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ABSTRACT

Given the peculiar and (in spite of many efforts) unexplained quasi-periodic oscil-
lation (QPO) twin peak phenomena in accretion disc psd observations, the present
exploratory analytical article tries to inquire deeper into the relationship between
discoseismic modes and the underlying driving turbulence in order to assess its impor-
tance. We employ a toy model in the form of a Gaussian white noise driven damped
harmonic oscillator with stochastic frequency. This oscillator represents the discoseis-
mic mode. (Stochastic damping was also considered, but interestingly found to be less
relevant for the case at hand.) In the context of this model, we find that turbulence
interacts with disc oscillations in interesting ways. In particular, the stochastic part
in the oscillator frequency behaves as a separate driving agent. This gives rise to 3:2
twin peaks for some values of the physical parameters, which we find. We conclude
with the suggestion that the study of turbulence be brought to the forefront of disc
oscillation dynamics, as opposed to being a mere background feature. This change of
perspective carries immediate observable consequences, such as considerably shifting
the values of the (discoseismic) oscillator frequencies.
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1 INTRODUCTION

After two decades, and in spite of active research, the
remarkable structure in the power spectra of high fre-
quency (40-450 Hz) quasi-periodic oscillations (HFQPO) in
several X-ray binaries remains an intriguing puzzle. This
structure often consists of power spectra twin peaks in
a 3:2 frequency ratio (Abramowicz & Kluźniak 2001; see
also Remillard et al. 2002; Homan et al. 2005; Belloni et al.
2006; for a full list, refer to Ortega-Rodŕıguez et al. 2014 and
references therein).

An understanding of HFQPOs may allow us to obtain
important information about the corresponding black hole’s
mass and spin, and the behavior of inner-disc accretion flows.

The physics of HFQPOs is not completely under-
stood. Since the observed 3:2 frequency ratio suggests
the presence of non-linear physics, resonant models have
been proposed (see e.g. Kluźniak & Abramowicz 2001;
Stuchĺık, Kotrlová & Török 2013; a detailed discussion of
models can be seen in Török et al. 2011).

We wish to consider here a different line of inquiry,

⋆ E-mail: manuel.ortega@ucr.ac.cr

which does not exclude non-linear considerations but rather
could work in tandem with them.

The main objective of this paper is to explore the ques-
tion of what happens when the MRI-generated turbulent
background in an accretion disc interacts with a discoseis-
mic fundamental g-mode, or any type of sufficiently sta-
ble oscillation for that matter (we discuss below what has
been researched so far). For a review of discoseismology, see
Wagoner (2008); it is important to mention that while disco-
seismic modes were reported to be present in hydrodynamic
simulations (Reynolds & Miller 2009), they have yet to be
seen in MHD simulations.

We implement this interaction in the form of a toy
model. When devising a toy model for the disc’s compli-
cated dynamics, our aim was to propose the simplest math-
ematical expression which includes the main physics: tur-
bulence, mode oscillation, plus the turbulence-induced fre-
quency variability of this mode oscillation. (For complete-
ness, damping variability was also included.) We aimed thus
for a single differential equation:

Üx + α(t) Ûx + ω2(t)x = f (t) , (1)

where the driving term f (t), representing turbulence, is
(within our toy framework) Gaussian white noise (see, how-
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ever, below) with zero mean and

〈 f (t) f (t′)〉 = constant · δ(t − t′) (2)

(brackets standing for ensemble average), whereas ω(t), α(t),
representing the mode frequency and damping coefficient,
are randomly varying functions of time (in a way specified
below).

At this point it is sensible to ask whether the single
equation (1) is by itself enough to capture the necessary
insights to understand this physical system.

We believe that, when modeling the system, the mental
picture one should have in mind is less a set of coupled oscil-
lators (one for the mode, one for turbulence) exchanging en-
ergy back and forth, and more one of a mostly unidirectional
transfer of energy in which turbulence acts effectively as a
reservoir whose energy is fed by a (presumably MRI driven)
cascading Kolmogorov process from larger to smaller scales.

