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Abstract—This work describes the parallel methodology for a
football tracking algorithm based on multipartite graphs using
MPI and OpenMP. The proposed algorithm use a consumer-
producer scheme to overlap the computing time of the two
main procedures of the tracking algorithm: segmentation and
tracking; as well a send and receive communication pattern to
propagate the blob identities. We show how an hybrid system
of data and task parallelization improves the execution time for
4K videos, achieving a speedup equal to 19.24 and a processing
speed of 21.71 FPS with 128 threads.

Index Terms—Parallel algorithms; Association Football; Tem-
poral Segmentation; Tracking of Football Players

I. INTRODUCTION

Football is a sport that has shown great popularity over the
years, with an estimated 3.5 billion fans all over the world
[1]. In the same way as technology has been introduced into
everyday life activities, there is also a desire to incorporate
it into the sports’ field. Such involvement has led to the fact
that in recent years, there has been an increased interest for
the development of advanced computer systems that favor
the automated analysis of sport’s results. This information
is increasingly important, not only for the general viewer
for entertainment purposes, but also for professional football
clubs, and their coaching teams, as well as for the sport
sciences community, since it will lead to perform physical
assessments, fatigue detection, analysis of opponents, eval-
uation of tactical performance, and others [2]. In order to
build such automated analysis systems, one of the first steps
consists of the extraction of relevant positional information of
the players, which in fact requires primarily their trajectories
on the field at any given time. This process of following each
player to reconstruct their 3D trajectories is called player
tracking. Since Football is a team sport, then the player
tracking stage requires detecting multiple players, finding
their positions at regular intervals, and associating spatial and
temporal information to extract their trajectories [3]. This
task is complex because of the patterns of unpredictable
movements of the players during the game, in addition to the
fact that the players look quite similar among those belonging
to the same team, and frequently, the players find themselves
in the struggle for possession of the ball creating multiple
occlusions. Besides the tracking of players is affected also by
external factors such as environmental conditions like rain,
light changes, and stadium’ shadows. The ability to obtain

visual quality and the accuracy of tracked targets is highly
desired in a tracking system, this requires a high resolution
of the input data that provide more details to the tracker.
Low quality or small resolution of videos, system noise, small
objects and other factors generate less precise tracking results.
In case of such conditions an object would be more difficult
to identify and track because the object has less information
[4], [5]. The present work is part of ACE, a larger system still
under development, to meet the needs mentioned above. ACE
is a computational platform for analyzing digital videos of
football [6], which generates abstract models of the game for
interpretation. This platform is implemented in a multilayer
architecture, as shown in figure 1. The first four layers are
related to the perception stages, while the last two are related
to the semantic analysis. Since the platform was initially
developed for videos taken from TV Broadcast [7], [8], [9], a
temporal segmentation process was required, in order to select
the candidate scenes (far-view scenes) where information of
the players’ positions can be extracted [10], [11]. The current
work is focused on the lower stages: from the acquisition of
the video to the tracking stage, without going through the
temporal segmentation, since the input video comes from the
concatenation of two digital videos taken using 2 static 4K
cameras placed in the stadium (see figure 4).

Given the configuration of the two 4K cameras that produce
the input data to the system, and since each image from each
camera has an UHD (ultra high definition) of 3840 × 2160,
and the frame rate of 60 Hz, then the pixels per second (pps)
to process in order to cope with the incoming information
is of 995 328 000 pps. Therefore it is necessary to consider
strategies that accelerate the processing of this information. In
this paper we present a proof of concept for a parallel hybrid
approach to an off-line football tracker based on multipartite
graphs for the ACE platform.

II. RELATED WORK

A study of the different types of trackers for football players
is beyond the scope of this work, for that see [13]. Our scope
is limited to those that present computational costs’ results.

