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AN ADAPTIVE CHOICE OF PRIMAL CONSTRAINTS
FOR BDDC DOMAIN DECOMPOSITION ALGORITHMS∗

JUAN G. CALVO† AND OLOF B. WIDLUND‡

Abstract. An adaptive choice for primal spaces based on parallel sums is developed for BDDC deluxe methods
and elliptic problems in three dimensions. The primal space, which forms the global, coarse part of the domain
decomposition algorithm and which is always required for any competitive algorithm, is defined in terms of generalized
eigenvalue problems related to subdomain edges and faces; selected eigenvectors associated to the smallest eigenvalues
are used to enhance the primal spaces. This selection can be made automatic by using tolerance parameters specified
for the subdomain faces and edges. Numerical results verify the results and provide a comparison with primal spaces
commonly used. They include results for cubic subdomains as well as subdomains obtained by a mesh partitioner.
Different distributions for the coefficients are also considered with constant coefficients, highly random values, and
channel distributions.
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1. Introduction. There has recently been a considerable amount of activity in developing
adaptive methods for the selection of primal constraints for BDDC algorithms and, in particular,
for BDDC deluxe variants. The primal constraints of a BDDC or FETI–DP algorithm provide
the global, coarse part of such a preconditioner, and they are of crucial importance for obtaining
rapid convergence of these preconditioned conjugate gradient methods for the case of many
subdomains. When the primal constraints are chosen adaptively, we aim at selecting a primal
space which for a certain dimension of the coarse space provides the fastest rate of the
convergence for the iterative method. In the alternative, we can try to develop criteria which
will guarantee that the condition number of the iteration stays below a given tolerance. We
note that a fair comparison between different algorithms must also take into account the cost
of the set-up phase and the iterations to follow. So far a comparative study of these issues for
three dimensional problems, similar to the recent study [14] for problems in two dimensions,
appears to be missing.

A particular inspiration for our own work has been a talk (see [7]) by Clark Dohrmann at
DD21, the twenty-first international conference on domain decomposition methods held in
Rennes in June 2012. Dohrmann had then started a joint work with Clemens Pechstein; see
also [23]. Their work has recently resulted in a significant contribution to the theory; see [24].
This rich paper also provides a historical context and many references to the literature.

Much of the earlier work for adaptive BDDC and FETI-DP iterative substructuring
algorithms, which has been supported by theory, has been confined to developing primal
constraints for equivalence classes related to two subdomain boundaries such as those for the
subdomain edges for problems defined on domains in the plane; see, in particular, the paper
by Klawonn, Radtke, and Rheinbach [14]. In our context, the equivalence classes are sets of
finite element nodes which belong to the boundaries of more than one subdomain with the
equivalence relation defined by the sets of subdomain boundaries to which the nodes belong.
In other words, two nodes on the interface Γ between the subdomains belong to the same
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equivalence class if they belong to the same set of subdomain boundaries ∂Ωi. While it is
important to further study the best way of handling all cases, the basic issues appear to be well
settled when the equivalence classes all are defined by just two subdomain boundaries.

We note that this work is relevant for problems posed in H(div) even in three dimensions
(3D) since the degrees of freedom on the interface between subdomains for Raviart-Thomas
and Brezzi-Douglas-Marini elements are associated only with faces of the elements; see [22,
29]. But for other elliptic problems in 3D, there is, except for quite special subdomain
configurations, a need to develop algorithms and results for equivalence classes with three or
more subdomain boundaries.

There is early work by Mandel, Šístek, and Sousedík, who developed condition number
indicators; cf. [19, 20]. A firm theoretical foundation for these algorithms has now been
developed for problems in two dimensions and more recently for an enhanced variant and three
dimensions; see [14] and [13], respectively. Talks by Clark Dohrmann and Axel Klawonn
at DD23, the twenty-third international conference on domain decomposition methods held
in July 2015 on Jeju Island, Korea, have reported on recent progress. A talk by Hyea Hyun
Kim in the same session on joint work with Eric Chung and Junxian Wang also has reported
considerable progress for a different kind of algorithm. Their main new algorithm for problems
in three dimensions is similar but not the same as ours; see further [12] and (3.6). The main
result of this paper, which had been developed independently, has been reported on by the
second author at the same DD23 mini-symposium.

This paper will focus on using parallel sums for general equivalence classes. The use
of parallel sums for equivalence classes with two subdomain boundaries has proven very
successful in simplifying the formulas and arguments; see in particular Pechstein [23, 24] and
also Section 2.1. We note that algorithms using parallel sums for equivalence classes with
more than two subdomain boundaries have been quite successful in numerical experiments by
Simone Scacchi and Stefano Zampini, reported in [5], for problems arising in isogeometric
analysis and also by Zampini [28] in a study of problems formulated in H(curl) based in part
on [9].

We also note that we previously have attempted to design adaptive algorithms, which
resulted in quite complicated formulas and limited success. Among other complications, in one
of these approaches, the primal constraints then had to be extracted by using a QR factorization
of a matrix generated from several bases for spaces of prospective primal constraint vectors
related to pairs of Schur complements. We note that an alternative would be to carry out several
changes of variables, thus enhancing the primal space in several steps, as is done in [11]. See
also a discussion in [24].

In this paper, we will focus on low-order, nodal finite element approximations for scalar
elliptic problems in three dimensions

(1.1) −∇ · (ρ(x)∇u) = f(x), x ∈ Ω, ρ(x) > 0,

resulting in a linear system of equations to be solved using BDDC domain decomposition
algorithms, in particular, its deluxe variant. We will always assume that the choice of boundary
conditions results in a positive definite, symmetric stiffness matrix. Future work is planned on
what is known as the economic variant of the BDDC deluxe algorithm, (e-deluxe), cf. [9], and
on linear elasticity including the almost incompressible case.

The outline of this paper is as follows: in Section 2, we briefly introduce the BDDC
algorithms. This is followed by a discussion of the case of equivalence classes with two
subdomain boundaries and a related generalized eigenvalue problem. The success of the
adaptive algorithm in this case can be explained by examining the eigenvalues of a generalized
eigenvalue problem which is closely related to a face lemma. Such a lemma provides a standard
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technical tool in domain decomposition theory; see [26, Subsection 4.6.3]. Several numerical
experiments reported in Section 2.2 highlight the fact that a small number of primal constraints
often can result in a very favorable bound.

We then, in Section 3, focus on the case of equivalence classes with three subdomain
boundaries. This is the main part of our paper and is relevant, in particular, for contributions of
subdomain edges to the values of a jump operator PD acting on the elements in a product space
related to the subdomains and the finite element space. We derive an upper bound of the square
of a norm based on a Schur complement and note that it has been known for over a decade that
such bounds provide an estimate of the condition number of the FETI–DP algorithm; see (2.1)
and [16]. Given the close connection of the BDDC and FETI–DP algorithms, the bound for
that same jump operator is equally relevant for our work; see [18]. We find that the square of
this norm of a subdomain edge contribution to PDw can be bounded from above in terms of
three parallel sums of single Schur complements and sums of two others. We then attempt
to find a common upper bound of these expressions in terms of the parallel sum of all the
relevant Schur complements. This is not successful, and we instead work directly with the
operators obtained in the estimate of the jump operator and formulate a generalized eigenvalue
problem for each of the edges of the subdomains. We can then select a few eigenvectors
associated with the smallest eigenvalues and generate a primal constraint from each of these
eigenvectors. These generalized eigenvalue problems are defined in terms of principal minors
of relevant Schur complements and Schur complements of these Schur complements associated
with a minimal energy extension, e.g., from a subdomain edge of a three-dimensional finite
element problem. We also provide a bound on the condition number in terms of the smallest
eigenvalues for the subdomain faces and edges which have been left out when constructing the
primal space. We note that Kim et al. [12] have followed a quite similar path although their
upper bound for the norm of the jump operator differs from ours.

