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Abstract

A new family of methods involving complex coefficients for the numerical integration of differential
equations is presented and analyzed. They are constructed as linear combinations of symmetric-conjugate
compositions obtained from a basic time-symmetric integrator of order 2n (n ≥ 1). The new integrators
are of order 2(n + k), k = 1, 2, . . ., and preserve time-symmetry up to order 4n + 3 when applied
to differential equations with real vector fields. If in addition the system is Hamiltonian and the basic
scheme is symplectic, then they also preserve symplecticity up to order 4n + 3. We show that these
integrators are well suited for a parallel implementation, thus improving their efficiency. Methods up to
order 10 based on a 4th-order integrator are built and tested in comparison with other standard procedures
to increase the order of a basic scheme.

AMS numbers: 65L05, 65P10, 37M15
Keywords: Composition methods, symmetric-conjugate compositions, complex coefficients. preservation of
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1 Introduction

Composition methods constitute a standard tool to construct high-order numerical integrators for the initial
value problem

ẋ = f(x), x(t0) = x0 ∈ Rd, (1.1)

in particular when the vector field f possesses some qualitative property whose preservation by numerical
approximations is deemed relevant [6, 16]. Let S [2n]

h denote a 2n-th order method, so that S [2n]
h (x0) =

ϕh(x0) +O(h2n+1), where x(h) = ϕh(x0) is the exact solution of Eq. (1.1) for a time step h. Then, if the
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coefficients α1, α2, . . . , αs satisfy some algebraic conditions, the composition of the basic scheme with step
sizes α1h, α2h, . . . , αsh, i.e.,

ψh = S [2n]
α1h
◦ S [2n]

α2h
◦ · · · ◦ S [2n]

αs−1h
◦ S [2n]

αsh
(1.2)

is a new method of higher order 2n+m [9]. If in particular f is Hamiltonian and S [2n]
h is symplectic, then the

composition method (1.2) is also symplectic [16]. In general, any geometric property the basic method has in
common with the exact solution is still shared by the higher-order scheme (1.2) if this property is preserved
by composition [18]. Moreover, suppose S [2n]

h is time-symmetric, namely, it satisfies

S [2n]
h ◦ S [2n]

−h = id,

where id is the identity map, for any h. Then, method (1.2) is also time-symmetric if the composition is
left-right palindromic, i.e., αs+1−j = αj , j = 1, 2, . . ..

A well known class of composition methods is obtained by applying the triple-jump procedure [21, 24]:

S [2n+2]
h = S [2n]

α1h
◦ S [2n]

α2h
◦ S [2n]

α1h
, (1.3)

with
α1 =

1

2− 21/(2n+1)
, α2 = 1− 2α1, (1.4)

is a new method of order 2n + 2. The same technique can be applied again to S [2n+2]
h , so that one can

construct recursively time-symmetric methods of any order 2n+ 2k, k = 1, 2, . . ..
When constructing high-order composition methods, real coefficients α1, . . . , αs are not the only option,

however. In fact, the unavoidable existence of negative αj in (1.2) when the order is higher than two [5,
15, 20, 22] typically imposes stability restrictions on the step size. This occurs in particular when Eq. (1.1)
is the outcome of a parabolic differential equation discretized in space. In that case, considering complex
coefficients with positive real part is also a valid alternative [12, 17]. Even for problems where the presence
of some αj < 0 is not particularly troublesome, composition methods with complex coefficients have also
been proposed and analyzed from the preservation of properties viewpoint [10, 7, 13].

In the particular case of the triple-jump composition (1.3), in addition to the real solution (1.4), the
complex one with the smallest phase is

α1 =
eiπ/(2n+1)

21/(2n+1) − 2eiπ/(2n+1)
, α2 = 1− 2α1, (1.5)

and the resulting method has in fact smaller truncation errors than its real counterpart (1.4). If the basic
scheme is time-symmetric and of order 2, then time-symmetric methods up to order 14 with coefficients
having positive real part are possible by applying this technique [8].

The order can be raised by one instead with the simplest composition [3, 22]

ψ
[2n+1]
h = S [2n]

α1h
◦ S [2n]

α2h
(1.6)

if

α1 = ᾱ2 =
1

2
+
i

2

sin 2`+1
2n+1π

1 + cos 2`+1
2n+1π

for − n ≤ ` ≤ n− 1.