Certainly the main objective of a football player tracker
is the precise identification and track of every object on the
field but the computational cost and latency has already been
considered in the professional literature. These considerations



Video sequence

Candidate scenes

Target image locations

Target field trajectories

Input Video

Temporal segmentation

Spatial segmentation

Tracking

Semantic Segmentation

Semantic Analysis

Flow path
with static
4K cameras

Semantic annotations

Figure 1: Layered architecture of ACE-Football. Edited from
[12].

are found since 2000 where Lefèvre et al. [14] created a
method based on a fast snake obtaining a processing time
of 2 seconds per frame, with a implementation on Matlab
for a sequence of 100 images of 24 bits, with width and
height of 384 and 288 pixels respectively. Other works show
similar speed performance using Matlab as a development
plataform, [15] measures 4 FPS of the motion detection stage
for a particle filter tracker, [16] obtain 3 FPS for their visual
object tracker, [17] 3.3 FPS in a semi supervised system and
[18] for a based adaptive Kalman Filter tracker. Matlab is
good for developing and prototyping algorithms but shows
lower values of FPS on the implementations of the tracking
algorithms, this is because it is a scripting language that uses
a JIT compiler to translate a script to machine code.

One approach proposed for a player tracking system using a
model field particle filter is Sentioscope [3]. Their algorithm
is implemented in C++ on GPU using a task parallel tech-
nique running the following tasks on different threads: image
acquisition, automatic exposure, light adjustment, foreground
extraction and HOG calculation; while the player classifica-
tion and tracking tasks execute in parallel with a gathering
pattern. They mention that the system runs on a laptop with
a 4 core Intel i7 CPU achieving a ratio of 14 FPS.

There are similar data association algorithms to the algo-
rithms based on graph theory, for example [19] use a network
flow formulation as a linear programming optimization prob-
lem, their algorithm is implemented in C++ using STL. They
use a 3Ghz PC and utilized a single core, obtaining a speed
of 3.95 FPS for the MCNF version of the algorithm on the
ISSIA database.

The image processing stages have a great impact on the
execution speed of trackers, therefore the parallelization of the
spatial segmentation stage of our algorithm has been discussed

previously on [20], where a parallel method is designed rely-
ing on multi-threading with OpenMP. They perform several
tests using standard definition videos obtaining a speedup
factor of 4 and efficiency of 0.1 with 8 threads. This algorithm
of the parallel method was implemented in C++ with the
OpenCV library.

Despite the effort made in [20], it is considered incomplete
for the purposes of a tracking algorithm for being decoupled
from this idea, also is an algorithm that does not scale well
beyond the presented results. Is interesting to observe how is
mentioned in the scientific articles, that the execution times
can be improved using parallelization techniques, however
they do not consider or use the distributed systems or GPGPU
[18], [21], [22]. All of the related work are executed on
personal computers and the FPS values presented by these
works show that their implementation and resources are not
sufficient to achieve a desired processing time (equal or
greater than 30 FPS).

III. IMPLEMENTATION

A graph is a mathematical abstract representation consisting
of a set of nodes, which represent objects and a set of edges,
which represent associations between object pairs ([23]) as
shown on figure 2. A graph is k-partite if they can be
partitioned into k disjoint independent sets. A k-partite graph
is called multipartite, typically only when k ≥ 3 and when
k = 2 is called bipartite [24]. In our propose method, the
nodes are visualized as blobs that might or not correspond
to football players, and the edges as the weighted value
corresponding to the similarity between blobs. The nodes
encapsulate a vector of characteristics that describe the blob
using their shape, chromatic information, and position from
a kinematic model of constant speed, while the edges are the
relation between those blobs from frame to frame.

Under these circumstances we propose a parallel hybrid
method to solve the tracking of multiple football players for
the data association technique of multipartite graphs, relying
on the data parallelization and a fine task parallelization.

Let V be a video of v frames and G a multipartite graph of
k number of graphs, each one with n number of nodes. Where
fn corresponds to the processed frame number on the video
V, Gf is the first graph and Gl the last graph of a multipartite
graph.