In a section that follows, we indicate how to extend our preconditioner and bounds to
equivalence classes with four subdomain boundaries; no new ideas are required. Section 3 is
concluded by the definition of alternative generalized eigenvalue problems which has been
used with success in earlier work by Simone Scacchi and Stefano Zampini [5, 29]. So far these
algorithms lack a theoretical foundation.

Our paper concludes, in Section 4, by demonstrating the performance of our algorithm in
a series of numerical experiments using regular subdomains as well as subdomains generated
by a METIS mesh partitioner; see [10]. We demonstrate that we can obtain fast convergence
for problems with a quite irregular coefficient inside the subdomains. We also report on
experiments with two alternative algorithms based on other generalized eigenvalue problems
using parallel sums and sums of the two sets of Schur complements; we have not been able to
provide a theoretical justification for these variants.

2. Equivalence classes and BDDC algorithms. This section begins with a short intro-
duction to BDDC algorithms; for more details, see, e.g., [17]. For an introduction to its deluxe
variant, see, e.g., [27].

BDDC algorithms are domain decomposition algorithms based on the decomposition
of the domain Ω of an elliptic operator into non-overlapping subdomains Ωi, each often
associated with tens of thousands of degrees of freedom. The subdomain interface Γi of Ωi
does not cut through any elements and is defined by Γi := ∂Ωi \ ∂Ω. Its equivalence classes
are associated with the subdomain faces, edges, and vertices of Γ :=

⋃
i Γi, the interface of the

entire decomposition. Thus, for a problem in three dimensions, a subdomain face is associated
with the degrees of freedom of the nodes belonging to the interior of the intersection of two
boundaries of two neighboring subdomains Ωi and Ωj and does not include any nodes on the
boundary of the face. If such a set consists of several disjoint components, then each of them
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will be classified as a face. Those of a subdomain edge are typically associated with a set of
nodes common to three or more subdomain boundaries, while the endpoints of the subdomain
edges are the subdomain vertices which are associated with even more subdomains.

Given the stiffness matrix A(i) of the subdomain Ωi, we obtain a subdomain Schur
complement S(i) by eliminating the interior variables, i.e., all those that do not belong to Γi.
We will also work with principal minors of these Schur complements associated with faces F
and edges E denoting them by S(i)

FF and S(i)
EE , respectively.

The interface space is divided into a primal subspace of functions which are continuous
across Γ and a complementary, dual subspace for which we will allow multiple values across
the interface during part of the iteration. In this study, all the subdomain vertex variables will
always belong to the primal set.

The BDDC and FETI–DP algorithms can be described in terms of three product spaces of
finite element functions/vectors defined by their interface nodal values:

ŴΓ ⊂ W̃Γ ⊂WΓ.

WΓ is a product space of the spaces defined on the interfaces Γi without any continuity
constraints across the interface. Elements of W̃Γ have common values of the primal variables
but allow multiple values of the dual variables while the elements of ŴΓ are continuous at
all nodes on Γ. We will change variables, explicitly introducing the primal variables and a
complementary sets of dual variables in order to simplify the presentation; see, e.g., [17]. After
eliminating the interior variables, we can then write the subdomain Schur complements as

S(i) =

[
S

(i)
∆∆ S

(i)
∆Π

S
(i)
Π∆ S

(i)
ΠΠ

]
.

We will partially subassemble the S(i), obtaining S̃, enforcing the continuity of the primal
variables only. Thus, we then work in W̃Γ. In each step of the iteration, we solve a linear
system with the coefficient matrix S̃. In the alternative, we could also work with a linear system
with a matrix obtained by partially subassembling the subdomain stiffness matrices A(i). We
note that solving these linear systems will be considerably much faster than working with the
fully assembled system provided that the dimension of the primal space is modest. At the
end of each iteration, the approximate solution is made continuous at all nodal points of the
interface; continuity is restored by applying a weighted averaging operator ED, which maps
W̃Γ into ŴΓ.

In each iteration, we first compute the residual of the fully assembled Schur complement
system. We then apply ETD to obtain a right-hand side for the partially subassembled linear
system, solve this system, and then apply ED. This last step changes the values on Γ unless
the iteration has converged and can result in non-zero residuals at nodes not on Γ. In a final
step of each iteration step, we eliminate these residuals by solving a Dirichlet problem on
each of the subdomains. We always accelerate the iteration with the preconditioned conjugate
gradient algorithm.

2.1. BDDC deluxe. When designing a BDDC algorithm, we have to choose an effective
set of primal constraints and also a good recipe for the averaging across the interface. This
paper concerns the choice of the primal constraints while we will always use the deluxe recipe
in the construction of the averaging operator ED.

We note that in work on three-dimensional problems formulated in H(curl), it was found
that traditional averaging recipes did not always work well; cf. [8, 9]. The same is true for
problems in H(div); see [22]. This occasional failure has its roots in the fact that there are two
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sets of material parameters in these applications. The deluxe scaling that was then introduced
has also proven quite successful for a variety of other applications including isogeometric
analysis; cf. [5, 4]. For a survey, see [27].

A face component of the average operator ED across a subdomain face F ⊂ Γ common
to two subdomains Ωi and Ωj is defined in terms of the principal minors S(k)

FF of the matrix
S(k), k = i, j. The deluxe averaging operator for F is then defined by

w̄F := (EDw)F :=
(
S

(i)
FF + S

(j)
FF

)−1 (
S

(i)
FFw

(i)
F + S

(j)
FFw

(j)
F

)
.

Here, w(i)
F is the restriction of w(i) to the face F, etc.

The action of (S
(i)
FF + S

(j)
FF )−1 can be implemented by solving a Dirichlet problem on

Ωi ∪ F ∪ Ωj , where F is the face between the two subdomains. This can add significantly
to the cost. We can also compute the Schur complements, add them, and factor the sum. We
note that if we would use the popular numerical factorization package MUMPS [1], we could
exploit that these Schur complements are provided when the subdomain matrices are factored.
In an economic variant (e-deluxe), we replace this large domain by a thin domain built from
one or a few layers of elements next to the face, and this often results in very similar iteration
counts; see, e.g., [9]. The advantage of using the e-deluxe variant will depend considerably on
the software used in assembling a program; a discussion of these matters can be found in a
recent paper on problems posed in H(div); see [22].

Deluxe averaging operators are also developed for subdomain edges and any other equiva-
lence classes of interface variables, and the operator ED is assembled from all these compo-
nents; see further Section 3. Our bound for this operator will be obtained from bounds for the
individual equivalence sets and will include factors that depend on the number of equivalence
classes associated with the faces and edges of the individual subdomains; see Theorems 3.2
and 3.4.

