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1  | INTRODUC TION

Relative to body size, brain size is proportionately larger in small spe-
cies than in large species, a widespread pattern known as Haller’s 
Rule (Rensch, 1948). This allometric pattern is found in a wide range 
of vertebrate and invertebrate taxa (Eberhard & Wcislo, 2011; 
Huxley, 1932; Striedter, 2005). For instance, brain and eyes of small 
birds and mammals scale hypoallometrically with body size (Brooke, 
Hanley, & Laughlin, 1999; Calder, 1984). Consequently, small animals 
with relatively large brain and eyes have to deal with the behavioral, 
physiological, and structural costs of producing and maintaining 

proportionally large brains (Eberhard & Wcislo, 2011). Indeed, the 
current evidence suggests a significant increase in energetic costs 
associated with more nervous tissues (e.g., Kotrschal et al., 2013; 
Niven & Laughlin, 2008); however, little is known about the struc-
tural changes that have evolved to deal with housing relatively larger 
brains and eyes in small animals (e.g., Niven & Farris, 2012).

To provide space for larger brains, cephalized animals can evolve 
larger heads or evolve changes in shape or structure of the braincase 
(Eberhard & Wcislo, 2011). For example, in very small spiders, the 
brain overflows into the coxae and deforms the sternum, reducing 
the space for prosomal muscles, and, in miniature insects, portions 
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Abstract
A common allometric pattern called Haller’s Rule states that small species have rela-
tively larger brains and eyes than larger species of the same taxonomic group. This 
pattern imposes drastic structural changes and energetic costs on small species to 
produce and maintain a disproportionate amount of nervous tissue. Indeed, several 
studies have shown the significant metabolic costs of having relatively larger brains; 
however, little is known about the structural constraints and adaptations required for 
housing these relatively larger brains and eyes. Because hummingbirds include the 
smallest birds, they are ideal for exploring how small species evolve morphological 
adaptations for housing relatively larger brain and eyes. We here present results from 
a comparative study of hummingbirds and show that the smallest species have the 
lowest levels of ossification, the most compact braincases, and relatively larger eye 
sockets, but lower eye/head proportion, than larger species. In contrast to Passerines, 
skull ossification in hummingbirds correlates with body and brain size but not with 
age. Correlation of these skull traits with body size might represent adaptations to 
facilitate housing relatively larger brain and eyes, rather than just heterochronic ef-
fects related to change in body size. These structural changes in skull traits allow 
small animals to accommodate disproportionately larger brains and eyes without fur-
ther increasing overall head size.
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of their brain extend into the prothorax and even the abdomen 
(Quesada et al., 2011). Similarly, small salamanders have lost some 
skull bones, reduced skull ossification, and adjusted the overall skull 
morphology to accommodate relatively larger brains (Hanken, 1983, 
1984). These modifications in small arthropods and vertebrates sug-
gest that relatively large brains impose a series of presumably costly 
modifications in small animals due to the large space required to ac-
commodate large brains. In small birds, adjustments in the skull to 
accommodate relatively larger brains without enlarging overall head 
size are expected to be achieved in at least two ways. First, differ-
ential growth of some skull bones (allometric variation) could alter 
the shape of a skull to accommodate more neural tissue. In this case, 
having a more spherical braincase can accommodate the brain in a 
more compact way, with deviations from sphericity requiring more 
area to house the same volume of neural tissue. Second, evolving 
thinner or less ossified skulls could provide additional space in the 
braincase because the second layer of bone grows internally, which 
may be taking up space available for brain tissue.

Although a correlation between the morphological varia-
tion of facial and braincase modules has been identified (Bright, 
Marugán-Lobón, Cobbe, & Rayfield, 2016; Marcucio, Young, Hu, & 
Hallgrimsson, 2011; Young, Linde-Medina, Fondon, Hallgrimsson, & 
Marcucio, 2017), most studies on avian skull morphology have ex-
plored the ecological and molecular factors underlining covariation 
with beak morphology (e.g., Abzhanov, Protas, Grant, Grant, & Tabin, 
2004; Mallarino et al., 2012; Wu, Jiang, Suksaweang, Widelitz, & 
Chuong, 2004). In contrast, not much is known about the evolution-
ary processes determining braincase shape, especially adaptations 
in the smallest species. For instance, birds with rounded eye sock-
ets have more rounded and flexed brains than those with elongated 
orbits (Kawabe, Shimokawa, Miki, Matsuda, & Endo, 2013), which 
should affect the overall skull morphology. The current information 
on hummingbird skull morphology is restricted to general descrip-
tions of its shape (Zusi, 2013).

