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Abstract: Arm swing during gait has been positively related to gait stability and gait efficiency,
particularly in the presence of neurological disorders that affect locomotion. However, most gait
studies have focused on lower extremities, while arm swing usually remains ignored. In addition,
these studies are mostly based on costly, highly-specialized vision systems or on wearable devices
which, despite their popularity among researchers and specialists, are still relatively uncommon
for the general population. This work proposes a way of estimating arm swing asymmetry from
a single 2D gait video. First, two silhouette-based representations that separately capture motion
data from both arms were built. Second, a measure to quantify arm swing energy from such a
representation was introduced, producing two side-dependent motion measurements. Third, an arm
swing asymmetry index was obtained. The method was validated on two public datasets, one with
68 healthy subjects walking normally and one with 10 healthy subjects simulating different styles
of arm swing asymmetry. The validity of the asymmetry index at capturing different arm swing
patterns was assessed by two non-parametric tests: the Mann–Whitney U test and the Wilcoxon
signed-rank test. The so-called physiological asymmetry was observed on the normal gait sequences
of both datasets in a statistically similar way. The asymmetry index was able to fairly characterize the
different levels of asymmetry simulated in the second set. Results show that it is possible to estimate
the arm swing asymmetry from a single 2D gait video, with enough sensitivity to discriminate
anomalous patterns from normality. This opens the door to low-cost easy-to-use mobile applications
to assist clinicians in monitoring gait condition in primary care (e.g., in the elderly), when more
accurate and specialized technologies are often not available.

Keywords: gait analysis; arm swing asymmetry; Gait Energy Image; computer-aided diagnosis

1. Introduction

Arm swing (AS) has been positively related to the recovery of gait stability after a
perturbation [1], to gait efficiency [2,3] and, in toddlers and children with cerebral palsy, to
gait balance [4,5]. The value of the arm movements as an outward sign of health condition
has also been well established [6–9], while rehabilitation studies [10,11] have suggested
that exercises aimed at normalizing AS in patients with neurological disorders contribute
to improve the inter-limb coordination and the locomotion pattern. However, in spite of
such evidence, most recent gait studies still ignore upper limbs [8,11].

Much of the efforts aimed at measuring AS have been focused on asymmetry, a term
that denotes the amount of discrepancy between the left and the right side during gait. AS
amplitude has proven to vary significantly between the left and right side both in patients
with neurodegenerative diseases [6,9,12,13] and, to a lesser extent, in healthy people [14,15].
As observed in [6], AS adapts to walking velocity both in patients of Parkinson’s disease
(PD) and in control subjects, while arm swing asymmetry remains relatively unaffected by
changes in walking conditions. In addition, significant differences in AS asymmetry were
found between early PD and the control group, concluding that arm swing asymmetry
can be more reliable in the diagnosis and monitoring of PD than arm swing amplitude.
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The value of AS asymmetry to characterize the unilateral dynamic of upper limb in early
PD was also observed in [9], resulting significantly higher in patients than in the control
group. They also provide evidence in favor of the robustness of AS asymmetry to changes
in walking speed.

In the context of healthy people, [14] stated that “a certain degree of asymmetry is
physiological”, and it is not related to handedness. Reproducible asymmetries between the
left and right AS were measured in normal subjects. These findings were later confirmed
by [15] when measuring AS asymmetry in overground walking. Motion data consisted of
the range of motion (in degrees) measured by IMUs attached to wrists. They concluded that
left-dominant AS is typical in healthy gait, regardless of walking condition or handedness.

In most previous studies, kinematic data were collected by tracking reflective markers
placed at anatomical locations by a multi-camera 3D motion capture system such as
Vicon [6,16] and Qualisys [9,14], which are very accurate solutions, but also costly and
highly specialized. In the case of wearable gadgets (e.g., markers, IMU, etc.), despite their
simplicity, precision, and growing popularity among researchers and clinical specialists,
they are generally scarce in non-specialized healthcare centers as compared to, for example,
smartphones, which have become virtually ubiquitous.

