account for spatial contributions

to a response. They cannot assess and incorporate spatial effects which are surro-

gates for unmeasured factors that contribute to the response. This shortcoming may

be influencing the poor predictive accuracy of the models, specifically for that of

anaemia. Based on Figure 2.3 in Chapter 2, which showed evidence of how the ob-

served prevalences of anaemia and malaria varied considerably across the districts

of the four countries, it is reasonable to assume that there is spatial variation present

that is influencing anaemia and malaria in children. This leads us to the next chapter

which considers a statistical model to investigate the spatial variation and significant

risk factors with a focus on anaemia, which was more prevalent among the children

in the sample.
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CHAPTER 4

SPATIAL VARIATION AND RISK

FACTORS OF CHILDHOOD

ANAEMIA

Statistical models to account for and investigate spatial variation and spatial auto-

correlation have been well established, especially in the context of the mapping of

disease prevalence and risk (Waller & Carlin, 2010). Common techniques in disease

mapping make use of aggregated/areal data to model the relative risk based on the

counts of the number of cases per administrative or sub-national region. Such tech-

niques include the Poisson-Gamma model, the Poisson log-normal model, the con-

ditional auto-regressive (CAR) model and the Besag, York and Mollie (BYM) model

(Clayton & Kaldor, 1987; Lawson et al., 2000; Besag et al., 1991). However, a draw-

back to these techniques is that they do not permit the inclusion of individual- and

household-level covariates. Thus, we consider a geoadditive model to model the

likelihood of anaemia in a child while accounting for individual-level, household-

level and environmental covariates. Such a model also allows for the inclusion of a

spatial effect.

4.1 Geoadditive Model

A hierarchical multivariable geoadditive logit model to control for the confounding

effects of the covariates was considered (Wand et al., 2011). This formulation is a

structured additive regression model that includes a spatial effect and is based on the

generalised linear model (GLM) and generalised additive model (GAM) frameworks

(Umlauf et al., 2015). For this model, Yhijk follows a Bernoulli distribution where
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4.1. Geoadditive Model

P (Yhijk = 1) = πhijk is the probability that child k in household j within cluster i

and district h is anaemic and P (Yhijk = 0) = 1−πhijk is the probability that the child

is not anaemic. The hierarchical geoadditive model is given by

logit(πhijk) = x′hijkβ + f1(zhijk1) + f2(zhijk2) + . . .+ fp(zhijkp) + fspat(sh), (4.1)

where the left side of the Equation (4.1) is the logit link function and the right side

is the geoadditive predictor. The parameter β is the vector of the linear fixed ef-

fects of the covariates that are modelled parametrically; and fr(.), r = 1, . . . , p, are

the unknown smooth functions that represent the non-linear effects of the contin-

uous covariates which are modelled non-parametrically, thus Equation (4.1) is a

semi-parametric model. The spatial effect of district sh in which the child resides,

s ∈ (1, . . . , 370), is given by fspat(sh) which represents the effects of unobserved co-

variates that are not included in the model and also accounts for spatial autocorrela-

tion (Kandala & Madise, 2004). This spatial effect may be partitioned into a spatially

correlated (structured) and an uncorrelated (unstructured) effect as

fspat(sh) = fstr(sh) + funstr(sh).

The structured spatial effect fstr(sh) accounts for the assumption that neighbouring

districts close are more likely to be correlated with regards to their outcomes. How-

ever, the unstructured spatial effect funstr(sh) accounts for the spatial variation due

to effects of unmeasured district-level factors that are not spatially related (Ngwira

& Kazembe, 2015).

In this analysis, inference was fully Bayesian, hence all parameters and functions

were treated as random variables. The fixed effect parameters in β were assigned

vague Gaussian priorsN(0, 1000), with precision = 0.001 = 1/variance. The Bayesian

perspective of penalised splines (P-splines) was adopted for the unknown smooth

functions fr (Lang & Brezger, 2004). This approach assumes that the unknown func-
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tions can be approximated by a polynomial spline of degree l with equally spaced

knots zmin
r = ζr0 < ζr1 < . . . < ζrnr−1 < ζrnr = zmax

r which are within the domain

of the covariate zr. In terms of a linear combination of Mr = nr + l B-spline basis

functions, Brm, the Bayesian spline can be written as

fr(zr) =

Mr∑
m=1

αrmBrm(zr).

Thus, αr = (αr1, . . . , αrMr)′ are unknown regression coefficients which are assigned

first- or second-order random walk priors given by αrm = αr,m−1 + urm and αrm =

2αr,m−1 − αr,m−2 + urm, respectively, with Gaussian errors urm ∼ N

(
0,

1

τ2r

)
and

diffuse priors αr1 or αr1 and αr2 as constants for initial values, respectively. The

variance component τ2r controls the smoothness of fr. Here, we used second-order

random walk smoothness priors and third degree splines.

For the structured spatial effect, fstr(sh), intrinsic Gaussian Markov random field

(IGMRF) priors specified by Besag et al. (1991) were used (Besag et al., 1991). Two

districts sh and si are defined as neighbours if they share a common boundary. The

spatial extension of random walk models leads to the conditional, normal distribu-

tion, spatially autoregressive specification

fstr(sh)|fstr(si), h 6= i ∼ N

 1

nsh

∑
si∈δsh

fstr(si),
1

nshτ
2
str

 ,

where nsh is the number of neighbours of district sh, and si ∈ δsh denotes that dis-

trict si is a neighbour of district sh. Therefore, the conditional mean of fstr(sh) is

an average of the function evaluations fstr(sh) of neighbouring districts. Further-

more, the variance component τ2str controls the smoothness of the spatial effect and

accounts for spatial variation between the districts, it is also used to capture the

amount of variation explained by the spatial structure. The unstructured spatial

effect funstr(sh) was assigned i.i.d. Gaussian priors and specified as

funstr(sh) ∼ N
(

0,
1

τ2unstr

)
.
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The variance components, τ2, of the random and spatial effects are unknown preci-

sion parameters that require estimation. Therefore, hyperpriors were assigned in a

second stage of hierarchy. These hyperpriors are defined on a logarithmic scale and

thus a log-gamma(a, b) distribution with hyper-parameters a = 1 and b = 0.001 was

used. A sum-to-zero constraint was imposed on the non-linear and spatial effects to

ensure model identifiability between the intercept and these effects.

Three types of models were fitted:

Model 1: GLM model: Linear fixed effects of all variables, categorical and continu-

ous.

Model 2: GAM model: Linear fixed effects of categorical variables and some contin-

uous variables, and non-linear effect of the child’s age in months.

Model 3: Geoadditive Model: Model 2 with the inclusion of the spatial effects.

The posterior distributions of the parameters in the models were estimated using

Integrated Nested Laplace Approximation (INLA) using the INLA package in R

(http://www.r-inla.org/) (Rue et al., 2009). The final geoadditive model was se-

lected based on the Deviance Information Criteria (DIC), where the model with the

smallest DIC was considered a better fit (Spiegelhalter et al., 2002). The sensitivity

to the choice of the hyper-parameter values a and b was investigated by fitting the

model with different hyper-parameter values (Adebayo & Fahrmeir, 2005). How-

ever, the estimates had little sensitivity to these choices. QGIS 3.4 (https://qgis.org

/en/site/index.html) was used to create maps displaying the posterior mean esti-

mates of the spatial effects for the different districts of the countries. All of the maps

created were based on the shapefiles of the four countries, each of which were par-

titioned into their respective districts. A shapefile is a geospatial vector data format

for geographic information system (GIS) software. The shapefiles for each country

were merged into one using QGIS. In addition, all of the islands in Tanzania and

Malawi were removed as only mainlands were considered.
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4.2. Inference from the Geoadditive Model

The estimation of the district-level structured spatial effect requires an adjacency

matrix, W, based on the neighbourhood structure of the districts. This adjacency

matrix contains diagonal elements of zero and off-diagonal elements wij = 1 if dis-

trict i and district j share a common boundary, and zero otherwise. The adjacency

matrix used in this analysis was created based on the neighbourhood structure of

the 370 districts across the four countries.

4.2 Inference from the Geoadditive Model

This analysis was based on the 18196 observations with the addition of 50 observa-

tions to include an additional category for the type of toilet facilities. The child’s

malaria status was incorporated as an explanatory variable to assess its effect on

anaemia. Moreover, based on the results of the exploratory data analysis from Chap-

ter 3, the age of the household head was not considered as a predictor of anaemia

in this model. With the inclusion of the spatial effects at district level, the effect

of each country can be obtained by systematic aggregation of the effects of the dis-

tricts within the country. Thus, the country of residence was also excluded from the

model. In addition, model diagnostics indicated that the model was of a reasonable

fit.

Model selection

The variance inflation factor (VIF) was used to check for collinearity among the ex-

planatory variables. All of the variables had a VIF < 4 and thus it was assumed that

multicollinearity was not significantly present (Zuur et al., 2009). The non-linear

effect of all continuous variables was investigated, however the only variable to dis-

play a significant non-linear effect on the log-odds of anaemia was the child’s age

in months. Thus, this was the only non-linear effect considered in the models fitted,

while the remaining independent variables were included as linear fixed effects. Ta-

ble 4.1 presents the results of the DIC and effective number of parameters, pD, for
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each of the fitted models. Model 3 (Equation (4.1)) produced the lowest DIC, and

thus the results of this study are based on this model, which includes both linear

and non-linear effects as well as the spatial effects.

Table 4.1: Model comparisons

Model 1 Model 2 Model 3

DIC 22181.94 22086.94 21424.61

pD 16.01 22.96 263.45

Fixed Effects

Table 4.2 displays the adjusted posterior odds ratio estimates (AOR) with their 95%

credible intervals for the linear fixed effects included in the multivariable model.

Female children had a significantly lower odds of anaemia compared to males (AOR

= 0.873; 95% CrI: 0.818-0.932). Similarly, there was a significant decrease in the odds

of anaemia with an increase in mother’s education, cluster altitude and household

wealth index. Furthermore, a significantly lower odds of anaemia was suggested for

children living in households with improved toilet facilities (PIT latrine and flush

toilet). Children residing in urban areas had a lower odds of anaemia compared

to those residing in rural areas, however these odds were not significantly different

(AOR = 0.926; 95% CrI: 0.835-1.027). Children with a positive malaria RDT result

had a significantly higher odds of anaemia compared to those who had a negative

malaria RDT result (AOR = 4.401; 95% CrI: 3.979-4.871), as did those children living

in households with increasing number of residents (AOR = 1.019; 95% CrI: 1.008-

1.030). While the odds of anaemia decreased with an increase in EVI (AOR = 0.987;

95% CrI: 0.927-1.051) and increased with an increase in LST (AOR = 1.008; 95% CrI:

0.994-1.022), these factors did not appear to be significantly associated with a child’s

anaemia status.
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Table 4.2: Adjusted posterior odds ratio estimates (AOR) and 95% credible intervals (CrI)

Variable AOR (95% CrI)

Individual and Household Level

Gender (ref = Male)
Female 0.873 (0.818, 0.932)∗

Malaria RDT Result (ref = Negative)
Positive 4.401 (3.979, 4.871)∗

Household Size 1.019 (1.008, 1.030)∗

Type of Place of Residence (ref = Urban)
Rural 0.926 (0.835, 1.027)

Mother’s Education Level (ref = No Education)
Primary 0.857 (0.773, 0.950)∗

Secondary and Higher 0.795 (0.694, 0.911)∗

Unknown 0.845 (0.742, 0.963)∗

Gender of Household Head (ref = Male)
Female 1.003 (0.927, 1.086)∗

Type of Toilet Facility (ref = No Facilities)
PIT Latrine 0.813 (0.723, 0.914)∗

Flush Toilet 0.749 (0.612, 0.916)∗

Other 0.711 (0.382, 1.325)
Wealth Index 0.858 (0.807, 0.911)∗

Cluster Level

Cluster Altitude (in 100 metres) 0.974 (0.962, 0.987)∗

EVI (in 1000s) 0.987 (0.927, 1.051)
LST 1.008 (0.994, 1.022)
∗significant at 5% level of significance

Non-linear and Spatial Effects

Table 4.3 provides the posterior mean and 95% credible interval for the smooth term

variance components (the precisions) for the non-linear and spatial effects. The pre-

cision of an effect is the inverse of its variance. Thus, the larger the precision, the

smaller the variance of the effect. The precision corresponding to the structured spa-

tial effect (853.58) was much higher compared to that of the unstructured spatial

effect (3.84), thus suggesting that the unstructured spatial effect was more dominant

(Kazembe et al., 2007).
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Table 4.3: Posterior mean and 95% credible interval (CrI) for the smooth term variance com-
ponents

Variable Mean 95% CrI
Non-linear Effect

Child’s Age in Months (τ2r ) 1648.49 (485.52, 3938.21)
Spatial Effect

Structured Spatial Effect (τ2str) 853.58 (44.69, 3252.82)
Unstructured Spatial Effect (τ2unstr) 3.84 (3.041, 4.78)

Figure 4.1 shows the non-linear effect that a child’s age in months has on the log-

odds of being anaemic as well as the 95% credible interval. There was an increase in

effect from 6 to 11 months, after which the effect declined. If a linear effect was used,

it would have overestimated the effect of ages 30 to 50 months on anaemia.

