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Abstract. We characterize the equality between ultradifferentiable func-
tion classes defined in terms of abstractly given weight matrices and in
terms of the corresponding matrix of associated weight functions by using
new growth indices. These indices, defined by means of weight sequences
and (associated) weight functions, are extending the notion of O-regular
variation to a mixed setting. Hence we are extending the known compari-
son results concerning classes defined in terms of a single weight sequence
and of a single weight function and give also these statements an inter-
pretation expressed in O-regular variation.

Mathematics Subject Classification. Primary 46E10; Secondary 26A12,
26A48, 46A13.

Keywords. Classes of ultradifferentiable functions, Weight sequences,
Functions and matrices, Growth indices, O-regular variation, Mixed set-
ting.

1. Introduction

In the theory of ultradifferentiable function spaces there exist two classical
approaches in order to control the growth of the derivatives of the functions
belonging to such classes: Either one uses a weight sequence M = (1;); or a
weight function w : [0, +00) — [0, +00). In both settings one requires several
basic growth and regularity assumptions on M and w and one distinguishes
between two types, the Roumieu type spaces Epry and &y, and the Beurling
type spaces Eppy and (). In the following we write £, for all arising classes
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of ultradifferentiable functions if we mean either £, or &), but not mixing
the cases. Similarly this is done for all arising conditions.

In [1] both methods have been compared: A characterization has been
given when &) = &) is valid (as locally convex vector spaces) and it has
been shown that in general both approaches are mutually distinct.

Motivated by the results from [1], in [14] and [11] ultradifferentiable
classes defined in terms of weight matrices M have been introduced and it
has been shown that, by using the weight matrix 2 associated with a given
weight function w, in this general framework one is able to treat both classical
settings in a uniform and convenient way but also more classes.

Since to each weight function w we can associate a weight matrix 2
and since it is known that to each sequence M one can associate a weight
function wys (see [9, Chapitre I]), in [14, Sect. 9.3] and in [15] the follow-
ing iterated process has been studied: When Z = R+ is denoting the index
set, then by starting with an abstractly given matrix M = {M* : z € T}
with some regularity properties we immediately get the weight function ma-
trix wag = {wm= : x € T}. For each associated weight function wy= one
considers the associated weight matrix 2y, and then proceed by iteration.
This construction leads to multi-index weight matrices (and corresponding
classes of ultradifferentiable functions) and the main questions in [14, Sect.
9.3] and [15] have been the following:

() Study the effects of growth properties assumed for M on this construc-
tion.
(#%) Describe the class £y alternatively (as a locally convex vector space) by
Elwrq- This enables the possibility to apply techniques from the classical
(single) weight function setting to the space Erq-

Concerning (#*) we can see the following ”dual problem”:

(%) Starting with an abstractly given weight function matric My = {w* :
x € T}, can we describe the class £, alternatively (as a locally convex
vector space) by £y for some weight matrix N = {N*: 2z € T} ?

For treating (x) and (xx), in [14, Sect. 9.3] and [15] the following proper-

ties for M have become relevant, see also [11, Sect. 4.1] and [14, Sect. 7.2]):

(Mimgy) V2 €I3C>03yeIVjkeN: M, < C’j+kMJ'yM,i’,

(Mmg)) Yo €ZIT3IC>03yecIVjkeN: M;’+k < C’HkaM,f,

M) YVC>0V2xeZI3ID>03yeIVjeN: C/Mj<DM!,

(M) VC>0V2ecZIID>03yecIVjeN: CIM! < DM
All these conditions are automatically valid for 2, when w is satisfying
standard properties. (Myg}) and (M yg)) are the natural generalizations of
condition moderate growth arising frequently in the weight sequence setting.

In [14, Sect. 9.3] and [15] only the sufficiency of (Myyy) and (My,)) has

been applied for the study of question (#x) and these conditions seemed to be
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too strong, see also the discussion in (#i) in Remark 2.2. Note that (M) is
indispensable to have gy = &[], see (2.4).

The main aim of this article is to give a complete solution to («*) and to
(x)" expressed in terms of growth properties for M. In order to do so, instead
of (Myry) we consider the weaker requirement

Whry (2t)

VeeZdyeI: limsup < 400, (1.1)
t—too Wi (1)
and similarly
= (2t
VreZdyel: lmsup ) o (1.2)

t—+4oco WMNY (t)

instead of (Mg,). (1.1) and (1.2) are the mixed versions of the standard
assumption w(2t) = O(w(t)) as t — 400 on weight functions (denoted by (w1)
in this work). These types of mixed conditions, for either weight sequences or
weight functions, have frequently appeared in the literature in the study of
mixed extension results in the ultradifferentiable or ultraholomorphic settings,
see [3,6,7,10,16].

In [4] the main goal has been to give connections between standard/
frequently used assumptions for weight sequences and weight functions in
the ultradifferentiable and ultraholomorphic framework and the concept of
O-regular variation. More precisely, this has been done for moderate growth
for weight sequences and (w;p) for (associated) weight functions. Note that
analogous growth properties are also showing up when dealing with different
areas of weighted spaces in Functional Analysis, see the introduction in [4]. We
have been able to characterize these conditions in terms of growth properties,
positivity and finiteness of weight indices.

Inspired by these known results and the mixed conditions mentioned be-
fore, for weight sequences and (their associated) weight functions we introduce
in this paper new mized growth indices which are related to mixed O-regular
variation. Moreover, we study and compare these indices under the construc-
tion M — wpr — Q-

Summarizing, it turns out that we can give an answer to problem (xx) by
assuming (M pgy) and (1.1) resp. (M yg)) and (1.2), and problem () can
by reduced to (xx). Alternatively, we have the possibility to express problem
(%) (and hence (xx)") purely in terms of these new concept of mixed indices.
In particular, when considering M = {M} or M,y = {w}, then we get the
results from [1] expressed in the language of O-regular variation. Finally, by
using these indices one is able to understand the difference between conditions
(Myry) and (1.1) resp. between (M 1) and (1.2) in a more quantitative way.

The paper is structured as follows: In Sect. 2 we gather all relevant infor-
mation on weight sequences, functions and matrices and we recall the multi-
index construction. In Sect. 3, first we give an exhaustive characterization
of (Myry) and (M) resp. of (1.1) and (1.2) by means of growth conditions



28 Page 4 of 32 J. Jiménez-Garrido et al. Results Math

expressed in terms of the weight structures M, wa and of the multi-index con-
struction, see Lemma 3.1 and Theorem 3.2. It turns out that for the weight
matrix 2 there is no difference between these requirements of the particular,
Roumieu or Beurling, type, see Corollary 3.3. Based on these characteriza-
tions, in Sect. 3.1 we introduce mixed growth indices for weight sequences and
(associated) weight functions, see Proposition 3.6 and Theorem 3.7.

In Sect. 4 the analogous procedure is done for the mixed moderate growth
conditions (M ngy) and (M) ), see Proposition 4.2 and Theorem 4.4.

In the final Sect. 5 we apply the developed theory and prove the main
results, Theorem 5.4 which is solving (x*), and Theorem 5.6 answering prob-
lem (*x)". The special (and classical) cases M = {M} and M,y = {w} are
discussed as well.

2. Weights and Conditions

2.1. General Notation

We write N := {0,1,2,...} and Nyg := {1,2,3,...}. For any real x > 0 we
denote by |z] the largest integer j such that j < x. With the symbol £ we
denote the class of all smooth functions.

2.2. Weight Sequences

Given a sequence M = (M;); € RY | we also use p; := %, to == 1. M is
called normalized if 1 = My < M, holds true which can always be assumed
without loss of generality.

