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Random electric field instabilities of relaxor ferroelectrics
José R. Arce-Gamboa1 and Gian G. Guzmán-Verri1,2

Relaxor ferroelectrics are complex oxide materials which are rather unique to study the effects of compositional disorder on phase
transitions. Here, we study the effects of quenched cubic random electric fields on the lattice instabilities that lead to a ferroelectric
transition and show that, within a microscopic model and a statistical mechanical solution, even weak compositional disorder can
prohibit the development of long-range order and that a random field state with anisotropic and power-law correlations of
polarization emerges from the combined effect of their characteristic dipole forces and their inherent charge disorder. We compare
and reproduce several key experimental observations in the well-studied relaxor PbMg1/3Nb2/3O3–PbTiO3.
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INTRODUCTION
Relaxors exhibit a myriad of complex phenomena that are both
scientifically interesting and technologically important such as
diffuse phase transitions where large and frequency dependent
dielectric permittivities extend over hundreds of Kelvin degrees,1

without any signature of macroscopic symmetry breaking, as well
as unltrahigh electromechanical responses.2–5 These properties
make relaxors attractive material candidates for energy storage
and harvesting applications, as well as future cooling technologies
for integrated microelectronics.6–8

Though relaxors were first synthesized in the 1950s,9, 10 and
they have been the subject of many theoretical11–15 and
experimental studies16–23 there is still no consensus on a
satisfactory theory of relaxor ferroelectricity.24 One of the major
difficulties in describing relaxors is that they exhibit many
characteristic temperatures. From high to low, these are (i) the
Burns temperature TB below which its dielectric response deviates
from Curie–Weiss law behavior with (ii) a corresponding
Curie–Weiss temperature TCW; (iii) a frequency-dependent tem-
perature Tmax where the susceptibility is maximum but no
ferroelectric (FE) transition occurs; and (iv) an induced FE transition
temperature Tc if sufficiently large electric fields are applied.
Crucially, X-ray and neutron scattering studies have found
anisotropic quasi-elastic diffuse scattering very near TCW.

25–29

It has been recognized that a central question in the
discussion of relaxors is the effect of random electric fields
on the FE transition of cubic systems such as the typical
perovskite relaxor PbMg1/3Nb2/3O3 (PMN).18, 24, 30 The random
electric fields originate from charge disorder: cations with different
charge valencies are randomly located on the octahedrally
coordinated site such as Mg2+ and Nb5+ in PMN.30 These
ions do not order with temperature, making the compo-
sitional disorder quenched. Unlike the widely studied random
fields (RFs) in magnets which linearly couple to an order
parameter of the Ising or Heisenberg type,31 the quenched
electric RFs of relaxors couple to a cubic order parameter.24 It is
believed that T* is the onset temperature of a RF state in which
relaxors exist.24

In addition to the symmetry of the order parameter, we make
the observation that the characteristic dipolar interaction of FEs is
equally important. It is well-known that the structural instability
that leads to the breaking of lattice inversion symmetry and a
spontaneous polarization, is the result of dipolar forces between
electric dipole moments induced by the displacements of the ions
associated with a zone-center transverse optic (TO) mode.32 Such
dipolar forces are highly anisotropic and long-ranged, which are
very much in contrast with the isotropic and short-ranged
exchange couplings between the spin degrees of freedom of
magnets. According to the theory of phase transitions,33 FEs and
magnets are therefore in different universality classes, rendering
the standard models that describe the effects of RFs on magnetic
transitions31 inadequate for relaxors.24

