
Towards the automation of a defect detection

protocol for functional size measurements

Denisse Madrigal-Sánchez, Christian Quesada-López, Marcelo Jenkins

University of Costa Rica, San Pedro, Costa Rica
{denisse.madrigal, cristian.quesadalopez, marcelo.jenkins}@ucr.ac.cr

Abstract. There is a need to develop formal protocols to verify the
accuracy of software functional size measurements and to calibrate the
measurement processes. These protocols o↵er a mechanism for accom-
plishing such verification regardless of who performed the measurements
(an expert or an automated tool). The detailed analysis of functional size
measurement procedures results is necessary to understand the nature
of the defects. The automation of these protocols decreases the e↵ort
and time required to verify the measurements accuracy and supports the
calibration of procedures and tools for functional size measurement. This
paper presents an empirical study for evaluating the results of a proto-
type tool that automates an accuracy verification protocol for IFPUG
FPA measurements. Our tool uses a graph-based model to search for the
causes of measurement mismatches detected in the verification process.
The current prototype has reached an accuracy of 93.92%, a precision of
98.69% and a recall of 94.94%.

Keywords: Functional size measurement, defect detection tool, accuracy veri-
fication protocol automation, IFPUG FPA, empirical study

1 Introduction

Functional size measurement is one of the main factors influencing e↵ort and
cost estimations in a software development project [1]. There are five standard-
ized methods for functional size measurement: COSMIC-FFP (ISO/IEC 19761),
IFPUG FPA (ISO/IEC 20926), MkII (ISO/IEC 20968), NESMA (ISO/ IEC
24570) y FiSMA (ISO/IEC 29881). Historically, IFPUG FPA is the most pop-
ular one [2] and COSMIC-FFP is the one with the most increased adoption in
the last years [3]. Both methods measure functionality delivered to final user by
doing function points analysis.

Research related to procedures and tools for automated functional size mea-
surement has increased in the last years [4]. With such increase, the need for re-
search of empirical studies to verify measurement results obtained through these
automated procedures has also been identified [4,5]. Symons [6] establishes that
there are many functional size measurement procedures available in literature
that should be carefully used by professionals. The author explains that an auto-
mated procedure is reliable when it has been calibrated and validated previously
in the context of application measurement.

M. Genero, M. Kalinowski (Eds.): CIbSE 2018, Bogotá - Colombia, 2018



It is necessary to define mechanisms to verify the accuracy and reliability of
results obtained by measurement procedures. Soubra, Abran & Ramdane-Cherif
[4] state the need to define and use standardized accuracy verification proto-
cols in order to proof the accuracy of functional size measurement procedures
independently.

An accuracy verification protocol for functional size aims to evaluate the ac-
curacy of functional size measurements by comparing control values (obtained
by an expert) to results obtained by third parties as professionals applying mea-
surement procedures or tools that automate such measurement. Accuracy ver-
ification protocols have been proposed and validated for measurement results
following COSMIC-FFP and IFPUG FPA standards [4,7,5].

Manual execution of verification protocols is error prone, time and e↵ort
consuming. The prototype tool o↵ers a mechanism to automate the execution of
an accuracy verification protocol saving time and e↵ort. The prototype tool could
also provide support during the calibration of procedures and the identification
and analysis of assignable causes for measurement errors.

We present a prototype tool that automates an accuracy verification protocol
for functional size measurements based on method IFPUG FPA. We also present
the results of an empirical evaluation to validate to prototype tool e↵ectiveness.
In the context of this study, our prototype reached an accuracy of 93.92%, a
precision of 98.69% and a recall of 94.94%.

This paper is structured as follows: Section 2 presents the related work on
accuracy verification protocols for functional size measurements. Section 3 de-
scribes the prototype tool implemented. Section 4 describes the empirical study
conducted to validate the prototype tool e↵ectiveness. Section 5 shows the re-
sults of the tool evaluation. Finally, Section 6 outlines conclusions and future
work.

2 Related work

Protocols for accuracy verification report measurement results obtained through
an specific procedure and compare them to the measurement results obtained
by an expert [4,5]. In [8], a set of verification protocols were identified, in the
following we briefly describe these protocols.

