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ABSTRACT

Observations show snowpack has declined across much of the western United States over the period
1950-99. This reduction has important social and economic implications, as water retained in the snowpack
from winter storms forms an important part of the hydrological cycle and water supply in the region. A
formal model-based detection and attribution (D-A) study of these reductions is performed. The detection
variable is the ratio of 1 April snow water equivalent (SWE) to water-year-to-date precipitation (P), chosen
to reduce the effect of P variability on the results. Estimates of natural internal climate variability are
obtained from 1600 years of two control simulations performed with fully coupled ocean—-atmosphere
climate models. Estimates of the SWE/P response to anthropogenic greenhouse gases, ozone, and some
aerosols are taken from multiple-member ensembles of perturbation experiments run with two models. The
D-A shows the observations and anthropogenically forced models have greater SWE/P reductions than can
be explained by natural internal climate variability alone. Model-estimated effects of changes in solar and
volcanic forcing likewise do not explain the SWE/P reductions. The mean model estimate is that about half
of the SWE/P reductions observed in the west from 1950 to 1999 are the result of climate changes forced

by anthropogenic greenhouse gases, ozone, and aerosols.

1. Introduction

The western United States is an arid region with a
large and growing population. Water is a precious re-
source, and changes in the hydrological cycle have im-
portant societal and economic effects. Retention of
winter precipitation in the form of snowpack is an in-
tegral part of the hydrological cycle in the region. Pre-
cipitation from winter storms can be retained in snow-
pack and released gradually, often months later, in the
drier parts of the year. The majority of streamflow in
the western United States originates from melting
snowpack (Palmer 1988), and in much of the west more
water is stored in snowpack than in man-made reser-
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voirs (Mote et al. 2005). Future changes in snowpack
are therefore a subject of considerable economic and
societal importance.

Many studies have documented a reduction in snow
over the western United States. Groisman et al. (1994)
examined snow cover extent from satellite data over
the period 1972-92 and found a statistically significant
reduction over North America in the spring and sum-
mer. Groisman et al. (2004) used National Weather
Service Cooperative network (co-op) station data to
show March snow cover extent in the west has dimin-
ished over the period 1950-2003. Mote (2003), using
data from snow courses, showed 1 April snow water
equivalent (SWE) in the Pacific Northwest decreased
strongly from 1950 to 2000. Mote et al. (2005) extended
this analysis to the rest of the western United States,
showing the reduction in SWE is widespread, with the
notable exception of the southern Sierra Nevada.
There, high altitudes and colder temperatures com-
bined with unusually wet conditions acted to increase
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SWE (Mote 2006). Knowles et al. (2006) documented a
regional trend toward more winter precipitation falling
as rain instead of snow in the period 1949-2004; this is
one of the factors contributing to the decreasing snow-
pack, along with an increase in winter daily melt events
in the region (Mote et al. 2005).

In this work we use a formal detection and attribu-
tion (D-A) methodology to examine if some part of
observed changes in snowpack over the western United
States can be confidently ascribed to anthropogenic
greenhouse gases (GHGS), aerosols, and ozone. Detec-
tion examines whether the changes in snowpack are
likely to have arisen from natural internal climate vari-
ability. Attribution asks whether the snowpack changes
are consistent with the expected effects of these anthro-
pogenic forcings and inconsistent with other natural ex-
ternal climate forcings, such as variability in solar irra-
diance and atmospheric burdens of volcanic dust. D-A
allows an explicit estimation of the likelihood of ob-
taining the observed decrease in snow given the model-
estimated background of natural variability and com-
pares the observed changes to those expected to occur
owing to anthropogenic effects. Only if changes are
both outside the likely range expected due to natural
climate variability and consistent with the changes ex-
pected due to anthropogenic forcing can it be con-
cluded that human activity has a role in reducing winter
snowpack.

We use 1600 years of control run data from fully
coupled global general circulation climate models
(GCMs) to provide estimates of natural internal vari-
ability. Multiple ensemble members of two GCMs run
with estimated historical changes in well-mixed GHGs,
aerosols, and ozone supply the expected response of
snowpack to these anthropogenic forcings. We statisti-
cally downscale the GCM results to '4° resolution then
use the downscaled fields as input to a fine-resolution
hydrological model. The hydrological model calculates
the SWE values as well as soil moisture, runoff, and
other variables in the hydrologic water balance used in
companion work (Barnett et al. 2008; Bonfils et al.
2008; Hidalgo et al. 2008, manuscript submitted to J.
Climate).

Previous studies have examined if changes in western
U.S. snow are consistent with anthropogenic effects,
although none have used a formal D-A method. The
primary focus of these works has been on determining
the relative roles of temperature and precipitation in
causing the decline. Mote (2003, 2006), for example,
used linear regressions between SWE, temperature,
and precipitation to conclude that increases in SWE
over the period 1930-50 were caused by increases in
precipitation, but the widespread reductions in SWE
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since 1950 are due to regional warming. They found
high elevation snow courses (permanent sites where
manual measurements of snow depth and SWE are
taken) with cold winter temperatures are little influ-
enced by the warming—with SWE that can increase
where local precipitation has increased. Natural inter-
nal climate variability, such as that associated with the
North Pacific index (Trenberth and Hurrell 1994), was
insufficient to explain the observed post-1950 warming.
Mote et al. (2005) and Hamlet et al. (2005) used runs of
the variable infiltration capacity (VIC) hydrological
model (Liang et al. 1994; Cherkauer and Lettenmaier
2003) with specified forcing to explore this issue; after
first verifying that VIC reproduced the observed trends
in SWE when forced with historical meteorological
data, they showed with fixed-precipitation runs that
SWE decreases are predominately driven by regional
warming. Again, these works found natural internal cli-
mate variability, such as from the Pacific decadal oscil-
lation (PDO) (Mantua et al. 1997), could not explain
the magnitude of the observed warming or SWE de-
pletions. The contribution of the present work is to
use formal D-A methodology to develop a model-
estimated fingerprint of the SWE changes expected due
to anthropogenic effects, assess the likelihood of the
fingerprint pattern arising by chance from natural in-
ternal or external climate variability, and determine if
the observed pattern of SWE changes agrees with that
expected to be seen from anthropogenic warming.
The remainder of this paper is organized as follows.
In section 2 the various data sources are described, in-
cluding the observed snow and precipitation datasets,
the global model control and anthropogenic runs, and
the statistically downscaled model datasets. The D-A
methodology and results are presented in section 3. A
summary and our conclusions are given in section 4.