Along with these approaches, simple vision devices such as RGB or RGB-D cam-
eras have been gaining momentum in rehabilitation [17,18], gait analysis [13,19–21] and
parkinsonian gait assessment [22]. Main reasons include their low cost, user-friendliness,
ubiquity, and ability for remote sensing. Recently, [23] showed that the Kinect error can
be lower than 5◦ as compared to the Vicon system, supporting its feasibility for certain
clinical applications. Besides, since gait studies are conducted in a cooperative setting,
factors that might alter gait perception such as subject appearance (e.g., clothing) and
recording conditions (e.g., scene, lighting) can be easily kept under control. As it is well
known, the ability of an RGB camera sensor to capture or perceive the actual characteristics
of a subject’s gait pattern (here referred to as gait perception) could be severely limited
by wearing loose clothing, by carrying backpacks, by poor lighting conditions, by the
presence of objects in the scene between the optical sensor and the subject, by a changing
background, by the sensor viewpoint, etc. Fortunately, a fully cooperative setting can be
assumed in a vision-based analysis of gait disorders in healthcare environments, where all
these factors can be avoided or kept within certain established limits. For example, we can
expect simple indoor scenarios, fixed backgrounds, stable illumination conditions, tight
clothes, no accessories, smooth floor, etc.

Previous efforts in estimating gait symmetry from a markerless 2D video can be found
in [20,21]. In [20], measurements were focused on the legs, while in [21], a symmetry
index was obtained between amounts of movement calculated separately from half-cycle
representations of the human gait. Such representations comprise information from all
four limbs of the body together, making it difficult to attribute a measured anomaly to a
particular limb or a body half (according to the sagittal plane). Unlike the aforesaid efforts,
this work proposes the computation of a measure of asymmetry between representations
that condense the energy of each arm separately obtained throughout the entire gait cycle.
In this way, the measurements can potentially discriminate anomalies present in the swing
of a particular arm.

More formally, this paper introduces a method for measuring AS asymmetry from
only a 2D gait video. Contributions include (1) a side-dependent silhouette-based gait rep-
resentation, and (2) a method for quantifying AS energy from such a representation. Arm
swing asymmetry is then computed between both side-dependent energy measurements.
The method is independent of recording parameters, making it valid for cross-platform
analysis. Experiments were performed on two gait video databases, one with healthy
subjects walking normally and one with healthy subjects simulating different styles of
AS asymmetry. Results were validated by two non-parametric statistical tests. Since the
method requires only a 2D video, it brings transfer opportunities for low-cost mobile sys-
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tems to assist clinicians in monitoring gait parameters when more accurate and specialized
technologies or trained staffs are not available.

2. Materials and Methods
2.1. Datasets

This study involves two public databases, the OU-ISIR Treadmill Dataset B [24] and
the INIT Gait Database [20]. The former is a general-purpose gait video database that
comprises indoor recordings of 68 healthy subjects, wearing up to 32 clothing styles.
Sequences that combine regular pants and full shirt were chosen because of their neutral
outline. This database is intended to establish an asymmetry benchmark in healthy walking
from the new measure’s perspective. The second database is also composed of indoor
sequences of high-quality binary silhouettes of 10 healthy volunteers walking normally (nm
style) and simulating several abnormal gait styles. Four of them reproduce AS asymmetry
by combining the two arms and two reduced ranges of motion:

r0 : The left arm swings normally, while the right arm is volitionally held still.

l0 : The right arm swings normally, while the left arm is volitionally held still.

r0.5 : The left arm swings normally, while the right arm swing is incomplete.

l0.5 : The right arm swings normally, while the left arm swing is incomplete.

Instructions for r0 and l0 styles were to hold the affected arm relaxed, just next to the
trunk, without swinging, while for r0.5 and l0.5, participants were asked to perform half
swing with the affected arm. Although exactly half swing can not be assumed, it can be
reasonably accepted as a working hypothesis an incomplete trajectory of the affected arm.
Figure 1 illustrates styles r0 and r0.5 as opposed to nm.

Figure 1. From top to bottom, key silhouettes from one-cycle gait sequences corresponding to the
nm, r0.5, and r0 styles, respectively. Their dynamics are observed from right to left.