Furthermore, note that the effects of turbulence enter
in two places in equation (1): in the RHS, via f (t), and in
the LHS, via the variability in ω and α, and although f (t)
is white, the LHS terms effectively couple the modes only
to certain frequencies in the turbulence, as discussed below.
(One might ask why the need of f (t) in the first place, and
the reason is that it helps with stability of the system; see
e.g. Frisch 1968.)

With these considerations, we will find that turbulence
interacts with randomly-variable oscillations in interesting
ways, and this gives a possible explanation for twin peak
QPOs. We conclude that turbulence might be important in
these dynamics and suggest that its study be brought to
the forefront, as opposed to being a mere background fea-
ture. This change of perspective brings immediate observ-
able consequences, such as considerably shifting the values
of the (discoseismic) oscillator frequencies.

It is important to compare our approach with that of
Vio et al. (2006). Their toy model uses two coupled non-
linear oscillator equations of constant (or non-stochastically
variable) frequency with a stochastic source for one of them.
Their results are interesting because they find that such a
turbulent source does enhance both oscillations, and that
there is a window of opportunity (too much or too little
turbulence result in no enhancing). As these findings are
also results of the present paper, both papers taken together
do make a strong case for the importance of turbulence in
these astrophysical systems. The main difference between
the articles is that we only assume a single oscillator, so the
appearance of the second frequency in the spectrum is more
intriguing and meaningful.

2 THE MODEL

2.1 Parametrizing stochasticity

The approach starts from oscillator equation (1),
which is a generalization of the one developed by
Bourret, Frisch & Pouquet (1973, hereafter BFP) in
that it allows for a time dependent α(t). The rationale is
that turbulence is as likely to modify α as to modify ω.

The stochasticity of ω is parametrized thus:

ω
2(t) = ω2

0[1 + εm(t)] , (3)

where ω0 is a constant, ε is (without loss of generality) a

positive number and m(t) is a two-valued Markov process
variable taking the values ±1 (central limit theorem consid-
erations render this approach less toyish than it might seem
at first sight). Concerning m(t), its first important property
is

〈m(t)〉 = 0 . (4)

Brackets stand for ensemble average. The ensemble average
of a quantity W which depends on a set of two-valued vari-
ables mi [so that W(mi) stands for W(m1,m2, ...)] is defined
here as

〈W(mi)〉 ≡
∑

P(mk)W(mk) , (5)

where the sum runs over all specific combinations of the mi

set, and P(mk) is the probability of the specific combination
of mk values.

With this definition, equation (4) follows trivially. For
averages involving variables at different times, we will need
to introduce the corresponding conditional probabilities:
(s, ν > 0)

Prob{m(t + s) = ±1 | m(t) = ±1} = 1
2
(1 + e−νs ) , (6)

Prob{m(t + s) = ±1 | m(t) = ∓1} = 1
2
(1 − e−νs ) . (7)

These equations can be thought of as defining ν. We can
now obtain the autocorrelation

〈m(t + s)m(t)〉 = e−ν |s | (8)

(the absolute value on s allows it to take negative values).
For the damping term, we proceed analogously:

α(t) = α0[1 + δn(t)] , (9)

where α0 is a constant, δ is a positive number and n(t) is a
two-valued Markov process variable with the following prop-
erties:

〈n(t)〉 = 0 , 〈n(t + s) n(t)〉 = e−ν̄ |s | . (10)

In a spirit of simplicity, we will work here the case in
which m(t) and n(t) are uncorrelated, i.e. 〈m(t) n(t′)〉 = 0.

2.2 Physical meaning of the parameters

We will now make explicit the correspondence ‘dictionary’
relating the toy-model parameters to their physical counter-
parts in the accretion disc system.

(i) ω0 refers to the mode frequency; this is not the same
as the observed frequency, which is given by the effective
frequency ωeff , as explained below (as usual, all frequency
values in the present article refer to those detected far away
from the black hole).

