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In multiobjective optimization, the result of an optimization algorithm is a set of efficient
solutions from which the decision maker selects one. It is common that not all the efficient
solutions can be computed in a short time and the search algorithm has to be stopped
prematurely to analyze the solutions found so far. A set of efficient solutions that are
well-spread in the objective space is preferred to provide the decision maker with a great
variety of solutions. However, just a few exact algorithms in the literature exist with the
ability to provide such a well-spread set of solutions at any moment: we call them anytime
algorithms. We propose a new exact anytime algorithm for multiobjective combinatorial
optimization combining three novel ideas to enhance the anytime behavior. We compare
the proposed algorithm with those in the state-of-the-art for anytime multiobjective com-
binatorial optimization using a set of 480 instances from different well-known benchmarks
and four different performance measures: the overall non-dominated vector generation
ratio, the hypervolume, the general spread and the additive epsilon indicator. A compre-
hensive experimental study reveals that our proposal outperforms the previous algorithms
in most of the instances.
� 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

MultiObjective Optimization (MOO) is a field of research with many applications in different areas, such as biology,
computer science, scheduling, and finances. Broadly speaking, in a multiobjective optimization problem some objectives
are in conflict and they have to be optimized simultaneously. Without loss of generality, we consider minimization problems
throughout this paper. In the case of a maximization problem, we use the property max fð Þ ¼ �min �fð Þ. A MultiObjective
Program (MOP) is an optimization problem characterized by multiple and conflicting objective functions that are to be opti-
mized over a feasible set of decisions. If the constraints and the objective functions are linear, the MOP is a MultiObjective
Linear Program (MOLP), and when the variables are integer, we name it MultiObjective Integer Program (MOIP). If some
variables are constrained to be integer-valued and the rest are continuous, the problem is a MultiObjective Mixed Integer
Program (MOMIP). MultiObjective Combinatorial Optimization (MOCO) is a special case of MOIP when the feasible set is
finite. MOIP and MOCO are special cases of MultiObjective Discrete Optimization (MODO).

Finding the whole Pareto front in MOCO problems can require too much computational time when a faster solution is
needed. For example, one may need to solve an assignment problem in hours and finding the whole Pareto front can take
.
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days. In particular, this happens in instances with many non-dominated points, or when the model is hard in itself. From a
practical point of view, the decision maker with whom we interact may be interested in a set of solutions as well-spread as
possible in the objective space at any time during the search. The concept of anytime algorithms was introduced by Dean and
Boddy [4] to characterize algorithms with the following two properties: (i) they can be terminated at any time and still
return an answer, and (ii) the answers returned improve in some well-behaved manner as a function of time. In a more
precise way, algorithms that show a better trade-off between solution quality and runtime are said to have a better anytime
behavior [23].

In this paper we propose a new exact algorithm to solve MOCO problems, which is also valid for MODO problems with
finite feasible sets. The fact that the algorithm is exact and all the solutions found are in the Pareto front allows less freedom
when interpreting the algorithm and reduces the probability that two different implementations behave differently [31]. The
algorithm is anytime in the sense that it is possible to interrupt its execution and take the non-dominated set. Moreover, it is
guaranteed that this set is well-spread in the objective space. To check this spread and the quality of the solutions properly,
four well-knownmetrics in the literature have been used: the overall non-dominated vector generation ratio [13], the hyper-
volume indicator [9,36], the general spread [13,37], and the additive epsilon indicator [21]. In the computational results
section, all these metrics are calculated for each of the 480 instances considered in the work presented here.

The proposed algorithm is based on a general framework by Dächert and Klamroth [2]. Broadly speaking, it consists in
analyzing a search region in the objective space and looking for new non-dominated points at each iteration. These regions
can be considered as boxes in Rp, where p is the number of objectives. The contribution of this paper is to present new
designing criteria and an innovative way of splitting the objective space so that the solutions obtained are well-spread over
the objective space. These are detailed in the following three novel proposals:

� A new strategy to select the appropriate search space region as the next box to explore, in order to guarantee that the new
solutions found are spread over the objective space.
� A new way of partitioning the search space after finding a new non-dominated point. This partition reorders the selection
of the future boxes to explore and also has an influence in the spread of solutions.
� A new quality function to measure the priority for the new regions to explore.

In order to help readers to reproduce the results of this paper, we uploaded the source code to GitHub.1 This is a good
practice that is becoming popular to face the reproducibility crisis in Computer Science [12].

The paper is organized as follows. In Section 2, we provide a literature review including the most relevant papers on MOO
algorithms that could be used as anytime MOCO algorithms with good spread. In Section 3, we provide the background with
some general definitions and the metrics we use in the computational results. In Section 4, a general formulation to solve
MOCO problems is given. This formulation is the backbone of our contribution. In Section 5 our new anytime algorithm is
presented. An exhaustive computational analysis is shown in Section 6. The last section is dedicated to the conclusions
and future work.
2. Literature review

In this section we review different exact algorithms to solve multiobjective problems. We organize this review in four
subsections. The first three subsections cover related works, which are presented (mostly) in chronological order in each
subsection. The subsections focus respectively on the first algorithms, the ones based on recursion, and more recent algo-
rithms. The fourth subsection summarizes the algorithms which can be considered as anytime with good spread and that
are used to compare with our proposed algorithm.
2.1. First exact algorithms

In 2004, Sylva and Crema [32], working on the idea of Klein et al. [16], designed a new method to solve MultiObjective
Integer Linear Programming (MOILP). They partitioned the solution space of dimension p by adding p binary variables and p
constraints to exclude the previously-generated non-dominated points. About three years later, Sylva and Crema [33] formu-
lated a variant of their previous work, finding well-spread subsets of non-dominated points in MOMIP. If the variables are
integer, the whole Pareto front is obtained. To the best of the authors’ knowledge, this was the first work to show dispersed
solutions in the objective space, supported by computational results.

Masin and Bukchin [24] developed an algorithm for MOMIP, called DMA (Diversity Maximization Approach), which finds
solutions by maximizing a proposed diversity measure and guarantees the generation of the complete set of efficient points.

In 2013, Lokman and Köksalan [22] proposed two improved algorithms based on the work of Sylva and Crema [32]. The
algorithms iteratively generate non-dominated points and exclude the regions that are dominated by the previously-
generated non-dominated points.
1 Available at https://github.com/MiguelAngelDominguezRios/boxMO.
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Ceyhan et al. [1], based on the work of Lokman and Köksalan [22], proposed some algorithms to find a small represen-
tative set of non-dominated points for MOMIP. The first of them, called SBA, is able to find the complete Pareto front for dis-
crete problems if enough time is available. The main advantage of the SBA algorithm is that it produces very well-spread
solutions over the objective space. As noted in this paper [1], the work of Masin and Bukchin [24] is similar to Sylva and
Crema’s method in [33], because they generate similar representative subsets of non-dominated points for MOMIPs. In fact,
SBA outperformed Masin and Bukchin’s algorithm.
2.2. Algorithms based on recursion

In 2003, Tenfelde-Podehl [34] proposed a recursive algorithm for MOCO problems with p criteria. Dhaenens et al. [6] pro-
posed a new method to solve MOP, called K-PPM (Parallel Partitioning Method), which is based on the work of Lemesre et al.
[19], called 2-PPM and valid only for the bi-objective case. This new approach is valid for any dimension p P 2, and could
also be considered as an extension of the idea of Tenfelde-Podehl [34].