Soubra, Abran & Ramdane-Cherif [4] developed a protocol that allows the
verification of accuracy in all steps of the measurement procedure of an auto-
mated tool implementing the standard COSMIC-ISO 19761. The protocol re-
quires measurement results to be compared to measurement results manually
obtained by a human expert so that the automated tool can be calibrated. Ver-
ification in every step allows to keep traceability between software input arti-
facts and functional measurement components. Bagriyanik & Karahoca [7] used
Soubra et al. protocol [4] to verify the accuracy of measurements generated by
an automated tool for COSMIC-FFP measurements. Authors keep the original
3 phases but also add two more steps for detailed verification in phase 2.

Yilmaz, Tunalilar & Demirors [9] developed a tool for automatic defect de-
tection in COSMIC-FFP measurements. Authors also presented a methodology



to validate the e�ciency of their tool in terms of correctness and accuracy.
Functional users trigger events to show function points and objects of interest
verification. The tool takes such verification to conduct the analysis and gener-
ate a report of detected defects. In this study, error categories are associated to
three error causes: Measurer Related, Measurement Process Related and Soft-
ware Requirements Specification documented related. In order to evaluate the
tool e�ciency this study also required manual defect detection that was then
compared to the results obtained by the tool.

The studies we presented so far refer to protocols for COSMIC-FFP measure-
ments which is not the measurement method of our case of study. Nevertheless
Soubra, Abran & Ramdane-Cherif and Bagriyanik & Karahoca studies provide
the baseline for the accuracy verification protocol automated by our prototype
tool. Quesada-López & Jenkins [5] adapted Soubra et al. protocol [4] to verify the
accuracy of IFPUG FPA measurements. Measurements results are verified using
a top-down evaluation to compare total unadjusted function points(UFP) and
basic functional components (BFC). For every BFC, this protocol analyzes total
number of data element types (DET), record element types(RET) and file types
referenced (FTR). Such granular analysis allows to detect errors in the calcula-
tion of complexity of the BFCs. Same as [4], authors highlight the importance of
keeping traceability between requirements and input artifacts and measurement
results so that the protocol not only identifies measurement di↵erences but their
root cause.

Finally, Morris & Desharnais [10] described a verification method based on
historic IFPUG FPA measurement data. The validation identifies errors based
on variances to expected norms. Deviation from the norm happens when mea-
surement results do not comply with measurement results specific for the context
of the application. Based on historic data and application specific characteristics,
ranges of variation for a specific BFC are determined. Measurements verification
based on historic data and variances to expected norm is an approach di↵erent to
the one proposed by Quesada-López & Jenkins so it can not be used as support
for our prototype tool.

3 Prototype tool

Quesada-López & Jenkins [5] propose an accuracy verification that uses a top
down evaluation of functional size measurement results in order to identify dif-
ferences reported by applying one or more measurement processes. The protocol
looks for consistency comparing measurement results di↵erences against a true
value reported by an expert. We selected this protocol as the one automated
by our prototype tool because this protocol is designed to work with IFPUG
FPA measurements and this standard is the subject of study of our research.
Quesada-López & Jenkins [11] conducted a controlled experiment to compare
functional size measurements for two di↵erent measurement procedures: IFPUG
FPA and Automated Function Point (AFP). Two subsequent replications of
this experiment were then conducted in [12] and they were analyzed using the
verification protocol proposed by Quesada-López & Jenkins [5].



3.1 Protocol phases

The protocol has 3 phases: 1. Total UFP measurement results comparison
2. Detailed comparison of the accuracy of measurement results. 3. Identifica-
tion and errors recovery. We analyzed the protocol phases in order to determine
whether or not the level of detail of those was enough to accomplish the proto-
col automation and to determine which steps of the protocol procedure would
required improvements. Here we discuss improvements applied:

• Delayed execution of phase 3: The protocol executes phase 3 whenever an
error is identified in phase 2 so that errors in inputs (or procedures) are
fixed and the measurement results are re-evaluated to verify the calibration
success.The prototype delays the execution of phase 3 until a full scan of all
measurement results is performed. Such delay allows to identify the status
of all measurements before trying to find assignable causes for errors.

• Functional elements comparison: According to the protocol, measurement re-
sults have to be sorted by requirement, function and type. From automation
point of view, it is necessary to come up with a mechanism to guarantee that
the exact same elements are compared. We defined these requirements to per-
form numerical comparisons of measurement results: (1) Elements contain-
ing numerical attributes need an identification property. (2) Such property
must be consistent between the true value

1 measurements and the subject2

measurements.

