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a b s t r a c t

The fluid–structure interaction in a foil undergoing prescribed heave with passive
pitching and flexibility about any pivot is formulated in the linear inviscid limit using
a quartic approximation for the deflection. The resulting system of three algebraic
equations is valid for arbitrary mass and stiffness distributions of the foil. The small
pitching and deformation amplitudes result linearly from two of the equations, while
the third equation provides the force at the pivot point that generates the heaving
motion, and hence the power input. This general formulation allows to analyze jointly
both the propulsion and the energy harvesting problems for this class of flapping foils.
In the first case, the thrust force is readily obtained from the prescribed heave and
the resulting pitching and deformation, and consequently the propulsive efficiency once
the power input is computed. In the second problem, the energy may be harvested by
linear and/or torsional dampers at the pivot point, so that the efficiency of the system
is readily computed once the pitch motion and the power input are obtained. Thus, the
present work allows for a depth parametric survey and analysis of these two physical
problems. The best performance is usually obtained around the first natural frequency of
the fluid–structure system, which is obtained here by minimizing an algebraic function.
The formulation is validated by reproducing some previous results for both problems,
most of them obtained numerically for rigid foils and without the simplicity nor the
richness in the parameter space of the present formulation. The parametric range for
which flexibility maximizes the propulsion and the energy harvesting efficiencies in
relation to an otherwise identical rigid-foil system is analyzed.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Flapping-foil systems with prescribed heave motion and passive pitch have been shown to be able to improve its
ropulsive performance in relation to heaving-only wings or fins (Moore, 2014, 2015; Asselin and Williamson, 2019), as
ell as its energy harvesting efficiency when used as flapping-foil turbines (Boudreau et al., 2019a,b), particularly for rigid

oils. The improvement may be quite substantial if the torsional spring constant allowing the passive pitch is optimally
elected in relation to the other structural and kinematic parameters of the flapping foil, which are obviously in different
anges depending on whether it is a propulsor or a energy harvester. These optimal values are usually related to resonant
requencies of the system (Alben, 2008; Moore, 2014, 2015; Asselin and Williamson, 2019).
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Fig. 1. Schematic of the motion of the plate (nondimensional).

In the present work we propose a general theory which yields analytical solutions for the propulsive or the energy
arvesting performance of these flapping-foil systems with passive pitching and passive deformation in the limit of small
lapping and deformation amplitudes and high Reynolds numbers, so that the two-dimensional, linear potential theory
ay be used for the fluid flow, and the Euler–Bernoulli beam equation for the fluid–structure interaction (FSI). Otherwise,

he problem is formulated with the greatest generality: for any foil mass distribution and arbitrary pivot point location,
o that any distance between the center of mass and the pivot point is allowed, any stiffness distribution, and of course,
or any spring stiffness and operating frequency. To that end, general results recently obtained from the vortical impulse
heory for the lift, thrust, moment and flexural moment exerted by the fluid on a foil undergoing arbitrary pitching and
eaving motions coupled with arbitrary quartic flexural deformations are used (Alaminos-Quesada and Fernandez-Feria,
020; Fernandez-Feria and Alaminos-Quesada, 2021). The limitation to (small amplitude) quartic deformations restricts
he theory to include only the first resonant frequency of the system, but, as shown by Alben (2008) from a general linear
otential flow theory, and by Moore (2015) including passive pitching like the present one, the maximum possible thrust
oefficient is always achieved by the flexible foil operating at or near its first resonance. Though Moore’s theory contains
he infinite resonant modes of the system, the problem has to be solved numerically, while here the problem is reduced
o solving a system of just three algebraic equations, which also covers the analogous energy harvesting problem when
ppropriate values of some parameters are selected. These analytical expressions are obtained here because the different
ormulation and because the aforementioned analytical expressions for the fluid forces and moments derived from the
ortex impulse theory.
The first resonant mode is obtained from the determinant of a 2 × 2 matrix containing all the relevant dimensionless

arameters governing the system, capturing exactly well known results when FSI is neglected. The theory is also favorably
ompared with previous theoretical, numerical and experimental results for flapping foils with passive pitching, especially
or rigid foils. The role played by passive deformation of the foil is characterized in both the propulsion and the
nergy harvesting problems when the foil-mass distribution is constant, so that the center of mass coincides with the
id chord point, but analyzing the effect of varying the pivot point location. In all cases, the optimal performance is

elated to resonant modes of the system, as previously found for similar flapping systems (Alben, 2008; Michelin and
lewellyn Smith, 2009; Alben et al., 2012; Moore, 2014, 2015; Floryan and Rowley, 2018).

. Formulation of the problem

We consider a two-dimensional (2D) foil of chord length c immersed in an incompressible and nearly inviscid flow
with constant free-stream speed U along the x-axis. We use nondimensional variables scaled with the half-chord length
c/2 and the velocity U . A harmonic heaving motion along the z-axis, h(t), is imposed through a (dimensionless) force CLi
on a given point x = a, which will be described below with more detail. The foil may undergo a superimposed passive
pitching motion with angle α(t) around this pivot axis, where the plate is elastically supported with a torsional spring.
Additionally, it may also be supported by a linear spring and by linear and torsional dampers in the case that the system is
used to extract energy from a current. To formulate these last elements in a general form we include them within general
(dimensionless) output force and moment, CLo and CMo, respectively, which will be modeled below (see Fig. 1).

The amplitudes of the heaving and pitching motions are assumed small compared with the chord length c , i.e., |h| ≪ 1
and |α| ≪ 1, so that the foil, and every point of the trail of vortices that it leaves behind, may be considered to be on
the plane z = 0 in first approximation, with the plate extending from x = −1 to x = 1. In addition, we shall consider
2
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the flexibility of the foil assuming a large stiffness, so that its deflection in relation to a rigid foil is also very small. Thus,
the motion of the plate is governed by the Euler–Bernoulli beam equation, which in dimensionless form can be written
as (e.g., Moore, 2017; Floryan and Rowley, 2018; Fernandez-Feria and Alaminos-Quesada, 2021)

2R
∂2zs
∂t2

+
2
3
∂2

∂x2

(
S
∂2zs
∂x2

)
+ CLoδ(x − a) + 2CMoδ

′(x − a) = ∆Cp + CLiδ(x − a) , (1)

where zs(x, t) is the displacement in the z direction of the foil’s centerline, the dimensionless time t is scaled with c/(2U)
and ∆Cp(x, t) is the pressure difference between the lower and upper sides of the foil, ∆p = p−

− p+, scaled with ρU2,
here ρ is the fluid density. To this distributed pressure force exerted on the foil by the moving fluid, we have added
o Eq. (1) some punctual forces and moment actuating locally at x = a. Thus, CLi(t)δ(x− a) is the dimensionless force per
nit span, scaled with ρU2c/2, that generates the prescribed heaving motion, where CLi has to be computed as a part of
he solution of the present problem and where δ(x − a) is Dirac’s delta function centered at x = a. On the other hand,
Loδ(x − a) and CMoδ

′(x − a) are the dimensionless force and torque per unit span, scaled with ρU2c/2 and ρU2c2/2,
espectively, transmitted to the linear and torsional springs (and dampers) at x = a by the foil, where δ′ is the derivative
f Dirac’s delta function. Note that the moment CMo has been defined positive when counterclockwise.
The output force and moment can be modeled in general as

CLo = kh0 + khh + bhḣ , (2)

CMo = kα0 + kαα + bαα̇ , (3)

here a dot denotes derivative with respect to t . Here kα is the dimensionless stiffness of the torsional spring, or rotational
tiffness, which will be present in all the results of the present work, both for the propulsion of a passively-pitching foil
nd for an energy harvester with passive-pitch flapping foil. In the last case of an energy harvesting device, we also
nclude a linear spring of dimensionless stiffness kh, and both linear and torsional dampers with dimensionless damping
oefficients bh and bα , respectively. The additional coefficients kh0 and kα0 are related to the dry friction, accounting also
or equilibrium positions of the linear and torsional springs different from h = 0 and α = 0, respectively. For simplicity,
hey will be set to zero in all the reported results. Thus, in the foil propulsion problem only kα will be different from zero,
hile bh and bα will be relevant in the energy harvesting problem since the dampers will model the energy sinks which
onvert the mechanical energy associated to the heaving and pitching motions into electricity by an electric generator.
Finally, the dimensionless quantities

R(x) =
ρs(x)ε(x)
ρc

, S(x) =
E(x)ε3(x)
ρU2c3

, (4)

are the mass ratio and stiffness of the foil (see, e.g., Moore, 2017), respectively, where ρs is the foil’s density, E its elastic
modulus and ε its thickness. These quantities are allowed to vary along the foil’s chord.