2



The choice ` = 0 gives the solution with the smallest phase, which we denote by γ[2n]:

α1 = γ[2n] :=
1

2
+
i

2

sin π
2n+1

1 + cos π
2n+1

, n = 1, 2, . . . (1.7)

When the vector field f in (1.1) is real, then x1 = ψ
[2n+1]
h (x0) is complex, and so it is quite natural to project

x1 on the real axis and proceed to the next step only with <(x1). This is equivalent of course to integrating
with the scheme

R
(1)
h =

1

2

(
ψ

[2n+1]
h + ψ

[2n+1]
h

)
. (1.8)

Method (1.8) is not time-symmetric, even when S [2n]
h is. Nevertheless, it has been shown in [11] that R(1)

h is
pseudo-symmetric of order 4n+ 3, in the sense that

R
(1)
h ◦R

(1)
−h = id +O(h4n+4)

if the vector field f in (1.1) is real. If in addition f is Hamiltonian and S [2n]
h is symplectic, then R(1)

h is also
pseudo-symplectic of order 4n + 3. In other words, projecting ψ[2n+1]

h at each integration step leads to a
numerical method that preserves geometric properties of the exact solution up to an order that is much higher
than the order of the method itself. Pseudo-symplectic integrators have been previously considered in the
literature, both in the context of Runge–Kutta [2] and polynomial extrapolation methods [4, 14].

Moreover, as shown in [11], R(1)
h can be taken as the basis of the recursion

R
(k)
h =

1

2

(
R

(k−1)

γ[2k]h
◦R(k−1)

γ̄[2k]h
+R

(k−1)

γ̄[2k]h
◦R(k−1)

γ[2k]h

)
, k = 2, 3 . . . , (1.9)

producing methods of order 2(n+ k), also pseudo-symmetric of order 4n+ 3. Here the coefficients γ[2k] are
given by Eq. (1.7). For future reference, we call (1.9) R-methods.

Scheme (1.6) is a particular example of a symmetric-conjugate composition. These are composition
methods of the form

ψh = S [2n]
α1h
◦ S [2n]

α2h
◦ · · · ◦ S [2n]

ᾱ2h
◦ S [2n]

ᾱ1h
, (1.10)

i.e., compositions (1.2) with αj ∈ C and

ᾱs+1−j = αj , j = 1, 2, . . . .

Methods of this class, as shown in [7], possess remarkable preservation properties when considering its real
part,

<(ψh) =
1

2

(
ψh + ψh

)
.

In particular, if one takes a time-symmetric 2nd-order scheme as the basic method and the coefficients
α1, α2, . . . are chosen in such a way that ψh is of order 2n − 1, then <(ψh) is of order 2n and pseudo-
symmetric of order 4n − 1 when the vector field f in (1.1) is real. If in addition f is a (real) Hamiltonian
vector field and S [2]

h is a symplectic integrator, then <(ψh) is pseudo-symplectic of order 4n− 1.
Since taking the real part of a symmetric-conjugate method is just a very special linear combination, it

is quite natural to ask what happens when one considers a more general linear combination of symmetric-
conjugate compositions and their complex-conjugate, ψ(j)

h , ψ
(j)
h : is it possible to construct new methods

3



of higher order whereas still preserving time-symmetry (and symplecticity) up to the order prescribed by
the composition ψ(j)

h ? If yes, how the new methods are built? Addressing these questions is precisely the
subject of the present paper. In doing so, we present a new family of schemes of increasingly higher order
well adapted for implementation in a parallel environment, requiring less computational effort than the R-
methods (1.9) but with the same qualitative properties.

If we denote for simplicity the symmetric-conjugate composition (1.10) by its sequence of coefficients,

ψ
(j)
h = (α1, α2, . . . , αs−1, αs),

with ᾱs+1−j = αj , these new schemes have the basic structure

T
(k)
h =

1

2k

2k−1∑
j=1

(
(αj

2k
, . . . , αj1) + c.c.

)
(1.11)

and are of order 2(n+k) ≤ 4n+3 and pseudo-symmetric of order 4n+3. We designate them as T -methods.

2 Construction of the family of T -methods

In this section we construct the new family of integrators T (k)
h and show explicitly that they are of order

2(n + k) and pseudo-symmetric of order 4n + 3 for k = 1, 2, 3. The same procedure can be formally
extended to any k > 3. The analysis is based on the Lie formalism applied to the series of differential
operators associated to the integrators.

2.1 Series of differential operators

As is well known, given a time-symmetric integrator S [2n]
h of order 2n ≥ 2 one can associate a series of

linear operators exp(Y (h)) so that

g(S [2n]
h (x)) = exp(Y (h))[g](x)

for all functions g [9], with

Y (h) = hY1 + h2n+1Y2n+1 + h2n+3Y2n+3 + · · · .