Figure 4.1: Estimated non-linear effects of child’s age in months on the log-odds of anaemia.
The posterior mean together with the 95% credible intervals are shown.

Figure 4.2 displays the estimated means of the structured and unstructured spatial

effects on the log-odds of anaemia, where the blue districts have a negative spatial

effect and are therefore associated with a lower odds of anaemia, and the red dis-

tricts have a positive spatial effect and are therefore associated with a higher odds

of anaemia. The structured spatial effect, which ranged from −0.0368 to 0.0316, was

weak in comparison to the unstructured spatial effect, which ranged from −1.3061

to 0.9780. Furthermore, the 95% CrI of the log-odds for the structured spatial effect
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in each district overlapped with the null of 0 (results not shown), thus the effects

of spatially correlated factors contributing to childhood anaemia in all the districts

were not statistically significant. However, 36 districts had a significantly positive

unstructured spatial effect and 34 districts had a significantly negative unstructured

spatial effect.

Figure 4.2: Estimated posterior means of the structured spatial effect (left) and the unstruc-
tured spatial effect (right) on the log-odds of anaemia (criss-cross pattern indi-
cates water bodies; diagonal lines indicate districts with no data available).
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4.3 Summary and Discussion

We utilised a hierarchical geoadditive logistic model to investigate the risk factors

and spatial variation of anaemia in children aged 6 to 59 months in Kenya, Malawi,

Tanzania and Uganda. This type of model allows one to assess and visualise the

residual spatial effects on childhood anaemia while controlling for the effects of

other covariates. Furthermore, it allows for the non-linear relationship of contin-

uous covariates to be explored. In this analysis, incorporating the spatial effect in

the model reduced the model’s DIC.

The results of this analysis confirm that of other studies, where girls are less at risk

of anaemia, and a child’s risk decreases with an increase in mother’s education level

and wealth (Gayawan et al., 2014; Ngwira & Kazembe, 2015; Khan et al., 2015; Soares

Magalhães et al., 2013a). This may be due to more educated individuals being more

aware and having more of an understanding of health related issues. Similarly, this

could be said of individuals with more wealth. However, a lack of wealth also re-

stricts an individual’s ability to access good health care and nutritional food sources.

Having malaria was associated with a significantly higher risk of anaemia, thus sug-

gesting much of the burden of childhood anaemia in these countries is contributed

by malaria. The type of toilet facilities was significantly associated with a child’s

anaemia status. Poor sanitation is a known risk factor of the intestinal parasite hook-

worm which causes anaemia in infected children (Smith & Brooker, 2010). While

a study by SoaresMagalhães & Clements (2011) found environmental factors LST

and the normalized difference vegetation index (NDVI) to be significantly associ-

ated with an increased risk of anaemia in preschool-age children, the environmental

factors LST and EVI considered in this study were not found to be significantly as-

sociated with anaemia. However, such environmental factors, especially EVI, are

known to be highly correlated with malaria, and thus the inclusion of the child’s

malaria status may account for much of the effects that these environmental factors

have on childhood anaemia (Cottrell et al., 2012; Nguyen et al., 2019).
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The non-linear effect of the child’s age on anaemia displayed an increase from 6 to

11 months, after which the effect declined. Multiple factors could be contributing to

this increased risk of anaemia in children aged 6 to 11 months. Either these children

are not receiving adequate nutrients or they are experiencing a decrease in their Hb

concentrations due to other factors. Infants are born with a reserve of iron which is

responsible for growth and protection from iron deficiency in the first 4 to 6 months

of life (Ziegler et al., 2014). After 6 months of age, the iron store is depleted, and thus

it is common for milk supplements to be introduced into a child’s diet to comple-

ment breastfeeding as breast milk alone may not provide sufficient iron to meet the

demand of the rapid growth experienced in children during this period (Gayawan

et al., 2014; Miller, 2019). However, safe complementary feeding in children from 6

months is not always practised, where the feeding of unmodified cow’s milk in chil-

dren less than 12 months of age is common in some SSA countries despite evidence

of increased risk of iron-deficiency anaemia and other adverse health outcomes (Sse-

mukasa & Kearney, 2014; Saldan et al., 2017). Wijndaele et al. (2009) found that low

maternal education and low socio-economic status are associated with feeding of un-

modified cow’s milk in children less than a year old. In addition, malaria in mothers

may also be a contributing factor to the increased risk of anaemia in children aged 6

to 11 months, where (White, 2018) states that the effects of maternal anaemia due to

malaria can cause a physiological decline in Hb concentrations in infants from birth

up to 9 months of age, after which there is a slow but steady rise in Hb concentra-

tions. Other studies on young children from Kenya, Malawi, Tanzania and Uganda

have also reported similar patterns of decreased Hb concentrations in children less

than 11 months of age (Ngwira & Kazembe, 2015; Crawley, 2004; Schellenberg et al.,

2003; McElroy et al., 2000; le Cessie et al., 2002).

The benefit of focusing on more than one country at a time is that one is able to

consider whether factors that transcend boundaries are significantly contributing to
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childhood anaemia, such as environmental and geographical factors. The results re-

vealed that the structured spatially correlated effect was fairly weak in comparison

to the unstructured spatial effect, suggesting that the contribution that a particular

district has on the risk of anaemia is not similar among neighbouring districts. This

is an indication that environmental and geographical factors that transcend bound-

aries of the districts may not play a significant role in childhood anaemia. With the

unstructured spatial effect being more prominent in this study, it can be concluded

that there are unmeasured district-specific factors that are not spatially structured

(that are not correlated with that of neighbouring districts) contributing to child-

hood anaemia. In addition, there was a distinct pattern of variation in the spatial

effects across the districts within each country, except for Kenya which was fairly

homogeneous in both types of spatial effects. Kenya has made substantial progress

in the reduction of malaria, however this has resulted in a heterogeneous risk of

malaria across the country (Macharia et al., 2018). Thus, the homogeneous results of

the spatial effects on childhood anaemia in Kenya could be due to the strong corre-

lation between malaria and anaemia in the country, which is being accounted for by

the inclusion of the child’s malaria status. However, the spatial effects in Uganda,

Tanzania and Malawi remain heterogeneous even after controlling for the child’s

malaria status, thus there are other significant drivers of childhood anaemia in these

countries. On the whole, the spatial effects do not appear to transcend the borders

between the countries as the pattern of effects differed around the borders, barring

Longido district in Tanzania and Kajiado county in Kenya which share a border. This

indicates that there are country-specific factors contributing to anaemia in children.

Such factors may include the cost and quality of health care, and the cost of liv-

ing, which can vary considerably between and within countries, the effects of which

have been known to contribute to the spatial variation of other childhood diseases

(Kandala & Madise, 2004).
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CHAPTER 5

DISTRICT EFFECT APPRAISAL OF

CHILDHOOD ANAEMIA

5.1 Introduction

Earlier, we considered the spatial effect at district-level, which was decomposed into

a structured spatial effect and an unstructured spatial effect. The district-level struc-

tured spatial effect accounted for spatial autocorrelation in the observations between

neighbouring districts. Now we consider spatial autocorrelation in the observations

between the clusters within the districts, where we would expect clusters close in

proximity to have similar responses. This leads to a cluster-level structured spa-

tial effect, which allows us to assess the spatial variation within the districts. This

cluster-level spatial effect is incorporated into the model based on the geographical

coordinates of the sampled clusters. In addition, the performance of the districts

is considered in order to assess and rank the ‘best’ and ‘worst’ performing districts

with regard to their impact on childhood anaemia based on the Best Linear Unbiased

Prediction (BLUP) technique. Such a district effect appraisal on anaemia can aid in

providing a wider and richer insight in the effort to overcome childhood anaemia by

prioritising the worst performing districts for action. Furthermore, it enables one to

identify key differences between the best and worst performing districts compared

to national and global levels. Identifying factors that contribute to these differences

can aid in targeting the correct set of interventions in the districts where it is much

needed. This BLUP technique is primarily used in animal and plant breeding for es-

timating and ranking genetic merit (Robinson, 1991; Soh, 1994; Bajetha et al., 2015),

however to our knowledge, such a method has not been used for the appraisal of

administrative levels in epidemiological studies. Once again in this analysis, we
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5.2. Best Linear Unbiased Predictor

utilise a statistical model that allows us to account for the effects of individual-level,

household-level and environmental factors.

5.2 Best Linear Unbiased Predictor

Here we adopt a generalised additive mixed model (GAMM) for the hierarchical

and spatially correlated data (Lin & Zhang, 1999). A GAMM is an additive exten-

sion of generalised linear mixed models (GLMMs) and uses additive nonparametric

functions to model covariates and geospatial effects while accounting for correlation

by adding random effects to the additive predictors (Wand et al., 2011; Umlauf et al.,

2015). The fitted GAMM for P (Yhijk = 1) = πhijk with a logit link function is

logit(πhijk) = x′hijkβ + Uh +

p∑
r=1

fr(zhijk) + fspat(loni, lati), (5.1)

where πhijk is the probability that child k in household j within cluster i and district

h; β is the linear fixed effects; Uh is the district-level random effect modelled para-

metrically; fr(.), r = 1, . . . , p, are the unknown smooth functions that represent the

non-linear effects of the p covariates which are modelled non-parametrically; and

the non-linear term fspat(loni, lati) is a function of the geographical coordinates of

the ith cluster where loni and lati are the longitude and latitude, respectively. Inter-

actions between any of the terms in Equation 5.1 can also be explored.

Estimation of the smooth functions fr was based on penalised splines (P-splines)

(Eilers & Marx, 1996). This approach assumes that the unknown functions can be

approximated by a polynomial spline of degree l with equally spaced knots zmin
r =

ζr0 < ζr1 < . . . < ζrnr−1 < ζrnr = zmax
r which are within the domain of the covariate

zr. The spline can be written in terms of a linear combination ofMr = nr+ l B-spline

basis functions, Brm, and regression coefficients αrm as

fr(zr) =

Mr∑
m=1

αrmBrm(zr). (5.2)
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The choice in the number of knots is important as too few results in a spline that

may not be flexible enough to capture the variability in the data, however too many

knots may result in estimated curves that overfit the data, which leads to functions

that are too rough (Fahrmeir et al., 2004). To overcome this problem, a moderately

large number of equally spaced knots of between 20 and 40 is used to ensure flexibil-

ity (Eilers & Marx, 1996). In addition, a roughness penalty is defined based on first

or second order differences of adjacent B-Spline coefficients which guarantees suffi-

cient smoothness of the fitted curves (Eilers & Marx, 1996). This leads to penalised

likelihood estimation with penalty terms given by:

P (λr) =
1

2
λr

Mr∑
m=v+1

(∆vαrm)2 , v = 1, 2,

where λr is the smoothing parameter and ∆v is the differencing operator of order v.

First order differences penalise abrupt jumps αrm − αr,m−1 between successive pa-

rameters, while second order differences penalise deviations from the linear trend

2αr,m−1 − αr,m−2 (Fahrmeir et al., 2004). We used a choice of 20 knots and a spline

of degree 3.

The effect of the ith cluster location, given by fspat(loni, lati), i = 1, . . . , 1595 was

estimated based on a two-dimensional P-spline, which itself is based on the tensor

product of 1 dimensional B-splines:

fspat(loni, lati) =

1595∑
m1=1

1595∑
m2=1

αm1m2Bm1(loni)Bm2(lati).

The stochastic formulation of fspat(loni, lati) represents the realisation of a spatially

correlated stochastic process, which assists in accounting for spatial correlations in

the data (Kneib et al., 2008). The B-spline basis functions are now spatially aligned

along the x and y axes, and thus a suitable difference penalty is then constructed

based on squared deviations of αm1m2 from the regression coefficients of the four

nearest neighbours (Kneib et al., 2008).
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5.2. Best Linear Unbiased Predictor

Furthermore, in order to account for the correlation in the responses due to unmea-

sured district-specific factors, an independently and identically distributed random

effect was included in the model based on the district in which the child resided.

The function for this random effect in the model can also be approximated by a lin-

ear combination of B-spline basis functions given by Equation 5.2. However, the

regression coefficients αrm are i.i.d. random effects (Fahrmeir et al., 2004).

GAMMs can be represented as GLMMs after appropriate re-parameterisations of

the smoothing splines (Fahrmeir et al., 2004). Based on the GLMM representation,

regression parameters and variance components can be estimated using iteratively

weighted least squares (IWLS) and restricted maximum likelihood (REML) estima-

tion, respectively. The mixed model methodology permits the estimation of the fixed

effects, as well as the prediction of the random effects using the BLUP procedure by

solving the system of linear equations called mixed model equations (Furlani et al.,

2005). BLUP values are realised values of the random effect (Zewotir, 2008, 2012).