2.2. Arm Swing Asymmetry Measurement

The proposed method consists of 3 steps:

1. Two side-based Gait Energy Images (GEI) [25] are built, so that each one comprises
the motion data of each arm separately. A region of interest (ROI) containing arm
motion is automatically extracted from each side-based representation.

2. A Perceptible Motion Index (PMI) is introduced to quantify the amount of perceivable
arm motion from each side-based ROI.

3. A modified Robinson index [15,26] is used to measure AS asymmetry.

2.2.1. Side-Based Gait Energy Images

The Gait Energy Image (GEI) is a well-known silhouette-based gait representation
that summarizes a subject’s dynamic and appearance. Given a sequence of aligned, size-
normalized silhouettes, the GEI is computed by averaging all silhouettes. In this work,
silhouettes were preprocessed as in [20]. Figure 2a shows a GEI example, where three types
of GEI pixels can be identified:
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White pixels. They capture body regions with zero or little relative motion with respect
to image borders, e.g., head and torso. They encode appearance.

Gray pixels. They capture most of the gait energy mainly caused by the cyclic move-
ment of limbs. A gray value means that the pixel has sometimes been
background (black in some gait frames) and sometimes silhouette (white
in other frames). The more intermediate the gray value, the greater the
balance between background and silhouette and, therefore, the greater the
movement recorded.

Black pixels. They capture background regions common to all silhouettes.

Figure 2. (a) A number of key silhouettes representing an r0.5-style sequence of 148 silhouettes
divided into segments by midstance/midswing poses (framed in red); the GEI of the full sequence
is shown on the left. (b) Segment-based GEIs. (c) Odd and even segment-based GEIs are averaged.
(d) Two side-dependent GEIs are built. (e) ROIs enclosing arm motion are extracted. Subfigures (c),
(d) y (e) were drawn with color maps to facilitate understanding.

Typically, a GEI is obtained from full gait cycles, summarizing the whole gait energy
in a single representation. In order to isolate the motion of each arm, a side-based GEI is
built as follows:

1. A sequence of silhouettes is split into segments delimited by midstance/midswing
poses (Figure 2a). Each resulting segment covers half a cycle.

2. Segment-based GEIs are computed (Figure 2b). The way of splitting the sequence
leads to segment-based GEIs in which each arm is captured either in the front side or in
the back side (according to the coronal/frontal plane). This dynamic alternates along
the segments: odd segments reflect an arm arrangement; the even ones, the opposite.

3. Odd and even segment-based GEI are averaged separately (see Figure 2c). The two
resulting GEIs are referred to as GEIA and GEIB, respectively. Due to the gait cyclic
nature, the arm captured in the front side of GEIA coincides with the one in the back
side of GEIB. Similarly, the motion in the back side of GEIA and in the front side of
GEIB correspond to the other arm. Legs are also segregated.

4. Two side-based GEIs are built by binding together the front side of GEIA and the
back side of GEIB and, contrarily, the back of GEIA and the front of GEIB (Figure 2d).
Let us denote the resulted side-based representations as GEIAB and GEIBA. Note
that each of these representations condenses the movement of a single arm. For the
purpose of estimating AS asymmetry, the correspondence between GEIAB/GEIBA
and the left/right arms is irrelevant.
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Two ROIs enclosing arm motion are then extracted from GEIAB and GEIBA, following
a popular body proportion canon: the head to body ratio is one to eight for an adult. The
ROI is established from 2.5 to 4.5 heads (Figure 2e). This heuristic rule proved very effective
in isolating the energy information captured from the movement of the arms.

2.2.2. Perceptible Motion Index

The Perceptible Motion Index (PMI) is intended to quantify the motion information
accumulated in a ROI, which is mostly due to the related arm. The term perceptible
considers that there is a portion of AS that keeps hidden by the trunk silhouette which
cannot be measured. A compensation factor is introduced to weight every bit of perceptible
motion directly proportional to its distance to the trunk. PMI is defined below:

PMI = ∑
xy

w(x)e(x, y) = ∑
x

w(x)∑
y

e(x, y), (1)

where w(x) is a weighting function that grows with the distance to the trunk (depends
only on the x-coordinate), and e(x, y) accounts for the energy of the arm motion at pixel
(x, y), and it is computed as e(x, y) = 1− |g(x,y)−127.5|

127.5 with g(x, y) being the gray level at
that ROI pixel [20]. The maximum of e(x, y) = 1 is reached at g(x, y) = 127.5, when the
pixel (x, y) has been half times background and the other half silhouette; its minimum
e(x, y) = 0 occurs when (x, y) has only been either background (0) or silhouette (255).