(ii) α0/ω0 ≈ 0.1 is the inverse QPO quality factor Q; note
that this parameter and the previous one can be read off,
in an approximate fashion, directly from a power spectral
density (psd) graph (the numerical value 0.1 is taken from
typical observational data); the reading is only approximate
because ε can affect the reading of α0, making it appear
slightly larger than it is, and turbulence effectively shifts
the frequency, as explained below.

(iii) the white noise f (t) refers to the underlying turbu-
lence; its mathematical properies are defined by equation
(2).

MNRAS 000, 1–6 (2019)
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(iv) ε, defined as positive without loss of generality, mea-
sures the variability of ω; we will place it in the range
0 < ε < 1 because larger values of ε are incompatible with
observations as they would force broad psd peaks with low
values of Q.

(v) δ, also defined positive, measures the variability of α;
we also set it in the range 0 < δ < 1 because its physical
origin is presumably the same as that of ε.

(vi) ν and ν̄ measure the time correlations of the time-
changing variables (frequency and damping coefficient, re-
spectively); scaling Kolmogorov considerations (Kolmogorov
1941; Cho, Lazarian & Vishniac 2003) indicate that the cou-
pling between oscillations such as fundamental discoseismic
g-modes and turbulence is strong only when ν, ν̄ ∼ ω0 or
slightly smaller.

To elaborate on the last point, Kolmogorov scaling con-
siderations assert that turbulent eddy frequencies (ωtur) and
length scales (λ) satisfy ωtur ∝ λ−2/3 under broad conditions.

The constant of proportionality is u∗L
−1/3
∗ , where u∗ and L∗

are the typical speed and length scales of the turbulent phys-
ical system. For thin disks, u∗ ∼ hΩ and L∗ ∼ h, where h is the
typical disc thickness and Ω stands for the typical angular
frequency. The typical angular frequency is also (approxi-
mately) the g-mode frequency, i.e. Ω ≈ ω0. This all means

that setting λ = size of fundamental g-mode ∼
√

hR, where R

is the typical radial scale, one has ωtur ∼ ω0 (h/R)1/3, which
places the frequency of g-mode-sized turbulent eddies some-
what below ω0 (for h/R = 0.1, ωtur ≈ 0.5ω0). These are the
eddies that have a greater effect on discoseismic g-modes.

3 RESULTS AND DISCUSSION

3.1 Frequency shift

We then follow through the analytical method devised by
BFP, expanding it to include variable damping. Since the
approach is straightforward and grounded in well established
mathematics, we merely give the results, leaving details for
Appendix A.

We first look at what happens to the observed frequency
after the effects of stochasticity have been introduced. This
effective frequency is given by

ω
2
eff

≡
〈 Ûx2〉eq

〈x2〉eq

, (11)

where brackets indicate ensemble averages and ‘eq’ indicates
that the system has been allowed to reach stationarity (and
we therefore assume that it does).

For the special case of stochastic frequency and constant
damping (δ = 0), we obtain

ω
2
eff = ω

2
0 −

2ε2ω4
0
(2α0 + ν)

(α0 + ν)
(
2α0ν + ν

2
+ 4ω2

0

) , (12)

which reproduces equation (3.25) in BFP.
In order of magnitude, taking ν ∼ ω0 and α0 ∼ 0.1ω0,

one obtains the following:

ω
2
eff
= ω

2
0 [1 + O(ε2)] . (13)

This is an important result since ωeff is the frequency that
detectors measure, and it can differ substantially from the

theoretical one, ω0 (calculated, for example, from discoseis-
mology), given that ε is not much smaller than 1. (When
substituting the relevant numbers, one finds that the shift
in frequency ranges from a few percent to ≈ 40%.)

We now turn to the special case of constant frequency
(ε = 0) and stochastic damping (δ , 0), for which one obtains

ω
2
eff = ω

2
0 −

2α2
0
δ2ν̄ω2

0

ν̄

[
2α2

0

(
δ2 + 1

)
+ 3α0ν̄ + ν̄

2
]
+ 4ω2

0
(α0 + ν̄)

. (14)

In order of magnitude, we have

ωeff = ω
2
0 [1 + O{δ2(α0/ω0)2}] . (15)

In this way, the variability of the damping coefficient is less
important, by two orders of magnitude, than the variabil-
ity of the frequency. This points to a scenario in which the
physics of stochasticity is contained already when consid-
ering just variable frequency. For this reason, from now on
(unless otherwise indicated) we consider the δ = 0 case only.