To solve later requirements, we defined pair measurement. A measurement
is a pair measurement of another one if they both have the exact same name.
The prototype will only compare numerical data if it could previously pair two
measurements.

Protocol coverage and prototype model The prototype implements phases
1 and 2 of the protocol. Phase 3 requires human intervention to inspect the qual-
ity of requirements, input artifacts and measurement procedure. The automation
of this kind of inspection is out of the scope of this study, but a proposal to look
for assignable causes based on the prototype data model and the measurement
errors identified in phase 2 is described in Section 3. For phase 3 the prototype
identifies and reports the measurement di↵erences.

• Measurement results are represented with a graph data structure. Each set
of measurements (subject and true value) are represented on its own graph.

• The prototype uses deep first algorithm to traverse the graphs and visit
all nodes in both graphs simultaneously. In each node, measurements are
compared and evaluated.

1 True value measurement results refer to measurement results obtained by an expert
and that will be considered true value when evaluating measurement results through
the protocol

2 Subject measurements results refer to measurement results that need to be evaluated,
either obtained by a human being or a tool



• The graphs traversal to evaluate measurements and the search for assignable
causes generate the results that are presented to the user.

The prototype was implemented using Java as programming language and
Spring-boot framework. We selected Neo4jas graph database and we also used
Spring Data Neo4j library for graphs processing.

Prototype process model The protocol execution requires input data loaded
into the prototype. Such input data includes measurement results to be evalu-
ated and measurement results that will be considered as true value. Once input
data is loaded, it needs to be mapped to the prototype data model and then the
prototype can start executing the protocol. Measurement di↵erences and mea-
surement errors are reported to the user and they are also used as input for the
similarity analysis proposed in order to search assignable causes.

3.2 Measurement results modeling

Model design We used a graph to represent all measurements in a count of the
same application performed by a single source, either the expert or the person
or tool providing the measurement results that will be evaluated. The graph
nodes represent characteristics of the measurement of a functional element: The
count it belongs to, requirement, function type and basic functional components
associated, data logical groups and data element types. Edges represent relations
between these characteristics.

Model implementation Based on the design from previous section we im-
plemented the model in Figure 1. Graph nodes are represented by a base class
named Node that contains all attributes of a graph node. All other node types
extend from Node. CountRoot node contains the number of data functions and
transactional functions associated to a count. DFRoot node allows to group all
data function requirements which are at the same time composed by data func-
tions. TFRequirement nodes have the name of the artifact that presents the
requirement. TransactionalFunction nodes show the type of the transactional
function, the UFP size and the number of DETs and FTRs associated to the
function. TransactionalFunction is similar to DataFunction, but the last one has
di↵erent types and a attribute for RETs instead of FTRs. Graph edges allow us
to keep traceability between a measurement and the elements it is associated to.
More details of the prototype tool implementation can be found in [13].

3.3 Procedure modeling

Model design We defined some concepts as part of the procedure design phase.
These need to be understood for a better understanding of the prototype proce-
dure model:

• Subject node: Node currently analyzed in the subject graph.
• True value node: Node in the true value graph that corresponds to the subject
node.



Fig. 1: Implemented Data Model

• Subject graph: Measurement results graph currently being evaluated.
• True value graph: True value measurement results.
• Pair node: Node that matches the name and path of a node in the counterpart
graph.

• Invalidated node: Node that has no pair node in the counterpart graph.

As mentioned earlier, the prototype procedure takes advantage of deep first
graph traversal. Such algorithm adapts naturally to the problem so that one
measurement at a time is analyzed prioritizing nodes in deeper levels. Figure 2
shows the process flow followed by the prototype to implement protocol phases.
Each sub-process tagged represents an algorithm implemented in the prototype.

Fig. 2: Prototype execution process of protocol phases

The prototype first compares count nodes an register the evaluation results.
Then the graphs traversal begins. Such traversal looks for pair nodes in order



to allow the visit of a deeper level node. If the pairing between subject and
true value nodes succeed, nodes are linked and the pairing is registered, then
pair nodes measurements are evaluated. If the pairing fails, the algorithm has
detected an invalidated path. This causes invalided nodes to be tagged and
reported. This process continues until the entire top sub-graph is traversed.
After this, a second traverse starts in the bottom sub-graph from the DF node.
The proposal for sub-graphs similarities would be applied once both sub-graphs
are traversed in both subject and true value graphs.