The proposed weighting function w(x) is shown in Figure 3. Note that w(x) is zero
in the x-range imputed to the trunk, and it grows as it moves away from the center.
That is, w(x) cancels any contribution coming from the trunk region (where arm motion
remains undetected), and keeps motion information found beyond the trunk. It is formally
defined as:

w(x) = max{s(k · (x− xback)), 1− s
(

k · (x− x f ront)
)
}, (2)

where s(t) = 1/(1 + e−t) is the sigmoid function, k > 0 introduces a horizontal stretching
(0 < k < 1) or shrinking (k > 1) of s(t), and xback and x f ront cause horizontal shifts of the
inflection points at which w(x) accelerates. This notation assumes the subject walks from
right to left in the scene. Finally, xback and x f ront are estimated as the minimum and the
maximum of the first derivative of the probability density function of foreground data
along the x-axis. This process is illustrated in Figure 3 and formally stated below:

xback = arg min f ′(x)

x f ront = arg max f ′(x)

f ′(x) = f (x + ∆x)− f (x)

f (x) =
∑y g(x, y)

∑x ∑y g(x, y)
, with g(x, y) being the gray map of the ROI.

(3)

Experiments were designed in terms of k = 1 (standard sigmoid function).
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Figure 3. From top to bottom, a ROI including arm motion, the probability density function f (x) of
foreground data along the x-axis, the first derivative f ′(x), and the weighting function w(x) with
k = 1. The inflection points were estimated at x f ront = 90 and xback = 146.

2.2.3. Modified Robinson Index

Let mAB and mBA be the PMI values computed on ROIs extracted from GEIAB and
GEIBA, respectively. The following version of the Robinson index is used to measure AS
asymmetry (ASA):

ASA =
|mAB −mBA|

max{mAB, mBA}
· 100. (4)

According to [27], ASA measures the disagreement between two measurements made
from discrete time events. However, unlike conventional discrete approaches, Equation (4)
summarizes a spatio-temporal disagreement over the entire gait cycle.

Because the method adapts to the subject anatomy and relies on the normalized
functions (3) and (4), it can be considered reasonably independent of acquisition conditions,
walking speed, and spatio-temporal resolution.

3. Results

Figure 4 shows the ASA distributions from OU-ISIR and from the five INIT AS styles.
Similar distribution patterns can be found in the two independent groups of normal gait,
OU-ISIR and nm, with medians 25.5% and 19.6%, respectively. The distribution shapes of
l0.5 and r0.5 styles (one arm partially swings) were also similar with medians 44.9% and
56.9%, respectively, as well as the shapes of l0 and r0 styles (one arm remains motionless)
with medians 70.5% and 75.8%, respectively. Despite the big differences between the
three levels of motion, one might expect l0 and r0 results closer to 1. However, marginal
movement registered in the trunk contour affects the perceived asymmetry.
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Figure 4. ASA distributions in OU-ISIR and the five styles of INIT.

Considering the presence of outliers and the large differences in variances, the non-
parametric Mann–Whitney U test [28] was performed to determine whether two groups
of ASA measurements can be considered the result of the same data generating process
(null hypothesis H0). Besides, to reduce the impact of subject variability, the Wilcoxon
signed-rank test [29] was also applied to paired mean performances of subjects in the INIT
database. Both tests were carried out using the implementations provided by the module
scipy.stats from the Python library SciPy. Table 1 shows p-values of both tests, stressing H0
rejections at a significance level of α = 0.05.