BLUP provides an unbiased method by adjusting for known sources of individual,

household, cluster, geospatial and environmental variation (Henderson, 1975). Fur-

thermore, BLUP is an appropriate technique for the ideal ranking or selection crite-

ria that involve a random effect. It is well established on theoretical grounds that

these properties can result in increased accuracy in ranking and selection (Hender-

son, 1975; Robinson, 1991; McCulloch et al., 2008). In other words, the ranking of

the best linear predictors produces the same order as the true values of the random

effects (Portnoy, 1982). Through this maximizing the probability of correct ranking,

BLUP are appropriate values upon which to base selection and ranking. Thus, in-

clusion of the district-level random effect enables one to rank and select the ‘best’

and the ‘worst’ districts with regards to anaemia risk based on the obtained BLUP

estimates for each district.

The estimation approach used in this study is referred to as an empirical Bayes ap-
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5.3. Fixed Effects Estimation

proach. Empirical Bayes inference assumes that the regression and variance param-

eters are unknown constants, where the estimates are obtained by maximizing an

objective function, thus the estimates can be interpreted as penalized likelihood es-

timates from a frequentist perspective (Fahrmeir et al., 2004). The model was fitted

using the R2BayesX package in R (Umlauf et al., 2016). The estimates of the district-

level random effect and cluster-level spatial effect were imported into ArcGIS 10.6

and mapped.

5.3 Fixed Effects Estimation

From the data consisting of 18247 observations that was used in the analysis in

Chapter 4, only 18027 observations had valid geographical coordinates available

for the cluster of residence. Thus, these results are based on only those 18027 ob-

servations. In this analysis, the explanatory variables comprised of the same demo-

graphic, socio-economic and environmental factors as that considered in Chapter 4,

however the country of residence was also considered.

To avoid possible confounding effects, all two-way interactions of the fixed effects

were explored. The only significant interaction was found between the type of place

of residence (rural/urban) and the country, which is not a surprising result as the

coverage and classification of rural/urban areas within a country differs from coun-

try to country. This significant interaction effect suggests that the effect that an urban

or rural area has on anaemia in children differs across the four countries. Further-

more, the total effect that the place of residence and country has on the odds of

anaemia is made up of their individual main effects as well as the simultaneous/in-

teraction effect between the two variables.

Table 5.1 displays the results of the adjusted odds ratios and their 95% confidence

intervals for the final model. Female children had a significantly lower odds of

anaemia compared to males (AOR = 0.876; 95% CI: 0.820-0.935). The odds of anaemia
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was significantly higher for children who tested positive for malaria based on the

RDT result compared to those who tested negative (AOR = 4.315; 95% CI: 3.895-

4.781).

Table 5.1: Adjusted odds ratio estimates (AOR) and 95% confidence intervals (CI) for the
fixed effects

AOR (95% CI)

Main Effects

Gender (ref = Male)
Female 0.876 (0.820, 0.935)∗

Malaria RDT Result (ref = Negative)
Positive 4.315 (3.895, 4.781)∗

Household Size 1.014 (1.003, 1.025)∗

Type of Place of Residence (ref = Urban)
Rural 0.738 (0.582, 0.936)∗

Mother’s Education Level (ref = No Education)
Primary 0.843 (0.760, 0.935)∗

Secondary and Higher 0.794 (0.693, 0.911)∗

Unknown 0.845 (0.742, 0.962)∗

Gender of Household Head (ref = Male)
Female 1.016 (0.939, 1.100)

Type of Toilet Facility (ref = No Facilities)
PIT Latrine 0.780 (0.694, 0.877)∗

Flush Toilet 0.725 (0.591, 0.889)∗

Other 0.663 (0.357, 1.230)
Wealth Index 0.847 (0.797, 0.901)∗

Country (ref = Malawi)
Kenya 0.316 (0.160, 0.622)∗

Tanzania 0.639 (0.355, 1.150)
Uganda 0.433 (0.214, 0.874)∗

Cluster Altitude (in 100 metres) 0.986 (0.969, 1.004)
EVI (in 1000s) 1.026 (0.865, 1.217)
LST 1.015 (0.969, 1.063)

Interaction Effects

Type of Place of Residence and Country (ref = Urban and Malawi)
Rural and Kenya 1.376 (1.037, 1.825)∗

Rural and Tanzania 1.237 (0.942, 1.624)
Rural and Uganda 1.119 (0.826, 1.514)

∗significant at 5% level of significance
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The odds of anaemia increased with an increase in household size (AOR = 1.014;

95% CI: 1.003-1.025), however the odds decreased with an increase in the household

wealth index Z-score (AOR = 0.847; 95% CI: 0.797-0.901). Children whose mother

had at least a primary level of education were associated with a lower odds of

anaemia compared to those whose mother had no education (AOR = 0.843; 95%

CI: 0.760-0.935 for primary level, AOR = 0.794; 95% CI: 0.693-0.911 for secondary or

higher education level). Moreover, children in households with improved toilet fa-

cilities had a lower odds of anaemia compared to those in households with no toilet

facilities (AOR = 0.780; 95% CI: 0.694-0.877 for PIT latrine, AOR = 0.725; 95% CI:

0.591-0.889 for flush toilet). The gender of the head of household, cluster altitude,

EVI and LST were not significantly associated with the child’s anaemia status.

While the adjusted odds ratios for the main and interaction effects of the type of

place of residence and country of residence are presented in Table 5.1, they cannot

be interpreted separately. Rather, their total effect on the log-odds of anaemia should

be considered. Thus, Figure 5.1 presents the total estimated log-odds of anaemia for

each type of place of residence across the four countries. This figure clearly dis-

plays a difference in the effect of the type of place of residence on the log-odds of

anaemia between the four countries. Without the inclusion of this interaction effect,

it would be assumed that the effect of the type of place of residence is constant for

all the countries. While the log-odds of anaemia for children residing in rural areas

was lower than that for children residing in urban areas in Malawi, Tanzania and

Uganda, only Malawi displayed a considerable difference between urban and rural

areas. Furthermore, Uganda and Kenya displayed a decreased log-odds of anaemia

in both urban and rural areas, while Malawi and Tanzania displayed an increased

log-odds in both urban and rural areas.
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Figure 5.1: Log-odds of anaemia associated with the type of place of residence and country

5.4 Non-linear and Spatial Effects

The child’s age in months had a fairly significant non-linear effect on the log-odds of

anaemia with its non-zero variance estimate (Table 5.2). Similarly, the variance es-

timates for the district-level random effect and cluster-level spatial effect were non-

zero.

Table 5.2: Variance estimates of non-linear terms

Variance Estimate

Child’s Age in Months 0.0127
District-Level Random Effect 0.1516
Cluster-Level Spatial Effect 0.6904

Figure 5.2 displays the non-linear effect of the child’s age in months on the log-odds

of anaemia. The effect increased from 6 to 11 months of age, after which there was

a decline in the effect. Children from about 25 months of age displayed a negative
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effect, and thus were associated with a lower risk of anaemia.

Figure 5.2: Estimated non-linear effect of the child’s age in months on the log-odds of
anaemia together with the 95% confidence interval

The estimated cluster-level spatial effect, which accounts for spatial autocorrelation,

is presented in Figure 5.3. The clusters in shades of blue had a negative effect on the

log-odds of anaemia and thus were associated with a decreased risk. Whereas, those

in shades of yellow to red had a positive effect and were therefore associated with an

increased risk of childhood anaemia. Uganda, which consisted of clusters with both

positive and negative effects, displayed the largest spatial variation. Throughout all

four countries, the majority of neighbouring clusters resulted in similar effects. In

Kenya, Tanzania and Uganda, some areas displayed clusters with a positive effect

and clusters with a negative effect within the same district. Clusters surrounding

Lake Victoria, which lies across the border between Uganda and Tanzania, had a

positive effect and thus were associated with an increased odds of anaemia. Malawi

was fairly homogeneous as it consisted of clusters with only negative effects.
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Figure 5.3: Estimated cluster-level spatial effect on the log-odds of anaemia
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Figure 5.4 displays the estimated district-level random effect based on the BLUP

estimates, where the shades of blue had a negative/decreased effect on the log-odds

of anaemia and the shades of beige to red had a positive and therefore increased

effect on the log-odds of childhood anaemia.

Figure 5.4: Estimated district-level random effect on the log-odds of anaemia
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There was significant heterogeneity between and within the countries, with each

country consisting of districts with both positive and negative effects. Kenya, Tan-

zania and Uganda each contained an isolated district with a considerably lower neg-

ative effect. Unlike the cluster-level spatial effect, Malawi displayed significant het-

erogeneity in this district-level random effect, with one district displaying a notably

higher positive effect compared to the rest of the country.

5.5 Ranking and Selection of Districts

Based on the standardised BLUP estimates, the districts were ranked. A negative

BLUP is associated with a decreased odds of anaemia in the district, while a positive

BLUP is associated with an increased odds of anaemia in the district. The top 3

‘best’ performing districts (those with the lowest standardised BLUP values) and

the top 3 ‘worst’ performing districts (those with the highest standardised BLUP

values) were determined for each country (Figure 5.5). The best performing district

or county in Kenya was Taita-Taveta County, in Malawi was Mulanje, in Tanzania

was Bariadi, and in Uganda was Kiruhura. However, the worst performing district

or county in Kenya was West Pokot County, in Malawi was Chikwawa, in Tanzania

was Ngorongoro, and in Uganda was Kyenjojo.

5.6 Summary and Discussion

Based on the structure of the surveys and data, a generalised additive mixed model

was employed to assess the association between a child’s anaemia status and poten-

tial individual, household and community level risk factors in Kenya, Malawi, Tan-

zania and Uganda while accounting for spatial heterogeneity of childhood anaemia.

The results revealed significant spatial heterogeneity of childhood anaemia within

and between the districts of the four countries. Two sources of spatial heterogene-

ity were accounted for, that due to spatial dependence of the observations between

the sampled clusters, and that due to district-specific factors via the inclusion of a
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Figure 5.5: Top 3 districts within each country performing the best (in blue) and the worst
(in black) with regards to the log-odds of anaemia in children

random effect based on the district of residence. The random and spatial effects are

surrogates for influences of unmeasured factors, which may be local (district spe-

cific) or global (common between neighbouring clusters or districts), respectively

(Ngwira & Kazembe, 2015).

Similar to the results of Chapter 4, the heterogeneity in the district-specific random

effect suggests that there are local unobserved factors within each district contribut-
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ing to anaemia in children. A further benefit of adding the district of residence as a

random effect is that it allows for the ranking of the performance of the districts on

the log-odds of anaemia based on the BLUP estimates, after controlling for potential

risk factors of anaemia and spatial autocorrelation (Zewotir, 2012). In other words,

the BLUP values can be regarded as the estimated effect that a district has on the

log-odds of anaemia due to unmeasured factors. It would not have been possible to

rank the performance of the districts if the district of residence was added as a fixed

effect, which would have resulted in 369 indicator variables for the 370 districts in

the model. Not only does this ranking procedure allow for the worst performing

districts to be targeted in order to improve their anaemia control strategies, but it

also allows for the best performing districts to be identified in order to further deter-

mine why they are performing better, and then to use these districts as examples in

efforts to overcome childhood anaemia.

The cluster-level spatial effect allows one to observe any spatial dependence or het-

erogeneity within the districts of the countries, where many of the districts had more

than one sampled cluster. An advantage of incorporating this spatial effect at a clus-

ter level rather than at a district level, is that a district-level spatial effect aggregates

the effect of spatial autocorrelation, which may result in missing some important in-

formation. This was evident by some districts within Kenya, Uganda and Tanzania

containing both clusters associated with a lower as well as a higher risk of childhood

anaemia. This is further indication that strategies for anaemia control should be tai-

lored to what’s happening within a specific district.

After accounting for the apparent spatial heterogeneity, child level characteristics

(gender, malaria RDT result, and mother’s highest education level), household level

characteristics (household size, household’s wealth index Z-score, the type of toi-

let facility available, and the type of place of residence) as well as the country of

residence were found to be significantly associated with the child’s anaemia sta-
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tus. These findings are generally in agreement with that in the literature (Moschovis

et al., 2018; Zhao et al., 2012; Al-Qaoud et al., 2015; Gari et al., 2017; Khan et al., 2015;

Soares Magalhães et al., 2013a; Habyarimana et al., 2017; Mainardi, 2012) as well as

the results of the geoadditive model from Chapter 4.

So far we have incorporated the child’s malaria status as a covariate into the models.

The results indicated a highly significant association between anaemia and malaria,

where children with malaria were over 4 times more likely to have anaemia. Many

other studies have considered the determinants of anaemia and malaria in children

separately (Kuziga et al., 2017; Roberts & Matthews, 2016; Kateera et al., 2015), and

others have considered them as determinants of each other where children who

tested positive for malaria were more than 3 times as likely to have anaemia. On

the other hand, researchers have reported that those with anaemia were more than

twice as likely to have malaria (Ugwu & Zewotir, 2018; Wirth et al., 2016; Kweku

et al., 2017). This demonstrates the association between the two outcomes, how-

ever modelling the two jointly would reveal more about their relationship. Next, we

consider joint modelling of anaemia and malaria in young children to further gain

insight into this relationship.
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CHAPTER 6

MODELLING OF CHILDHOOD

ANAEMIA AND MALARIA JOINTLY

The relationship between malaria and anaemia can be confounded by several fac-

tors, including nutritional deficiencies (specifically iron deficiency) and intestinal

parasites, all of which contribute to anaemia in children (White, 2018). In addi-

tion, childhood anaemia as an indicator for the burden of malaria would only be

appropriate and useful in regions where malaria is the primary driver of anaemia.