2. Data

a. Snow courses

We use snow course data from the National Water
and Climate Center (NWCC; http://www.wcc.nrcs.
usda.gov), part of the U.S. Department of Agriculture
Natural Resources Conservation Service (downloaded
from ftp://ftp.wcc.nres.usda.gov/data/snow/snow_
course, accessed 22 September 2006). Over 2500 loca-
tions are available across the western United States,
Alaska, and parts of British Columbia and Alberta,
Canada. In the southern Sierra Nevada, the NWCC
data were augmented with data from the California Co-
operative Snow Surveys obtained from the California
Data Exchange Center (CDEC; http://cdec.water.ca.
gov; accessed 22 September 2006), California Depart-
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ment of Water Resources, Division of Flood Manage-
ment. As described on those sites, snow courses are
generally around 300 m long and sampled at multiple
locations along their length to reduce the effects of
drifting and small depressions in the ground. Measure-
ments are taken by driving a hollow tube into the snow,
which is then weighed to measure the SWE.

We use snow course measurements taken within 10
days of 1 April, which tends to be the most sampled
date and near peak SWE in the western United States
(Cayan 1996; Bohr and Aguado 2001). Mote et al.
(2005) note that improved travel has resulted in a snow
courses being sampled closer to 1 April over time, but
conclude that this effect is small compared to climate
effects on the snowpack. Although a few courses have
data starting before 1910, coverage increases markedly
by 1940. We used stations starting by 1950 with no more
than 20% missing data from 1950 to 1999. This yields a
pool of 661 stations for subsequent consideration (con-
tinued below). The beginning year is chosen partly to
ensure good snow course coverage and partly because
measured trends in precipitation are less reliable in ear-
lier years (Groisman and Easterling 1994). The ending
year is determined by the availability of model data
produced for the Intergovernmental Panel on Climate
Change (IPCC) Fourth Assessment Report (AR4) da-
tabase.

b. Precipitation

Considerable work has been done to isolate the rela-
tive contributions of temperature and precipitation (P)
to variations in spring SWE (e.g., Groisman et al. 1994;
Cayan 1996; Mote 2003; Mote et al. 2005; Hamlet et al.
2005; Mote 2006). In short, temperature fluctuations
have a larger effect in the warmer elevations near the
freezing level, while changes in precipitation become
more important at higher elevations where winter tem-
peratures are far below freezing. In this work we focus
on whether there is a detectable temperature-driven
effect on western U.S. snowpack. We therefore analyze
SWE/P rather than simply SWE to minimize the effects
of year-to-year precipitation fluctuations, which are not
of primary interest here and add noise to the tempera-
ture-driven snowmelt signal (Dettinger and Cayan
1995; cf. Barnett et al. 2008). The effectiveness of this
technique is examined in section 3f, where it is shown
that SWE/P has no statistically significant sensitivity
to P.

We divide 1 April SWE by the total P summed from
October through March, so the SWE/P ratio shows
what fraction of current water year precipitation re-
mains in the snowpack by 1 April. Seventeen stations
(3% of the total) with a mean SWE/P ratio less than
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0.15 were eliminated, as we wanted to focus on areas
where an appreciable fraction of winter precipitation
was retained in the snowpack on 1 April. The ideal
precipitation data for this purpose would be measured
at the same locations as the snow courses. Some snow
courses are collocated with automated snow telemetry
(SNOTEL) precipitation stations; however, the major-
ity of SNOTEL data begins less than 20 years ago, too
short a time to detect a slowly evolving anthropogenic
signal. There also tend to be disagreements between
reported snowfall and SWE even for collocated
SNOTEL and snow courses, although snow course
SWE measurements correlate over longer distances
than SNOTEL snowfall measurements (Dressler et al.
2006). This is helpful for our purposes, as it suggests the
snow course measurements have less noise.

We use the gridded daily precipitation dataset of
Hamlet and Lettenmaier (2005; hereafter HLO0S), which
is available at relatively fine spatial resolution (*s° lon-
gitude by latitude) across the western United States. As
a sensitivity test we also tried monthly data from the
Parameter—elevation Regressions on Independent
Slopes Model (PRISM) Group at Oregon State Uni-
versity (http://prism.oregonstate.edu, accessed 7 March
2007; Daly et al. 1994, 2002) and the daily gridded data
of Maurer et al. (2002). The D-A results were little
changed (not shown), although it should be kept in
mind that these are not independent data sources. All
rely on co-op station data as input, and both the daily
datasets use PRISM monthly average precipitation
maps in their topographic correction of precipitation
(HLOS; Maurer et al. 2002). The co-op precipitation
gauges have smaller mouths than the SNOTEL gauges
(20 cm versus 30.5 cm) and tend to be unshielded
(Doesken and Schaefer 1987), which both increase un-
dercatch. SNOTEL gauges, by contrast, have Alter
wind shields that reduce the undercatch (Groisman and
Easterling 1994). Our choice to use HLOS therefore
requires a correction for undercatch, as described in the
next section.

c. Treatment of gauge undercatch

Precipitation gauges tend to undercatch both rain
and snow, with the undercatch for snow being larger
(Groisman and Easterling 1994), primarily due to wind
effects over the gauge opening. This means more SWE
can be reported as present on the snow course than was
measured by precipitation gauges (Serreze et al. 1999).
Additionally, when there is an upward trend in the frac-
tion of precipitation that falls as rain instead of snow (as
found by Knowles et al. 2006), the increasing gauge
catch efficiency will report a decreasing SWE/P, even if
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FI1G. 1. Locations of snow courses used for the detection and
attribution analysis in this study.

the actual SWE/P remains constant. It is important to
account for these effects.

