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Abstract

The goal of our on-going research is to develop effective and reliable tools for
modeling the environmental systems of the Gulf of Mexico. For example, our on-going
research into methodologies for the prediction of water levels in the shallow waters
of the bays and estuaries along the Texas Gulf coast. Our modeling approaches are
based on the real-time data collected by the Texas Coastal Ocean Observation Network
(TCOON). TCOON is managed by the Division of Nearshore Research (DNR) in
cooperation with the Department of Computing and Mathematical Sciences (CAMS)
both of Texas A& M University-Corpus Christi. TCOON consists of approximately
50 data gathering stations located along the Texas Gulf coast from the Louisiana to
Mexico borders.

In addition to a short description of our major data acquisition system for our
research efforts, this paper presents design issues, development issues, and test results
encountered in the production of two supplemental data acquisition systems as well
as several of our environmental systems modeling efforts at Texas A&M University
Corpus Christi.
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Resumen

El objetivo de nuestra investigación es desarrollar herramientas eficaces y confiables
para modelar los sistemas ambientales en el Golfo de México. Por ejemplo, nuestra
investigaci
’on actual en metodoloǵıas para la predicción del nivel del agua en las aguas poco
profundas de las bah́ıas y estuarios a lo largo de la costa del Golfo de Texas. Nuestro
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enfoque de modelación está basado en datos obtenidos en tiempo real por la Red
de Observación Oceánica de la Costa de Texas (TCOON, por sus siglas en inglés).
TCOON es manejado por la División de Investigación de la Ribera (DNR, por sus
siglas en inglés) en cooperación con el Departamento de Ciencias de la Computación
y Matemáticas (CAMS), ambos de la Universidad Texas A & M en Corpus Christi.
TCOON consiste en una50 estaciones para la recopilación de datos localizadas a los
largo de la costa del Golfo de Texas, desde las fronteras con Luisiana y México.

Además de una corta descripción de nuestro principal sistema de adquisición de
datos para nuestros esfuerzos de investigación, este art́ıculo presenta aspectos de diseño
y desarrollo, aśı como resultados de pruebas hechas en la producción de dos sistemas
adicionales de adquisición de datos, aśı como varios de nuestros esfuerzos de mod-
elación en la Universidad de Texas A& M en Corpus Christi.

Palabras clave: Adquisición de datos, modelación ambiental, robótica.

Mathematics Subject Classification: 93A30.

1 Introduction

Due to the heavy dependence on water level forecasts of trade and industry along the
Gulf of Mexico coast, accuracy in these forecasts is essential, but the current standard
forecasting methodologies do not provide accurate predictions for this region. Tide charts,
produced by harmonic analysis and published by the National Ocean Service, are the
existing standard, but these charts only show the astronomical forces acting upon the
water. While this proves to be an accurate predictor for major portions of the other
coasts, water level changes along the Texas Coast are strongly effected by meteorological
factors [1]and thus require a modified prediction model.

2 Texas Coastal Ocean Observation Network

The Texas Coastal Ocean Observation Network (TCOON) started in 1988 serves as the
major environmental data acquisition system for our modeling efforts. TCOON consists
of over 50 environmental data collection platforms along the Gulf Coast, from Mexico to
Louisiana (Figure1). Primary project sponsors include the Texas General Land Office,
Texas Water Development Board, U.S. Army Corps of Engineers, and NOAA National
Ocean Service. TCOON stations [2] measure and archive various measurements such
as water levels, wind speed and direction, temperature, salinity, and barometric pres-
sure(Figure 2). TCOON follows U.S. federal standards for the installation of its stations
and has a very useful real-time, online database.

Data sampled at these stations include: precise water levels, wind speed and direction,
atmospheric and water temperatures, barometric pressure, and water currents. The mea-
surements collected at these stations are often used in legal proceedings such as littoral
boundary determinations; therefore data are collected according to National Ocean Service
standards. Some stations of TCOON collect parameters such as turbidity, salinity, and
other water quality parameters. All data are transmitted back to A&M-CC at multiples
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Figure 1: Map of TCOON Stations.

of six minutes via line-of-sight packet radio, cellular phone, or GOES satellite, where they
are then processed and stored in a real-time, web-enabled database. TCOON has been in
operation since 1988.

