
Received August 24, 2021, accepted October 10, 2021, date of publication October 13, 2021, date of current version October 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3119849

System Stability Under Adversarial Injection of
Dependent Tasks
VICENT CHOLVI 1, JUAN ECHAGÜE 1,
ANTONIO FERNÁNDEZ ANTA 2, (Senior Member, IEEE),
AND CHRISTOPHER THRAVES CARO 3
1Department of Computer Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain
2IMDEA Networks Institute, 28918 Madrid, Spain
3Departamento de Ingeniería Matatemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción 4030000, Chile

Corresponding author: Vicent Cholvi (vcholvi@uji.es)

This work was supported in part by the Regional Government of Madrid (CM) Grant EdgeData-CM (P2018/TCS4499) cofounded by
Fondo Social Europeo (FSE) and Fondo Europeo de Desarrollo Regional (FEDER), and in part by the Ministry of Science and Innovation
Grant PID2019-109805RB-I00 (ECID) cofounded by FEDER.

ABSTRACT Technological changes (NFV, Osmotic Computing, Cyber-physical Systems) are making very
important devising techniques to efficiently run a flow of jobs formed by dependent tasks in a set of servers.
These problem can be seen as generalizations of the dynamic job-shop scheduling problem, with very
rich dependency patterns and arrival assumptions. In this work, we consider a computational model of a
distributed system formed by a set of servers in which jobs, that are continuously arriving, have to be
executed. Every job is formed by a set of dependent tasks (i. e., each task may have to wait for others to
be completed before it can be started), each of which has to be executed in one of the servers. The arrival of
jobs and their properties is assumed to be controlled by a bounded adversary, whose only restriction is that
it cannot overload any server. This model is a non-trivial generalization of the Adversarial Queuing Theory
model of Borodin et al., and, like that model, focuses on the stability of the system: whether the number of
jobs pending to be completed is bounded at all times. We show multiple results of stability and instability for
this adversarial model under different combinations of the scheduling policy used at the servers, the arrival
rate, and the dependence between tasks in the jobs.

INDEX TERMS Tasks scheduling, task queuing, dependent tasks, adversarial queuing models, stability.

I. INTRODUCTION
In this work, we consider a model of jobs formed by depen-
dent tasks that have to be executed in a set of servers. The
dependencies among the tasks of a job restrict the order and
time of their execution. For instance, a task q may need
some information from another task p, so that the latter must
complete before q can be executed. This model embodies, for
instance, the dynamics of Network Function Virtualization
systems [1], [2], Osmotic Computing [3], or Cyber-physical
Systems [4], [5]. In a Network Function Virtualization (NFV)
system, network services (which are job types) are specified
as service chains, obtained by the concatenation of network
functions. These network functions are dependent computa-
tional tasks to be executed in the NFV Infrastructure (e.g.,
servers distributed over the network). In an Osmotic Com-

The associate editor coordinating the review of this manuscript and

approving it for publication was Xueguang Zhang .

puting (OC) system, an application is divided into microser-
vices that are distributed and deployed on an edge/cloud
server infrastructure. The user requests (jobs) involve pro-
cessing (tasks) in several of these microservices, as defined
by an orchestrator that takes into account the dependencies
between the microservices. In that line, it also encompasses
a number of features of Orchestration Languages (see, for
instance, [6]), which propose a way to relate concurrent tasks
to each other in a controlled fashion: the invocation of tasks to
achieve a goal, the synchronization between tasks, managing
priorities, etc.

Cyber-physical Systems (CPS) are becoming the standard
in the automotive and avionics industry, among others. ACPS
contains multiple subsystems, each with a physical and a
computing part, forming a distributed processing system. The
computing part of a subsystem is in charge of sensing or
actuating in the environment via the physical part. It also com-
municates and collaborates with the rest of the system. Jobs

139516 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-5395-7015
https://orcid.org/0000-0001-8310-6713
https://orcid.org/0000-0001-6501-2377
https://orcid.org/0000-0002-9909-5315
https://orcid.org/0000-0002-5358-1705

V. Cholvi et al.: System Stability Under Adversarial Injection of Dependent Tasks

in a CPS usually involve performing dependent coordinated
tasks in multiple subsystems.

In all these scenarios, the problem can be seen as a gen-
eralization of job-shop scheduling [7], in which tasks can be
executed in parallel and the dependencies among tasks can
have many different shapes (e.g., directed acyclic graphs [4],
[5]). Moreover, in our model, we consider a dynamic system
in which job requests (or jobs for short) are continuously
arriving, as in the dynamic job-shop scheduling problem with
new job arrivals [8], [9]. Each job contains the whole spec-
ification of its dependent tasks: the collection of tasks to be
executed, the server that must execute each task, the time the
execution incurs, the dependencies among tasks, etc. Instead
of assuming stochastic job arrivals into the system, in our
model we assume the existence of an adversary that has full
control of the job requests arrivals, and the specification of
their tasks. The only restriction on the adversary is that no
server can be overloaded in the long run (some burstiness in
the load is allowed).

In this adversarial framework, the objective is to achieve
stability in the system. This means that the system is able to
cope with the adversarial arrivals, maintaining the number of
pending job requests in the system bounded at all times. (This
usually also implies that all the job requests are eventually
completed.) Observe that the framework assumes that the
resource allocation is done by the adversary (since it chooses
where tasks have to be executed and in which order). Hence,
the only tool we have to achieve stability is the scheduling of
tasks in the different servers.

The study of the quality of service that can be provided
under worst-case assumptions in a given system (NFV or OC,
for instance) is important in order to be able to honor Service
Level Agreements (SLA). The positive results we obtain in
this paper show that it is possible to guarantee a certain
level of service even under pessimistic assumptions. These
results can also be used to separate resource allocation and
scheduling as long as the resource allocation guarantees that
servers are not overloaded, since we prove that it is possible
to guarantee stability in this case.

A. RELATED WORK
As has been pointed out previously, in real networks the
assumption that input traffic is characterized by a stochas-
tic process may not be realistic, in general [10]. Therefore,
to capture the bursty phenomenon in job arrivals, new models
have been proposed [11], [12]. These models consider the
time evolution of a job-routing network as a game between a
malicious adversary that has the power to perform a number
of actions (such as injecting jobs at particular nodes, choosing
their destination, routing them, etc.) and the underlying sys-
tem. Then, based on the knowledge of behavior of the system,
the adversary can devise the scenario that maximizes the
‘‘stress’’ on the system. Consequently, it provides a valuable
tool with which to analyze the network in a worst-case sce-
nario. On the one hand, since an adversary could encompass a
wider range of actions than stationary inputs, it may produce

unstable scenarios that are not allowed using a stochastic
model. That is, the stability results derived using adversarial
models are, in the above mentioned sense, more general than
those obtained using stationary models. On the other hand,
positive results (i.e., stability results) are more robust in that
they do not depend on particular stationary assumptions about
the input sequences. For many years, the common belief was
that only overloaded queues1 could generate instability, while
underloaded ones could only induce delays that are longer
than desired, but always remain stable. This general wisdom
goes back to the models of networks originally developed by
Kleinrock [13], and based on Jackson queuing networks [14].
Stability results for more general classes of queuing net-
works [15], [16] also confirmed that only overload generates
instability. This belief was shown to be wrong when it was
observed that, in some networks, the backlogs in specific
queues could grow indefinitely even when such queues were
not overloaded [17], [18].