Details of our treatment of gauge undercatch are
given in appendix A and outlined briefly here. We ana-
lyze SWE/P divided by its time mean (which we term
“fractional SWE/P”) since this quantity is less sensitive
to gauge undercatch than SWE/P itself. We estimate
the trend in undercatch based on the changing rain/
snow ratio using data from Knowles et al. 2006. This
trend is small compared to the mean undercatch, so we
develop a correction term that is first order in (trend/
mean) and apply it to our fractional SWE/P estimate.
Stations where the mean SWE is greater than estimated
P, even when undercatch is taken into account or that
do not fall within one of our mountain regions, are
discarded. The remaining 548 stations (83% of our
original pool of 661) used in the detection and attribu-
tion analysis are shown in Fig. 1.

d. Global climate model control runs

We use two different multicentury coupled climate
model control runs for our estimates of natural internal
climate variability: a finite volume version of the Com-
munity Climate System Model, version 3 (CCSM3)
(Bala et al. 2008), which we will refer to as CCSM3-FV,
and the Parallel Climate Model (PCM) (Washington et
al. 2000).

CCSM3-FV was run for over 1000 years with prein-
dustrial atmospheric constituents and forcing condi-
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tions. The first 239 yr were treated as a spinup; we
analyzed the 850 yr starting at model year 240. The
atmospheric resolution is 1.25° longitude by 1° latitude,
somewhat finer than the equivalent spatial resolution of
CCSM3 run with T85 spectral truncation, and 26 verti-
cal levels. The model configuration included numerical
parameterizations specific to the finite volume version
of CCSM3 that correct problems with representing the
sea ice and ocean around Greenland. The ocean model
has a nominal 1° resolution and 40 vertical levels. Since
we are performing a regional D—A study, our choice of
this model configuration was motivated by the desire to
have a relatively finescale representation of natural cli-
mate variability.

We used 750 yr from the same PCM control run
(B06.62) analyzed in Barnett et al. (2005) and Pierce et
al. (2006). The model was run at T42 spectral truncation
for the atmospheric component and used a stretched
and rotated grid with an average of about 25° spatial
resolution in the ocean. We used this model because
our previous analyses have shown PCM captures many
important features of observed climate over the North
Pacific and western United States—our area of interest
here.

The natural internal climate variability of both con-
trol runs is compared to observations in section 3a.

e. Global climate model anthropogenically forced
runs

To increase the robustness of our study, we used
more than one set of anthropogenically forced climate
simulations to compare to the observations. One of the
downscaling methods used (described in the next sec-
tion) requires daily maximum and minimum tempera-
ture (Tpax and T,,;,) and precipitation. Our choice of
model runs to use for the anthropogenic fingerprint
estimation was therefore limited to cases where 1) daily
data were available for the period 1950-99; 2) multiple
ensemble members were available; and 3) the model
had a good representation of western U.S. climate, in-
cluding a realistic amplitude of natural variability. The
requirement for 50 yr of daily data was one of the big-
gest limitations; for instance, while the World Climate
Research Programme (WCRP) Coupled Model Inter-
comparison Project phase 3 (CMIP3) climate model ar-
chive has some daily 7T« Tmin, and precipitation data
for the twentieth-century runs, it is generally only avail-
able for 40 yr, and often for only one ensemble mem-
ber.

The first set of anthropogenic model runs we used
are from PCM: cases B06.22, B06.23, B06.27, and
B06.28 (Washington et al. 2000; available online at
http://www.earthsystemgrid.org). In addition to fulfill-
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ing the requirements for daily data and multiple real-
izations, PCM has a reasonable simulation of ENSO,
the PDO, and the mean state and variability over the
western United States. The PCM runs were forced with
anthropogenic GHGs, ozone, and the direct effects of
sulfate aerosols.

The second set of model runs we used are from
the Model for Interdisciplinary Research on Climate
(MIROC) model run at T42 atmospheric resolution
(Hasumi and Emori 2004; Nozawa et al. 2007). We se-
lected this model because an extensive set of runs with
daily data and various forcing combinations was avail-
able; this will support future, more detailed work in
examining how the various components of anthropo-
genic forcing affect climate over the western United
States. Additionally, MIROC has a good representa-
tion of the PDO [defined as the leading EOF of SST
anomalies north of 20°N in the North Pacific, Mantua
et al. (1997)], with a peak SST anomaly of 0.5°C (versus
0.6°C observed) and spatial correlation with the ob-
served PDO SST pattern of 0.75 (not shown). These
were not the highest values of the models present in the
CMIP3 database—both PCM and CCSM3 show higher
spatial correlations of 0.91 and 0.88, respectively—but
are nearly so, and having many runs with daily data
available is advantageous for reducing the noise in the
D-A work. The representation of ENSO is less satis-
factory, however, with a signal that extends too far
west and an amplitude about half that observed. The
MIROC runs were forced with GHGs, ozone, the direct
effects of sulfate aerosols, some indirect effects of sul-
fate and carbonaceous aerosols, and land-use changes.
More details on the various model runs can be found in
Bonfils et al. (2008).

f- Downscaling methodology

We explored two methods for downscaling the con-
trol and anthropogenically forced global model results
to our region of interest: the bias correction/spatial dis-
aggregation (BCSD) technique (Wood et al. 2002,
2004) and constructed analogs (CA) technique (H. G.
Hidalgo et al. 2008). Both are statistical methods that
use the global model’s fields of precipitation and tem-
perature to construct a physically consistent represen-
tation of weather with finescale detail (4°). A compari-
son of the two methods is given in Maurer and Hidalgo
(2007), who show that the CA method tends to produce
weaker trends than the BCSD approach. Our results
are consistent with this finding. Details of the methods
are provided in the references given above, so only a
brief summary is given here. The two methods make
the trade-off between data volume and signal time step
differently: the BCSD method requires only monthly
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model data to produce a daily time step but does not
preserve the daily sequence of weather simulated by
the model, while the CA technique requires daily
model data but in turn preserves the daily sequence of
weather simulated by the model. One consequence is
BCSD will always give the same submonthly temporal
relationships between the variates as found in the his-
torical period, while CA can evolve the daily relation-
ships between T, Tinax, and P if the GCM responds in
that way.