Özlen and Azizoğlu [25] developed a general approach to generate the Pareto front for MOIP problems, based in the e-
constraint method. They also used recursion to solve multiobjective problems with fewer objectives obtaining efficiency
ranges for each objective. One drawback of the method in [25] is that it generates the same non-dominated point many
times. The algorithm was enhanced in the work of Özlen et al. [26].
2.3. Modern algorithms

Laumanns et al. [18,17] proposed the first algorithm to calculate the Pareto front in MOP through the resolution of a num-
ber of single-objective problems that depend only on the number of solutions in the front. The work of Laumanns et al. [18]

was based on the e-constraint method. They obtained a bound O kp�1
� �

for the number of calls to the single-objective solver,

where k is the number of non-dominated points and p the number of objectives. In [17], Laumanns et al. presented another
algorithm for solving MOP using only lower bounds (for maximization problems) which leads to a fewer number of con-
straints. The algorithm by Kirlik and Sayın [14] was an improvement of the work of Laumanns et al. [18]. They changed
the order in which the subproblems were solved. The search is managed over (p� 1)-dimensional rectangles.

In the last decade, modern algorithms solving MOO problems have been developed. Apart from the aforementioned work
by Ceyhan et al. [1], there are other important papers we should mention. Przybylski et al. [28] proposed an algorithm to
compute the supported non-dominated extreme points for MOIP. This work was generalized by Przybylski et al. [29] to
obtain the complete Pareto front for MOIP and is considered as a generalization of the two-phase method of Ulungu and
Teghem [35]. Özpeynirci and Köksalan [27], among other authors, developed an algorithm to generate supported non-
dominated points for MOMIP. Dächert and Klamroth [2] conceived an algorithm to solve MOO for p ¼ 3. Their method is
based on the work of Przybylski et al. [28,29]. They named full m-split the general framework for solving any MOO of dimen-
sionm. This algorithm, suitably adapted, is used in our work. Later, Klamroth et al. [15] improved full m-split, developing two
new methods, called RE and RA, where they were concerned with eliminating or avoiding redundancies in the search zone
explorations. Recently, Dächert et al. [3] have provided new theoretical insights into structural properties of the search
region, assuming that a finite set of mutually non-dominated points has already been computed. The work provides better
results than those in [15] for high dimensions (p P 6). In 2018, Holzmann and Smith [11] designed an algorithm to solve
MODO problems using a weighted augmented Tchebycheff scalarization. This work is also based on the work of Dächert
and Klamroth [2]. They improved the results of Kirlik and Sayın [14] and Özlen et al. [26].
2.4. Related algorithms that can be considered as anytime with good spread

As stated in the preceding review, only a few methods can be considered to have good spread over the objective space.
This is in concordance with the work of Ceyhan et al. [1], which summarized in two the number of algorithms which can be
used to calculate the complete front in MOCO problems [24,33]. If fact, with their SBA algorithm, they outperformed the
results in [33]. The work of Holzmann and Smith [11] can also be considered as anytime, so we include it in our study.

We analyze which other algorithms in the literature can be slightly modified to obtain a well-spread set of non-
dominated points at any time during the search. The algorithms which use the e-constraint method do not seem to be good
at spreading solutions over the objective space, because in the objective function, just one selected objective is optimized
(Ch. 4 of [7]). Moreover, methods which use branch and bound as the general framework to obtain the Pareto front are
widely surpassed by modern algorithms, which avoid repeating solutions [2]. In addition, those which calculate the nadir
point in a first phase can be slow because computing the nadir point is an NP-hard problem in itself [10], so we do not con-
sider these algorithms.

In conclusion, we have chosen two algorithms: SBA, from the work of Ceyhan et al. [1], and the method of Holzmann and
Smith [11]. They are, to the best of the authors’ knowledge, the algorithms that can potentially provide a well-spread set of
non-dominated points at any time of execution.
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3. Background

In this section, we first present some basic definitions to understand the paper, and then we define the four metrics used
for the performance assessment in the computational results.

3.1. Definitions on multiobjective optimization

A MOCO problem can be defined as
min f xð Þ ¼ f 1 xð Þ; . . . ; f p xð Þ� �
; ð1Þ

s:t: x 2 X � Rn; ð2Þ

where x is the decision vector, p 2 N is the number of objectives with p P 2; f i : X ! R with i ¼ 1; . . . ; p are the objective
functions, and X –£ denotes the feasible solution set, which is discrete and bounded.

The notion of optimality with several objective functions is considered in the sense of Pareto optimization. Given two vec-
tors x; y 2 Rp, we say that x is weakly dominated by y if yi 6 xi for all i ¼ 1; . . . ; p (denoted y5x). If y weakly dominates x and
yk < xk for at least one k 2 1; . . . ; pf g, then we say that y dominates x (denoted y 6 x) or x is dominated by y. If strict inequality
holds for all k 2 1; . . . ; pf g, then we say that y strictly dominates x (denoted y < x) or x is strictly dominated by y.

A feasible solution x 2 X is an efficient solution if there is no y 2 X such that f yð Þ dominates f xð Þ. A solution x 2 X is called
weakly efficient if there is no y 2 X such that f yð Þ strictly dominates f xð Þ. The image of an efficient solution x is a non-
dominated point, z ¼ f xð Þ. The image of a weakly efficient solution x0 is a weakly non-dominated point, z0 ¼ f ðx0Þ . The set of
all efficient solutions in a MOCO problem is called efficient set, XE, and its image is the Pareto front, PF¼ f XEð Þ#Rp. An effi-
cient solution is supported if its image lies on the frontier of the convex hull of PF #Rp. Equivalently, x 2 X is supported if it
minimizes a weighted sum of the p objectives involving positive weights. Due to the fact that, in MOCO, many of the ele-
ments in XE could lead to the same image, we are only interested in the set PF and one anti-image for each element of this
set.

Let z1; z2 2 R
p. We say that z1<lex z2 if there exists an index q, where z1q < z2q and q ¼ min kjz1k – z2k

� �
. The symbol <lex rep-

resents the strict lexicographic order.
Given a permutation r and a vector function f : X ! Rp, we denote by f r ¼ ðf r 1ð Þ; f r 2ð Þ; . . . ; f r pð ÞÞ the vector function where

the objectives are reordered using r. We say that x 2 X is a lexicographic optimal solution for permutation r if there is no y 2 X
with f r yð Þ<lexf r xð Þ. There exists a maximum of p! different lexicographic optimal solutions, one for each permutation.

Given a Pareto front, PF, the ideal point is zI ¼ ðzI1; zI2; . . . ; zIpÞ, where zIi ¼minx2Xf i xð Þ ¼minz2PFzi, 8i ¼ 1; . . . ; p, and the nadir

point is zN ¼ ðzN1 ; zN2 ; . . . ; zNp Þ, where zNi ¼ maxx2XE f i xð Þ ¼maxz2PFzi; 8i ¼ 1; . . . ; p. It is clear that zI and zN are a lower and an
upper bound for the Pareto front. While the ideal point is found by solving p single objective optimization problems, the
computation of the nadir point without knowing the whole Pareto front involves optimization over the efficient set, a very
difficult problem in general [8].

Although it is common to use the term ‘efficient solution’ in the decision space and ‘non-dominated point’ in the objective
space, sometimes we use the term ‘solution’ to refer to both spaces, when there is no possible confusion. We assume that
jPFj > 1, otherwise the problem can be solved in one iteration with a single-objective optimization technique.