M is called log-convez if
VJ € N>o : sz S Mj_le+1,
equivalently if (y;); is nondecreasing. If M is log-convex and normalized, then
both j + M; and j + (M;)'/7 are nondecreasing and (M;)*/7 < p; for all
j € Nyo.
For our purposes it is convenient to consider the following set of sequences

LC :={M € RY,: M is normalized, log-convex, vligl (M;)Y7 = +00}.
j—too

We see that M € LC if and only if (u;); is nondecreasing and lim;_, o pt; =
+00 (e.g. see [11, p. 104]). Moreover, there is a one-to-one correspondence
between M and p = (p;); by taking M; := [T_, wi.
M has the condition moderate growth, denoted by (mg), if
3C>1Vj,keN: My < CIFM; M.

In [8] it is denoted by (M.2) and called stability under ultradifferential opera-
tors.

N1/
Let M, N € R§0 be given, we write M < N if sup;cy_, (%) < +00.
J

We call M and N equivalent, denoted by M ~ N, if M < N and N < M.
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Finally, write M < N if M; < N; for all j € N. Note: If M, N € RY both
are normalized, then M < N does precisely mean M; < CYN; for some C' > 1
and all j € N.

2.3. Associated Weight Function

Let M € RY, (with My = 1), then the associated function wy : Rsg —
R U {+o0} is defined by

tJ

wp(t) :=suplog <> fort >0, wp(0):=0.
JEN M;

For an abstract introduction of the associated function we refer to [9, Chapitre

1], see also [8, Definition 3.1]. If liminf; 4 o (M;)*/7 > 0, then wys(t) = 0 for

sufficiently small ¢, since log (1\%) <0&et< (Mj)l/j holds for all j € Nyg.
Moreover under this assumption ¢ +— wy(t) is a continuous nondecreasing
function, which is convex in the variable log(¢) and tends faster to infinity
than any log(#/), j > 1, as t — -+oo. lim; .4 (M;)'/7 = +oo implies that
wyr(t) < +oo for each finite ¢ which shall be considered as a basic assumption
for defining wyy.

If M < N, then clearly wy < wys follows. If M € LC, then we can
compute M by involving wy; as follows, see [9, Chapitre I, 1.4, 1.8] (and also
[8, Prop. 3.2]):

tJ
M; = sup

up ﬁp(wM(t)), jeN. (2.1)

2.4. Weight Functions

A function w : [0,4+00) — [0, +00) is called a weight function (in the terminol-
ogy of [4, Section 2.1] and [5, Section 2.2]), if it is continuous, nondecreasing,
w(0) = 0 and lim;—, ;o w(t) = +o00. If w satisfies in addition w(t) = 0 for all
t € [0, 1], then we call w a normalized weight function. For convenience we will
write that w has (wp) if it is a normalized weight.

Moreover we consider the following conditions, this list of properties has
already been used in [14].

(w1) w(2t) =0(w(t)) ast — +o0,1e. IL>1VE>0: w(2t) < L(w(t)+1).

(w3) log(t) = o(w(t)) as t — +o00 (& limy 100 ﬁ(t) = 0, ¢, being the func-
tion defined next).

(w4) @w @t w(e?) is a convex function on R.

(wg) IH>1Vt>0: 2w(t) <w(Ht)+ H.
For convenience we define the sets
Wy :={w: [0,00) — [0,00) : w has (wy), (w3), (wa) },
W= {w e Wy :whas (w1)}.
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For any w € Wy we define the Legendre-Fenchel- Young-conjugate of p,, by

@5 (x) :=sup{zy —pu(y) 1y >0}, x>0, (2.2)

with the following properties, e.g. see [2, Remark 1.3, Lemma 1.5]: It is convex
and nondecreasing, ¢ (0) =0, ¢ = ¢, im, ;0o = = 0 and finally = —

e (x)
%T(x) and z — %T(x) are nondecreasing on [0, +00). Note that by normalization

we can extend the supremum in (2.2) from y > 0 to y € R without changing
the value of ¢} (z) for given z > 0.

Let o, 7 be weight functions, we write o <X 71if 7(¢t) = O(0(t)) as t — +00
and call them equivalent, denoted by o ~ 7, if 0 X 7 and 7 < 0.

We recall the following known result, e.g. see [15, Lemma 2.8] resp. [5,
Lemma 2.4 (i)] and the references mentioned in the proofs there.

Lemma 2.1. Let M € LC, then wy € Wy holds true.

2.5. Weight Matrices

For the following definitions and conditions see also [11, Section 4].

Let Z = R denote the index set (equipped with the natural order),
a weight matriz M associated with Z is a (one parameter) family of weight
sequences M := {M?® € RY : 2 € T}, such that

Va €Z: M is normalized, nondecreasing, M* < MY for x < y.

We call a weight matrix M standard log-convex, denoted by (My.), if
Veel: M* e LC.

A matrix is called constant if M* ~ MY for all z,y € Z.
On the set of all weight matrices we consider the following relations, see
[11, p. 111]: We write M{=}N, if
VeeZIdyeI: MT*<NY,
and M(=)N, if
VeeZI3dyeI: MY <N

We write M{~}N, if M{=<}N and N{=<}M and M(=)N, if M(=)N and
N(Z)M. Finally we call M and N equivalent, if both relations (=) and {~}
hold true.

Remark 2.2. Concerning the conditions (Mg} ), (M (mg)) and (Myry), (M(1))
we summarize (see also the discussion in Remark 5.5):

(1) If M = {M} resp. more generally if M = {M?® : x € T} is constant, then
M does have (Myg}) and/or (M y,)) if and only if M does have (mg)
resp. some/each M?® does have (mg).

Moreover, it is clear that (M[yg)) is stable under relation [~].
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(ii) It is immediate to see that (Myry) and/or (M) can never be valid for
any M = {M}. However, it is possible that both conditions are fulfilled
for a constant matrix. Moreover, in both conditions we are interested in
C > 1 since for 0 < C' < 1 they are clearly valid with x =y and D = 1.
In general it is not clear that (M) is preserved under [~].

2.6. Weight Matrices Obtained by Weight Functions and Multi-index Weight
Matrices

We summarize some facts which are shown in [11, Section 5] and are needed
in this work. All properties listed below are valid for w € W), except (2.4) for
which (w;) is necessary.

(i) The idea was that to each w € W, we can associate a standard log-convex
weight matrix Q := {W'! = (W})jeN :1>0} by

1, .
W} := exp (l%(ly)> :
(73) Q satisfies
VI>0VjikeN: Wi, <WIWZ, (2.3)

s0 both (Mng}) and (M) are satisfied.
(4ii) In case w has in addition (wy), then Q has also both (M) and (M),
more precisely

Vh>13A>1VI>03D>1VjeN: WW <DWM  (24)

(iv) Equivalent weight functions yield equivalent associated weight matrices.

(v) (we) holds if and only if some/each W' satisfies (mg) if and only if W'! ~
W™ for each I,n > 0. Consequently (wg) is characterizing the situation
when {2 is constant.

(vi) w ~ wy for each [ > 0.

In particular, given M € LC we denote by (23, the weight matrix associ-
ated with wjy.

In [15, Section 2.7] the new weight function matric wag == {wpy= : ¢ € T}
has been considered and ultradifferentiable classes £} and &, ,) have been
introduced.

Let us recall now this approach. First let M := {M? : x € T} be (My.).
By Lemma 2.1 we get wp= € Wy for each = € 7.

Based on this information, in [15, Section 3.1] the following multi-index
weight matrix construction has been introduced:

M® = wppe = MU s wypeny — MR

where for x € 7, I; € Ryg, j € Ny, and ¢ € N we put

w3l i 1 ) - 1 ., .
M e (l»% S (lj+1z)> . M h._ exp (ll%’M”” (lﬂ)) ,
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respectively

tp
Wity (t) 1= zlég log (W) fort >0, wyei..1;(0):=0.

In this notation, for any = € Z we get

MP = M?, jeN, (2.5)

which follows by applying (2.1) (see also the proof of [15, Thm. 6.4]):
M7t = exp(¢l,, (7)) = exp(Sglg{jy —wu(e’)}) = sup exp(jy —w(e’))
y> y>

exp(jy) t/ t/

oD exp(war(eh))  rab exp(war(t))  ran explwar(t)) M

j.