TCOON data are valuable for tidal datum, coastal boundaries, oil-spill response, nav-
igation, storm preparation and response, as well as research. See Figure 3 for examples
of TCOON web pages. The screen on the left depicts an illustration of graphical repre-
sentations of TCOON measurements in near-real time. The screen depicted to the right
contains the latest measurements taken at the selected station.

3 Supplemental data acquisition systems

3.1 Shallow draft vehicle

In shallow water areas not covered directly by TCOON stations data collection normally
requires setting up sensors in several places. In addition to being redundant and time
consuming, this task when performed manually has a high chance of disturbing the test
area. CAMS investigators in conjunction with the Center for Coastal Studies (CCS) of
A&M-CC currently collect water quality data in areas with water 3 ft. or deeper by a
man-controlled boat. A number of research centers have been developing autonomous
boats [3, 4, 5, 6]. These boats, however, require course planning prior to deployment. As
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a result, the pre-planned course is not easily changed once the boat is in the water. This
paper describes a project undertaken by an interdisciplinary team of CAMS computer
science, engineering technology, geographic information sciences, and mathematics profes-
sors and students along with environmental investigators at CCS to design and develop a
remotely controlled boat that continuously and efficiently collects water quality in shallow
water areas (6 in-3 ft), rather than using fixed position sensors to make the water quality
collections.

Our boat is small in size (7ft in length and 3 ft in width), has a shallow draft, and
can be easily steered to collect data in real-time. The prototype is designed to collect
salinity and other environmental data and is equipped with onboard computers, water
quality instruments (Hydrolab c© ), GPS, digital compass, a remote control receiver, and
a receiver/transmitter radio (Freewave). It also has sensors to detect objects from all
directions (front, sides, back, and bottom) and will eventually have the ability to intelli-
gently maneuver around obstacles. Acquired data is transmitted wirelessly via a radio to
a remote control station in real-time and data is logged to a PC for later processing.

3.2 Boat system design

Designing the boat took into consideration the following operational requirements: (a)
The boat was to be remotely controlled within the operator’s line of sight, (b) It was to
be small and easy to transport in the back of a truck without extra towing equipment,
(c) It was to be stable enough to resist waves and wind, (d) It had to have the ability to
travel through areas with a draft as small as 6 inches, (e) It had to have sensors to detect
objects from all directions (front, sides, back, and bottom), and (f) It had to transmit
data wirelessly to a docking and control station in real-time. The following paragraphs
describe the major components of the system (see Figure 4).

Figure 2: Example of a TCOON Station.

The boat is controlled remotely by a remote controller and a PC. The remote controller
transmits data to steer the boat and select its speed. The PC is used to store and process
the received data and to display the status of major systems and onboard sensors. The
PC display serves as a guide to assist the operator with navigation when objects around
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Figure 3: Typical Web pages the TCOON web-site.

or under the boat are detected. The operator is able to direct the boat to investigate areas
of interest.

Figure 4: System diagram.

Issues considered in selecting a hull shape included onboard weight, type of power,
condition of the water in which the boat is used, means of transportation to the launch
site, and the desired draft [7]. Since the draft of the boat is one of the most important
criteria, a flat bottom was selected. After considering a variety of hull materials, it was
determined that most materials are too heavy to meet our shallow draft displacement
requirement, thus, we selected polyurethane. Polyurethane has two major advantages:
(1) It floats with an extremely shallow draft ( see Table 1), and (2) It can be easily shaped
by carving it before adding a protective coating of fiberglass. Recesses in the boat deck
were carved to house the battery and the waterproof container which houses the electronic
components. Total weight of the prototype is approximately 150 pounds. The transom is
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strengthened, in order to secure the motor, with 3/16” aluminum sheets. All pieces are
configured with reusability in mind and for easy replacement of damaged parts (see Figure
5).

Boat condition Draft at bow Draft at transom (IN)
Empty 1 1.5
Loaded 2 3

Table 1: Boat draft characteristics.

A MotorGuide model GWT36 electric trolling motor is used to propel the boat. This
motor is rated for salt water operations and can propel a boat as heavy as 1500 lb. It has
hand-controlled steering and 5-speeds forward and 2-speeds reverse.