Model implementation The model design includes eight algorithms described
now:

• Count nodes comparison: This algorithm implements phase 1 of the proto-
col by comparing total size measurement results. Total unadjusted function
points and the total number of DFs and TFs are compared.

• Graphs traversal: This algorithm traverses both graphs using deep first al-
gorithm. Detailed measurement results are compared if pairing succeeds.
Otherwise, di↵erences are reported.

• Nodes pair: This algorithm allows to determine if two given nodes, one from
subject graph and another from true value graph, actually pair.

• Sub-graphs invalidation: This algorithm is triggered when it is possible to
continue traversing a graph but its counterpart graph can no longer be tra-
versed because a node was invalided or the total number of nodes between
both graphs does not match. The algorithm invalidates an entire sub-graph
with a root node that was just invalidated.

• Path invalidation: This algorithm is similar to the previous one but its goal
is to invalidate a path. This algorithm is invoked by the previous one.

• Reporting: This algorithm is invoked every time a node is invalidated. It
allows to keep track of the specific paths that generated an invalidated node.

• Node linking: This algorithm marks two nodes, one from subject graph and
another from true value graph, as pairs.

• Measurements comparison: This algorithm generates metrics about the eval-
uation of two specific measurements, one from subject graph and another
from true value graph. It uses magnitude of relative error (MRE), magni-
tude of error relative (MER) and balanced relative error (BRE).

Proposal for assignable causes search based on invalidated sub-graphs
The execution of algorithms previously described allows to gather information
about invalidated paths and paired nodes. When the execution of all these al-
gorithms finishes, the search for assignable causes takes place. Such search has
two characteristics:

• Search based on invalidated sub-graphs must be bi-directional. This means
to look for subject invalidated sub-graphs in true value graph and to look
for true value invalidated sub-graphs in subject graph.



• Sub-graphs search must be a similarity search. This means that if exact sub-
graphs cannot be found in counterpart graph, then such sub-graph needs to
be adjusted to run new searches. Adjustments need to continue until proofing
no sub-graphs of the initial sub-graph are found in the counterpart graph.

The process to drive the similarity search based on invalidated sub-graphs is
described now. Given a invalidated sub-graph:

• If the root is a requirement node, search through all requirement nodes in
the counterpart graph, one with the same structure of BFC.

• If the root is a transactional function type (EI, EO, EQ) or a data function
type (EIF, ILF), search through all function types in the requirement being
analyzed in the counterpart graph, one with the same structure. If there is
no match continue searching through remaining requirements.

• If the root is a RET node, search through all RET nodes in the requirement
being analyzed in the counterpart graph, one with the same structure. If
there is no match continue searching through remaining requirements.

• If the root is a DET node, this will be considered a lost node.

Previous process will report all similarities identified and will support the
measurements analyst on the process of errors detection by reducing the amount
of time and e↵ort required to execute a verification protocol.

4 Tool evaluation

In order to evaluate the prototype tool we compared the measurement results
obtained manually by one of the researchers using the protocol against the results
obtained automatically by the tool. The evaluation reports the tool e↵ectiveness
to detect measurement errors. Based on the prototype results, we also reported
results of measurement defect findings for measurement procedures applied to
a small transactional application by two researchers with measurement exper-
tise (true value measurement results) and a random selection of 7 measurement
counts performed by 12 software engineering professionals. We selected 7 cases
because it is the minimum number of measurements evaluated for one group in
tests ran by [9]. Finally we analyzed the most common errors and we suggest
assignable causes for those.

4.1 Case study design

This study aimed to answer two research questions:

1. Is the prototype tool e↵ective to find measurement di↵erences, report errors
and suggest assignable causes? This research question allows to determine
if the tool implements the protocol correctly and the tool e↵ectiveness to
detect defects and suggest assignable causes.

2. What are the assignable causes identified by the tool based on the mea-
surement results evaluation? This research question allows to identify the
most common type of errors and assignable causes identified by the tool for
functional size measurement procedures.



We collected two groups of metrics in order two answer each research ques-
tion. The first group represents metrics related to functional size measurements
accuracy that have been used in previous studies [1,14,11]. These metrics allow
the evaluation of measurements accuracy in regards to true value measurements:
We collected MRE, MER and BRE to measure accuracy. We also collected total
function points and size measurement for BFC components. To measure repro-
ducibility we collected absolute value of di↵erence between subject count and
average count for the same sample. The second group of metrics allows to eval-
uate the tool e↵ectiveness to detect defects based on the comparison against
control values. We used confusion matrixes as described in [15,16]. We collected
confusion matrix, accuracy, precision and recall.