Therefore, investigating the relationship between anaemia and malaria and how the

relationship changes according to a geographical location would be valuable in this

regard. Structural equation modelling is a common multivariate technique used to

explore the relationship among numerous variables. However, such a technique

cannot incorporate spatial effects and thus would not be suitable for this study. We

thus consider a joint model approach.

Joint modelling has several advantages over univariate analyses, which include im-

proved control over Type I error rates during multiple testing and efficiency in esti-

mating parameters (Ayele et al., 2014). Further, through joint modelling, the correla-

tion between the outcomes can be quantified and controlled for. Several approaches

to joint modelling exist. The most common approach is the use of a multivariate

model, where the univariate models for each response are combined through the

specification of a joint multivariate distribution for the random effects Ayele et al.

(2014); Habyarimana et al. (2016). Copula regression is another approach to simulta-

neously modelling multiple outcomes, where a copula function is used to separate

the marginal distributions from the dependence structure of a given multivariate

distribution Nelsen (2006).
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Joint modelling can also be extended into disease mapping through spatial mod-

elling. This aids in gaining more insight into the geographical variation of each of the

multiple diseases, while accounting for the association between them. Spatial map-

ping of single diseases is a well established method for identifying the geographical

locations that are most at risk, thus creating a more effective delivery system of lim-

ited resources (Kazembe et al., 2009; Besag et al., 1991; Roberts et al., 2020; Gayawan

et al., 2014; Habyarimana et al., 2017). Such an approach for joint spatial modelling

includes the multivariate conditional autoregressive (MCAR) model (Gayawan &

Fadiji, 2020; Adeyemi et al., 2019). This approach allows one to assess and visualise

the residual spatial effect of the geographical location on each response, while con-

trolling for the correlation between the responses. However, this MCAR approach

does not allow one to assess how the correlation between the responses changes

based on the geographical location.

The spatial extension of the copula approach to joint modelling of multiple responses

can aid in answering questions about how the association between the responses

varies according to the geographical location. Thus, a joint copula regression model

is used to explore the correlation between anaemia and malaria in young children

across the districts of Kenya, Malawi, Tanzania and Uganda, while accounting for

the effects of socio-economic, demographic and environmental factors as well as

spatial variation in the two responses. The association parameter between the two

responses is varied according to the district of residence across the four countries.

The results are then mapped to visualise the relationship between the two responses

across the districts. To our knowledge, no studies have jointly modelled anaemia

and malaria in children in these four countries. Thus, this analysis contributes to a

better understanding of the relationship between anaemia and malaria in children

in these regions of sub-Saharan Africa.
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6.1. Copula Geoadditive Model

6.1 Copula Geoadditive Model

Here we make use of a bivariate copula regression model to jointly model anaemia

and malaria. The model is based on a pair of responses and a copula specification

for the dependence structure between the two responses (Klein et al., 2019). Cop-

ulas are functions that enable the separation of the marginal distributions from the

dependence structure of a given multivariate distribution (Nelsen, 2006). The ap-

plication of copula regression is diverse. McNeil et al. (2015) demonstrated its use

in quantitative risk management, Smith et al. (2010), Madsen & Fang (2011), and

Kürüm et al. (2018) extended the application of copula regression to longitudinal

data, where the approach used by Kürüm et al. (2018) allowed for the model param-

eters to vary with time. de Leon & Chough (2013) discuss further applications of

copula regression to jointly model discrete as well as mixed outcomes. In addition,

copula regression is commonly used in finance and insurance (Nelsen, 2006; Um-

berto, 2011; Kolev et al., 2006, and references therein).

Bivariate Copula Regression

Suppose Yi1 is the anaemia status of the ith child and Yi2 is the malaria status of

the ith child. In this study, each response is binary where Yij = 1 if the child had

anaemia or malaria, otherwise Yij = 0, j = 1, 2. The joint probability of event (Yi1 =

1, Yi2 = 1), conditional on a set of covariates xi1 and xi2, is defined as

P (Yi1 = 1, Yi2 = 1|xi1,xi2) = C(P (Yi1 = 1|xi1), P (Yi2 = 1|xi2); θ).

C : [0, 1]2 → [0, 1] is a two-place copula function and θ, known as the copula param-

eter, is an association parameter which measures the dependence between the two

random variables (Marra & Radice, 2017a). If Yi1 and Yi2 were both continuous, the

copula C would be unique. However, in the case of both outcomes being binary, the

copula is no longer uniquely defined (Klein et al., 2019). As such, we make use of

the latent (unobserved) variable representation of binary models where we define a
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continuous latent variable Y ∗ij = ηij + εij , where ηij is the linear predictor consisting

of fixed and random effects as well as non-linear and spatial effects, and εij is an

error term. Therefore, Yij can be regarded as an indicator variable such that

P (Yij = 1|xij) = P (Y ∗ij > 0|xij)

= P (ηij + εij > 0|xij)

= P (εij > −ηij |xij)

= 1− Fj(−ηij), (6.1)

where Fj(·) is the cumulative distribution function (CDF) of a standardised univari-

ate distribution (Marra & Radice, 2017a). The copula approach allows for the spec-

ification of different families for each marginal distribution. We used the standard

normal distribution for the marginal distribution of each latent response variable

Y ∗ij , leading to a probit model. Although using a logit link would not lead to dif-

ferent conclusions, we selected the probit specification as it is computationally less

demanding. Equation 6.1 can be represented as

P (Yij = 1|xij) = Φ(ηij),

where Φ(·) is the CDF of a standard normal distribution. Therefore, a unit increase in

the covariate xijk leads to a βjk increase in the Z-score for the probability of Y ∗ij = 1.

Thus, higher values of the estimated coefficients mean that the event is more likely

to happen.

Marginal Model Specification

For each marginal model, we considered the non-linear effects of the continuous

covariates. We incorporated an independently and identically distributed random

effect based on the district in which the child resided. This random effect, also re-

ferred to as an unstructured spatial effect, accounts for the correlation in the obser-

vations due to unmeasured district-specific factors. In other words, it accounts for
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the possibility that children residing in the same district would be more alike than

those from different districts. In addition, we further accounted for spatial variation

and spatial autocorrelation in the observations by incorporating a structured spa-

tial effect, which accounts for the assumption that children residing in neighbour-

ing districts are more likely to have correlated observations. We also incorporated

fixed effects of all the categorical variables as well as the continuous covariates that

did not display a strong non-linear effect on each response. The resulting model

for each response takes the form of a geoadditive mixed model, which is an ex-

tension of a generalised additive mixed model (GAMM) (Lin & Zhang, 1999). Each

marginal model can consist of different effects. The non-linear effects were estimated

by smooth functions using a regression spline approach, and the structured spatial

effect was estimated using a Markov random field smoother, which was based on

the neighbourhood structure of the districts across the four countries. Two districts

are considered neighbours if they share a border. More information on the specifica-

tion and estimation of each marginal model can be found in Klein et al. (2019).

Copula Specification

An advantage of the copula approach to joint modelling is that the selection of the

copula for modelling the dependence between the outcomes is independent of the

choice of the marginal distributions (Brunner et al., 2019). Several different types

of copulas exist, of which the most common are discussed in Nikoloulopoulos &

Karlis (2008) and Marra & Radice (2017b). To choose the most appropriate copula,

information criteria such as the Akaike information criterion (AIC) and Bayesian

information criterion (BIC) are used, where the copula producing the lowest of these

values is selected. In our study, the Frank copula produced the smallest AIC value

and thus was selected to jointly model our responses. The Frank copula is of the

Archimedean class and has the following form

C(F1(Yi1), F2(Yi2); θ) = −1

θ
ln

[
1 +

(e−θ×F1 − 1)(e−θ×F2 − 1)

e−θ − 1

]
.
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The copula parameter, θ, is not straightforward to interpret. Therefore, it can be

converted into the Kendall correlation coefficient, or Kendall’s Tau (τ ∈ [−1, 1]),

which is a measure of the degree of concordance (Marra & Radice, 2017a). For the

Frank copula, τ can be obtained by solving

D1(θ)− 1

θ
=

1− τ
4

,

where

D1(θ) =
1

θ

∫ θ

0

t

et − 1
dt.

If τ = 0, then Yi1 and Yi2 are independent. The Frank copula is comprehensive,

which means it covers the full spectrum of possible values of τ , which is not the case

for all copulas (Winkelmann, 2011).

The copula parameter, θ, may also vary according to different groups of obser-

vations. Therefore, θ can be specified as a function of a linear predictor, such as

θi = m(ηi3), where m is a one-to-one transformation that ensures that θi lies in its

range, and ηi3 is the linear predictor associated with the copula parameter (Marra &

Radice, 2017a). The transformation applied depends on the specified copula func-

tion. This framework allows one to explore the association between the two out-

comes according to the levels or categories of certain factors. In this study, we varied

the copula parameter according to the district of residence to enable us to determine

the districts in which there is a strong association between anaemia and malaria.

Conversely, we are also able to determine the districts in which the association is

weak, therefore suggesting that there are other significant drivers of anaemia in chil-

dren in those districts.

We used the R package GJRM (Generalised Joint Regression Modelling) for the anal-

ysis (Marra & Radice, 2017c). The mapping of the results was done in QGIS 3.4

(https://qgis.org/en/site/index.html) and all the maps created were based on our
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results by making use of shapefiles freely available from the DHS Program’s Spatial

Data Repository (https://spatialdata.dhsprogram.com/boundaries).

6.2 Results of the Copula Geoadditive Model

For this analysis, data from two districts were merged. These included Songea Ur-

ban and Songea DC in Tanzania, where Songia Urban is encompassed by Songia

DC. Therefore, we considered a total of 369 districts. In addition, observations cor-

responding to ’unknown’ toilet facilities were removed due to the sparsity of malaria

and anaemia cases for this category. Thus, these results are based on 18196 obser-

vations. Following the results of the exploratory data analysis from Chapter 3, we

did not consider the age of the household head as a predictor of anaemia as well

as malaria. Furthermore, the child’s gender and household head’s gender were not

considered as predictors of malaria. Once again, as we considered the spatial effects

at district-level, the country of residence was not incorporated as a predictor.

Table 6.1 presents the results of the fixed effects for each marginal model. Based

on these results, children residing in rural areas had a lower likelihood of malaria

compared to those residing in urban areas, however there was no significant differ-

ence in the likelihood of anaemia between these children (Rural estimate = −0.020,

p-value = 0.535 for anaemia; Rural estimate = 0.299, p-value <.001 for malaria). The

likelihood of each outcome significantly decreased with an increase in the mother’s

highest education level.
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Table 6.1: Parameter estimates, standard errors and p-values of the fixed effects for the bi-
variate copula regression model for anaemia and malaria

Variable
Anaemia Malaria

Estimate St. Error P-value Estimate St. Error P-value

Gender (ref = Male)

Female −0.083 0.019 <.001∗ NA

Type of Place of Residence (ref = Urban)

Rural −0.020 0.032 0.535 0.299 0.047 <.001∗

Mother’s Education Level (ref = No Education)

Primary −0.115 0.031 <.001∗ −0.125 0.039 0.001∗

Secondary and Higher −0.164 0.042 <.001∗ −0.250 0.057 <.001∗

Unknown −0.095 0.039 0.016∗ 0.012 0.049 0.802

Gender of Household Head (ref = Male)

Female 0.011 0.024 0.633 NA

Type of Toilet Facility (ref = No Facilities)

PIT Latrine −0.158 0.035 <.001∗ −0.078 0.043 0.072

Flush Toilet −0.165 0.062 0.008∗ 0.102 0.114 0.366

Household Size 0.009 0.003 0.006∗ 0.001 0.004 0.705

Wealth Index −0.158 0.019 <.001∗ −0.503 0.029 <.001∗

Cluster Altitude (in 100 metres) −0.016 0.005 0.002∗ −0.089 0.009 <.001∗

EVI 0.068 0.057 0.229 0.405 0.121 0.001∗

LST 0.011 0.015 0.452 0.019 0.033 0.563

NA: Not applicable as the factor was not incorporated into the marginal model for that response
∗significant at 5% level of significance

Type of toilet facilities was significantly associated with a child’s anaemia status, but

not their malaria status, where the likelihood of anaemia decreased with an improve-

ment of the toilet facility type (PIT Latrine estimate = −0.158, p-value <.001; Flush

Toilet estimate = −0.165, p-value = 0.008 for anaemia). An increase in the number of

household members resulted in a significantly higher likelihood of anaemia, how-

ever it had no significant effect on a child’s malaria status (Household size estimate =

0.009, p-value = 0.006 for anaemia; Household size estimate = 0.001, p-value = 0.705

for malaria). A unit increase in the household’s wealth index Z-score was associated

with a significant decrease in the likelihood of each anaemia and malaria (Wealth in-

dex estimate = −0.158, p-value <.001 for anaemia; Wealth index estimate = −0.503,
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p-value <.001 for malaria). Cluster altitude was significantly associated with each

response, where the likelihood of each decreased with an increase in altitude (Clus-

ter altitude estimate = −0.016, p-value = 0.002 for anaemia; Cluster altitude estimate

= −0.089, p-value <.001 for malaria). EVI was significantly associated with only

malaria, where an increase resulted in an increased likelihood of malaria (EVI esti-

mate = 0.405, p-value = 0.001 for malaria). LST was not significantly associated with

either response.