Given two vectors l;u 2 Rp with l < u, we define the box l;u½ � as:

l;u½ � ¼ x 2 Rpjli 6 x < ui; 8i ¼ 1; . . . ;pf g: ð3Þ
When the lower bound of a box is the ideal point in a Pareto front, we usually represent the box only with its upper bound,
that is, zI; u

� 	 ¼ u½ �.

3.2. Performance assessment

The performance assessment of algorithms for multiobjective optimization is not a trivial issue. A good analysis
comparing different multiobjective evolutionary algorithms is given in [38]. Recently, Li and Yao [20] published a survey
of the quality evaluation for 100 different metrics. In [13], Jiang et al. categorize the MOO metrics into four groups: capacity
metrics, convergence metrics, diversity metrics, and convergence-diversity metrics. Despite the aforementioned difficulty of
designing anytime algorithms with good spread (effective anytime algorithms) because performance is often evaluated sub-
jectively (see [23]), we have tried to take a representative group of metrics in which we can assume that the better the value
of these metrics, the better the performance of the algorithm. Thus, we take one metric from each of the four categories
defined by Jiang et al.

Capacity metrics [13] quantify the number or ratio of non-dominated solutions. We use here the Overall Non-dominated
Vector Generation Ratio, which is defined as
ONVGR Nð Þ ¼ jNjjPFj ; ð4Þ
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where N# PF is the set of non-dominated solutions found by a run of a search algorithm and j � j is the cardinality of a set.
Thus, ONVGR is a rational number in the interval 0;1½ � that represents the fraction of points of the Pareto front that were
found by the search algorithm. For computing ONVGR, we need to know the total number of points in the Pareto front.

Convergence metrics measure the degree of proximity of the set of solutions to the complete front. The additive epsilon
indicator gives the minimum additive factor by which the approximation set has to be translated in the objective space in
order to weakly dominate the reference set [38,21]. We have scaled each objective to obtain a value in the range [0,1]. This
additive epsilon indicator is defined as
2 The
eþ Nð Þ ¼max
x2PF

min
y2N

max
i¼1;...;p

yi � xi
ri


 �
; ð5Þ
where ri is the range of objective i in N. This metric is also used in the computational experiments conducted by Ceyhan et al.
[1] with the name of coverage gap.

Diversity metrics indicate the distribution and spread of solutions. From this group, we have selected the general spread
metric, also cited in [13]. The original spread metric (Deb et al. [5]) calculates the distance between two consecutive solu-
tions, which only works for 2-objective problems. An extension to any dimension, defined in [37], computes the distance
from a point to its nearest neighbor. Let N be a set of non-dominated points and eif gmi¼1 the extreme solutions,2 which are
the images of the lexicographic optimal solutions of the complete Pareto front, �d ¼ 1

jNj
P

x2Nd x;Nð Þ, where

d x;Nð Þ ¼miny2N;y–xd
� x; yð Þ and d� denotes the Euclidean distance between two p-dimensional vectors. We define the general

spread as
D� Nð Þ ¼
Pm

i¼1d ei;Nð Þ þPx2N jd x;Nð Þ � �djPm
i¼1d ei;Nð Þ þ jNj�d : ð6Þ
Note that the metric D� is a non-negative number. The lower its value, the more well-spread is N. Every lexicographic
optimal solution not obtained in the execution produces a positive value in

Pm
i¼1d ei;Nð Þ and a higher value for D�.

From the group of convergence-diversity metrics we have selected the hypervolume indicator. Given a set of d non-
dominated points, N¼ z1; z2; . . . ; zd

� �
, the hypervolume HV is the measure of the region which is simultaneously dominated

by N and bounded by a reference point r 2 Rp:
HV N; rð Þ ¼ volume
[d
j¼1

zj; r
� 	 !

; ð7Þ
where volume is the Lebesgue measure in Rp. This is the quality measure with the highest discriminatory power among the
known unary quality measures [23,30,38]. There are many software packages that calculate the exact hypervolume, given a

non-dominated set and a reference point [9,36]. The reference point can be taken as ri ¼maxj¼1;...;dz
j
i 8 i ¼ 1; . . . ; p. This is

an acceptable choice when we have no information about the complete Pareto front. In the computational experiments pre-
sented in this paper, we have calculated the complete fronts for all the instances in order to have a fitted reference point. This
means that we know the nadir point for every instance. As noted in the work of Li and Yao [20], there is still no consensus on
how to choose a proper reference point for a given problem. To assign some importance to the extreme points, we add one
unit to the nadir point, so the reference point is ri ¼ zNi þ 1 8i ¼ 1; . . . ; p. Sometimes, it is useful to consider the percentage
of the total hypervolume reached:
HVR N; rð Þ ¼ HV N; rð Þ
HV PF; rð Þ : ð8Þ
Given two subsets of non-dominated points, A and B, we write A � B if every z2 2 B is weakly dominated by at least one
z1 2 A. A metric is Pareto compliant if, for every two subsets A and B with A � B and B � A, the metric value for A is not worse
than the metric value for B. It is desirable for a metric to be Pareto compliant [39]. In other words, it must not contradict the
order induced by the Pareto dominance relation. Of the four metrics considered, ONVGR, HV and eþ are Pareto compliant.
This is equivalent to saying that, if we add a new element to the subset of solutions, then ONVGR and HV do not decrease
and eþ does not increase. Nevertheless, D� is not Pareto compliant, and we have to be more careful with its analysis.

4. General formulation for solving MOCO problems

In this section we describe the framework of Dächert and Klamroth [2] to solve MOCO problems. The framework can be
found in Algorithm1 Our proposed algorithm, described in Section 5, is based on this framework, but we add three modifi-
cations that let us get a better spread of solutions over the objective space. The method used by Holzmann and Smith [11] is
also based on this framework. The idea of the method is to maintain a set of search zones, U, which are p-dimensional boxes.
Every search zone is defined by its upper bound, because we consider that the ideal point is the lower bound.
original paper does not clarify what they mean by extreme points.
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Algorithm1: General method for MOCO problems

Input: P
Output: N
1: N ¼£
2: U Uf g
3: while (U –£) do
4: Select B 2 U
5: if (P(B) is feasible) then
6: x�  Optimal solution of P Bð Þ
7: N = N [ f x�ð Þf g
8: Update U
9: else
10: U U� Bf g
11: end if
12: end while
At the beginning, the set N, containing the non-dominated points, is empty (Line 1), and the set of search zones contains
the initial element U (Line 2), defined by an upper bound of the nadir point. The mathematical program used by the algo-
rithm, P, is an input parameter. The algorithm then enters a loop while there is at least one zone to analyze. In each iteration
of the loop it selects one zone (Line 4), solves the optimization problem, and, if a new non-dominated point is found, it is
saved in N. Every time it finds a new non-dominated point, it updates the set U accordingly (Line 8), so as to prevent repeated
solutions in the future. Another goal of the updating procedure is to reduce the number of search regions at each iteration.
More specifically, at least box B is extracted from U. The algorithm ends because, in MOCO problems, the number of non-
dominated points is finite.

In what follows, we study the relevant elements of Algorithm1 and analyze different options which may produce a well-
spread set of solutions if we treat it as an anytime algorithm. We focus on three aspects of the general method that we think
are important to consider.