Motivated by this fact, there has been an effort to under-
stand the factors that can affect the stability of a queueing
network. In [19], the authors provide some results regarding
some conditions that render bounded queue lengths both for
a single queue and for feedforward networks. In [20], it is
shown a class of networks which, although queues are served
substantially more quickly than the rate at which tasks are
injected, their mean service times are as small as desired.
By using a simple queueing network, in [21] it was shown
that conditions on the mean interarrival and service times are
not enough to determine its stability under a particular policy.

It was later shown that instability could also arise in some
types of Kelly networks [10], [22] (a network is said to be of
the Kelly type [16] when servers have the same service rates).
These results in the Adversarial Queuing Theory (AQT)
model aroused an interest in understanding the stability prop-
erties of packet-switched networks. This has attracted the
attention of many researchers (see, for instance, the results
in [12], [23]–[25]).

Stability of specific scheduling policies and networks was
considered in [12], [26]–[28], and in [29]–[31] it has been
considered the impact of network topology on injection
rates that guarantee stability. Aiello et al. [32] extended and
modified the model of adversarial queueing and showed
how to route packets by assigning them suitable paths so
that the queues at the nodes are polynomially bounded and
that each packet has a polynomially bounded delay time.
Kiwi et al. [33] consider a system in which requests (packets)
can be of different classes, and servers are subject to setup
delays when switching the class served.

Regarding the problem of quantifying the required buffer
size to avoid overflows under a (ρ, σ)-restricted injections
(but without the requirement that the forwarding protocol
must be greedy), Miller and Patt-Shamir [34] showed that a
centralized algorithm can route any instance using O(ρ, σ)

1A server queue is considered to be overloaded when the total arrival rate
at the server is greater than the service rate.

VOLUME 9, 2021 139517

V. Cholvi et al.: System Stability Under Adversarial Injection of Dependent Tasks

buffer space at every node, in the case of a single-destination
tree. In [35], [36] the authors show that 2(ρ log n + σ)
buffer space are necessary and sufficient for protocols with
constant locality (where n denotes the number of nodes).
Miller et al. [37] improve the results in [36] regarding both
the injection rate and the buffer space. Even and Medina [38]
provide a randomized algorithmwith an expected competitive
ratio ofO(log n) for the uni-directional line, and a centralized
deterministic algorithm with an O(logO(1)(n)) competitive
ratio for uni-directional grids. Finally, an improvement over
the O(logO(1)(n)) competitive ratio is provided in [39], and
for the same problem, in [40] they provide a constant offline
approximation algorithm.

B. OUR WORK
In this paper, we introduce a model to analyze queuing
systems of computational jobs formed by dependent tasks.
We call this model Adversarial Job Queueing (AJQ). The
main contribution of the AJQ model is a novel approach for
modeling tasks and their dependencies in the computational
job system which is much richer than the modelling capa-
bilities of AQT. As mentioned, a job is composed by a set
of tasks, each described by some parameters, like the server
in which the task must be executed or the time that the task
needs to be completed. Additionally, each task depends on
other tasks of the same job (i. e., subsets of tasks that must be
completed before the given task starts).

The rich variety of task dependencies that we allow is,
as far as we know, unique of our formalism, and makes
AJQ very adaptive to model a variety of complex scenarios
(including AQT as a special case). For instance, our model
allows imposing that a task q cannot start until a set P of
other tasks of the same job are completed. This expresses a
scenario in which task q aggregates the results obtained by the
tasks in P. One example of this configuration is aMapReduce
computation [41], in which the reduce task has to wait for
all the map tasks to complete. This dependence in which the
task q needs all the tasks in set P to complete is called an
AND dependence. However, our formalism allows for more
expressiveness by means of the OR dependence, in which
several AND dependencies are combined. In this case, a task
q has several sets P1,P2, . . . ,Pl , and it waits for any set Pi to
be completed. This configuration appears, for instance, when
several redundant tasks are used, so that the output of any of
them is equally valid as input for q [42].
As mentioned, tasks are processed in servers. When tasks

are active (ready to be executed) at a server but not being pro-
cessed yet, they are maintained in a queue at the server. It is
assumed that each server has an infinite buffer to store its own
queue of active tasks. We use a bounded adversarial setting in
our model. In this setting, we assume that an adversary injects
jobs in the system, choosing the time and the characteristics of
each injected job, with certain limits. This leads to worst-case
system analyses. A desirable property under this model is
that each server’s service rate matches its injection rate for an

arbitrarily long period of time, which implies the stability of
the system, since the number of jobs at any time is bounded.

In the rest of this paper, we define the model more formally
and provide results regarding both the stability and instability
under different assumptions. The list of our results is as
follows.
• From the point of view of the dependencies between
tasks, we show that if they are feed-forward (see below)
then the system is stable.

• From the point of view of the scheduling policies (i. e.,
how a server decides which task to execute next),
we observe that, since AJQ is more general than AQT
(once we do the appropriate matching between jobs
and packets, and between links and servers) unstable
scheduling policies in AQT are easily translated into
policies that are unstable in AJQ.

• On the other hand, we show that some stable scheduling
policies in AQT remain stable in AJQ. For instance,
we prove that LIS, which gives priority to older
tasks/packets (and is stable in AQT for any rate below
1), is stable in AJQ if the injection rate of jobs is below
a certain value that depends on the tasks processing time
and activation delay.

• Finally, we show that there are other policies that are
stable in AQT but unstable in AJQ.

A preliminary version of this paper was published in [43].

II. MODEL
In this section, we define the Adversarial Job Queueing
(AJQ) model. The AJQmodel is designed to analyze systems
of queueing jobs. The three main components of an AJQ
system (S,P,A) are:
• a set S = {s1, s2, . . . , sn} of n servers,
• an adversary A who injects jobs in the system, and
• a scheduling policy P, which is the criteria used by
servers to decide which task to serve next among the
tasks waiting in their queues.

The system evolves over time continuously (unlike AQT,
which assumes discrete time). In each moment, the adversary
may inject jobs to the system while the servers process those
jobs. In each moment as well, some tasks may be waiting
to be executed, others may be in process, and others may
be completed. A job is considered completed when all its
tasks are completed. When a job is completed, all its tasks
disappear from the system.

