
TESIS DE DOCTORADO

PARALLELIZATION AND OPTIMIZATION
OF ITERATIVE SOLVERS ON HIGH
PERFORMANCE ARCHITECTURES

Edoardo Emilio Coronado Barrientos

ESCUELA DE DOCTORADO INTERNACIONAL DE LA UNIVERSIDAD DE
SANTIAGO DE COMPOSTELA

PROGRAMA DE DOCTORADO EN INVESTIGACIÓN EN TECNOLOXÍAS DA
INFORMACIÓN

SANTIAGO DE COMPOSTELA

2021

DECLARACIÓN DEL AUTOR DE LA TESIS
Parallelization and Optimization of Iterative Solvers on High Performance

Architectures

Don Edoardo Emilio Coronado Barrientos

Presento mi tesis, siguiendo el procedimiento adecuado al Reglamento, y declaro que:

1. La tesis abarca los resultados de la elaboración de mi trabajo.

2. En su caso, en la tesis se hace referencia a las colaboraciones que tuvo este trabajo.

3. Confirmo que la tesis no incurre en ningún tipo de plagio de otros autores ni de trabajos

presentados por mı́ para la obtención de otros tı́tulos.

4. La tesis es la versión definitiva presentada para su defensa y coincide con la versión

enviada en formato electrónico.

Y me comprometo a presentar el Compromiso Documental de Supervisión en el caso de el

original no esté en la Escuela.

En Santiago de Compostela, 19 de julio 2021

Fdo. Edoardo Emilio Coronado Barrientos

AUTORIZACIÓN DEL DIRECTOR/TUTOR DE LA TESIS
Parallelization and Optimization of Iterative Solvers on High Performance

Architectures

Don Antonio Jesús Garcı́a Loureiro, Profesor Catedrático da Área de Electrónica da
Universidade de Santiago de Compostela

INFORMA :

Que la presente tesis, se corresponde con el trabajo realizado por Don Edoardo Emilio Coro-
nado Barrientos, bajo mi dirección/tutorización, y autorizo su presentación, considerando

que reúne los requisitos exigidos en el Reglamento de Estudios de Doctorado de la USC, y

que como director/tutor de ésta no incurre en las causas de abstención establecidas en la Ley

40/2015.

De acuerdo con lo indicado en el Reglamento de Estudios de Doctorado, declara también que

la presente tesis doctoral es idónea para ser defendida en base a la modalidad de COMPEN-

DIO DE PUBLICACIONES, en los que la participación del doctorando/a fue decisiva para

su elaboración y las publicaciones se ajustan al Plan de Investigación.

En Santiago de Compostela, 19 de julio 2021

Fdo. Antonio Jesús Garcı́a Loureiro
Director/a tesis

A la memoria de mi madre, Oralia Barrientos.

Fı́ate de Jehová de todo tu corazón, Y no
te apoyes en tu propia prudencia. Re-
conócelo en todos tus caminos, Y él en-
derezará tus veredas.

Proverbios 3:5-6

Agradecimientos

Durante el desarrollo de esta tesis, vivı́ experiencias muy profundas. Algunas de ellas re-
presentaron grandes obstáculos, y otras se convirtieron en fuertes motivadores. Le agradezco
principalmente a Dios Su aprobación, ayuda y protección para alcanzar esta meta.

Quiero agradecer también a mi familia por todo su apoyo, principalmente a mi padre,
Emilio Coronado, por mantener su apoyo constante. Y a mi esposa Ángela Crujeiras por su
paciencia y comprensión durante el desarrollo de esta tesis y su ayuda para corregir la parte
en gallego de este documento.

Agradezco a mi director Antonio Garcı́a por su apoyo, guı́a, consejo y su traducción en
gallego necesarios para finalizar esta tesis. En este contexto también me gustarı́a agradecer
al Departamento de Electrónica y al Centro Singular de Investigación en Tecnoloxı́as In-
telixentes (CiTIUS) de la Universidad de Santiago de Compostela, por proveer los recursos
y soporte técnico necesarios para la consecución de este proyecto. En especial a Fernando
Guillén, Jorge Suárez, Diego Cougil y Rosa Hernández.