The motor was easily modified for remote control. The remote control function was
accomplished via a Futaba c© 6-channel FM radio. Currently only two channels are used.
One channel controls the steering via a high torque servo and pushrod that connects to the
shaft of the motor and the other channel controls forward and reverse speed via a remote
control switch. The control switch consists of two relays that open and close according to
the pulse signal of the Receiver (Rx).

Since the original equipment servo harness was made of plastic and could easily break.
This was corrected by replacing the servo harness with a 12 VDC steering motor that
drives a built-in worm gear in combination with an RC switch to control the direction,
left or right. Additionally, the RC switch did not allow us to control variable speed. It
could only provide one speed forward and one speed reverse. This problem was solved
using electronic control, which would allow varying the speed in forward and reverse. The
speed of the motor is simply a function of the position of the radio controller joystick [8].

Two nested boxes are used to keep water from reaching the added steering motor. The
outside box prevents splashing water from reaching the motor, and the inside box is an
electronic waterproof box that prevents the water that escapes from the first box from
reaching the steering motor. The boxes are attached to the transom mount of the trolling
motor.

Two batteries are used to power the boat and its systems: A marine battery for the
motor and another small battery to operate the other onboard electronic components,
including; radio, embedded PC, sensors, and GPS. The system operates at medium speed
with the 98Ah marine battery for about 4.8 hrs without recharging.

The onboard control and data acquisition computer is a stack of PC/104 modules,
called the ”Cube,” with analog-to-digital conversion capabilities and serial port interfaces.
The cube acts as a central control unit and interfaces with the radio and all onboard
sensors, including the GPS and digital compass. The water quality sensor is a Hydrolab c©
designed to be used in fresh, salt, or polluted water. This instrument measures several
parameters, including temperature, pH, dissolved O2, and salinity. Our Hydrolab c© model
includes a pump via a tube to take the water through the process onboard. This device is
useful in shallow water areas since the Hydrolab c© does not have to be immersed in water
[9].
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Figure 5: Boat hull dimensions.

We have developed our system on a Linux-based platform. We have written a serial
task scheduler to collect data. For example, data is collected from the GPS receiver and
Hydrolab at 15 second intervals and written directly to compact flash disk memory. The
data is wirelessly transmitted by radio from the serial port of the Linux based platform on
the boat to the laptop control computer on shore. After error checking the incoming data,
the control computer processes the received data for display on a graphical user interface.

To provide the researcher/operator with navigational and current data collection infor-
mation we have designed a GUI, which presents the most recently collected GPS, Hydrolab,
and depth finder information. Additionally, system power constraints in terms of battery
voltage and computed estimated running time are displayed on the GUI. In addition, the
depth and GPS navigational data are displayed graphically in a separate window to vi-
sually aid the researcher/operator. The GUIs are written in Visual Basic and Gnuplot is
used to plot the depth and navigational data in the separate window (see Figure 6).

3.3 Airborne Multi-Spectral Imaging System (AMIS)

The integration of remote sensing and geographic information systems (GIS) in environ-
mental applications has become increasingly common in recent years. Remotely sensed,
multi-spectral images of earth’s surface are excellent sources for scientific information.
There are many multi-spectral Satellite Remote Sensors such as the LANDSAT MSS and
LANDSAT TM, but these systems offer only 30-meter spatial resolution pixels. Another
limitation of satellite sensors is that their temporal resolution is based on their orbital
passes.

Advances in imaging technology and sensors have made airborne remote sensing sys-
tems viable for many environmental applications that require reasonably good resolution
at low cost. Digital cameras are making their mark on the market by providing high
resolution images at very high rates. These images provide a higher temporal

resolution with superior spatial resolution as sources of information for various ap-
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Figure 6: Graphical User Interface

Figure 7: Sea trial
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plications including vegetation detection, oceanography, GIS, and environmental coastal
science analysis. An examination of the spatial and spectral resolution for mapping and
interpretation of flood area and land classification conducted with digital imagery is a
product of GIS.

We have designed and developed an AMIS to provide us with further supplemental
data for our environmental modeling efforts at A& M-CC. Our prototype AMIS consisted
of one Sony DCR-PC1 MiniDV handycam. Our flight test results show that the use of
high-resolution digital cameras meets the needs of the scientific staff at A& M-CC. The
aerial images of the prototype system have a 20 cm resolution for a flying height of 1500
feet. Our configuration, like the airborne remote sensing system at Ohio State University
or the digital camera system at the University of Calgary, requires data to be recorded and
post-processed. Although this solution delays the availability of results, it produces good
spatial results and provides us with higher resolution data more rapidly than satellite data,
for example, 2-meter positional accuracy and 3-meter accuracy in height [10]. Recently,
a small-format aerial photographic system was used in combination with lower resolution
images for rectification [11]. Compared to existing scanned products, the digital frame
array offers a pixel resolution of around 4.5 mm.