Table 6.2 displays the significance of the non-linear and spatial effects for both re-

sponses. Both the structured spatial effect and unstructured spatial effect (the district-

level random effect) had a significant effect on the likelihood of each response. Fur-

ther, the child’s age in months had a significant non-linear effect on the likelihood of

each response.

Table 6.2: Approximate significance for the non-linear and spatial effects

Variable
Anaemia Malaria

χ2 Value P-value χ2 Value P-value

Child’s age in months 1472.50 <.001∗ 138.49 <.001∗

Unstructured spatial effect 357.70 <.001∗ 34.75 <.001∗

Structured spatial effect 183.80 <.001∗ 1412.17 <.001∗

∗significant at 5% level of significance

Figure 6.1 displays this non-linear effect that a child’s age in months had on anaemia

and malaria. The likelihood of anaemia decreased with an increase in age. However,

there was a reverse effect of age on malaria, where the chance of malaria increased

with an increase in age.
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Figure 6.1: Estimated non-linear effect of the child’s age on anaemia (top) and malaria (bot-
tom) together with the 95% confidence intervals

The district-level structured spatial effect for both anaemia and malaria is presented

in Figure 6.2. The districts in shadings of blue correspond to a negative estimated

effect and were therefore associated with a lower likelihood of the event. However,

districts in shadings of red correspond to a positive estimated effect and were there-

fore associated with a higher likelihood of the event. There was a lot less variation

observed in the structured spatial effect for anaemia compared to that for malaria.

The structured spatial effect for malaria revealed that Tanzania consisted of districts
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associated with a lower likelihood of malaria as well as districts associated with a

higher likelihood of malaria. This apparent spatial variation suggests that it was

important to control for as failure to do so would reduce the statistical power of

inference in the model and therefore lead to inaccurate results (Mainardi, 2012).

Figure 6.2: Estimated effect of the structured spatial effect on anaemia (left) and malaria
(right).

6.3 Conditional Dependence of Anaemia and Malaria

The copula parameter was set to vary according to the district/county of residence

across the four countries. This was done by linking the additive predictor for the

copula parameter to a Markov random field term based on these districts of resi-

dence. The estimated value of the copula parameter, averaged out over the districts,

was 3.07 with a 95% confidence interval of (1.56, 4.61). This copula parameter, which

was estimated conditioned on the observed covariates and spatial variation, was

then used to estimate Kendall’s τ for each district as shown in Figure 6.3.
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This figure displayed a fairly heterogeneous, non-zero association between anaemia

and malaria in young children across the districts. With using the Frank copula, we

allowed for positive and negative associations between anaemia and malaria. How-

ever, Kendall’s τ ranged between 0.09 and 0.41, with an average of 0.31 and a 95%

confidence interval of (0.16, 0.42). Thus, there was a positive association between

malaria and anaemia. A stronger association was observed in some districts com-

pared to others. Kenya depicted more districts with the highest association.

Figure 6.3: Estimated Kendall’s τ according to district of residence.

Figure 6.3 suggests that the probability of a child being anaemic or having malaria

in a particular district should be based on the joint probability from the bivariate

model rather than each independent univariate model. These joint probabilities can

further reveal more about the relationship between anaemia and malaria in children
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across the districts of the four countries.

Estimated Joint Probability of Anaemia and Malaria

Based on the fitted bivariate copula regression model, the estimated joint probabili-

ties were extracted and averaged over the districts. Figure 6.4 shows these joint prob-

abilities for each combination of outcome for anaemia and malaria in young chil-

dren. On the whole, these joint probabilities were generally heterogeneous within

each country.

Considering image a) in Figure 6.4, a large number of districts in Uganda showed

a considerably high joint probability of a child having anaemia and malaria, par-

ticularly in the north/north east of the country. Kenya was homogeneous in these

probabilities, which were also all fairly low (all were below 0.20). Malawi had a

few districts with a relatively high probability of both anaemia and malaria in chil-

dren. From image b), we can observe that the majority of districts in Kenya had a

high probability of a child not having anaemia nor malaria. This is unsurprising

as Kenya also had the lowest observed prevalence of anaemia and malaria. Paying

particular attention to image c) in Figure 6.4, throughout the districts considered in

each country, there were a fair number that displayed a high chance of a child having

anaemia but not malaria. In these districts, it would be inaccurate to use anaemia as

an indicator for malaria as this image suggests that there are other significant drivers

of anaemia in children in these districts. Image d) revealed very low probabilities of

a child having malaria but not anaemia throughout the majority of the districts. In

other words, it is highly unlikely for a child to have malaria but not anaemia in these

districts. Thus, it is clear that there is a high likelihood of a child developing anaemia

when they have malaria. Based on images a) and d), districts in the northern part

of Uganda had a relatively high probability of a child having malaria, regardless

of anaemia status. This is also supported by Uganda having the highest observed

prevalence of malaria.
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Figure 6.4: Estimated joint probabilities based on the bivariate copula regression model.
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6.4 Summary and Discussion

Here we aimed to explore the relationship between anaemia and malaria in young

children across the districts/counties of Kenya, Malawi, Tanzania and Uganda by

making use of a joint bivariate copula regression model. This approach allows the

correlation between the two responses to be estimated while controlling for the lin-

ear and non-linear effects of independent variables, as well as the effect of spatial

variation. The copula framework allows the dependency structure between the re-

sponses to be isolated from their marginal distributions. The advantage of copula re-

gression over multivariate analysis is that normality and linearity of the dependence

between the responses is not assumed. In fact, in general, dependence in copulas is

non-linear (Winkelmann, 2011). Further, the appeal of the copula approach is that

one is able to vary the association between the responses according to the different

levels of certain factors, rather than obtaining one estimated value for the correlation

as is the case with a joint multivariate model (Gari et al., 2017).

We varied the association according to the district of residence. This revealed a posi-

tive association between anaemia and malaria throughout the districts, however the

strength of which varied across the districts of the four countries. Some districts had

a stronger association between the two responses compared to other districts. While

we are interested in the likelihood of a child having both anaemia and malaria, con-

sidering the likelihood of all combinations of outcomes of these events can further

aid in better understanding the relationship between anaemia and malaria. There-

fore, we made use of the estimated joint probabilities for the combination of out-

comes, which we mapped across the districts. These maps generally indicated a

variation in the joint probabilities within each country. This suggests that any ap-

proach to anaemia or malaria control should be targeted rather than a country wide

approach. Districts in the north to north east part of Uganda displayed high prob-

abilities of a child having malaria, for both those with or without anaemia. These

districts need an up-scaled targeted approach to malaria control. Districts in Kenya
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showed the least amount of variation in some of the joint probabilities and also had

the lowest joint probability associated with a child having malaria, for those with

or without anaemia. This is as a consequence of the major progress that Kenya has

made in the fight against malaria, which is most likely owed to the recent malaria

prevention measures that have been tailored to local needs (WHO, 2017).

If anaemia is to be used as an indicator for the success of malaria control programs,

in any country, it would only be useful in areas where there is a strong correlation

between anaemia and malaria as well as a high probability of the two. Thus, the

maps created in this study aid in identifying such areas. In addition, based on the

map of the joint probability of a child having anaemia but not malaria, a high likeli-

hood of this event was revealed in many of the districts. In such districts, it would

be reasonable to assume that there are other drivers of anaemia in children, other

than malaria. Therefore, applying malaria interventions in these districts to aid in

the reduction of the prevalence of childhood anaemia would be ineffective. Further

investigation into the drivers of childhood anaemia in these districts is therefore re-

quired.

The results of the effects considered in this study are consistent with those from

other studies that modelled anaemia and malaria separately, where the child’s age,

mother’s education level, household wealth index and cluster altitude were signifi-

cantly associated with both anaemia and malaria status (Roberts & Matthews, 2016;

Kateera et al., 2015; Khan et al., 2015; Gayawan et al., 2014). The child’s gender, the

household size and type of toilet facility were further significantly associated with

anaemia in children, as seen in other studies (Goswmai & Das, 2015; Zhao et al.,

2012).

Very few studies have jointly modelled anaemia and malaria. The studies that have

done so, have also utilised different techniques and thus answered different ques-
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tions (Seyoum, 2018; Adebayo et al., 2016). A bivariate probit model was used to

jointly model anaemia and malaria in individuals between the ages of 15 and 60 in

Alaba District, Southern Ethiopia, the result of which showed a positive correlation

between malaria and anaemia, however the magnitude of the correlation was not ex-

plored (Seyoum, 2018). Similar to our study, (Adebayo et al., 2016) jointly modelled

anaemia and malaria in children under five in Nigeria and found substantial geo-

graphical variations in the likelihood of malaria, however the association between

anaemia and malaria was not directly explored.

As multiple factors were significantly associated with both anaemia and malaria,

accordingly we propose further varying the association parameter by the levels of

these factors. For example, the additive predictor for the copula parameter can in-

clude the effects of the mother’s education level in addition to the district-level struc-

tured spatial effect. The correlation and joint probabilities can then be estimated ac-

cording to the levels of the additional factors, which will further reveal more about

the relationship between anaemia and malaria.

The copula technique applied here provides an alternative to joint modelling of

anaemia and malaria in young children which assists in understanding more about

their relationship compared to techniques of multivariate modelling. This approach

aids in visualising the relationship through mapping of their correlation and joint

probabilities. However, a short-coming of the copula geoadditive model is that it is

not able to inform us which geographical locations contribute to a higher or lower

likelihood of both diseases simultaneously. This leads to a shared component model

(SCM), in which the spatial effect is decomposed into a shared and disease-specific

spatial effect.
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CHAPTER 7

SHARED COMPONENT

MODELLING OF CHILDHOOD

ANAEMIA AND MALARIA

We considered a shared component model for the joint spatial analysis of anaemia

and malaria in children in the four countries, where both the shared and disease-

specific district-level spatial effects are estimated while controlling for known risk

factors. This allows the districts of high risk of one or the other, or both diseases

to be identified for a more targeted approach to anaemia and malaria control and

prevention as well as for a targeted allocation of limited district health system re-

sources.

7.1 Shared Component Model

The shared component model (SCM) was originally proposed by Knorr-Held & Best

(2001) to jointly model the spatial variation of rates of several diseases with com-

mon risk factors. The SCM allows for the underlying risk surface of the diseases to

be decomposed into two: shared and disease-specific variation. The SCM has been

used in a wide variety of applications, such as to identify shared patterns among

chronic related preventable hospitalizations (Ibáñez-Beroiz et al., 2011), for joint spa-

tial modelling of common morbidities of childhood fever and diarrhoea in Malawi

(Kazembe et al., 2009), and for joint modelling of brain cancer incidence and mortal-

ity rates in two regions in the north of Spain (Etxeberria et al., 2018). Recently, the

SCM was used to identify crime-general and crime-specific hotspots in a region in

Canada (Law et al., 2020).
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The SCM is typically used when interest is on the relative risk of two or more dis-

eases in a particular region, where regional level covariates can be incorporated in

the model. In this case, the response represents the disease counts for the region.

However, we consider the SCM to model the probability, πijk, of child j residing in

district i having anaemia (k = 1) or malaria (k = 2).

Thus, we make use of logistic regression models given by

logit(πij1) = α1 + x′ij1β1 + δui + vi1,

logit(πij2) = α2 + x′ij2β2 +
ui
δ

+ vi2,

where αk, k = 1, 2, are the disease specific intercepts; βk is the vector of regression

parameters corresponding to the covariates x′ijk for the kth disease, where such co-

variates comprise of child-level, household-level and environmental factors; ui is the

disease-general shared spatial component common to both diseases; and vik is the

disease-specific spatial component which captures the spatial patterns that deviate

from the shared spatial component. Both the shared and specific spatial components

were considered at district level, where a total of 369 districts across the four coun-

tries were included. δ is referred to as the partitioning weight and allows for a differ-

ent odds gradient of the shared component. The advantage of our approach to the

SCM is that it enables one to explore the individual-, household-, and community-

level risk factors for each disease. Thus, such risk factors are well accounted for in

the model.