Under a phylogenetically controlled comparative framework, 
we here explore how shape and structure of the skull correlate 
with body mass and relative brain size in hummingbirds (Figure 1). 
Hummingbirds include the smallest species of birds and have likely 
been under strong selection to modify their skull morphology to ac-
commodate larger brains and eyes without enlarging overall head 

size. We test for the effect of body mass and relative brain size on 
skull thickness (e.g., degree of ossification), braincase compactness, 
and relative eye socket size. We predict that small-bodied humming-
birds, which are known to have relatively larger brains, will have less 
skull ossification (i.e., single-layered skull), more compact braincases, 
and relatively larger eye sockets than large species.

2  | METHODS

2.1 | Skull and body measures

We collected the percentage of skull ossification as a proxy for 
skull thickness from 501 individuals in 96 hummingbird species, 
from museum specimens in the Louisiana State University Museum 
of Natural Science (LSUMNS) and Museo de Zoología, Escuela de 
Biología, Universidad de Costa Rica (MZUCR). Percentage of skull 
ossification was estimated from ossification pattern, which is the 
proportion of the braincase having a double layer of bone (i.e., 
pneumatized) (Harrison & Harrison, 1949; Miller, 1946), as recorded 
on specimen labels by curators at the moment of skin preparation 
(Supporting Information Table S1). Likewise, body mass (g) of each 
individual was taken from specimen labels recorded by curators. We 
calculated mean values from a sample ranging from 3 to 17 adult 
males per species, as confirmed by gonads and plumage patterns. 
For skulls/skeletons without body mass information, we use the 
mean body mass value for the species to test for the effect of body 
size on skull compactness (see below). Because brain size of hum-
mingbirds estimated from endocranial volume might be unreliable, 
we used fresh brain mass and body mass from fresh specimens col-
lected for a subset of 24 species of hummingbirds (Diego Ocampo, 
César Sánchez, & Gilbert Barrantes data).

We measured braincase compactness (i.e., circularity) and the 
area of the contour of the orbit eye socket (eye socket area here-
after) from scaled pictures of skulls for four to six males of 32 spe-
cies of hummingbirds from the LSUMNS and MZUCR collections 
(Supporting Information Table S2). We estimated the relative size of 
the eye socket from pictures of the lateral view of the skull, mea-
suring the ratio between eye socket area and the total area of the 
skull from the lateral view (without the beak, Figure 2a). We then 

F IGURE  1 Some species of 
hummingbirds included in this study are 
(a) Selasphorus flammula, (picture Julio 
E. Sánchez†) (b) Amazilia tzacatl, and (c) 
Eugenes spectabilis

(a) (b) (c)
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took pictures of the dorsal view, perpendicularly (90° angle) to the 
junction between the suture of the frontal and nasal bones, and 
the paraoccipital process (Figure 2b). From this dorsal view, we es-
timated the compactness of the braincase based on the ratio be-
tween the area and perimeter of the braincase (Peura & Livarinen, 
1997). We delimited the frontal border of the braincase by a straight 
line between the most indented point of the frontal bones at the 
interorbital region (Figure 2c). We use the compactness (circularity) 
index as a proxy of the three-dimensional skull’s sphericity. To take 
standardized pictures, each skull was placed on a small platform, 
maintaining the camera at the same position relative to either the 
lateral or the dorsal plane of the skull and at 20 cm from it. All high-
resolution pictures were scaled in coplanarity and analyzed using 
ImageJ (Abramoff, Magelhaes, & Ram, 2004), and we used the “free-
hand selection” function to delimit the contour of the braincase and 
eye socket to measure the areas and perimeters on the pictures.