Here Yk are certain operators depending on the particular method and, for consistency, Y1 = F , where F is
the Lie derivative associated with f :

F =
∑
i≥1

fi(x)
∂

∂xi
. (2.1)

The composition (1.2) then has the associated series

Ψ(h) = exp(Y (hαs)) exp(Y (hαs−1)) · · · exp(Y (hα2)) exp(Y (hα1)), (2.2)

which can be formally written as Ψ(h) = exp(V (h)) by repeated application of the Baker–Campbell–
Hausdorff formula, with

V (h) = hF + h2n+1V2n+1 + h2n+2V2n+2 + · · · .
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Here V2n+1, V2n+2, . . . are linear combinations of Lie brackets involving the operators Y1, Y2n+1, Y2n+3, . . .
[18]. In the particular case of a symmetric-conjugate composition (1.10), terms V2k in V (h) of even powers
in h are pure imaginary, whereas terms V2k+1 are real [7].

For a consistent symmetric-conjugate composition (1.10), i.e., verifying

s∑
j=1

αj = α1 + α2 + · · ·+ ᾱ2 + ᾱ1 = 1, (2.3)

we get explicitly

V (h) = hE1,1 + h2n
∑
j≥0

h2j+1

`2j+1∑
k=1

µ2n+2j+1,kE2j+1,k + i h2n
∑
j≥1

h2j

`2j∑
k=1

σ2n+2j,kE2j,k, (2.4)

where µn,k, σn,k are homogeneous real polynomials of degree n in the coefficients αl, l = 1, . . . , s, and En,k
are elements Yj and independent Lie brackets involving these operators. In particular

µ2n+2j+1,1 =

s∑
l=1

α
2(n+j)+1
l , j ≥ 0

and

E1,1 = Y1, E2n+2n+2j+1,1 = Y2n+2j+1, E2n+2j,1 = [E1,1, E2n+(2j−1),1], j = 1, 2, . . .

2.2 Linear combinations of symmetric-conjugate compositions

Let us now consider the linear combination

φh =
1

2k

k∑
j=1

(
ψ

(j)
h + ψ

(j)
h

)
, (2.5)

where each ψ(j)
h is a consistent symmetric-conjugate composition of the form (1.10) with different coeffi-

cients α(j)
k . Then, clearly, φh has

Φ(h) ≡ 1

2k

k∑
j=1

(
Ψ(j)(h) + Ψ

(j)
(h)
)

=
1

2k

k∑
j=1

(
eVj(h) + eV j(h)

)
(2.6)

as the associated series of operators, where each Vj(h) is of the form (2.4). Now, by following the same
approach as in [11], we express Φ(h) as

Φ(h) =
1

2k
e

h
2
F

k∑
j=1

(
eWj(h) + eW j(h)

)
e

h
2
F ,
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where
Wj(h) = h2n+1µ

(j)
2n+1,1E2n+1,1 + i h2n+2σ

(j)
2n+2,1E2n+2,1

+ h2n+3

(
µ

(j)
2n+3,1E2n+3,1 +

(
µ

(j)
2n+3,2 +

1

24
µ

(j)
2n+1,1

)
E2n+3,2

)
+ i h2n+4

(
σ

(j)
2n+4,1E2n+4,1 +

(
σ

(j)
2n+4,2 +

1

24
σ

(j)
2n+2,1

)
E2n+4,2

)
+ h2n+5

(
µ

(j)
2n+5,1E2n+5,1 +

(
µ

(j)
2n+5,2 +

1

24
µ

(j)
2n+3,1

)
E2n+5,2 +(

µ
(j)
2n+5,3 +

1

24
µ

(j)
2n+3,2 +

1

1920
µ

(j)
2n+1,1

)
E2n+5,3

)
+ i h2n+6

(
σ

(j)
2n+6,1E2n+6,1 +

(
σ

(j)
2n+6,2 +

1

24
σ

(j)
2n+4,1

)
E2n+6,2+(

σ
(j)
2n+6,3 +

1

24
σ

(j)
2n+4,2 +

1

1920
σ

(j)
2n+2,1

)
E2n+6,3

)
+O(h2n+7).

(2.7)

Here
E2n+3,2 = [E1,1, E2n+2,1], E2n+4,2 = [E1,1, E2n+3,2], E2n+5,2 = [E1,1, E2n+4,1],

E2n+6,2 = [E1,1, E2n+5,1], E2n+5,3 = [E1,1, E2n+4,2], E2n+6,2 = [E1,1, E2n+5,2].

This is done by applying the symmetric Baker–Campbell–Hausdorff formula to each product e−
h
2
F eVj(h) e−

h
2
F .

From (2.7), a straightforward calculation shows that

(Wj +W j)
2 = 4h4n+2(µ

(j)
2n+1,1)2E2

2n+1,1 +O(h4n+4)

W 2
j +W

2
j = 2h4n+2(µ

(j)
2n+1,1)2E2

2n+1,1 +O(h4n+4).

Therefore,

1

2

(
eWj + eW j

)
− e

1
2

(Wj+W j) =
1

4
(W 2

j +W
2
j )−

1

8
(Wj +W j)

2 + · · · = O(h4n+4)

and Φ(h) can also be written as

Φ(h) =
1

k

k∑
j=1

e
h
2
F e

1
2

(Wj(h)+W j(h)) e
h
2
F +O(h4n+4).