The core of any estimate for a BDDC algorithm is the norm of the averaging operator ED.
By an algebraic argument known for FETI–DP since 2002, we know that

(2.1) κ
(
M−1
BDDC Ŝ

)
≤ ‖ED‖S̃ ;

see [16]. Here, κ is the condition number of the iteration matrix, M−1
BDDC denotes the BDDC

preconditioner, and Ŝ the fully assembled Schur complement of the problem.
The analysis of any BDDC deluxe algorithm can be reduced to establishing bounds for

the individual subdomains. The analysis of traditional BDDC algorithms requires the use of
an extension theorem, cf. [15]; the deluxe version does not.

Instead of developing an estimate forED, we will work with PD := I−ED. Instead of es-
timating the norm ofED, we will bound that of PD; we note that as proven in [24, Appendix A],
the norm of these operators are the same. Thus, instead of estimating (RTF w̄F )TS(i)RTF w̄F ,
we will work with the S(i)-norm of RTF (w

(i)
F − w̄F ). Here, RF denotes the restriction to the

face F. By elementary algebra, we find that

w
(i)
F − w̄F =

(
S

(i)
FF + S

(j)
FF

)−1

S
(j)
FF (w

(i)
F − w

(j)
F ).

More algebra gives, by using that S(i)
FF := RFS

(i)RTF ,(
RTF (w

(i)
F − w̄F )

)T
S(i)

(
RTF (w

(i)
F − w̄F )

)
= (w

(i)
F − w

(j)
F )TS

(j)
FF

(
S

(i)
FF + S

(j)
FF

)−1

S
(i)
FF

(
S

(i)
FF + S

(j)
FF

)−1

S
(j)
FF (w

(i)
F − w

(j)
F ).
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Adding a similar contribution from Ωj , we obtain, following Clemens Pechstein, that the
relevant expression of the energy is

(w
(i)
F − w

(j)
F )TS

(i)
FF

(
S

(i)
FF + S

(j)
FF

)−1

S
(j)
FF (w

(i)
F − w

(j)
F )

= (w
(i)
F − w

(j)
F )TS

(i)
FF : S

(j)
FF (w

(i)
F − w

(j)
F ).

The matrix of this positive definite, symmetric quadratic form is a parallel sum; we will use
the notation

A : B := A(A+B)−1B;

cf. [2]. We note that if A and B are positive definite, then A : B = (A−1 +B−1)−1. If A+B
is only positive semi-definite, then we can replace (A + B)−1 by (A + B)†, a generalized
inverse, without any complications. However, see [25] and Section 3 for a discussion of the
case of parallel sums of more than two positive semi-definite operators. We can also work with
shifted, positive definite operators obtained by adding a small positive multiple of the identity
operator to the operators that are singular. This idea has worked well in our experiments; using
generalized inverses have produced results of quite similar quality.

In standard BDDC theory, the required estimate can then be obtained by using a face
lemma, cf. [26, subsection 4.6.3], where such a result is established for constant coefficients
in each subdomain and for polyhedral subdomains. For an adaptive algorithm, this result is
replaced by the use of a generalized eigenvalue problem. Thus, we first solve the generalized
eigenvalue problem

(2.2) S̆
(i)
FF : S̆

(j)
FFφ = λS

(i)
FF : S

(j)
FFφ.

Here,

S̆
(i)
FF := S

(i)
FF − S

(i)T
F ′F S

(i)−1
F ′F ′ S

(i)
F ′F ,

with S(i)
F ′F ′ the principal minor of S(i) with respect to Γi \ F and S(i)

F ′F an off-diagonal block
of S(i). This Schur complement of a Schur complement represents the minimum norm exten-
sion of any finite element function defined on F and will therefore provide a uniform bound for
any extension of the values on F to the rest of Γi. In other words, w(i)T

F S̆
(i)
FFw

(i)
F ≤ ai(w,w)

for any w that equals w(i)
F on the face F. We note that the choice of S̆(i)

FF : S̆
(j)
FF as one of

the matrices of the generalized eigenvalue problem is fully motivated in the proof of [24,
Lemma 5.24].

We note that the eigenvalue problem (2.2) can be replaced by an eigenvalue problem which
uses the inverses of the operators and that, following Zampini, we can extract the inverses of
all the matrices S̆(i)

FF from the inverse of S(i); the inverse of S̆(i)
FF appears as a principal minor

of the inverse of S(i). The same trick can also be used to obtain all the matrices required for
eigenvalue problems related to the subdomain edges which are developed in Section 3. The
inverses of S(i)

FF , etc., are computed via Cholesky factorizations. There are of course also
costs in the set-up phase of the algorithm to solve a generalized eigenvalue problem for each
subdomain face and each subdomain edge. We note that all these computations are local and
can be carried out in parallel. Detailed information on the relative cost of the set-up phase and
the iteration are provided for some large-scale parallel computations in [22].

Primal constraints are then generated by using the eigenvectors of a few of the smallest
eigenvalues of (2.2) and making (S̆

(i)
FF : S̆

(j)
FF )(w

(i)
F − w

(j)
F ) orthogonal to these eigenvectors.
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This orthogonality condition allows us to conclude that

wTF∆(S
(i)
FF : S

(j)
FF )wF∆ ≤

1

λFtol
wTF∆

(
S̆

(i)
FF : S̆

(j)
FF

)
wF∆

for any element wF∆ ∈ W∆, where λFtol is the smallest eigenvalue of the eigenvectors that
have not been chosen when we select the primal constraints. By using all the eigenvectors
as a new basis for the subspace associated with an individual subdomain face, we can easily
separate primal and dual subspaces.

We note that the subdomain matrices A(i) are singular for interior subdomains and so
are the Schur complements S̆(i)

FF . As it was previously pointed out, we can replace the
inverses in the definition of the parallel sum, etc., by generalized inverses without any further
complications.

We now note that w(i)
F − w

(j)
F belongs to the dual space and that therefore

(w
(i)
F − w

(j)
F )TS

(i)
FF : S

(j)
FF (w

(i)
F − w

(j)
F )

≤ 1

λFtol
(w

(i)
F − w

(j)
F )T S̆

(i)
FF : S̆

(j)
FF (w

(i)
F − w

(j)
F ).

What remains is to estimate the expression on the right hand side by the energy attributed
to the two subdomains Ωi and Ωj . To do so, we will use a formula for the parallel sum of two
operators; cf. [3, Theorem 9], see also [24, Corollary 5.11].

LEMMA 2.1. Let A and B be two symmetric, positive semi-definite matrices of the same
order. Then, zTA : Bz = infz=x+y(xTAx+ yTBy).

Choosing x = w
(i)
F and y = −w(j)

F , we find that we have established the following result.
LEMMA 2.2. Let λFtol be the smallest eigenvalue of (2.2) not chosen when selecting the

primal constraints for a subdomain face F . We then have

(2.3) ‖(PDw)|F ‖2S̃ ≤
1

λFtol
(ai(w,w) + aj(w,w)) ,

where ai(·, ·) is the bilinear form associated with (1.1) obtained by restricting the integration
to Ωi, etc.

We note that a less precise version of formula (2.3) has previously been developed with
the factor 2

λF
tol

; see, e.g., [14] as well as in the original version of this paper.