In a previous paper,34 we studied the effects on quenched
electric RFs in a standard, uniaxial displacive model of the FE
transition. Within a statistical mechanical variational solution, we
showed that intrinsic polarization fluctuations associated with the
dipolar force and RF disorder, result in diffuse phase transitions—a
hallmark of relaxor behavior. Typical relaxors such as PMN are
cubic, however, and there is no a-priori reason to believe that the
results for uniaxial systems will hold in environments with higher
symmetries. The purpose of this work is then to study the random
electric field problem posed by cubic relaxors within a minimal
microscopic model. We extend the uniaxial model Hamiltonian of
ref. 34 to cubic symmetries by including the usual displacement
soft-mode coordinates along each cubic axis, cubic anisotropy,
dipole tensor, and cubic RFs. We also extend to cubic symmetries
our previously developed variational solution for uniaxial systems.
We will show that as a result of the combined effect of dipolar
forces and quenched RFs a state with no-long range FE order and
anisotropic, long-ranged fluctuations of polarization emerges for
any amount of compositional disorder. We identify this disordered
state as the RF state of relaxors. We will also show that long-
ranged FE order can be induced by application of strong enough
electric fields and that such transition ends at a critical point, as it
is observed in experiments.35
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RESULTS
We consider a cubic lattice and choose normal mode coordinates
that describe local displacements (Qix, Qiy, Qiz) in the unit cell i that
are associated with the soft TO mode, the condensation of which
leads to the FE transition.36 We consider the model Hamiltonian,

H ¼ 1
2

P
iλ
Π2
iλ þ κ

2

P
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4

P
iλ
Q4
iλ þ γ2

4

P
i;λ≠λ0

Q2
iλQ

2
iλ0

� 1
2

P
ijλλ0

vλλ
0

ij QiλQjλ0 �
P
iλ
E0λQiλ �

P
iλ
hiλQiλ;

(1)

with λ, λ′ = x, y, z. ∏iλ is the conjugate momentum of Qiλ; E0λ is an
applied electric field; and vλλ

0
ij is the dipolar interaction tensor with

Fourier transform vλλ
0

q ¼ 1
3 C

2 � B2 qj j2� �
δλλ0 � C2 qλqλ0

qj j2 ; where qj j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y þ q2z

q
is the magnitude of the wave vector q; and B and C

are constants that depend on the lattice structure.37 Hereafter, we
denote v0 = C2/3 as the component of vλλq when q→0 in the
direction transverse to λ (the value of vq depends on the direction
in which q approaches zero). κ is the lattice stiffness and γ1,2 are
anharmonic coefficients.
For the quenched random fields hiλ, we choose a Gaussian

probability distribution of independent random variables with

zero mean and variance Δ. In the absence of compositional
disorder, this is a standard minimal model for ferroelectricity in
cubic perovskites.36

To study the statistical mechanics of the Hamiltonian (1), it is
necessary to consider thermal and quantum fluctuations at least
at the level of the Onsager approximation and random field
fluctuations at least at the level of a replica theory.38 To do so, we
generalize a variational method previously developed by one of
us34 to cubic symmetries. Such method allow us to calculate the
temperature and disorder dependence of relevant quantities such
as the phonon frequencies, the polarization order parameter and
the correlation functions in a self-consistent fashion. The details
are presented in the Methods section.
Our model parameters are κ, γ1, γ2, v0, B, and Δ. Throughout this

work, we have fixed the values of κ, γ1, γ2, v0, and B to those of
typical values of oxide perovskites39 and to fit the transition
temperature of the conventional FE PbTiO3 (PTO, T0

c ’ 760K)40

assuming Δ = 0. The resulting values are given in Table 1. Our
choice gives a Curie-Weiss constant of C0

CW ’ 2:4 ´ 105K and a
zone-center TO phonon energy of Ω?