También me gustarı́a agradecer a todos los compañeros del CiTIUS que dedicaron parte
de su tiempo para aconsejarme, corregirme, o motivarme, en especial a Guillermo Indalecio,
Montserrat Fortes, Natalia Seoane, Pablo Quesada, Esteban Ferro, Alberto Suárez y Vanesa
Graı́ño.

Deseo expresar mi agradecimiento a Adrian Jackson por aceptar ser mi anfitrión durante
mi estancia en el Centro de Computación Paralela de Edimburgo (EPCC). En este contexto
también me gustarı́a agradecer la ayuda que me proporcionó Catherine Inglis para los trámites
administrativos y su guı́a para desplazarme en Edimburgo. A Rosa Filgueira por sus amables
palabras y consejo. Y mi especial reconocimiento a Mario Antonioletti por su invaluable
apoyo durante mi visita al EPCC y en la publicación de mi último trabajo.

19 de julio 2021

Resumo

O obxectivo principal desta tese é desenvolver un formato óptimo de almacenamento en ma-
triz dispersa e implementar kernels de computación eficientes que aceleren a execución do
produto de matriz dispersa por vector (SpMV) en arquitecturas de computadoras modernas.
O produto SpMV é un bloque de construción esencial para unha mirı́ada de códigos de apli-
cación numérica, especialmente para solucionadores iterativos e simuladores numéricos. Me-
llorar o rendemento do produto SpMV é de especial interese para os investigadores, xa que
é o principal pescozo de botella para os códigos onde se require. De feito, os kernels SpMV
historicamente execútanse ao 10% ou menos do rendemento máximo en arquitecturas su-
perescalares baseadas en caché [1]. De feito, optimizar o produto SpMV en arquitecturas de
computadoras modernas non é unha tarefa trivial. Sobre todo, porque hoxe en dı́a todos os
computadores son paralelos [2], e aproveitar a maior parte da súa potencia de procesamento
require que o programador teña coñecemento de paradigmas de programación paralelos, al-
goritmos paralelos eficientes e polo menos unha idea básica da arquitectura do dispositivo que
se está apuntando.

No caso particular do produto SpMV, a natureza desordenada presente no patrón de dis-
persión das matrices dispersas xeradas por aplicacións da vida real, é o principal culpable
de non ter un fluxo de control uniforme nos kernels SpMV. Os patróns de dispersidade des-
ordenados tamén fan que os accesos consecutivos á memoria sexan difı́ciles de lograr polos
subprocesos xerados no dispositivo acelerador. Estas dúas condicións son requisitos impor-
tantes para o procesamento paralelo eficiente de kernels en dispositivos de moitos núcleos
[3]. Por tanto, reorganizar a estrutura de datos da matriz de tal maneira que esta regularidade
póidase aplicar no deseño de novos formatos de almacenamento de matriz é primordial para
implementar códigos numéricos eficientes nas computadoras modernas. Ademais, a imple-
mentación do kernel SpMV tamén debe ter en conta as especificacións técnicas do hardware

EDOARDO EMILIO CORONADO BARRIENTOS

ao que se dirixe.

