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ABSTRACT: Oral squamous cell carcinoma (OSCC) is the most common cancer affecting the oral cavity, and US clinics will
register about 30,000 new patients in 201S. Current treatment modalities include chemotherapy, surgery, and radiotherapy,
which often result in astonishing disfigurement. Cancers of the head and neck display enhanced levels of glucose-regulated
proteins and translation initiation factors associated with endoplasmic reticulum (ER) stress and the unfolded protein response
(UPR). Previous work demonstrated that chemically enforced UPR could overwhelm these adaptive features and selectively kill
malignant cells. The threonyl-tRNA synthetase (ThRS) inhibitor borrelidin and two congeners were discovered in a cell-based
chemical genomic screen. Borrelidin increased XBP1 splicing and led to accumulation of phosphorylated elF2a and UPR-
associated genes, prior to death in panel of OSCC cells. Murine embryonic fibroblasts (MEFs) null for GCN2 and PERK were
less able to accumulate UPR markers and were resistant to borrelidin. This study demonstrates that UPR induction is a feature of
ThRS inhibition and adds to a growing body of literature suggesting ThRS inhibitors might selectively target cancer cells.

KEYWORDS: UPR, borrelidin, Chop, Xbpl, BiP/GRP78, oral cancer, natural products, high throughput screen, ER stress,
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atients suffering from oral squamous cell carcinoma substantially since the introduction of cisplatin in 1978. This
(OSCC) continue to have limited treatment options paucity of treatment options has fueled a worldwide search for
beyond surgery and radiotherapy, and survivors are often left
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therapeutic small molecules and natural products that target a
variety of metabolic processes. Recent reports using immuno-
histochemistry or reverse phase protein arrays have indicated
that chaperones, glucose-regulated proteins, and translation
factors associated with enhanced endoplasmic reticulum (ER)
stress and the unfolded protein response (UPR) are
significantly increased and predictive of recurrence in
oscc.'™

The UPR is a conserved signaling program that facilitates a
rapid survival response in the face of cellular stresses that
interfere with protein folding or post-translational modification
in the ER. PKR-like ER kinase (PERK), inositol-requiring 1-
alpha (IREla), and activating transcription factor 6 alpha
(ATF6ar) are ER transmembrane proteins that constantly
monitor luminal protein folding. When the demand for folding
outpaces the capacity of the ER these sensors initiate the UPR.
Activated PERK phosphorylates the alpha subunit of eukaryotic
translation initiation factor 2-alpha (elF2a), which attenuates
mRNA translation at the initiation step thereby mediating a halt
in general protein synthesis.”~” The UPR is characterized by
this energy-conserving pause in translation and is accompanied
by an IREla/ATF6-mediated transcriptional increase in the
production of chaperones and foldases that return to the ER to
improve folding. Most evidence supports the notion that when
a stress is robust or protracted, eIF2a phosphorylation induces
activating transcription factor 4 (ATF4), which activates
transcription of C/EBP homologous protein (CHOP) and
directs the cell toward an apoptotic fate." '® ATF4 and CHOP
appear to function as a heterodimer to activate genes that
encode translational machinery and adaptive genes, further
increasing protein synthesis and luminal folding burden prior to
death."

Several groups recently reported that many human OSCC
cell lines and archived biopsies from head and neck and thyroid
cancer patients displayed significantly enhanced levels of the
translation factors elF2a and elF4e, compared to normal
patient controls or adjacent nonmalignant tissue."” These
findings support the idea that UPR might be an underlying
mechanism by which tumor cells are able to survive harsh
microenvironmental stresses (i.e, low oxygen tension and
nutrient deprivation)." The UPR might be an attractive
therapeutic target whereby a drug might be delivered
systemically and have selective anticancer effects, as it would
only be detrimental to cells with increased UPR pressure.

It was previously demonstrated that the proteasome inhibitor
Velcade (bortezomib)'” and the natural products patulin,"
celastrol,'* cantharidin,"® and lobophorin16 could induce UPR-
dependent cell death in a panel of OSCC cell lines. The UPR
activating properties of these natural products was identified
using a productive HTS platform that utilized two Chinese
hamster ovary (CHO) cell lines that individually reported
(luciferase) the activation of Chop or Xbpl splicing.> An
unique natural product library of organic extracts from marine
and terrestrial organisms from biodiverse habitats in Costa Rica
was screened at the University of Michigan Center for
Chemical Genomics.'” The macrocyclic antibiotic borrelidin
was identified from an extract able to activate the Chop
reporter. Two congeners of borrelidin that have never been
described as natural products were identified in the purification
process.