2.2. Convergence of eigenvalues. The success of this kind of algorithm is closely related
to the rapid convergence of the eigenvalues of (2.2) to 1. Numerical experiments reported
in four plots illustrate a rapid decay of the eigenvalues of S(i)−1

FF (S
(i)
FF − S̆

(i)
FF ) even for

problems with highly oscillatory coefficients; see Figure 2.1. The same can be said for
subdomains generated by the METIS mesh partitioner software; see Figure 2.2. This shows
that the eigenvalues of S(i)−1

FF S̆
(i)
FF approach 1 quite rapidly and that, except on a very small

subspace, the action of S(i)
FF and S̆(i)

FF are virtually the same. Therefore the same can be said
of S(i)

FF : S
(j)
FF and S̆(i)

FF : S̆
(j)
FF . This fact is illustrated in four additional plots; see Figures 2.3

and 2.4.
In the case of a random coefficient ρ(x), we use a uniform distribution to pick a number r

in the interval [−3, 3] and then assign the value 10r to ρ in individual elements.
As a consequence of these findings, the eigenvalues of (2.2) converge to 1 quite rapidly

even for problems with large changes in the coefficients inside the subdomains. Therefore, we
do not need to expand the primal space very much.
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FIG. 2.1. Eigenvalues of S(i)−1
FF (S

(i)
FF − S̆

(i)
FF ) for a face with 225 nodes of 3D problems with cubic subdomains.
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FIG. 2.2. Eigenvalues of S(i)−1
FF (S

(i)
FF − S̆

(i)
FF ) for a face with 90 nodes of 3D problems with METIS

subdomains.

Figures 2.1 and 2.2 suggest that the operator S(i)−1
FF (S

(i)
FF − S̆

(i)
FF ) is associated with a

compact operator. We can offer an explanation at least for the case with constant coefficients.
We first recall that the trace class of H1(Ωi) is H1/2(∂Ωi). For a face F ⊂ ∂Ωi, the trace
semi-norm is defined by

(2.4) |u|2H1/2(F ) :=

∫
F

∫
F

|u(x)− u(y)|2

|x− y|3
dSxdSy.

We obtain the H1/2(F )-norm by adding 1/HF ‖u‖2L2(F ), where HF is the diameter of F. We

find that the S(i)
FF -norm is equivalent to the norm obtained by restricting (2.4) to the finite

element space; cf. [26, Lemma 4.6].
It is also known that the H1/2(Γi)-norm of the minimal norm extension of any element

u ∈ H1/2(F ) is bounded uniformly by ‖u‖H1/2(F ). But it is also known that an extension by

zero even for H1/2
0 (F ), the closure of C∞0 (F ) in this norm, fails to be uniformly bounded.

The subspace for which the extension by zero is bounded is known as H1/2
00 (F ). A norm for

this subspace is given by

(2.5) ‖u‖2
H

1/2
00 (F )

:= |u|2H1/2(F ) +

∫
F

|u(x)|2

d(x)
dSx,

where d(x) is the distance from x to ∂F. The formula (2.5) can be derived for any Lipschitz
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FIG. 2.3. Eigenvalues of S̆(i)
FF : S̆

(j)
FFφ = λS

(i)
FF : S

(j)
FFφ for a face with 225 nodes of 3D problems with

cubic subdomains.
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FIG. 2.4. Eigenvalues of S̆(i)
FF : S̆

(j)
FFφ = λS

(i)
FF : S

(j)
FFφ for a face with 90 nodes of 3D problems with

METIS subdomains.

region by considering the square of the H1/2(Γi)-norm of the extension of u(x) by zero onto
F ′ := Γi \ F ; see, e.g., [21].

A reflection of the fact that H1/2
00 is a true subspace of H1/2

0 (F ) is the well-known bound
for finite element spaces

‖uh‖2H1/2
00 (F )

≤ C (1 + log(Hi/hi))
2 ‖uh‖2H1/2(F ),

which is known to be sharp; see [6, Lemma 4.2 and Remark 4.3] and also [26, Lemma 4.24]. It
is interesting to note that this estimate gives us an estimate of the smallest non-zero eigenvalue
of (2.2); we can establish that in the special case considered, this eigenvalue is proportional to
1/(1 + log(H/h))2; see also [26, Subsubsection 4.6.3].

The restriction of the new term
∫
F
|u(x)|2
d(x) dx to the finite element space gives a weighted

mass matrix which is spectrally equivalent to a diagonal matrix with elements varying in
proportion to 1/d(x). This matrix is easily seen to be well approximated by a matrix of low
rank since the weight function 1/d(x) varies between values of 2/Hi and of 1/hi. It then
follows that the matrix S(i)−1

FF (S
(i)
FF − S̆

(i)
FF ) can be approximated well by a matrix of low

rank.

3. Equivalence classes with three subdomain boundaries. We begin this section by
considering parallel sums of more than two operators. We will work with symmetric matrices
which all are at least positive semi-definite. We recall that for a pair of symmetric, positive



ETNA
Kent State University

http://etna.math.kent.edu

BDDC WITH ADAPTIVE PRIMAL SPACES 533

definite matrices A and B, their parallel sum is given by A : B := A(A + B)−1B or
(A−1 +B−1)−1. If A+B is singular, we can work with a generalized inverse.

For three positive definite matrices, we can define their parallel sum by

A : B : C := (A−1 +B−1 + C−1)−1,

with similar formulas for four or more matrices. A quite complicated formula for A : B : C
is given in [25] for the general case when some or all of the matrices might be only positive
semi-definite. It is also shown in [25, Theorem 3] that A : B : C = (A† +B† + C†)† if and
only if the three operators A,B, and C have the same range. In our context, this is not always
the case since the matrix S̆(i)

EE defined below will be singular if Ωi is an interior subdomain
while it will be non-singular if ∂Ωi intersects a part of ∂Ω where a Dirichlet condition is
imposed. This issue can be avoided by making all operators non-singular by adding a small
positive multiple of the identity to the singular operators.

As we previously have pointed out, our interest in working with parallel sums with more
than two operators is inspired by Scacchi’s and Zampini’s success in using parallel sums of
more than two operators.

We will first focus on a case of an equivalence class common to three subdomain bound-
aries as it arises for most subdomain edges in a three-dimensional finite element context if the
subdomains are generated using a mesh partitioner. We will use the notation S(i)

EE , S
(j)
EE , and

S
(k)
EE for the principal minors, of the degrees of freedom of an edge E, of the subdomain Schur

complements of the three subdomains that have this subdomain edge in common. The Schur
complements of the Schur complements representing the minimal energy extensions to indi-
vidual subdomains of given values on the subdomain edge E will be denoted by S̆(i)

EE , S̆
(j)
EE ,

etc., and are defined by

(3.1) S̆
(i)
EE := S

(i)
EE − S

(i)T
E′ES

(i)−1
E′E′ S

(i)
E′E , etc.

Here S(i)
E′E′ is the principal minor of S(i) of Γi \ E, and S(i)

E′E is an off-diagonal block.
We can now introduce the deluxe average over the edge E by

(3.2) w̄E :=
(
S

(i)
EE + S

(j)
EE + S

(k)
EE

)−1 (
S

(i)
EEw

(i)
E + S

(j)
EEw

(j)
E + S

(k)
EEw

(k)
E

)
.