Esta tese comezou implementando versións personalizadas de solucionadores robustos
de sistemas de ecuacións lineais nun simulador numérico para dispositivos semiconductores
[4]. Implementáronse dous solucionadores personalizados en OpenCL [5]: o residuo mı́nimo
xeneralizado flexible (FGMRes) [6] e o método gradiente biconxugado estabilizado precondi-
cionado (BiCGStab precondicionado) [7]. As versións personalizadas probáronse utilizando
o coprocesador Intel Xeon Phi 3120A [8] e a unidade de computación gráfica (GPU) NVIDIA
Tesla S2050 [9]. Os obxectivos deste primeiro paso foron: familiarizar ao autor desta tese cun
novo paradigma de programación paralela, comparar a precisión dos resultados numéricos
utilizando dispositivos aceleradores para procesar fragmentos de código, e comparar o rende-
mento dos solucionadores personalizados coa implementación do solucionador FGMRes que
se atopa na biblioteca PSPARSLIB [6]. Os resultados numéricos mostraron que existı́a unha
pequena diferenza na precisión entre executar o código completo do simulador no servidor
do sistema e executar o simulador no servidor do sistema e un dispositivo acelerador. Con
todo, esta diferenza non foi significativa, e validouse a implementación de solucionadores
personalizados xunto co primeiro obxectivo. Os resultados numéricos tamén mostraron que
as funcións executadas no dispositivo acelerador requirı́an optimización porque as versións
personalizadas non superaban a versión PSPARSLIB. Tamén exhibiron que o tamaño do pro-
blema requirı́a ser o suficientemente grande como para superar a inicialización de OpenCL e
a sobrecarga do marco.

O segundo paso desta tese foi estudar o rendemento dalgunhas operacións alxébricas li-
neais básicas utilizando OpenCL en dispositivos aceleradores [10, 11]. O rendemento das
operacións AXPY, DOT e SpMV analizouse no coprocesador Intel Xeon Phi 3120A e na
GPU NVIDIA Tesla S2050. Non se fixo ningún esforzo para mellorar o rendemento da ope-
ración AXPY debido ao seu carácter xa paralelo. Implementáronse dous enfoques para a
operación DOT. O primeiro enfoque cargou dous valores dun vector, calculou o seu produto
e realizou unha primeira redución de dous elementos e almacenou este resultado nun bloque
na memoria local. Unha vez que se enchen todas as posicións dentro do bloque local, reali-
zouse unha segunda redución baseada no direccionamiento secuencial para evitar conflitos
de banco de memoria. O segundo enfoque para a operación DOT, foi un kernel de redución
de dous pasos. O primeiro kernel asignará cada elemento de traballo xerado polo dispositivo
para reducir varias posicións dunha matriz de resultados intermedia. E o segundo kernel usará
un elemento de traballo para reducir aı́nda máis os resultados parciais calculados a partir do

xiv

Resumo

primeiro kernel. Para a operación SpMV realizáronse dúas implementacións de acordo co
traballo desenvolvido en [12, 13]. A primeira implementación coñécese como o kernel es-

calar. Asigna un elemento de traballo para realizar o produto escalar entre unha fila da matriz
dispersa e o vector da dereita. O rendemento deste kernel vese moi afectado por matrices
cuxas filas teñen un enchido moi desequilibrado, xa que isto xerará desequilibrios de carga
de traballo entre subprocesos. O segundo kernel SpMV coñécese como kernel vectorial. Este
kernel asigna 32 elementos de traballo para realizar o produto escalar entre cada fila da matriz
dispersa e o vector da dereita. En primeiro lugar, cada elemento de traballo, dentro do grupo
de traballo, carga unha entrada da matriz e un valor do vector e realiza o seu produto, a conti-
nuación, almacena o seu resultado nunha matriz na memoria local. Por último, realı́zase unha
redución nos elementos desta matriz mediante o direccionamiento secuencial. O rendemento
deste kernel depende en gran medida do número de elementos dentro das filas da matriz dis-
persa. Claramente, as matrices cuxas filas están moi poboadas serán máis adecuadas para este
kernel. Os resultados numéricos mostraron que os kernels que usaban memoria local benefi-
ciaban o rendemento do dispositivo NVIDIA, mentres que os kernels que evitaban o uso de
memoria local desempeñábanse mellor no coprocesador Intel. Tamén mostraron que a GPU
NVIDIA era máis rápida que o dispositivo Intel nos seguintes casos:

• para a operación AXPY, arranxos de discos con menos de 1 M de elementos,

• para o produto DOT, arranxos de discos con menos de 2 M de elementos,

• para o produto SpMV, arranxos de discos con menos de 10 M de elementos.