0 ’ 5:2meV at zero
temperature, which are typical of conventional FEs. Depending
on the choice of the anharmonic coefficients, the low temperature
FE phase predicted by the Hamiltonian (1) in the absence of
compositional disorder has tetragonal (γ1 < γ2) or rhombohedral
(γ1 > γ2) symmetry.36 In this work, we have chosen γ1 > γ2, as we
will study the field-induced FE transition of relaxors, which is
typically a cubic-to-rhombohedral structural phase change.20

We first present our results in the absence of applied electric
fields. Figure 1 shows the calculated temperature-disorder phase
diagram and the zero temperature free energies where we have
identified three regions according to the RF strength. For weak RFs
(0 � Δ2=v3=20 t0:9), long-range FE order sets in at a transition
temperature Tc<T0c and it is accompanied by a metastable random

Table 1. Model parameters used in this work

ω2
0 � v0 � κ(meV2) B2(meV2 Å2) γ1(meV3) γ2(meV3) v0(=C

2/3)(meV2)

21 3500 272 200 5071

Fig. 1 Temperature-disorder phase diagram and free energies. a The RF state is stable above the FE transition line and becomes metastable
below it down to zero temperature. The inset shows the free energies of the RF (red) and FE (yellow) states at zero temperature for
Δ2=v3=20 ¼ 0:5 ´ 10�2. b–c Zero temperature free energies for moderate (Δ2=v3=20 ¼ 2:0 ´ 10�2) and strong (3.0 × 10−2) compositional disorder,
respectively, showing the RF state as a global minimum. A0 is the order parameter for the pure case at zero temperature. All energies are
plotted with respect to their corresponding minimum
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field disordered state down to T = 0, as it is shown in Fig. 1a. For
moderate compositional disorder (0:9tΔ2=v3=20 t2:2), there is no
transition as the the RF state becomes stable at all temperatures
and the long-ranged polar state is now metastable, see Fig. 1b. For
strong compositional disorder (Δ2=v3=20 \2:2), only the RF state
exists, as it is shown in Fig. 1c.
By comparing our phase diagram with that of the relaxor PbMg1/3

Nb2/3O3–PbTiO3 (PMN–PT)20 and assuming that the conventional
FE PTO is near about Δ = 0 with Tc=T0

c ’ 1, then PMN is in the weak-
disorder region with Tc=T0c ’ 0:3 and Δ2=v3=20 ’ 0:7 ´ 10�2, as it is
shown in Fig. 1a. This means that while the ground state of PMN–PT
relaxors is FE, those in the Ti-poor side of the morphotropic phase
boundary are stuck in a metastable disordered random field state
below the phase transition line. We will see below that this is also
supported by the predicted correlation lengths and static suscept-
ibilities of our model.
The temperature and disorder dependence of the zone-center

TO phonon frequency, Ω?
0 , and the order parameter, A, associated

with the RF and FE states are shown in Fig. 2a and b, respectively.
While the TO mode softens and condenses at T0

c for the pure case,
as expected, that of the RF state remains finite all the way down to
zero temperature for any amount of compositional disorder. The
temperature dependence of the metastable states is shown for
the sake of completeness. When contrasted to experiments,21 the
observed softening of the phonon frequency of the RF state
above about T* is in qualitative agreement with our model
and we will show that it supports the conclusion that such
softening is responsible for the large increase observed in the
dielectric constant. Below T*, however, the observed frequencies
exhibit a more complex behavior not captured by our model. We
believe that some of the discrepancies are due to local
spontaneous polarizations in the disordered state, which we do
not allow in our model.
We now discuss the correlation functions in the fluctuations of

polarization of the RF state. As it is usually done for conventional
cubic FEs,41 we consider mean squared fluctuations on the
polarization components Q?

q and Qk
q that are transverse and

longitudinal to a wave-vector q, respectively. For the transverse
components we obtain isotropic fluctuations with the following
form,

Q?
q
2

D E
¼ 1

2Ω?
q

coth
βΩ?

q

2

 !
þ Δ2

Ω?
q
4 ; (2)

where Ω?
q
2 ¼ B2 ξ�2 þ qj j2� �

is the doubly degenerate TO mode
(see Methods section) and where we have identified ξ ¼ B=Ω?