4.1. Mathematical program

The selected mathematical program is one of the key aspects of the algorithm. Not all methods that solve multiobjective
problems have the same performance. In fact, those which are based on the e-constraint method (Ch. 4 of [7]) should not be
good as effective anytime algorithms, unless we use a strategy for the selection of the next search zone to explore that guar-
antees a good dispersion of solutions in the objective space. The mathematical program used in the SBA method by Ceyhan
et al. [1] is3:
We
min
x2X

e
Xp
i¼1

xif i xð Þ � a
 !

; ð9Þ
s:t: f i xð Þ 6 ui � a; i ¼ 1; . . . ;p; ð10Þ

a P 0; ð11Þ

where a is a variable which represents the coverage gap, e is a sufficiently small positive constant and xi > 0 8i. If the pro-
gram 9 to 11 has a solution, then it is efficient.

Another mathematical program, used in the work of Holzmann and Smith [11], is based on a weighted augmented
Tchebycheff norm:
min
x2X

max
i¼1;...;p

xi f i xð Þ � zIi
�� ��� �þ � �Xp

i¼1
xi f i xð Þ � zIi
�� �� !

; ð12Þ
where zI is the ideal point of the problem. The parameters x and � are chosen to make the program feasible. Depending on
the objective value, we conclude whether the problem has a new solution inside the box or not. The reader is referred to the
original paper [11] for more information.

We observed relevant performance differences between the two programs in a preliminary study. The weighted aug-
mented Tchebycheff norm behaves better regarding the spread of the solutions in the objective space.
changed the program to adapt it to minimization problems.
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4.2. Selection of the next search zone to explore

Line 4 of Algorithm1 proposes the extraction of the next search zone to analyze. The selection may be done randomly, but
intuitively, if we split the objective space into different regions, and at each step we explore those which have a higher vol-
ume, we expect to obtain a final better spread of the solutions. Following this idea, we can define a numerical value for each
search zone, called priority. One example of the priority function is the volume of the p-dimensional hyperrectangle with
opposite vertices being the vector u (upper bound for the search zone) and zI (ideal point). For instance, if u ¼ 10;20;30ð Þ
and zI ¼ 5;12;20ð Þ, then the volume of the box is 10� 5ð Þ � 20� 12ð Þ � 30� 20ð Þ ¼ 400, and this could be its priority. A more
sophisticated way of selecting the next box to explore is mentioned in Section 5.1.
4.3. Updating the set of search zones

This may be the most important aspect to take into account in Algorithm1 (Line 8) in terms of termination of the general
algorithm and computational effort. One way to ensure that a non-dominated point is never computed again during the
search consists in splitting the objective search zone and discarding at least that point. A good way to do this is found in
the work of Dächert and Klamroth [2]. After a solution z is found, they divide the search zone into p new zones. The union
of the new search zones discards the points dominated by z and the new search regions to explore contain at least one point
less than the original search region. Given a box B with upper bound u ¼ u1; . . . ;up

� �
, let us suppose that we solve the math-

ematical problem and obtain a new non-dominated point z ¼ z1; . . . ; zp
� �

. Then, we split the box B into Bif gpi¼1 with upper

bounds ui
� �p

i¼1, being ui ¼ u1; . . . ;ui�1; zi; uiþ1; . . . ;up
� �8i ¼ 1; . . . ; p. Each box Bi with upper bound ui is said to have direction

i. If the lower bound of all the boxes B and Bi is the ideal point, zI , we call the split full p-split. A graphical example is shown in
Figs. 1a and 1b for p ¼ 3. Note that when a new non-dominated point is obtained, we must apply full p-split to all search
zones that contain that new point, in order to assure the non-duplicity of the solutions. Full p-split is used in the work of
Holzmann and Smith [11]. In Section 5.2 we describe a new way of splitting the objective space, called p-partition.

The splitting process often generates redundant zones. If we have two search zones u1; u2 with u1 6 u2, all potential non-
dominated points generated by u1 could also be generated by u2, which means that u1 is redundant. Therefore, a filtering
Fig. 1. Splitting a box using full p-split and p-partition. Upper bound for the new boxes is the same in both cases, but lower bounds change.
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process should be implemented after the split. Klamroth et al. [15] proposed two different algorithms for this purpose. The
first is called RE (redundancy elimination) and consists in eliminating those redundant search zones at each iteration. The sec-
ond algorithm is called RA (redundancy avoidance) and is based on structural properties of local upper bounds which yield
necessary and sufficient conditions for a candidate local upper bound to be non-redundant. The filtering step is avoided
in this case. In the computational experiments of the work by Klamroth et al. [15], they obtained better results in runtimes
using RE when p 2 3;4;5f g, and using RA when p > 5.

A more recent paper by Dächert et al. [3] describes a specific neighborhood structure among local upper bounds. With this
structure, updates to the search region when a new non-dominated point is found can be more efficient compared to RE and
RA approaches, as the number of points increases, but RA and even RE perform better for a small number of solutions. Since
our proposal is designed as an anytime algorithm where the decision maker can stop the execution whenever desired, it is
reasonable to think that the total number of solutions may not be high, unless a complete execution is derived. Thus, we have
decided to use the RE approach in this paper.

5. Proposed anytime algorithm: TPA

In this section, we propose a new exact anytime algorithm based on the general framework described in Section 4 but
with three novel contributions. This algorithm can solve anyMOCO problem and it can also be used for MODO problems with
finite feasible sets. We call it TPA because it uses a Tchebycheff mathematical program with Partition of the objective space
using Alternating of directions. The pseudocode is shown in Algorithm2.

Algorithm2: TPA

Input: f and X // The MOCO problem
Output: XZ // A set of efficient solutions and their image
1: L ¼ L1; . . . ;Lp

� �
and Li ¼£; 8i ¼ 1; . . . ; p

2: XZ ¼£
3: k ¼ 0
4: Compute the ideal point and an estimation of the nadir point: zI and zN

5: Set � ¼ 1= 2p r � 1ð Þð Þ where r ¼maxpi¼1 zN � zI
� �

6: L1:insert zI; zN
� 	� �

7: P u;xð Þ 	minx2X maxi¼1;...;p xi f i xð Þ � zIi
�� ��� �þ � �Pp

i¼1xi f i xð Þ � zIi
�� ��� �

8: while 9 i : jLij > 0 and intime do
9: B; kð Þ  Select_next_box(L, k)
10: Set x ¼ x1; . . . ;xp

� �
where xi ¼ 1=max 1;B:ui � zIi

� �
11: x�; objð Þ  Solve P B:u;xð Þ
12: if obj < 1 and zI < B:u then
13: XZ  XZ [ x�; f x�ð Þð Þf g
14: Update L; f x�ð Þð Þ
15: else
16: Lk:remove Bð Þ
17: end if
18: end while

We now provide a high-level description of the algorithm and go in depth into the novel contributions in separate
subsections. Every search zone is a box with the following fields: lower bound (l), upper bound (u), and priority. The vector
L contains p priority queues (heaps) of boxes. The boxes in queue Li have direction i and are sorted by non-increasing
priority. The initial box has as lower and upper bounds the ideal point and an upper bound of the nadir point. Thus, it con-
tains the whole Pareto front. We insert this box into L1 (Line 6), although any other queue Li could be chosen. The � value is
constant during the execution and depends on the initial bounds (Line 5).