In consequence, each term in φh is time-symmetric up to terms h4n+3, with independence of the polynomials
µ

(j)
k,l , σ

(j)
k,l , since the sum Wj(h) +W j(h) only contains odd powers of h.
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On the other hand, one has

1

2k

k∑
j=1

(
eWj + eW j

)
− exp

 1

2k

k∑
j=1

(Wj +W j)


=

1

4k

k∑
j=1

(W 2
j +W

2
j )−

1

8k2

 k∑
j=1

(Wj +W j)

2

+ · · ·

= h4n+2 1

2k

 k∑
j=1

(µ
(j)
2n+1)2 − 1

k

( k∑
j=1

µ
(j)
2n+1,1

)2

 E2
2n+1,1 +O(h4n+4),

so that it is also true that

Φ(h) = exp

(
h

2
F

)
exp

 1

2k

k∑
j=1

(
Wj(h) +W j(h)

) exp

(
h

2
F

)
+O(h4n+2). (2.8)

2.3 Order conditions

It is thus possible to obtain the order conditions for the method φh in (2.5) by analyzing just the exponent of
the central term in (2.8). From (2.7) it follows that

1

2

k∑
j=1

(
Wj(h) +W j(h)

)
= h2n+1 c2n+1,1E2n+1,1 + h2n+3c2n+3,1E2n+3,1

+ h2n+3

(
c2n+3,2 +

1

24
c2n+1,1

)
E2n+3,2 + h2n+5 c2n+5,1E2n+5,1

+ h2n+5

(
c2n+5,2 +

1

24
c2n+3,1

)
E2n+5,2

+ h2n+5

(
c2n+5,3 +

1

24
c2n+3,2 +

1

1920
c2n+1,1

)
E2n+5,3 +O(h2n+7),

with

c2n+1,1 =

k∑
j=1

µ
(j)
2n+1,1, c2n+3,1 =

k∑
j=1

µ
(j)
2n+3,1, c2n+3,2 =

k∑
j=1

µ
(j)
2n+3,2

c2n+5,1 =

k∑
j=1

µ
(j)
2n+5,1, c2n+5,2 =

k∑
j=1

µ
(j)
2n+5,2, c2n+5,3 =

k∑
j=1

µ
(j)
2n+5,3

In consequence, for consistent compositions ψ(j)
h , j = 1, . . . , k, the conditions to be satisfied so that φh

is a method of order r are the following:

• r = 2n+ 2: c2n+1,1 = 0

• r = 2n+ 4: c2n+1,1 = c2n+3,1 = c2n+3,2 = 0

• r = 2n+ 6: c2n+1,1 = c2n+3,1 = c2n+3,2 = c2n+5,1 = c2n+5,2 = c2n+5,3 = 0
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2.4 New schemes

Once identified the relevant order conditions, our next goal is to solve these equations with the minimum
number of basic schemes in the compositions ψ(j)

h and the minimum value of k in the linear combination
(2.5).

Order r = 2n+ 2. One needs to solve two equations to get a method φh of order 2n+ 2: consistency and
c2n+1,1 = 0. These can be satisfied by taking k = 1 and the simplest composition ψh = S [2n]

α1h
◦ S [2n]

ᾱ1h
, in

which case one has
α1 + ᾱ1 = 1, α2n+1

1 + ᾱ2n+1
1 = 0.

In other words, we recover the composition (1.6) and the R-method (1.8). Our first T -method (1.11) is thus

T
(1)
h =

1

2

(
(γ[2n], γ̄[2n]) + (γ̄[2n], γ[2n])

)
(2.9)

or in more detail
T

(1)
h =

1

2

(
S [2n]

γ[2n]h
◦ S [2n]

γ̄[2n]h
+ S [2n]

γ̄[2n]h
◦ S [2n]

γ[2n]h

)
.

Order r = 2n+4. Now we have to solve 3 order conditions in addition to consistency for the compositions
ψ

(j)
h involved. As before, one could take in principle k = 1. In that case, the minimum number of basic maps

in ψ(1)
h is 4, just to have enough parameters to satisfy the order conditions. It turns out, however, that there

are no solutions with the required symmetry α4 = ᾱ1, α3 = ᾱ2. In fact, if we take

ψ
(1)
h = (ᾱ1, ᾱ2, α2, α1), with α1 = γ̄[2n+4]γ̄[2n+2], α2 = γ̄[2n+4]γ[2n],

then µ(1)
2n+1,1 = µ

(1)
2n+3,1 = 0, but µ(1)

2n+3,2 6= 0. On the other hand, if we take

ψ
(2)
h = (ᾱ2, ᾱ1, α1, α2)

with the same values of α1, α2 as before, then µ(2)
2n+3,2 = −µ(1)