Without the terms with CLi, CLo and CMo, Eq. (1) has been recently solved numerically in the present limit of linear
potential flow for a general foil kinematics zs(x, t), but pivoting at the leading edge (a = −1), for constant stiffness S
by Moore (2017) and Floryan and Rowley (2018), and for distributed flexibility by Floryan and Rowley (2020). Here we
shall follow a different approach, by assuming a lowest order flexural motion of the foil and solving for the different
moments of Eq. (1), thus obtaining useful analytical solutions, but limited to small flexural deflections. This approach has
been recently used for the propulsion problem of a foil with prescribed heaving and pitching motion and passive flexural
deflection (Fernandez-Feria and Alaminos-Quesada, 2021), without considering the energy harvesting problem (i.e., with
CL0 = CMo = 0), and without considering the beneficial effect that a passive pitching about an arbitrary pivot point may
have on both propulsion and harvesting problems. In addition, to these new terms, the problem is formulated here in a
more general form for any mass and stiffness distributions of the foil R(x) and S(x).

To that end we use the nondimensional lift and the moment exerted by the fluid on the foil, defined as

CL(t) =
L(t)

ρU2c/2
=

∫ 1

−1
∆Cp(x, t)dx , (5)

CM (t) =
M(t)

ρU2c2/2
=

1
2

∫ 1

−1
(x − a)∆Cp(x, t)dx , (6)

where L and M are the lift force and moment (with respect to the pivot x = a) per unit span, respectively. Note that CM
thus defined is positive when the moment is counterclockwise. Integrating equation (1) along the foil’s chord, and the
same equation multiplied by x − a, respectively, one obtains

2
d2

dt2

∫ 1

−1
R zsdx +

2
3

[
∂

∂x

(
S
∂2zs
∂x2

)]x=1

x=−1
= CL + CLi − CLo , (7)

2
d2

2

∫ 1

(x − a)R zsdx +
2

[
(x − a)

∂
(
S
∂2zs

2

)
− S

∂2zs
2

]x=1

= 2 (CM + CMo) , (8)

dt −1 3 ∂x ∂x ∂x x=−1

3
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where the stiffness terms have been integrated by parts. Though CM and CMo are defined both positive when counter-
lockwise, they obviously may have different signs when computed with (3) and (6), respectively.
The next moment of the Euler–Bernoulli equation is also needed in the present approach, i.e., the integral of Eq. (1)

ultiplied by (x − a)2, which will be related to the foil’s flexural motion:

2
d2

dt2

∫ 1

−1
(x − a)2R zsdx +

2
3

[
(x − a)2

∂

∂x

(
S
∂2zs
∂x2

)
− 2(x − a)S

∂2zs
∂x2

+ 2S
∂zs
∂x

]x=1

x=−1

−
4
3

∫ 1

−1

∂S
∂x
∂zs
∂x

dx = CF , (9)

where

CF =

∫ 1

−1
(x − a)2∆Cp(x, t)dx (10)

may be termed the flexural coefficient with respect to the pivot point x = a. Note that no simplifying assumptions about
S(x) or R(x) have been made so far. It must be noted that Eqs. (7)–(9) are valid for −1 < a < 1 since the point about
hich the delta function is centered must be inside of the domain of integration. Thus, results given below where a = −1
r a = 1 are in fact for a = −1 + ϵ or a = 1 − ϵ, respectively, with ϵ ≪ 1.
The coefficients CL, CM and CF may be derived for a given harmonic kinematics of the foil using the vortex impulse

heory within the linear potential flow limit (Fernandez-Feria, 2016; Alaminos-Quesada and Fernandez-Feria, 2020).
ollowing (Fernandez-Feria and Alaminos-Quesada, 2021) we shall use a quartic polynomial approach for zs(x, t), which

constitutes a minimal model of the flexible foil since for a lower polynomial approach the stiffness term in Eq. (1) vanishes,
and, consequently, all the corresponding terms in the moment Eqs. (7)–(9), so that these equations cannot relate the
(unknown) flexural deflection d(t), defined below, with the stiffness S, if S is constant. Thus, to the displacement of the
oil as a rigid beam, zs = h(t) − (x − a)α(t), describing the heaving and pitching motion about x = a (in the present case
he heaving h(t) is given and the pitching α(t) unknown), we add three more terms proportional to (x− a)n, n = 2, 3 and
, describing the (unknown) flexural deflection d(t), also about the pivot x = a, which are related to each other by the
oundary conditions of a free trailing edge, namely ∂2zs/∂x2 = ∂3zs/∂x3 = 0 at x = 1. This yields

zs(x, t) = h(t) − (x − a)α(t) + (x − a)2d(t) − (x − a)3
2d(t)

3(1 − a)
+ (x − a)4

d(t)
6(1 − a)2

. (11)

The flexural deflection amplitude |d|, like |h| and |α|, is assumed small in the present linear theory, which would be a
alid approximation for sufficiently large stiffness S of the foil. As we shall see, with this foil’s kinematics the first natural
requency of the fluid–structure system is recovered with great precision analytically.

It should be noticed that one could have selected a free leading edge, instead of a free trailing edge, as the additional
two boundary condition, but that would not allow for a pivot point at, or close to, the leading edge, which, as we shall
see, is usually an optimal choice for the propulsion, or the energy harvesting, performance of the foil. Another possibility
would be to select free-end conditions at both the leading and the trailing edges, but this would require six degrees of
freedom, i.e., a sixth-order polynomial in the present case, ceasing to be a minimal model for the flexible foil (see Anevlavi
et al., 2020, for a similar problem using six Hermite shape functions).

With this approximation, Eqs. (7)–(9) can be written, for constant S but allowing for arbitrary mass distribution R(x),
as

m
[
ḧ + (a − x0)α̈

]
+ Jad̈ +

16
3(1 − a)2

S d = CL + CLi − CLo , (12)

m(x0 − a)ḧ − Iaα̈ + Jdd̈ −
16a

3(1 − a)2
S d = 2 (CM + CMo) , (13)

Iaḧ − Idα̈ + Kdd̈ +
16
3

a2 +
1
3

(1 − a)2
S d = CF . (14)

Note that, contrary to the torques, the sign of α has been defined positive in (11) when clockwise, to follow the usual
convention in aerodynamics. In these expressions, x0 is the location of the foil’s center of mass, and the dimensionless
mass m, the dimensionless moment of inertia about x = a, Ia, and all the other dimensionless moments about the pivot
point, are defined as follows:

m = 2
∫ 1

−1
Rdx = 4R , (15)

m(x0 − a) = 2
∫ 1

(x − a)Rdx = −4aR , x0 = 2
∫ 1

xRdx (16)

−1 −1

4
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(

Ia = 2
∫ 1

−1
(x − a)2Rdx = 4R

(
1
3

+ a2
)
, (17)

Ja = 2
∫ 1

−1

[
(x − a)2 −

2
3
(x − a)3

1 − a
+

(x − a)4

6(1 − a)2

]
Rdx = 2R

[
a2 −

2
3
a −

1
3

+
16

15(1 − a)2

]
, (18)

Id = 2
∫ 1

−1
(x − a)3Rdx = −4Ra

(
1 + a2

)
, (19)

Jd = 2
∫ 1

−1

[
(x − a)3 −

2
3
(x − a)4

1 − a
+

(x − a)5

6(1 − a)2

]
Rdx = 2R

−12 − 93a + 60a2 − 110a3 + 120a4 − 45a5

45(1 − a)2
, (20)

Kd = 2
∫ 1

−1

[
(x − a)4 −

2
3
(x − a)5

1 − a
+

(x − a)6

6(1 − a)2

]
Rdx

= 2R
141 + 168a + 1281a2 − 1120a3 + 1015a4 − 840a5 + 315a6

315(1 − a)2
, (21)

here the expressions on the right-hand sides correspond to constant R, i.e., when the center of mass coincides with the
enter of the foil, x0 = 0. In the limit of a rigid foil (S → ∞), the flexural equation (14) correctly yields that the deflection
anishes as |d| ∼ S−1. However, this means that the terms containing S in the Eqs. (12) and (13) do not vanish in this
imit, so that the rigid foil equations for the vertical force and the moment about the pivot axis are not correctly recovered.
ut this is an artifact of the present approximation, where the displacement (11) is truncated as a quartic polynomial.
t can be fixed by using a higher polynomial approximation, selecting the coefficients so that these terms vanish, while
etaining the corresponding term in (14). However, this would complicate unnecessarily the present approximation, that
inimally accounts for the stiffness effect within the Euler–Bernoulli beam equation, because the resulting expressions

or CL, CM , CF (and, especially, for the thrust coefficient CT considered below) would become cumbersome. Thus we adopt
he simplest approach with Eqs. (12) and (13) without the S-terms, and Eq. (14) with that term from the present quartic
pproximation, as a lowest order model that takes into account the flexibility effect on a foil with forced heave and with
assive pitching and flexural deflection motions, valid for sufficiently large stiffness S and for frequencies below the second
atural frequency of the system. As we shall see, this approach reproduces accurately the first natural frequency of the
ystem and previous numerical results for the propulsion force obtained from a more general small-amplitude inviscid
heory (Moore, 2015). These comparisons will thus constitute a validation of the present formulation.