Estes resultados centraron esta tese na mellora do produto SpMV, xa que este último re-
sultou ser a operación máis custosa en tempo dos solucionadores iterativos comúns. Por tanto,
a investigación de varios estudos de vangarda sobre formatos optimizados foi o terceiro paso.
Despois dunha coidadosa consideración, seleccionáronse catro formatos para identificar as
estratexias exitosas empregadas no seu deseño, ou para ser utilizadas como competidores das
nosas propostas co fin de validar os resultados desta tese. O primeiro esquema considerado é
o formato de fila dispersa comprimida (CSR). Este formato é un dos esquemas de almacena-
mento máis populares para matrices dispersas en procesadores superescalares [14]. Ata o dı́a
de hoxe, o interese polo formato CSR mantı́vose ata o punto de que importantes bibliotecas
numéricas aı́nda contan con versións optimizadas do mesmo no seu repertorio. As bibliotecas
Intel MKL [15] e cuSPARSE [16] son dous exemplos destas bibliotecas. O formato CSR al-
macena explicitamente as entradas da matriz e os ı́ndices de columna nas matrices val[] e

xv

EDOARDO EMILIO CORONADO BARRIENTOS

col[], respectivamente. Este formato tamén require unha terceira matriz de punteiros de fila
(row[]). Se NNZ é o número de elementos distintos de cero na matriz e NROWS é o número
de filas da matriz, as matrices val[] e col[] teñen lonxitude NNZ e a matriz row[] ten di-
mensión NROWS+1. Os principais inconvenientes deste formato son os accesos non contiguo
á memoria debido ao direccionamiento indirecto e as cargas de traballo pequenas e desequi-
libradas entre subprocesos debido ao enchido variable das filas. O formato CSR utilizouse
nesta tese para comparar o seu rendemento.

O segundo esquema considerado foi o formato ELLR-T desenvolvido para GPU [17]. O
formato ELLR-T proporciona unha matriz dispersa cunha estrutura de datos regular para fa-
vorecer a computación SpMV eficiente en máquinas vectoriais [18]. Este formato utiliza dous
matrices rectangulares e unha matriz lineal para almacenar a matriz dispersa. E os parámetros
T e BS para axustar o formato dunha matriz dada. A matriz val[] almacena os elementos
distintos de cero da matriz, a matriz col[] almacena os seus respectivos ı́ndices de columna
e a matriz rl[] almacena as lonxitudes de fila da matriz. As matrices val[] e col[] son
de tamaño NROWS x RMAX, onde NROWS é o número de filas da matriz e RMAX é o número
máximo de elementos distintos de cero por fila na matriz. A matriz rl[] é de dimensión
NROWS. As filas cuxo número de elementos distintos de cero son inferiores a RMAX énchense
con ceros. O parámetro T utilı́zase para indicar o número de subprocesos asignados para
calcular o resultado de cada fila. Por tanto, cada fila divı́dese en conxuntos de elementos T.
O parámetro BS para indicar o número do tamaño do bloque. Este formato ten as seguintes
vantaxes: acceso á memoria global fusionado e aliñado, computación homoxénea dentro dun
conxunto de 32 elementos de traballo, redución de cálculos inútiles e desequilibrio dos sub-
procesos dun conxunto de 32 elementos de traballo e alta ocupación para os elementos de
traballo. Con todo, o recheo cero é o principal inconveniente do formato ELLR-T. Dado que
unha matriz que ten polo menos unha fila moi poboada dará lugar a un gran espazo de memo-
ria, o que fai imposible almacenar algunhas matrices. Nesta tese utilizouse o formato ELLR-T
para comparar o seu rendemento.