2.2 | Statistical analysis

To control for the nonindependence of closely related humming-
bird species, we used phylogenetic generalized least square (PGLS) 
analyses for correlations between variables. We controlled for the 
phylogenetic relationship, within each subset of species (trees with 
96, 32, and 24 hummingbird species, respectively), in each analy-
sis using on 5,000 molecular phylogenies built using the backbone 
method (Hackett et al., 2008) and data obtained from www.bird-
tree.org (Jetz, Thomas, Joy, Hartmann, & Mooers, 2012). We show 
the figures generated using the 50% majority rule tree (Supporting 
Information Figure S1); however, to control for phylogenetic uncer-
tainty, we ran all our analyses using the total population of trees. We 
report the mean values and standard deviation (±SD) of the param-
eters when pertinent.

To test for the effect of body size or relative brain size on skull 
ossification, the PGLS models included the log10-transformed body 
mass or the ratio of brain/body mass as a predictor variable and the 
log10-transformed percentage of skull ossification as the response 
variable (log10 (percentage of skull ossification + 1), to avoid unde-
fined values). To control for scale effect (i.e., body mass), we ran a 
PGLS of the residuals of the linear model of the log-transformed 
body mass and the log-transformed brain mass (x-axis), against the 
residuals of the linear model of the log-transformed body mass and 
the log-transformed skull ossification model (y-axis). A negative cor-
relation would indicate that species with larger brains than expected 
by body size have skulls with lower ossification than expected.

To test for the effect of body size and skull ossification on braincase 
compactness, the PGLS model included either the log-transformed 
body mass or log-transformed skull ossification against the mean 
compactness index (Peura & Livarinen, 1997), as a two-dimensional 
proxy of the spherical shape of the braincase. We could not test for 
the effect of brain size on skull compactness due to the limited number 
of samples that included both variables (only 11 species) and the ex-
tremely high correlation between brain size and body size (R2 = 0.94; 
Diego Ocampo, César Sánchez, & Gilbert Barrantes, unpublished data). 
We also tested for the effect of log-transformed body mass on relative 
eye socket area with a PGLS. We conducted all analyses in R v.3.1.3 (R 
Core Team, 2014) using the APE (Paradis, Claude, & Strimmer, 2004) 
and CAPER (Orme, 2013) libraries for the analyses.

3  | RESULTS

3.1 | Skull ossification

All PGLS models showed a significant effect of body size on skull 
ossification, with little phylogenetic signal (F1,94 = 68.13; p < 0.001; 
R2 = 0.42; λ = 0; Figure 3a). For the 96 species of hummingbirds, 
the percentage of ossification increased with body size (β = 0.78; 
p < 0.001). For the 24 species with brain size data (58 individuals, 
1–6 individuals per species), the PGLS models also found an ef-
fect of relative brain size on skull ossification (F1,22 = 9.98; p < 0.01; 
R2 = 0.32; λ = 0; Figure 3b), in which species with relatively larger 

F IGURE  2 Skull of Rufous-tailed hummingbird (Amazilia tzacatl). 
(a) The lateral view, with the dashed line representing eye socket 
area. (b) Lateral view of the skull, with the thick red arrows pointing 
to the paraoccipital process (PaOc) and the suture between frontal 
and nasal bones (Fr-Na). The dashed line represents the angle of 
the placement of the camera to capture the dorsal view. (c) Dorsal 
view of the skull, with the red arrows pointing at the most indented 
region of the frontal bone. The dashed line delimits the anterior 
border of the braincase

http://www.birdtree.org
http://www.birdtree.org
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brains had lower percentage of ossification (β = −0.39; p < 0.01). 
However, when we removed the effect of body size, we did not find 
a significant effect of brain size on skull ossification (F1,22 = 0.86; 
p = 0.36; R2 = 0.04; λ = 0; Figure 3c).

3.2 | Skull shape

For a subset of 32 species (five males per species), we found a sig-
nificant effect of mean body size on mean braincase compactness 
(F1,30 = 32.97 ± 1.26; p < 0.001; R2 = 0.52 ± 0.01; λ = 1; Figure 4a): 
Smaller species had more circular braincases than larger species 
(β = −0.011; p < 0.001). In addition, more circular skulls correlated 
with low levels of ossification (F1,30 = 10.33 ± 0.42; β = −0.004; 
p < 0.005; R2 = 0.26 ± 0.01; λ = 1; Figure 4b), so that more circu-
lar skulls had lower levels of ossification (β = −0.0044; p < 0.005). 
Finally, small species had relatively larger eyes (relative to the body) 
than those of larger species (F1,30 = 144.44; β = 12.55; p < 0.001; 
R2 = 0.85; λ = 0), but a positive relationship between body size and 
percentage of the lateral head area occupied by the eye socket 

(F1,30 = 10.68; β = 3.44; p < 0.005; R2 = 0.31; λ = 0; Figure 4c), with 
small species having relatively smaller eye sockets (44%) than larger 
species (50%).