Since CL, CM and CF can be computed in terms of h(t), α(t) and d(t) (analytically in the case of a harmonic motion
f the foil, see below), Eqs. (12)–(14) can be solved for the passive pitching and flexural motions, α(t) and d(t), and the
orresponding input forcing CLi(t), given h(t) and the parameters in the output lift and moment, CLo and CMo.
We shall assume a harmonic motion of the foil:

h(t) = ℜ
[
h0eikt

]
, α(t) = ℜ

[
α0eikt

]
, d(t) = ℜ

[
d0eikt

]
, (22)

here

k =
ωc
2U

(23)

s the reduced frequency and ℜ means real part. For simplicity sake, it is assumed that h0 is real and

α0 = a0eiφ, d0 = dmeiψ , (24)

ith φ the phase shift between the heaving and pitching motions of the foil, ψ the phase shift between the heaving and
eflection motions, a0 the maximum pitch amplitude at x = a, and dm the amplitude of the flexure component of the
otion. In what follows we shall work with the complex expressions knowing that we have to take the real part of the

esults.
For this harmonic motion of the foil, the coefficients CL, CM and CF are given analytically in Fernandez-Feria and

laminos-Quesada (2021) in terms of h, α and d, thus closing the system of Eqs. (12)–(14). These expressions are given
n Appendix A for easy reference, but in a more convenient form, in terms of h(t), α(t) and d(t) explicitly.

. Analytical expressions for the pitching and deflections motions, and for the propulsive/energy harvesting perfor-
ance

Eqs. (13)–(14), together with the expressions (A.2), (A.3) and (3) for CM , CF and CMo, respectively, and the kinematics
22)–(24), constitute a linear system of algebraic equations for the pitch and flexural deflection amplitudes, a0 and dm, as
ell as for their respective phase shifts φ and ψ in relation to the imposed heaving motion. These quantities are obtained

n terms of the heave amplitude h0, the pivot and center of mass locations, a and x0, the stiffness and mass ratio of the
oil, S and R(x), the rotational stiffness, kα , and, in the energy harvesting problem, the remaining coefficients in (2) and
3). Once the pitch and quartic deflection have been obtained, Eq. (12), together with (A.1) for C and (2) for C , yields
L Lo

5
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the input lift CLi necessary to generate the prescribed heaving motion and, therefore, to compute the input power and the
corresponding efficiency of the system. When the propulsion problem is considered, one has to compute also the thrust
force from the prescribed and computed displacements of the foil, and then the efficiency, which is the generated thrust
power divided by the input power. In the case of the energy harvesting problem, the power output is proportional to CLo
nd CMo, as described below in this section.
From Eqs. (13)–(14), the solution for the pitching and flexural deflection motions is obtained from a linear system of

wo complex equations which can be formally written as

A · X = b with A =

(
A11 A12
A21 A22

)
, X =

⎛⎜⎜⎝
a0eiφ

h0
dmeiψ

h0

⎞⎟⎟⎠ , b =

(
b1
b2

)
, (25)

here the different coefficients Aij and bj, which are given in Appendix B, depend on all the dimensionless parameters
xcept for h0, which is absorbed into the solution X due to the linearity of the problem (the pitch and flexure amplitudes
ncrease linearly with the heave amplitude).

It is useful to check first whether these equations model correctly the motion of the foil in absence of fluid–structure
nteraction (FSI); i.e., assuming CL = CM = CF = 0. Considering only the case in which CMo = kαα (i.e., the propulsion
problem with bα = 0), and assuming firstly a rigid foil (S → ∞), the last linear equation in (25) just tells us that there is
no flexural deflection (dm = 0). From the first one,

a0eiφ =
m(a − x0)k2h0

2kα − Iak2
=

2Rak2h0

kα − 2R
(
a2 +

1
3

)
k2
, (26)

o that φ = 0 or φ = π depending on the sign of the right hand side (the right most expression is for constant R).
rom Eq. (12), the corresponding input lift is CLi = ℜ[Cieikt ], with Ci = −mk2h0[1 + m(a − x0)2k2/(2kα − Iak2)]. The
anishing denominator in (26) yields the dimensionless frequency of the first (and only one in the present approximation)
esonant mode of the system, now consisting of just a rigid plate with a spring of torsional stiffness kα at x = a:

kr0 =

√
2kα
Ia

=

√ kα

2R
(
a2 +

1
3

) , (27)

he last expression being valid for constant mass ratio R. In terms of dimensional variables, writing the output power as
o = (1/2)ρU2c2bkαα ≡ Kαα, where b is the span of the plate and Kα the dimensional stiffness of the torsional spring, the

dimensional) natural frequency can be written in the standard form, ωr0 =
√
Kα/Ia, where Ia is the moment of inertia

bout the pivot point, given by Ia = ρsεc3b(1 + 3a2)/12 for constant density and thickness distributions, ρsε= constant.
Secondly, in the opposite limit of a flexible foil with finite stiffness S but with the passive pitching motion inhibited by

n infinite torsional stiffness (kα → ∞), the first linear equation in (25) tells us that a0 = 0. From the second equation,

dmeiψ =
Iak2h0

16(a2 + 1/3)
3(1 − a)2

S − Kdk2
. (28)

he corresponding (first) resonant frequency is

kr0 =

√
16(a2 + 1/3)S
3(1 − a)2Kd

=

√
280(1 + 3a2)S

(141 + 168a + 1281a2 − 1120a3 + 1015a4 − 840a5 + 315a6)R
, (29)

ith the last expression valid for constant mass ratio R, recovering the well known result that the dimensionless natural
requencies of a flexible plate are proportional to

√
S/R (e.g., Floryan and Rowley, 2018), but now with an analytical

expression for its dependence on the pivot point location in the present approximation. For a pivot at the leading edge
(a = −1), kr0 =

√
35S/(142R) ≃ 0.496

√
S/R, recovering almost exactly the result from a more general theory by Floryan

and Rowley (2018) in the limit R ≫ 1, when the FSI is negligible.
Finally, for a flexible plate with quartic deflection and passive pitching, but still without considering FSI (and with

Mo = kαα), the dimensionless, first natural frequency of the system can be obtained form det(A) = 0. It is given by the
ositive root of

k2r0 =
1

9(1 − a)2(IdJd − IaKd)

{
−8(3a2 + 1)IaS − 9(1 − a)2Kdkα+[

288
(
3a2 + 1

)
(1 − a)2(IdJd − IaKd)kαS +

[
9(1 − a)2Kdkα + 8Ia(1 + 3a2)S

]2]1/2
}
. (30)
6
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Returning now to the problem with FSI, i.e., considering the effect of CM and CF in solving (25), the matrix A is no longer
eal as in the last cases considered, even for a rigid foil, and there is no proper resonant frequency at which a0 and/or
dm become singular. But there exists a frequency that maximizes the pitch amplitude, and therefore the thrust force (see
Section 4 below), for each set of dimensionless parameters. Since at this frequency, k = kr say, which corresponds to the
minimum value of |det(A)|, the maximum of a0 and/or dm are quite large, it may still be called the resonant frequency,
as in Moore (2014). Obviously, this frequency tends to the resonant frequency kr0 described above for R → ∞, as the FSI
become negligible.