0 as
the correlation length. ¼h i denotes thermal and compositional
averages taken in that order. In the absence of disorder and in the
classical limit (βΩqλ≪ 1), Eq. (2) reproduces to the fluctuations of
pure FEs.41 In the classical limit, Eq. (2) becomes a Lorentzian plus

a Lorentzian squared. While this is analogous to the well-known
result of the random field Ising model,42 we will show below that
the correlation functions behave very differently in real space due
to the anisotropy and long-range nature of the dipole force.
The wave-vector distribution predicted by Eq. (2) has been
recently observed in diffuse scattering experiments19 and the
quantum fluctuations have been found important to correctly
describe the observed static structure factor at low tempera-
tures.38 For the fluctuations in Qk

q, we find that they have a similar
form to that of Eq. (2) except that the TO frequency is replaced by
that of the the longitudinal mode Ωk2

q / ξ�2 þ qj j2 þ C2. The
constant C is related to the depolarizing field,41 which makes
these fluctuations significantly smaller than those in Q?

q
Figure 3 shows the calculated temperature dependence of the

correlation length ξ of the RF state for several disorder strengths.
In the absence of disorder, ξ diverges as expected near the FE
transition. In the presence of disorder, the correlation length of the
random field state remains finite at all temperatures. At T = 0 it
scales with disorder as ξ ∝ 1/Δ2, which we identify as the
minimum length scale on which domains must appear sponta-
neously. By a standard procedure,41 it can be shown that the static
dielectric susceptibility is given by χ ¼ 3

4π
v0
B2 ξ2. The temperature

and disorder dependence of the resulting static dielectric constant
ε = 1 + 4πχ, are shown in the inset of Fig. 3. We find that our model
is in fair qualitative and quantitative agreement with the
measured correlation length26 and static dielectric constant43 in
PMN when 0:5tΔ2=v3=20 t0:7. This is consistent with our
identification of the Ti-poor region of PMN-PT in our phase
diagram (see Fig. 1) and where the RF state is metastable.

Fig. 2 Phonon frequencies and order parameter. Temperature and disorder dependence of a the squared of the phonon frequencies and b
spontaneous polarization along (111). Here, Δ2=v3=20 ¼ 0 blueð Þ; 1:5 ´ 10�2 redð Þ and Ω?

0 0ð Þ, and A(0) are the TO frequency and order parameter
of the pure FE at zero temperature

Fig. 3 Correlation length of fluctuations of polarization. Tempera-
ture dependence of the correlation length and (inset) static
dielectric constant for several random field strengths. Here,
Δ2=v3=20 ¼ 0:0 blueð Þ, 0.5 × 10−2 (orange), 0.7 × 10−2 (green), 1.5 ×
10−2 (red)
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We now discuss the spatial dependence of the correlation
functions of polarization Gλλ0 rð Þ. Figure 4 shows Gλλ(r) calculated
from Fourier transform of Eq. (2). In the presence of compositional
disorder, the correlations of the RF state are positive along the
longitudinal direction (r k λ) and they change sign in the
transverse direction (r ⊥ λ), as it is shown in Fig. 4a and b,
respectively. For short distances compared to the correlation
length ξ, they fall-off exponentially and then cross over to a power
law behavior (∝ r−3) for r≫ ξ, see inset in Fig. 4a. We verify the
large distance behavior by calculating analytic expressions of the
correlation functions of the RF state in the classical limit,

Gλλ rð Þ ¼
4π2ξ
vBZB2

kBT
ξ2

þ Δ2

B2

� �
r
ξ

� ��3
þO e�r=ξ

� �
; r k λ;

� 2π2ξ
vBZB2

kBT
ξ2

þ Δ2

B2

� �
r
ξ

� ��3
þO e�r=ξ

� �
; r? λ;