4  | DISCUSSION

Several studies have explored variation in relative brain size and eye 
size at various ontogenic and evolutionary scales (Burton, 2008; 
Linke, Roth, & Rottluff, 1986; Nealen & Ricklefs, 2001), along with 
their association with ecological and behavioral factors (Dunbar 
& Shultz, 2007; Maklakov, Immler, Gonzalez-Voyer, Rӧnn, & Kolm, 
2011; Martínez-Ortega, Santos, & Gil, 2014; Smaers, Dechmann, 
Goswami, Soligo, & Safi, 2012). However, little is known about how 
the size of both brain and eyes affects overall skull structure and 
morphology to accommodate the changes in relative brain and eye 
size. We found that small hummingbirds had less ossified and more 
compact or circular braincases and lower eye/head proportion than 
their large counterparts; these allometric patterns support two 

F IGURE  3 Patterns of skull ossification in hummingbirds. (a) Relationship between body mass and skull ossification for 96 species. 
(b) Relationship between the brain/body mass ratio and the skull ossification for 24 species. (c) Nonsignificant relationship between the 
residuals of body mass/brain mass and residuals of body mass/skull ossification (for coefficients and R2 values, see main text)

F IGURE  4 Patterns of skull shape across 32 hummingbird species. Relationship between (a) body mass and braincase compactness. 
(b) Braincase compactness and skull ossification. (c) Percentage of the skull’s lateral area occupied by the eye socket and body size (for 
coefficients and R2 values, see main text)
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nonmutually exclusive hypotheses. First, changes in skull shape and 
size could be adaptations to accommodate the relatively larger brains 
of smaller species. That is, changes in skull morphology could result 
from selection on distinct skeletal modules of the skull, which results 
in adaptive changes in shape and size to more effectively accom-
modate larger nervous tissue while mitigating the overall increase 
in relative head size (“adaptive change hypothesis”). Second, selec-
tion acting on body size could change the overall allometric scaling 
of other structures and organs on body size. For instance, selection 
favoring small body sizes could also result in small-bodied species 
with proportionally larger brains through developmental mechanism 
(“size-related constraint hypothesis”).

4.1 | Adaptive change hypothesis

Direct selection on brain size could affect several skull traits to 
better accommodate relatively larger brains thus shaping cranial 
morphology in hummingbirds. For example, the space to encase 
the relatively large brain and eyes of plethodontid salamanders is 
limited, imposing structural changes in the surrounding structures 
(Hanken, 1983). These structural changes include the loss and re-
duction in skull bones, which results in the brain being partially un-
protected but able to house relatively larger brains (Hanken, 1984). 
Similarly, in hummingbirds, the orbitocranial fonticulus is fused with 
the optic foramen (Zusi, 2013), resulting in skulls that have an open 
space between the interorbital septum and the parietal bone.

Increasing compactness or sphericity of the braincase in the 
smallest species of hummingbird may also allow for housing a rela-
tively larger brain without increasing overall head size. Evolutionary 
changes in brain size correlate with changes in braincase morphol-
ogy, since presumably an enlargement of the brain in the early evo-
lution of birds had strong consequences in skull shape (Fabbri et al., 
2017). Previous comparative studies across 60 orders of birds have 
shown that when the brain becomes larger in relation to the cra-
nial base, the braincase becomes more spherical and the foramen 
magnum is displaced to a more ventral position (Marugán-Lobón & 
Buscalioni, 2009). More spherical braincases are associated with 
species with high flight maneuverability, which likely require more 
nervous tissue (Iwaniuk & Wylie, 2007). Our results in hummingbirds 
are consistent with this broadscale study in birds.