Note that by normalization of M we have wys(t) = 0 for 0 < ¢t < 1, e.g. see the
known integral representation formula for wyy, [9, 1.8. III] and also [8, (3.11)].
The similar statement is valid for the higher multi-index sequences.

For a given (My.) matrix M := {M? : z € T} we put M® := {M=! .
x € Z,1 > 0}. An abstractly given matrix of weight functions denotes a family
of weight functions {w® : & € T}, such that w?¥ < w* for any z,y € Z with
z < y.

2.7. Ultradifferentiable Classes
Let U C R? be non-empty open. We write K cC U if K is compact and
K C U. We introduce now the following spaces of ultradifferentiable functions
classes. First, for weight sequences we define the (local) classes of Roumieu
type by

E{M}(U) ={felU): VKCCUIh>0: |fllmrn<+oo},
and the classes of Beurling type by

EnU) ={feclU): VK CCUVh>0: |fllmrn<-+oo},
where we denote

|f) ()]
|fllarren = sup >
aeNd xec K hla‘M\a|

For a compact set K with sufficiently regular (smooth) boundary

Epn(K) = {f € E(K) : | fllar.k,n < +o0}
is a Banach space and so we have the following topological vector spaces
S{M}(K) = ll_H)l EMJL(K), and E{M}(U) = 121 h_H)l 5M,h(K)
h>0 KCCU h>0

= lim & (K).
KccUu
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Similarly, we get

(‘:(M)(K) ::yingM,h(K)a and S(M)(U)Z m lﬂlgM,h(K)
h>0 KCcU h>0
= lim &y (K).
KccU

For any w € W, let the Roumieu type class be defined by
EyU):={f€EWU): VK CCUII>0: ||flloxs < +00}
and the space of Beurling type by
EU) ={f€&WU): VK CCUVYI>0: |fllux: < +oo},

where

. £ ()]
kot = | 5P cop(Fenllal)
For compact sets K with sufficiently regular (smooth) boundary
Eot(K) :={f € £(K):
is a Banach space and we have the following topological vector spaces

5{w}(K) = h_r)n EW,I(K), and 5{w}(U) = 1£n h_r)n gw,l(K)
>0 KccU >0

= lim &y (K).
KccU
Similarly, we get
S(w)(K) = lin 5w,l(K)7 and g(w)(U) = lﬂl lﬂl Sw,l(K) = m g(w)(K)
>0 KCCU I>0 KccU

Next, we consider classes defined by weight matrices of Roumieu type
Ermy and of Beurling type £ uq as follows, see also [11, 4.2]. For all K CC U
with sufficiently smooth boundary we put

Eny (K) = | Euey (), Epy(U) = () U Eparey (K
€T KccUzeZ
and
oK) = () € (K),  Epy(U) = () Earn) (U
el €L

For K cC R? one has the representation

Epmy (K) = lim lim Eppe (K
x€Z h>0

and so for U C R% non-empty open

Emp(U) = lim lim lim Epye p (K).
KCCU z€Z h>0
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Similarly we get for the Beurling case
Em(U) = lim lim lim Eppe p(K).
KCCU z€Z h>0
Finally, for the matrix wys we put
EtoyU)={fec&U): VKCcUIzecZ3Il>0: ||flluyerxi <400}
and
Ew)U)={felU): VKCCUVr€IVI>0: [flluy.x1 <+oo}.
Thus we obtain the topological vector spaces representations
g{wM}(U> = lin h_r>n gerJ(K)
KCCU z€Z,l>0
and
Eway(U) = lim  lim &,,. i(K).
KCCU z€Z,1>0

Since all arising limits are equal to countable ones, in each setting the Beurling
type class is a Fréchet space.

Ultradifferentiable classes of multi-index matrices can be defined in a
similar way; for our purposes we will only need M) see Sect. 5.

3. The Mixed (w;) Conditions
Concerning (Myry) and (My,)) we start with the following characterization.

Lemma 3.1. Let M := {M? : 2z € I} be (M) and let wpg == {wpr= 1 x € T}
be the according matriz of associated weight functions. Then we get:

(I) The following conditions are equivalent:
(i) M does satisfy (Mry).
(i¢) The matrix M does satisfy

VeeIdD>03yeIVjeN: 2Mj<DM/. (3.1)
(ii7) The matriz waq does satisfy
VeeZTIyeTIAD>0Vt>0: wy(2t) < wie(t) + D.
(iv) The matriz waq does satisfy
VC>0VxeZI3dyeIID>0Vt>0: wyy(Ct) <wp=(t)+ D.

(II) The following conditions are equivalent:
(i) M does satisfy (M),
(i) M does satisfy

VeeI3dD>03yeIVkeN: 2M!<DM;.
(ii7) The matriz waq does satisfy
VeeZTIyeIID>0Vt>0: wye(2) <wuns(t)+D.  (3.2)
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(iv) The matriz waq does satisfy
VC>0VaeeZIdyeZIdD>0VEt>0: wy«(Ct) <wpmw(t)+ D.

Proof. We will only treat the Roumieu case, the Beurling case is analogous.
(i) = (i) It suffices to take C' = 2 in condition (Myry).
(#i) = (i%i) For all x € T we can find D > 0 and y € Z such that

2t)? i
(M?.’ = Dﬁ

of associated weight functions.

(#4i) = (iv) This is clear for C' < 2 (since each associated weight function
is nondecreasing). If C' > 2, then we take n € N chosen minimal such that
C < 2" is valid and apply iteration: Given =z € Z, there exists y; € Z and
Dy > 0 such that for all ¢ > 0, wpmi (2t) < wpy=(t) + Dy. Recursively, for
J =2,...,n we find there exist y; € Z and D; > 0 such that for all ¢ > 0,
wpvs (2t) < wppvs—1 () + Dj. Then, we easily get

for all j € N and ¢ > 0. This yields the conclusion by definition

n

warun (C1) < wagun (27) S wp= () + Y Dy,

j=1
as desired.
(tv) = (i) We apply (2.1) and get for all j € N:
t tI
M? =sup ———F— < eDsup—
7 t>0 eXp(me (t)) t>0 exp(wMy (Ct))
1 s7 1
D D y
© S eplan() - C O
and so we are done. O

For abstractly given weight matrices M, a connection to mixed ” (w1 )-
conditions” has been established in [15, Prop. 3.12, Cor. 3.15]. The different
equivalent conditions in the following result make intervene both the associated
weight functions wys- and the matrices associated with the latter. In particular,
we generalize the main characterizing result [12, Thm. 3.1] from the weight
sequence to the weight matrix setting.