The BCSD method first bias corrects GCM monthly
average temperature (7) and precipitation (P) using a
quantile-based mapping from model to observed clima-
tology. The bias-corrected T and P anomalies are then
interpolated onto the fine grid, using additive anoma-
lies for 7 and multiplicative ones for P. A random
month from the historical observations is chosen (sub-
ject to the constraint that it be the same month of year
as the month being downscaled), and the observed,
fine-resolution daily 7T .;,, T and P fields are ad-
justed (temperatures are shifted and P is scaled) by the
bias-corrected, interpolated PCM anomaly. This
method was used for the PCM control run.

The CA method first bias corrects the daily GCM
data to have the same mean and variance as observed.
It then makes use of a “library” of observed daily 7" and
P fields available on both the fine (%4°) grid and the
global model grid. For each day’s GCM fields, the best
30 regional matches to the large-scale 7 and P fields are
found. The final downscaled T and P fields are a
weighted sum of the finescale 7 and P patterns corre-
sponding to the closest 30 matches on the coarse scale.
This method was used for the CCSM3-FV control run
and MIROC anthropogenic runs.

max

g. Hydrological model

The downscaled T T hax and P fields from the
control and anthropogenically forced GCMs were used
to drive the VIC hydrological model (version 4.0.5;
Liang et al. 1994; Cherkauer and Lettenmaier 2003) run
at %° resolution over the western United States. The
VIC model calculates soil moisture, runoff, and snow
cover given the meteorological forcing and parameter-
izations describing the physical characteristics of the
region (soil depth, vegetation types, elevation, etc.).
VIC was configured with five snow elevation bands to
better represent snow processes in grid cells with
changing topography. Our final analysis uses fractional
SWE/P calculated by VIC forced by the statistically
downscaled GCM results. The VIC model has been
validated against observations and used in many cli-
mate change and streamflow forecasting studies in our

min»
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FIG. 2. Sea surface temperature anomalies (°C per standard deviation of the index time series) associated with (left)
the PDO and (right) ENSO, from observations and the two control model runs: CCSM3-FV and PCM.

region of interest (cf. Mote et al. 2005 and references
therein).

3. Results

a. Natural internal variability in the control runs

It is important to compare the natural internal cli-
mate variability in the control model runs to observa-
tions since control data with variability significantly
weaker than observed could bias the D—A results.

Two important modes of natural variability that af-
fect climate in the western United States are the El
Nifio-Southern Oscillation and the Pacific Decadal Os-
cillation (Mantua et al. 1997). Figure 2 shows ENSO
and PDO variability in the model control runs, defined
as the leading empirical orthogonal functiuons of win-
ter [December—February (DJF)] sea surface tempera-
ture anomalies over the regions plotted. The same
quantity is plotted from observations over the period
1946-2006 for comparison.

The PDO is reasonably well simulated by the control
models, with a realistic pattern but somewhat higher
variability than is observed. CCSM3-FV tends to have
more loading in the Kuroshio Extension region than
observed, while PCM mirrors the observations in show-
ing largest expression in the central North Pacific.
ENSO variability is again fairly well represented in the
control runs, with somewhat stronger than observed
amplitudes in CCSM3-FV and weaker than observed in
PCM. The meridional scale of the variability is nar-
rower in CCSM3-FV than observed (Bala et al. 2008).
In both models the variability extends too far west, as is
common in GCMs. We note in particular that there is
no systematic underestimation of the strength of the
PDO or ENSO in these models.

Although a reasonable simulation of the relevant
modes of natural variability is important, our detection
variable is fractional SWE/P, which depends on a wide
variety of climate influences. Figure 3 shows the stan-
dard deviation of SWE/P from the (detrended) obser-
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F1G. 3. Standard deviation of fractional SWE/P from (top row) observations, (middle row)
CCSM3-FV control run, and (bottom row) PCM control run: (left) Annually averaged SWE/P

values and (right) 5-yr-averaged SWE/P values.
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FIG. 4. Snow courses on the '4° grid, grouped by the nine regions used for averaging.

vations and CCSM3-FV and PCM control runs. Ob-
served SWE/P values are detrended, so any linear
change in SWE/P arising from anthropogenic forcing
will not inflate their standard deviations. The left col-
umn is the standard deviation of the annual values and
the right column shows the standard deviation of the
5-yr-averaged data. On annual time scales, both control
runs tend to modestly overestimate the standard devia-
tion in the Sierra Nevada and in Utah, while underes-
timating the variability in the extreme north of the
Washington Cascades. On the 5-yr and longer time
scales, both models continue to overestimate the vari-
ability in the Sierra Nevada and in Utah, while CCSM3-
FV tends to underestimate variability in the Washing-
ton and Oregon Cascades. PCM does a better job of
capturing the variability in the Oregon Cascades, but
has slightly too much variability in western Montana.
Overall, despite these small-scale differences, we find
no evidence that either PCM or CCSM3-FV is system-
atically underestimating natural internal climate vari-
ability for our region and variable of interest.

b. Constructing the fingerprint

We use a fingerprint-based detection and attribution
methodology (Santer et al. 1995; Hegerl et al. 1996,

1997; Tett et al. 1999; Allen and Tett 1999; Barnett et al.
2001). The intent is to isolate the signature of anthro-
pogenically forced changes in SWE/P from the histori-
cal model runs, determine how similar the observed
changes in SWE/P are to the fingerprint, and calculate
the likelihood a signal of the observed strength could
have occurred by chance in the control run. In this
section, the method of constructing the fingerprint will
be described and applied to nine mountainous regions
across the western United States. In section 3g, the
same methods are used to develop and analyze a fin-
gerprint as a function of elevation.

To compare observations to the model results, we
assign each snow course to the location of the nearest
VIC model grid cell (on the “4° grid). When multiple
snow courses were assigned to the same VIC grid cell,
the fractional SWE/P time series from those snow
courses were averaged. We then regionally average the
observed and model SWE/P values over the nine re-
gions shown in Fig. 4; this reduces small-scale noise and
some spatial redundancy from areas where many snow
courses are near each other. When regionally averaging
the model SWE and P, we subsampled the model data
at the same locations as the gridded snow courses to
avoid introducing discrepancies from different model
and observed data coverage.
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F1G. 5. Regional time series of fractional SWE/P from the observations. Note the ordinate range differs between
panels. The least squares best-fit linear trend is also shown as a solid line where the 95% confidence interface
excludes zero and a dashed line where it includes zero.
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The regionally averaged fractional SWE/P time se-
ries from observations are shown in Fig. 5. SWE/P has
increased in the southern Sierra Nevada (although the
trend is not significantly different from zero at the 5%
level using the test described in Wigley et al. 2006); it
decreases in all the other regions (although not signifi-
cantly in the northern Sierra or Great Basin). SWE
changes as a function of elevation (Mote et al. 2005,
their Fig. 2; see also section 3g) indicate warmer, lower
elevations tend to have experienced the most relative
SWE loss, while precipitation increases can drive SWE
increases at the colder, higher elevations.