In addition, hummingbirds have the highest mass-specific meta-
bolic rate among vertebrates, which likely represents the upper evo-
lutionary metabolic limit (Suarez, 1992). This high metabolic rate is 
directly correlated with several physiological and anatomical traits 
that demand high energy input, such as flight (Lasiewski, 1963) and 
a relatively large heart (Lasiewski, 1964), brain, and eyes. Therefore, 
producing and maintaining a disproportionately large amount of 
nervous tissue, which would include the brain and the retina, which 
is an outgrowth of the brain itself (Kiltie, 2000), should result in a 
trade-off between the relative eye and brain investment (Niven & 
Laughlin, 2008). Because the smallest hummingbird species may re-
quire relatively more space for brain, the space for the eyes may be 
limited, compared to larger species. Further, the observed changes 

in the proportion of braincase and eyes could also result from a re-
arrangement of the three-dimensional morphological space, rather 
than changes in volume.

4.2 | Size-related constraint hypothesis

Alternatively, selection on traits other than skull morphology, such 
as body size, might result in secondary nonadaptive changes in skull 
morphology (McKinney, 1986) because the same developmental 
pathways link brain morphology and skull characteristics (Koyabu 
et al., 2014). For example, changes in body size could be achieved 
through heterochronic changes in the ontogenetic trajectory of the 
ancestral group (Alberch, Gould, Oster, & Wake, 1979), and skull 
morphology likely represents adjustments to this new allometric 
scaling. For instance, the avian skull morphology has likely evolved 
through a paedomorphic process, because avian skulls retain char-
acteristics of juveniles of ancestral theropods (Bhullar et al., 2012). 
Similarly, reduced ossification in the smallest of hummingbird spe-
cies may result from paedomorphosis.

In general, thirteen skeletal traits correlate with body mass in 
birds (Field, Lynner, Brown, & Darroch, 2013). However, an evolu-
tionary trend of reduction in body size (e.g., miniaturization) has 
several particular implications for physiological (Eberhard & Wcislo, 
2011), behavioral (Cole, 1985; but see Eberhard, 2011), and mor-
phological traits, where the most common morphological outcome 
is the reduction and fusion of bones (Hanken & Wake, 1993). Thus, 
if miniaturization has shaped hummingbird skull morphology, hum-
mingbirds may have convergently evolved anatomical traits that are 
typically found in miniaturized species of other clades, such as rela-
tively larger head and eyes, poorly ossified skeleton, and reductions 
or loss of bones (Gould, 1977).

Reduced skull ossification in relatively large-brained species and 
the general enlargement of the head and eyes found in the small-
est species of hummingbirds are comparable with those changes 
observed in the skull of miniaturized plethodontid salamanders 
(Hanken, 1983) and Geomyoid rodents (Hafner & Hafner, 1984). The 
reduction in ossification (i.e., thickness) and the loss of bones are 
also similar to the drastic changes observed in Danionella dracula, 
a miniaturized cyprinid fish that lacks 44 bones, as a consequence 
miniaturization (Britz, Conway, & Rüber, 2009). Other examples 
of changes in skeletal traits correlated with miniaturization, as in-
creased variability and the evolution of morphological novelties, are 
well documented elsewhere (see Hanken, 1993).

5  | CONCLUSIONS

The scaling pattern of relative brain size on skull morphological traits 
and body size is consistent with an evolutionary framework of direct 
and indirect selection acting on skull morphology. Skull compactness 
and relative eye socket size likely reflect not just a structural effect 
of size due to heterochronic changes, but rather adaptations to re-
duce the costs of housing a relatively large brain and eyes. However, 
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overall head size and changes in skull ossification could have evolved 
as a consequence of selection on body size. Cichlid fishes show a 
similar pattern, where the rate of change in brain size with a change 
in body size is under a strong evolutionary constraint, but species-
specific selective pressures may have shifted the static allometric 
intercepts (Tsuboi et al., 2016). In essence, these size-dependent 
and size-independent skull traits allow small birds to house relatively 
larger brain and eyes, without drastically increasing general head 
size. Overall, our results suggest that paedomorphosis has played 
an important role in shaping the evolution of hummingbird skulls to 
more effectively house their relatively large brains. Similar studies 
in other groups of birds and other vertebrates would provide fur-
ther insights into the generality of the evolutionary forces shaping 
adaptations of the skull for housing relatively large brains and eyes.
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