TPA then executes a loop while there is a box in any list of L and the time limit is not reached (Boolean intime). In the loop,
it first selects the next box to analyze (Line 9) using Algorithm3. Then, it solves the mathematical program in Eq. (12) (Line
7). As pointed in Section 4, this mathematical program provides better spread of the non-dominated points. The parameters
are taken from the work of Holzmann and Smith [11]:xi ¼ 1=max 1;ui � zIi

� �
; 8i, and � ¼ 1= 2p r � 1ð Þð Þ, where u is the upper

bound of the next box to analyze, r ¼maxi¼1;...;p zNi � zIi
� �

; zI is the ideal point and zN is an upper bound of the nadir point, com-
puted as follows:
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zNi ¼ max
x2X

f i xð Þð Þ 8i ¼ 1; . . . ; p: ð13Þ
When u 2 zN
� 	

, the model is always feasible. Moreover, if zI < u the solution is inside the box u½ � if and only if the objective
value is less than one unit (Theorem 5 of [11]). Thus, we can slightly modify Line 5 of Algorithm1, changing the expression ‘is
feasible’ by ‘obj < 1 and zI < u’ (Line 12 of Algorithm2). If it finds a new solution, x�, it adds the pair x�; f x�ð Þð Þ to XZ (Line 13)
and updates the boxes in the priority queues L (Line 14). Otherwise, it discards the box from the corresponding queue (Line
16).

The correctness and termination of TPA is proven in Theorem 1. This is an exact anytime algorithm and, thus, the com-
plete Pareto front is found if the algorithm is given enough time. This guarantees the optimality and convergence of the algo-
rithm. Observe that all the solutions found belong to the Pareto front. This contrasts with other heuristic and metaheuristic
algorithms that can only compute approximate solutions without any guarantee of being efficient. Such algorithms require
mechanisms to explore the search space that can be interpreted differently by different developers. Rostami et al. [31] have
recently studied this issue and found that the resulting approximate solutions can influence the final results in such a way
that the differences in quality metrics can even be statistically significant. The reliability and stability of TPA are supported by
the ILP solver used. The memory usage and computation time are proportional to the number of boxes to maintain, and this
can be exponential in the number of solutions found. Furthermore, the number of solutions in the Pareto front can be expo-
nential in the number of decision variables. Thus, the memory required by the algorithm and the run time can be exponential
in the number of variables if the whole Pareto front is computed. Regarding memory usage, in our experiments, using 2 GB of
RAM was enough even when the complete Pareto front was computed.

In the next subsections we will detail the three novel contributions of the algorithm: a method to diversify the search
exploring boxes with different directions, a new way to split the boxes forming a partition of the original one, and a new
priority function for the boxes to explore.

5.1. Alternation of directions in the search

In this section we propose a new strategy for the selection of the next box to explore, trying to diversify the regions of the
objective space that are explored. This is the first novel contribution of this paper. The priority queue Li contains boxes with
direction i. Boxes in different directions are displaced in the objective space along the different dimensions. We propose to
select a box from a different priory queue Li in each iteration of TPA. Among the ones with the same direction TPA chooses
the box with higher priority. The pseudo-code of the Select_next_box procedure (Line 9 in Algorithm2) is in Algorithm3.

Algorithm3: Select_next_box

Input: Lif g, k // List of boxes and integer counter
Output: B; kð Þ
1: B ¼£
2: if 9 i : jLij > 0 then
3: k ¼ kmod pð Þ þ 1
4: while jLkj ¼ 0 do
5: k ¼ k mod pð Þ þ 1
6: end while
7: B argmaxB2Lk

B:priorityð Þ
8: end if
5.2. New updating procedure of the search zone

This section presents a new way of splitting the box, called p-partition. This is the second contribution of the paper. The
main difference between p-partition and full p-split is that the new boxes created by p-partition form a partition of the orig-
inal box (they are pairwise disjoint).

Definition 1. Let B ¼ l;u½ � be a box and z 2 Rp a point. For every i ¼ 1; . . . ; p, we define
Bi zð Þ ¼ x 2 Bjxi < zi and xj P zj 8j > i

� �
. We also define B0 zð Þ= x 2 Bf jxj P zj 8jg.

It is easy to check that Bi zð Þ are boxes, which can be written as follows:
Bi zð Þ ¼ l1; . . . ; li; ẑiþ1; . . . ; ẑp
� �

; u1; . . . ;ui�1; ẑi;uiþ1; . . . ;up
� �� 	

; ð14Þ
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where ẑi ¼max zi; lif g 8i ¼ 1; . . . ; p. If Bi zð Þ –£, then it has direction i.

Proposition 1. Given a box B, then Bi zð Þf gpi¼0 is a partition of B.
Proof. We need to prove that Bi zð Þ \ Bj zð Þ ¼£ for all i– j and
Sp

i¼0Bi zð Þ ¼ B. Suppose x 2 Bi zð Þ \ Bj zð Þ for indexes i and j;
where i < j. As x 2 Bi zð Þ, then xj P zj. As x 2 Bj zð Þ, then xj < zj. This is a contradiction, so the sets are always disjoint and
the first part is proved.

Let x 2 Sp
i¼0Bi zð Þ. By definition, x 2 B, so

Sp
i¼0Bi zð Þ � B. Now let x 2 B. If xi P zi 8i, then x 2 B0 zð Þ. Otherwise, let j be the

higher index which verifies xj < zj. Then, x 2 Bj zð Þ �
Sp

i¼0Bi zð Þ, so
Sp

i¼0Bi zð Þ ¼ B and the second part is proved. h
Definition 2. Let B ¼ l;u½ � be a box, and z < B:u. We define the p-partition of the box B according to z as Bi zð Þf gpi¼1.
When obtaining a non-dominated point z, the exploration of some other boxes in the future might produce the same solu-

tion. In order to prevent this, we split those boxes and remove the space weakly dominated by z, which is B0 zð Þ. That is why
p-partition does not include B0 zð Þ.

Fig. 1 shows a graphical example of p-partition compared to full p-split. Note that the upper bounds in the resulting boxes
are the same, but lower bounds are different.

It is very important to eliminate redundant boxes because, otherwise, the computational execution time grows exponen-
tially. For p-partition, we apply a variant of the redundancy elimination (RE) used in full p-split. In the REmethod, when a box
A is contained in a box B, we eliminate A from the priority queue of boxes to explore. For a deep study of how this method
works, see [15]. Nevertheless, it is not possible to apply this idea to p-partition because the lower bounds of the new boxes
differ. We join boxes to save this obstacle.

Definition 3. Let A ¼ la;ua
� 	

and B ¼ lb;ub
h i

be two boxes with ua 6 ub. We define the join box of the two boxes as a new box

C ¼ lc;uc
� 	

, where lci ¼min lai ; l
b
i

n o
and uc

i ¼ ub
i 8i ¼ 1; . . . ; p.

Once we introduce join boxes, we cannot guarantee that all the boxes are pairwise disjoint, but we can confirm that the
new box does not exclude non-dominated points. We prove this in the next proposition. The priority of the new box C could
be greater than the value of the previous boxes A and B. This means that box C will have higher preference to be analyzed in
subsequent iterations.

Proposition 2. With the conditions of Definition 3, it holds that A [ B � C, which means that analyzing box C substitutes the
analysis of the other two boxes.
Proof. Let x 2 A [ B. If x 2 A, then lci 6 lai 6 x < ua
i 6 ub

i ¼ uc
i 8i, so x 2 C. If x 2 B, then lci 6 lbi 6 x < ub

i ¼ uc
i 8i, so x 2 C. h

We are now ready to present in Algorithm4 the updating procedure of Line 14 in Algorithm2. It is divided into two
parts. In the first part (Lines 1–9), the boxes in L are split using p-partition. Some of the new boxes may be empty.
The non-empty boxes are inserted into the corresponding Li according to their direction (Line 6). The priority function
used for the boxes is detailed in the next subsection. The second part (Lines 10–17) filters the redundant boxes using
RE but taking into account that if a domination relation between two upper bounds is detected, the boxes are joined
and the new box replaces the older ones (Lines 12–15). We finish this subsection proving the correctness and termination
of TPA.