Once the linear system (25) is solved for X, the modulus of each one of its two components yields the relative pitch
and quadratic deflection amplitudes, a0/h0 and dm/h0, respectively, and their arguments provide the phase shifts φ and
ψ . Then, Eq. (12) yields the required input lift CLi, and hence the input power coefficient:

CPi(t) = ḣ(t)CLi(t) . (31)

Note from Eq. (12) that this expression coincides with the usual one CPi = −ḣ(t)CL(t) for the propulsion of a heaving foil
nly for very small mass ratios (R → 0), provided that CLo = 0 (propulsion problem).
For the propulsion problem (bα = 0), one has to obtain the propulsion coefficient CT (t) from the resulting pitching and

lexural deflection motions, α(t) and d(t), respectively, and the given heaving kinematics h(t). In the case of a quadratic
eflection, i.e., with zs given by (11) without the cubic and quartic terms, CT (t) is given by Eq. (4.5) in Alaminos-Quesada
nd Fernandez-Feria (2020). For the quartic deflection (11) the thrust coefficient is derived in a similar way, containing
ome additional terms. The propulsive (Froude) efficiency is defined as

ηp =
CT

CPi
, (32)

here the bar denotes time average over a period of the foil’s harmonic motion,

CT =
k
2π

∫ t+2π/k

t
CT (t)dt , (33)

nd similarly for CPi.
The mean value of the thrust coefficient CT (t) for a given heaving, pitching and flexural motion can be written as

CT = (kh0)2
[
th(k) + thp(k, a, φ)θ + tp(k, a)θ2 + tdh(k, a, ψ)θdh+

+ tpd(k, a, ψ, φ)θdhθ + td(k, a)θ2dh
]
, (34)

ith the functions th(k), thp(k, a, φ), tp(k, a), tdh(k, a, ψ), tpd(k, a, φ, ψ) and td(k, a) given in Appendix C. In this expression
se has been made of the nondimensional parameters

θ =
a0
kh0

, θdh =
dm
kh0

, (35)

here θ is the well-known Lighthill’s (1969) feathering parameter. For θdh = 0 we have the mean thrust coefficient C
0
T of

a rigid foil with the same heaving and pitching motions (Fernandez-Feria, 2016, 2017). The time-averaged input power
coefficient can be written as a sum of several terms:

CPi ≡ ḣCLi = C
0
Pi + C

d
Pi + C

m
Pi + CPoh . (36)

C
0
Pi is the FSI contribution from the terms in CL associated to the motion of the foil as a rigid solid,

C
0
Pi = π (kh0)2

{
F − θ

[(
k
2

+

(
1
2

− a
)
kF + G

)
cosφ +

(
a
2
k2 +

(
a −

1
2

)
Gk + F

)
sinφ

]}
. (37)

his obviously coincides with the contribution from CL in Theodorsen’s power coefficient for a rigid foil (Theodorsen,
935; Garrick, 1936), where F and G are the real and imaginary parts of Theodorsen’s function C given in Eq. (A.5). The
ther contribution from the FSI, associated to the flexural deflection motion of the foil (i.e., from terms in CL containing
), is

C
d
Pi = πkh0dm

[(
Al2

k2

2
− Ag1kG + Ag0F

)
sinψ +

(
−Al1

k
2

+ Ag1kF + Ag0G
)
cosψ

]
, (38)

where Al1, Al2, Ag0 and Ag1 are functions of a defined in Eqs. (A.6)–(A.10) in Appendix A. The term C
m
Pi is the contribution

rom the inertia of the foil,

C
m

= −
k3h0 [m(a − x0)a0 sinφ + Jadm sinψ] . (39)
Pi 2

7
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Finally, CPoh is the contribution from CLo, appearing only in the energy harvesting problem, termed in that way because
t coincides with one of the contributions to the power output in that problem (see immediately below),

CPoh = bh
k2h2

0

2
. (40)

In the case of the energy harvesting problem, by assuming that the loss of mechanical energy through the linear and
torsional dampers is completely converted into electric energy, the dimensionless time-averaged power output is

CPo ≡ CPoh + CPoα = ḣCLo + 2α̇CMo = bhḣ2 + 2bαα̇2 = (kh0)2
(
1
2
bh + bαk2θ2

)
. (41)

he system works as an energy harvester if the net power output CPo − CPi is positive. One may define the efficiency of
he energy harvesting as

ηe =
CPo − CPi

h0 + (1 + |a|)a0 + dm
, (42)

hich is the usual Betz efficiency, commonly used in the turbine literature (Xiao and Zhu, 2014; Young et al., 2014),
efined as the portion of the incoming flow kinematic energy flux (i.e., ρU3b∆/2) extracted by the system, where

= (h0 + (1 + |a|)a0 + dm)c is the largest possible total distance swept by any portion of the foil. We shall use the
ormalized quantity

η̂e =
ηe

h0
, (43)

hich is independent of the heave amplitude h0 in the present linear theory for small amplitude, but which is not an
fficiency properly because it could be larger than unity.

. Results

.1. Propulsion of a heaving rigid foil with passive pitching

First, the propulsion problem (CLo = 0 and bα = 0) of a rigid foil (S → ∞) with uniform mass distribution R (x0 = 0)
ivoting about an arbitrary point x = a is considered, which is the same problem analyzed by Moore (2014) when the

pivot is at the leading edge (a = −1). Eq. (14) is not needed and Eq. (25) reduces to

A11
a0
h0

eiφ = b1 , (44)

o that
a0
h0

=

⏐⏐⏐⏐ b1
A11

⏐⏐⏐⏐ and φ = arg
(

b1
A11

)
. (45)

hen the FSI is neglected, |A11| vanishes at the first resonant frequency (27), and the pitch amplitude a0 becomes singular.
ow, when the FSI is considered, no proper resonant frequency at which a0 becomes singular does exist, but there is a
requency kr that maximizes the pitch amplitude which, as aforementioned, will still be called the resonant or natural
requency. As shown in Fig. 2, where kr and kr0 from (27) are plotted vs. R for two values of kα , this resonant frequency
oincides with that of Moore (2014), which is included in Fig. 2 in its simplest approximation valid for large kα and a = −1
Eq. (3.4) in Moore (2014)). For large R, kr obviously tends to kr0 since the FSI becomes irrelevant, the more so the larger
α . However, for small R the natural frequency kr may become quite different from its quiescent counterpart kr0, specially
s kα decreases.
These resonant frequencies are basically those at which there is a marked enhancement of both thrust and power in

elation to their values for a purely heaving motion of the foil, CT/C
0
T and CPi/C

0
Pi, respectively, as shown in Fig. 3 for a foil

f negligible inertia (R = 0) pivoting at the leading edge (a = −1) for several spring stiffness kα . Obviously, the results
or a purely heaving motion coincide with the present ones for a clamped leading edge (kα → ∞). This figure is basically
he same as Fig. 3 in Moore (2014), but representing the relative thrust and power coefficients, and the relative efficiency
p − η0p , instead of their absolute values. Note that the dimensionless spring stiffness K in Moore (2014) is the present
α/2. Fig. 3 indicates that maximum efficiency enhancement does not correspond with maximum thrust enhancement, the
ast happening at the resonant frequencies for given kα . In fact, the maximum gain in efficiency is achieved for vanishing
pring stiffness at the leading edge, a result previously reported by several authors in the present inviscid limit (Moore,
014, 2015; Floryan and Rowley, 2020). It is remarkable that the present results are basically the same as those obtained
y Moore (2014) for a = −1 in spite of the quite different approaches, both for the FSI formulations and, specially, for
he computation of the thrust, which here is obtained from a vortex impulse theory (Fernandez-Feria, 2016).

To check the present results for other pivot locations and against experimental data, Fig. 4 compares results from the
resent model with experimental measurements by Asselin and Williamson (2019) of the resulting pitching amplitude
8
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Fig. 2. Resonant frequencies kr (solid lines) and kr0 given by (27) (dashed lines) vs. R for a = −1 and two values of kα , as indicated. kMr
dashed-and-dotted lines) is the approximation for the resonant frequency obtained by Moore (2014) (his equation (3.4)) valid for large kα and
= −1.