O terceiro esquema importante considerado é o formato ELL-WARP (K1) desenvolvido
para GPU. Este formato combina ideas doutros esquemas [19]: varı́a o número de elementos
almacenados (formato ELL-R [14, 20]), reduce o requisito de almacenamento (formato SELL
[21]), asigna moitos elementos de traballo para equilibrar a carga de traballo (formato ELLR-T
[17]) e ordena as filas da matriz (formato pJDS [22]). O formato K1 reordena as filas da matriz
en orde descendente segundo o seu número de elementos. Esta reordenación realı́zase para

xvi

Resumo

empaquetar as filas cun número similar de elementos en segmentos denominados bloques. O
tamaño dun bloque especifica o número de filas que contén e establéceo o parámetro BLS.
Ter as filas empaquetadas nos bloques máis homoxéneos posibles, axuda a equilibrar a carga
de traballo entre os grupos de traballo. Este formato utiliza cinco matrices para almacenar a
matriz de partida. A matriz val[] almacena as entradas da matriz, a matriz col[] almacena
os ı́ndices de columna, a matriz nmc[] garda o número máximo de columnas contidas en
cada bloque, a matriz blp[] garda os punteiros á posición inicial de cada bloque e permi[]
mantén o mapa de permutación inversa da matriz. A dimensión das matrices val[] e col[]
depende de como se forman os bloques, pero a súa dimensión está preto do valor de NNZ. A
dimensión das matrices nmc[] e blp[] son de tamaño BLN, o número de bloques necesarios
para almacenar a matriz. E a matriz permi[] é de lonxitude NROWS.

O cuarto esquema é o formato SELL-C-σ desenvolvido para multiplataforma [23]. Este
formato é equivalente ao formato K1, pero foi desenvolto de forma independente por outro
grupo [19]. O formato SELL-C-σ divide a matriz en fragmentos de filas de igual tamaño.
Cada fragmento ten C filas. A continuación, cada fila énchese con ceros para que coincida
coa lonxitude da fila máis longa dentro do mesmo fragmento. Con iso todos os elementos nun
fragmento almacénanse consecutivamente en orde principal de columna. O número de filas
debe completarse nun múltiplo de C. Este formato utiliza as mesmas matrices e dimensións
do formato K1. A principal diferenza entre este formato e o formato K1 é que este último foi
desenvolvido para GPU e o primeiro foi desenvolvido para multiplataforma e presentou un
núcleo para o coprocesador Intel Xeon Phi. O terceiro e cuarto formatos tamén se empregaron
como competidores dos formatos propostos por esta tese.

Cada un dos formatos seleccionados foi un logro na optimización do rendemento de
SpMV. Certamente, pódese argumentar que dous eventos importantes motivaron aos seus
deseñadores para desenvolver estes esquemas. A introdución do modelo Compute Unified
Device Architecture (CUDA [24]) en 2006 por NVIDIA para os seus GPU, e a introdución
das Extensións Vectoriais Avanzadas de 512 bits (AVX-512 [25]) propostas por Intel en 2013
para as súas arquitecturas Knights Landing e Skylake [26]. Con todo, como se pode apreciar
na exposición anterior, a maiorı́a destes formatos foron desenvolvidos para GPU NVIDIA
destacando unha preferencia por estes dispositivos sobre os dispositivos Intel Xeon, a pesar
de que ambas plataformas utilı́zanse en computación de alto rendemento (HPC). Esta tenden-
cia poderı́a explicarse porque os programadores xa estaban utilizando GPU para a informática
de propósito xeral e a introdución do modelo CUDA facilitou o uso de GPU porque os proble-

xvii

EDOARDO EMILIO CORONADO BARRIENTOS

mas xa non requiren ser enmascarados como tarefas de gráficos por computadora [27].
Motivada pola falta de formatos orientados á arquitectura Intel Xeon e polo deseño cada

vez máis complexo dos formatos de almacenamento actuais de última xeración, esta tese
propoñı́a dous formatos de almacenamento para matrices dispersas que apoian a seguinte
hipótese:

Se un formato de matriz dispersa non é complicado (en termos de matrices necesarias

para conter unha matriz) e inclúe valores vectoriais en si mesmo, deberı́a mellorar o rende-

mento do produto SpMV (medido en GFLOPS), e en consecuencia dos solucionadores itera-

tivos, en arquitecturas paralelas modernas.