Each job 〈K , f K 〉 consists of a finite set K of non-
preemptive tasks and a function f K that determines dependen-
cies among the tasks. (For simplicity we will denote the job
〈K , f K 〉 by its task set K .) Let K = {k1, k2, k3, . . . , klK } be a
job, where each ki is a task of K . The integer lK denotes the
number of tasks ofK . Each task ki is defined by three parame-
ters 〈sKi , d

K
i , t

K
i 〉. The parameter sKi ∈ S is the server in which

ki must be executed. The parameter dKi ≥ 0 is the activation
delay of ki. The parameter tKi > 0 is the processing time of
ki, i. e., the time server sKi takes to execute task ki. It is worth
mentioning that the servers can be seen as heterogeneous

139518 VOLUME 9, 2021

V. Cholvi et al.: System Stability Under Adversarial Injection of Dependent Tasks

since the servers may have different processing capabilities.
Nevertheless, this does not play any role in our model since
the server and time of execution for each task is determined
by the adversary.

Let (S,P,A) be an AJQ system. Let Tmax := maxi,K {tKi }
and Tmin := mini,K {tKi } be the maximum and minimum
time, respectively, required to complete a task of any job K
injected in the system. We assume that these two quantities
are bounded and do not depend on the time. Let Dmin :=
mini,K {dKi } and Dmax := maxi,K {dKi } be the minimum and
maximum activation delay, respectively, among all tasks of
any job injected in the system. Since, dKi ≥ 0 it follows
that Dmin ≥ 0. On the other hand, we assume that Dmax is a
constant that may depend on the parameters of the system, but
it does not change over time. Finally, we use L = maxK {lK }
to denote the maximum number of tasks (length) of a job,
which we assume is also a constant that does not depend on
the time.

A. FEASIBILITY
Let P(K) be the power set of K , i. e., the set of all subsets
of K . Furthermore, let P2(K) be the second power set of K ,
i. e., the set of all subsets ofP(K). Given a job K , a feasibility
function f K : K → P2(K) determines which tasks of K
are feasible, which means that they are ready to be executed,
once the activation delay has passed. Let f K (ki) be equal to
{A1,A2, . . . ,A`i}. The sets Ax for 1 ≤ x ≤ `i are called
feasibility sets for ki. Then, the task ki is feasible at a time
t if there exists a feasibility set Ax for ki such that all tasks in
Ax have been completed by time t . Otherwise, ki is blocked,
and still has to wait for some other tasks of K to complete
before becoming feasible.

The activation delay dki of a task ki represents a setup cost,
expressed in time, that ki must incur once it becomes feasible
and before it can start to be processed. If t is the time instant
at which ki becomes feasible, then ki will incur its activation
delay during time interval [t, t + dki]. Hence, it cannot be
executed during such interval, in which we say that task ki
is a delayed feasible task (or only delayed task). When ki
completes its activation delay at time t+dki , it can be served,
and since that moment will be referred to as an active feasible
task, or simply active task. Equivalently, a feasible task is
active if it has been feasible for at least dki time. A job with
at least one feasible (resp., active) task will be referred to as
a feasible (resp., active) job.

With the feasibility function, a task cannot start being
served until some given state of the tasks in the same
job holds. Hence, the feasibility function can be used, for
instance, to force the execution sequence of the tasks of a
job. It enhances the modeling capabilities of the AJQ model
by allowing the coexistence of AND dependencies and OR
dependencies, as mentioned.

B. DOABILITY
Let K be a job and ki be a task of K . We say that ki is an
initial task of K if ∅ ∈ f K (ki). Observe that all initial tasks

FIGURE 1. Table 1a shows the feasibility function of two different jobs J
and K defined over the same set of tasks {1, 2, 3, 4, 5}. Column f J (·)
shows the feasibility function of job J , while column f K (·) shows the
feasibility function of job K . Job J is not doable, since tasks 2, 3, 4 and 5
cannot be assigned a layer. On the other hand, job K is doable. Indeed,
the number of each task in job K corresponds to its layer. Subfigure 1b
shows the skeleton of jobs J and K presented in the table, which are the
same.

ki are automatically feasible at the time the job K is injected,
and they become active dKi time later.

We assign a layer λ(K , i) to the tasks ki of a job K as
follows. All initial tasks have layer λ(K , i) = 1. For any
j > 1, a task ki is assigned layer λ(K , i) = j if it is not feasible
when all tasks of layers 1, . . . , j − 2 are completed, but it
becomes feasible when additionally the tasks of layer j−1 are
completed. Let λK ≤ lK denote the number of layers of job
K . If a task ki has layer λ(K , i) = `, then there is a feasibility
set Ax ∈ f K (ki) for ki such that Ax ⊆ {kj ∈ K : λ(K , j) < `}.
Observe that the above definition does not guarantee that

all tasks of a job will be assigned a layer. In fact, it is not
hard to create jobs that have tasks dependencies (e.g., cyclic
dependencies) that prevent some tasks from being assigned
a layer. Figure 1 shows an example of a job whose tasks
get layer numbers and an example with tasks that cannot be
assigned a layer number.

We want every job to be potentially completed. Therefore,
we impose some restrictions over every feasibility function.
Definition 1: Let K be a job and f K : K → P2(K) be its

feasibility function. We say that K is doable if every task ki
of K can be assigned a layer.
It is worth mentioning that, deciding whether a job is doable
or not as defined can be computed in polynomial time with
respect to the size of the job (that takes into account the
number of tasks and the size of the feasibility function).
Indeed, layer 1 can be computed by checking which tasks
have the empty set as a feasibility set. Then, a simple recur-
sive algorithm computes all tasks in layer i using all the tasks
in layers 1, 2, . . . , i− 1.

We show in the next proposition, that the condition of
doable job is necessary for a job to be completed, and that
it is also sufficient if it is the only job injected in a system
and the scheduling policy is work conserving.
Proposition 1: Let (S,P,A) be a system where the adver-

saryA injects only one jobK andP is work conserving. Then,
K can be completed if and only if K is doable.

Proof: On one hand, ifK is doable,K can be completed,
since until that happens, there will always be at least one

VOLUME 9, 2021 139519

V. Cholvi et al.: System Stability Under Adversarial Injection of Dependent Tasks

feasible task not completed. To see this, assume by contra-
diction that there is a moment before K is completed such
that no task is feasible. Consider any task ki among those
that have not been completed yet with the smallest layer
(since K is doable, all tasks have a layer). Therefore, ki has a
feasibility set that is a subset of the completed tasks. Hence,
ki is feasible, which is a contradiction. Then, since there are
always feasible tasks, their activation time is bounded, there
are no other jobs in the system, and P is work conserving,
eventually all tasks of K will become active, be scheduled
and processed, and complete.

On the other hand, assume that job K is not doable but
completes all its tasks in system (S,P,A). Then, all tasks in
K become feasible at some point in time, even those that are
not assigned a layer. Consider the first task ki that becomes
feasible among those that have no layer (break ties randomly).
If this happens at time t , let U be the set of tasks that
completed by time t , and let ` = maxkj∈U λ(K , j). Then, from
the procedure to assign layers to tasks, ki would have been
assigned a layer λ(K , i) ≤ `+ 1, which is a contradiction.