2n+3,2, whereas still verifying that µ(2)
2n+1,1 =

µ
(2)
2n+3,1 = 0. In consequence, by combining both compositions,

φh =
1

4

(
ψ

(1)
h + ψ

(1)
h + ψ

(2)
h + ψ

(2)
h

)
,

one gets a method of order 2n + 4 and pseudo-symmetric of order 4n + 3. This corresponds to our second
T -method, which reads explicitly

T
(2)
h =

1

4

(
(γ[2n+2]γ[2n], γ[2n+2]γ̄[2n], γ̄[2n+2]γ[2n], γ̄[2n+2]γ̄[2n])

+(γ[2n+2]γ̄[2n], γ[2n+2]γ[2n], γ̄[2n+2]γ̄[2n], γ̄[2n+2]γ[2n]) (2.10)

+(γ̄[2n+2]γ̄[2n], γ̄[2n+2]γ[2n], γ[2n+2]γ̄[2n], γ[2n+2]γ[2n])

+(γ̄[2n+2]γ[2n], γ̄[2n+2]γ̄[2n], γ[2n+2]γ[2n], γ[2n+2]γ̄[2n])
)
.

Again, the coefficients γ[2m] are given by Eq. (1.7).
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Order r = 2n+ 6. A total of 7 equations (including consistency) have to be solved in this case, so that we
take a symmetric-conjugate composition involving s = 8 basic maps,

ψ
(1)
h = (α1, α2, α3, α4, ᾱ4, ᾱ3, ᾱ2, ᾱ1).

With the choice
α1 = γ[2n+4]γ[2n+2]γ[2n], α2 = γ[2n+4]γ[2n+2]γ̄[2n],

α3 = γ[2n+4]γ̄[2n+2]γ[2n], α4 = γ[2n+4]γ̄[2n+2]γ̄[2n]

it turns out that conditions c2n+1 = c2n+3,1 = c2n+5,1 = 0 are automatically satisfied. By following the
same approach as before, we permute the position of the coefficients and take the composition

ψ
(2)
h = (α2, α1, α4, α3, ᾱ3, ᾱ4, ᾱ1, ᾱ2).

Then, one has µ(2)
2n+3,2 = −µ(1)

2n+3,2, so that ψ(1)
h +ψ

(2)
h leads to a method of order 2n+4. More composition

have to be incorporated, however, in order to verify conditions c2n+5,2 = 0 and c2n+5,3 = 0. The former is
accomplished by both sums ψ(1)

h + ψ
(4)
h and ψ(2)

h + ψ
(3)
h , where

ψ
(3)
h = (α3, α4, α1, α2, ᾱ2, ᾱ1, ᾱ4, ᾱ3)

ψ
(4)
h = (α4, α3, α2, α1, ᾱ1, ᾱ2, ᾱ3, ᾱ4),

but the later is satisfied only by adding up the four compositions. In summary, the linear combination

1

4
<(ψ

(1)
h + ψ

(2)
h + ψ

(3)
h + ψ

(4)
h )

leads to a method of order 2n+ 6, denoted as T (3)
h . More explicitly,

T
(3)
h =

1

8

(
ψ

(1)
h + ψ

(2)
h + ψ

(3)
h + ψ

(4)
h + ψ

(1)
h + ψ

(2)
h + ψ

(3)
h + ψ

(4)
h

)
. (2.11)

The same procedure can be carried out in general, although more order conditions (and consequently
more compositions involving more basic maps) have to be dealt with. This class of methods can be repre-
sented in a convenient way as follows. If we introduce the matrix of coefficients

Γ2n :=
1

2

(
γ[2n] γ̄[2n]

γ̄[2n] γ[2n]

)
then, according with the previous results, method T (1)

h (of order 2n+ 2) can be represented by Γ2n,

T
(1)
h ; Γ2n,

whereas T (2)
h (of order 2n+ 4) can be associated with the matrix

Γ2n+2 ⊗ Γ2n =
1

4


γ[2n+2]γ[2n] γ[2n+2]γ̄[2n] γ̄[2n+2]γ[2n] γ̄[2n+2]γ̄[2n]

γ[2n+2]γ̄[2n] γ[2n+2]γ[2n] γ̄[2n+2]γ̄[2n] γ̄[2n+2]γ[2n]

γ̄[2n+2]γ[2n] γ̄[2n+2]γ̄[2n] γ[2n+2]γ[2n] γ[2n+2]γ̄[2n]

γ̄[2n+2]γ̄[2n] γ̄[2n+2]γ[2n] γ[2n+2]γ̄[2n] γ[2n+2]γ[2n]

 ,
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in the sense that each file of Γ2n+2 corresponds to a particular symmetric-conjugate composition entering
into the formulation of T (2)

h . We can write analogously

T
(2)
h ; Γ2n+2 ⊗ Γ2n,

and moreover
T

(3)
h ; Γ2n+4 ⊗ (Γ2n+2 ⊗ Γ2n).