The model-based fingerprint is formed from the nine
regionally averaged time series of the anthropogenic
model runs. To reduce natural variability unrelated to
the anthropogenic forcing, we first ensemble averaged
each regional time series across all the ensemble mem-
bers available (4 PCM, 10 MIROC). In the results
shown here each ensemble member was weighted
equally: however, we found that weighting the PCM

realizations so that they would contribute equally to the
more numerous MIROC realizations made little differ-
ence. The resulting regional time series are shown in
Fig. 6. SWE/P decreases in all areas, although the mag-
nitude varies by region; losses range from 5% to 20%
over the period examined here (1950-99). The 95%
confidence interval on the estimated trend (adjusted for
temporal autocorrelation) excludes zero for all regions
except in the Rockies. As noted in previous works (e.g.,
Mote et al. 2005; Mote 2006), colder, higher elevation
regions tend to have less temperature sensitivity than
places where winter and early spring temperatures are
near freezing; precipitation tends to be smaller in such
locations, and sublimation more comparable with melt
in the energy budget.

The model fingerprint (Fig. 7) is the leading EOF of
the nine ensemble-averaged time series. It accounts for
72% of the overall variance. The EOF was calculated
with each regional time series weighted by the snow-
covered (>1 cm climatological 1 April SWE) area it
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Fi1G. 6. As in Fig. 5 but from the ensemble-averaged anthropogenic model runs; these are the time series used
to make the fingerprint. Note the ordinate range differs between panels.

represents. As a sensitivity test we tried setting all the
area weights to 1 and found it made little difference
(not shown). The fingerprint is a monopole over the
western United States, although different locations
contribute differently to the final result. In general, the
weighting is higher in the central Cascade region than
in the surrounding areas. This pattern is set by the com-
bination of the relative areas, the covariation of the
location with other places, and the characteristic winter
temperature.

c. Signal strength

Given the model fingerprint F(x), the signal strength
S is defined as

S = trend[F (x) - D(x, 1)]/S,,

where D(x, t) are the nine regional time series (from a
model run, observations, or model ensemble mean
when the ensemble mean § is being calculated), and
“trend” indicates the slope of the least squares best-fit

line. The normalizing value S, is the trend of the fin-
gerprint’s associated principal component, chosen so
that all signal strengths are relative to the fingerprint.
(Recall that Fig. 5 shows the actual SWE/P losses in the
various regions, which average about 20% over the
study period.)

The values of S for the various model runs and ob-
servations are shown in Fig. 8. The signal strengths re-
ported from the CCSM3-FV and PCM control runs are
calculated in 50-yr segments to match the observed
record, but are overlapped (starting progressively 5 yr
later than the previous segment) to better estimate the
effects of sampling variability with respect to the initial
start date of the control run. With 850 years of CCSM3-
FV control run and 750 years of PCM, we have a total
of 32 independent 50-yr segments of control run data to
compare to the forced runs and observations; this was
the value used as the degrees of freedom in all follow-
ing statistical tests. (We use overlapped 50-yr segments
to reduce the chance that a particular initial starting
date will unduly affect our results, but independent 50-
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yr segments to calculate the degrees of freedom to
avoid artificially inflating the statistical confidence of
our estimates.) The shaded region is the one-tailed
(since we a priori expect warming produces a reduction
in SWE/P) 95% confidence interval of the signal
strength in the PCM and CCSM3-FV combined control
model results. The 95% confidence interval on the ob-
served trend is the standard error of the least squares
linear trend, appropriately adjusted for serial correla-
tion (Santer et al. 2000a; Wigley et al. 2006).

Figure 8 shows that the signal strength in the anthro-
pogenic model runs is larger than in the control runs,
but not to such a degree that the distributions are com-
pletely separated. There is a range of S, roughly from
0.05 to 1.5, where a single measurement is consistent
with both the response to anthropogenic forcing and
natural internal climate variability (although one of the
anthropogenic runs, MIROC 10, falls outside this
range). There is also a range of larger values, roughly
1.5-3, where a single measurement is consistent with
the anthropogenic runs but outside the range expected
if only natural internal variability were acting. The ob-
served signal strength (S = 2.08 = 1.11) falls in this
latter region, showing significantly more reduction in
SWE/P than is likely to be found from natural variabil-
ity alone (p < 0.05). The signal strengths in the solar/
volcanic runs are opposite sign to that found in the
observations, so solar and volcanic variability do not
provide an explanation for the observed changes in
SWE/P.

How likely is it that the anthropogenic model signal
strengths might be drawn from the same underlying
distribution as the control run? This can be estimated
from a Kolmogorov—Smirnov test (Press et al. 1989).
Using all available information, with the combined con-
trol runs compared to the combined anthropogenic
runs, shows a highly significant difference between the
anthropogenic runs and control distribution (p < 0.01
using a one-tailed test). We conclude the signal
strengths are inconsistent with the null hypothesis of
natural internal climate variability.

The observed signal strength falls outside the 95%
confidence interval of the control runs. However, our
estimate of the observed signal strength is uncertain.
What is the likelihood that the signal actually falls
within the control model distribution? To address this
question we use the pooled standard errors of S from
the control runs and observations (Santer et al. 2000b;
Lanzante 2005) and find the observed value is unlikely
to have been drawn from the control distribution (p <
0.05 using a one-tailed test) even when uncertainty in
the observed signal strength is taken into account.
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d. Attribution

For attribution, we consider whether the observed
signal § is consistent with the anthropogenically forced
model runs—that is, whether it is likely the observed
signal strength could be drawn from the population of
anthropogenic signal strengths. The signal strength
from all the PCM and MIROC anthropogenic runs
have an ensemble mean value of 1.0 = 0.67 (with the
95% confidence interval in the ensemble-mean value
calculated from the standard error of the ensemble-
mean trend, as noted above), and the standard devia-
tion of the values that make up this distribution is 0.91.
Using pooled standard errors of the observations and
all the anthropogenic runs we have available (combined
PCM and MIROC results), we find no significant dif-
ference between the model-estimated signal strength
and that observed.