4.2 Case study implementation

These steps describe how we implemented the case study:

1. Selection of software application to use as object of study and the elaboration
of requirements specification following standard IEEE-830 [17]. The selected
application has 144 UFP and the requirements document and the source
code of the application are very similar to examples in a real management
information system (MIS) in the industry.

2. Functional size measurement of the selected application. 2 researches with
measurement experience measure the application. Results are considered
true value.

3. Twelve professionals collect functional size measurement for the selected
application using the IFPUG FPA method. The subjects were mainly devel-
opers and testers of a graduate metrics course, not the usual users of FSM
measurement methods but familiar with software engineering practices. In
order to accomplish leveling, first participants assist to four training sessions.
Next, they measure the application using requirements specification as base-
line and reporting all measurement results. After that, measurement results
are reviewed to validate they are detailed enough to work as prototype tool
inputs. Finally, seven cases are selected randomly to evaluate the prototype.

4. Accuracy verification protocol is applied manually to identify all di↵erences
and assignable causes between the true value measurements and the 7 cases
selected. This step is executed by one of the researches and results are con-
sidered control values.

5. Prototype is designed and implemented to automate the accuracy verification
protocol.

6. Measurement results are processed to generate inputs required by the pro-
totype.

7. Verification protocol is applied with the prototype to identify measurement
defects and assignable causes for such di↵erences.

8. Prototype reports findings and accuracy verification results.
9. Prototype’s results are compared against the control values using metrics

mentioned early in this section.



4.3 Threats to validity

Internal Validity: Human factor could influence the results of manual proce-
dures. Measurement di↵erences between participants was reduced by selecting
subjects with similar experience in the application of functional size measure-
ment (FSM). Experiment artifacts could also influence results. The same re-
quirements specification was used by all participants. The reduced number of
participants in the sample also represents a thread, whereas the fact of all be-
ing industry practitioners is an advantage for this study. Prototype inputs were
prepared in a semi-manual process that also represents a thread in the correct-
ness of the Neo4j scripts. Control values used to evaluate the prototype results
and the participants measurements were generated by one researcher who ap-
plied the accuracy verification protocol. This could influence the control values.
Lastly, two researchers of this study, who have measurement experience, applied
the FPA method to do the functional size measurement. They do not have a
CFPS certification. External Validity Although the application analyzed is a
small one (144 UFP), its requirements are similar to industry real cases. Par-
ticipants were mainly analysts, developers or testers. It means they are not the
ones who usually do functional size measurement but they do have understanding
about software engineering practices. A similar performance is expected between
all participants. Construct Validity Measurements reliability is an important con-
sideration for the validity of conclusions about results. All measurements used
in this study for the functional size evaluation and accuracy are based on known
FSM methods proven in literature and standard ISO 14143-3 [18]. Confusion
matrixes are also proven in literature as a way to evaluate results quality in a
classification problem.

5 Results

Tool e↵ectiveness was evaluated based on the results it generated when com-
paring participants results to true value results. Table 1 shows the results of
measurements evaluation obtained by the prototype tool for total functional size
and data functions (DFs) and transactional functions (TFs). Median Magnitude
of error relative (MdMER), Median Magnitude of relative error (MdMRE) and
Median Balanced relative error (MdBRE) are acceptable for TFs considering a
variance of 10%. Standard deviation for such measures is around 10%. Results
for DFs show MdMRE and MdBRE of 75% whereas MdMER is 42.86%. This
means subjects’ total size measurements for DF components are di↵erent to true
value measurements. Standard deviation for DF components total size is 13.57%,
this means results are closer to mean than TF components results even for the
total size reported. Total size measurements show better results than DF com-
ponents results. Total size results reproducibility is similar to total size results
for TF components. DF components show reproducibility results almost 30%
close to the mean value.