0
BBBBB@ ;

Gλλ0 rð Þ ¼ 0; λ≠ λ0;

where λ = x, y, z, and vBZ is the volume of the Brillouin zone. Note
that the corrections to these power laws are exponentially small.
The cross-component correlations (λ ≠ λ') of the RF state are
identically zero everywhere, as expected from cubic symmetry.
Note they also increase with decreasing temperature but do not

reach long-range order as their correlation length ξ remains finite
for all temperatures. This is in stark contrast with the correlations
of the pure compound where, while anisotropic, they are
strongest near the FE transition and then weaken away from it,
as it is shown in Fig. 4c and d. Previous theoretical work have also
found anisotropic correlations.14, 15

We now describe our results in the presence of an applied
electric field. Figure 5, shows the temperature dependence of the

order parameter for weak disorder and several field strengths. For
weak applied electric fields (0 < E0/Δ≲ 0.4 × 10−3), the polarization
of the RF state grows with decreasing temperature without
inducing a FE transition. For moderate field strengths (0.4 × 10−3

≲ E0/Δ≲ 1.0 × 10−2), a clear first-order transition occurs as shown
by the discontinuity in the order parameter. This discontinuity
becomes weaker with increasing applied field until it reaches a
critical point where the transition is of second order. For strong
applied fields (E0/Δ≳ 1.0 × 10−2), the transition is smeared. This
behavior is in agreement with experiments in PMN-PT.35

DISCUSSION
We now compare our results to previous theoretical works. When
contrasted to uniaxial systems,34, 38 we find that they share some
similarities at the qualitative level such as the emergence of a RF
state with an energy gap from the FE ground state and field-
induced transitions that end at a critical point. The most
significant difference appears in the correlation functions of
polarization at short distances, where there is no partial screening
of dipoles in the uniaxial case. Instead, the power-law tails join
smoothly to a short-range part where they saturate to near the on-
site correlations. Our results disagree with the work of Sherring-
ton,44 where heuristic arguments are given to conclude that
relaxor behavior in heterovalent compounds is mainly due to
bond disorder and that RFs only play a secondary role. On the
other hand, our results support the view of Takenaka et al.14 that
there is no non-polar matrix in relaxors (our correlations decay as
power-laws for r ≫ ξ); and that of Al-Barakaty et al.15 that
quenched RF disorder is essential for relaxor behavior. We
emphasize, though, that, according to our results, the intrinsic
fluctuations associated with the concomitant dipole forces are
essential as well.
To summarize, we have studied the effects of cubic random

electric fields on the lattice instabilities that lead to a FE transition.

Fig. 4 Correlation functions of polarization. Spatial dependence of the longitudinal and transverse components of the correlation functions
a–b with and without c–d disorder (Δ2=v3=20 ¼ 0:7 ´ 10�2) at several temperatures. Here, T=T0c ¼ 0:0 blueð Þ, 0.5 (yellow), 0.9 (green), 1.1 (red).
The inset in a is a log–log plot of the longitudinal correlations showing the crossover from exponential to power-law behavior; and the insets
in c and d show the change in sign in the correlations with increasing distance
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We have shown that a RF state emerges from the combined effect
of dipolar forces and compositional disorder. Such state has no-
long range FE order and anisotropic, long-ranged correlations of
polarization that grow with decreasing temperature. When
comparing to the experimental phase diagram of typical relaxors
such as PMN-PT, we conclude that while the ground state is FE,
the RF state in the poor Ti side of the phase diagram is metastable
below the phase transition line down to zero Kelvin. Upon
application of strong enough electric fields, first-order transitions
can be induced and end at a critical point. While we have focused
our attention on PMN-PT, our model and results are generic and
should be applicable to other relaxors such as PbZn1/3Nb2/3
O3–PbTiO3.

METHODS
We now describe our variational solution of our model Hamiltonian of
Eq. (1). We consider the trial probability distribution,

ρtr ¼ 1
Ztr

e�βHtr
; (3)

where Htr is the Hamiltonian of a displaced, cubic harmonic oscillator in a
random field hiλ,

Htr¼ 1
2

P
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2

P
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and Ztr its normalization,

Ztr ¼ Tre�βHtr ¼ Q
q;α

2 sinh βΩqα

2

� �h i�1
 !