We then establish that the contribution of the subdomain Ωi to the square of the norm of the
contribution of the edge to PDw = w − EDw is the square of the S(i)

EE-norm of(
S

(i)
EE + S

(j)
EE + S

(k)
EE

)−1 ((
S

(j)
EE + S

(k)
EE

)
w

(i)
E − S

(j)
EEw

(j)
E − S

(k)
EEw

(k)
E

)
,

which can be estimated by the sum of

3w
(i)T
E

(
S

(j)
EE + S

(k)
EE

)(
S

(i)
EE + S

(j)
EE + S

(k)
EE

)−1

S
(i)
EE

(
S

(i)
EE + S

(j)
EE + S

(k)
EE

)−1(
S

(j)
EE + S

(k)
EE

)
w

(i)
E ,

3w
(j)T
E S

(j)
EE

(
S

(i)
EE + S

(j)
EE + S

(k)
EE

)−1

S
(i)
EE

(
S

(i)
EE + S

(j)
EE + S

(k)
EE

)−1

S
(j)
EEw

(j)
E ,

and

3w
(k)T
E S

(k)
EE

(
S

(i)
EE + S

(j)
EE + S

(k)
EE

)−1

S
(i)
EE

(
S

(i)
EE + S

(j)
EE + S

(k)
EE

)−1

S
(k)
EEw

(k)
E .

Here, we can replace w(i)
E by the difference w(i)

E∆ between the original w(i)
E and an appropriate

element in the primal space. The same shift is used to construct w(j)
E∆ and w(k)

E∆.
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The other two subdomains also contribute terms which can be obtained from the formulas
above by changing superscripts appropriately. The three terms that involve w(i)

E∆ are

3w
(i)T
E∆

(
S

(j)
EE + S

(k)
EE

)(
S

(i)
EE + S

(j)
EE + S

(k)
EE

)−1

S
(i)
EE

(
S

(i)
EE + S

(j)
EE + S

(k)
EE

)−1(
S

(j)
EE + S

(k)
EE

)
w

(i)
E∆,

3w
(i)T
E∆ S

(i)
EE

(
S

(i)
EE + S

(j)
EE + S

(k)
EE

)−1

S
(j)
EE

(
S

(i)
EE + S

(j)
EE + S

(k)
EE

)−1

S
(i)
EEw

(i)
E∆,

and

3w
(i)T
E∆ S

(i)
EE

(
S

(i)
EE + S

(j)
EE + S

(k)
EE

)−1

S
(k)
EE

(
S

(i)
EE + S

(j)
EE + S

(k)
EE

)−1

S
(i)
EEw

(i)
E∆.

By first adding the second and third terms and then usingA(A+B)−1B = B(A+B)−1A,
we find that we can write the sum of these three terms as

3w
(i)T
E∆ S

(i)
EE :

(
S

(j)
EE + S

(k)
EE

)
w

(i)
E∆.

There are also two additional terms representing the squares of certain norms ofw(j)
E∆ andw(k)

E∆.
They are obtained by appropriately permuting the superscripts.

This formula represents a simplification of what was worked out in a joint paper with
Beirão da Veiga et al. [4] and also in the development of the theory in a more recent paper
with Dohrmann on three-dimensional problems in H(curl); see [9]. We can now immediately
obtain a bound of the square of the norm of this edge-component of PDw by

3
(
w

(i)T
E∆ S

(i)
EEw

(i)
E∆ + w

(j)T
E∆ S

(j)
EEw

(j)
E∆ + w

(k)T
E∆ S

(k)
EEw

(k)
E∆

)
by using only that S(i)

EE : (S
(j)
EE + S

(k)
EE) ≤ S

(i)
EE , etc. For certain problems, e.g., those

with constant coefficients in each subdomain and polyhedral subdomains, we can then obtain
respectable bounds even without solving any generalized eigenvalue problems. This typically
results in a bound involving a factor C(1 + log(H/h)); cf. [26, Lemma 4.16]. A fully
satisfactory proof of this result in given in [9].

Returning to the search for adaptive primal spaces, we note that ideally, we would now
like to prove that the three operators

T
(i)
E := S

(i)
EE :

(
S

(j)
EE + S

(k)
EE

)
,

T
(j)
E := S

(j)
EE :

(
S

(i)
EE + S

(k)
EE

)
,

T
(k)
E := S

(k)
EE :

(
S

(i)
EE + S

(j)
EE

)(3.3)

all can be bounded uniformly from above by

(3.4) S
(i)
EE : S

(j)
EE : S

(k)
EE :=

(
S

(i)−1
EE + S

(j)−1
EE + S

(k)−1
EE

)−1

.

If this were possible, we could use that same matrix for estimates for w(i)
E∆, w

(j)
E∆, and w(k)

E∆.
But we are not that lucky. Before we look at the details, we note that if we were to use the
generalized eigenvalues obtained from two parallel sums with three Schur complements as
in (3.4), we could complete our argument by noting that

S̆
(i)
EE : S̆

(j)
EE : S̆

(k)
EE ≤ S̆

(i)
EE , etc.,
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and using similar arguments as in the previous section. Thus, a second parallel sum would be
constructed by using the Schur complements of the previous Schur complements, associated
with the minimal energy extension given by (3.1).

Let us now make an attempt to find a bound such as

S
(i)
EE :

(
S

(j)
EE + S

(k)
EE

)
≤ Const.S(i)

EE : S
(j)
EE : S

(k)
EE .

The operator on the left equals(
S

(i)−1
EE +

(
S

(j)
EE + S

(k)
EE

)−1
)−1

and the one on the right is given by (3.4). The desired inequality would hold if

S
(j)−1
EE + S

(k)−1
EE ≤ Const.

(
S

(j)
EE + S

(k)
EE

)−1

,

but by using the eigensystem of the generalized eigenvalue problem, S(j)
EEφ = µS

(k)
EEφ, we

find that the best constant above would be maxµ(µ+ 2 + 1/µ). If S(i)−1
EE S

(j)
EE and S(i)−1

EE S
(k)
EE

were well-conditioned, then we would obtain a good bound. In our experience, this is not at
all the case for many problems.

If we like to prove a bound which does not require any additional assumptions, we have
to find a different common upper bound for T (i)

E , T
(j)
E , and T (k)

E defined in (3.3). This can be
accomplished by using the trivial inequality

T
(i)
E ≤ T

(i)
E + T

(j)
E + T

(k)
E , etc.

We will therefore define our generalized eigenvalue problem as

(3.5)
(
S̆

(i)
EE : S̆

(j)
EE : S̆

(k)
EE

)
φ = λ

(
T

(i)
E + T

(j)
E + T

(k)
E

)
φ .

This is the recipe that we have used in most of our numerical experiments to select primal
constraints by using a selection of eigenvectors. We note that these eigenvalue problems are
different from those of Section 2.2 and less attractive; see further the next section. Given the
success of others with using parallel sums of each of the two sets of three Schur complements,
we have also carried out experiments with that alternative generalized eigenvalue problem
although we have not been able to justify this choice theoretically. We have also tested an
additional alternative.