Proposition 3. Algorithm TPA never finds the same non-dominated point twice.
Proof. Let B be the box being explored in TPA and z the non-dominated point found solving P B:u;xð Þ in Line 11 of
Algorithm2. The definition of the mathematical program P ensures that z < B:u, and the use of p-partition with each box
B0 such that z < B0:u discards B00 zð Þ, which is the only box that can contain z. The upper bound of a join box is always the upper
bound of a previous box. Thus, after the updating procedure, the remaining boxes do not contain z and z cannot be found
again. h
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Algorithm4: Update

Input: L; zð Þ
Output: L; zð Þ
1: for all B 2 Sp

k¼1Lk with z < B:u do
2: for i ¼ 1 to p do
3: Bi zð Þ ¼ x 2 Bjxi < zi and xj P zj 8j > i

� �
4: if Bi zð Þ –£ð Þ then
5: Bi zð Þ:priority reduced scaled B; i; zð Þ
6: Li:insert Bi zð Þð Þ
7: end if
8: end for
9: end for
10: for i ¼ 1 to p do
11: for all A;B 2 Li with A:u 6 B:u do
12: C  join A;Bð Þ
13: Li:remove Að Þ
14: Li:remove Bð Þ
15: Li:insert Cð Þ
16: end for
17: end for

Theorem 1. TPA terminates after finding all the non-dominated points of the MOCO problem if the time limit is not set.
Proof. The number of non-dominated points is finite in MOCO problems. By Proposition 3, no points are found twice. Thus,
TPA terminates. Proposition 2 ensures that all PF is found if enough time is given. h
5.3. A new priority function

As the third contribution, we define a new priority function for the boxes. We want to give more priority to boxes having a
larger region where non-dominated points can potentially exist. Given a non-empty box B ¼ l;u½ �, we define the scaled func-
tion as
scaled Bð Þ ¼
Yp
i¼1

ui � li
zNi � zIi


 �
: ð15Þ
Note that scaled Bð Þ > 0. In the case of an empty box, we define scaled Bð Þ ¼ 0. We assume, without loss of generality, that
zNi > zIi 8i, otherwise the objective i always takes the same value and can be discarded.

In some boxes, there is a region that cannot contain any non-dominated point. In this case, the scaled function overesti-
mates the priority of the box. We define a new priority function to correct this overestimation. First, we need some results.

Proposition 4. Let B ¼ l;u½ � be a box and z 2 B, then the box l; z½ �#Bp zð Þ, where p is the dimension of the objective space.
Proof. From the definition of box, z < u. Let x 2 l; z½ �. Then, li 6 xi < zi < ui 8i ¼ 1; . . . ; p. More specifically, xp < zp. This means
that x 2 Bp zð Þ, so l; z½ �#Bp zð Þ. h

If z ¼ l, we have l; z½ � ¼£, and Bi zð Þ ¼£ for all i ¼ 1; . . . ; p. The box l; z½ �, if it is not empty, contains points dominating z.
Thus, if z is non-dominated, the box l; z½ � does not contain any non-dominated point, otherwise z is dominated and we have a
contradiction.

Definition 4. Let B ¼ l;u½ � be a box, z < B:u a non-dominated point and Bi zð Þ for i ¼ 1; . . . ; p the box with direction i after p-
partition. Then, for every i ¼ 1; . . . ; p, we define the reduced_scaled function as
reduced scaled B; i; zð Þ ¼ scaled Bð Þ if i– p

scaled Bð Þ � scaled l; z½ �ð Þ if i ¼ p:


ð16Þ
Note that some of the boxes after p-partition may be empty.
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Proposition 5. The reduced_scaled value is always non-negative.
Proof. For i ¼ 1; . . . ; p� 1, it is obvious that reduced scaled is non-negative (see Eq. (15)). Let us now assume that i ¼ p. If
l; z½ � ¼£, then scaled l; z½ �ð Þ ¼ 0 and reduced scaled Bp zð Þ; p; z� � ¼ scaled Bp zð Þ� �

P 0. If l; z½ �–£, then z 2 B and Proposition 4
ensures that l; z½ �#Bp zð Þ, so scaled l; z½ �ð Þ 6 scaled Bp zð Þ� �

, and reduced scaled is non-negative. h

We use the reduced scaled function as the priority value of a box.

6. Computational results

In this section, we present a deep experimental study divided in four subsections. The first subsection describes the
benchmark of instances we have used. The instances are grouped into categories. Each category has a fixed number of vari-
ables. The categories are also grouped into classes, where each class corresponds to a different MOCO problem. The authors
have considered the choice of this benchmark appropriate because different MOCO problems could have different perfor-
mances. The second subsection describes the parameters for the three algorithms used in the comparison. The third subsec-
tion shows the results of the computational experiments. For each instance and algorithm, the results are displayed at some
time points. We provide a deep analysis of the results in the last subsection, including a statistical validation.

6.1. Benchmark

The benchmark we use is divided into three classes of well-knownmultiobjective problems. The first is the multiobjective
knapsack problem (KP), the second is the multiobjective assignment problem (AP), and the third class corresponds to mul-
tiobjective integer linear programming problems (ILP). All the details of the formulation of the three classes can be found in
[14], at URL http://home.ku.edu.tr/moolibrary/, and in the supplementary material. For each class, different problem cate-
gories are generated based on problem size. There are 10 instances in each category. In total, there are 480 instances. As sta-
ted in Section 3, the metrics we use to compare the algorithms are ONVGR, HV, D�, and eþ. To calculate these quality
indicators, we need to calculate the complete Pareto front. The details of these experiments are shown in the supplementary
material of the paper.

6.2. Algorithms and parameters

We downloaded and used the source code4 provided by Ceyhan et al. [1]. This algorithm will be called ceyhan henceforth.
The algorithms of Holzmann and Smith [11] (called holzmann) and TPA5 were programmed using C++. Since holzmann and TPA,
are taken from the same framework, we use in them the same filtering process of the solutions, the REmethod, in order to make
a fair comparison and observe the differences of performance with our new contributions.

The computer used for the experiments is a multicore machine with four Intel Xeon CPUs (E5-2670 v3) at 3.1 GHz, a total
of 48 cores, 64 GB of memory and Ubuntu 16.04 LTS. For each run we used only 1 core and 2 GB of RAM.

The three algorithms use CPLEX 12.6.2 as the ILP solver. We set the CPLEX parameters, CPXPARAMEPGAP=CPXPARAME
PAGAP=CPXPARAMEPINT=0 and CPXPARAMPARALLELMODE=CPXPARAMTHREADS=1. Parameter CPXPARAMEPINT indicates
the integrality tolerance for the solution variables. Its default value is 10�5. Parameter CPXPARAMEPGAP sets a relative tol-
erance on the gap between the best integer objective and the objective of the best node remaining in the tree used in the
branch and cut. The default value is 10�4. CPXPARAMEPAGAP sets an absolute tolerance on the gap between the best integer
objective and the objective of the best node remaining. The default value is 10�6. CPXPARAMPARALLELMODE is set to deter-
ministic mode, which means that multiple runs with the same model and the same parameter settings on the same platform
will reproduce the same solution path and results. Finally, CPXPARAMTHREADS sets the default number of parallel threads
that will be invoked by any CPLEX parallel optimizer. In this case, it is set to 1.