Theorem 3.2. Let M = {M?*:x €I} be (My.) and let wpg := {wpy= : x € T}
be the according matriz of associated weight functions and M3 = {M=t .
x €Z,l>0}. Then we get:
(I) The following conditions are equivalent:
(i) The matriz wa satisfies

Vh>1VeeZ3dyel: limsup——— < +o0. (3.3)
t—too wWare (1)

(1i) The matriz waq satisfies
Whry (2t)

VeeZdyel: limsup————= < +o0. (3.4)
t—4oo WM= (t)
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(7i1) The matriz M does satisfy
(MY )Y/ (L)

o Lj
Jdr>1VaeeZdyeZ3ILeNs: lj@ﬁng>r (3.5)
(iv) The matriz M does satisfy

(Mg)l/(Lj)
Vr>1VeeZdyeZIILeNyy: liminf ? >r.  (3.6)

ool O
(v) The matriz M?) does satisfy

VeeIVC>13yeIIB>0Ya>03D>0VjeN: CIMP* < DMYPe
(vi) The matriz M@ does satisfy

Ve eIVC>1Va>03yeZ3Ib>03D>0VjeN: C'MP* < DMV

(3.7
(vii) The matriz M®) does satisfy
1 * .
exp( 9%, (b7
Vr>1VeeZ3dyeZI3Ib>0: liminf (bjlgoM(_))>r. (3.8)
i€N=0 exp(5¢%,,. (7))
(viii) The matriz M®) does satisfy
1 * .
exp( 9%, (bJ
Vr>1VeeZ3yeZI3Ib>0: liminf (bjlgoM(_))>r. (3.9
i€R>0 exp(5¢%,,. (7))
(II) The following conditions are equivalent:
(i) The matriz waq satisfies
Vh>1VexeIdyel: limsup———= < +o0.
t—+oco WMy (t)
(i1) The matriz waq satisfies
« (2t
VeeZI3dyel: limsupri()<+oo. (3.10)
(#91) The matriz M does satisfy
(g
dr>1VeeZdyeZILeNy: ljnglng >r. (3.11)
(iv) The matriz M does satisfy
(Mf_)l/(Lj)
Vr>1VezeZ3dyeZILeNyy: liminf J >r. (3.12)

i—too (MY
(v) The matriz M@ does satisfy
VeeIV¥C>13yeTI3B>0Ya>03D>0VjeN: C/MIY? <pure
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(vi) The matriz M3 does satisfy

Ve €IVC>1Ya>03yeZ3Ib>03D>0VjeN: C/MP* < DMP
(3.13)

(vii) The matriz M3 does satisfy

1 % .

EXP5 Puwp= \J

¥r>1VzeZdyeT3Ib>0: liminf EJSOM{))
jE€Nso exp(?p;My (/b))

(viii) The matriz M3 does satisfy

1, % .
CXP\ 5 Py \J
Vr>1VeeI3dyeIIb>0: liminf (]SDM()) >

JERS, exp(?gﬁjﬁ,w (4/0))

In particular, this result can be applied to any M = {M? : x € Z} being
(M) and satisfying (Myry) resp. (Mry): In this case (I)(i) < (4ii) resp.
(II)(i) < (it4) in Lemma 3.1 yields that (3.4) resp. (3.10), i.e. the assertion
(i) of each particular type, is valid.

Proof. Again, we treat the Roumieu case in detail, the Beurling setting is
completely analogous.

(¢) = (i1) This is clear.

(13) = (dit) Let € T be given, so wyw(2t) < Lwpy=(t) + L for some
index y € Z, L € Ny and all ¢ > 0. Then, by applying (2.1), we get for all
jeN:

25) L3
> L sup (2s)

th (2s)L9
My .= - 7
Lj = 51b - s>0 exp(Lwar=(s))

_—— =sup——————
>0 exp(wmy(t))  s>0 exp(wiry(2s))

_ —LoLj s L_ —LoLj/ysz\L
o (i‘éﬁ explware <s>>) TR
which proves (ii7).

(#3i) = (iv) Let 9 > 1 be the value given in (iii). If » € (1,7¢], then
nothing is to prove. If » > 7, then we choose n € N minimal to have r < r{
and apply n iterations. Namely, given x € Z, there exists y; € Z and L1 € Ny
such that

(MY Y/ (Ead)

o Lij
lim inf LI

- -~ > .
i—too (MF)YI o

Recursively, for i = 2,...,n there exist y; € Z and L; € N5 such that
(Mgb A)l/(Lij)

lim inf iJ

oo (MY > To-

The choice y = y,, and L =[]}, L; clearly fulfills the requirements.
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(tv) = (v) Recall that the matrix {M™* : a > 0} associated with the
weight wps= is given by

Tia 1 * . .
M = exp <a(p°”‘” (ag)) , a>0, jeN, (3.14)

and M* = M®! by (2.5). Moreover, if L € N5 we have for every j € N,
. 1 .
z; L * - T3 x
M = exp (Lo (1)) = (MEDYE = ()2,

Let x € Z and C' > 1 be given. By the assumption (reasoning with r = C) we
have
Al j Yy \1/L _ y;L
CIM;* = C7 MY gA(ng) —AM;-’
for some y € Z, L € N5y, A > 1, and all j € N. Hence,

Ct)! t)
log (5\4@/2) <log (M?J) + log(A)
J j

for all t > 0 and j € N, and we obtain by definition wyy;z (Ct) < wpren (t) +
log(A) for all ¢ > 0 (observe that wys:z(0) = wyr=1(0) = 0). Recall that, as
shown in [11, Lemma 5.7] (see also [14, Theorem 4.0.3, Lemma 5.1.3] and [5,
Lemma 2.5] in a more precise way), we have for any = € Z:
Va>04dD,>0Vt>0: ame;a(t) < me(t)
= Wpr= (t) S QGUJM(E;(L (t) + Da. (315)

So we combine everything to get for all £ > 0:
wars (Ct) < 2Lwyun (C) + Dy, < 2Lwygen () + 2L1og(A) + Dy,
= 2Lwyse(t) + 2L1og(A) + Dy
From here, for every s € R we get
Gy (8 +10g(C)) = wpv (Ce®) < 2Lwp=(€®) + 2L1og(A) + Dy,
= 2Ly, (s) +2L1og(A) + Dy,
and consequently, for @ > 0 and every j € N,

o (@f) = fglg{ajt — Qun ()}

< §1>113 {aj(t +1log(C)) — i(pry (t+ 1og(C))}

Dy .
+ log(A) + oL ~ % log(C)

1 D
< —sup{2aLjs — @y, (s)} + log(A) + L ajlog(C)
oL 220 2L

D
(2aLj) 4 log(A) + == — ajlog(C).

= oL Pouns oL



Equality of Ultradifferentiable Classes by Means of Indices Page 15 of 32 28

In conclusion, we use (3.14) in order to obtain
1

z3a 1/§ _Dr/(2aL)
Mj < AVIetPr o

y;2aLl
M; ,

as desired.
(v) = (vi) It suffices to take, for any a > 0, b = Ba, where B is given in
(v).

(vi) = (vii) If we choose a =1 in (3.7) we get
VeeIVC>13yeZ3b>03D>0VjeN: CjMf?lgDij?b?

what leads to the conclusion in view of (3.14).

(vit) = (viid)

Note that the mapping j — jibapzMw (jb) is nondecreasing for any fixed
b>0and x € Z. Let j; € Ry be given and take j € N>o with j —1 < j; <j
and then

xp (a0 () _ exp (0, 00)) _ e (et (2001)
exp (%@ZZW (j)) exp (i%w (J&)) ~ exp (%%W (h))

since bj < 2bj; < j < 2j; is valid by j < 2(j — 1) < 2 < j. Thus we have
verified (3.9) with the same value r > 1 and with the same choice y € Z for
given index x when taking b’ := 2b, b > 0 denoting the parameter in (3.8).
(viii) = (i) Given h > 1 and = € Z, we apply the hypothesis with some
r > h and deduce that thf < AM;-"b for some y € Z, b >0, A > 1, and all

j € N. Hence,
(ht)j> ( i )
log — | <log + log(A)
(57) =+ 3

for all t > 0 and j € N, and we obtain wyyw(ht) < ware(t) + log(A) for all
t > 0. We conclude by using (3.15) again. O

)

We gather now the information for weight matrices associated with given
Braun-Meise-Taylor weight functions w and get the following characterization.

Corollary 3.3. Let w € Wy be given and let Q@ = {W?* : x > 0} be the asso-
ciated weight matriz. Moreover let wq = {ww= : © > 0} be the matriz of the
associated weight functions. Then the following are equivalent:
(i) w satisfies (w1).
(i1) Q satisfies (Myry).
(iii) wq, Q and Q) satisfy any of the corresponding equivalent Roumieu-like
conditions in (I) in Theorem 3.2.
(iv) Q satisfies (M1,)).
(v) wa, Q and QP satisfy any of the corresponding equivalent Beurling-like
conditions in (IT) in Theorem 3.2.
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So, the mized (w1) conditions of Roumieu and/or Beurling type are equiv-

alent to (w1) for w.