As can be seen in the algorithm 1, V is processed in groups
of frames (batch mode) equals to k frames for each step
(which is the first processed frame on a group or batch)
while step < v. The frame fn is read from V and is
applied the segmentation function σ to generate the contours
C, then each contour ci ∈ C is used to generate the Nj node
model for the graph Gi. Once the multipartite graph has been
populated with the k-graphs, a tracking function τ generates
the T tracking points, which are 2D locations on the image
frame as (x,y) coordinates. To propagate identities between
consecutive multipartite graphs a bipartite matching function
ς is performed between the adjacent graphs.
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Figure 2: (a) First sequence frame, (b) Middle sequence frame,
(c) Last sequence frame and a multipartite graph describing
the merge/split events

Algorithm 1 Sequential Multipartite Graph Tracking algo-
rithm

Input V Video
Output T Tracking points

1: procedure BATCH PROCESSING
2: step← k
3: for step < v do
4: procedure SEGMENTATION
5: Initialize G
6: for i < k do
7: fn ← i+ step ▷ Update first frame

number of the multipartite graph
8: C ← σ(fn) ▷ Apply segmentation

function to a frame to generate a set of contours
9: for j < n do

10: Generate Nj model ▷ Where N is a
node

11: Gi[j]← Nj ▷ Save node model on its
corresponding graph

12: procedure TRACKING
13: if step ̸= ff then
14: ς ▷ Perform bipartite matching

function between previous multipartite graph and actual
multipartite graph

15: τ(G) ▷ Apply tracking function
16: Gf ← Gl

Despite the sequential behavior exhibited by the algorithm
1, it is possible to overlap its two main procedures with a
consumer-producer scheme where the even processes per-
forms the segmentation function σ and generate the mul-
tiparite graphs that the odd processes use on the tracking
function τ . Following the same notation as the algorithm 1, it
is assumed that there are p processes with a corresponding
identification number pid, µ is the maximum number of
iterations for those processes, fa is the start frame for each
process, fo is the stop frame for each process, f0 the first
frame of V, where Gf and Gl are the first and last graph for
the batch of process pid.

Algorithm 2 Parallel Multipartite Graph Tracking algorithm
Input V Video
Output T Tracking points

1: µ← v/((p/2) ∗ k)
2: procedure BATCH PROCESSING
3: for i <= µ do ▷ Loop until reach max iterations

▷ Compute first and last frame of the multipartite
graph for the even and odd processes

4: if pid % 2 then
5: fa ← k ∗ pid + i+ fa
6: fo ← fa + k − 1
7: else
8: fa ← k ∗ pid + k ∗ p ∗ i+ fa
9: fo ← fa + k − 1

10: procedure PARALLEL SEGMENTATION
11: if pid % 2 then
12: for j < k do
13: fn ← i+ fa ▷ Current frame number
14: C ← σ(fn) ▷ Apply segmentation

function to current frame to find contours
15: for j < n do ▷ Sweep the contours to

generate the node models
16: Generate Nj model
17: gi[j]← Nj

18: Send multipartite graph G from process
19: pi to process pid+1

The spatial segmentation algorithm used is an improved
version of [20] for tracking purposes, whose results are shown
in the figure 3, which includes the following functions:

1) HSV color conversion
2) Normalized Local Spatial Variance for the Hue and

Value components
3) Identification of green regions
4) Edge detection
5) Removal of field lines with Hough transformation.
6) Morphological transformations of erosion and dilation.
7) Discard spurious regions and blob filtering using a

circularity criterion.
8) Blob model creation within the multipartite graph.
This set of segmentation and filtering functions are

observed in the figure 3, where it starts with a raw frame



20: procedure PARALLEL TRACKER
21: if pid % 2 = 1 then
22: Receive multipartite graph G from process
23: pid−1