Figure 7.1 presents a schematic representation of the shared component model for

this study. The shared component captures the spatial pattern common to both dis-

eases, where δ allows each disease to have a unique association with this spatial

pattern. A value of δ close to one indicates that anaemia and malaria have a similar

magnitude of association with the shared spatial pattern, whereas a smaller positive
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value of δ indicates that anaemia has a weaker association with the shared spatial

pattern compared to malaria (Law et al., 2020). It should be noted that estimating a

partitioning weight (δ) for one disease and assigning the inverse to the second dis-

ease improves model identifiability compared to estimating separate partitioning

weights for each disease (Knorr-Held & Best, 2001; Law et al., 2020).

Figure 7.1: Schematic representation of the shared component model for this study

Each of the shared and disease-specific spatial components, ui and vij , can be de-

composed as
ui = ustri + uunstri ,

vij = vstrij + vunstrij ,

where ustri and vstrij are spatially structured effects and uunstri and vunstrij are the

random heterogeneity (spatially unstructured) effects. These spatial effects are due

to unmeasured factors that have not been controlled for in the model, where such

factors may be common among neighbouring districts (and thus contribute to the

structured spatial effect) or specific to a district (and thus contribute to the unstruc-

tured spatial effect).

A Bayesian approach was used to fit the model, where each of the parameters were

assigned a prior distribution. Weakly informative N(0, 10000) priors for the regres-

sion coefficients βk were assumed. The spatial components followed a Besag frame-

work (Besag et al., 1991), where the structured spatial effects were assigned intrinsic

Gaussian Markov random field (IGMRF) priors, also known as conditional autore-

gressive (CAR) priors. This prior assumes that the structured spatial effect of the
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districts follow a normal distribution with a conditional mean equal to the average

of the neighbouring districts’ effects and a conditional variance inversely propor-

tional to the number of neighbours. Two districts are considered neighbours if they

share a border. The unstructured spatial effects were assigned assigned i.i.d. Gaus-

sian priors with a mean of zero. The variance components of these spatial effects

comprised of unknown precision (inverse variance) parameters that were assigned

a Gamma (1, 0.001) hyperprior distribution. The intercepts αk were assigned flat

priors as recommended for a model that includes a CAR random effect (Thomas

et al., 2004). In addition, a sum-to-zero constraint was imposed on the spatial ef-

fects to allow for model identifiability. The partitioning weight δ was assigned a

log-normal distribution with a mean of 0 and variance of 0.169 (Knorr-Held & Best,

2001). This prior then assumes that both δ and 1/δ are both positive, which is a rea-

sonable assumption as there is a positive correlation between anaemia and malaria,

as demonstrated in the results of the copula regression from Chapter 6. This prior

also assumes that the ratio of δ and 1/δ (i.e. δ/(1/δ)) is between 0.2 and 5 with a 95%

probability, regardless of which disease is labelled 1 or 2 (Knorr-Held & Best, 2001).

The models were fitted using Markov Chain Monte Carlo (MCMC) simulations in

WinBUGS version 1.4.3 (Thomas et al., 2003). The WinBUGS program for the area-

level SCM was adapted for our child-level SCM. Three parallel MCMC chains with

varying starting values were run for a total of 50 000 iterations each. After a burn-in

period of 50 000, every 10th sample was retained for posterior inference. Conver-

gence was assessed using the Brooks and Gelman statistic and autocorrelation plots.

A sensitivity analysis with various prior and hyperprior specifications was per-

formed. The estimates and their significance remained largely the same. The mod-

els were compared using the deviance information criterion (DIC), where the results

presented are based on the model with the lowest DIC. The estimated spatial effects

were extracted and mapped in QGIS 3.20 (https://qgis.org/en/site/index.html).

All of the maps created were based on the results of this study and made use of

shapefiles freely available from the DHS Program’s Spatial Data Repository (https:

//spatialdata.dhsprogram.com/boundaries).
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7.2 Fixed Effects Results

A restriction of the SCM is that the same predictors need to be considered for both

responses, unlike the copula approach which can incorporate different effects into

the model for each response. Thus, these results include the effect of the child’s

gender and household head’s gender on both responses, even though they were not

considered as predictors of malaria in Chapter 6.

Table 7.1 presents the adjusted posterior odds ratios (AOR) and corresponding 95%

credible intervals for the fixed effects. The results of the previous chapters revealed

a non-linear effect of the child’s age in months on the likelihood of anaemia, where

there was an increase in the likelihood for children younger than 12 months followed

by a decrease in the likelihood for children aged 12 months and older. However,

due to the limitations of WinBUGS, the effect of age was incorporated as a linear

fixed effect where it was categorised accordingly (under 12 months versus 12 months

and older). The child’s age had a significant effect on the likelihood of anaemia

as well as malaria. However, while the odds of anaemia were substantially lower

for those aged 12 months and older (AOR = 0.316; 95% CrI: 0.285-0.351), the odds

of malaria were higher for children in this age group compared to those younger

than 12 months (AOR = 2.166; 95% CrI: 1.850-2.531). The odds of anaemia were

significantly lower for female children compared to male children (AOR = 0.879;

95% CrI: 0.826-0.936). However, there was no significant difference in the odds of

malaria between male and female children (AOR = 0.977; 95% CrI: 0.892-1.068). The

type of place of residence only had a significant effect on the likelihood of malaria

in children, not anaemia, where those residing in rural areas were 1.797 times more

likely to have malaria compared to those residing in urban areas (95% CrI: 1.514-

2.136). The mother’s highest educational level had a significant impact on the odds

of anaemia as well as malaria, where the odds of each decreased with an increase

in education level. Likewise, there was a significant decrease in the odds of either

disease with an increase in the household’s wealth index Z-score (AOR = 0.769; 95%

CrI: 0.725-0.816 for anaemia, AOR = 0.400; 95% CrI: 0.360-0.443 for malaria).
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In addition, there was a significant decrease in the odds of anaemia with an im-

provement in toilet facilities. However, the type of toilet facility had no significant

effect on the odds of malaria in children. The cluster altitude had a decreased ef-

fect on both the odds of anaemia and malaria (AOR = 0.969; 95% CrI: 0.953-0.985 for

anaemia, AOR = 0.847; 95% CrI: 0.819-0.874 for malaria). The odds of malaria signifi-

cantly increased with an increase in the environmental factor EVI (AOR = 2.074; 95%

CrI: 1.380-3.304), however it had no significant effect on the odds of anaemia (AOR

= 1.050; 95% CrI: 0.889-1.268). The gender of the head of household, household size

and the environmental factor LST did not have any significant effects on the odds of

anaemia or malaria.

Table 7.1: Adjusted posterior odds ratio estimates (AOR) and 95% credible intervals

Variable
Anaemia Malaria

AOR (95% CrI) AOR (95% CrI)

Gender (ref = Male)

Female 0.879 (0.826, 0.936)∗ 0.977 (0.892, 1.068)

Age in Months (ref = Under 12 months)

12 months and older 0.316 (0.285, 0.351)∗ 2.166 (1.850, 2.531)∗

Type of Place of Residence (ref = Urban)

Rural 0.948 (0.859, 1.047) 1.797 (1.514, 2.136)∗

Mother’s Education Level (ref = No Education)

Primary 0.874 (0.793, 0.964)∗ 0.803 (0.703, 0.915)∗

Secondary and Higher 0.852 (0.748, 0.972)∗ 0.609 (0.498, 0.749)∗

Unknown 0.742 (0.654, 0.838)∗ 1.119 (0.946, 1.329)

Gender of Household Head (ref = Male)

Female 1.005 (0.931, 1.082) 0.927 (0.828, 1.038)

Type of Toilet Facility (ref = No Facilities)

PIT Latrine 0.779 (0.697, 0.869)∗ 0.878 (0.757, 1.017)

Flush Toilet 0.763 (0.624, 0.929)∗ 1.051 (0.667, 1.620)

Household Size 1.008 (0.998, 1.019) 1.003 (0.990, 1.016)

Wealth Index 0.769 (0.725, 0.816)∗ 0.400 (0.360, 0.443)∗

Cluster Altitude (in 100 metres) 0.969 (0.953, 0.985)∗ 0.847 (0.819, 0.874)∗

EVI 1.050 (0.889, 1.268) 2.074 (1.380, 3.304)∗

LST 1.011 (0.969, 1.055) 1.037 (0.922, 1.180)
∗significant at 5% level of significance
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7.3 Spatial Effects Results

Figure 7.2a presents the estimated effect of the shared spatial component on the log-

odds of anaemia and malaria. The districts in blue shadings correspond to a negative

estimated log-odds and were therefore associated with a lower likelihood of the dis-

ease. Whereas, those in red shadings correspond to a positive estimated log-odds

and were therefore associated with a higher likelihood. Notably, there were distinct

patterns of clustering among neighbouring districts. In particular, there were clus-

ters associated with increased likelihoods of both diseases in the west of Tanzania

and throughout Uganda and Malawi. Kenya primarily consisted of districts/coun-

ties associated with decreased likelihoods of both diseases. This shared spatial effect

presented a non-random pattern, as suggested by Moran’s I statistic of 0.758 (p =

0.001). The partitioning weight (δ) was estimated at 0.626 (95% CrI: 0.429-0.952) (Ta-

ble 7.2). Thus, malaria had a stronger association with this shared spatial pattern

compared to anaemia, as is evident from the shared spatial effects in Figures 7.2b

and 7.2c for anaemia and malaria, respectively. Table 7.2 indicates that 82.70% of

the spatial variation in the likelihood of anaemia was captured by the shared spatial

component, while only 62.43% of the spatial variation in the likelihood of malaria

was captured by this component.

Table 7.2: Partitioning weight posterior estimate (95% CrI) and empirical variances

Anaemia Malaria

Partitioning weight (δ) 0.626 (0.429, 0.952) 1.597 (1.050, 2.331)

Empirical variance of shared component 0.182 1.183

Empirical variance of disease-specific component 0.083 0.712

% of total variation explained by shared component 82.70 62.44

The disease-specific spatial effects for anaemia and malaria are displayed in Figures

7.3a and 7.3b, respectively. Similar to the shared spatial component, this disease-

specific spatial effect was more prominent for malaria than for anaemia. In addi-

tion, this component explained a higher proportion of the spatial variation in the
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likelihood of malaria (37.56%) compared to that for anaemia (17.30%). Once again,

both spatial patterns consisted of clusters of increased likelihoods (positive values)

and decreased likelihoods (negative values). These patterns were non-random, as

confirmed by Moran’s I statistic of 0.258 for anaemia and 0.866 for malaria, both of

which were significant at a 5% level of significance. Unlike the shared component,

there were fewer clusters in the west of Tanzania and in Uganda for the anaemia-

specific spatial effect. Multiple districts across the four countries had contrasting

effects on the likelihood of anaemia and malaria. More specifically, many of the

districts that had a decreased likelihood of malaria, had an increased likelihood of

anaemia.

Figure 7.2: Estimated effect of the overall shared spatial component (a); shared spatial com-
ponent for anaemia (b); and shared spatial component for malaria (c)
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Figure 7.3: Estimated effect of the disease-specific component for anaemia (a) and the
disease-specific component for malaria (b)

7.4 Summary and Discussion

We sought to jointly model the residual spatial variation in the likelihood of anaemia

and malaria in young children across the districts of Kenya, Malawi, Tanzania and

Uganda using a shared component model, while controlling for child-level, household-

level and environmental characteristics. The district-level spatial effect for each dis-

ease was partitioned into a shared spatial component and a disease-specific spatial

component. These spatial components can be considered as proxies for variations

in unmeasured factors that contribute to both (shared) or only one (specific) of the

diseases (Law et al., 2020). In this study, each of the shared and disease-specific spa-

tial components were further partitioned into structured and unstructured spatial

effects to account for unmeasured factors that are shared among neighbouring dis-

tricts or that are district-specific, respectively.
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Malaria had a stronger association with the shared spatial component compared to

anaemia, which suggests that the unmeasured risk factors common to both diseases

had a higher impact on the likelihood of malaria. The shared spatial pattern re-

vealed significant hotspots of increased likelihoods of each disease in the west of

Tanzania and throughout the majority of the districts in Uganda and Malawi. This

shared spatial component had a higher contribution to the spatial variation in the

likelihood of both diseases compared to the disease-specific spatial component. This

suggests that if programs for control and prevention of one of the diseases are tar-

geted in the high risk districts, they should also make an impact on the other disease.

The disease-specific component was more prominent for malaria as well as con-

tributed to a higher proportion of the spatial variation in the likelihood of malaria

compared to that of anaemia. This indicates that there are additional unmeasured

risk factors relevant to malaria only. One of the consequences of malaria is anaemia

(White, 2018). However, while severe anaemia can exacerbate malaria, it does not

lead to malaria (Adebayo et al., 2016). It is therefore reasonable to hypothesize that

there are other drivers of anaemia in children in the districts that are associated with

an increased likelihood of anaemia but a decreased likelihood of malaria based on

the disease-specific spatial component. This study identified multiple such districts

throughout all four countries.