Proof. (i) < (#ii), (i) < (v) Both equivalences hold true by taking into ac-
count that w ~ wy= for all z > 0, see [11, Lemma 5.7].

(7) = (41), (iv) holds by [11, Lemma 5.9 (5.10)], see (2.4).
(#4) = (#it), (iv) = (v) Both implications follow by Lemma 3.1. O

Remark 3.4. We summarize now some facts concerning the arising lim inf-
conditions in the previous results.

(a)

(b)

(3.1) implies (3.5) (with L = 1), but the latter condition is weaker than
the first one since j — (Mf)l/ J is nondecreasing by log-convexity and
normalization for each index x fixed.

This observation is consistent with the characterizations shown in
Lemma 3.1 and Theorem 3.2; more precisely compare the mixed (w)
conditions (3.2) and (3.4). In the latter one on the right hand side we
only require a O-growth restriction (and similarly for the Beurling set-
ting).

However, Corollary 3.3 yields that (3.1) is equivalent to (3.5) when the
matrix M = (Q is associated with a given weight function w € Wj.
Concerning Corollary 3.3 we also make the following observation: When
considering the matrix €, then w.l.o.g. in (I)(i%) and (I)(iv) resp. in
(IT)(i4i) and (IT)(iv) in Theorem 3.2 we can choose y = x which can be
seen directly as follows:

By definition of the associated weight matrix and the properties for ¢,
(see Sect. 2.6) we have

L . .
Vy>xz>0VL L €Nug, L' > y? VjeNsg: (WE)VED < (Wg, )1/,

lim inf

From this, the desired statement follows for the Roumieu type immedi-
ately.

In the Beurling case, when 0 < y < x, then we choose L; € N5 such
that Ly > £ and so (Wf)l/j < (Wflj)l/(Llj) holds true for any j € Ns.
Thus we can estimate by

(W )V/(E) (Wg, V/(EL) (Wg, Y/ ELad)

weE, . .
Lj < lim inf LL1j < liminf 2¥)

oo (WP e (WE V@D = SR T (WHYi

(e)

verifying the desired statement for the Beurling case as well.

A different but more involved argument for the proof of (d) is to combine
Corollary 3.3 with (vi) in Sect. 2.6 and the main result [12, Thm. 3.1]:
w satisfies (wq) if and only if some/each wy« does, and this is equivalent
to the fact that (I)(iii) resp. (II)(i%) in Theorem 3.2 has to hold for
some/each x = y.
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3.1. Mixed Growth Indices Based on Mixed (w;) Conditions

We start this section with some observations. In (3.5) and (3.11) in the arising

liminf condition in order to make sense we have to assume L € Ny, whereas

only b > 0 is required in the conditions from (vii) and (viii) in Theorem 3.2.
Moreover recall that, since M** € LC, by (2.1) we get

. . xia __ t] . * .
VeeIVa>0VjeN: M —iggm = exp(¥y,aa (4))s
and the last expression makes even sense for any real j > 0.

Based on the characterizations shown in Theorem 3.2 we introduce now
two mixed growth indices. Let M, N € LC with M < N and let w, o be weight
functions with o > w.

For b > 0 we write (M, Qn)rp, if

exp (j%ltpfw (J'q))

Jg>1: liminf > q°, (3.16)

I e (L, (7))
which shall be compared with [4, Thm. 3.11 (v)].

Note that, if we write Qn = {W? = (W])jen : ¢ > 0} for the weight
matrix associated with wy, so in particular W' = N (see Sect. 2.6), then the
previous condition reads

W 1/3
Jg>1: liminf (M) > qb,

Jj—+oo j

what explains the notation used. It is immediate to see that if the condition
is satisfied for some given b > 0, then also for all 0 < &’ < b (with the same
choice for ¢).

Similarly, given a > 0 we write (0,w)y, q if

Kt
JK>1: limsupw( ) < K7,
t—+too O’(t)

which shall be compared with [4, Thm. 2.11 (iv)]. Again it is clear that if the
condition is satisfied for some given a > 0, then also for all ' > a (with the
same choice of K). According to these growth restrictions we put

ﬂ(M, QN) = Sup{b >0: (M, QN)va}, (317)
a(o,w) :=1inf{a > 0: (0,wW)w, a}- (3.18)
If there does not exist any b > 0, resp. a > 0, such that (M, Qx )L p, resp.
(0,W)w, a, holds true, then we put S(M,Qy) =0, resp. ao,w) = .
A first immediate consequence is the following:
Lemma 3.5. Let M, N € LC be given with M < N and satisfying

3C>13D>0VjeN: C'M; <DN;,. (3.19)
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Then a(wpr,wn) = 0 holds true.

Note that (3.19) cannot be valid for M = N (see Remark 2.2) and in
particular this result applies for any (non-constant) weight matrix M := {M? :
x € T} being (My.) and satisfying (Myry) resp. (M r)).

Proof. The argument in (#i) = (4i7) in Lemma 3.1 may be repeated verbatim
in order to yield that wy(Ct) < wps(t) + Dy for some Dy > 1 and all ¢t > 0.
Hence

lim sup w (CY)

<l<(C“
t—o00 WM(t)

for any a > 0, which gives the conclusion. 0

The next main result shows that the values defined in (3.17) and (3.18)
are closely related.

Proposition 3.6. Let M, N € LC be given with M < N and let wy;,wn be the
corresponding associated weight functions, then we get

1

)= oy

Proof. Suppose S(M,Qy) > 0 and let 0 < b < B(M,Qn), so (3.16) is valid
for b, and then there exists some ¢ > 1 and C' > 1 such that for all ¢t > 0 we
get o (tq) > qpf, (t) +tqlog(q®) — C. We apply the Young conjugate to this
inequality. Hence for all s > log(q®) we have

wn(€e®) = puy(s) = 0l (5) = igg{st — Ly ()}
= sup{sqt — ¢}, (tq)} < sup{sqt — qp},,, (t) — tqlog(¢")} + C
>0 >0

= qigg{t(s —1log(¢") — @5, ()} + C = qpl, (s —log(q")) + C

= (Puy (5 —log(q")) + C = qun(e®/¢") + C.

Consequently there does exist C'; > 1 such that for all ¢ > 0 we have wy (tqb) <

g (t) + Ch, ie. limsup, ., “’&5@’;) < KYb with K := ¢®* > 1 and so
(ware,Warv )w, 176 holds with this choice K for any b < b. Hence we have
shown a(wpr,wy) < 1/V, and by making b’ tend to b and then b tend to

B(M,Qn), we deduce that a(wyr,wn) < 1/8(M,QN).

Conversely, suppose that a(war,wy) < 0o and let a > (war, wN)w,, then
(WM, WN)wy,a 18 valid with some K > 1. So there exist C > 1and 0 < b < a
such that wy(Kt) < Kbwy(t) + C for all t > 0. Hence by setting k :=
log(K) > 0 and s := log(t) we have @, (k + s) = wy(eFT%) = wy(Kt) <
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Kbwp(e®) +C = Ky, (s) + C for all s € R. Applying the Young-conjugate
yields for all s > 0:

Py (8) = sup{st — oy (8)} = sup{s(k + ) = puy (k + 1)}
teR teR
> sup{s(k +1t) — K¢y, (t)} — C = sup{st — K’¢,,, (t)} — C + sk
teRr >0

= Kbsup{(s/K®)t — @, (1)} — C + sk = KbngM(s/Kb) —C + sk.
>0

Hence we have shown
IK>130>1Vs>0: K¢ (s)+sK log(K) < ¢} (sK") +C,
i.e.
o exp (g, (S'K))
lim inf i -
vobeeexp (G, (51)
So we have verified (M, Qn)r, 1/, with the choice g := K% > 1, hence 3(M, Qy)
> 1/a. When a tends to (war, wn )w, , it follows that 5(M, Qn) > 1/(war, WN ) w, -
One may easily conclude that the stated equality holds in any case (with

the conventions 1/0 = oo, 1/oo = 0), even if one of the indices is zero or
infinity. O

> exp(log(K)) = K > (K")'/°.