We note that in their recent paper, Kim, Chung, and Wang [12] used an approach similar
to ours but using the operator

S
(j)
E

(
S

(i)
E + S

(j)
E + S

(k)
E

)−1

S
(i)
E

(
S

(i)
E + S

(j)
E + S

(k)
E

)−1

S
(j)
E

+ S
(k)
E

(
S

(i)
E + S

(j)
E + S

(k)
E

)−1

S
(i)
E

(
S

(i)
E + S

(j)
E + S

(k)
E

)−1

S
(k)
E

(3.6)

in place of our T (i)
E , etc.

An alternative generalized eigenvalue problem could be obtained by replacing the sum on
the right hand side of (3.5) by S(i)

EE + S
(j)
EE + S

(k)
EE . Since T (i)

E ≤ S
(i)
EE , we see that we again

can obtain a solid bound. But we would then be one step further away from the expression of
the energy of (PDw)|E .
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We can now write down a bound similar to the one of (2.3) in terms of a tolerance for the
eigenvalues of (3.5) by using that

S̆
(i)
EE : S̆

(j)
EE : S̆

(k)
EE ≤ S̆

(i)
EE , etc.

We have the following lemma:
LEMMA 3.1. Let λEtol be the smallest eigenvalue of (3.5) not chosen when selecting the

primal constraints for a subdomain edge E shared by three subdomains Ωi,Ωj , and Ωk. We
then have

‖(PDw)|E‖2S̃ ≤
3

λEtol
(ai(w,w) + aj(w,w) + ak(w,w)) ,

where ai(·, ·) is the bilinear form associated to (1.1) and the subdomain Ωi, etc.
We can now combine the estimates of Lemmas 2.2 and 3.1 into what is our main theoretical

result. Our result is similar to that of [12, Lemma 4.1].
THEOREM 3.2. Assume that all subdomain edges are common to no more than three

subdomains. The S̃-norm of the operator PD then satisfies

‖PDw‖2S̃ ≤
(

2N2
F

minF λFtol
+

6N2
E

minE λEtol

)
‖w‖2

Ŝ
.

Here NF is the maximum number of faces of any subdomain, and NE is the maximum number
of edges. Therefore, the condition number of the deluxe BDDC algorithm satisfies

κ
(
M−1
BDDC Ŝ

)
≤ 2N2

F

minF λFtol
+

6N2
E

minE λEtol
·

Proof. We first note that we can write PDw as the sum of the sum of (PDw)|F over all
subdomain faces of the interface Γ and the sum of (PDw)|E over all subdomain edges of Γ.
By an elementary estimate, we find that ‖PDw‖2S̃ can be bounded by 2 times the sum of the
squares of the norms of the two sums. We next consider the square of the S(i)-norm of the sum
of (PDw)|F over the faces of Ωi. The fact that there are at most NF such faces introduces
an additional factor NF in front of the sum of ‖(PDw)|F ‖2S(i) . Lemma 2.2 shows that each
such term can be bounded by 1

λF
tol

(ai(w,w) + aj(w,w)). We find that the factor multiplying

ai(w,w) is bounded by 2N2
F

minF λF
tol

.

The estimate of the edge terms can be derived very similarly. The factor will be larger
since we have an extra factor 3 in Lemma 3.1.

We note that we have found this bound to be quite pessimistic given the quadratic factors
2N2

F and 6N2
E . A similar bound is provided in Section 3.2 for the case when the maximum

number of the subdomains common to a subdomain edge equals 4; the factor 6 in the second
term will be replaced by 8.

3.1. Some eigenvalue distributions. Following the example of Section 2.2, we have
computed the eigenvalues of S(i)−1

EE (S
(i)
EE − S̆

(i)
EE). The four plots provide information on the

eigenvalues of the generalized eigenvalue problem defined by S(i)
EE and S̆(i)

EE in four different
cases.

We note that while in all cases we have one eigenvalue equal to 1, the decay of the rest
of the spectra is much less pronounced than for the faces. We note that a subdomain edge
typically will be associated with much fewer degrees of freedom than a subdomain face and
that therefore the need for a very rapid decay of these eigenvalues might be less important.
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FIG. 3.1. Eigenvalues of S(i)−1
EE (S

(i)
EE − S̆

(i)
EE) for an edge with 31 nodes of 3D problems with cubic

subdomains.
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FIG. 3.2. Eigenvalues of S(i)−1
EE (S

(i)
EE − S̆

(i)
EE) for an edge with 32 nodes of 3D problems with METIS

subdomains.

3.2. Equivalence classes with four subdomain boundaries. This case very closely
parallels the previous. The average defined by (3.2) is replaced by

w̄E :=
(
S

(i)
EE + S

(j)
EE + S

(k)
EE + S

(`)
EE

)−1 (
S

(i)
EEw

(i)
E + S

(j)
EEw

(j)
E + S

(k)
EEw

(k)
E + S

(`)
EEw

(`)
E

)
.

We find that the energy of PDw can be estimated by the sum of four terms, the first two of
which are

4w
(i)T
E∆ S

(i)
EE :

(
S

(j)
EE + S

(k)
EE + S

(`)
EE

)
w

(i)
E∆

and

4w
(j)T
E∆ S

(j)
EE :

(
S

(i)
EE + S

(k)
EE + S

(`)
EE

)
w

(j)
E∆.

If a bound of S(i)
EE in terms of S̆(i)

EE and similar bounds for the other pairs of Schur
complements were available, then we could obtain a bound right away for the BDDC algorithm,
without adaption, with a factor 4. This is also an improvement as far as the constant is concerned
in comparison to previous results. But here we will focus on selecting the primal constraints
adaptively.

With four subdomains in the equivalence class, we use four operators

T
(i)
E := S

(i)
EE :

(
S

(j)
EE + S

(k)
EE + S

(`)
EE

)
, T

(j)
E := S

(j)
EE :

(
S

(i)
EE + S

(k)
EE + S

(`)
EE

)
, etc.
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All these operators are symmetric, positive definite, and they appear directly in our estimate of
the energy of PDw. We can now use the trivial inequality

T
(i)
E ≤ T

(i)
E + T

(j)
E + T

(k)
E + T

(`)
E

and very similar bounds for the other terms and arrive at the generalized eigenvalue problem

(3.7)
(
S̆

(i)
EE : S̆

(j)
EE : S̆

(k)
EE : S̆

(`)
EE

)
φ = λ

(
T

(i)
E + T

(j)
E + T

(k)
E + T

(`)
E

)
φ.

Both operators of (3.7) are symmetric with respect to the Schur complements. What will
be featured in the final bound would be the smallest eigenvalue not taken into account, i.e.,
with eigenvectors not associated with the primal space, and a fixed factor similar to what
appears in the bounds of Lemmas 2.2 and 3.1 and Theorem 3.2.

LEMMA 3.3. Let λEtol be the smallest eigenvalue of (3.5) not chosen when selecting the
primal constraints for a subdomain edge E shared by four subdomains Ωi,Ωj , Ωk, and Ω`.
We then have

‖(PDw)|E‖2S̃ ≤
4

λEtol
(ai(w,w) + aj(w,w) + ak(w,w) + a`(w,w)) ,

where ai(·, ·) is the bilinear form associated to (1.1) and the subdomain Ωi, etc.
We can now combine the estimates of Lemmas 2.2 and 3.3 into what is our main theoretical

result for this case.
THEOREM 3.4. Assume that all subdomain edges are common to no more than four

subdomains. The S̃-norm of the operator PD then satisfies

‖PDw‖2S̃ ≤
( 2N2

F

minF λFtol
+

8N2
E

minE λEtol

)
‖w‖2

Ŝ
.