C. TOPOLOGIES
Let K be a job, and ki and kj be two tasks of K . We say that ki
depends on kj if there exists a feasibility set Ax ∈ f K (ki) for
ki such that kj ∈ Ax .
Definition 2: The skeleton of a job K is the directed graph

HK = (V ,E), where V (HK) := {k1, k2, . . . , klK } and
E(HK) := {(kj, ki) : ki depends on kj}.
It is worthwhile to mention that a skeleton does not define

the feasibility function of a job. The two jobs presented
in Figure 1 are different jobs on the same set of tasks and
with the same skeleton. Nevertheless, one of the two jobs
in Figure 1 is doable and the other is not. Hence, the skeleton
does not even differentiate between doable and not doable
jobs.

The topology of a job K is the directed graph obtained by
mapping the skeleton of K into the set of servers, where each
task ki is mapped into its corresponding server sKi .
Definition 3: Given a system (S,P,A), the topology of

the system is the directed graph obtained by overlapping the
topology of all jobs injected by A in the system.

In Figure 2, subfigures 2a and 2c show the skeleton of two
jobs whose feasibility functions are described in tables 2b
and 2d. Subfigures 2a and 2c also show the layers of the jobs.
The topology of a system in which only those two jobs are
injected is shown in Subfigure 2e.

D. SCHEDULING POLICY
We assume that each server has an infinite buffer to store its
own queue of tasks. Every active task waits in the queue of
its corresponding server. In each server, a scheduling policy
P specifies which task of all active tasks in its queue to serve
next. We assume that scheduling policies are greedy/work
conserving (i. e., a server always decides to serve if there is
at least one active task in its queue). Examples of policies are
First-In-First-Out (FIFO) which gives priority to the task that

first came in the queue, or Last-In-First-Out (LIFO) which
gives priority to the task that came last in the queue. Other
policies will be defined later in the document.

E. ADVERSARY
We assume that there is a malicious adversary A who injects
doable jobs into the system. In order to avoid trivial over-
loads, the adversary is bounded in the following way. Let
Ns(I) be the total load injected by the adversary during time
interval I in server s (i. e., Ns(I) =

∑
tKi over all jobs K

injected during I and tasks ki such that sKi = s). Then, for
every server s and interval I the adversary is bounded by:

Ns(I) ≤ r|I | + b, (1)

where 0 < r ≤ 1 is called the injection rate, and b > 1
is called the burstiness allowed to the adversary. Observe
that (1) implies maxi,K {tKi } ≤ b, since jobs are injected
instantaneously. An adversary that satisfies (1) is called a
bounded (r, b)-adversary, or simply an (r, b)-adversary.
As mentioned, the system formed by an (r, b)-adversary

A injecting doable jobs in the set of servers S using the
scheduling policy P is called an AJQ system (S,P,A).

The number of active tasks in the queue of server s at time
t is denoted Qs(t).
Definition 4: Let (S,P,A) be an AJQ system. We say that

the system (S,P,A) is stable if there exists a value M such
that Qs(t) ≤ M for all t and for all s ∈ S, where M may
depend on the system parameters (adversary, servers, and jobs
characteristics) but not on the time.
Definition 5: Let P be a policy. If a system (S,P,A) is

stable against any (r, b)-adversary A with rate r < 1, then
we say that the policy P is universally stable.
In the next sections, we provide some results regarding

both the stability and instability in the AJQ model.

III. STABILITY AND INSTABILITY OF SCHEDULING
POLICIES
From the point of view of the scheduling policies (i. e.,
how a server decides which task to choose from the set of
active tasks pending to be executed), in this section we show
stability of the policy that gives priority to the task (job)
that has been for the longest period of time in the system.
On the other hand, we show that other well-known scheduling
policies are not stable.

A. STABILITY OF LIS
The LIS (Longest-In-System) scheduling policy gives priority
to the task (and hence the job) which has been in the system
for the longest time. In this subsection, we show that any
system (S,LIS,A) is stable, for any (r, b)-adversary A with
r < Tmin/(Tmax+Dmax). We start by showing a bound on the
time that a job spends in the system until it is done.

Consider a job K = {k1, k2, . . . , klK } injected at time T0.
Let Ti be the first time in which all tasks in the i-th layer of K
are completed. The time TλK is the time when K is done. Let
T be some time in the interval [T0,TλK]. We denote by gT

139520 VOLUME 9, 2021

V. Cholvi et al.: System Stability Under Adversarial Injection of Dependent Tasks

FIGURE 2. Subfigure 2a shows the skeleton of job R with set of tasks {1, 2, 3, 4, 5, 6}. The layers of the job
are circled in red. Table 2b shows the feasibility function of job R and the servers to which the tasks of job
R are assigned. Subfigure 2c shows the skeleton of job M with set of tasks {1, 2, 3, 4, 5}. The layers of the
job are circled in red. Table 2d shows the feasibility function of job M and the servers to which the tasks of
job M are assigned. Subfigure 2e shows the topology of job R (described in Figure 2a and Table 2b) in solid
lines, the topology of job M (described in Figure 2c and Table 2d) in dashed lines, and, with all the lines,
the topology of a system in which only these two jobs are injected by the adversary.

the injection time of the oldest job that is still in the system
at time T . We define

c := max
T∈[T0,TλK]

{T − gT }.

Lemma 1: Let (S,LIS,A) be an AJQ system where A is
an (r, b)-adversary with r < Tmin/(Tmax + Dmax). Then,

TλK − T0 ≤
(
Dmax +

r(c+ b)
Tmin

(Tmax + Dmax)
)
.

Proof: Let K be a job. Let k∗ be the last task to be
processed in the i-th layer ofK . Hence, k∗ is complete at time
Ti. All tasks in the i-th layer of K become feasible by time
Ti−1, including k∗. From definition of c, only tasks injected in
the interval [Ti−1−c,T0] can block k∗ in its server. The tasks
injected in this interval, including all the tasks in the i-th layer
ofK , are at most r(T0−Ti−1+c+b)/Tmin. All these tasks are
processed in at most r(T0−Ti−1+ c+b)(Tmax +Dmax)/Tmin

time. Hence:

Ti ≤ Ti−1 + Dmax

+
r(T0 − Ti−1 + c+ b)

Tmin
(Tmax + Dmax)

= Ti−1

(
1−

r(Tmax + Dmax)
Tmin

)
+Dmax +

r(T0 + c+ b)
Tmin

(Tmax + Dmax)

Let ε := 1−r(Tmax+Dmax)/Tmin. Solving the recurrence,
we obtain:

TλK ≤ ε
λK T0(
Dmax +

r(T0 + c+ b)
Tmin

(Tmax + Dmax)
) λK−1∑

i=0

εi

= ελK t0

VOLUME 9, 2021 139521

V. Cholvi et al.: System Stability Under Adversarial Injection of Dependent Tasks

+

(
Dmax +

r(T0 + c+ b)
Tmin

(Tmax + Dmax)
)

×

(
1− ελK

1− ε

)
=

(
Dmax +

r(c+ b)
Tmin

(Tmax + Dmax)
)
+ T0.