´ e

β
2

P
ij;λλ0

hiλ D�1
i�jð Þλλ0 hjλ0 þβ

P
iλ

hiλAiλ

;

where Ωqα (α = 1, 2, 3) are the soft mode frequencies at wave vector q and
are given by the squared of the the eigenvalues of the Fourier transform of
the dynamical matrix Dq

� �λλ0 ¼PRij Di�j
� �λλ0

eiq�Rij . Aiλ is the λ-component
of the order parameter at site i and it corresponds to the mean
displacement averaged over thermal and compositional disorder,
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:

We now compute the free energy F ¼ Hh i þ T kB ln ρtrh i using our
probability distribution (3) together with the above equations. The result is

the following,
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(4)

where, ψλλ0
ij are temperature and disorder induced fluctuations of

polarization between local soft mode components Qiλ and Qjλ0 ,

ψλλ0
ij ¼ Qiλ � Aiλð Þ Qjλ0 � Ajλ0
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with Fourier component,

ψq

� �
λ
¼ 1

2Ωqλ

coth
βΩqλ

2

 !
þ Δ2

Ω4
qλ

:

bq
� �

λλ
is a unitary transformation that takes Dq

� �λλ0
to its diagonal

representation.
A standard procedure gives the following dynamical matrix,

Dq
� �

αν
¼ κ þ 3 γ1 � γ2ð Þ A2α þ ψαα

0

� �þ γ2
P
λ

A2λ þ ψλλ
0
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δαν

þ2γ2 AαAν þ ψαν
0

� �� vανq ;

(6)

where ψαν
0 is given in Eq. (5). The diagonalization of (Dq)av gives the

squared of the soft phonon frequencies (Ωqλ)
2.

Minimization of the free energy (4) with respect to Aiλ gives the
following result,

X3
ν¼1

Dq¼0
� �

αν
� 2 γ1 � γ2ð ÞA2

α þ γ2
X
λ

A2
λ

 !
δαν

" #
Aν ¼ E0αAα:

(7)

In writing Eq. (7) we have used the property that vαλij is translationally
invariant so the summation

P
iλ v

αλ
ij does not depend on the origin i.

(Dq = 0)av depends on the direction in which q → 0 because vαλq is non-
analytic. Eqs. (6) and (7) are the starting point of our analysis.
We first consider the cubic phase. For the cubic phase, there is no long-

range order (Ax = Ay = Az = 0) and, by symmetry, ψ0 � ψxx
0 ¼ ψyy

0 ¼ ψzz
0 ;

ψxy
0 ¼ ψxz

0 ¼ ψyz
0 ¼ 0.36 Therefore, the dynamical matrix has the form,

Dq
� �

λλ0 ¼ κ þ 3γ1 þ 2γ2ð Þψ0½ �δλλ0 þ vq
� �

λλ0 : (8)

For an arbitrary direction of q the diagonalization of Dq
� �

λλ0 gives a
doubly degenerate TO mode Ω?

q , and a singlet longitudinal optic (LO)
mode Ωk

q , given as follows,

Ωk
q

� �2
¼ Ω?

q

� �2
þ C2; (9a)

Ω?
q

� �2
¼ Ω?

0

� �2 þ B2 qj j2; (9b)

where,

Ω?
0

� �2 ¼ �ω2
0 þ 3γ1 þ 2γ2ð Þψ0; (10)

Fig. 5 Field-induced FE transition. Temperature dependence of the
order parameter for several applied electric fields. A relaxor-to-FE
transition is induced for moderate electric fields (E0/Δ= 0.5 × 10−3,
orange line). Upon increasing the field strength (E0/Δ= 1.2 × 10−2, red
line) the system approaches a critical point, as observed in
experiments.35 Here, Δ2=v3=20 ¼ 0:7 ´ 10�2 and A0 is the order
parameter at zero temperature for the pure compound
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is the zone-center TO mode frequency and ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v0 � κð Þp