Thus, by involving the notation of mixed indices in this section and
Proposition 3.6, we can now reformulate Theorem 3.2 as follows.

Theorem 3.7. Let M = {M?® : x € T} be a (Ms.) weight matriz and let wpg =
{wpr= : & > 0} be the corresponding matriz of associated weight functions.
Then the following are equivalent:

(i) Any of the equivalent mized (w)-conditions of Roumieu type in (I) of
Theorem 8.2 hold true,

VeeIdyel: alwys,wyy) < oo,

VeeZ3dyel: B(M*,Qupv)>0.
Analogously, the following are equivalent:

(i) Any of the equivalent mized (wy)-conditions of Beurling type in (II) of
Theorem 3.2 hold true,

VeeI3dyel: alwyv,wy=)< oo,

VeeIdyeI: LMY, Quy=)>0.
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Proof. Again we limit ourselves to the Roumieu case.

(7) = (i) It suffices to take into account (3.3), which easily shows that
for every x there exists y such that (wa=,wnrv)w, o holds for a suitable value
of a.

(#4) < (i4¢) This is clear from Proposition 3.6.

(ii) = (i) By hypothesis, for every = € 7 there exists y € Z and K > 1
such that

lim sup M < +00.

t—too W= (1)
After a finite iteration (if necessary), we can guarantee that (3.4) holds, and
we are done. g

We close this section with the following observations for given M =
{M?* : 2 € T} being (Mq.):
(a) Lemmas 3.1 and 3.5 imply that condition (M), respectively (M),
yields that for every x € T there exists y € Z such that a(wps=,wprs) =0
and B(M?*, Q) = 00, resp. a(wary,wpy=) = 0 and B(MY, Q=) = oo.
(b) In particular, if Q is the matrix associated with some w € Wy, by Corol-
lary 3.3 we know that, as soon as w has in addition (w;), we are in the
situation described in (a).

4. Mixed Moderate Growth Conditions

In this section we study the mixed moderate growth conditions for a given
weight matrix. The first three equivalent conditions in the next result are
stated in [15] and [14], new conditions (iv) and (v) deal with replacing the
constant 2 in (i44) by some g > 0.

Proposition 4.1. Let M = {M* : © € I} be (My.), then in the Roumieu
setting the following conditions are equivalent:

(i) M has (M{mg}),

((i) Ve €eITIH>13yeIVt>0: 2wpyw(t) <wp=(Ht)+ H,

(iti)) Ve € Z3C>03yeIVjeN: M <C* (M)

(iv) we have that

exp (ﬁ%w (jq))

dg>0VaxeZldyel: lim sup < 400, (4.1)
setni=too exp (s, (7))
(v) we have that
exp (ﬁs@iw (jQ))
Jg>0VaxeZdyel: lim sup < 4oo. (4.2)

JER>0,j—+00 exp (%@ZM,, (]))

Moreover, in the Beurling setting, we have the following equivalences:
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(i) M has (M(mg)),

(i) Ve €TIH>13yeIVt>0: 2wne(t) < wap(HE) + H,
(iti)) Ve €eZI3C>03yeIVjeN: M <C¥(M)>.

(iv) we have that

1 % .

eXP( 75 Pw 79
3¢g>0V2zeZIyeZ:  limsup (azi My(.))
JENSg,j—+00 exp(;ngMT(]))

< 400,

(v) we have that

1 % -
eXP( 5, Puwyy 4
dJ¢>0VzxeZldyel: lim sup (jq My( ))<+oo.

JERs0j—too XD(5¢5, . (7))
Note: Even if all associated weight functions are equivalent w.r.t. ~, then in
general we cannot conclude that (wg) for each/some wyre is following.

Proof. We only treat the Roumieu setting in detail, the Beurling case follows
analogously.

First, by combining [15, Prop. 3.6] and [14, Thm. 9.5.2, Thm. 9.5.3], we
see that (i) < (i1) & (4i7).

(7i) = (iv) Recall that since each M* € LC, by (2.5), we have

. x;1 * .
VjeN: Mj=M" =exp(¢l,,. (7))

Then (4i7) implies the fact that for all z € Z we find y € Z such that the (4.1)
is valid with the same indices x and y and the universal choice ¢ = 2.
(iv) = (v) For any j € R, j > 1, we get

exp (£60,,. (79)) _ o (7 %o (L7120)
exp (Yes,, () exp (e, (L)

since q — 5.0, . (jq)) is nondecreasing for any # € 7 and j > 0 (fixed) and

since j < |j] +1 < 2]j| for all j > 1. Thus (4.1) with the choice ¢ > 0 does
imply (4.2) with the same indices 2 and y and with the parameter ¢’ := ¢/2.

(v) = (i17) We have to distinguish between two cases. First, if ¢ > 2 then
we immediately get (4.1) with ¢ = 2 (¢ — icp:)Mm (jq) is nondecreasing for

any x € Z and j > 0 fixed). Consequently (¢) follows again by recalling (2.5).
Second, if 0 < ¢ < 2, then we iterate (4.2) as follows for all 7 > 1

)

exp (ﬁtp;ﬁw (j2q)) exp (ﬁsﬂiw (2jq)> exp (ﬁ@im (jq))

exp (%%W (ﬁ) exp (%@ZW (qj)) exp (%%W (j))

Hence, after applying sufficiently many iterations again depending only on
given ¢ (choose n € N minimal to have 2"q > 2), we get (4.2) with ¢’ > 2 and
some index z € Z and are again able to conclude. O



28 Page 22 of 32 J. Jiménez-Garrido et al. Results Math

Assertion (i7) in the previous result is the mixed (wg)-condition of the
particular, Roumieu or Beurling, type. Using resp. applying iterations as in
the proofs of the previous section it is straight-forward to extend the list(s) of
equivalences in Proposition 4.1 by replacing in (ii) the value 2 by any C' > 1
not depending on z and y.

4.1. Mixed Growth Indices Based on Mixed Moderate Growth Conditions
Let M,N € LC with M < N be given and a > 0. We write (N, Qprr)mg,q, if

exp (%0, (70))

d¢>1: limsup ;

which should be compared with [4, Thm. 3.16 (v)]. Note that, if we write
Qn = {W? = (W])jen: ¢ > 0} for the weight matrix associated with ws, so
in particular W' = M (see Sect. 2.6), then the previous condition reads

1/j
. . W]q a
Jg>1: hmsup() < q“.

<q°, (4.3)

i—toe \ Nj

Given weight two functions w and o with 0 > w we write (w, 0)ugp if

SK>1: lmint 75D o g

mnf : (4.4)

which should be compared with [4, Thm. 2.16 (4i7)]. It is immediate to see
that if (4.3) is satisfied for some a > 0, then also for all a’ > a with the same
choices of ¢ and if (4.4) is satisfied for some given b > 0, then also for all
0 < b’ < b with the same choices for K. According to these growth restrictions
we can put

a(N, Q) :=1inf{a > 0: (N, Q) mg,a} € [0,00], (4.5)
and
Blw, o) :=sup{b>0: (w,0)ws.s} € [0,00]. (4.6)
If the corresponding sets are empty, we write a(N, Q) = oo and f(w,0) =

The next result shows that the values defined in (4.5) and (4.6) are re-
lated.