Which proves the lemma.
Since we are considering a case where r < Tmin/(Tmax +

Dmax), it holds that r(Tmax+Dmax)/Tmin = 1−ε < 1. Hence,
we rewrite the lemma as follows:

TλK − T0 ≤ (1− ε)c+
(
Dmax +

rb
Tmin

(Tmax + Dmax)
)
.

Theorem 1: Let (S,LIS,A) be an AJQ system whereA is
an (r, b)-adversary with r < Tmin/(Tmax + Dmax). Then, all
jobs spend less than(

DmaxTmin + rb(Tmax + Dmax)
Tmin − r(Tmax + Dmax)

)
time in the system.

Proof: It is worth mentioning that c is the only time-
depending parameter in the bound given by the previous
lemma. Hence, if we show that c actually does not depend
on time, we will be showing the theorem. We prove it by
contradiction. Assume that there is a moment in which c is
strictly larger than:(

DmaxTmin + rb(Tmax + Dmax)
Tmin − r(Tmax + Dmax)

)
.

Hence, there has been a job in the system for a period of
time strictly longer than:(

DmaxTmin + rb(Tmax + Dmax)
Tmin − r(Tmax + Dmax)

)
.

If we apply the previous lemma to this job, it should have
been absorbed in at most:

(1− ε)c+
(
Dmax +

rb
Tmin

(Tmax + Dmax)
)

= c− ε
(
DmaxTmin + rb(Tmax + Dmax)

Tmin − r(Tmax + Dmax)

)
+

(
Dmax +

rb
Tmin

(Tmax + Dmax)
)

< c

time, which is a contradiction.

B. SCHEDULING POLICIES THAT ARE UNSTABLE
Here, we show that a number of well-known policies
such as First-In-First-Out (FIFO), Nearest-To-Go (NTG),
Furthest-From-Source (FFS), and Last-In-First-Out (LIFO),
are unstable, even for arbitrarily small injection rates. While
the meaning of FIFO and LIFO in the context of AJQ is clear
(and similar as in AQT), we need to define NTG and FFS.

For a task ki of job K the distance from source is the
distance between the layer of ki and layer one (λ(K , i) − 1),

and the distance to go is the distance between the number of
layers of K and ki’s layer (λK − λ(K , i)). Hence, FFS gives
priority to the task with largest distance from source andNTG
gives priority to the task with smallest distance to go.
Theorem 2: FIFO, NTG, FFS, and LIFO are unstable for

every r > 0.
Proof: First, we highlight that, given a system (G,P,A)

in AQT, it can be modeled as a system (S,P,A′) in AJQ as
follows:

• For each link l inG, there is a unique server sl in S, which
we call its equivalent server.

• The scheduling policy P is the same both in AQT and in
AJQ.

• For each packet p injected byA, the adversaryA′ injects
a job K such that:

- - For each link l in the path of packet p, there is a task
kl in K to be executed in server sl .

- - If l is the first link in the path of p, then kl is the
initial task of job K .

- - If the path of packet p traverses link l immediately
before it traverses link l ′ then task kl′ only depends
on task kl .

- - The processing time of each task is 1 and its activa-
tion delay is 0.

Clearly, if (G,P,A) is unstable for a given injection rate then
(S,P,A′) will be also unstable for the same injection rate
(i. e., all the unstable scheduling policies in AQT are also
unstable in AJQ).

By using the results in [10], we have that NTG, FFS, and
LIFO are unstable (in AQT) for every r > 0, and by using the
result in [26] (in AQT) we have that FIFO is also unstable for
every r > 0. Therefore, the theorem directly follows.

IV. TOPOLOGICAL STABILITY
In this section we show stability for systems with feed-
forward topology. We say that a system has feed-forward
topology if it is possible to enumerate the servers from 1 to n,
so that every directed arc in the topology of the system goes
from a server with a smaller label to a server with a larger
label.
Theorem 3: Let (S,P,A) be an AJQ system with feed-

forward topology. Then, for any policy P and any (r, b)-
adversary A with injection rate r ≤ 1, the system (S,P,A)
is stable.

Proof: Let (S,P,A) be an AJQ system with feed-
forward topology. Without loss of generality, assume that
the ordering of the set of servers that makes the system
feed-forward is s1, s2, . . . , sn. For simplicity, we only use the
position j to denote server sj. Let τj(t) be the time that server
j would need to completely serve (drain) all its pending tasks
present in the system at time t if they were all active and no
new task were injected:

τj(t) :=
∑
K (j,t)

tKi ,

139522 VOLUME 9, 2021

V. Cholvi et al.: System Stability Under Adversarial Injection of Dependent Tasks

whereK (j, t) is the set of pairs (K , i) such thatK was injected
by time t , sKi = j, and task ki has not been completed in server
j. We define a potential function 8(·) as follows:

8(0) := Dmax + b; 8(1) := τ1(0)+8(0)+ b,

where τj(0) denotes the time server j requires to process all
its tasks present in the system before the adversary starts
injecting jobs in the system. For 2 ≤ j ≤ n, 8(j) is defined
as:

8(j) = τj(0)+8(0)+

∑j−1
i=18(i)

Tmin
· L · (Tmax + Dmax)+ b,

To prove this theorem, we show that for all 1 ≤ j ≤ n and
for all t , τj(t) ≤ 8(j). We use induction on j, the position of
the servers in the ordering of S.

A. CASE j = 1
Consider some time T . We prove that τ1(T) ≤ 8(1). First,
assume that for all time t ∈ [0,T] there is at least one
active task in the queue of server 1. Then, server 1 has been
continuously working during the interval [0,T].
The time required to process all its queue at time T is the

time it would need to process the tasks present at time 0 in its
queue, plus the time required to process the load injected by
the adversary during that interval, minus the load processed
during that interval. In the form of an equation, the previous
amount of time is:

τ1(T) ≤ τ1(0)+ T + b−T = τ1(0)+ b ≤ 8(1).

Otherwise, there exists sometime t ∈ [0,T] such that there
is no active task in the queue of server 1 at time t . Let t∗

be the largest of such times. Note that, in that case, all tasks
injected in server 1 before time t∗, and present at time t∗, were
injected after time t∗−Dmax , since every task injected before
that time is active at time t∗. Therefore, by restriction (1),
it holds: τ1(t∗) ≤ Dmax + b.

Then, the time required to process all its queue at time
T is the time it would need to process the tasks present at
time t∗, plus the time required to process the load injected
by the adversary during the interval [t∗,T], minus the load
processed during the same interval of time. In the form of an
equation, the previous amount of time is:

τ1(T) ≤ τ1(t∗)+ (T − t∗)+ b− (T − t∗)

≤ Dmax + b+ b

= 8(0)+ b

≤ 8(1).