3.2 Stationarity and stability

As BFP correctly point out, procedures such as the one car-
ried out in the present paper assume that there exist station-
ary solutions. With this assumption one can obtain results
like this one: (δ = 0 case)

〈x2〉eq =
S

2ω2
0
αeff

, (16)

where

αeff = α0 −
ε2ω2

0
(ν + 2α0)2

(ν + α0)[4ω2
0
+ ν(ν + 2α0)]

(17)

(see Appendix A for details).
Self-consistency must be checked though. This result

for 〈x2〉 does not make physical sense for some values of the
parameters; in an obvious fashion, for those which render αeff

negative, and it is not clear that all solutions with positive
αeff are stable. What one needs is a proof of stability. BFP
actually prove that all solutions for which αeff is positive are
indeed stable (see Appendix B for a discussion).

We see then that for large enough values of ε the system
becomes unstable and therefore non-stationary. This hap-
pens for the critical value εc (for which αeff = 0) such that

ε
2
c =
α0(α0 + ν)[4ω2

0
+ ν(ν + 2α0)]

ω2
0
(ν + 2α0)2

. (18)

3.3 Twin peaks

There are two peaks in the psd of the stationary solution
of equation (1) for some values of the parameters. The way
to obtain the formula for the psd is explicated in Appendix
A, and the results are given by equations (A21) and (A16).
Peak positions are obtained analytically by calculating the
complex zeros of the function B defined in equation (A18).

Furthermore, while peak frequencies can be in any ratio,
for some values of the parameters this will be a 3:2 ratio.
Fig. 1 shows the two peaks in a 3:2 ratio for values of the
parameters in the ranges discussed above.

MNRAS 000, 1–6 (2019)
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Figure 1. Power spectral density (arbitrary units) as a function
of the frequency ω (in units of ω0) corresponding to the stationary
stable solution of equation (1) for the following choice of param-
eters: ε = 0.4, α0 = ν = 0.1ω0, δ = 0. The peak on the right arises
purely as a result of the stochasticity of the system.

As we mentioned, one way to understand the physical
origin of the higher-frequency peak (the one not arising from
ω0) is by noting that the term εm(t)ω2

0
x on the LHS of equa-

tion (1) has, by virtue of its stochasticity, a behavior which
is so different from the other one (ω2

0
x) that it behaves as

a separate driving agent from f (t). Of course one needs the
presence of the (non-stochastic) oscillator on the LHS of
equation (1) for this high-frequency peak to appear, no less
than for the low-frequency one. Favoring this separate-agent
interpretation is the fact that two-peakedness disappears for
low enough ε, in which case the stochastic term is ‘assimi-
lated’ by the dominant ω2

0
x term.

The question might arise of how one knows that it is the
lower (and not the upper) frequency peak the one that cor-
responds to the ω0 term in equation (1). The answer is that,
as one computes the psd graph by scanning all possible val-
ues of the variables ε, ν and α0, one can see the appearance
of the higher frequency peak branching off to the right side,
and always from the bottom part, of the main one (which is
always present). By such a parameter scanning one can also
appreciate that the lower frequency peak is always larger in
amplitude than the higher frequency one; this makes sense
as the lower frequency peak corresponds to the main ω0 os-
cillator in equation (1).

Fig. 2 shows the possible values of the parameters for
which the frequencies of the psd peaks are in a 3:2 ratio.
The vertical axis is ε; the horizontal axis is ν/ω0; α0 is set
to 0.1ω0 but the results are rather insensitive to its value.
We are interested in solutions lying in the shaded region.
All points which are above the solid straight line correspond
to two-peak solutions (as opposed to just one-peak), and
all points below the solid non-straight curve, which is given
by ε = εc of equation (18), correspond to stationary solu-
tions. Thus, the shaded region corresponds to stationary,
two-peaked solutions. In order to be consistent with the dis-
cussion in item 2.2 (vi), we have left out as well the leftmost
part of the region between the solid lines, say ν/ω0 < 0.1;
turbulence is not an effective agent there.