In general, the coefficients in the T -method of order r = 2n+ 2k are distributed according with the pattern

T
(k)
h ; Γ2(n+k−1) ⊗ (Γ2(n+k−2) ⊗ · · · ⊗ (Γ2n+2 ⊗ Γ2n) · · · ).

3 Numerical examples

We illustrate next the behavior of some of the previously constructed T -methods on a pair of numerical
examples. The first one (the 2-dimensional Kepler problem) allows one to check preservation properties,
whereas the second (a simple diffusion equation) is used as a test of their relative performance. In all cases
we take as basic scheme S [2n]

h the 4th-order (n = 2) time-symmetric splitting method

S [4]
h = ϕ

[b]
b1h
◦ ϕ[a]

a1h
◦ ϕ[b]

b2h
◦ ϕ[a]

a2h
◦ ϕ[b]

b3h
◦ ϕ[a]

a2h
◦ ϕ[b]

b2h
◦ ϕ[a]

a1h
◦ ϕ[b]

b1h
(3.1)

with coefficients

b1 = 0.060078275263542357774− 0.060314841253378523039 i, (3.2)

a1 = 0.18596881959910913140,

b2 = 0.27021183913361078161 + 0.15290393229116195895 i,

a2 = 0.31403118040089086860,

b3 = 0.33941977120569372122− 0.18517818207556687181 i,

previously considered in [8]. This integrator is intended for Eq. (1.1) when f can be decomposed as f(x) =
fa(x) + fb(x) in such a way that each sub-problem

ẋ = fa(x), ẋ = fb(x),

with x(0) = x0, has solution x(t) = ϕ
[a]
t (x0), and x(t) = ϕ

[b]
t (x0), respectively.

The implementation of all the integrators has been done in Python 3.7 running on Debian GNU/Linux 10
and the operations with complex arithmetics have been coded using the complex class of the numpy library.

Kepler problem. The Hamiltonian function for the planar two-body problem reads

H(q, p) = T (p) + V (q) =
1

2
pT p− µ1

r
. (3.3)

10



Here q = (q1, q2), p = (p1, p2), r = ‖q‖, µ = GM , G is the gravitational constant and M is the sum of the
masses of the two bodies. The corresponding equations of motion are then

q̇i =
∂H

∂pi
= pi, ṗi = −∂H

∂qi
= −µ qi

r3
, i = 1, 2.

Taking µ = 1 and initial conditions

q1(0) = 1− e, q2(0) = 0, p1(0) = 0, p2(0) =

√
1 + e

1− e, (3.4)

the resulting trajectory is an ellipse of eccentricity 0 ≤ e < 1. In this case ϕ[a]
h (respectively, ϕ[b]

h ) corresponds
to the exact solution obtained by integrating the kinetic energy T (p) (resp., potential energy V (q)) in (3.3).

We take e = 0.6, integrate until the final time tf = 20π with the basic splitting method S [4]
h given by (3.1)

and schemes T (k)
h , with k = 1, 2, 3 for several time steps and then we compute the average error in energy

along the integration interval. Figure 1 (left) shows this error as a function of the number of evaluations of
the basic scheme S [4]

h . The diagram clearly exhibits the order of convergence of each method: order 4 for
S [4]
h , and orders 6, 8 and 10 for T (1)

h , T (2)
h and T (3)

h , respectively.
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0
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))
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−16
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10
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(t
)
−
H

0
|/H

0
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t = 20π

Figure 1: Left: Relative error in energy vs. number of evaluations of the basic scheme S [4] (blue) for the different
T -methods: T (1) (orange), T (2) (green) and T (3) (red), in the interval t ∈ [0, 20π]. Right: Evolution of this error along
the integration when t ∈ [0, 2000π]. In this case the step size is chosen so that all schemes involve the same number of
evaluations of the basic method.

In the right panel we show the long-time behavior of the error in energy for each method when the step
size is chosen so that all of them involve the same computational cost. We see that the error in energy is almost
constant for t ≤ 2000π, as is the case for symplectic integrators. In other words, the lack of symplecticity at
order h12 has no effect in this integration interval. In addition, the scheme T (3)

h provides the smaller error.