Proposition 4.2. Let M, N € LC be given with M < N and wp;,wn the corre-
sponding associated weight functions. Then we get

1

o) = oD
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Proof. Let a > a(N, ), so (4.3) is valid for a > 0. Then there exists some
C > 1 such that for all £ > 0 we get ¢, (tq) < qpl (t) + tqlog(q'/®) + C.
We apply the Young conjugate to this inequality, hence for all s > log(¢*) we
have

wi(€®) = Puy (5) = @i, () = igg{st — Py (D}
= sup{sqt — ¢, (tq)} > sup{sqt — qp;, (t) —tqlog(¢*)} — C
t>0 t>0
= qiglg{t(s —log(q*)) — @5, (1)} = C = qpl (s —log(¢")) = C

= qPuy (s —log(q")) — C = qwn(e’/q") — C.

Consequently, there does exist C; > 1 such that for all ¢ > 0 we have
qwn (t) < war(tg®) + Ch, ie. liminfy | o %g)’:) > KV with K := ¢* > 1.
S0 (WN, Wi )wg,1/a is valid with this choice K for any a’ > a which proves
Blwn,wn) > 1/a’. Since a can be chosen arbitrarily close to a(N, Q) we

have shown S(wy,wpr) > 1/a(N, Q).

Conversely, let now 0 < b < B(wn,wnr), 1.e. (WN, W )we,b 18 valid with
some K > 1, so there exists C' > 1 such that wy (Kt) > K’wy(t) — C for
all ¢ > 0. By setting k := log(K) > 0 and s := log(t) we have ¢, (k+s) =
war(eF®) > KPwy(e®) — C = K¢, (s) — C for all s € R. Hence applying the
Young-conjugate yields for all s > 0:

Plonr (8) = sup{st — iy, (1)} = sup{s(k + 1) — pu,, (k +1)}
teR teR

<sup{s(k +1t) — K%,y (1)} + C = sup{st — Ko, ()} + C + sk
teR >0

= K"sup{(s/K")t — uy (t)} + C + sk = K'¢}, (s/K") + C + sk.
>0

Thus we have shown that there exists C' > 1 such that ¢% (tK") < K% (t)+
tK®log(K) + C for all t > 0. Consequently, (N, O0r)ws,1 /e 1s valid with the
choice ¢ := K for any 0 < b’ < b which proves 1/b' > a(N, Q). Hence we

obtain S(wy,war) < 1/a(N, Q).
Note that this proof also shows that if one of the indices is zero the other
is infinity, so also in this situation the equality holds with the usual convention.
]

Remark 4.3. By inspecting the proofs of Propositions 3.6 and 4.2 we see that
the convexity assumption (w,) is indispensable in order to ensure ¢’ = .
Note that this condition is always satisfied for any wy; when having M € LC,
see Lemma 2.1.

Thus by Propositions 4.1 and 4.2, we immediately get the following char-
acterization.
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Theorem 4.4. Let M = {M?* : x > 0} be a (M) weight matriz and waq =
{wpe : > 0} be the corresponding matriz of associated weight functions.
Then the following conditions are equivalent:

(1) (Mimgy) holds true,

(i) VeeI3dyel: a(MY Q=) < oo,
(i) VeeZT3dyel: PBlwmv,wy=) > 0.

Analogously, for the Beurling case, the following are equivalent:

(i) (Mmg)) holds true,

(i) VeeI3Iyel: a(M* Q) < oo,
(’LZZ) Veeldyel: ﬁ(wMz,WMy)>0.

5. Consequences for Ultradifferentiable Classes

The aim of this final section is to extend the characterizing results from [1] to
the matrix setting, to refine the consequences shown in [15] and to give the new
mixed growth indices introduced in the previous sections an interpretation in
terms of the characterization for the equivalence of ultradifferentiable classes
defined by (abstractly given) weight matrices.

5.1. Classes Defined by Abstractly Given Weight Matrices

First let us recall the main result [15, Theorem 3.2].

Theorem 5.1. Let M be a (Ms.) weight matriz and waq be the corresponding
matriz of associated weight functions. If M does have (Ming)) and (M),
then

EM) = Elwn] (5.1)

and the equality holds as top. vector spaces.

The aim of this section is to show that (5.1) is characterized in terms of
the growth properties studied before. More precisely we will see that assump-
tion (M) is too strong.

The proof of Theorem 5.1 has been split into two parts. The first one
[15, Theorem 3.4] deals with the mixed moderate growth conditions and can
be reformulated as follows.

Theorem 5.2. Let M := {M?® : x € T} be a (Ms.) weight matriz and recall
M) = (M= € T,1> 0}, then the following conditions are equivalent:
(i) One has
Emy = Em@ys

as top. vector spaces,
(i) we have that

VeeZ3dyeI: oMY, Quy:)< oo,
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(#i1) we have that
VeeZ3dyel: Blwys,wy=)>0.

Analogously, the following conditions are equivalent:
(i) One has

Emy = Emm)y,s
as top. vector spaces,
(i4) we have that
VeeZ3dyel: oM Q) < oo,
(#i1) we have that

VeeZI3dyel: [lwys,wns)>0.

Proof. We prove only the statement in the Roumieu case.

The equivalence of (i) and condition (Mp,}) is shown in [15, Theorem
3.7, Proposition 3.9].

Theorem 4.4 implies the equivalence of the three statements. U

The second part has been treated in [15, Section 3.10] by studying con-
sequences of the assumption (M) on M. However, in order to have equality
between the classes 5[ M) and Elwy, 1t is sufficient to have one of the equiv-
alent but weaker conditions from Theorem 3.2 above.

Theorem 5.3. Let M := {M?* : x € T} be a (Ms.) weight matriz, let wpq be
the corresponding matriz of associated weight functions and finally M®) =
(M=t zeT,1>0}.
The following assertions are equivalent:
(i) One has

Emy = Efun

as top. vector spaces,
(i) we have that

VeeIdyel: alwys,wyy) < oo,
(#i1) we have that
VeeZI3dyel: [B(M*,Qpy)>0.
Analogously, the following are equivalent:
(i) One has
Eme) = Ewar)

as top. vector spaces,
(i) we have that

VeeZ3dyeIl: alwyy,wys) < oo,
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(#i1) we have that
VeeZ3dyeIl: B(MY,Qpe=)>0.

Proof. In the Roumieu case, (i) and (iii) are equivalent, by Theorem 3.7,
to the fact that one/each of the conditions from (I) in Theorem 3.2 holds
true. These conditions are shown to imply (¢) in [15, Section 3.10]. The same
arguments apply for these implications in the Beurling case. So, it is only
pending the proof that (¢) in the particular Roumieu or Beurling case implies
one of the equivalent conditions from (I), resp. (IT), in Theorem 3.2.

The Roumieu case. By assumption the nontrivial inclusion 5{ M)} -

Efuwngy 18 valid.
N,
Ni_1’

Then recall that for any given N € LC we can define (recall vy :=
v :=1):
+oo Nk
On(z) == kZ:O @)k exp(2ivz), z €R.
We get that Oy € Eqny (R, C) (in fact O does admit global estimates on whole
R) and
60 (0) = ils; with s; > N;, VjeN.
We refer to [17, Theorem 1], for a detailed proof see also [13, Prop. 3.1.2] and
[11, Lemma 2.9]. However, it is not difficult to see that 8 does not belong to
the Beurling type class &) (R, C).

Each M#% ¢ M® does belong to the class £C. Let h > 1 be arbitrary,
but from now on fixed. Let also z € Z be arbitrary but fixed and put M ol =
(thf;l)jeN. Clearly M®' € LC and this sequence is equivalent to M®!.
Consequently 07, € E{Mw;l}(R,(C) = &=y (R, C) C &y (R, C) and by
the inclusion €23 (R, C) C &1 (R, C) we get

JyeZ3Ib>03ID>0VjeN:

hJM;F:l — M;c:l < 03702 (0)] < Dexp (ll)cpzMy (bj)) = DM]y;b,
hence one may easily deduce that (3.8) is verified.