Here NF is the maximum number of faces of any subdomain, and NE is the maximum number
of edges. Therefore, the condition number of the deluxe BDDC algorithm satisfies

κ
(
M−1
BDDC Ŝ

)
≤ 2N2

F

minF λFtol
+

8N2
E

minE λEtol
·

The proofs of this lemma and theorem follow exactly the same lines as those of Lemma 3.1
and Theorem 3.2.

3.3. Recipes of some previous work. Several other generalized eigenvalue problems
have been employed quite successful but so far lack full theoretical justifications.

Scacchi and Zampini have used what would correspond to the operators S(i)
EE : S

(j)
EE : S

(k)
EE

and S̆(i)
EE + S̆

(j)
EE + S̆

(k)
EE or S̆(i)

EE : S̆
(j)
EE : S̆

(k)
EE for difficult, very ill-conditioned problems

arising in isogeometric analysis. Stefano Zampini has also used S(i)
EE : S

(j)
EE : S

(k)
EE and

S̆
(i)
EE : S̆

(j)
EE : S̆

(k)
EE successfully for subdomain edges and three-dimensional H(curl) prob-

lems; see [28]. So far, we have not found as full a justification for these recipes as for the one
based on using the generalized eigenvalue problems (2.2), (3.5), and (3.7).

4. Numerical results. We present some numerical results for our adaptive BDDC deluxe
algorithm. We consider a triangulation of the unit cube into tetrahedral elements and decom-
positions of this domain into cubic subdomains or subdomains obtained by using a METIS
mesh partitioner; see Figure 4.1.
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METIS decomposition. One of the METIS subdomains.

FIG. 4.1. Domain decomposition obtained by METIS for the unit cube, N = 27.

Channels with ρ = 103. Coefficient distribution.

FIG. 4.2. Coefficient distribution with channels: black elements on the right have ρ = 103, and all the other
elements have ρ = 1.

We solve the resulting linear systems with random right-hand sides using BDDC pre-
conditioners to a relative residual tolerance of 10−6. We always use a zero initial guess. The
number of iterations and condition number estimates (in parentheses) are reported for each
experiment.

EXAMPLE 4.1. We first consider the scalability of the BDDC deluxe algorithm for a cubic
subdomain partitioning of the unit cube and for different standard choices of the primal space.
The column label “Corners” represents the common choice with only primal constraints for the
subdomain vertices. “Edges” adds the average over each edge to the set of primal constraints
while “Edges and Faces” additionally uses the averages over each face; see Table 4.1. We then
compare these results with adaptive algorithms based on generalized eigenvalue problems;
see Table 4.2. The numbers in its first two columns represent the fraction of the range of the
eigenvalues related to the subdomain edges that are incorporated into the primal space through
their eigenvectors. Thus, given the interval between the smallest and the largest eigenvalues,
we use, as primal constraints, the eigenvectors of all the eigenvalues that lie in the leftmost 5%
or 50% of this interval. For the faces, we always use a fixed 5%. Finally, for the last column,
“Adaptive”, we use λFtol = (1 + log(H/h))−1, λEtol = (kH/h)−1, where k is the number of
subdomains that share the edge E to select the eigenvalues. These formulas are borrowed
from [12] and have allowed us to make direct comparisons with results of that study. We have
also found that this recipe selects a relatively small number of effective primal constraints.
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TABLE 4.1
Performance for different choices of primal constraints with H/h = 8 and cubic subdomains. NE is the

number of subdomain edges, and DOF is the number of degrees of freedom of the problem.

Corners Edges Edges and Faces NE DOF
ρ N I(κ) |WΠ| I(κ) |WΠ| I(κ) |WΠ|
1 33 12(14.9) 8 12(13.9) 44 12(13.9) 98 36 15626

43 17(16.6) 27 17(15.6) 135 17(15.6) 279 108 35937
53 24(17.2) 64 24(16.1) 304 23(16.1) 604 240 68921
63 26(17.6) 125 25(16.5) 575 25(16.5) 1115 450 117649

R 33 23(42.9) 8 21(39.2) 44 23(39.1) 98 36 15626
43 34(77.9) 27 33(64.8) 135 37(62.3) 279 108 35937
53 51(83.4) 64 48(75.5) 304 51(75.2) 604 240 68921
63 68(106) 125 66(90.0) 575 61(90.0) 1115 450 117649

S 33 24(176) 8 24(174) 44 23(173) 98 36 15626
43 37(1068) 27 37(985) 135 33(981) 279 108 35937
53 60(1994) 64 59(1812) 304 55(1804) 604 240 68921
63 74(2234) 125 71(2022) 575 64(2013) 1115 450 117649

TABLE 4.2
Scalability for adaptive primal constraints with H/h = 8 and cubic subdomains.

Primal 5% Primal 50% Adaptive
ρ N I(κ) |WΠ| I(κ) |WΠ| I(κ) |WΠ| [f ]

1 33 6(1.5) 98 6(1.5) 122 8(2.2) 50 [0.6]
43 6(1.5) 279 6(1.5) 333 8(2.2) 189[0.8]
53 7(1.5) 604 6(1.5) 700 8(2.2) 460[0.9]
63 7(1.5) 1115 7(1.5) 1265 8(2.1) 905[0.9]

R 33 14(5.9) 115 11(3.2) 213 10(2.5) 237[2.6]
43 16(7.4) 336 13(7.3) 622 11(3.1) 746[3.0]
53 19(12.1) 765 13(4.0) 1361 11(3.1) 1698[3.1]
63 22(20.9) 1368 14(5.5) 2534 11(3.5) 3140[3.2]

S 33 9(10.5) 102 9(10.5) 119 10(10.6) 65[0.7]
43 10(14.3) 285 10(13.8) 340 11(11.6) 197[0.8]
53 11(15.2) 612 11(14.5) 708 11(15.2) 473[0.9]
63 12(15.3) 1125 12(14.6) 1272 12(15.3) 918[0.9]

However, we note that in numerical experiments not reported here, we have found that the
smallest eigenvalues of the generalized eigenvalue problems for the subdomain edges remain
above a positive constant when H/h increases.

The number [f ] in square brackets represents the ratio of the dimension of the primal
space and the total number of edges and faces. Different choices of ρ are considered in all
cases: ρ = 1, ρ = R (random values for each element), and ρ = S (a distribution with rods
and with jumps in the coefficients; see Figure 4.2). In the case of random values, we use a
uniform distribution to pick a number r in the interval [−3, 3] and then assign to each element
the value 10r.

These experiments show that the standard choices of primal constraints can fail quite
badly for problems with a coefficient that varies considerably inside the subdomains. The
results for the adaptive choices of primal constraints are much more satisfactory. We also
find that we can have success with only a small number of primal constraints even for the
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TABLE 4.3
Performance for different choices of primal constraints with H/h = 8 and METIS subdomains. NE is the

number of subdomain edges.