Fig. 3. Ratios of the time-averaged thrust (a) and power (b) coefficients to the mean thrust and power coefficients of an otherwise identical foil
with heaving-only motion, CT /C

0
T and CPi/C

0
Pi , respectively, as a function of the reduced frequency for increasing values of the spring stiffness kα .

(c): Relative efficiency to the heaving-only motion, ηp − η0p , vs. k for the same cases. R = 0 and a = −1 in all cases.

and thrust coefficient of a heaving airfoil with passive pitching in their cyber–physical fluid dynamics experimental setup.
These authors fix the frequency k and the heaving amplitude h0 and vary the spring stiffness kα , representing their results
n terms of the relative frequency f /fn, where fn is the natural frequency (27) (i.e., neglecting FSI). In the present notation,
/fn = k/

√
kα/[2R(a2 + 1/3)], where k is fixed to π/2 and kα is varied. No value of the mass ratio R is provided. Since

he experiments are in water but with a relatively thick airfoil (NACA0012), it should be small, but no too much. We
djust R by fitting the maximum pitch amplitude in their experiments for several pivot positions, even far upstream of
he leading edge (a < −1 in the present notation; Fig. 4(a)), resulting R ≃ 0.85. With this value of R all the maxima of
he pitch amplitude are well captured, though the corresponding resonant frequencies are under-predicted. In Fig. 4(b)
e compare the resulting thrust coefficient with the experimental data. In spite of the fact that the flapping amplitudes

n the experiments are not small (h0 = 0.5 and some of the resulting amplitudes a0 shown in Fig. 4(a) are larger than
5◦), the present linear theory captures reasonably well the main features of the dynamics of the flapping airfoil.
To finish this subsection, some more exhaustive results for the thrust coefficient and the propulsive efficiency are

resented in Figs. 5 and 6 as contour plots in both the frequency–spring stiffness and the frequency–pivot point planes.
ig. 5 shows that, as aforementioned, propulsive enhancement by passive pitching is generated around the natural
requencies of the system when the pivot point is at the leading edge, provided that the torsional spring is stiff enough
9
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Fig. 4. Comparison with experimental measurements by Asselin and Williamson (2019) (symbols) with the present theoretical results (lines) for the
pitch amplitude (a) and the thrust coefficient (b) vs. the frequency relative to the natural quiescent frequency of the system. The experiments are
made with a NACA0012 airfoil at Reynolds number 104 , with h0 = 0.5, k = π/2, several values of a and varying kα . a = −1 in (b), and R = 0.85 in
ll the theoretical results (see main text).

Fig. 5. Relative thrust coefficient (top panels) and efficiency (bottom panels) as a function of frequency k and spring stiffness kα for forced heaving
otion with passive pitching at the leading (a = −1) of a rigid foil for two mass ratios, R = 0.01 (left panels) and R = 1 (right panels). Lines
arked with ‘0’ indicate where the passively pitching foil has the same thrust, or efficiency, as the equivalent heaving-only foil with kα → ∞ (C

0
T

and η0p , respectively). Areas with negative thrust have been whited out. The thick continuous lines correspond to the first natural frequency of the
system (maximum pitch amplitude), while the dashed lines represent this frequency without FSI (Eq. (27)).

(large kα). The predicted increase in thrust can be very large, but restricted to a narrow region in the kα − k plane (top
panels in Fig. 5). On the other hand, efficiency enhancement is obtained for practically any value of k and kα plotted in
Fig. 5 (bottom panels), but it is relatively weak and with the maximum values located in the opposite limit of low stiffness,
without connection to the natural frequency of the system. Thus, with this flapping system activated at the leading edge
it seems more interesting to work with a stiff spring in the thrust enhancement region close to the resonant frequencies
of the system, as already noted in previous works (Moore, 2014, 2015; Asselin and Williamson, 2019). The effect of the
mass ratio R is relatively small.

When the pivot point is moved (Fig. 6), the response is quite different depending on the stiffness of the torsional
spring, mostly due to the different behavior of the natural frequencies, also plotted in Fig. 6 for the thrust (top panels)
when k = 0.1 and k = 10. For low k , the maximum thrust enhancement is obtained when pivoting just downstream
α α α

10
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Fig. 6. Analogous to Fig. 5 but in the frequency–pivot plane for R = 1 and two values of the spring stiffness, kα = 0.1 (left panels) and kα = 10
right panels).

Fig. 7. Energy harvesting efficiency η̂e as a function of frequency k and mass ratio R for forced heaving motion with passive pitching at the leading
a = −1) of a rigid foil for two spring stiffness, kα = 0.1 (left) and kα = 1 (right). bα = 1 and bh = 0. The thick continuous lines correspond to
he first natural frequency of the system kr (maximum pitch amplitude), while the dashed lines represent this frequency without FSI and bα = 0
i.e., Eq. (27)).

f the mid-chord point and for relatively high frequencies. The maximum efficiency enhancement, however, is obtained
hen pivoting near the quarter-chord point (a = −1/2), also for high frequencies, but with no thrust gain and in the

verge of negative thrust, which means that this configuration might not be useful in practice due to the effect of friction,
no considered here. There is another local maximum of efficiency at lower frequencies when a is closer to zero which may
e more interesting due to the thrust enhancement. For large spring stiffness (right panels in Fig. 6 with kα = 10), the high
hrust enhancement region is again concentrated around the natural frequencies of the system, with a maximum slightly
ownstream of the quarter-chord point. The maximum efficiency gain is also close to this pivot point, but for frequencies
igher than the resonant one. In the case of kα = 10 (right panel in Fig. 6) the propulsive efficiency enhancement can
e quite high, but again close to the edge of negative thrust, so that it would be wiser to work at lower frequency with
arger thrust enhancement but less efficiency gain.
11
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4

Fig. 8. Energy harvesting efficiency η̂e as a function of frequency k and pivot point a for forced heaving motion with passive pitching of a rigid foil
with mass ratio R = 10 for two spring stiffness, kα = 0.1 (left) and kα = 1 (right). bα = 1 and bh = 0. The thick continuous lines correspond to
the first natural frequency of the system kr (maximum pitch amplitude), while the dashed lines represent this frequency without FSI and bα = 0
(Eq. (27)).

Fig. 9. Pitch amplitude a0 (left) and phase shift φ (right), both in degrees, corresponding to the case plotted in Fig. 8 for kα = 1 (left).

.2. Energy harvesting from a heaving rigid foil with passive pitching

To see the effect of passive pitch on the energy harvested by a flapping rigid foil (S → ∞) we consider the case in
which the energy is harvested by the torsional damper only (bh = 0), normalizing the results by setting bα = 1, and
assuming also that the mass ratio R is uniform (x0 = 0). Fig. 7 shows contour plots of the efficiency of energy harvesting
η̂e defined in (42)–(43) in the frequency–mass ratio plane when pivoting at the leading edge (a = −1) for two values
of the spring stiffness kα . Clearly, η̂e > 0 only in a relatively narrow band around the first resonance frequency of the
system kr (R), also shown in the figure, with the maximum of efficiency for each R practically coinciding with kr . Thus, net
energy can only be harvested from a current when the frequency is such that the pitch amplitude is near its maximum at
k = kr , provided that the mass ratio R is above a certain threshold value that depends on the spring stiffness kα , which,
in turn, cannot be too large (no region with positive η̂e is found in the plane of Fig. 7 when kα is larger than about 8). It is
also observed in Fig. 7 that the resonant frequency kr0 without considering FSI, given by Eq. (27), is roughly a good lower
frequency bound above which energy can be extracted from the current for given R, kα and a. The natural frequency kr
is always larger than kr0 and it is also proportional to R−1/2, approximately, in the region of interest with η̂e > 0.

The effect of the pivot point is shown in Fig. 8, where contours of the efficiency are plotted in the frequency–pivot
plane for a mass ratio R = 10, which approximately corresponds to the maximum efficiency shown in Fig. 7, and the
same values of the torsional spring stiffness of Fig. 7. Although η̂e can be positive for all values of a in a low frequency
region, the efficiency is only appreciable in a narrow band around the resonant frequency of the system (also shown in
the figure) when it lies in this low frequency region; that is for pivots upstream of, and around of, the quarter-chord point,
depending on the spring stiffness. For kα = 1, the maximum efficiency is reached when pivoting at about a = −0.45,
i.e., close to the quarter-chord point, with a reduced frequency k ≈ 1/3.

Fig. 9 shows the pitch angle and phase shift corresponding to this last case. The maximum pitch angle at the resonant
frequency is a0 ≃ 4◦, well within the low amplitude range of the present theory, with a phase shift φ ≃ 90◦. These
results are in qualitative agreement with (Boudreau et al., 2019b,a), who analyzed numerically the performance of free-
pitching flapping-foil turbines with prescribed heave at a Reynolds number of 3.9×106, but for high amplitude oscillations
12
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Fig. 10. Time-averaged thrust coefficient (a) and efficiency (b), compared with their values for an otherwise identical rigid foil with heaving-only
motion, C

0
T and η0p , respectively, as a function of the reduced frequency for several values of S and the spring stiffness kα . R = 1 and a = −1.