The Beurling case. We follow the ideas from the characterization of the
inclusion relations, see [11, Prop. 4.6] and also [15, Prop. 3.9]. By assumption
the nontrivial inclusion &, ,,)(R,C) C & y(2)(R,C) is valid and the inclusion
mapping is continuous by the closed graph theorem. Note that both spaces are
Fréchet spaces.

This means that V K C R compact Vo € ZVa >0V h>03K; C
R compact 3y € Z3Ib>03D >0V fec&u)RC): | fllar=ern <
D||waMy7K17b'
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We apply this to the functions f,(t) := e**, s > 0 and t € R. Note that
fs € ) (R, C) because |fs(j)(t)| = s/ forall j €N, s> 0and ¢t € R and
(Mf;“)l/j — 400 as j — 4oo for each € 7 and a > 0. Then we estimate as
follows:

s/ £ @)
— ey — - n = xja < _D
AT R M [ fsllareie mn < Dl fallongw 510
(4)
t
b oy W
JENtE K1 eXp(E(pry (b]))
J
= Dsup 871),
jJEN M]y

which yields exp(wpse=ia(s/h)) < Dexp(wpwn(s)) for all s > 0. Hence, by
applying (2.1) we get for all j € N
: tJ t7
MY =ssp——— < Dsup—————————
7750 exp@arn (1) 150 exp(wares (t/h))
Consequently we have shown
Ve eIVa>0¥C>13yeZI3b>03D>0YjeN: C/MPP < DM,

i.e. (3.13) and are done. O

= Dthjm.

Gathering all this information we are able to formulate the following
characterization.

Theorem 5.4. Let M be a (Mg.) weight matriz and waq be the corresponding
matriz of associated weight functions. Then the following are equivalent:

(i) M does have (Mingy) and one/each of the characterizing conditions
from (I) in Theorem 3.2 (e.g. the mized (w1)-conditions of Roumieu
type),

(i1) we have as top. vector spaces the equalities

Epmy = Eppey = Eopys
(i) VeeZdyeI: a(MY, Q)< oo, and
VeeZ3dyel: B(M* Qyw)>0.
(w)VeeZ3Idyel: Blwyv,wn=)>0, and
VeeZ3dyel: alwys=,wyy) < oo.
Analogously, the following are equivalent:

(i) M does have (M (ng)) and one/each of the characterizing conditions from
(II) in Theorem 3.2 (e.g. the mized (w1)-conditions of Beurling type),

(i) we have as top. vector spaces the equalities

Emy = Eme) = Ewr)s
(iti)) Ve eI3dyeI: [(MY,Qpn=)>0, and
VeeZI3dyel: a(M® Qyv) < oo,
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(w)yVeeZIIyel: olwmy,wys=)<oo, and
Veeldyel: ﬂ(me,wMy)>0.

We give now some comments on ”classical situations” to which this main
result applies.

(a) Theorem 5.4 applies to M = Q = {W? : z > 0}, when Q is associated
with a given weight function w € Wy (see Sect. 2.6). In this situation this
theorem is consistent with the known results from [1] and [11]: On the
one hand € satisfies all requirements from assertion (i) (for both types)
provided that w € W, see (2.3) and Corollary 3.3. On the other hand, we
have in this situation

o) = €] = Elua)

with the first equality holding by [11, Theorem 5.14 (2)] and the second
one by [11, Lemma 5.7]. Note that w~wyw= for all > 0 (i.e. (vi) in
Sect. 2.6) , hence the matrix wq is constant.

Alternatively, by our developed knowledge on mixed growth indices we
can also directly verify assertions (iv): By (2.3) and Theorem 4.4 we get
both requirements on the index (3; whereas Corollary 3.3 and Lemma 3.5
yield that both requirements on the index « are valid, more precisely
even with the value 0.

(b) If M = {M}, then wypg = {wpn} and there is no difference between
Roumieu- and Beurling-like conditions. In this case Theorem 5.4 yields
the characterizations shown in [1]. More precisely, we remark that in (7)
assumption (mg) on M implies that some/any assertions in Theorem 3.2
are valid if and only if

JQ€eNsy: liminf 29 > 1, (5.2)
- Jj—+o0 s

which follows by [12, Prop. 3.4]. However, note also that in [1] the general
assumptions on M have been slightly stronger than in our result, i.e. apart
from M € LC also liminf, . (M,/p!)'/? > 0 (this is precisely (MO0) in
[1]) and (M2') from [8] (derivation closedness) are required.

Finally, let us see (i) < (iv) directly and not using any information on
the underlying ultradifferentiable classes: In this situation assertion (iv)
reads a(wps) < oo and B(wyr) > 0, which is by [4, Cor. 2.14, Cor. 2.17]
equivalent to requiring both (w1) and (wg) for wys. By combining [8, Prop.
3.6] and [12, Thm. 3.1] we obtain the equivalence to (7).

We close with the following observation concerning the stability of the

arising conditions w.r.t. the natural equivalence relations [~] characterizing
the permanence of the class £y

Remark 5.5. 1f both M and N are (M), then in [11, Prop. 4.6] it has been
shown that Exq = &y if and only if M[=|N.
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And this is consistent with Theorem 5.4: For this recall that (Mn,)) is
clearly stable under relation [~]. Similarly this holds true for the equivalent
conditions from Theorem 3.2 of the particular, Roumieu or Beurling, type; it
can be directly checked for (I)(iv) resp. (I1)(iv): (3.6) resp. (3.12) are clearly
preserved under {~} resp. (=).

Recall that in general it is not clear that the stronger condition (M)
is preserved under [=7].

5.2. Classes Defined by an Abstractly Given Matrix of Weight Functions

The aim of this section is to apply the main result from the previous section to
a weight matrix A/ which is obtained by an abstractly given matrix of weight
functions Myy = {w® € Wy : « € T}. Recall that here w¥ < w® for any

x,y € Z with z < y and the class &y, is defined analogously as &, in
Sect. 2.7.

Theorem 5.6. Let Myy = {w® € Wy : « € I} be given and let the (Msgc)
weight matriv N' = {N* : x € I} be defined by

Ny = exp(p(p))- (5:3)
(I) The following are equivalent in the Roumieu case:

(i) N does have (Myngy) and one/each of the characterizing conditions
from (I) in Theorem 3.2 (e.g. the mized (w1 )-conditions of Roumieu
type),

(i1) we have as top. vector spaces the equality
Emw} = Ey-
(tit) VeeZ3dyeI: BwY,w®)>0,and
VeeZdyel: aw,w’)<occ.
(II) Analogously, the following are equivalent in the Beurling case:

(i) N does have (M y,g)) and one/each of the characterizing conditions
from (IT) in Theorem 3.2 (e.g. the mized (w1 )-conditions of Beurling
type),

(i4) we have as top. vector spaces the equality
Emw) = Ey-
(i) VeeZT3dyel: alw’,w) <oo, and
VeeZ3dyel: [Bw*wY)>0.

Proof. First, by (5.3) the matrix N is (M) and by (vi) in Sect. 2.6 we obtain
Veel: wye~w” (5.4)

This fact implies (e.g. see the proof of [11, Lemma 5.16 (1)]) that &, =
EMyy)- Now, we are in a position to apply Theorem 5.4 to the matrix N, so
that

EN = Eve] = Elun)y
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and the conclusion is straightforward both in the Roumieu and the Beurling
case. g

If My = {w} and so N' = {N}, then there is no difference between
the Roumieu and the Beurling case and so for the mixed indices we precisely
get the indices a(w) and [(w) studied in [4]. Consequently, assertion (7i¢) in
Theorem 5.6 amounts to having both (w;) and (wg) for w, see [4, Cor. 2.14,
Cor. 2.17]. So this result is consistent with [1, Cor. 16]. However, note that
there (wq) is a standard assumption, i.e. w € W. Finally, concerning N and
assertion (i) we recall: As mentioned in the previous section, since N has (mg)
we have that N satisfies some/any of the assertions in Theorem 3.2 if and only
if (5.2) holds.
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