B. CASE j > 1
The inductive hypothesis is τi(t) ≤ 8(i) for all for all t and
for all 1 ≤ i < j. By inductive hypothesis then, the amount

of tasks in servers i < j is at most
∑j−1

i=18(i)
Tmin

, the number of

tasks they can trigger in server j is at most
∑j−1

i=18(i)
Tmin

· L, and

the processing time for all those tasks is at most
∑j−1

i=18(i)
Tmin

·L ·
(Tmax + Dmax).
Consider again sometime T . We consider two cases equiv-

alent to those considered in the case j = 1. First, server j
has at least one active task in its queue during all the interval
[0,T]. Therefore, server j has processed tasks during all that
time. In that case, server j would need all the time required
to process the tasks present at time 0 in its queue, plus all
the time required to process the tasks triggered by tasks in
previous servers, plus all the time required to process the load
injected by the adversary during the interval [0,T], minus the
load processed during that interval. Which, in the form of an
equation is:

τj(T) ≤ τj(0)+

∑j−1
i=18(i)

Tmin
· L · (Tmax + Dmax)

+T + b−T

= τj(0)+

∑j−1
i=18(i)

Tmin
· L · (Tmax + Dmax)+ b

≤ 8(k).

Assume now that there is some time t ∈ [0,T] such that
there is no active task in the queue of server j at time t . Let
t∗ be the largest such time. An analysis equivalent to the one
presented in the case j = 1 shows that τj(t∗) ≤ Dmax + b.
Therefore, if we compute τj(T) equivalently to the previous
cases, we obtain:

τj(T) ≤ τj(t∗)+

∑j−1
i=18(i)

Tmin
· L · (Tmax + Dmax)

+ (T − t∗)+ b− (T − t∗)

≤ Dmax + b+

∑j−1
i=18(i)

Tmin
· L · (Tmax + Dmax)

+ b

≤ 8(k).

Hence, the time required by server j to drain its queue is
bounded by 8(j), a function that does not depend on time.
In conclusion, at any time, there are at most 8(j)/Tmin tasks
in the queue of server j, and the system is stable.

We showed that a feed-forward topology is a sufficient con-
dition for stability in a system. Nevertheless, this condition
is not necessary. Indeed, as we have shown before, for any
system (G,P,A) in the AQT model, there is an equivalent
system (S,P,A′) in the AJQ model. We know that, in the
AQT model, any system with a ring network (i. e., a directed
cycle) is stable with any scheduling policy and against any
adversary. Therefore, the equivalent system in the AJQmodel
will also be stable. Nevertheless, such AJQ system has a
topology that is not feed-forward.

V. JOB PROPERTIES THAT CAN AFFECT THE STABILITY
OF THE SYSTEM
In this section, we show that some of the features of the
injected jobs can play a key role regarding the stability of the
system. Namely, we show that both the tasks’ processing time

VOLUME 9, 2021 139523

V. Cholvi et al.: System Stability Under Adversarial Injection of Dependent Tasks

FIGURE 3. System used in the proof of Proposition 2. Subfigure (a) shows the system’s topology and subfigure (b) shows the
number of queued packets at each time instant for an injection rate of 0.8 (which is slightly higher than 1/

√
2): dashed lines

correspond to servers s1 and s4, and the solid line corresponds to the overall system. As it can be seen, the number of queued
tasks at s1 and s4 oscillate in an alternating and increasing fashion, which provokes a continuous increase in the system’s
number of queued tasks.

and activation delays are factors that, individually, can cause
instability.We also show that the feasibility function can lead,
by itself, to instability.

A. TASKS’ PROCESSING TIMES
We show that the processing times of the tasks can affect
the stability of the system. Namely, a stable system can be
transformed into unstable by varying the processing time of
some of their tasks, even if the adversary has the same rate
r in both systems. Let LCT-LIS be the scheduling policy
that gives priority to the task with longest processing time
at the current server, breaking ties according to the longest-
in-system policy.
Proposition 2: There exists a server set S and an adver-

sary A with injection rate r > 1/
√
2 such that the system

(S,LCT − LIS,A) is unstable.
Proof: The proof is inspired by the instability by dif-

ference in packet length proof in the continuous AQT [44]
(CAQT) model. Let (G,LPL − LIS,A′) be the system used
in Theorem 26 in [44] (LPL-LIS denotes the scheduling policy
that gives priority to the packets with longest length, breaking
ties according to the longest in system policy). Note that
(G,LPL − LIS,A′) can be seen as an AQT system, except
that two different packet lengths (1 and 2) are taken into
account. Let us now consider a system (S,LCT − LIS,A) in
AJQ, such that:

• The scheduling policy is LCT-LIS.
• For each packet p injected byA′, the adversaryA injects
a job such that all its tasks have a processing time (1 and
2) equal to the length of the injected packet.

• The rest of the system is modeled in the same fashion as
in the proof of Theorem 2.

Theorem 26 in [44] shows that (G,LPL − LIS,A′) is unsta-
ble for an injection rate r > 1/

√
2. Therefore, it is not hard

to derive that (S,LCT − LIS,A) is also unstable for the same
rate.

Figure 3 illustrates the system S used in the proof of
the previous proposition and provides some details about its
unstable behavior.

Observe that if all tasks have the same processing time T ,
then the LCT-LIS scheduling policy becomes LIS. As shown
in Theorem 1, LIS is stable for any r < Tmin/(Tmax+Dmax) =
T/(T + Dmax). Hence, for small Dmax (e.g., Dmax = 0),
we have a rate r > 1/

√
2 for which LCT-LIS is stable if

all tasks have the same processing time. Therefore, we have
shown that an unstable system can be transformed into stable
by only varying the processing times of some of their tasks.

B. TASKS’ ACTIVATION DELAYS
As it has been done in the previous subsection, here we show
that the activation delays of the tasks can affect the stability of
the system. Let SAD-NFS be the scheduling policy that gives
priority to the task with smallest activation delay at the queue
of the current server, breaking ties according to the nearest
from source policy regarding to an initial task in the job’s
skeleton.
Proposition 3: There exists a server set S and an adver-

sary A with injection rate r > 1/
√
2 such that the system

(S, SAD− NFS,A) is unstable.
Proof: The proof follows the lines of the one in Propo-

sition 2. Let (G, SPP− NFS,A′) be the system used in The-
orem 28 in [44] (SPP-NFS denotes the scheduling policy that
gives priority to the packets whose previously traversed link
had smallest propagation delay, breaking ties according to
the nearest-from-source policy). Note that in this system the
transmission time of every packet is the same in every link.
Hence, (G, SPP− NFS,A′) can be seen as an AQT system,
except that some links have a positive fixed propagation
delay.

Let us now consider a system (S, SAD− NFS,A) in AJQ,
such that:

• The scheduling policy is SAD-NFS.

139524 VOLUME 9, 2021

V. Cholvi et al.: System Stability Under Adversarial Injection of Dependent Tasks

• For each link l inGwith a propagation delay dl , all tasks
executed in its equivalent server will have an activation
delay equal to dl . That is, the activation delays are seen
as the delays taken by packets to traverse the links
(besides the times spend at the queues).

• The rest of the system is modeled in the same fashion as
in Theorem 2.