An LCD screen (an 8 mm Sony Digital Player) mounted on the pilot’s control allows
the pilot to see what the video camera is viewing. The LCD screen and the video camera
were connected through an S-video cable. The images were recorded on both the digital
videotape and by utilizing Pinnacle Studio DV version 7 software on a laptop with an
Adaptec Inc. IEEE 1394 PCMCIA (firewire) interface card.

The camera and the GPS control software is written in Delphi 5.0. The software
enables the user to display and record the video to the system hard disk. The GPS
receiver is connected to the COM port of the system computer. The software reads and
records the GPS coordinates and the corresponding time. The software incorporates the
ActiveX controls package, which enables easy access to imaging devices connected to the
computer.

In early July 2002, there was massive flooding in south Texas. On 12th July 2002,
a second test flight was conducted over the Chapman Ranch located in Nueces, Kleberg,
and King counties of south Texas. The purpose of the flight was to determine the quality
of the system’s vegetation detection as well as record the flooding of the Nueces River.

For vegetation detection, we flew over the Chapman ranch at lower altitude (3000 ft.)
before capturing the Nueces River flooding at 12,500 feet. A raw small-format image is
shown in Figure 8(a). Some of the images were processed and analyzed. The images
were also enhanced to improve convolution, edge enhancement, and contrast utilizing a
spectral pass filter. The image was rectified using existing Digital Ortho Quarter Quad-
rangle images from the US Geological Survey. Next, the images were enhanced to improve
convolution, edge enhancement, and contrast utilizing a spectral pass filter. The next ob-
jective was to replace visual colors with a classified pattern. An unsupervised classification
method was used to determine the natural breaks between the shapes, sizes and spectral
signature. The objective of the development of the classified map is to (i) identify a flooded
area and its boundaries, and (ii) assign land ownership to flooded area. A more involved
method of reclassification was used to identify land cover types. A six-color classification
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was performed using spectral pattern recognition of the Jenks natural breaks as seen in
Figure 8(b). This image groups similar spectral signature items for classification. Land
cover is represented by the natural and artificial compositions covering the earth surface
and are used to assess the flood impact.

4 Tide (water level) modeling

The goal of our on-going research is to develop effective and reliable tools for predicting
water levels in the shallow waters of the Gulf of Mexico. Different schemes that we are
using for the prediction of water levels include harmonic analysis, statistical models, and
neural networks. Multivariate statistical based models of predictions of tides and neural
network predictions are under development at the Division of Nearshore Research (DNR)
of the Center for Coastal Studies in cooperation with the Department of Computing and
Mathematical Sciences of Texas A& M University - Corpus Christi.

4.1 Statistical modeling

Tide charts, based on harmonic analysis, are generally the method of choice for the fore-
cast of water levels. However there are limitations to the use of tide charts. Tide charts
are mostly based on astronomical forcing or the influence on water levels of the respective
motions of the earth, the moon, and the sun. There are locations around the world, in-
cluding the Gulf of Mexico, where other factors such meteorological forcing often dominate
tidal forcing [12] and limit significantly the application of tide charts. In such cases other
models must be developed to accurately forecast water levels.

We have considered three different models for “next-hour” predictions, and two of
these produced quite reliable predictions. The first of these models is a multi-regression
model in which the “next-hour” prediction is based on the levels of water, speeds and
directions of wind for the previous 48 hours with a step of 2 hours. This model did not
produce the expected results. The coefficient of correlation for these predictions was less
than 0.5.

The second approach was another multi-regression model in which two-hour predic-
tions of water level are based on the levels of water during the previous 48 hours, using
2-hour steps. Here we now believe that information about weather (pressure, wind, tem-
perature, etc.), used in the model previously described, is hidden in the levels of water.
Since this model excluding wind parameters worked remarkably well: R squared for all
TCOON stations was greater than 0.95. To make further predictions we used the pre-
viously determined levels of water. Such a step by step approach produced quite good
predictions. Table 1 below presents statistical data for the differences between predicted
and real levels of water for 6, 12, 18, 24, 30, 36, 42, and 48 hours [12].