Although the three algorithms are deterministic and the time limit is fixed, the number of solutions found can differ in
different executions because CPLEX manages some internal parameters, such as the remaining available memory of the
machine, which can influence the tree exploration to obtain the next solution. To soften these differences, we did 30 execu-
tions for each instance and algorithm, and then reported the average values.

6.3. Summary of the results

We calculated the four metrics in each algorithm (ceyhan, holzmann, TPA), for a fixed time in the set 10;60;300;900f g,
measured in seconds. We have chosen this set of cut-times to know the performance of each algorithm at the very beginning
of the run (just 10 s), and also after a longer (but still short) time (900 s), plus some other intermediate times.
4 Commit 6b3b7e7bb9 on 17 Aug 19 at https://github.com/gokhanceyhan/MOIP_Solvers.
5 Source code available at https://github.com/MiguelAngelDominguezRios/boxMO.
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Table 1
Number of times that each algorithm obtains the best average value without exclusivity (best) and with exclusivity (excl), for ONVGR and HV, for different
execution times, and for each class in the benchmark. Total sum is displayed in the last four rows.

ONVGR HV

ceyhan holzmann TPA ceyhan holzmann TPA

best excl best excl best excl best excl best excl best excl

AP t = 10 s 11 0 34 21 79 66 11 0 45 32 68 55
t = 60 s 20 0 31 8 92 69 20 0 32 9 91 68
t = 300 s 29 0 66 33 67 34 29 0 33 0 100 67
t = 900 s 33 0 52 7 93 48 33 0 45 0 100 55

ILP t = 10 s 44 8 116 55 157 96 43 7 119 58 155 94
t = 60 s 51 3 134 48 169 83 50 2 120 33 185 98
t = 300 s 61 1 146 35 184 73 60 0 129 18 202 91
t = 900 s 76 0 158 19 201 62 76 0 146 7 213 74

KP t = 10 s 41 0 79 22 138 81 41 0 95 38 122 65
t = 60 s 56 0 97 4 156 63 56 0 93 1 159 67
t = 300 s 71 0 128 0 160 32 71 0 127 0 159 33
t = 900 s 80 0 149 0 160 11 80 0 148 3 156 12

TOTAL t = 10 s 96 8 229 98 374 243 95 7 259 128 345 214
t = 60 s 127 3 262 60 417 215 126 2 245 43 435 233
t = 300 s 161 1 340 68 411 139 160 0 289 18 461 191
t = 900 s 189 0 359 26 454 121 189 0 339 10 469 141

Table 2
Number of times that each algorithm obtains the best average value without exclusivity (best) and with exclusivity (excl), for D� and eþ , for different execution
times, and for each class in the benchmark. Total sum is displayed in the last four rows.

D� eþ

ceyhan holzmann TPA ceyhan holzmann TPA

best excl best excl best excl best excl best excl best excl

AP t = 10 s 75 64 29 17 19 7 11 0 27 14 86 73
t = 60 s 59 39 40 20 41 21 20 0 25 2 98 75
t = 300 s 44 15 43 13 72 42 29 0 34 1 99 66
t = 900 s 54 21 36 3 76 43 33 0 45 0 100 55

ILP t = 10 s 143 107 75 27 86 38 44 8 133 68 144 79
t = 60 s 163 115 81 21 84 24 51 3 137 44 173 80
t = 300 s 168 108 87 11 101 25 61 1 144 32 187 75
t = 900 s 179 103 100 6 111 17 76 0 160 21 199 60

KP t = 10 s 121 80 63 14 66 17 42 1 94 37 122 65
t = 60 s 123 67 70 3 90 23 56 0 97 5 155 63
t = 300 s 139 69 86 2 89 5 71 0 127 0 159 33
t = 900 s 145 66 93 2 92 1 80 0 148 3 156 12

TOTAL t = 10 s 339 251 167 58 171 62 97 9 254 119 352 217
t = 60 s 345 221 191 44 215 68 127 3 259 51 426 218
t = 300 s 351 192 216 26 262 72 161 1 305 33 445 174
t = 900 s 378 190 229 11 279 61 189 0 353 24 455 127
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Tables 1 and 2 present the results for each algorithm and metric. There are two columns per combination. The first one
contains the number of instances in which the algorithm has the best average value (sometimes shared with another algo-
rithm). The second column contains the number of instances in which the algorithm is the only one obtaining the best aver-
age value. The results are displayed for the three classes of the benchmark (AP, ILP and KP) at four cut-points each, and the
total sum is shown in the four last rows of the table.

Analyzing the ONVGR metric, we can see that holzmann and TPA provide the higher number of solutions. In fact, TPA is
better in all the classes in the benchmark. If we observe the row with the total sum of the three classes, the new proposed
algorithm is clearly the best. Sometimes the number of solutions is not the most important issue. In fact, the hypervolume is
considered one of the best metrics to measure the spread over the objective space. Looking at the results for HV, we see that
in all the classes the total hypervolume reached by TPA is also maximum. It is the clear winner, with a large difference with
respect to the second-best algorithm, holzmann. Note that ceyhan has the best hypervolume in a few cases. For instance, in
the ILP class, at 10 s, ceyhan has the best value 43 times, but only in 7 cases it is the unique winner. In the other 36 instances,
its HV is similar to that of other algorithms. The great differences in HVmay be explained because, overall, ceyhan finds much
fewer solutions than the others and, consequently, a worse total hypervolume. Ceyhan is good at finding a few solutions
quickly, with a very good general spread, as we can see in the results for D� in Table 2, where it is the clear winner. For
the last metric, eþ, Table 2 shows again that TPA has the best results in all cases.
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As a summary of the results shown in Tables 1 and 2, we see that holzmann and TPA provide better performance than
ceyhan. This means that the structure of the algorithm has an influence on the final results. While ceyhan is designed to find
a few well-spread solutions quickly, the dispersion of the solutions in the objective space is not so good when the search
progresses. Ceyhan makes more than one call to the ILP solver at each iteration because it uses a subset of vectors which
depends on the number of solutions found so far. We noticed in the experiments that these multiple calls to the solver
per iteration seem to degrade performance as the search progresses. The other two methods (holzmann and TPA), based
on the framework described in Algorithm1, seem to be more efficient for longer run execution times. There is an exception
in the results for D�, where ceyhan is the clear winner. Comparing holzmann and TPA methods, the latter obtains better
results. Although these two algorithms are based on the same framework and use the same mathematical program, TPA
changes the way in which the next boxes to explore are selected: by alternating directions, using p-partition, and using a
different priority value assigned to each box. The results demonstrate that the three new contributions described in this
paper have a positive effect on the anytime performance.

6.4. Detailed analysis

This subsection is divided into three third-level sections. In the first third-level section, we rank the algorithms according
to their performance on the instances. Clarifying graphs are shown at ten regular cut-points from 90 s to 900 s. In the second
third-level section, we show the evolution of the metrics over time for three selected instances. In this way, we observe the
anytime performance of the algorithms for each metric. The last third-level section provides the results of non-parametric
statistical tests to check if the differences are statistically significant or not. In the supplementary material attached to this
paper, we group the instances into categories, and show tables with the results for the four metrics at four time points.