Corners Edges Edges and Faces NE
ρ N I(κ) |WΠ| I(κ) |WΠ| I(κ) |WΠ|
1 33 17(7.0) 51 16(6.4) 169 15(6.3) 268 126

43 20(7.4) 164 19(6.4) 516 17(6.3) 793 389
53 22(8.2) 417 25(11.2) 1265 23(11.1) 1886 951
63 26(10.0) 658 28(10.1) 1977 25(9.9) 2912 1458

R 33 21(15.5) 51 32(44.1) 169 31(54.9) 268 126
43 27(14.7) 164 46(124) 516 48(236) 793 389
53 34(19.5) 417 64(384) 1265 61(383) 1886 951
63 39(24.1) 658 68(108) 1977 71(242) 2912 1458

S 33 29(147) 51 50(173) 169 56(171) 268 126
43 35(263) 164 64(242) 516 69(232) 793 389
53 52(254) 417 110(1911) 1265 117(1859) 1886 951
63 57(398) 658 161(1125) 1977 160(1121) 2912 1458

TABLE 4.4
Scalability for adaptive primal constraints with H/h = 8 and METIS subdomains.

Primal 5% Primal 50% Adaptive
ρ N I(κ) |WΠ| I(κ) |WΠ| I(κ) |WΠ| [f ]

1 33 7(2.0) 252 8(2.0) 299 9(2.4) 108[0.5]
43 8(1.9) 732 7(1.8) 855 9(2.4) 363[0.5]
53 12(5.9) 1697 12(5.9) 1884 13(6.0) 927[0.6]
63 15(5.7) 2688 14(5.7) 2967 14(5.7) 2319[0.9]

R 33 15(15.1) 275 12(4.9) 379 13(4.8) 264[1.2]
43 16(12.9) 798 14(7.9) 1143 21(24.3) 834[1.2]
53 23(15.3) 1852 19(11.8) 2607 20(13.1) 2036[1.2]
63 24(16.0) 3003 22(15.7) 4216 20(15.8) 4115[1.7]

S 33 15(47.9) 263 14(37.8) 300 14(32.4) 143[0.6]
43 20(50.8) 748 20(50.3) 864 20(31.3) 402[0.6]
53 23(86.0) 1723 25(85.9) 1908 23(86.6) 981[0.6]
63 33(55.0) 2710 33(55.0) 3019 35(55.0) 2379[0.6]

subdomain edges. We also note that adaptive choices of the primal constraints can result in
much smaller condition numbers even for the case of a constant coefficient ρ.

EXAMPLE 4.2. We verify the scalability of our algorithm for METIS subdomains with
the same coefficient distribution as in Example 4.1; see Tables 4.3 and 4.4. The results are in
many cases quite similar to those for cubic subdomains.

EXAMPLE 4.3. This example is used to study the behavior of our algorithm for increasing
values of H/h with 27 cubic subdomains; see Table 4.5. We find the results, all obtained with
the tolerances used in the "Adaptive" columns of Tables 4.2 and 4.4, quite satisfactory.

EXAMPLE 4.4. This example is used to compare the behavior of different eigenvalue
problems with 27 cubic subdomains and H/h = 16; see Table 4.6. Here, ET refers to the
generalized eigenvalue problem (3.7), Epar refers to(

S̆
(i)
EE : S̆

(j)
EE : S̆

(k)
EE : S̆

(`)
EE

)
φ = λ

(
S

(i)
EE : S

(j)
EE : S

(k)
EE : S

(`)
EE

)
φ,
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TABLE 4.5
Results for the adaptive algorithm with 27 cubic subdomains for increasing values of H/h.

ρ = 1 ρ = R ρ = S
H/h I(κ) |WΠ| [f ] I(κ) |WΠ| [f ] I(κ) |WΠ| [f ]

4 5(1.2) 62[0.7] 7(1.7) 154[1.7] 5(1.2) 62[0.7]
8 8(2.2) 50[0.6] 10(2.5) 237[2.6] 10(10.7) 65[0.7]

12 9(2.7) 50[0.6] 12(4.0) 265[2.9] 11(19.7) 89[1.0]
16 10(3.1) 50[0.6] 13(4.3) 270[3.0] 12(5.4) 60[0.7]

TABLE 4.6
Results for different eigenvalue problems with N cubic subdomains and H/h = 8.

ET Epar Emix
ρ N I(κ) |WΠ| [f ] I(κ) |WΠ| [f ] I(κ) |WΠ| [f ]

1 33 8(2.1) 50[0.6] 8(2.1) 50[0.6] 8(2.2) 38[0.5]
43 8(2.1) 189[0.8] 8(2.1) 189[0.8] 8(2.2) 141[0.6]
53 8(2.1) 460[0.8] 8(2.1) 460[0.8] 8(2.2) 352[0.7]
63 8(2.1) 905[0.9] 8(2.1) 905[0.9] 9(2.2) 713[0.7]

R 33 10(2.5) 237[2.6] 13(4.3) 71[0.8] 13(4.3) 59[0.7]
43 11(7.3) 746[3.0] 15(9.6) 246[1.0] 14(4.4) 198[0.8]
53 11(3.1) 1698[3.1] 16(8.8) 604[1.1] 14(4.8) 496[0.9]
63 11(3.5) 3140[3.2] 18(10.3) 1158[1.2] 17(8.5) 966[1.0]

S 33 10(10.6) 65[0.7] 10(12.0) 57[0.7] 11(13.6) 41[0.5]
43 11(11.6) 197[0.8] 14(30.0) 189[0.8] 14(29.1) 140[0.6]
53 11(15.2) 473[0.9] 15(30.0) 463[0.9] 14(29.1) 354[0.7]
63 12(15.3) 918[0.9] 17(30.0) 906[0.9] 16(29.4) 713[0.7]

and Emix to(
S̆

(i)
EE + S̆

(j)
EE + S̆

(k)
EE + S̆

(`)
EE

)
φ = λ

(
S

(i)
EE : S

(j)
EE : S

(k)
EE : S

(`)
EE

)
φ.

5. Conclusions. We have developed adaptive choices for the primal spaces for BDDC
deluxe methods and elliptic problems and a theoretical bound for the condition number of the
preconditioned system. We have first observed that adaptivity can considerably improve the
performance since classical choices with primal vertices, edge averages, and faces averages
can fail in case of large variations in the coefficients; see Table 4.1 and 4.3. Second, numerical
experiments show that the primal constraints related to the subdomain faces generally are easy
to handle; this is supported by the discussion in Section 2.2. Therefore, the 5%-option has
been used in many of the experiments resulting in just one or two constraints per face in most
of the cases. For the subdomain edges, we note that there is no significant difference in the
case of constant coefficients if we use 5% or 50% of the interval. For the other two cases
considered, extending this interval beyond 5% can be more important; it is clear that such an
increase will improve the condition number and the iteration count as illustrated in Tables 4.2
and 4.4. Here, the results in the "Adaptive" column show that we can keep the primal space
small.

As we have already observed, the tolerances used for subdomain faces and edges seem to
work well since they produce small primal spaces with good condition numbers. In most of
the cases, the ratio between the dimension of the primal space and the total number of edges
and faces [f ] is smaller than 1, which means that, on average, we use fewer than one constraint
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per subdomain face/edge. Finally, Table 4.6 exemplifies that different eigenvalue problems
considered by others can have a similar performance as ours.
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