. For cubic
symmetry, the transformation matrix bq that diagonalizes the dynamical
matrix (8) takes the form,

bq ¼

� sinϕ cos θ cosϕ cosϕ sin θ

cosϕ cos θ sinϕ sin θ sinϕ

0 � sin θ cos θ

0
BBBBBBBB@

1
CCCCCCCCA
;

where θ and ϕ are the usual azimuthal and polar angles in spherical
coordinates.
We now calculate the fluctuations ψ0,
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::: ::: ψ
k
qc2θ þ ψ?

q s
2
θ

0
BBBBBBBB@

1
CCCCCCCCA

(11)

where sϕ � sinϕ; cϕ � cosϕ; sθ � sin θ; cθ � cos θ and,

ψ?
q ¼ 1

2Ω?
q

coth
βΩ?

q

2

 !
þ Δ2

Ω?
q

� �4 ; (12a)

ψk
q ¼ 1

2Ωk
q

coth
βΩk

q

2

 !
þ Δ2

Ωk
q

� �4 : (12b)

By taking the continuum limit over a sphere of wave-vector Q and
calculating the angular integrals, we find the result,

ψxx
0 ψxy

0 ψxz
0

::: ψyy
0 ψyz

0

::: ::: ψzz
0

0
BBBBBBBB@

1
CCCCCCCCA

¼ 1
Q3

Z Q

0
dqq2

2ψ?
q þ ψ

k
q 0 0

0 2ψ?
q þ ψ

k
q 0

0 0 2ψ?
q þ ψ

k
q

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Thus,

ψ0 � ψxx
0 ¼ ψyy

0 ¼ ψzz
0 ¼ 1

Q3

Z Q

0
dqq2 2ψ?

q þ ψk
q

� �
: (13)

Equations (9), (10), (12), (13) determine de temperature and disorder
dependence of the TO and LO mode frequencies for the cubic phase.
We now consider the rhombohedral phase. For the rhombohedral

phase, we assume a homogenous order parameter along the cube
diagonal, A2x ¼ A2y ¼ A2z � 1

3 A
2. Also, by symmetry, ψ11

0 � ψxx
0 ¼

ψyy
0 ¼ ψzz

0 ;ψ
12
0 � ψxy

0 ¼ ψxz
0 ¼ ψyz

0 .
36 The dynamical matrix is as follows,

Dq
� �

αα
¼ κ þ 3γ1 þ 2γ2ð Þ 1

3
A2 þ ψ11

0


 �
� vααq ; (14a)

Dq
� �

αν
¼ 2γ2

1
3
A2 þ ψ12

0


 �
� vανq ; α≠ν: (14b)

where α, ν = x, y, z. We first identify the soft mode frequencies. Pure
longitudinal and transverse modes are obtained for wavevectors in the
(111) direction and the plane transverse to it. For q⊥(1, 1, 1) diagonaliza-
tion of the dynamical matrix gives two distinct TO mode frequencies Ω?

01
and Ω?

03 and one LO frequency Ω?
01 þ C2 at the zone-center. For

q k 1; 1; 1ð Þ there is a doubly degenerate TO mode frequency Ω?
01 and

one LO mode frequency Ω?
03 þ 3 C2=3ð Þ at the zone-center. Ω?

01 and Ω?
03 are

given as follows,

Ω?
01

� �2 ¼ �ω2
0 þ 3γ1 þ 2γ2ð Þ 1

3A
2 þ ψ11

0

� �

�2γ2
1
3A

2 þ ψ12
0

� �
;

(15a)

Ω?
03

� �2 ¼ �ω2
0 þ 3γ1 þ 2γ2ð Þ 1

3A
2 þ ψ11

0

� �

þ4γ2
1
3A

2 þ ψ12
0

� �
:

(15b)

While exact expressions can be derived for the phonon dispersions from
the dynamical matrix (14), they are too elaborated and not enlightening.
Instead we calculate them from perturbation theory. Our unperturbed
basis is that of the cubic phase, therefore making the frequency splitting
Ω?
03 � Ω?