Borrelidin was first isolated in 1949 from Streptomyces
rochei'® and has been evaluated for antibiotic, antimalarial, and
anticancer properties of many cell types and animal models.
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The ability of borrelidin to modulate diverse molecular
functions has been described. Endothelial cells cultured with
borrelidin underwent caspase-mediated cell death leading to
capillary tube collapse;'””” and yeast and acute lymphoblastic
leukemia cells treated with borrelidin experienced amino acid
deprivation-induced GCN4 and GCN2 activation, respec-
tively,m’22 prior to cell death. The ability of borrelidin to
impair proliferation and modulate translation in bacterial and
mammalian cells has been reliably attributed to caspase
activation and noncompetitive threonyl-tRNA synthetase
(ThRS) inhibition.”* In support of this notion it was reported
that borrelidin-resistant CHO cells had 10—20-fold higher
ThRS activity than cocultured borrelidin-sensitive cells.”*
Having been identified as a molecule that could activate
Chop- and Xbpl-luciferase reporters, and predicated on the
knowledge that it could perturb protein synthesis, it was
hypothesized that activation of the UPR might be a mechanism
by which borrelidin exerts its cytotoxic effect.

A cell-based high throughput screen (HTS) that has
identified novel UPR-inducing small molecules and natural
product hits was previously described.'”** Iterative bioassay-
guided C18 fractionation and RP-18 HPLC purification of
previously reported UPR-inducing natural extracts'® identified
the known 18-membered macrocyclic polyketide borrelidin 1
and two amide-containing congeners designated CR1 2 and
CR2 3 (Figure 1). 2 was previously described.”® Compound 3

Borrelidin (1)

Borrelidin CR1 (2) Borrelidin CR2 (3)

Figure 1. Borrelidin congeners.

was also isolated from the same RP-C18 fraction containing
congeners 1 and 2. The HRESIMS of the molecule provided a
molecular formula of C3,H(N,O4 showing a [M + Na]" ion
peak at m/z 557.1566 (Figure S13). Compound 3 had a high
structural similarity to both 1 and 2, as evidenced by nearly
identical 'H and *C NMR chemical shifts when measured in
CD;OD (Table S4). However, the chemical formula suggested
only seven degrees of unsaturation, compared to the eight in 2,
and the loss of dc 120.5 suggested the absence of a nitrile
group. Furthermore, COSY and HMBC correlation of H-11 to
a carbonyl group at 172.6, as well as presence of a 'H signal at
Oy 1.91, suggested the substitution of a nitrile with a terminal
acetyl amide (Figures S14—S17). The amide being connected
to C-12 via a methylene (5 3.65, 5 39.4) showed HMBC
correlation to C-23 and therefore completed the planar
structure of 3. The configurations of eight stereocenters in
both congeners 2 and 3 were predicted to be the same as 1
based on the very comparable chemical shifts and coupling
constants (Table S4).

Treatment of UMSCC1 cultures with each purified
borrelidin 1—3 revealed that the nonamide parent molecule
1, and to a lesser extent 2, induced mRNA transcripts for
CHOP, ATF3, and ATF4 in OSCC, which are required for
stress-mediated cell death, but did not induce cytoprotective
BiP/GRP78 mRNA (Figure 2A). Treatment with 1 and 2 led to
modest XBP] splicing in the same cell line (Figure 2 B), which
is a hallmark of ER stress. The ability of 1 and 2 to reduce
proliferation coincided with the level of UPR induction; 3 could
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Figure 2. (A) RT-qPCR analysis of UMSCC1 treated with S uM (1—
3) 6 h. (B) RT-PCR, same samples to appreciate XBP1. (C—E) OSCC
proliferation assays treated with 1—3 for 24 h (two-way ANOVA; p <
0.0001 for dose and interaction).

neither activate UPR nor reduce proliferation (Figure 2C—E).
The very modest accumulation of BiP/GRP78 and spliced
XBP1 observed after 6 h suggests that borrelidin might
preferentially activate the cell death arm of the UPR. Normal
human epidermal keratinocytes (nHEK) treated with borrelidin
demonstrated similar IC;, values (not shown) as OSCC cells;
however, concerns about toxicity in nonmalignant cells in
culture are attenuated by in vivo studies demonstrating that
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malaria infected mice treated with 0.25 mg/kg borrelidin daily
recovered from disease and developed durable immunity.”’
Gene expression and proliferation assays performed with a
panel of leukemia cell lines revealed that the ability of borrelidin
to increase UPR and cell death mRNA transcripts, activate
caspases, and reduce proliferation was not a phenomenon
unique to OSCC (Figure S1). A recent study reported that a
tyrosine residue at position 313 of ThRS interacts solely with
the cyanide moiety of borrelidin for effective binding and
inhibition.”® This finding is bolstered by the current
observation that as the substitution of a bulky yet flexible N-
methylacetylamide group in 3 against the sturdy and polar
nitrile group in 2 compromised UPR activation and the
antiproliferative activity in OSCC (Figure 2). This finding
provides a crucial lead into structure activity modulation of the
borrelidin core scaffold for any future medicinal chemistry
enhancement to the molecule. The current findings that 3
could not splice XBPI, increase CHOP, nor inhibit OSCC
proliferation are a strong indication that ThRS inhibition is a
mechanism by which borrelidin upregulated the UPR.