(h0 = 2 and pitch amplitudes reaching values up to almost 90◦) for which the present linear potential flow results are
not quantitatively valid. These authors found that maximum efficiency is obtained when the pitch axis is located around
the quarter-chord point, for a phase lag φ near 90◦, provided that the moment of inertia is sufficiently large, which in the
present notation means large R, according to (17), all this in good agreement with the present theoretical results. Further,
they found that this maximum efficiency is reached when the moment of inertia and the pitch stiffness are scaled keeping
constant a certain parameter related to the difference between the frequency and the quiescent natural frequency (27)
(dashed lines in Figs. 7), which here runs almost parallel to the natural frequency obtained when FSI and bα are taken
into account (continuous lines in Figs. 7), around which the present efficiency is the highest. This explain also the result
by these authors that the efficiency quickly deteriorates as the dimensionless moment of inertia and pitch stiffness are
such that the pitch quiescent natural frequency kr0 (Eq. (27)) remains constant, which, as aforementioned, approximately
marks the lower frequency limit for energy extraction in the present results. On the other hand, the constant value of their
parameter ‘pitch stiffness’, where efficiency is a maximum, must roughly coincide with the present natural frequency of
the system kr , which here is obtained analytically as a function of R, kα and the kinematic parameters.

4.3. Propulsion of a heaving foil with passive pitching and chordwise flexibility

When chordwise flexibility is allowed, both Eqs. (13) and (14) are needed to obtain simultaneously the pitch and
flexural deflection amplitudes and phases, which from (25) can be written as

X =

⎛⎜⎜⎝
a0eiφ

h0
dmeiψ

h0

⎞⎟⎟⎠ = A−1
· b . (46)

Fig. 10 shows some results for the thrust CT and the propulsive efficiency ηp, compared with their respective values
for an otherwise identical rigid foil with heaving-only motion (S = ∞ and kα = ∞) , C

0
T and η0p , for several cases

orresponding to Fig. 2 in Moore (2015). As this author demonstrates, a rigid foil with passive pitching about its leading
dge and appropriate torsional spring constant kα (K in Moore (2015) is the present kα/2) may generate substantially more
hrust at a given frequency that any flexible foil for any constant value S. This is illustrated in Fig. 10, where the flexible
oils with two different values of stiffness S but without passive pitching amplify less the thrust at their corresponding
esonant frequencies than the rigid foils with torsional springs at their leading edges with different spring stiffness
α , which are selected to match the resonant frequencies of the flexible foils. However, the efficiency enhancement is
egligible at these resonant frequencies, as already noted by Asselin and Williamson (2019) for rigid foils with passive
itching. In the case of flexible foils, the thrust amplification at the natural frequencies is not accompanied by an efficiency
nhancement at all (ηp < η0p). It is remarkable that the present approximation recovers the resonant frequencies obtained

numerically in Moore (2015) almost exactly, and the thrust amplification with a fairly good approximation, in spite of the
quite different formulations.

To see more clearly what happens as S or kα are varied, when a and R are fixed, Fig. 11 shows the contours of thrust
and efficiency enhancement in the S−k and kα−k planes for given values of kα and S, respectively. In both representations
the thrust magnification is achieved around the first resonant frequency of the system k = kr that minimizes |det(A)| for
sufficiently large S. In fact, it is the natural frequency associated to the spring stiffness kα , or torsional spring mode, as it
is close to that given by (27) when FSI is neglected, also plotted in Fig. 11 with dashed-and-dotted lines. The first natural
frequency associated to the foil stiffness S, or bending mode, is not plotted since it is much higher, as indicated by its value
13
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Fig. 11. Contours of thrust (left panels) and efficiency (right panels) enhancement in the (S, k) plane (top) and in the (kα, k) plane (bottom) for R = 1
and a = −1. Lines marked with ‘0’ indicate where the passively pitching and flexible foil has the same thrust, or efficiency, as the heaving-only rigid
foil counterpart. Areas with negative thrust and negative power input (for the efficiency) have been whited out. The continuous red lines correspond
to the natural frequency of the system minimizing |det(A)|, the dashed-and-dotted lines to (27), the dashed lines to (30) and the dotted lines to
(29).

when the FSI is neglected, given by (30) and plotted with dotted lines in the figure. This bending mode is also recovered
by another local minimum of |det(A)|, but it is not relevant in the present approximation since its first natural frequency
is higher than the second natural frequency associated to the torsional spring mode, at which the present theory is not
longer valid.

Clearly, the highest thrust enhancement is obtained along the lower frequency resonant mode associated to the
torsional spring, which also depends on the flexibility of the foil when the FSI is taken into account. As shown by Moore
(2015), for given spring stiffness kα it yields the maximum thrust amplification for a rigid foil (S → ∞). The corresponding
ptimal frequency is always lower than the resonant frequency kr0 given by Eq. (27), and plotted in Fig. 11 with dashed-
nd-dotted lines, as also noted by this author (in other words, the optimal spring stiffness is always larger than that given
y Eq. (27) for an operating reduced frequency). As also shown in Fig. 11, efficiency enhancement is also achieved when
perating at this torsional spring mode if the stiffness S is large enough. However, the efficiency gain is relatively small

and not optimal at the maximum thrust amplification.
Fig. 11 is for R = 1 and a = −1. To see how the mass ratio and the pivot point location affect to the propulsion

performance, we plot in Fig. 12 the lower resonant frequency kr corresponding to maximum thrust enhancement in the
pivot point–mass ratio plane for given values of the foil and spring stiffness, namely S = 200 and kα = 10. This figure
lso shows the corresponding values of thrust and efficiency enhancement. As noted above, maximum thrust amplification
oes not mean maximum efficiency enhancement. Thus, local maxima for thrust amplification are obtained for pivots just
pstream of the quarter-chord point when R is about 2 and downstream of the mid-chord point for R small, while the
aximum efficiency enhancement is achieved when pivoting just upstream of the mid-chord point for mass ratios lower

han unity. Since there is no efficiency gain when pivoting downstream of the mid-chord point, the optimal propulsion
onditions for these representative values of S and kα are, according to the present approximation, for a foil with R of
rder unity pivoting just downstream of the quarter-chord point.

.4. Energy harvesting performance of a heaving foil with passive pitching and chordwise flexibility

To analyze the effect of flexibility on the energy harvesting performance of the passive-pitching heaving-foil, we
onsider the case R = 10, which is one of the most favorable cases considered in Section 4.2 for a rigid foil (see Fig. 7), and
14
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Fig. 12. Contours of resonant frequency kr minimizing |det(A)| in the (a, R) plane (a), and the corresponding thrust (b) and efficiency (c) amplifications
or k = kr , when S = 200 and kα = 10. Negative values of CT in (a) and values of ηp − η0p < −0.2 in (b) have been whited out.

Fig. 13. Energy harvesting efficiency η̂e as a function of stiffness S and frequency k for forced heaving motion with passive pitching at the leading
dge (a = −1) of a flexible foil with mass ratio R = 10 for two spring stiffness, kα = 0.1 (left) and kα = 1 (right). bα = 1 and bh = 0. The continuous
ines correspond to the natural frequency of the system minimizing |det(A)|, the dashed-and-dotted lines correspond to (27) and the dotted lines
o (29).

ee how the efficiency varies with S. The results are plotted in Fig. 13 in the stiffness–frequency plane for the same two
alues of the spring stiffness considered in Fig. 7, namely kα = 0.1 and 1, also pivoting about the leading edge (a = −1),
nd with the energy harvested only by the torsional damper (bh = 0 and bα = 1).
In addition to the mode associated to the torsional spring, which coincides with the one shown in Fig. 7 for R = 10

hen S → ∞, there appears a higher frequency bending mode. However, it does not correspond to any local minima of
det(A)|, nor it is well captured by the corresponding bending mode without FSI, shown in Fig. 13 with dotted lines.
n contrast, the other lower frequency (spring) mode is very well captured by the resonant frequency k = kr that
inimizes |det(A)|, also shown in Fig. 13 by continuous lines, and it is slightly underpredicted by the corresponding

esonant frequency kr0 without FSI, given by Eq. (27) and shown in Fig. 13 with dashed-and-dotted lines. As it happened
or the rigid-foil case, this quiescent resonant frequency k provides a good estimate of the lower frequency bound above
r0
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Fig. 14. Energy harvesting efficiency η̂e as a function of frequency k and pivot point a for forced heaving motion with passive pitching of a flexible
oil with stiffness S = 100 and mass ratio R = 10 for two spring stiffness, kα = 0.1 (left) and kα = 1 (right). bα = 1 and bh = 0. The continuous
lines correspond to the first natural frequency of the system minimizing |det(A)|, while the dashed lines represent this frequency without FSI and
bα = 0 (Eq. (27)).

which energy can be extracted from the current for given R, kα and a. When the FSI is taken into account, kr depends also
on the foil stiffness S.