01 the expansion parameter. It is also convenient to write the
wavevector as q̂ ¼ qLq̂L þ qT1q̂T1 þ qT2q̂T2, where q̂L; q̂T1; q̂T2f g is a right-
handed coordinate system where q̂L is along the (111) direction and q̂T1;2
are transverse to it. The result is as follows,

Ωq1
� �2 ¼ Ω?

01

� �2 þ B2 qj j2; (16a)

Ωq2
� �2 ¼ Ω?

01

� �2 þ B2 qj j2 þ Ω?
03

� �2 � Ω?
01

� �2h i q2T
qj j2 ; (16b)

Ωq3
� �2 ¼ Ω?

01

� �2 þ B2 qj j2 þ C2

þ Ω?
03

� �2 � Ω?
01

� �2h i
q2L
qj j2 ;

(16c)

where q2T ¼ q2T1 þ q2T2 and with a transformation matrix given by,

bq ¼

1ffiffi
6

p 1ffiffi
2

p 1ffiffi
3

p

1ffiffi
6

p � 1ffiffi
2

p 1ffiffi
3

p

� 2ffiffi
6

p 0 1ffiffi
3

p

0
BBBBBBBBB@

1
CCCCCCCCCA

� sinϕ cos θ cosϕ cosϕ sin θ

cosϕ cos θ sinϕ sin θ sinϕ

0 � sin θ cos θ

0
BBBBBBBB@

1
CCCCCCCCA
;

For an applied field (E0=
ffiffiffi
3

p
)(1, 1, 1), minimization of the free energy with

respect to the order parameter gives the following result,

D0ð Þ11 þ 2 D0ð Þ12 �
2
3

γ1 þ 2γ2ð ÞA2
� �

A ¼ E0;

which can be rewritten in terms of the soft mode frequencies as follows,

Ω?2

03 � 2
3

γ1 þ 2γ2ð ÞA2
� �

A ¼ E0: (17)

We now calculate ψxx
0 and ψxy

0 ,

ψxx
0 ψxy

0 ψxz
0

::: ψyy
0 ψyz

0

::: ::: ψzz
0

0
BBBBBBBB@

1
CCCCCCCCA

¼ 1
N

X
q

bq

ψq1 0 0

0 ψq2 0

0 0 ψq3

0
BBBBBBBB@

1
CCCCCCCCA
bTq ;

where

ψq1 ¼
1

2Ωq1
coth

βΩq1

2


 �
þ Δ2

Ωq1
� �4 ; (18a)

ψq2 ¼
1

2Ωq2
coth

βΩq2

2


 �
þ Δ2

Ωq2
� �4 ; (18b)

ψq3 ¼
1

2Ωq3
coth

βΩq3

2


 �
þ Δ2

Ωq3
� �4 : (18c)
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To proceed further, we provide the continuum limit as we did in the
previous section and calculate the integrals over ϕ. The result is the following,

ψ11
0 ¼ ψxx

0 ¼ ψyy
0 ¼ ψzz

0 ¼ 1
Q3

ZQ
0

dqq2
Zπ
0

dθ sin θ
1
2

ψq1 þ ψq2 þ ψq3

� �
;

(19a)

ψ12
0 ¼ ψxy

0 ¼ ψxz
0 ¼ ψyz

0 ¼ 1
Q3

RQ
0
dqq2

Rπ
0
dθ sin θ 1

8 �2ψq1 þ ψq2 þ ψq3 � 3 ψq2 � ψq3

� �
cos 2θ

� �
:

(19b)

Eqs (15)–(19) determine the temperature and disorder dependence of
the order parameter A and the TO and LO mode frequencies in the
rhombohedral phase.
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