Clearly, if the system (G, SPP− NFS,A′) is unstable
for a given injection rate then (S, SAD− NFS,A) will
be also unstable for the same injection rate. However,
by using the result in [44] (Theorem 28), we have that
(G, SPP− NFS,A′) is unstable for an injection rate r >

1/
√
2. Therefore, we have that (S, SAD− NFS,A) is also

unstable for the same rate.
Note that if all links in the system (G, SPP− NFS,A′)

of the previous proof have zero delay it becomes an AQT
system, and the (S, SAD− NFS,A) system obtained has
only tasks with activation delay of 0. In that case, both
SPP-NFS and SAD-NFS behave as NFS in their respective
systems. Moreover, since NFS is universally stable in AQT
as shown in [22], both systems (G, SPP− NFS,A′) and
(S, SAD− NFS,A) are stable. Hence, we have shown that
an unstable system can be transformed into stable by only
varying the activation delays of some of their tasks.

C. FEASIBILITY FUNCTION AMONG TASKS
Now, we show that the feasibility function is a factor that,
by itself, can also induce instability. We say that a feasibility
function is fully independent if no task in any job depends on
any other task (i. e., all tasks are initial). In this case, we also
say that the tasks are fully independent.
Proposition 4: Let (S,P,A) be an AJQ system such that

all the tasks are fully independent. Then, for any set of servers
S, any policy P and any (r, b)-adversaryAwith injection rate
r ≤ 1, the system (S,P,A) is stable.

Proof: Direct, from the injection bound of Equation (1)
and the fact that P is work conserving.
Then, it is clear that if we take an unstable system andmake

all tasks fully independent, it will become stable.

VI. CONCLUSION
In this work, we considered a computational model of a
distributed system formed by a set of servers in which jobs,
that are continuously arriving, have to be executed. The main
contribution of this model is a novel approach for modeling
tasks and their dependencies in the computational job system
which is much richer than the modelling capabilities of AQT.
By using it, we have shown multiple results of stability and
instability for this adversarial model under different combina-
tions of the scheduling policy used at the servers, the arrival
rate, and the dependence between tasks in the jobs.

The AJQ model opens interesting research questions.
Regarding scheduling policies, it is still unknown whether
there exists a universally stable policy (i. e., a policy stable
under any adversarywith r < 1). Indeed, all the parameters of

the model make difficult to see the existence of a universally
stable policy. Regarding systems’ topology, a full characteri-
zation of the topologies that produce a stable system against
any bounded adversary is still open. For instance, while we
argue in Section IV that the universal stability of the ring
in AQT can be propagated to AJQ, it is only for jobs that
mimic the dependencies and topology of AQT. It would be
interesting to know whether all AJQ systems with a ring
topology are stable under bounded adversaries.

On the other hand, theAJQmodel can be extended transfer-
ring the resource allocation decision from the adversary to the
scheduling policy. In that case, the adversary could provide,
for each task, a set of servers in which it can be processed
(instead of a single server, as it is done in our model). In that
extended model, we would be able to study the impact of
resource allocation into the stability of a system and the effect
of heterogeneous versus homogenous servers.

REFERENCES
[1] J. G. Herrera and J. F. Botero, ‘‘Resource allocation in NFV: A com-

prehensive survey,’’ IEEE Trans. Netw. Service Manage., vol. 13, no. 3,
pp. 518–532, Sep. 2016.

[2] B. Yi, X.Wang, S. K. Das, K. Li, andM. Huang, ‘‘A comprehensive survey
of network function virtualization,’’Comput. Netw., vol. 133, pp. 212–262,
Mar. 2018.

[3] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, ‘‘Osmotic
computing: A new paradigm for edge/cloud integration,’’ IEEE Cloud
Comput., vol. 3, no. 6, pp. 76–83, Nov./Dec. 2016.

[4] S. K. Roy, R. Devaraj, A. Sarkar, and D. Senapati, ‘‘SLAQA: Quality-level
aware scheduling of task graphs on heterogeneous distributed systems,’’
ACM Trans. Embedded Comput. Syst., vol. 20, no. 5, pp. 1–31, Jul. 2021.

[5] S. K. Roy, R. Devaraj, and A. Sarkar, ‘‘Contention cognizant scheduling
of task graphs on shared bus based heterogeneous platforms,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., early access, Feb. 16, 2021,
doi: 10.1109/TCAD.2021.3059569.

[6] D. Kitchin, A. Quark, W. R. Cook, and J. Misra, ‘‘The Orc programming
language,’’ inFormal Techniques for Distributed Systems (Lecture Notes in
Computer Science), vol. 5522, D. Lee, A. Lopes, and A. Poetzsch-Heffter,
Eds. Lisbon, Portugal: Springer, 2009, pp. 1–25.

[7] R. L. Graham, ‘‘Bounds for certain multiprocessing anomalies,’’ Bell Syst.
Tech. J., vol. 45, no. 9, pp. 1563–1581, 1966.

[8] L. Nie, L. Gao, P. Li, and X. Shao, ‘‘Reactive scheduling in a job
shop where jobs arrive over time,’’ Comput. Ind. Eng., vol. 66, no. 2,
pp. 389–405, Oct. 2013.

[9] Z. Wang, J. Zhang, and J. Si, ‘‘Dynamic job shop scheduling problem with
new job arrivals: A survey,’’ in Proc. Chin. Intell. Automat. Conf. Berlin,
Germany: Springer, 2019, pp. 664–671.

[10] A. Borodin, J. M. Kleinberg, P. Raghavan,M. Sudan, and D. P.Williamson,
‘‘Adversarial queuing theory,’’ J. ACM, vol. 48, no. 1, pp. 13–38, 2001.

[11] M. J. Blesa and A. F. Anta, ‘‘Maria Serna’s contributions to adversarial
queuing theory,’’ Comput. Sci. Rev., vol. 39, Feb. 2021, Art. no. 100348,
doi: 10.1016/j.cosrev.2020.100348.

[12] V. Cholvi and J. Echagäe, ‘‘Stability of FIFO networks under adversarial
models: State of the art,’’ Comput. Netw., vol. 51, no. 15, pp. 4460–4474,
Oct. 2007.

[13] L. Kleinrock, Queueing Systems Volume I: Theory. vol. 1. Hoboken, NJ,
USA: Wiley, 1975.

[14] J. R. Jackson, ‘‘Jobshop-like queueing systems,’’ Manage. Sci., vol. 10,
no. 1, pp. 131–142, 2004.

[15] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, ‘‘Open,
closed, andmixed networks of queues with different classes of customers,’’
J. ACM, vol. 22, no. 2, pp. 248–260, Apr. 1975.

[16] F. P. Kelly, Reversibility Stochastic Networks. Hoboken, NJ, USA: Wiley,
1979.

[17] S. H. Lu and P. R. Kumar, ‘‘Distributed scheduling based on due dates
and buffer priorities,’’ IEEE Trans. Autom. Control, vol. 36, no. 12,
pp. 1406–1416, Dec. 1991.