Of note from the malaria-specific spatial pattern is that the districts with increased

likelihoods were clustered around many of the water bodies in the countries, such

as Lake Victoria shared by Tanzania, Kenya and Uganda; Lake Malawi; and Lake

Turkana in Kenya. It has been suggested that the lake environments, specifically

wetlands along the lakeshore, may maintain a high number of malaria vectors (Mi-

nakawa et al., 2012). In particular, several vector breeding sites have been found

to be associated with Lake Victoria and Lake Malawi (Minakawa et al., 2012; Frake
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et al., 2020). Thus, efforts for malaria vector control, such as insecticide-treated nets

and indoor residual spraying, should be continued and upscaled in these high risk

districts. Such control measures have been noted as the primary driver of the sig-

nificant reductions in the burden of malaria in sub-Saharan Africa over the past

two decades (Guerra et al., 2020). This clustering pattern of increased likelihood

of malaria around the water bodies differed for the anaemia-specific spatial compo-

nent, which had less distinctive patterns. Anaemia is likely driven more by demo-

graphic, socioeconomic, and dietary-related factors than environmental factors, as

suggested by the fixed effects results, as well as highlighted in other studies which

found malnutrition and intestinal parasites to also play a role in childhood anaemia

(Rahman et al., 2019; Roba et al., 2016; Soares Magalhães et al., 2013b).

While the focus here was not on determining the significant risk factors of each dis-

ease, the SCM allowed us to identify as well as control for such. However, the find-

ings of this analysis regarding the child-level, household-level and environmental

factors largely agreed with that of the copula regression from Chapter 6. The only

contrasting result was concerning the effect of the household size on the likelihood

of anaemia in a child. While the copula regression found this effect to be significant,

this current analysis did not. This may be attributed to the different models as well

as estimation procedures applied. In summary, the child’s age, the mother’s educa-

tion level, the household wealth index, and cluster altitude had a significant effect

on the likelihood of both anaemia and malaria. While the type of place of residence

was not significantly associated with a child’s anaemia status, those residing in rural

areas had a significantly higher likelihood of having malaria. This common finding

has resulted in malaria being considered predominantly as a rural disease in Africa

(Donnelly et al., 2005). In rural areas, poor-quality household construction materials

are common, which have been shown to be associated with a higher incidence of

malaria due to increased mosquito entry (Snyman et al., 2015; Wanzirah et al., 2015).
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CHAPTER 8

DISCUSSION AND CONCLUSION

Childhood anaemia does not receive the attention it deserves, however its effects

in young children can be considerable, so much so that it has been termed a silent

killer (Medix Team, 2021). In malaria endemic countries, such as Kenya, Malawi,

Tanzania and Uganda, it is believed that the majority of childhood anaemia is due to

malaria (White, 2018). In this study, we examined the relationship between anaemia

and malaria in young children in these four countries using nationally representa-

tive Demographic and Health Survey data. The final sample comprised of 18196

children from the four countries, with an observed prevalence of 52.5% and 19.7% of

anaemia and malaria, respectively. The prevalence of co-infection was 15.1%. In ad-

dition, out of those who tested positive for malaria, 76% had anaemia as well. This

is an indication of the contribution that malaria has on the burden of anaemia. The

observed prevalences were mapped across the districts of the countries, which re-

vealed heterogeneity within and between the countries. Anaemia was considerably

more prevalent than malaria in the majority of the districts. In addition, the pat-

terns of prevalence of anaemia and malaria co-infection in children were markedly

similar to that of malaria, suggesting that children with malaria are most likely to

have anaemia as well. This means that children are not being treated for malaria

timeously.

Numerous explanatory variables were considered, which comprised of demographic,

socio-economic and environmental factors. In exploring the data, graphical tech-

niques were used to examine these factors in relation to the child’s anaemia status,

their malaria status and whether or not they had both anaemia and malaria. Various

patterns were divulged. Kenya had a lower prevalence of all three outcomes com-

pared to the other three countries, with Uganda having the highest. The difference in
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the prevalence of anaemia and prevalence of malaria was greatest in Tanzania, high-

lighting possible other causes of childhood anaemia in the country. A decreasing

trend in the prevalences was observed with an increase in the mother’s education

level as well as with an improvement in the type of toilet facility. The observed

prevalence of malaria as well as that of both diseases substantially differed accord-

ing to the type of place or residence. Children with anaemia had a lower age, on

average, compared to those with malaria.

In addition to the graphical techniques used to explore the data, further exploratory

analysis was performed using supervised machine learning techniques with the aim

of discovering relationships among the explanatory variables and the two responses.

In particular, a multiple correspondence analysis plot was considered to examine

the relationships among the categorical factors and the outcomes. This plot high-

lighted that having both anaemia and malaria was mostly associated with testing

positive for malaria. Four techniques were applied to classify the child’s anaemia

and malaria statuses, which included logistic regression, CART models, support vec-

tor machines and artificial neural networks. The results revealed that the responses

were important predictors of each other. Moreover, the child’s age, the household’s

wealth index Z-score, cluster altitude, EVI and LST were among the most important

predictors for both responses, with the age of the household head being among the

least important. The child’s gender and the gender of the household head were also

established as the least important predictors of malaria.

The results of the classification models were valuable in paving the way for further

modelling, where it provided guidance on the appropriate statistical models for the

data, as well as the predictors to be incorporated into the models. However, the

accuracy of the classification models for anaemia was poor, suggesting that there

are unmeasured important predictors of anaemia. This poor predictive accuracy

may also be attributed to the inability of the classification models to incorporate the
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effect of the district in the form of a spatial effect. Such a spatial effect is a surro-

gate for unmeasured factors that may have an influence on the response as well as

contribute to spatial heterogeneity in the likelihood of the disease. Such factors in-

clude the quality of health care, distance to nearest health clinic, or climatic factors.

Thus, we adopted a geoadditive model to investigate the spatial variation and risk

factors of childhood anaemia across the districts of the four countries. The child’s

malaria status was incorporated as a predictor to evaluate its effect on the likelihood

of anaemia in a child. The geoadditive model allowed us to assess and visualise the

district-level residual spatial effects on the likelihood of childhood anaemia while

controlling for the effects of individual-level, household-level and environmental

factors. The spatial effects were considered at district-level as the districts represent

the level for which public health decisions are made within each country. The geoad-

ditive model also enabled us to explore possible non-linear effects of the continuous

covariates.

The district-level structured spatial effect, which accounts for spatial autocorrelation

among neighbouring districts, was weak in comparison to that of the district-level

unstructured spatial effect. This unstructured spatial effect is due to factors that

are specific to the district and uncorrelated with neighbouring districts. Through

the inclusion of such spatial effects in the model, the environmental factors; EVI

and LST, no longer had significant effects on the likelihood of childhood anaemia.

As the spatial effects are as a result of unmeasured factors, these results confirm

that there are other important predictors of anaemia that have not been considered

in this study, where such predictors are predominantly specific to the district and

not shared among neighbouring districts. These spatial effects were mapped to re-

veal numerous districts associated with an increased likelihood of anaemia in chil-

dren. Further, these maps highlighted the heterogeneity in the likelihood of anaemia

across the districts of the four countries.
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The child’s age in months had a significant non-linear effect on the likelihood of

anaemia. Children under 12 months of age had an increased likelihood of anaemia.

This result supported the data exploration which revealed a lower average age of

children suffering with anaemia. The child’s malaria status had a highly significant

effect on the likelihood of anaemia, where those with malaria were over 4 times

more likely to have anaemia compared to those who did not have malaria. These

findings were consistent with that of the classification models, which indicated that

the child’s age and malaria status were the most important predictors of anaemia.

The geoadditive model also revealed that the child’s gender had a significant effect

on their anaemia status. Female children were less likely to be anaemic compared

to males. There was an increased odds of anaemia in children with less educated

mothers. Besides education being associated with one’s earning potential, educated

individuals are also associated with the ability to have more awareness and under-

standing of health and nutritional related issues. Furthermore, the odds of anaemia

also increased with a decrease in the household’s wealth index Z-score. Individuals

with low wealth are often subjected to economic constraints where they are not able

to afford the dietary and sanitation needs of themselves and their family. Moreover,

children in households with no toilet facilities were associated with a significantly

higher odds of anaemia. Poor sanitation can aid in the development of a number of

infectious and parasitic diseases, which indirectly contribute to childhood anaemia

(Muchie, 2016).

We adopted a generalised additive mixed model with a district-level unstructured

spatial to assess and rank the performance of the districts with regard to their contri-

bution to the burden of anaemia. This district-level spatial effect was incorporated

as an i.i.d. random effect, which enabled us to utilise the BLUP technique, an ap-

propriate technique for the ranking of the districts’ performances. The top best and

worst performing districts were identified and mapped. In addition, a cluster-level

structured spatial effect was incorporated into the model to account for spatial auto-
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correlation between the clusters within the districts. This revealed multiple districts

consisting of clusters with increased likelihoods as well as clusters with decreased

likelihoods of anaemia.

The results of the exploratory data analysis, the geoadditive model and the gener-

alised additive mixed model all highlighted the relationship between anaemia and

malaria in young children. This relationship was further examined via joint mod-

elling of the two responses. A copula geoadditive model was utilised, where the

association between the two responses was varied according to the district of resi-

dence. This revealed a positive association between anaemia and malaria through-

out the districts, which varied in strength. Some districts had a stronger association

between the two responses compared to other districts. The estimated joint proba-

bilities for each combination of the outcomes were mapped across the districts to fur-

ther aid in better understanding the relationship between anaemia and malaria. A

considerable number of districts had a high joint probability of a child being anaemic

but not having malaria, further highlighting the existence of other significant drivers

of childhood anaemia in these districts. The copula geoadditive model identified the

same significant risk factors for anaemia as the geoadditive model. In addition, the

significant risk factors for malaria were also identified. Children residing in rural

areas had significantly higher odds of malaria compared to those residing in urban

areas. The odds of malaria significantly decreased with an increase in the mother’s

education level, the household’s wealth index and the cluster altitude. However,

the odds significantly increased with an increase in EVI. Furthermore, there was an

increased likelihood of malaria with an increase in the child’s age, which is contrast-

ing to the effect of the child’s age on anaemia as anaemia is predominantly in early

childhood.

The copula geoadditive model allowed the district-level spatial effects to be incor-

porated for each response. However, a shortcoming of this approach is that we were
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not able to decompose such spatial effects into shared and disease-specific compo-

nents. Thus, a shared component model was adopted to jointly model the spatial

variation in the likelihood of anaemia and malaria in young children across the dis-

tricts of the four countries. Unlike the majority of other studies which apply this

model at aerial level to model the relative risk of diseases in a particular region, we

adapted this approach to model the child-level likelihood of anaemia and malaria.

The shared and disease-specific district-level spatial effects were estimated while

accounting for individual-level, household-level and environmental characteristics.

These spatial effects were mapped to visualise the geographical locations which con-

tributed to a higher or lower likelihood of both diseases simultaneously as well as in-

dividually. The results indicated that the spatial variation in the likelihood of malaria

was more prominent compared to that of anaemia, for both the shared and specific

spatial components.

The findings of this thesis have the potential to contribute to achieving SDG 3 (Health)

as well as SDG 2 (Hunger and Food Security) by providing guidance to policy mak-

ers. The benefit of focusing on contiguous countries was to be able to determine

whether the spatial effects transcend the borders of the countries. While there was

stronger evidence of the spatial effect for malaria transcending the country bor-

ders compared to that of anaemia, it would be advantageous for the countries that

share borders to develop joint policies for malaria and anaemia control and preven-

tion. The ranking of the performance of the districts in Kenya, Malawi, Tanzania

and Uganda with regard to their impact on childhood anaemia allows the worst-

performing districts to be identified and targeted for further research to improve

their anaemia control strategies. Moreover, it allows for the best-performing dis-

tricts to be identified to further determine why they are performing better and then

to use these districts as role models in efforts to overcome childhood anaemia. The

maps created in the analyses in Chapters 4 to 7 can go hand in hand, providing tools

to allow for more targeted action in malaria and anaemia control and prevention,
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as well as for the appropriate allocation of limited district health system resources.

Control measures in Kenya, Malawi, Tanzania and Uganda need to account for the

spatial variation in the two diseases, as a one-size fits all strategy may not work

in such a setting. Specifically, strategies should be tailored to local conditions at

district level, by accounting for child, household and environmental characteristics.

Furthermore, as it is more common for co-infection of the two diseases to start with

malaria, we recommend that programs and interventions for malaria in children be

targeted in high malaria risk districts as identified by both the shared and malaria-

specific spatial components in the maps produced in Chapter 7. Such a targeted

approach for malaria would likely also make a positive impact on anaemia. In addi-

tion, further investigation into those districts with simultaneous high anaemia risk

and low malaria risk should be considered in order to identify the significant drivers

of anaemia in children within those districts. This would aid in applying the appro-

priate control measures and interventions for childhood anaemia in those districts,

while saving on resources for malaria control and prevention which should be di-

rected to the districts most in need.

We further recommend that awareness and educational programs about the symp-

toms and multiple complex causes of anaemia in children be aimed at parents and

caregivers, especially those with children in the younger, more vulnerable age group

of 6 to 11 months. Furthermore, programs that ensure the introduction of safe and

adequate complementary foods in a child’s diet from the age of 6 months should be

considered. These types of programs would be beneficial as these children are more

susceptible to anaemia due to the rapid growth during that stage of their lives.