The main findings can be summarized as follows: (1) differences between the two
independent groups of normal gait (OU-ISIR and nm) were not significant; (2) differences
between each pair of styles with different motion patterns (OU-ISIR/nm vs. l∗, OU-ISIR/nm
vs. r∗, l0.5 vs. l0, r0.5 vs. r0) were statistically significant in both tests; (3) differences between
l0.5 and r0.5 styles were not significant in either of the two tests; (4) differences between l0
and r0 styles were significant in both tests. The first three results agree with expectations.
That is, the ASA measure was able to establish statistical similarity between independent
groups of normal gait, as well as to statistically differentiate the three levels of AS asymme-
try, in most cases with very small p-values. The fourth result could be due to the left arm
preference and the greater visibility of the left arm in this experiment. Both arguments are
discussed below.

Table 1. Results of non-parametric tests between the column and the row groups in terms of Mann–
Whitney p-value/Wilcoxon p-value. Bold p-values denote H0 rejection at α = 0.05 (differences are
significant). Symbol ‘–’ denotes a meaningless comparison.

OU-ISIR
INIT Database

nm l0.5 l0 r0.5

nm 0.15/−

l0.5 0.006/− 0.006/0.047

l0 6 × 10−9/− 5 × 10−7/0.005 0.006/0.012

r0.5 2 × 10−5/− 1 × 10−4/0.012 0.310/0.200 −

r0 5 × 10−11/− 7 × 10−8/0.005 − 0.013/0.012 5 × 10−5/0.009
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4. Discussion

As a first general observation, the method was able to statistically differentiate each AS
asymmetry pattern from the rest, while found statistical equivalence between asymmetry
measurements of the two normal gait databases acquired under very different conditions.
As stated in [9,14,15], our ASA measure on healthy gait also showed a small but clear
degree of asymmetry. This should be consider when assessing gait disorders.

Although a direct comparison with previous works is meaningless (they involve
different data and acquisition technologies), some insight could be drawn from contrasting
means and standard deviations when ASA is measured, as in (4). For example, refs. [14,15]
reported mean asymmetries of 25.9± 24.0 and 39.5± 21.8 from healthy young and older
people, respectively. These results are highly consistent with 28.3± 18.01 and 21.9± 15.9
obtained from the OU-ISIR and the INIT nm styles, respectively.

Results on the INIT database also showed a little more asymmetry when the left arm
moved freely and the right one had motion restrictions (r0, r0.5) than in their opposite
settings (l0, l0.5). On the one hand, this result is consistent with the left arm preference
found in [14,15] on healthy subjects who were mostly right-handed. On the other hand,
the walking direction in the INIT gait sequences, from right to left, kept the left arm closer
to the camera and, potentially, more visible. This may have introduced some bias in the
results. However, statistically significant differences were proved for both arms. In a real
scenario, this could be addressed by asking the patient to walk both from right to left and
from left to right, and by combining the two measurements.

Considering the previous discussion, the value of the proposed method can be rea-
sonably stated as a low-cost effective solution to quantify ASA from a single 2D gait video
under a cooperative setting. Simple mobile applications can then be easily conceived to
assist primary care professionals who usually lack specialized technologies and training.

5. Conclusions

Measuring arm swing asymmetry (ASA) can provide insight into health and quality of
life, anticipate risks, and suggest appropriate therapies. Despite this, most gait studies still
disregard arm swing. A cross-platform method for measuring ASA based on only a single
2D gait video was introduced. It is quite independent of acquisition conditions and spatio-
temporal resolution. The method involves a novel silhouette-based gait representation and
an algorithm to quantify arm motion. The method was validated on two gait video datasets,
one with healthy subjects walking normally and one with healthy subjects simulating
different levels of ASA. Experiments supported by two non-parametric statistical tests
showed consistent results on two independent groups of normal gait sequences, and
significant differences between groups with distinct asymmetry patterns. Mean ASA
measurements were highly consistent with results reported in other works from different
datasets and sensing technologies. Future work could explore more accurate functions
of measuring arm motion, as well as possibilities of deploying this low-cost approach in
real environments.
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Abbreviations
The following abbreviations are used in this manuscript:

AS Arm Swing
PD Parkinson’s Disease
GEI Gait Energy Image
ROI Region Of Interest
PMI Perceptible Motion Index
ASA Arm Swing Asymmetry
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