A linear parabolic equation. Our second example concerns the linear equation in one-dimension

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t) + V (x)u(x, t), u(x, 0) = sin(2πx), (3.5)
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with periodic boundary conditions in the space domain [0, 1]. We take V (x) = 8 + 4 sin(2πx) and partition
the interval [0, 1] into N parts of length ∆x = 1/N , so that the vector U = (U0, . . . , UN−1)T ∈ RN is
formed, with Uj = u(xj , t) and xj = j/N , j = 0, 1, . . . , N − 1. If a Fourier spectral collocation method is
used, we end up with the N -dimensional linear ODE

dU

dt
= AU +B U, (3.6)

where B = diag(V (x0), . . . , V (xN−1)) and A is a (full) differentiation matrix related with the second
derivative ∂xx. The splitting here corresponds to solving separately the systems U̇ = AU and U̇ = B U .
Notice that, since B is diagonal, then

(ehBU)j = ehV (xj)Uj

and only requires the computation of N multiplications. On the other hand, AU = F−1DAF U , where
F and F−1 are the forward and backward discrete Fourier transform, and DA is again diagonal [23]. In
consequence,

ehA U = F−1ehDAF U,
requiring O(N logN) operations when the transformation F (and its inverse) is computed with the fast
Fourier transform (FFT) algorithm.

1.75 2.00 2.25 2.50 2.75 3.00
log10 (Neval)

−12

−10
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−6

−4

lo
g

10
(||
U
−
U

ex
||/
||U

ex
||)

Figure 2: Error vs. number of evaluations of the basic method (3.1) obtained by schemes T (1)
h (orange), T (2)

h

(green) and T (3)
h (red). The blue line corresponds to S [4]

h .

We takeN = 128 and integrate until tf = 1, where we compute the relative error ‖U−Uex‖/‖Uex‖with
each method T (k)

h , k = 1, 2, 3, in addition to the basic scheme (3.1). The ‘exact’ solution Uex is taken as the

12



output of the 8th-order composition method P8S15 of [8]. The corresponding efficiency diagram is shown
in Figure 2, where the same notation is used for the curves depicted. Here also the higher degree integrators
provide the best efficiency.

4 Discussion

4.1 T -methods and R-methods

Methods T (k)
h have indeed close similarities with the compositions R(k)

h (1.9) previously analyzed in [11]:
not only their starting point is the same (the basic time-symmetric method S [2n]

h ), but one has in addition
T

(1)
h = R

(1)
h and also the same coefficients γ[2m] defined in (1.7) enter into their formulation. Finally, they

have the same preservation properties. There is, however, a fundamental difference: whereas T -methods are
linear combinations of symmetric-conjugate compositions only, this is not the case of R-methods, and in fact
schemes R(k)

h involve a much larger number of compositions. This can be clearly seen by writing explicitly
the expression of R(2)

h :

R
(2)
h =

1

8

(
(γ[2n+2]γ[2n], γ[2n+2]γ̄[2n], γ̄[2n+2]γ[2n], γ̄[2n+2]γ̄[2n])

+(γ[2n+2]γ̄[2n], γ[2n+2]γ[2n], γ̄[2n+2]γ̄[2n], γ̄[2n+2]γ[2n]) (4.1)

+(γ[2n+2]γ[2n], γ[2n+2]γ̄[2n], γ̄[2n+2]γ̄[2n], γ̄[2n+2]γ[2n])

+(γ[2n+2]γ̄[2n], γ[2n+2]γ[2n], γ̄[2n+2]γ[2n], γ̄[2n+2]γ̄[2n])

+c.c.
)
,

whereas R(3)
h is the sum of 64 compositions containing 8 basic schemes with weights γ[2n+4]γ[2n+2]γ[2n],

γ̄[2n+4]γ[2n+2]γ[2n], etc. plus their complex conjugate divided by 128. In general, R(k)
h involves the sum of

22k−2 compositions of 2k appropriately weighted basic schemes:

R
(k)
h =

1

22k−1

22
k−2∑
j=1

(
(αj

2k
, . . . , αj1) + c.c.

)
,

where αji are products of the k coefficients γ[2n], . . . , γ[2(n+k−1)] and their complex conjugate. This should
be compared with the T -methods: in general, T (k)

h involves the sum of 2k−1 compositions of 2k basic
schemes. In either case, the computation of the complex conjugate part can be avoided just by taking the
real part, with no extra evaluations of S [2n]

h .
These numbers are collected in Table 1, when schemes R(k)

h (second column) and T (k)
h (last column) are

formulated explicitly. Of course, a recursive implementation of R-methods by applying the procedure (1.9)
turns out to be more efficient. In that case the required computational effort, measured as the number of basic
schemes, is shown in the third column of the table. Again, in this case we only have to compute the real part
in the last iteration.

In view of the number of basic maps required by the recursive implementation of R-methods and the
explicit formulation (1.11) of T -methods, it is natural to ask what are the advantages (if any) of the later
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k R (explicit) R (recursive) T (explicit)

1 2 2 2

2 16 8 8

3 512 32 32
...

...
...