The third approach was also based on linear multi-regression of the levels of water, first
differences, and second differences for such levels for the previous 48 hours with the step
equal to two hours. This approach produces the same quality of water level prediction as
the second approach, i.e. R2 > 0.95. These results are quite understandable, since in both
cases we have to deal with linear combinations of previous water levels. The difference
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Figure 8: (a) Digital image of Nueces river flooding. (b) Classified image of flooded area
river flooding.

in these two models is as follows: the third approach has between four (4) and eight (8)
significant variables in a linear regression while in the second model of linear regression
we use all twenty four (24) variables where these variables are the water levels for the
previous 48 hours. Results of these predictions can be seen in Table 2 below.

We believe that this statistical model may also be useful as a means to fill gaps, due to
equipment failure, in the observed water level data. To fill gaps in water level data, we will
use the following procedure: First, we will find backward and forward linear regressions
for the predicted water levels, and then we will evaluate lost data as a linear combination
of forward and backward predictions with weights proportional to the distances from the
edges of the gap.

4.2 Factor analysis

After analyzing different regression models we faced the following question, “Why do
models with only previous water levels work much better than models with all kinds of
meteorological data provided by TCOON stations?” To answer this question we applied
factor analysis to the water levels over the period of 48 hours with the interval of 2 hours.
The conclusion is that no more than 5 factors explain over 90% of variance for water levels
for all TCOON stations. Then we compared the results of the factor analysis for shallow
waters with the results of the factor analysis for deep water stations.

Analyzing the for the different TCOON stations we have discovered the following:

• In shallow coastal waters and estuaries the principal or first of the major component
is not periodical, and we call this component ”weather”. Other main components
are periodical and we call them ”astronomical”.

• In off-shore deep waters, the first two or three components are astronomical compo-
nents, while weather is a less dominant component.
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• Our conclusion is that for estuaries and shallow waters, weather is the prime fac-
tor affecting the variations of water levels, while tidal forces are the major factors
affecting the variations of water levels in deep waters.

• It has been observed also, that linear regression models for different locations have
different coefficients for the same variables. We think that such differences may be
explained by the geography of the place where the data is collected.

4.3 Integration of regression and harmonic analysis

These conclusions assisted us in improving predictions in the shallow waters since the
conclusion suggested integrating the regression approach with harmonic analysis. Namely,
we use the idea that variations of water levels depend on two things: a harmonic component
(which is called tides) and the weather component. Let us denote:

xn = wn − hn,

where: xn is the difference between water level wn and the harmonically predicted water
level hn at the moment n.

Then we can apply a technique, which is similar to that used for our statistical model
described above. That is, we can predict the difference between water level and harmonic
level for the next hour

x1 = a0x0 + a−1x−1 + · · · + a−nx−n

and step by step
xk = a0xk−1 + a−1xk−2 + · · · + a−nxk−n.

Now we can predict the water levels as follows:

pwt = ht + xt.

This approach to predictions of water levels proved to be very effective. In table 4
below we present comparisons of this approach with other approaches, thus, we were able
to evaluate the effectiveness of this symbiosis of regression and harmonic analyses.

4.4 ANN modeling and predictions

The Artificial Neural Network (ANN) modeling approach is also based in forecasting future
water level differences as a function of past water level differences. Other inputs to the
ANN model have also been tested. For example, past wind squared is included in the
model discussed below; as it has been recognized that wind forcing is well correlated with
water anomalies. Other inputs, such as barometric pressure, have been tested but models
which included past water level differences, past wind measurements and wind forecasts
have been shown to be optimal [13]. It has also been shown that simple neural networks
with one hidden layer and one output layer have the best performance [14]. With one
input neuron with a tansig function and one output neuron with a purelin function and a
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number of total different inputs ranging from 10 to 30 the ANN forecast of a water level
n hours beyond the time of forecast can be expressed as follows:

x (t0 + n) = a +

(
2b(

1 + e−(c+
∑

diyi)
)
)

− 1.