The ratio of the observed signal strength to the en-
semble mean model value is about 2, which indices the
best model estimate is that approximately half of the
observed changes in SWE/P arise from the anthropo-
genic effects included in our global climate models
(GHGs, ozone, and some aerosols). The rest could be
due to 1) anthropogenic effects not included here, such
as “graying” of snow due to dust or soot deposition
(Hansen and Nazarenko 2004; Painter et al. 2007; Flan-
ner et al. 2007) or missing aerosol physics; 2) the mod-
els’ underestimation of the effect of the included an-
thropogenic forcings (cf. Rahmstorf et al. 2007); or 3)
natural internal climate variability. Selecting between
these possibilities is beyond the scope of this work.

In summary, the observed changes in SWE/P are
consistent with those expected from anthropogenic
forcing. Taken together with the finding that the obser-
vations are not consistent with either natural internal
climate variability or solar/volcanic forcing, we con-
clude that changes in the climate from human-emitted
greenhouse gases, ozone, and aerosols are causing a
reduction in SWE/P in the western United States. The
mean model estimate is that approximately half the de-
crease is due to anthropogenic effects.

A point worth reiterating is that the distributions of §
in the anthropogenic and control model runs overlap
significantly. This is not unexpected since we are exam-
ining a smaller domain than typically used in D-A stud-
ies. Weather noise increases when averaging over
smaller areas, making it challenging to identify an an-
thropogenic fingerprint. One implication is that we re-
quire large ensemble sizes to reliably estimate the re-
gional-scale response to anthropogenic forcing. The
signal strength in an individual PCM or MIROC real-
ization falling within the distribution of internal natural
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5% significance level is achieved by the early 1990s.

variability is not “evidence of absence” of an anthro-
pogenic effect on climate. As shown here, however,
observed SWE/P changes in the western United States
fall outside the range of natural variability. It might be
asked, what fraction of the anthropogenic distribution
of S falls outside the distribution of natural variability?
The 95th percentile on the combined control run dis-
tribution is S = 1.43. This signal strength is in the 63rd
percentile of the anthropogenic runs, so approximately
37% of the anthropogenic distribution of S is inconsis-
tent with the explanation of natural internal variability.

e. Detectability over time

We determine the earliest year anthropogenic
changes in SWE/P are detectable following Santer et al.
(1995, 2007). Starting in 1950, we calculate observed
SWE/P signal strength for increasingly longer intervals
and do likewise for the control run. As the interval
lengthens, a consistent signal tends to stabilize around
some asymptotic value, while the amplitude of the con-
trol run noise decreases (Santer et al. 2007). The signal-
to-noise ratio therefore changes as a function of the
averaging length, as shown in Fig. 9. With two control
model runs available, we can estimate the noise either
from CCSM3-FV (triangles) or from PCM (dots). Ei-
ther way, the signal is detectable at the 95% signifi-
cance level by the early 1990s: a record length of about
40 years. A similar analysis (not shown) indicates that
the mid-1950s is the latest that the analysis can be
started to achieve detection by 1999 (a record length of
about 45 years). Either way, the data suggest four to
five decades of observations are needed for detection of
an anthropogenic SWE/P signal. Performing the same
analysis on the anthropogenically forced model runs
gives a mean model estimate that about 41 years of data
are required, consistent with the observed values.
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Fi1G. 10. Histograms of the 1950-99 linear least squares trend in
precipitation (gray bars) and SWE (white bars) at the snow course
locations.

The observations (Fig. 5) show that in several re-
gions, such as the Washington Cascades, SWE/P in-
creased from 1975 to 1999. Is this behavior consistent
with the model-estimated characteristics of anthropo-
genic SWE/P changes? To examine this, we used the 14
anthropogenically forced model runs to compare
SWE/P trends in the Washington Cascades over the
period 1950-99 to the period 1975-99. Only one of the
14 anthropogenic runs has a positive SWE/P trend over
the period 1950-99. By contrast, half of the anthropo-
genic runs have a positive trend over the period 1975-
99, so the models indicate that this is not an unusual
happenstance. Together with the finding noted above
that at least four decades of observations are necessary
for detection of an anthropogenic signal, this suggests
that a 25-yr period (1975-99) is too short to make any
robust conclusions about the existence (or lack thereof)
of an anthropogenic signal in SWE/P.

f- The role of changes in precipitation

As noted in the introduction, previous work has ex-
amined the role of precipitation changes in causing the
reduction in snowpack and concluded that the wide-
spread declines across the western United States (par-
ticularly at lower elevations) are primarily driven by an
increase in temperature, not by changes in precipitation
(Mote et al. 2005; Hamlet et al. 2005; Mote 2006). We
also find no evidence for a systematic reduction in pre-
cipitation at our snow course locations: in fact, precipi-
tation increases at 60% of the snow courses used here,
while 71% show a reduction in SWE (Fig. 10). Stewart
et al. (2005) also note the tendency for changes in P and
streamflow center of timing to be at odds.

We have used SWE/P as the detection variable,
rather than simply SWE, on the grounds that SWE/P
would be less sensitive to precipitation variations that
add noise to the temperature-driven signal. We can ex-
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FIG. 11. Scatterplot of observed (fractional) (left) precipitation vs SWE, and (right) precipitation
vs SWE/P. Lines show least squares best-fit line; P values are from Hamlet and Lettenmaier (2005)

and the SWE values are from the snow courses.

amine the extent to which this is true by comparing the
relationship of P and SWE to the relationship of P and
SWE/P, as shown in Fig. 11. The SWE values are from
the snow courses, and the P values from the HLO5
analysis. The plotted values are divided by their mean
to reduce the large regional differences in P. The left-
hand panel shows there is a strong relationship between
SWE and P, which is not surprising; more precipitation
gives proportionally more snow. The correlation is 0.64,
and the slope of the best-fit linear trend is close to 1. In
the right-hand panel it can be seen that dividing SWE/P
removes essentially all this relationship; the correlation
now is only 0.03 (not statistically significant if the spa-
tial autocorrelation of the snow courses is taken into
account), and the slope is near zero.