To address the paucity of mechanistic detail in the literature,
UPR, DNA damage, and apoptosis quantitative RT> Profiler
PCR Arrays were performed with cDNA pools generated from
UMSCCI1 treated with 1, 2, and 3 (10 uM). Increased
transcripts were observed in each array for samples treated with
1 but not with 2 or 3 (Tables S1—S3). Two stocks of borrelidin
(derived from Streptomyces parvulus, hereafter, referred to as
“borrelidin” to distinguish from extract-derived 1) were
purchased from Sigma and used for the balance of nongene
array studies. Proliferation assays and quantitative reverse
transcription (RT-qPCR) analyses with a panel of OSCC cell
lines validated each stock reduced proliferation and induced
UPR gene expression similar to 1 (Figures S2 and S3). To
confirm and extend the array data, RT-qPCR analysis of
apoptotic mRNA transcripts was performed. Notably, the UPR-
associated cell death genes TRB3, NOXA, PUMA, and to a
lesser extent DRS were induced (Figure S4). Time-course
luminescent caspase 3/7 assays demonstrated the presence of
active caspase enzymes as early as 4 h after treatment (Figure
3A), and immunoblot analysis revealed an accumulation of the
cleaved (active form) caspases 9 and 3 and fragmented PARP
(Figure 3B). These results are similar to previous observations
demonstrating borrelidin-induced apoptosis in rat aorta
cultures and human umbilical vein endothelial cells.'” Electro-
phoretic resolution of genomic DNA revealed nucleosome-
sized DNA fragments, a hallmark of apoptotic cell death,
occurred between 16 and 36 h (Figure 3C). Human alveolar
basal epithelial cells rendered doubly deficient for BAX and
BAK using Zinc Finger Nuclease-mediated genome editing
were significantly more resistant than parental controls (Figure
3D). Considered together these findings implicate apoptosis as
a major contributor in the ability of borrelidin to reduce cancer
cell proliferation. Although the quantitative DNA damage array
identified 16 DNA damage-associated genes to be upregulated
by 1 (Table S2), DNA damage could not be detected with a
COMET assay with doses of borrelidin up to 20 M between 0
and 48 h (data not shown).

To elucidate the precise role of the UPR in borrelidin-
mediated apoptosis, a panel of murine embryonic fibroblasts
(MEFs) null for key UPR and stress signaling proteins (Perk,
Gcen2, Hri, Pkr, Chop, and Atf4), and wildtype (wt) littermate
controls was employed. Proliferation assays revealed no
difference in cell growth between Hri- and Pkr-null and wt
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Figure 3. (A) Luminescent caspase 3/7 assay. (B) Immunoblot
analysis of S M borrelidin. (C) Electophoretic resolution of genomic
DNA. (D) Proliferation assay with BAX~/~/~/=) BAK(/7) A549 cells
at 16 h (two-way ANOVA, p value for dose < 0.0001, interaction
0.0016, and between wildtype and knockout <0.0001).

MEFs (data not shown). Perk-deleted cells were significantly
resistant and immunoblot analysis of whole cell lysates revealed
similar levels of phosphorylated elF2a and Chop (Figure 4A).
General control nonrepressed 2 kinase (Gcn2)-null cells were
similarly protected; however, neither phosphorylation of eIF2a
nor accumulation of Chop occurred in the absence of Gcn2
(Figure 4B), consistent with previous findings.”” Borrelidin-
resistant Perk-null cells accumulated significantly fewer Noxa
transcripts, and Gen2-null cells were significantly less able to
accumulate Noxa and Puma, and the UPR-associated death
genes Gadd45p, Trb3, and DrS (Figure 4C). Phosphorylation
of elF2a by Perk and Gen2 occurs during stress to attenuate
protein synthesis and conserve energy to afford the cell an
opportunity for recovery. MEFs with a SerS1Ala mutation at
the phosphorylation site in eIF2ar cannot undergo this critical
translational pause and are exquisitely sensitive to ER stress.
Consistent with this notion, A/A MEFs were significantly more
sensitive to borrelidin than wt (S/S) (Figure 4D). Chop-null
MEFs were also more resistant than wt cells (Figure 4 E),
consistent with the hypothesis that Chop accumulation is
required for UPR-mediated cell death. Although Atf4-null cells
were also resistant to borrelidin and demonstrated reduced
expression of cell death genes (Figure SS), we could not
appreciate ATF4 protein accumulation in any MEF or OSCC
cells, for reasons that are not clear.