Model RMSE CF POF NOF MDPO MDNO
Harmonic 0.11± 0.02 85.02± 4.12 0.21±0.19 1.90± 2.51 16±16 73±81
Pers 24 hr 0.069± 0.006 95.75± 1.19 0.24±0.231 0.023±0.029 14±19.17 0.6±1.342
LR 24 hr 0.106 97.18 0.261 0.027 9 1
NN-1 24 hr 0.0588±0.0085 97.848± 1.284 0.132± 0.114 0.104±0.232 8.5±8.7 7.6±17.1
NN-2 24 hr 0.053± 0.0079 98.563±1.284 0.124±0.115 0.08± 0.204 8.4± 8.7 6.2± 17.1
Pers 48 hr 0.101± 0.009 87.18± 2.22 0.785± 0.528 0.424± 0.255 25.4+/17.813 13.8±10.232
LR48 hr 0.122 91.05 0.466 0.409 16 19
NN-1 48hr 0.0889±0.0123 91.396±2.768 0.199± 0.158 0.57±0.937 9.6± 7.6 26.4±37.7
NN-2 48 hr 0.0779± 0.0108 94.500± 2.616 0.123±0.162 0.299±0.575 6.8±9.6 16.3± 30.7

Table 2: Comparison of 24 and 48 hours predictions by different methods, where RMSE:
root mean error, CF: central frequency, % of errors within the limits of −X and
X. POF/NOF (2X): positive/negative outlier frequency % of errors greater than X.
MDPO/MDNO(2X): maximum duration of positive/negative outlier; an event is two
or more consecutive occurrences of an error greater than X; MDPO/MDNO is the length
of the longest event.

In the expression above, the additive parameters (a, c) are identified as the model
biases and the multiplicative parameters (b, di) are referred to as the model weights. These
parameters of the ANN are defined in the process of training of neural network over the
known set of data. The yi are the inputs to the model. The exponential terms in the ANN
model provide a non-linear modeling capability.

The training of ANN models is different in nature as compared to the methods for
our statistical model. There is typically no demonstrated method to identify a global
optimum. The goal of the training process is therefore to find a suitable local optimum.
To identify a good local optimum ANNs are trained over past data sets starting with a
random guess of the model parameters and using the repeated comparison between the
output of an ANN and an associated set of target vectors to optimize the weights of the
neurons and biases of the model. All the ANNs discussed in this work were trained using
the Levenberg-Marquardt back-propagation algorithm and implemented using version 4.0
of the Matlab Neural Network Toolbox and the MATLAB 6.0 Release 12 computational
environment [15] running on a Pentium PC.

The performance of the ANN for the prediction of water levels was tested at the Bob
Hall Pier, Texas, TCOON station. The model was trained and tested using three data sets
composed of 3600 hourly measurements of water levels, wind speeds and wind directions.
The data sets covered the spring seasons of 1998, 2000, and 2001 from Julian day 21 to
Julian day 182. The model was successively trained on each data set and applied to the
other two data sets. This procedure provided a set of six time series of predicted water
levels to be used for validation. For each time series the average absolute error between
predicted and measured water levels was computed.
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Figure 9: Schematic of the type of neutral network applied to the problem of water level.

Averages and standard deviations were then computed for the results of the six val-
idation time series for these two parameters. The standard deviation gives an overall
measure of the variability due to the differences between training sets as well as the dif-
ferences resulting from the training process. The inputs to the model were selected as
the previous12 hourly water level and wind measurements based on experience gathered
during the modeling for other locations [16]. One model was trained without wind predic-
tions while for the second case wind measurements were used to simulate wind forecasts.
These wind forecasts consisted of future wind measurements at 3 hour intervals up to
36 hours. A database of wind forecasts is presently being constructed and models based
on wind forecasts are expected to be more representative of future model performance.
Figure 11 displays a comparison between a 36-hour water level hindcast, the tide tables,
and TCOON measurements. As can be observed in the figure, the ANN model captures
a large fraction of the water anomaly and improves significantly on the tide tables. The
performance of the models with and without wind forecasts is compared with the per-
formance of the tide tables for forecasting times ranging from 6 to 36 hours. Both ANN
models improve significantly on the tide tables for forecasting times up to 24 hours. Im-
provements for 30-hours and 36-hours predictions are still measurable. The addition of
wind forecasts improves the model performance although not significantly as compared to
the improvement over the tide tables. Comparisons of ANN and Regression models may
be found in Table 2.
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