As a final check of the possible influence of precipi-
tation changes on our results, we repeated the D-A
analysis using P at the snow course locations instead of
SWE/P. Neither the observations nor the signal in the
anthropogenically forced models fell outside the 90%
confidence interval of the control runs. We conclude
that the snowpack reductions we are seeing are princi-
pally driven by increases in temperature over the west-
ern United States.

g The role of elevation

Previous work (e.g., Mote et al. 2005; Mote 2006) has
shown how observed reductions in SWE diminish with
elevation. This raises the question of what a D-A
analysis with stations partitioned by elevation, rather
than geographically, would show. To explore this, we
binned the snow courses into nine bands (shown in Fig.
12) that span the stations’ elevation range while having
a nearly constant increment. Fractional SWE/P shows a
pattern of strong negative trends at the lower eleva-

tions, reducing to near-zero trends at the higher eleva-
tions. Only elevations below ~2000 m have statistically
significant trends, given the noise.

The corresponding SWE/P trends for the ensemble-
averaged anthropogenic model runs are shown in Fig.
13. The model also shows a decrease in trends with
elevation, although not to as pronounced a degree as
observed. Decreasing trends are statistically significant
up to ~2800 m in the model. This is higher than for the
observations, consistent with the fact that the en-
semble-averaged values have less noise by construction.

The D-A fingerprint is the leading EOF of the time
series in Fig. 13. Various choices could be made for
areal weighting in its construction. The bands could be
weighted equally, which would address the question of
how the decrease in trends with elevation affects the
D-A process, and assess whether the observed de-
crease in trends with elevation matches the model pre-
diction. Or the bands could be weighted by the amount
of area they represent in the mountainous regions of
the western United States, which would be a more tra-
ditional D-A approach since agreement or disagree-
ment in a small fraction of the area (i.e., at high eleva-
tions) is less important than agreement or disagreement
over a broad area. We tried both approaches and found
that it had little effect (Fig. 14): the difference in fin-
gerprint strength in the lowest versus highest elevation
class is slightly larger when weighting according to the
area represented since lower elevations (where the
SWE/P trends are large) receive more areal weighting
than higher elevations (where the trends are small).
With equal weighting, the fingerprint accounts for 78%
of the variance (versus 72% for the geographic finger-
print, Fig. 7). The values drop by 85% from the lowest
to highest elevation, consistent with the decrease in the
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FI1G. 12. As in Fig. 5 (observed fractional SWE/P) but as a function of elevation. Note the ordinate range
differs between panels.

effect of warming on snowpack at the colder, higher
elevations.

The D-A results using equal weighting for the eleva-
tion bands are shown in Fig. 15 (the results for area-
weighted bands are little different, not shown). The ob-
served signal strength (2.56 = 1.54) is higher than when
the geographical regions are used (2.08 = 1.11), leading
to detection that is significant at the 99% level rather
than the 95% level. The attribution results are un-
changed from the geographical case.

4. Summary

The snowpack in the western United States serves as
a natural reservoir of freshwater from winter storms,
gradually melting and releasing that water in late spring
and early summer. Changes in the amount of precipi-
tation retained in snowpack can have an important ef-
fect on human and natural systems that anticipate this
kind of water storage, so it is important to know wheth-

er part of the observed changes in snowpack over the
western United States can be attributed to anthropo-
genic inputs of greenhouse gases (GHGs), ozone, and
aerosols into the global atmosphere.

In this work we have performed a formal detection
and attribution (D&A) analysis of changes in western
U.S. snowpack over the period 1950-99. Our detection
variable was defined as the ratio of 1 April snow water
equivalent (SWE) to precipitation (P) over the period
October—March, normalized by its time mean. The re-
sulting fractional SWE/P ratio is relatively insensitive
to precipitation-driven snowpack changes, and was cor-
rected for changing undercatch driven by the evolving
snow/rain mix.

We employed a total of 1600 years of statistically
downscaled (to a %4° grid) control run data from two
climate models (CCSM3-FV and PCM) to construct
our estimate of natural variability in SWE/P. The
model ENSO, PDO, and SWE/P variability show real-
istic amplitudes that provide a good test of the hypoth-
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esis that natural internal climate variability can account
for all the observed reduction in snowpack.

We find that SWE/P declines in the observations and
anthropogenically forced model runs are significantly
greater than expected if only natural internal variability
were acting on the system (p < 0.05). Solar and volca-
nic effects likewise cannot explain the observed
changes. We conclude that there is a detectable change
in snowpack over the western United States, which can-
not be fully explained by natural internal climate vari-
ability or the effects of solar and volcanic forcing. This
finding did not depend on whether the stations were
grouped geographically (by mountain range across the
west) or in equally weighted or area-weighted elevation
bands.

We have used 700 years of downscaled, anthropo-
genically forced model runs from two climate models
(PCM and MIROC) to construct the distribution of
SWE/P changes expected from human effects on cli-
mate and find that observed reductions in SWE/P are
consistent with the anthropogenically forced model re-

sults. The mean model estimate is that approximately
half of the observed changes in snowpack over the
western United States during the period 1950-99 arise
from climate responses to anthropogenic GHGs, ozone,
and aerosols. The remainder may arise from natural
internal climate variability or neglected or improperly
modeled anthropogenic effects.