Table 2 shows measurement evaluation results for EI, EO and EQ compo-
nents. EI and EQ show acceptable results with mean and median values for MRE,
MER and BRE lower than 10%. EO components show results slightly higher



Table 1: Measurement evaluation results
TF DF Total

UFP MRE MER BRE Di↵ Rep UFP MRE MER BRE Di↵ Rep UFP MRE MER BRE Di↵ Rep
Mean 110.4 11.7% 13.2% 13.7% 13.6 14.5% 49.1 75.5% 38.5% 75.5% 21.1 28.3% 159.6 17.2% 15.7% 18.1% 24.7 14.5%

Median 110.0 10.3% 11.5% 11.5% 12.0 14.2% 49.0 75.0% 42.9% 75.0% 21.0 18.1% 161.0 18.8% 15.8% 18.8% 27.0 8.2%

Std Dv 17.2 9.3% 12.3% 12.5% 10.8 13.2% 13.6 48.5% 19.9% 48.5% 13.6 34.4% 24.6 9.3% 8.8% 10.1% 13.3 18.9%
Min 84.0 1.7% 1.8% 1.8% 2.0 1.9% 28.0 0.0% 0.0% 0.0% 0.0 0.9% 112.0 2.8% 2.7% 2.8% 4.0 1.6%
Max 139.0 27.6% 38.1% 38.1% 32.0 41.4% 70.0 150.0% 60.0% 150.0% 42.0 98.2% 188.0 30.6% 28.6% 30.6% 44.0 55.6%

Table 2: Measurement results for EI, EO and EQ
EI EO EQ

UFP MRE MER BRE Di↵ Rep UFP MRE MER BRE Di↵ Rep UFP MRE MER BRE Di↵ Rep

Mean 58.7 7.4% 7.9% 8.2% 4.4 8.8% 18.0 15.8% 18.1% 18.6% 3.0 0.0% 15.8 5.5% 6.2% 6.2% 1.0 9.8%

Median 61.0 4.8% 5.0% 5.0% 3.0 2.9% 18.0 15.8% 18.1% 18.6% 3.0 20.0% 17.0 3.9% 3.7% 3.9% 1.0 0.0%
Std Dv 6.2 7.0% 7.8% 8.0% 4.1 12.0% 3.5 6.1% 10.0% 9.3% 1.2 24.0% 10.3 6.1% 7.0% 7.0% 1.0 16.2%
Min 48.0 0.0% 0.0% 0.0% 0.0 0.4% 15.0 10.5% 9.5% 10.5% 2.0 0.0% 0.0 0.0% 0.0% 0.0% 0.0 0.0%
Max 64.0 17.2% 20.8% 20.8% 10.0 30.7% 21.0 21.1% 26.7% 26.7% 4.0 40.0% 27.0 13.3% 15.4% 15.4% 2.0 38.9%

than 10%. This means participants’ results were close to true value results. A
low UFP standard deviation for the three components also proofs mentioned
closeness. Reproducibility has better results in EI and EO components.

None of the participants reported EIF components and all reported 28 UFP
of ILF components. This matches with true value results. ILF components then
have perfect accuracy and reproducibility for all participants.

Results show that the prototype can evaluate measurements automating the
generation of accuracy metrics measurements for each evaluation executed by
the prototype. Results also match with those shown in [12], according to the
last one, for the group of 12 subjects, accuracy showed better results for TF
components than DF components.

5.1 Tool e↵ectiveness for error reporting and assignable causes
suggestion

Measurement errors detected by the prototype were compared against control
values obtained by one of the researchers. According to Figure 3, the prototype
tool detected 901 errors correctly, it also reported 12 false positive cases. After
analyzing this cases we determined those cases are nodes the prototype could
not pair because of di↵erences upper/lower case di↵erences between subject and
true value node name. The prototype tool reported 48 false negative cases. False
negative cases are due to one of two reasons:

• Subject reported duplicated measurements.
• Subject reported measurements incompletely.

Fig. 3: Tool e↵ectiveness for error detection

These scenarios cannot be loaded into the graph database, the first one be-
cause nodes cannot have duplicated names and the second one because it rep-
resents missing information. Since data cannot be loaded into the database, it
cannot be analyzed by the prototype tool. The prototype tool reported 26 true
negative cases for nodes that matched the name and tag correctly. Based on



Table 3: Tool e↵ectiveness for error detection by error category
Error Categories Accuracy Precision Recall
Incorrect Classification 100.0% 100.0% 100.0%
Incorrect Association 100.0% 100.0% 100.0%
Incorrect Type 100.0% 100.0% 100.0%
Tagging Error 96.4% 96.1% 100.0%
DET Tag does not match 96.4% 96.1% 100.0%
Missing Report 100.0% 100.0% 100.0%
Missing DET 100.0% 100.0% 100.0%
Missing Message 100.0% 100.0% 100.0%
Missing Requirement 100.0% 100.0% 100.0%