6.4.1. Ranking the algorithms in each class of instances
To better measure the performance of the algorithms, we computed a rank for each of them in each instance. We did this

for ONVGR, HVR, D�, and eþ, at different stopping times from 90 s to 900 s, with a step of 90 s. For example, fixing a time limit
of 360 s, we compared the average ONVGR value of the 30 runs of the algorithms in the first instance and assigned a rank
Fig. 2. Average rank values for the algorithms at 10 cut-points, using the metrics ONVGR and HVR. The lower the rank, the better the algorithm.
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Fig. 3. Average rank values for the algorithms at 10 cut-points, using the metrics D� and eþ. The lower the rank, the better the algorithm.
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from 1 to 3, being 1 the algorithm with the best value for the metric. We did the same in the rest of the cases. In the case of
ties, we proceeded by taking the average rankings for the ties (e.g., 1.5 for a tie between the first two algorithms).

There are some time points in which an algorithm may have finished its execution and others not. In those cases, a rank
value of 1 is assigned to the algorithm that finished and the following rankings are distributed among the rest. When all the
algorithms have finished at a given time in all the runs, the instance is discarded. The results of Figs. 2 and 3 indicate that the
best average rank values correspond to TPA in most of the cases with important differences compared to the other metrics in
some cases.
6.4.2. Search progress
In this section we want to show the progress of the search on some selected instances, to further illustrate how the algo-

rithms evolve and behave at any time. For each class of the benchmark, the instance which requires the longest time to be
solved is selected.

Fig. 4 shows the behavior of ONVGR and HVR for the three selected instances: KP_p-3_n-100_ ins-4, which belongs to the
multiobjective knapsack problem group, in this case, with 100 variables; AP_p-3_n-50_ ins-4, from the assignment problem
group, which has 50 agents; and ILP_p-4_n-80_m-40_ ins-9, from the ILP group, which has dimension 4, 80 variables, and 40
constraints. Fig. 5 displays the behavior for the other metrics. In the x-axis, we show the execution time in seconds. The y-
axis shows the corresponding quality metric. In this case, the time points are taken every 5 s, up to 900 s. For these particular
instances, TPA provides the higher number of solutions at any time, HVR is quite similar for TPA and holzmann, D� is better for
ceyhan in most of cut-points, and eþ is similar for the three methods. We observe a high increase in HVR during the first min-
utes and then a stabilization of the value at the end. We see that the evolution of D� in Fig. 5 is not monotonic. This is a con-
sequence of D� not being Pareto compliant.
6.4.3. Statistical validation
In order to check if the observed differences are statistically significant or not, we applied the non-parametric Friedman

test to compare the three algorithms. We applied the test for each metric and cut-point in the set {90,180,. . .,900}. In the
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Fig. 4. ONVGR and HVR as a function of time in 3 selected instances. The higher the value, the better the algorithm.
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cases in which the p-value is below the significance level a ¼ 0:01, there is a strong evidence that the performances of the
algorithms are different. To pinpoint the differences, we did a post hoc analysis using the Nemenyi multiple comparison test.
This test compares every pair of algorithms looking for significant differences in a paired test with the 480 instances, as well
as for each class. We chose only the cases in which one method is significantly different than the other two, and then we
applied the Wilcoxon signed rank test to confirm that the corresponding algorithm is the best. All these tests are available
in the R-package PMCMRplus.

A summary with the results of the tests is shown in Table 3. We used the initial of the algorithm (C, H or T) in the cases
where an algorithm has the best performance with a significance level a ¼ 0:01 in the three tests (Friedman, Nemenyi and
Wilcoxon). We highlight in boldface the cases in which the p-value is below 0:001.

The first conclusion is that TPA is almost always the best algorithm. The second conclusion is that Holzmann is never the
best for all the metrics. Another conclusion from the tests is that the behavior of the algorithms is problem-dependent. We
observe that, for ILP and KP problems, ceyhan is significantly better with respect to D�. In AP instances, ceyhan is the best in
the first 180 s but the differences with TPA are not statistically significant. From 270 s to 900 s, ceyhan is surpassed by TPA.
Grouping all the instances, the tests are statistically significant at a significance level of a ¼ 0:001 at any cut-point for three
of the four metrics, in favor of TPA. The algorithm proposed in this paper shows a statistically significant difference with holz-
mann for these quality indicators.
7. Conclusions and future work

We have designed a new anytime algorithm that allows the Pareto front to be calculated in multiobjective combinatorial
optimization problems. The front is well-spread at any time and has good values for the metrics ONVGR, HV, D�, and eþ. We
have first carried out an exhaustive study of the literature, and have identified two state-of-the-art methods which produce a
well-spread set of non-dominated points at any time and are not outperformed by other methods. They were proposed by
Ceyhan et al. [1] and Holzmann and Smith [11].

The algorithm we propose, called TPA, is based on an existing framework to solve MOCO problems [2], which has been
adapted to design an effective anytime algorithm. The new contributions are: the establishment of a new strategy to select
the appropriate search space region as the next box to explore, a new way of partitioning the search space after finding a new
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Fig. 5. D� and eþ as a function of time in 3 selected instances. The lower the value, the better the algorithm.

Table 3
Statistical tests for each class and metric at different time points. The initial of the best algorithm is shown when the differences with the others are statistically
significant at level a ¼ 0:01. If the differences are also significant at level a ¼ 0:001, the initial of the algorithm is marked in bold.

Hypothesis tests 90s 180s 270s 360s 450s 540s 630s 720s 810s 900s

AP ONVGR T T T T T T T T T T
HVR T T T T T T T T T T
D� T T T T T T T T
eþ T T T T T T T T T T

ILP ONVGR T T T T
HVR T T T T T T T T T
D� C C C C C C C C C C
eþ T T T T

KP ONVGR T T T T T T
HVR T T T T T T
D� C C C C C C C
eþ T T T T T T

TOTAL ONVGR T T T T T T T T T T
HVR T T T T T T T T T T
D� C
eþ T T T T T T T T T T
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non-dominated point, and the definition of a new quality function to set the priority for the new regions to explore. These
three new contributions have a positive influence in the spread of the solutions.

We compared TPA with ceyhan and holzmann in several ways. A deep performance analysis was done using 480 instances
and executing the algorithms 30 times in each of them. We compared the algorithms using four different metrics well-
known in the MOO literature. Finally, we have statistically checked if the observed differences are statistically significant
using Friedman test, Nemenyi multiple comparison test, and Wilcoxon signed rank test. We can statistically confirm (for this
benchmark of instances) that TPA is better than the state-of-the-art methods in almost all the cases, improving the number of
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solutions, hypervolume and additive epsilon indicator for all the time cut-points used, which indicates a better anytime
behavior. In the case of the general spread (which is not Pareto compliant), ceyhan is better in the first 90 s, and there is
no conclusion for the rest of cut-points when considering all the instances.

Future work includes the extension of the experimental study to other benchmarks, to analyze in which kind of problems
our proposed algorithmworks best. We can also apply TPA to multi-objective industrial problems, where a few efficient solu-
tions covering the objective space are required by decision makers in a short time. The ideas introduced in this paper can also
be applied to heuristic algorithms, in the field of evolutionary multi-objective optimization, for example, to improve the per-
formance of multi-objective meta-heuristics. We can also combine heuristics with exact methods to create new hybrids
enjoying the advantages of both fields.
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