It should be noted that the anthropogenic forcings
examined here are not the only ones relevant to SWE/
P. For example, modification of snow albedo through
soot or dust deposition has been suggested as a con-
tributing factor to earlier snowmelt in the Arctic and
parts of the west (Hansen and Nazarenko 2004; Painter
et al. 2007; Flanner et al. 2007) but is not included here.
The global models we used also lack a comprehensive
treatment of aerosol physics. It is possible that inclusion
of such forcings would improve the agreement between
the model-estimated and observed reductions in SWE/
P. A finer breakdown of the effects of various anthro-
pogenic forcing mechanisms on SWE/P awaits further
study.
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Looking ahead, what do these results portend for the
western United States? Since greenhouse-gas-induced
warming is already contributing significantly to the de-
cline in snowpack and is predicted to continue over the
twenty-first century, we can anticipate that the snow-
pack loss is likely to continue and even accelerate over
the next half century. Further out, the behavior of
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snowpack will be influenced by what greenhouse gas
reduction strategies, if any, are put into effect. Areas
that have insufficient reservoir capacity to capture the
earlier spring melt while still having enough margin to
prevent floods from late-winter storms will end up los-
ing water that would otherwise be retained in the natu-
ral snowpack reservoir. As water is a precious and lim-
ited resource in the western United States, this suggests
that we will be faced with difficult and expensive po-
litical, social, and environmental choices for how to
deal with this problem.
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APPENDIX

Treatment of Undercatch

Assume we know the true SWE from the snow
course data but only have an estimate of precipitation
P’ = gP, where P is the true precipitation and g (<1) is
the gauge catch efficiency, which can vary in space. The
quantity 1-g is called the “undercatch.” SWE/P nor-
malized by its time mean (a quantity we call “fractional
SWE/P”), calculated with our estimated value of pre-
cipitation and for the moment assuming g is constant in
time, is

SWE/P’ SWE/gP SWE/P
(SWE/P'Yy  (SWE/gP) (SWE/P)’

(A1)

where angle brackets indicate the time mean. So, ide-
ally, the change in fractional SWE/P is insensitive to
undercatch if g is constant.

The net catch efficiency can be thought of as arising
from parts due to snow and rain:

g8 = fr8r t fs8&s: (A2)

where the subscripts S and R indicate snow and rain
and f are the fractions of total precipitation in each
phase (fz + f¢ = 1). Knowles et al. (2006; K06 hereaf-
ter) showed that the fraction of winter precipitation
falling as snow is decreasing. Since precipitation gauge
catch efficiency is higher for rain than snow, this gives
a systematic upward trend in g, violating the assump-
tion of constant g used in Eq. (Al).

The effect the changing rain/snow mix has on our
results is greater when the difference in gauge effi-
ciency catching rain versus snow is larger, so to be con-
servative we use g¢ = 0.5 and g = 0.9, a difference in
gauge efficiency at the upper end of estimates (e.g.,
Groisman and Easterling 1994). These estimates of gg
and g, along with the linear trend estimates of fg and f5
from K06 allow us to express g as

_ _ Ag
8(n) =g+ Ag(r) = g(l + ?t>, (A3)
where ¢ goes from —1 to +1 (covering our period
1950-99).

Table Al shows Ag, g, and their ratio estimated from
the K06 data, averaged over our regions. The ratio
tends to be small, Ag/g = ¢ =~ 0.02 < 1, which suggests
calculating a correction term to Eq. (Al) that is first
order in &. In fact, 95% of the stations in K06 have & <
0.04, so the higher-order terms are quite small. As a
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TABLE Al. For each of the nine regions examined, the esti-
mated mean precipitation gauge catch efficiency (g), change in
efficiency due to the decrease in fraction of winter precipitation
that falls as snow (Ag), and ratio. Values are computed from data
in Knowles et al. (2006). See text for details.

Region g Ag Aglg
Washington Cascades 0.82 0.015 0.019
Northern Rockies 0.63 0.012 0.020
Oregon Cascades 0.83 0.015 0.018
Blue Mountains 0.78 0.017 0.021
Northern Sierras 0.73 0.018 0.025
Southern Sierras 0.76 0.012 0.015
Great Basin 0.69 0.023 0.034
Wasatch Range 0.61 0.005 0.008
Colorado Rockies 0.59 0.008 0.014

sensitivity test we also calculated g using the procedure
outlined in Serreze et al. (1999), which involves directly
estimating the mean undercatch from large snowfall
events in January, and got similar values of g.

Using Eq. (A3), Eq. (A1) can be written as

SWE/P'  SWE/gP( +en)]  a/(l+ &)
(SWE/P')  (SWE/gP(1 + en]) (a/(1 + e1))’

(Ad)

where o« = SWE/gP. Making repeated use of the ex-
pansion 1/(1 + 8) = 1 — 8 + O(8?), and dropping terms
O(£?) or higher, we obtain after some algebra

SWE/P'
(SWE/P')

SWE/P &(at)
= (SWE/P) <1 —et+ W), (AS5)

which is our desired correction to Eq. (Al).

The middle term on the rhs of Eq. (AS), —et, be-
comes more negative over time when precipitation
gauge efficiency increases over time (as expected with
less precipitation coming as snow). It indicates that ob-
served SWE/P will show a negative trend even if the
true SWE/P ratio is constant, simply owing to the in-
creasing amount of precipitation being caught.

The last term on the rhs of Eq. (A5) can be under-
stood by noting that it is constant, and zero if either the
catch efficiency or the true SWE/P is constant. It there-
fore arises from an interaction between the trends in
catch efficiency and true SWE/P and tends, in the ob-
servations, to exaggerate (if >0) or diminish (if <0) the
actual trend in SWE/P. In practice, however, this term
is negligible as it depends on the interaction of trends
that are modest [SWE/P, with a trend O(0.2)] and small
[g, with a trend O(e)] to begin with.

The gauge catch efficiency at each snow course loca-
tion was estimated from a weighted average of the five
nearest stations in K06, with the weights inversely pro-
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portional to the distance. Stations where (SWE/P) was
greater than gg' before the correction for undercatch
was applied were eliminated (81 stations, 12% of the
total). Such locations might suffer from a poor estimate
of precipitation due to locally rough topography or un-
usually large snow accumulation due to drifting or
small-scale meteorological effects. The station frac-
tional SWE/P estimates were then computed, and cor-
rected using Eq. (AS5). Corrected fractional SWE/P val-
ues were area averaged over the nine mountain regions;
15 stations (2% of the total) did not fall within one of
our mountain regions and were not included in the
analysis over mountain regions (but were included in
the analysis over elevation).

The correction for changing undercatch due to the
evolving snow/rain mix is modest compared to the
changes in SWE/P. The correction reduces the SWE/P
trend about 5% on average, with the largest reduction
in the northern Sierra (17%). This leads to an overall
signal strength S (section 3c) for the observations that is
6% weaker when the changing snow/rain mix is in-
cluded.
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