The solutions in Fig. 2 corresponding to peaks in a 3:2
frequency ratio are given by the dotted curve (between the
two dashed curves). Also shown are solutions corresponding

0.0 0.2 0.4 0.6 0.8 1.0

ν0.0

0.2

0.4

0.6

0.8

1.0

ϵ

Figure 2. Values of ε and ν (in units of ω0) that produce peaks
in a 3:2 frequency ratio (dotted line). Also shown are the cases of
2:1 ratio (short dash) and 4:3 ratio (long dash). The shaded region
corresponds to stationary, two-peaked solutions with values of ν
that allow mode-turbulence coupling. The region with low values
of ν is excluded in agreement with the qualitative discussion of
item 2.2 (vi).

to other ratios. It is important to emphasize that being in the
shaded region is only a necessary condition for the existence
of the twin peaks and by all means not a sufficient one. The
peaks still need a mechanism to grow and become visible.
This mechanism might be given, for example, by a non-linear
resonance, which is more effective for lower values of a, b in
an a : b frequency ratio (see the references in the first section
of this article).

The above considerations give the 3:2 frequency ratio
an optimal condition of having low integers while at the
same time being compatible with larger values of ν (which
imply a stronger coupling between modes and turbulence),
and being not too close to the bold straight line in Fig. 2 (so
as to allow a clear valley between the peaks).

Our considerations allow us to make the following pre-
diction. As better X-ray timing observations become avail-
able, the lower frequency QPO will show a larger amplitude
than the other twin. Furthermore, the higher frequency QPO
is the one that will intermittently appear and disappear, as
it depends on favorable conditions of the variable turbulent
dynamics.

Future work could attempt to explore the physical sys-
tem using an equation or set of equations having more struc-
ture than equation (1), for example one based on hydrody-
namical considerations. Numerical work can also comple-
ment this line of research.
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and Alexander Silbergleit for helpful comments.

REFERENCES

Abramowicz M.A., Kluźniak W., 2001, A&A, 374, L19

MNRAS 000, 1–6 (2019)



Discoseismic modes and turbulence 5

Belloni T.M., Soleri P., Casella P., Méndez M., Migliari S., 2006,

MNRAS, 369, 305
Bourret R. C., Frisch U., Pouquet A., 1973, Physica, 65, 303
Cho J., Lazarian A., Vishniac E. T., 2003, in Turbulence and

Magnetic Fields in Astrophysics, Springer, 56
Frisch U., 1968, in Probabilistic Methods in Applied Mathemat-

ics, Academic Press, 75
Homan J., Miller J.M., Wijnands R., van der Klis M., Belloni T.,

Steeghs D., Lewin W.H.G., 2005, ApJ, 623, 383
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APPENDIX A: DERIVATION OF FORMULAS

FOR THE EFFECTIVE FREQUENCY AND THE

PSD

We follow, and generalize, the solution of BFP to equation
(1) under the conditions of stationarity of the solutions.

The starting point is recasting equation (1) in matrix
form:

dX

dt
= M(t) X + F(t) , (A1)

where

X ≡
(
x

Ûx

)
, M(t) ≡

(
0 1

−ω2(t) −α(t)

)
, F(t) ≡

(
0

f (t)

)
(A2)

(all variables were defined in the main text). Unlike BFP,
we allow α(t) to depend on time.

The quantities of interest take the form:

Γij (t1, t2) ≡ 〈Xi(t1) Xj (t2)〉 , (A3)

and we note that in stationary regime Γij (t1, t2) by definition
will depend only on the difference t2− t1 ≡ s. Thus, from now
on, we will write Γij (s).

We are interested in particular in Γ11(0) and Γ22(0) (sec-
tion 3.1) and in the Laplace transform of Γ11(s) (section 3.3).