...
m 2m · 22m−2 2m · 2m−1 2m · 2m−1

Table 1: Number of basic maps S [2n]h necessary to compute when formulating R- and T -methods explicitly or recur-
sively (in the case of R-methods).

schemes with respect to the former ones. In this respect, one should take into account that both explicit
formulations (1.11) and (4.1) are directly amenable to parallelization, whereas this is less obvious for the
recursion (1.9).

If one has a computer with, say, 2` threads, it is easy to estimate the effective number of evaluations of
S [2n]
h both for R- and T -methods. Thus, for R(k)

h one has:

• if ` ≤ 2k − 2 then the number of evaluations is 2k;

• if ` > 2k − 2 then the number of evaluations is 2k · 22k−2−`,

whereas this number is considerably reduced for schemes T (k)
h :

• if ` ≤ k − 1 then the number of evaluations is 2k;

• if ` > k − 1 then the number of evaluations is 2k · 2k−1−`.

In Table 2 we collect these numbers for the first values of k in the particular case of 22 = 4 and 25 = 32
threads. We see that the implementation of the explicit expression of the R-methods is more advantageous
than the recursive procedure already with a relatively small number of threads, and that, in any case, T -
methods require less computational effort.

4 threads 32 threads

k R T R T

1 2 2 2 2

2 4 4 4 4

3 128 8 16 8

Table 2: Effective number of evaluations of the basic map S [2n]h when the corresponding R- and T -method is imple-
mented in parallel with 4 and 32 threads.

To better illustrate this issue, we next compare the efficiency of the different methods when implemented
on a computer able to execute 4 threads without loss of performance. The corresponding results are displayed
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Figure 3: Efficiency diagram for R- and T -methods in a computer accepting 4 threads without loss of performance.
Left: Kepler problem. Right: linear parabolic equation.

in Figure 3 for the Kepler problem (left) and the linear parabolic equation (3.5) (right). The gain in efficiency
of the new schemes is clearly visible.

Even in the case when one could run the schemes on a machine such that the effective number of evalua-
tions of both R(k)

h and T (k)
h is the same, i.e., 2k in both cases, the latter turn out to be more efficient. This is

clearly visible in Figure 4, obtained again by applying the previous schemes to the Kepler problem (left) and
the linear parabolic equation (right).

Finally, it is also illustrative to compare the efficiency of the new T -methods with the standard triple-
jump procedure, Eqs. (1.3)-(1.4), both applied to the same basic scheme (3.1). Thus, in Figure 5 we depict
the results achieved by projecting S [6]

h , S [8]
h , and S [10]

h at each step, together with T (k)
h , k = 1, 2, 3 for the

Kepler problem with the same parameters and final time tf = 20π. Here the effective number of evaluations
of the basic scheme has been taken as 2k for T -methods and 3k for triple-jump. Not surprisingly, the new
schemes turn out to be much more efficient.

4.2 Concluding remarks

The standard triple-jump procedure is a popular technique that allows one to construct numerical integrators
for differential equations of arbitrarily high order by composition of a basic integrator of low order. It has
nevertheless certain limitations: the number of basic maps grows rapidly with the order, and the main error
terms are quite large in comparison with other specially built integrators. Moreover, they involve some
negative coefficients when the order r ≥ 3, so that the resulting schemes cannot be used in particular when
the initial value problem (1.1) results from the space discretization of a parabolic partial differential equation
involving the Laplace operator. In this context it is quite natural to explore whether it is still possible using the
triple-jump technique (1.3), but with the complex coefficients furnished by (1.5) as long as their real part is
positive. It has been established that this is indeed the case, although once again they require an exceedingly
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Figure 4: Efficiency diagram for R- and T -methods when the effective number of evaluations of the basic scheme is
the same (2k in both cases). Left: Kepler problem. Right: linear parabolic equation.

large number of basic methods. For this reason, other alternatives for constructing high-order composition
methods have also been proposed [8, 12, 17]. Among them, the class of schemes (1.8) possess some special
features: starting from a time-symmetric basic scheme S [2n]

h of order 2n, it is possible to construct recursively
methods of order 2n + 2k, k = 1, 2, . . . that are still time-symmetric up to order 4n + 3. Moreover, if the
differential equation in (1.1) has some qualitative properties (such as symplecticity or volume preservation)
then these properties are still shared by the numerical solution up to order 4n+ 3 [11].

Methods (1.9) are based on the simple symmetric-conjugate composition (1.6). As shown in [7], sym-
metric-conjugate composition methods still possess remarkable preservation properties when projected on
the real axis at each integration step, and so it makes sense to consider more general linear combinations of
methods within this class. The corresponding analysis has been carried out here, and as a result we have
built a new class of schemes that essentially have the same preservation properties as methods (1.9), but
requiring a much reduced computational cost. In addition, these methods are particularly well suited for their
parallel implementation. The examples included show a significant improvement in efficiency with respect
to schemes (1.9) and those obtained by applying the triple-jump procedure.
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