Por iso, as principais achegas desta tese son as seguintes:

• A primeira proposta desta tese foi o novo formato AXC (A e X correspóndense a matriz
e vector respectivamente en notación de álxebra lineal, e C significa liña de memoria
caché) para realizar de maneira eficiente o produto SpMV na arquitectura Intel Xeon
Phi utilizando OpenCL [28]. Este formato desenvolveuse seguindo as recomendacións
que se atopan en [3]. Este traballo comparou o rendemento do produto SpMV utilizando
os formatos AXC, CSR, ELLR-T e K1. Este estudo tamén incluı́u a implementación
dunha aplicación real utilizando os formatos anteriormente mencionados. As principais
caracterı́sticas deste traballo enuméranse a continuación:

1. O formato AXC é un esquema moi simple. Utiliza só duas matrices para conter
a matriz dispersa. A primeira matriz (ax[]) almacena as entradas da matriz e
os seus valores vectoriais correspondentes de forma contigua en segmentos de
datos denominados ladrillos. A segunda matriz (brp[]) garda os punteiros nas
posicións iniciais de cada fila da matriz (ax[]).

2. Cada grupo de datos ten unha lonxitude igual a 2 x HBRS. HBRS significa medio
tamaño de bloque e é igual a liña de memoria caché. Esta disposición de datos
permite ao compilador explotar a utilización da memoria caché e a vectorización
de rexistros de 512 bits do coprocesador Intel Xeon Phi dunha maneira altamente
eficiente. Isto resolve o principal pescozo de botella de rendemento do coproce-
sador Intel Xeon Phi, que é a utilización da memoria caché de acordo con [28].

3. A inclusión dos valores vectoriais na matriz ax[] fai que o formato AXC sexa
robusto fronte aos accesos indirectos á memoria. Este feito confı́rmase polo

xviii

Resumo

número de casos nos que o formato AXC supera aos seus competidores cun ker-
nel OpenCL, é dicir, en 7 das 12 matrices. A maiorı́a destas matrices teñen unha
localidade espacial pobre debido aos seus patróns de dispersión aleatorios ou de
punta de frecha.

4. O formato AXC probouse nunha aplicación real (solucionador CG) utilizando o
enfoque de descarga. Esta proba requirı́a converter os formatos AXC, ELLR-T
e K1 do formato CSR. Esta transformación mostrou que o formato AXC ten o
tempo de conversión máis rápido debido á súa simplicidade.

5. A implementación de CG tamén requirı́a transferir datos entre o servidor e o dis-
positivo, o que aumentaba o número de operacións de memoria e obstaculizaba o
rendemento de todos os solucionadores.

• A segunda proposta foi probar o formato AXC no coprocesador Intel Xeon Phi uti-
lizando OpenMP e as instrucións Intel AVX-512 [29]. Este traballo desenvolveuse
empregando o enfoque nativo, debido á falta de rendemento observada utilizando o en-
foque de descarga. Este traballo comparou o rendemento de SpMV dos formatos AXC,
CSR e SELL-C-σ . Neste estudo implementáronse dúas aplicacións reais: os solu-
cionadores CG e BiCGStab. As principais caracterı́sticas deste traballo enuméranse a
continuación:

1. O uso de funcións vectorizadas incorporadas, mellorou o rendemento do produto
SpMV utilizando o formato AXC. Este feito evidenciouse polo número de ca-
sos en que o formato AXC superou aos seus competidores, é dicir, en 21 das 25
matrices.

2. Os resultados numéricos confirmaron a resistencia de AXC aos direccionamentos
indirectos de memoria, xa que logrou un factor de aceleración máximo de x6,8
para unha matriz (M07) cunha localidade espacial deficiente debido ao seu patrón
de dispersión aleatoria.