We will use the Green function of equation (A1), defined
as the matrix which satisfies

dG(t1, t2)
dt1

= M(t1)G(t1, t2) , G(t1, t1) = I , (A4)

where I is the 2 × 2 identity matrix. The function Γij (s) can
now be expressed in terms of G(t1, t2):

Γij (s) = S

∫ t

0
dt′〈Gi2(t, t′)G j2(t + s, t′)〉 , (A5)

where S is the constant that appears in equation (2), and
the limit t → ∞ is implied so as to ensure that the transient
terms have vanished. Equation (A5) can be put in a cleaner

form noting that G(t1, t2), being stationary, is invariant under
time shifts. Subtracting then t′ from all time arguments and
introducing the time variable T ≡ t − t′, one obtains

Γij (s) = S

∫ ∞

0
dT 〈Gi2(T, 0)G j2(T + s, 0)〉 . (A6)

Using this notation, we follow BFP and express everything
in terms of the ‘vector’ quantity Z(t):

dZ(t)
dt
= [L + m(t)L ′

+ n(t)L ′′] Z(t) , Z(0) = ©­
«
0

1

0

ª®
¬
, (A7)

where

Z(t) ≡ ©­
«

[G12(t, 0)]2
[G22(t, 0)]2

G12(t, 0)G22(t, 0)

ª®¬
, (A8)

L ≡
©­­
«

0 0 2

0 −2α0 −2ω2
0

−ω2
0

1 −α0

ª®®
¬
, (A9)

L ′ ≡ −εω2
0

©­«
0 0 0

0 0 2

1 0 0

ª®
¬
, L ′′ ≡ −δα0

©­«
0 0 0

0 2 0

0 0 1

ª®
¬
. (A10)

(We note in passing that there is a typographical error in
the central term of L in the first matrix of equation (3.10)
in BFP; also note the difference in notation between their
paper and ours.)

We solve the differential equation in Laplace space. The
solution is

〈Z̃(p)〉i = [p−L−L ′(p+ν−L)−1L ′−L ′′(p+ ν̄−L)−1L ′′]−1
i2 (A11)

(recall that brackets refer to ensemble averaging), where

Z̃(p) ≡
∫ ∞

0
Z(t) e−pt dt . (A12)

We can finally write:

〈x2〉eq = Γ11(0) = S

∫ ∞

0
〈Z1(t)〉 dt = S 〈Z̃1(0)〉 , (A13)

〈 Ûx2〉eq = Γ22(0) = S

∫ ∞

0
〈Z2(t)〉 dt = S 〈Z̃2(0)〉 , (A14)

which give us straightforwardly equations (12) and (14).
The other quantity of interest is the Laplace transform

of Γ11(s). To obtain it, one starts form equation (A6) and
(using the properties of the Green function) reexpresses it
thus:

Γ11(s) = S

∫ ∞

0
[〈G11(t + s, t) Z1(t)〉 + 〈G12(t + s, t) Z3(t)〉] dt .

(A15)

Working once more in Laplace space, and following a proce-
dure analogous to the one of the preceding paragraphs, one
obtains

Γ̃11(p) =
A

B
(C + D) , (A16)

where

A(α, ν, ω0, ε) ≡
S

2ω2
0

(
α −

ε2ω2
0
(ν + 2α)2

(ν + α)[4ω2
0
+ ν(ν + 2α)]

)−1

, (A17)

MNRAS 000, 1–6 (2019)
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B(p, α, ν, ω0, ε) ≡ p4
+ 2(ν + α)p3

+ (ν2 + 3αν + α2
+ 2ω2

0)p
2

+ (ν + α)(να + 2ω2
0)p + ω

4
0(1 − ε2) + ν(ν + α)ω2

0 , (A18)

C(p, α, ν, ω0) ≡ (p + α)(p + ν + α)(p + ν) + ω2
0(p + α) , (A19)

D(p, α, ν, ω0, ε) ≡
ε2ω4

0
(ν + 2α)(2p + 2α + 3ν)

(ν + α)(ν2 + 2αν + 4ω2
0
)
. (A20)

We have worked here the δ = 0 case, and thus α actually
stands for α0 in the last four equations. Solving the ε = 0, δ ,
0 case is straightforward but those results are astrophysically
less relevant as they have no measurable consequences, as
explained in the main text. (This means that all which came
after equation (A15) is actually a restatement of BFP, and
is included here for completeness.)