The maximum in the energy harvesting efficiency is not necessarily obtained for the rigid-foil case (S → ∞), existing
ome local maxima at relatively low stiffness that depends on the remaining parameters. In the cases plotted in Fig. 13,
hese local maxima of η̂e are for S about unity or slightly smaller. However, in both cases the efficiency increases when S
s larger than about 100 when operating close to the natural frequency. To see how this maximum evolves with the pivot
oint location, we plot in Fig. 14 the efficiency in the frequency–stiffness plane for R = 10, S = 100 and the same values
f kα of Fig. 13. In both cases, the maxima in the efficiency remain if the pivot point is not too far from the leading edge,
isappearing when the pivot point location reaches the quarter-chord length, or a slightly downstream, depending on kα ,
phenomenon marked by an abrupt increase of the first natural frequency predicted by the minimum of |det(A)|. When

kα = 1, the maximum efficiency is reached for a ≃ −0.4 and k ≃ kr ≃ 0.33, and it is almost twice that the maximum for
kα = 0.1, reached for a ≃ −0.8 and k ≃ 0.21.

5. Conclusions

A general formulation for the fluid–structure interaction and the aerodynamic performance of a foil with prescribed
harmonic heaving motion and with passive pitching and passive chordwise flexibility about an arbitrary pivot point
has been developed from the two-dimensional Euler–Bernoulli beam equation for small amplitudes coupled with fluid
forces and moments obtained from the vortex impulse theory in the linearized potential limit by Alaminos-Quesada and
Fernandez-Feria (2020). The formulation provides the pitch amplitude and its phase, and the flexural amplitude its phase,
from a system of two complex, algebraic linear equations whose absolute value of its denominator determinant provides
the (first) natural frequency of the foil–fluid system. A third algebraic equations determines the input force that generates
the prescribed heave, and therefore the input power to compute the efficiency of the flapping-foil system. Besides the
torsional spring at the pivot point, which allows for the passive pitching, the formulation may include a linear spring
and two dampers, linear and torsional, to model also a flapping-foil turbine with passive pitching and deformation, in
addition to the flapping-foil propulsor. Thus, the performance of these two quite different flapping-foils devices can be
analyzed using the same set of algebraic equations in the limit of high Reynolds number and small flapping amplitudes.
The maximum thrust in the propulsion system and the maximum energy harvesting efficiency are always found at, or
near, the natural frequency of the system, but the maximum propulsive efficiency is not related to that frequency.

The results for the propulsive performance of rigid and flexible uniform foils coincide with previous ones by Moore
(2014, 2015) when the pivot point is located at the leading edge, in spite of the quite different formulations. Thus, for
instance, it is shown that the maximum thrust enhancement when pivoting at the leading edge is generated with a
uniform foil in the limit of infinite stiffness. Here the results are extended to arbitrary pivot point locations and to general
density and stiffness distributions along the foil. It is obtained that the maximum thrust amplification is reached for
pivots just upstream of the quarter-chord point, and for mass ratios of the order unity, while the maximum efficiency
enhancement is obtained when pivoting just upstream of the mid-chord point and for mass ratios lower than unity. The
thrust force obtained here for rigid foils and different pivot point locations are also in quite good agreement with very
recent experimental results by Asselin and Williamson (2019).

The present results for rigid-foil energy harvesting efficiency are in good agreement with recent numerical results
by Boudreau et al. (2019a,b) when different parameters, including the pivot point location, are varied, in spite of the fact
that their simulations are not for small flapping amplitudes. Now, contrary to the propulsion problem, the best efficiency
16
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is obtained using foils with sufficiently large mass ratios, but also operating at its corresponding natural frequency, which
here is obtained algebraically in terms of all the relevant parameters governing the problem. This natural frequency is
always larger than that corresponding to the flapping-foil system without considering FSI, which in the present results
approximately marks the threshold frequency above which the system may work as an energy harvester for a given set of
parameters, in qualitative agreement with the numerical results of Boudreau et al. The effect of flexibility on the passive-
pitch energy harvester is also analyzed, finding that the best performance is not always reached for very large stiffness,
but for dimensionless stiffness of order unity, with the foil pivoting between the leading edge and the quarter-chord point,
and for dimensionless mass ratios of order ten or larger.

Although the present linear approach does nor cover the large pitching motions that have been illustrated to be optimal
n the energy harvesting scenario, nor the non-linear coupling effects between passive pitching and structural bending
hich is known to be beneficial for thrust, we believe that the general analytical expressions developed here allow for
wide parametric survey and analysis of these two physical problems. Also, the findings for the particular flapping-foil
onfigurations, which have been selected in part to compare with previous numerical and experimental results, may be
f interest as a first guide in the design of some specific aerial or aquatic thrusters, and energy harvesting devices, based
n flapping flexible foils with passive pitching. But many other potential applications of the method to problems that are
hysically valuable in both scenarios can be analyzed. In particular, since the first natural frequency of the system is well
redicted by the present analytical formulation, we believe it may be quite useful as a guide for numerical simulations of
he full nonlinear flapping problem searching for the optimal combinations of the wide set of parameters involved, such
s the pivot point location, bending and torsional stiffnesses, mass ratio, center of mass, and moment of inertia, among
thers. Only the effects of just a few of these parameters in both scenarios have been analyzed in the examples considered
ere.
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ppendix A. Lift, moment and flexural coefficients

The following expressions for the coefficients corresponding to the quartic foil’s deflection (11) are derived in
ernandez-Feria and Alaminos-Quesada (2021). Here are written in a more straightforward form in terms of h(t), α(t),
(t) and their temporal derivatives:

CL(t) = π
[
−ḧ − aα̈ + α̇ + Al2(a)d̈ + Al1(a)ḋ

]
+ C(k)Γ0(t) , (A.1)

CM (t) =
π

2

[
aḧ +

(
a2 +

1
8

)
α̈ +

(
1
2

− a
)
α̇ + Am2(a)d̈ + Am1(a)ḋ + Am0(a)d

]
−

1
2

(
1
2

+ a
)

C(k)Γ0(t) , (A.2)

CF (t) = π

[
−

(
a2 +

1
4

)
ḧ − a

(
a2 +

1
2

)
α̈ + a(a − 1)α̇

+ Af 2(a)d̈ + Af 1(a)ḋ + Af 0(a)d
]
+

(
1
2

+ a + a2
)

C(k)Γ0(t) , (A.3)

here

Γ0(t) = −2π
[
ḣ +

(
a −

1
2

)
α̇ − α + Ag1(a)ḋ + Ag0(a)d

]
(A.4)

s the quasi-steady circulation, with

C(k) =
H (2)

1 (k)
(2) (2) = F(k) + iG(k) (A.5)
iH0 (k) + H1 (k)
17



R. Fernandez-Feria and J. Alaminos-Quesada Journal of Fluids and Structures 102 (2021) 103255
Theodorsen’s function (Theodorsen, 1935), and H (2)
n (z) = Jn(z) − iYn(z), n = 0, 1, Hankel’s function of the second kind

and order n, related to the Bessel functions of the first and second kind Jn(z) and Yn(z) (Olver et al., 2010), and where the
following functions of the pivot point location a have been defined:

Al2 = −
13 + 48a2 − 64a3 + 24a4

48(1 − a)2
, Al1 =

3 + 12a − 12a2 + 4a3

6(1 − a)2
, (A.6)

Am2 =
2 + 25a − 12a2 + 52a3 − 64a4 + 24a5

48(1 − a)2
, Am1 =

−9 + 12a − 72a2 + 56a3 − 16a4

24(1 − a)2
, (A.7)

Am0 = −
3

4(1 − a)2
, Af 2 = −

35 + 32a + 392a2 − 320a3 + 496a4 − 512a5 + 192a6

384(1 − a)2
, (A.8)

Af 1 =
1 + 8a − 18a2 + 48a3 − 32a4 + 8a5

12(1 − a)2
, Af 0 =

7 + 18a
12(1 − a)2

, (A.9)

Ag1 =
15 − 48a + 96a2 − 80a3 + 24a4

48(1 − a)2
, Ag0 =

3 − 24a + 24a2 − 8a3

12(1 − a)2
. (A.10)

Note that since Theodorsen’s function is a complex quantity, so do are expressions (A.1)–(A.4) for the coefficients,
where we also use the complex forms of the kinematics (22)–(24), so that one has to take the real part of these expressions
to obtain real-valued quantities. However, as explained in Section 3, we use the complex Eqs. (13) and (14) to obtain the
pitch and flexural deflection amplitudes and phases, a0, dm, φ and ψ , directly.