Error Categories Accuracy Precision Recall
Unnecessary Report 100.0% 100.0% 100.0%
Unnecessary BFC 100.0% 100.0% 100.0%
Duplicated DET 100.0% 100.0% 100.0%
Unnecessary BFC 100.0% 100.0% 100.0%
Duplicated Logical Group 100.0% 100.0% 100.0%
Duplicated Requirement 100.0% 100.0% 100.0%
Unnecessary Requirement 100.0% 100.0% 100.0%

Table 4: Error categories and types not detected by the tool

Missing Report 14 Unnecessary Report 34
Missing Association 14 Duplicated Association 34

previous results and for our case study scenario, the prototype tool detects de-
fects correctly 93.92% of times. When the prototype tool detects a defect, it
does it correctly 98.69% of times and when there are errors, the tool detects
them 94.94% of times. Receiver operating characteristic curve (ROC) analysis
to evaluate the tool e↵ectiveness to detect defects show ROC equals to 0.82.
This means the tool is classified as good on defect detection.

Besides reporting invalidated paths, the tool provides error categories. Such
categories where defined by one researcher based on a proof of concept executed
to validate the prototype tool. Table 3 shows prototype tool e↵ectiveness for
defect detection based on the error category. The prototype tool detects all errors
categorized as incorrectly classified, unnecessary reports and missing reports. For
tagging errors category, the tool can detect defects with 96.37% accuracy.

Regarding the errors not detected by the tool, Table 4 shows the number of
cases present in the measurements analysis done by one researcher. As explained
earlier, these cases correspond to scenarios in which the database does not have
all the information, either because it is missing or because it is already reported.

5.2 Assignable causes identified by the tool based on the
measurement results evaluation

These are the assignable causes identified by the tool after processing inval-
idated paths:

• Incorrect classification: The user identified a measurement correctly but clas-
sifies it incorrectly. Incorrect association refers the RETs reported by the
user in incorrect BFCs. Incorrect type refers to BFCs reported with incor-
rect type.

• Tagging errors: Refers to DETs with names that do not match.
• Missing report: Refers to cases in which subject does not report a measure-
ment but it does show in the true value measurement results. Missing DETs,
missing button or messages reports and missing requirements.

• Unnecessary report: Refers to subjects reporting elements that do not show
in the true value graph. BFCs reported by the subject but not by the true
value, duplicated DETs with the same name but di↵erent tags, unnecessary
DETs reported in BFCs, duplicated RETs, requirements with duplicated
names but di↵erent tags and requirements reported by the subject but not
by the true value.



5.3 Preliminary results for the similarity search

In order to validate the proposal for similarity search we conducted a proof
of concept (PoC) based on the algorithm proposed for the similarity search.
Our proof of concept is based on a subset of true value measurement results for
Contoso application and a subject measurement created from seeded errors in
the true value measurement. The prototype would report all invalidated paths
and the sub-graphs with some similarity in the counterpart graph. The PoC
showed the report of all invalidated paths for subject measurements. In this
case, 13 paths were invalidated. 3 of them did not get a suggestion for similar
sub-graphs.Two paths referred to paths that do not exist in the true value graph
because they represent unnecessary reports. One path represented a data element
reported by the true value but not by the subject.

6 Conclusions and future work

This study presents a prototype tool that automates an accuracy verifica-
tion protocol for IFPUG FPA functional size measurements. The tool generates
the report of detected defects and suggests assignable causes for such defects by
categorizing them. To validate the tool we elaborated a case study to compare
accuracy verification results obtained automatically by the prototype against
control values obtained by three researchers manually. Such validation includes
reporting the prototype tool e↵ectiveness to find defects previously identified by
researchers. Evaluation results show the e↵ectiveness of the prototype tool to re-
port measurement defects and suggest assignable causes for such defects. Results
analysis determines that the prototype tool can detect four measurement error
categories: Incorrect classification, tagging error, missing report and unnecessary
report. These categories are associated to possible assignable causes by the error
classification in each category. As future work, the accuracy verification proto-
col and the prototype tool can be used to verify functional size measurement of
any procedure following a model (or a subset) with the same basic functional
components of IFPUG FPA. A component to register measurement results in
the prototype tool would not only reduce the time and e↵ort required to load
measurements results in the tool. It would allow to remove the risk of having
a human being translating measurements to scripts that can then be imported
into the database. Similarly the tool could be extended so that measurement
results validation is also reported automatically by the tool. In regards to errors
categorization, tags evaluation mechanism needs to be improved so that node
names and tags are not an exact text match but a text similarity comparison.
The component for assignable causes suggestions can be extended to include
more scenarios. This require the execution of more cases and the evaluation of
di↵erent algorithms for sub-graphs similarity detection.