This research contributes to the literature, where very few studies have focused on

childhood anaemia and its relationship with malaria in multiple contiguous sub-

Saharan African countries, none of which have considered Kenya, Malawi, Tanzania

and Uganda simultaneously. A further strength lies in the novelty of applying the
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BLUP technique to appropriately rank the performance of the districts with regard

to their impact on childhood anaemia, and thus in the performance of eradication

and prevention goals set nationally, regionally and globally. An additional novelty

includes the adoption of a child-level shared component model with district-level

shared and disease-specific spatial effects to model the likelihood of anaemia and

malaria in a child, which, to our knowledge, has not been considered for these two

diseases. Such a SCM allows for the effects of the individual-level, household-level

and environmental factors to be estimated and controlled for.

A limitation of this study is that it was based on cross-sectional survey data, there-

fore a causal relationship cannot be established. In addition, no information on iron

levels in the children was available, however iron deficiency plays a major role in

childhood anaemia (Thejpal, 2015). Furthermore, while this study could not assess

the contribution of intestinal parasites to the burden of anaemia in children directly,

proxies for this factor were used instead. However, individual level malaria RDT

results were used rather than estimates or indicators of malaria.

In this study, the child’s anaemia status was considered in its binary form. There-

fore, a possible future direction is to consider the child’s anaemia status in terms of

a four-level ordinal variable (non-anaemic, mild, moderate and severe), where the

effect of the child’s malaria status on the severity of anaemia can be explored. In

addition, as the DHS programs are conducted every 3 to 5 years in each country,

the temporal effect in addition to the spatial effect can be considered. Such a spatio-

temporal analysis will enable us to examine the change in the spatial variation in the

likelihood of the diseases across the districts of the four countries. This will aid in

identifying which districts are moving closer to or further away from the elimination

goals.
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Ibáñez-Beroiz, B., Librero-López, J., Peiró-Moreno, S., & Bernal-Delgado, E. (2011).

Shared component modelling as an alternative to assess geographical variations in

medical practice: gender inequalities in hospital admissions for chronic diseases.

BMC Med Res Methodol, 11(1), 1–10.

ICF International (2012). Demographic and Health Survey Sampling and Household List-

ing Manual. MEASURE DHS, Calverton, Maryland, U.S.A.: ICF International.

Kandala, N.-B., & Madise, N. (2004). The Spatial Epidemiology of Childhood Dis-

eases in Malawi and Zambia. African Population Studies, Supplement B.

Kantardzic, M. (2020). Data Mining: Concepts, Models, Methods, and Algorithms. John

Wiley & Sons, Inc., 3 ed.

Kateera, F., Mens, P. F., Hakizimana, E., Ingabire, C. M., Muragijemariya, L., et al.

(2015). Malaria parasite carriage and risk determinants in a rural population: a

malariometric survey in Rwanda. Malar J, 14, 16.

Kazembe, L. N. (2007). Spatial modelling and risk factors of malaria incidence in

northern Malawi. Acta Trop, 102(1), 126–137.

Kazembe, L. N., Appleton, C. C., & Kleinschmidt, I. (2007). Spatial analysis of the re-

lationship between early childhood mortality and malaria endemicity in Malawi.

Geospat Health, 2(1), 41–50.

Kazembe, L. N., Muula, A. S., & Simoonga, C. (2009). Joint spatial modelling of

common morbidities of childhood fever and diarrhoea in Malawi. Health and Place,

15, 165–172.

121



REFERENCES

Kejo, D., Petrucka, P. M., Martin, H., Kimanya, M. E., & Mosha, T. C. (2018). Preva-

lence and predictors of anemia among children under 5 years of age in Arusha

District, Tanzania. Pediatric health, medicine and therapeutics, 9, 9–15.

Khan, J. R., Awan, N., & Misu, F. (2015). Determinants of anemia among 6–59 months

aged children in Bangladesh: evidence from nationally representative data. BMC

Pediatr., 16(1), 3.

Klein, N., Kneib, T., Marra, G., Radice, R., Rokicki, S., & McGovern, M. (2019).

Mixed binary-continuous copula regression models with application to adverse

birth outcomes. Stat Med, 38, 413—-436.

Kneib, T., Müller, J., & Hothorn, T. (2008). Spatial smoothing techniques for the

assessment of habitat suitability. Environ Ecol Stat, 15, 343–364.

Knorr-Held, L., & Best, N. G. (2001). A shared component model for detecting joint

and selective clustering of two diseases. Journal of the Royal Statistical Society. Series

A: Statistics in Society, 164(6), 73–85.

Kolev, N., Dos Anjos, U., & Mendes, B. V. D. M. (2006). Copulas: A review and recent

developments. Stochastic Models, 22, 617–660.
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Soares Magalhães, R. J., Langa, A., Pedro, J. M., Sousa-Figueiredo, J. C., Clements,

A. C. A., & Nery, S. V. (2013b). Role of malnutrition and parasite infections in the

spatial variation in children’s anaemia risk in northern Angola. Geospatial Health,

7(2), 341–354.
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Abstract

Background: The causes of childhood anaemia are multifactorial, interrelated and complex. Such causes vary from
country to country, and within a country. Thus, strategies for anaemia control should be tailored to local conditions
and take into account the specific etiology and prevalence of anaemia in a given setting and sub-population. In
addition, policies and programmes for anaemia control that do not account for the spatial heterogeneity of anaemia
in children may result in certain sub-populations being excluded, limiting the effectiveness of the programmes. This
study investigated the demographic and socio-economic determinants as well as the spatial variation of anaemia in
children aged 6 to 59 months in Kenya, Malawi, Tanzania and Uganda.

Methods: The study made use of data collected from nationally representative Malaria Indicator Surveys (MIS) and
Demographic and Health Surveys (DHS) conducted in all four countries between 2015 and 2017. During these
surveys, all children under the age of five years old in the sampled households were tested for malaria and anaemia. A
child’s anaemia status was based on the World Health Organization’s cut-off points where a child was considered
anaemic if their altitude adjusted haemoglobin (Hb) level was less than 11 g/dL. The explanatory variables considered
comprised of individual, household and cluster level factors, including the child’s malaria status. A multivariable
hierarchical Bayesian geoadditive model was used which included a spatial effect for district of child’s residence.

Results: Prevalence of childhood anaemia ranged from 36.4% to 61.9% across the four countries. Children with a
positive malaria result had a significantly higher odds of anaemia [AOR = 4.401; 95% CrI: (3.979, 4.871)]. After adjusting
for a child’s malaria status and other demographic, socio-economic and environmental factors, the study revealed
distinct spatial variation in childhood anaemia within and between Malawi, Uganda and Tanzania. The spatial variation
appeared predominantly due to unmeasured district-specific factors that do not transcend boundaries.

Conclusions: Anaemia control measures in Malawi, Tanzania and Uganda need to account for internal spatial
heterogeneity evident in these countries. Efforts in assessing the local district-specific causes of childhood anaemia
within each country should be focused on.

Keywords: Adjusted odds ratio, Anaemia, Bayesian, Child, Haemoglobin level, Hierarchical geoadditive model, Spatial
effect

Background
Anaemia, which is a condition in which the haemoglobin
(Hb) concentration is lower than that required by the
body to meet its physiological needs, is a major cause
of morbidity and mortality among pregnant women and
young children in most Low and Middle Income coun-
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tries (LMIC), particularly those in sub-Saharan Africa
(SSA) [1]. Anaemia contributes to adverse health prob-
lems in children, and affects their cognitive, behavioural
and physical development [2, 3]. If left untreated, the
long-term effects and consequences of anaemia in early
childhood are irreversible, if mortality has not occurred
[3]. According to the most recent estimates of the World
Health Organization (WHO), the highest anaemia preva-
lence of 42.6% in 2011 occurred in children under the age
of five years old, which translated to just over 273 million
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Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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Background. Anaemia in children is a significant health problem that receives little attention.-is study aimed at determining the
factors significantly associated with anaemia in children aged 6 to 59 months in Kenya, Malawi, Tanzania, and Uganda while
accounting for the spatial heterogeneity within and between the districts of the four countries. In addition, the performance of the
districts with regard to their impact on anaemia was assessed and ranked. Methods. A generalised additive mixed model with a
spatial effect based on the geographical coordinates of the clusters was used. A district-level random effect was included to further
account for the heterogeneity as well as to rank the performance of the districts based on the best linear unbiased prediction
(BLUP). Results. -e results depicted significant spatial heterogeneity between and within the districts of the countries. After
accounting for such spatial heterogeneity, child-level characteristics (gender, malaria test result, and mother’s highest education
level), household-level characteristics (household size, household’s wealth index Z-score, the type of toilet facility available, and
the type of place of residence), and the country of residence were found to be significantly associated with the child’s anaemia
status. -ere was a significant interaction between the type of place of residence and the country of residence. Based on the BLUP
for the district-level random effect, the top 3 best- and worst-performing districts within each country were identified. Conclusion.
-e ranking of the performance of the districts allows for the worst-performing districts to be targeted for further research in order
to improve their anaemia control strategies, as well as for the best-performing districts to be identified to further determine why
they are performing better and then to use these districts as role models in efforts to overcome childhood anaemia.

1. Introduction

Identifying significant factors associated with an in-
creased risk of anaemia in children is relevant to de-
veloping appropriate and effective interventions. Such
studies aid in identifying subpopulations that are most at
risk, which assists in creating a more efficient delivery
system of limited national resources [1]. However, studies
identifying these factors should account for spatial het-
erogeneity and spatial autocorrelation in the observations.
Failure to do so may produce inaccurate estimates and
thus misleading results and ineffective anaemia control
programs [2, 3].

Spatial autocorrelation arises when observations close in
proximity tend to be more alike than those further apart and

is present even if the observations have been recorded in a
standardised way [4]. Spatial heterogeneity refers to the
spatial variation or uneven distribution of attributes across a
region [5]. Climatic and environmental factors, such as
temperature, rainfall, and proximity to waterbodies, among
others, are largely responsible for such spatial heterogeneity
as its effects are usually only partially explained by the
covariates that are available in a model [4]. Indeed, many
other factors that vary geographically can also contribute to
spatial heterogeneity in observations, such as the availability
and distance to quality child health care, access to a rea-
sonable transport system, culture, and the cost of living, all of
which may not always be fully explained by the available
covariates. Various methods of accounting for spatial au-
tocorrelation and spatial heterogeneity have been well
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Abstract

Background: Anaemia and malaria are the leading causes of sub-Saharan African childhood morbidity and
mortality. This study aimed to explore the complex relationship between anaemia and malaria in young children
across the districts or counties of four contiguous sub-Saharan African countries, namely Kenya, Malawi, Tanzania and
Uganda, while accounting for the effects of socio-economic, demographic and environmental factors. Geospatial
maps were constructed to visualise the relationship between the two responses across the districts of the countries.

Methods: A joint bivariate copula regression model was used, which estimates the correlation between the two
responses conditional on the linear, non-linear and spatial effects of the explanatory variables considered. The copula
framework allows the dependency structure between the responses to be isolated from their marginal distributions.
The association between the two responses was set to vary according to the district of residence across the four
countries.

Results: The study revealed a positive association between anaemia and malaria throughout the districts, the
strength of which varied across the districts of the four countries. Due to this heterogeneous association between
anaemia and malaria, we further considered the joint probability of each combination of outcome of anaemia and
malaria to further reveal more about the relationship between the responses. A considerable number of districts had a
high joint probability of a child being anaemic but not having malaria. This might suggest the existence of other
significant drivers of childhood anaemia in these districts.

Conclusions: This study presents an alternative technique to joint modelling of anaemia and malaria in young
children which assists in understanding more about their relationship compared to techniques of multivariate
modelling. The approach used in this study can aid in visualising the relationship through mapping of their correlation
and joint probabilities. These maps produced can then help policy makers target the correct set of interventions, or
prevent the use of incorrect interventions, particularly for childhood anaemia, the causes of which are multiple and
complex.

Keywords: Joint modelling, Joint probabilities, Kendall’s tau, Spline smoothing
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Abstract

Malaria and anaemia contribute substantially to child morbidity and mortal-

ity. Using a child-level shared component model, we sought to jointly model the

residual spatial variation in the likelihood of these two correlated diseases, while

controlling for individual-level, household-level and environmental characteris-

tics. This shared component model allowed the district-level spatial effect to be

partitioned into a shared and disease-specific spatial component. The results

indicated that the spatial variation in the likelihood of malaria was more promi-

nent compared to that of anaemia, for both the shared and specific spatial com-

ponents. In addition, multiple districts associated with an increased likelihood

of anaemia but a decreased likelihood of malaria were identified. This suggests

that there are other drivers of anaemia in children in these districts, which war-

rants further investigation. The maps of the shared and disease-specific spatial

patterns provide a tool to allow for more targeted action in malaria and anaemia

control and prevention, as well as for the targeted allocation of limited district

health system resources.

Keywords: Adjusted posterior odds ratios, Bayesian inference, Conditional

autoregressive, Joint modelling, Spatial modelling
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