Appendix B. Coefficients in Eq. (25)

A11 = Iak2 − 2kα − 2bα ik + AF
11 , (B.1)

A12 = −Jdk2 −
16
3

a
(1 − a)2

S + AF
12 , (B.2)

A21 = Idk2 + AF
21 , (B.3)

A22 = −Kdk2 +
16
3

a2 +
1
3

(1 − a)2
S + AF

22 , (B.4)

b1 = m(x0 − a)k2 + bF1 , (B.5)

b2 = Iak2 + bF2 , (B.6)

where the superscript F refers to the contributions to these coefficients from the fluid–structure interaction (i.e., from CM
and CF ). Using the expressions of CM and CF in Appendix A, these contributions can be written as

AF
11 = −π

{(
1
2

− a
)
ik −

(
a2 +

1
8

)
k2 + C(k)(1 + 2a)

[(
a −

1
2

)
ik − 1

]}
, (B.7)

AF
12 = −π

{
−Am2k2 + Am1ik + Am0 + C(k)(1 + 2a)

[
Ag1ik + Ag0

]}
, (B.8)

AF
21 = π

{
−a

(
a2 +

1
2

)
k2 + a(1 − a)ik + C(k)(2a2 + 2a + 1)

[(
a −

1
2

)
ik − 1

]}
, (B.9)

AF
22 = π

[
Af 2k2 − Af 1ik − Af 0 + C(k)(2a2 + 2a + 1)

(
Ag1ik + Ag0

)]
, (B.10)

bF1 = −πak2 + πC(k)(1 + 2a)ik , (B.11)

bF2 = π

(
a2 +

1
4

)
k2 − πC(k)(2a2 + 2a + 1)ik . (B.12)
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Appendix C. Functions for the time-averaged thrust coefficient

The functions th(k), thp(k, a, φ), tp(k, a), tdh(k, a, ψ), tpd(k, a, φ, ψ) and td(k, a) appearing in the time-averaged thrust
oefficient (34) can be derived using a similar procedure to that described in Alaminos-Quesada and Fernandez-Feria
2020) for a quadratic foil deflection zs. The resulting expressions can be written as follows:

th = −2G1, (C.1)

thp =

[
4
(
1
4

− a
)

G1k + π
(
kgR

1 − G
)]

cos(φ) +
[
π

(
F + kg I

1

)
+ F1k + 4G1

]
sin(φ), (C.2)

tp =

(
1
2

− a
)
k
[
2aG1k + π

(
G − kgR

1

)]
− π

(
F + kg I

1

)
− F1k − 2G1, (C.3)

thd =

[
π

(
AI
d0 − kAR

d1 − DG
)
− 2AG1k +

3
2
(E − J)

(
πG −

G1k
2

)
− Q

(
F1 −

G1k
2

+
πG
2

)]
cos(ψ)+[

π
(
−AR

d0 − kAI
d1 + DF

)
− 2AF1k +

3
2
(E − J)

(
−

F1k
2

− πF
)

+ Q
(
F1k
2

+
πF
2

+ G1

)]
sin(ψ), (C.4)

tpd =

{
π

[(
1
2

− a
)
k
(
−AI

d0 + kAR
d1 + DG

)
+ AR

d0 + kAI
d1 − DF

]
+ 2Ak

[
−aG1k + F1 +

π

2

(
kgR

1 − G
)]

+

3
2
(E − J)

[
π

(
F −

(
3
4

− a
)

Gk +
k2

4
gR
1

)
+

k
2
(F1 − aG1k)

]
−

Q
[
π

(
k
2
(a − 1)G + F +

kg I
1

2
+

k2

4
gR
1

)
+

(
a +

1
2

)
F1k + G1

(
1 −

ak2

2

)]}
cos(φ − ψ)+{

π

[
−

(
1
2

− a
)
k
(
AR
d0 + kAI

d1 − DF
)
− AI

d0 + kAR
d1 + DG

]
+ 2Ak

(
aF1k +

π

2

(
F + kg I

1

)
+ G1

)
+

3
2
(E − J)

[
k
2
(aF1k + G1)− π

(
G +

(
1
4

− a
)

Fk −
k2

4
g I
1

)]
−

Q
[
π

2
k
(
aF +

kg I
1

2
− gR

1

)
− F1

(
1 −

ak2

2

)
+

(
a +

1
2

)
G1k

]}
sin(φ − ψ), (C.5)

td =
π

4

{
Q

[
−kAI

d0 + 2AR
d0 + 2kAI

d1 + k2AR
d1 − 2AGk + D(Gk − 2F) + (E − J)

(
3F −

9Gk
4

)]
+

k
(
4A +

3E
2

−
3J
2

)[
AI
d0 − kAR

d1 + G
(

−D +
3E
2

−
3J
2

)]
+ Q 2

(
Gk
2

− F
)}
, (C.6)

here the following functions of the pivot point location a have been used:

A(a) = a2
(
1 +

2a
3(1 − a)

+
a2

6(1 − a)2

)
, B(a) = 2a

(
1 +

a
1 − a

+
a2

3(1 − a)2

)
, (C.7)

D(a) = 1 +
2a

1 − a
+

a2

(1 − a)2
, E(a) =

2
3(1 − a)

(
1 +

a
1 − a

)
, J(a) =

1
6(1 − a)2

, (C.8)

Q (a) = 2B(a) − 2D(a) + 3E(a) − 3J(a); (C.9)

F(k) and G(k) are the real and imaginary parts of Theodorsen’s function (A.5), and likewise Fj(k) and Gj(k), j = 1, 2, 3, in
relation to the complex functions Cj(k), defined as,

C1(k) =

1
k e

−ik

iH (2)
0 (k) + H (2)

1 (k)
, C2(k) =

H (2)
2 (k)

iH (2)
0 + H (2)

1 (k)
, C3(k) =

Y0(k) − iJ2(k) + iH (1)
1 (k)

iH (2)
0 + H (2)

1 (k)
, (C.10)

and gR
j (k) and g I

j (k), j = 0, 1, 2, 3, 4, in relation to the complex functions

g0(k) =
−2i
π

C1(k), g1(k) = −
2
πk

(1 + ik)C1(k) −
i
k
C(k), g2(k) = −

1
k
C2(k) +

(
2i
k2

−
2 + ik

k

)
C1(k), (C.11)

g3(k) =
3Y2(k) − kY1(k) + iJ3(k) − iJ2(k)

k2
[
iH (2)

0 + H (2)
1 (k)

] +
6
πk

(1 + ik)
(

2
k2

− 1
)

C1(k), (C.12)

g4(k) =
1

(2) (2)

{
1
2 [kJ4(k) − 3J3(k)] +

ik
G2,0
1,3

(
k2

⏐⏐⏐⏐ −
3
2

−3, 0,− 1

)}

iH0 + H1 (k) k 4 4 2
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+
2
π

[
24
k4

(k − i) −
4
k2

(k − 3i) − i
]
C1(k), (C.13)

with Jν and Yν the Bessel functions of the first and second kind, respectively, of order ν, and Gm,n
p,q

(
z|ap; bq

)
the Meijer

G-function (Olver et al., 2010). Finally, AR
dj(k, a) and AI

dj(k, a), j = 0, 1, are the real and imaginary parts of the functions

Ad0(k, a) = −Bg0 + D[1 + 2g1(k) − C(k)] − E
[
1
2

+ 3g2 +
C
2

]
+ J

[
4g3 +

C
2

+
C3
k

]
, (C.14)

Ad1(k, a) = Ag0 − Bg1 + Dg2 − E
[
g3 −

i
2k

C
]

+ J
[
g4 −

C2
2k

]
. (C.15)
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