References

1. S. M. Abrahao, “On the functional size measurement of object-oriented conceptual
schemas: Design and evaluation issues,” Ph.D. dissertation, 2004, aAI3154436.

2. S. Fingerman, Practical software project estimation: a toolkit for estimating soft-
ware development e↵ort duration. Boston, MA: McGraw Hill, 2011.



3. A. Abran and R. Dumke, “Cosmic function points: Theory and advanced prac-
tices,” 2011.

4. H. Soubra, A. Abran, and A. Ramdane-Cherif, “Verifying the accuracy of automa-
tion tools for the measurement of software with cosmic – iso 19761 including an
autosar-based example and a case study,” in 2014 Joint Conference of the Inter-
national Workshop on Software Measurement and the International Conference on
Software Process and Product Measurement, Oct 2014, pp. 23–31.

5. C. Quesada-López and M. Jenkins, “Applying a verification protocol to evaluate
the accuracy of functional size measurement procedures: An empirical approach,”
in Proceedings of the 16th International Conference on Product-Focused Software
Process Improvement, New York, 2015.

6. C. Symons, “Lies, damned lies and software metrics,” in 2014 Joint Conference
of the International Workshop on Software Measurement and the International
Conference on Software Process and Product Measurement, Oct 2014, pp. 174–
175.

7. S. Bagriyanik and A. Karahoca, “Automated cosmic function point measurement
using a requirements engineering ontology,” Information and Software Technology,
vol. 72, no. Supplement C, pp. 189 – 203, 2016.

8. C. Quesada-López and M. Jenkins, “Procedimientos de medicin del tamao fun-
cional: un mapeo sistemtico de literatura,” ser. CIBSE 2017, 2017.

9. G. Yilmaz, S. Tunalilar, and O. Demirors, “Towards the development of a defect
detection tool for cosmic functional size measurement,” in 2013 Joint Conference
of the 23rd International Workshop on Software Measurement and the 8th Inter-
national Conference on Software Process and Product Measurement, Oct 2013, pp.
9–16.

10. P. Morris and J. Desharnais, “Function points analysis. validating the result.” ser.
TotalMetrics, 2001.

11. C. Quesada-López and M. Jenkins, “An evaluation of functional size measurement
methods,” in Ibero-American Conference on Software Engineering, Lima, Peru,
2015.

12. C. Quesada-López, D. Madrigal, and M. Jenkins, “An empirical evaluation of au-
tomated function points,” in Ibero-American Conference on Software Engineering,
Curran Associates, Inc. Quito,Ecuador: Curran Associates, Inc., 2016.

13. D. Madrigal, “Automatizacion de un protocolo de verificacion de la medicion del
tamano funcional,” Universidad de Costa Rica, San Pedro, Costa Rica, Tech.
Rep., 2017. [Online]. Available: https://goo.gl/aAfy7f

14. S. Abrahao, G. Poels, and O. Pastor, “Evaluating a functional size measurement
method for web applications: an empirical analysis,” in 10th International Sympo-
sium on Software Metrics, 2004. Proceedings., Sept 2004, pp. 358–369.

15. N. V. Chawla, Data Mining for Imbalanced Datasets: An Overview. Boston, MA:
Springer US, 2005, pp. 853–867.

16. in Data Mining (Fourth Edition), fourth edition ed., I. H. Witten, E. Frank, M. A.
Hall, and C. J. Pal, Eds. Morgan Kaufmann, 2017, pp. i – iii.

17. IEEE, “Ieee recommended practice for software requirements specifications,” IEEE
Std 830-1998, pp. 1–40, Oct 1998.

18. ISO/IEC, “Information technology - software measurement - functional size mea-
surement. part 3: Verification of functional size measurement methods,” Interna-
tional Organization for Standardization, Geneva, CH, Standard, 2007.

https://goo.gl/aAfy7f

	Towards the automation of a defect detection protocol for functional size measurements