While our studies were underway it was reported that
borrelidin could induce eIF2a phosphorylation, CHOP
accumulation, and death in lymphoblastic leukemia cells via
the GCN2 stress pathway.”” The current work represents the
first stepwise approach to determine the mechanism of elF2a
phosphorylation and CHOP activation by borrelidin. Four
kinases, PERK, PKR, GCN2, and HR], serve as stress sensors
and initiate signaling through eIF2a phosphorylation.’”*
Using a MEF model system the data demonstrated Perk- and
Gen2-null cells are less sensitive to borrelidin than wildtype
MEFs and that the rate of death in Pkr- and Hri-null cells is
indistinguishable from controls. Considered with the current
finding that borrelidin led to the splicing of XBPI mRNA, a
feature unique to the induction of ER stress, this work
establishes for the first time that borrelidin-induced CHOP
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Figure 4. (A, left) Proliferation assay with wildtype (wt) and Perk-null
MEF treated with borrelidin (Bor) (two-way ANOVA, p values for
dose <0.0001, interaction 0.0088, and between wt and Perk-null
<0.0001); (right) immunoblot analysis S uM Bor. (B, left)
proliferation assay with wt and Gcn2-null MEF treated with Bor 16
h (two-way ANOVA p values for dose <0.0001, interaction 0.0009,
and between wt and Gen2-null <0.0001); (right) immunoblot analysis
of 5 uM Bor. (C) RT-qPCR of cell death transcripts in wt and Perk-
null MEF (left) and wt and Gen2-null MEF (right). (D) Proliferation
assays with elF2a wt (S/S) and mutant (A/A) MEF 16 h. (E)
Proliferation assays with wt and Chop-null MEF 16 h (two-way
ANOVA p values for dose, interaction, and between wildtype and
Chop-null <0.0001).

accumulation and cell death can operate through both Gen2
and Perk signaling. The fact that eIlF2a phosphorylation was
only attenuated in PERK-deficient cells (vis a vis being absent
in Gen2 null cells) might be an indication that amino acid
deprivation is a predominant mechanism or that Perk deficient
MEFs have acquired a compensatory mechanism (i.e., increased
Gen2 levels) during selection. ATF4 accumulation could not be
detected in whole cell lysates or cytosolic and nuclear extracts
of borrelidin-treated cells, consistent with a previous report.””
The absence of ATF4 protein suggests an unknown tran-
scription factor (e.g., ATFS or ER-resident ATF6) might be
driving CHOP expression. This work provides the first
demonstration that transcriptional activation of CHOP,
downstream of elF2a phosphorylation, is required for
borrelidin to efficiently exert a cytotoxic affect.

A recent study reported a possible binding site for borrelidin
on ThRS and suggested the tyrosine residue 313 in the binding
pocket is critical for borrelidin binding. The study demon-
strated that Y313 interacted solely with the cZanide moiety of
borrelidin for effective binding in the pocket.”® Another study
reported that borrelidin sits deep within a highly conserved
region of the binding pocket and interacts with ThRS from
multiple directions. The absence of van der Waals contacts
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between borrelidin and QS566, L567, S386, and 12’ cyano
groups in Archaeal ThRS could contribute to borrelidin-
resistance.”” These studies support our finding that the
replacement of a cyano group with N-methylacetylamide
could lead to intramolecular hydrogen bonding and profoundly
affect the hydrophobic interaction. Furthermore, intramolecular
hydrogen bonding in CR2 would also disturb the hydrogen
bond interaction between OH-11 and D564 and perturb a key
borrelidin-ThRS interaction and causing a loss of activity. In
summary, the novel substitutions identified in borrelidin CR 2
3 at key interacting ThRS residues, and its loss of UPR-
inducing activity, provides an important clue for any future
medicinal chemistry enhancement of the molecule.

Although studies have suggested that borrelidin might
possess value as an anticancer agent, more target-specific and
less-toxic derivatives will need to be identified.”> While
borrelidin may not be a tractable drug lead, our work supports
the notion that ThRS inhibition and UPR induction might be a
productive approach to cancer therapy. In this comparative
study of three related borrelidin structures, dramatic loss of
biological activity was observed in the amide congeners,
corresponding with their reported ability to inhibit ThRS.
This indicates that modest functional group modifications can
dramatically influence biological responses to borrelidin, and
provides further motivation to explore detailed SAR.

B EXPERIMENTAL PROCEDURES

Isolation of borrelidin and congeners. The natural product extracts
from which 1, 2, and 3 were identified are from a collection of
cultivated marine microorganisms as part of the Costa Rica
International Cooperative Biodiversity Group. For isolation procedure
including culture maintenance, fermentation, and spectral character-
ization, see Supporting Information.
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Experimental procedures for cell-based assays, including
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