3. O enfoque nativo conduciu a menos operacións de memoria que o enfoque de
descarga. Este feito provocou que o rendemento observado para os kernels SpMV
trasladárase principalmente aos solucionadores CG e BiCGStab.

4. O solucionador CG baseado en AXC superou aos seus competidores en 20 das 25
matrices. Tamén logrou un factor de aceleración máximo de x1,8 sobre a función

xix

EDOARDO EMILIO CORONADO BARRIENTOS

MKL para o formato CSR para unha matriz (M04) cunha localidade espacial po-
bre.

5. O solucionador BiCGStab baseado en AXC logrou un factor de aceleración de
x1,9 sobre o seu competidor máis próximo para unha matriz (M07) cunha locali-
dade espacial pobre.

• A terceira proposta foi o novo formato AXT (A e X correspóndense a matriz e vec-
tor respectivamente en notación de álxebra lineal, e T corresponde ao mosaico) para
realizar eficientemente o produto SpMV nas arquitecturas Intel Xeon e NVIDIA uti-
lizando as instrucións OpenMP e AVX-512 e CUDA respectivamente [30]. Este for-
mato desarrollouse para ampliar o rango de aplicación do formato AXC a outras platafor-
mas, como a plataforma NVIDIA. Os resultados nesta plataforma confirmaron o éxito
deste logro. Este traballo probou o produto SpMV utilizando os formatos CSR, AXC e
AXT en ambas plataformas.

1. O novo formato AXT utiliza duas matrices para almacenar a matriz dispersa. Xa
se introduciu a primeira matriz (ax[]) e a matriz auxiliar (rwp[] ou hdr[])
cuxa función depende da arranxo de datos xerada polo formato.

2. O formato AXT utiliza tres parámetros para adaptarse a calquera dispositivo ace-
lerador e optimizar o almacenamento de calquera matriz dispersa: o ancho medio
do mosaico (THW), o modo (MODE) e o alto do mosaico (TH).

3. O formato AXT pode xerar catro disposicións de datos diferentes, dependendo
dos valores seleccionados para cada parámetro:

a) a variante AXTUH1 é o formato AXT con MODE=UNC e TH=1,

b) a variante AXTUH é o formato AXT con MODE=UNC e TH>1,

c) a variante AXTCH1 é o formato AXT con MODE=COM e TH=1,

d) a variante AXTCH é o formato AXT con MODE=COM e TH>1.

4. A variante AXTUH foi a de mellor desempeño na plataforma Intel Xeon usando
TH=4 ou TH=8 para a maiorı́a dos casos. Logrou unha mellora do rendemento do
18,1% e logrou reducir a pegada de memoria un 5,1% sobre o formato AXC. En
comparación co formato CSR, a variante AXTUH logrou unha mellora do rende-
mento do 44,3% e necesitou un 34,6% máis de memoria.

xx

Resumo

5. Esta variante non mostrou preferencia por un tipo especı́fico de matriz porque
logrou factores de aceleración sobresalientes sobre diferentes tipos de matrices.
Para unha matriz cun patrón de dispersión de punta de frecha (M03), logrou un
factor de aceleración de x2,41. Para unha matriz cun patrón de dispersión irregular
e unha fila anormalmente grande (M07), alcanzou un factor de aceleración de
x7,33. E para unha matriz dun patrón de dispersión diagonal de banda (M25),
logrou un factor de aceleración de x2,73.

6. As variantes AXTUH e AXTCH1 lograron o mellor rendemento na plataforma
NVIDIA usando TH=4 ou TH=8 e BS=512 ou BS=1024 respectivamente para
a maiorı́a dos casos. A súa mellora de rendemento é inferior ao 10%, mentres que
os seus requisitos de memoria representan un incremento de aproximadamente o
35% en comparación co formato CSR.

7. O formato AXT foi o de mellor desempeño para matrices con filas anormalmente
grandes dentro dos seus rangos (por exemplo, M07, M20, M21 e M24). Alcanzou
factores de aceleración desde x2,68 ata x378,50 para este tipo de matrices.