24: if p ̸= 2 then ▷ General case of more
than 2 processes

25: if fa ̸= ff ∨ iµ then
26: if pid1 then
27: Receive graph Gf

28: from process pid−1

29: else
30: Receive graph Gf

31: from process pid−2

32: ς(Gf ) ▷ Bipartite matching
function to propagate identities

33: τ(G) ▷ Apply tracking function
34: if i1 then ▷ First iteration
35: if pid < p− 1 then
36: Send graph G of frame fo
37: from process pid to pid+2

38: if i ̸= 1 ∨ µ then
39: if pid < p− 1 then
40: Send graph G of frame fo
41: from process pid to pid+2

42: else
43: Send graph G of frame fo
44: from process pid to p1

45: else ▷ Last iteration
46: if pid < p− 1 then
47: Send graph G of frame fo
48: from process pid to pid+2

49: else ▷ Special case of 2 processes
50: if fg ̸= fa ∪ i ̸= µ then
51: ς(fg)
52: τ(G)
53: Gl ← G(fo)
54: else
55: if i = µ− 1 then
56: ς(Gf )
57: τ(G)

58: Gl ← G(fo)

59:
60:
61:

(a) (b)
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Figure 3: Samples from segmentation procedure: (a) Source
frame, (b) HSV frame conversion, (c) Local spatial variance
for the Hue component, (d) detected lines, (e) Homogeneous
regions with line filtering applied, (f) Resulting segmentated
contours

that is then processed to obtain the contours of the players,
we use OpenMP as the method of parallelization on each of
these functions.

Once, each blob model is created and assigned as a node
on the corresponding graph, the tracking algorithm performs
the following functions:

1) Pruning the multipartite graph based on the relation
between nodes that includes the comparison of static
and dynamic descriptors such as: histogram, position,
shape, area and speed.

2) Building a coincidence matrix.
3) Forward analysis of borders for merge/occlusion events.
4) Backward analysis of borders for split events.
5) Propagation of blob identities.
The algorithm 2 describes the segmentation and tracking

procedures on a batch mode equals to the multipartite graph
size. It can be seen from lines 4 to 9 how the distribution
of frames is determined for each thread and their corre-
sponding start and ending positions within the video. From
lines 18 and 22 the consumer-producer schema is executed,
where the parallel segmentation sends multipartite graphs,
received by the parallel tracker allowing the overlap of those
computational tasks. Another communication pattern between
processes is from lines 27 to 31 and from lines 35 to 48 where
the send and receive actions are implemented between odd



Table I: Execution times for sequential algorithm

Resolution Run time (s) Segmentation time (s) Track time (s)
4K 2267 2229 38
FHD 542 530 12
HD 286 283 3

Table II: HW specifications of the cluster TARÁ

Node Quantity Processor Ram HD
Master 1 Intel Xeon E5-2650 62 GB 500 GB
Compute 4 Intel Xeon E5-2650 251 GB 500 GB
Storage 4 Intel Xeon E5-2650 62 GB 40 TB

adjacent processes to transfer a graph, and propagate the blob
identities. Between lines 49 and 58 we deal with the special
case of two processes: one producer and one consumer.

The generation of the concatenated 4K input video, was
performed using an algorithm based on geometric transfor-
mations that finds a function which transforms the points in
a trapezoid to points of a rectangle in a continuous way. In
order to have more information and details of the players,
as well as to avoid losing vital information for the tracking
process this configuration of cameras was used. An example
of the resulting panorama image is shown in figure 4.

The implementation of the segmentation and tracking
algorithm was programmed in C++, and have used soft-
ware tools/libraries consisting of: GCC 4.9.2, openmpi 2.1.3,
opencv 2.4.13.5, and the boost library 1.67.0.