The above formalism allows us to express the psd in
terms of the Laplace transform of Γ11. The psd is the square
modulus of F(ω), the Fourier transform of x(t), i.e.

psd ≡ |F(ω)|2 =
∫
+∞

−∞
eiωs 〈x(t) x(t + s)〉eq ds = 2 Γ̃11(−iω) .

(A21)

Note that peak location is especially sensitive to the B

function as it appears in the denominator in equation (A16).

APPENDIX B: PROOF OF STABILITY

It is important to prove that the allegedly stationary solu-
tions are indeed stable.

Rather than repeating the proof of stability for the sta-
tionary solutions of the ε , 0, δ = 0 case, which is described
in detail in BFP, section 4, we offer here the proof for the
ε = 0, δ , 0 case, which follows the same argument. Future
work includes proving the general case for which ε , 0 and
δ , 0.

For the ε = 0, δ , 0 case, (16) holds but the analogous
to (17) is now

αeff = α0 −
2α2

0
δ2(2α0ν̄ + ν̄

2
+ 2ω2

0
)

ν̄[2α2
0
(1 + δ2) + 3α0ν̄ + ν̄

2] + 4(α0 + ν̄)ω2
0

, (B1)

and the critical value of δ (at which αeff changes sign) is
given by

δ
2
c =

(α0 + ν̄)(2α0ν̄ + ν̄
2
+ 4ω2

0
)

2α0ν̄(α0 + ν̄) + 4α0ω
2
0

. (B2)

The proof of stability for δ < δc is as follows. The start-
ing point is the fact that the necessary and sufficient condi-
tion for stability is that the matrix that appears in (A11),
with ε = 0, i.e.

[p − L − L ′′(p + ν̄ − L)−1L ′′]−1
, (B3)

does not have any singularities for Re(p) > 0 (otherwise
the inversion of the Laplace transform meets divergences).
The singularities occur for those values of p which make
the determinant of this matrix vanish. This determinantal
equation takes the explicit form

H(p) − α2
0δ

2J(p) + δ4K(p) = 0 , (B4)

where

H(p) = (α0 + p)(α0 + p + ν̄)
(
2α0p + p2

+ 4ω2
0

)
×

[
(p + ν̄)(2α0 + p + ν̄) + 4ω2

0

]
, (B5)

J(p) = p(p + ν̄)
[
8α2

0 + 6α0(2p + ν̄) + 5p(p + ν̄)
]

+ 8ω2
0

[
ν̄(α0 + p) + p(2α0 + p) + ν̄2

]
+ 16ω4

0 , (B6)

K(p) = 4α4
0 p(p + ν̄) . (B7)

The argument then is this: Firstly, prove that there are
no singularities with Re(p) > 0 for sufficiently small δ. Sec-
ondly, find the value of δ where the system becomes unstable
by setting p = 0 in equation (B4). We do these steps in turn.

First, for the no singularities part, proceed by reductio

ad absurdum. Assume there is a solution of equation (B4)
such that Re(p) > 0. This solution must satisfy Im(p) = 0
because otherwise quantities such as 〈x2〉 would take neg-
ative values. But it is impossible for p to always take a
real positive value for the following reason. As δ → 0+, the
term proportional to δ4 becomes unimportant, and note that
H(p)/J(p) has a lower positive bound as it is a ratio of pos-
itive polynomials and tends to infinity as p → ∞. We have
thus reached a contradiction which means that the system
is stable for sufficiently small δ.

Having established the first part of the argument, we
now want to obtain the value of δ at which the system be-
comes unstable. Any onset of instability must to go through
p = 0 [again, Im(p) must vanish]. We set p = 0 in (B4) and
find that there is only one solution. Reassuringly, this solu-
tion is exactly the one given by (B2). The system is thus
stable for δ < δc .

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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