VOLUME 9, 2021 139525

http://dx.doi.org/10.1109/TCAD.2021.3059569
http://dx.doi.org/10.1016/j.cosrev.2020.100348

V. Cholvi et al.: System Stability Under Adversarial Injection of Dependent Tasks

[18] A. N. Rybko andA. L. Stolyar, ‘‘Ergodicity of stochastic processes describ-
ing the operation of open queuing networks,’’ Problems Inf. Transmiss.,
vol. 28, no. 3, pp. 199–220, 1992.

[19] C.-S. Chang, ‘‘Stability, queue length, and delay of deterministic and
stochastic queueing networks,’’ IEEE Trans. Autom. Control, vol. 39, no. 5,
pp. 913–931, May 1994.

[20] M. Bramson, ‘‘Instability of FIFO queueing networks,’’ Ann. Appl.
Probab., vol. 4, no. 2, pp. 414–431, May 1994. [Online]. Available:
http://www.jstor.org/stable/2245163

[21] J. G. Dai, J. J. Hasenbein, and J. H. Vande Vate, ‘‘Stability
and instability of a two-station queueing network,’’ Ann. Appl.
Probab., vol. 14, no. 1, pp. 326–377, Feb. 2004. [Online]. Available:
http://www.jstor.org/stable/4140498

[22] M. Andrews, B. Awerbuch, A. Fernández, F. T. Leighton, Z. Liu, and
J. M. Kleinberg, ‘‘Universal-stability results and performance bounds
for greedy contention-resolution protocols,’’ J. ACM, vol. 48, no. 1,
pp. 39–69, 2001.

[23] M. J. Blesa, ‘‘Stability in communication networks under adversarial
models,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. Politècnica de
Catalunya, Barcelona, Spain, 2006.

[24] C. Thraves Caro, ‘‘Performance of scheduling policies and networks in
generalized adversarial queueing models,’’ Ph.D. dissertation, Dept. Com-
put. Sci., Univ. Juan Carlos, Móstoles, Spain, 2008.

[25] P. Tsaparas, ‘‘Stability in adversarial queueing theory,’’ M.S. thesis, Dept.
Comput. Sci., Univ. Toronto, Toronto, ON, Canada,1999.

[26] R. Bhattacharjee, A. Goel, and Z. Lotker, ‘‘Instability of FIFO at arbitrarily
low rates in the adversarial queueing model,’’ SIAM J. Comput., vol. 34,
no. 2, pp. 318–332, Jan. 2005.

[27] D. Gamarnik, ‘‘Stability of adaptive and nonadaptive packet routing poli-
cies in adversarial queueing networks,’’ SIAM J. Comput., vol. 32, no. 2,
pp. 371–385, Jan. 2003.

[28] A. Goel, ‘‘Stability of networks and protocols in the adversarial queueing
model for packet routing,’’Networks, vol. 37, no. 4, pp. 219–224, Jul. 2001.

[29] J. Echague, V. Cholvi, and A. Fernandez, ‘‘Universal stability results for
low rate adversaries in packet switched networks,’’ IEEE Commun. Lett.,
vol. 7, no. 12, pp. 578–580, Dec. 2003.

[30] D. Koukopoulos, M. Mavronicolas, S. Nikoletseas, and P. Spirakis, ‘‘The
impact of network structure on the stability of greedy protocols,’’ Theory
Comput. Syst., vol. 38, no. 4, pp. 425–460, Jul. 2005.

[31] Z. Lotker, B. Patt-Shamir, and A. Rosén, ‘‘New stability results for
adversarial queuing,’’ SIAM J. Comput., vol. 33, no. 2, pp. 286–303,
2004.

[32] W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosén, ‘‘Adaptive packet
routing for bursty adversarial traffic,’’ J. Comput. Syst. Sci., vol. 60, no. 3,
pp. 482–509, Jun. 2000.

[33] M. Kiwi, M. Soto, and C. Thraves, ‘‘Adversarial queuing theory with
setups,’’ Theor. Comput. Sci., vol. 410, nos. 8–10, pp. 670–687, Mar. 2009,
doi: 10.1016/j.tcs.2008.09.064.

[34] A. Miller and B. Patt-Shamir, ‘‘Buffer size for routing limited-rate adver-
sarial traffic,’’ in Proc. 30th Int. Symp. Distrib. Comput. (DISC) (Lecture
Notes in Computer Science), vol. 9888. Berlin, Germany: Springer, 2016,
pp. 328–341.

[35] S. Dobrev, M. Lafond, L. Narayanan, and J. Opatrny, ‘‘Optimal local buffer
management for information gathering with adversarial traffic,’’ in Proc.
29th Symp. Parallelism Algorithms Archit., 2017, pp. 265–274.

[36] B. Patt-Shamir and W. Rosenbaum, ‘‘The space requirement of local
forwarding on acyclic networks,’’ in Proc. ACM Symp. Princ. Distrib.
Comput., Jul. 2017, pp. 13–22.

[37] A. Miller, B. Patt-Shamir, and W. Rosenbaum, ‘‘With great speed come
small buffers: Space-bandwidth tradeoffs for routing,’’ inProc. ACMSymp.
Princ. Distrib. Comput., Jul. 2019, pp. 117–126.

[38] G. Even and M. Medina, ‘‘Online packet-routing in grids with bounded
buffers,’’ Algorithmica, vol. 78, no. 3, pp. 819–868, Jul. 2017.

[39] G. Even, M. Medina, and B. Patt-Shamir, ‘‘Better deterministic online
packet routing on grids,’’ in Proc. 27th ACM Symp. Parallelism Algorithms
Architectures, Portland, OR, USA, Jun. 2015, pp. 284–293.

[40] G. Even, M. Medina, and A. Rosén, ‘‘A constant approximation algorithm
for scheduling packets on line networks,’’ in 24th Annu. Eur. Symp. Algo-
rithms, Aarhus, Denmark, Aug. 2016, pp. 40:1–40:16.

[41] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data process-
ing on large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[42] C. P. Gomes and B. Selman, ‘‘Algorithm portfolios,’’ Artif. Intell., vol. 126,
nos. 1–2, pp. 43–62, Feb. 2001.

[43] V. Cholvi, J. Echagüe, A. F. Anta, and C. T. Caro, ‘‘Stability under
adversarial injection of dependent tasks (Extended Abstract),’’ in Proc. 8th
Int. Conf. (Lecture Notes in Computer Science), vol. 12129, Marrakech,
Morocco, C. Georgiou and R. Majumdar, Eds. Berlin, Germany: Springer,
Jun. 2020, pp. 355–360, doi: 10.1007/978-3-030-67087-0_23.

[44] M. Blesa, D. Calzada, A. Fernández, L. López, A. L. Martínez, A. Santos,
M. Serna, and C. Thraves, ‘‘Adversarial queueing model for continuous
network dynamics,’’ Theory Comput. Syst., vol. 44, no. 3, pp. 304–331,
Apr. 2009.

139526 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.tcs.2008.09.064
http://dx.doi.org/10.1007/978-3-030-67087-0_23