IV. RESULTS AND DISCUSSION

The experiments were ran on the cluster TARÁ from the
PRIS-Lab, the hardware specifications are shown on table II.
It has three types of nodes, the master for overall control,
the processing nodes, and the storage nodes. All nodes are
connected to a private internal network by means of four
network interfaces operating in a bonding mode to maxi-
mize the available bandwidth. This network topology allowed
Lustre, the file system available in the 4 storage nodes, to
be in advantage, as this file system has high performance
capabilities, and allows to have better reading performance
in parallel tasks [25], [26]. Each processing node has 2 Intel
Xeon E5-2650 running at 2.0 GHz for a total of 64 cores or
128 threads. For each MPI process 2 OpenMP threads were
enabled following a processor architecture affinity criterion,
from a previous work [27] it was determined that this was the
optimal configuration for the cluster.

Table III: Results for a 4K video

Threads Run time (s) Speedup Efficiency FPS Track time (s)

128 117.85 19.24 0.15 21.71 2.07
64 176.69 12.83 0.20 14.48 2.96
32 218.51 14.45 0.45 12.44 3.89
16 426.27 7.41 0.46 6.38 5.20
8 519.44 6.23 0.78 5.39 8.05
4 1215.93 2.69 0.67 2.33 16.91
2 2190.06 1.49 0.75 1.30 37.69
1 2267.00 1.00 1.00 1.27 38.00

Table IV: Multipartite graph size effect

MPG size Threads Run time (s) Speedup Efficiency FPS Track time (s)

20 128 117.85 19.24 0.15 21.71 2.07
10 128 164.27 13.80 0.11 15.58 14.19
5 128 217.96 10.40 0.08 11.74 15.19

Table V: Results for different video resolutions

Resolution Threads Run time (s) Speedup Efficiency FPS Track time (s)

4K 128 117.85 19.24 0.15 21.71 2.07
FHD 128 31.10 24.15 0.19 82.28 2.00
HD 128 17.71 23.99 0.19 144.47 1.95

The speedup was obtained as S = Ts/Tp, and the efficiency
as E = S/p, where Ts is the sequential running time, Tp the
parallel running and p as the number of threads. The results
of both metrics are shown on figures 5 and 6 for a 4K video
sequence, with a resolution of 3648×512, and 2877 frames of
length. The results are tabulated in the table III. We inspect the
effect of different sizes of multipartite graphs and dimensions
of videos on the speedup and efficiency in tables IV and V
for 128 fixed number of threads,

From tables I, III, V and IV is observed that most of
the execution time is spent on the segmentation part of the
algorithm. The growth of acceleration based on the size of
the multipartite graph is probably due to a smaller amount of
communications between adjacent nodes under the cost of a
greater use of memory. The information of table III, figure 5
and figure 6 shows how consistently there is a speedup, but
with a penalty in the efficiency.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we deal with the natural sequential process of
tracking football players, exploring the hybrid model formed
by the combination of MPI and OpenMP parallelism.

Although the complexity of the algorithm 2 is greater than
the algorithm 1, the benefits associated with the execution
times lead us to the conclusion that a parallel hybrid system
must be considered for the conditions of this application, this
is the main contribution of our work.

As shown in figure 5, our algorithm has good prospects
to scale to a greater number of processes, however caution
should be taken with the size of the graph in terms of memory
consumption, despite of showing better results by increasing
its size according to table IV. The speedup appears to be
linear inside a node, but when more nodes are used there is
a penalty for the network communication. Also the efficiency
values show better results than others methods for a more
complex version of the segmentation algorithm.

As we demonstrated from the results of tables I, III, V
and IV, the segmentation section is the bottle neck of the
algorithm requiring heavy computational power, for future
work we expect better results with a GPU version of the
segmentation and tracking algorithm in conjunction with the
distributed model. Also it is important to explore the use of
OpenMP in accelerators such as XeonPhi cards for this type
of algorithms.



Figure 4: Input video frame.
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Figure 6: Efficiency for a 4K video.
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