8. O formato AXT superou ao formato AXC na plataforma NVIDIA en todos os
casos. Os factores de aceleración mı́nimo e máximo logrados polo formato AXT
sobre o formato AXC foron x1,08 e x9,84 respectivamente. Este feito valida a
extensión do rango de aplicación do formato AXT á plataforma NVIDIA.

xxi

Summary

The main objective of this thesis is to develop an optimal sparse matrix storage format and
implement efficient computing kernels that accelerate the execution of the sparse matrix vec-
tor (SpMV) product on modern computer architectures. The SpMV product is an essential
building brick for a myriad of numerical application codes, especially for iterative solvers and
numerical simulators. Improving the performance of the SpMV product is of special interest
for researchers, because it is the major bottleneck for codes where it is required. In fact, the
SpMV kernels historically run at 10% or less of peak performance on cache-based superscalar
architectures [1]. Indeed, optimizing the SpMV product on modern computer architectures is
not a trivial task. Mostly, because nowadays all computers are parallel [2], and harnessing
the most of their processing power requires that the programmer has knowledge of parallel
programing paradigms, efficient parallel algorithms and a basic idea of the device architecture
being targeted.

In the particular case of the SpMV product, the disordered nature present in the sparsity
pattern of the sparse matrices generated by real life applications, is the major culprit for not
having uniform control flow in the SpMV kernels. The disordered sparsity patterns also make
consecutive memory accesses difficult to achieve by the threads spawned by the accelerator
device. These two conditions are important requirements for efficient parallel processing of
kernels on many-core devices [3]. Hence, rearrange the data structure of the matrix in such
a way that this regularity can be enforced in the design of new matrix storage formats is
paramount for implementing efficient numerical codes on modern computers. Furthermore,
the SpMV kernel implementation also should take into account the technical specifications of
the hardware being targeted.

This thesis began by implementing custom versions of robust solvers of systems of linear
equations in a numerical simulator for semiconductor devices [4]. Two custom solvers were

EDOARDO EMILIO CORONADO BARRIENTOS

implemented in OpenCL [5]: the Flexible Generalized Minimal Residual (FGMRes) [6] and
the preconditioned BiConjugate Gradient Stabilized (preconditioned BiCGStab) [7] methods.
The custom versions were tested using the Intel Xeon Phi 3120A coprocessor [8] and the
NVIDIA Tesla S2050 Graphics Computing Unit (GPU) [9]. The objectives of this first step
were: to familiarize the author of this thesis with a new parallel programming paradigm,
to compare the precision of the numerical results using accelerator devices to process code
snippets, and to compare the performance of the custom solvers against the implementation
of the FGMRes solver found in the library PSPARSLIB [6]. The numerical results showed that
there was a small difference in precision between running the complete code of the simulator
on the system host and running the simulator on the system host and an accelerator device.
However, this difference was not significant, and the custom solvers implementation along
with the first objective were validated. The numerical results also showed that the functions
executed on the accelerator device required optimization because the custom versions did
not overperform the PSPARSLIB version. They also exhibited that the size of the problem
required to be large enough to overcome the OpenCL initialization and framework overhead.

The second step of this thesis was to study the performance of some basic linear algebraic
operations using OpenCL on accelerator devices [10, 11]. The performance of the operations
AXPY, DOT and SpMV were analyzed on the Intel Xeon Phi 3120A coprocessor and on
the NVIDIA Tesla S2050 GPU. There was no effort done to improve the performance of the
AXPY operation due to its already parallel character. Two approaches were implemented
for the DOT operation. The first approach loaded two values from a vector, calculated their
product and performed a first two-element reduction and stored this result in a block on local
memory. Once all the positions within the local block are filled, a second reduction were
performed based on sequential addressing in order to avoid memory bank conflicts. The
second approach for the DOT operation, was a two-step reduction kernel. The first kernel will
assign each work-item spawned by the device to reduce several positions of an intermediate
result array. And the second kernel will use one work-item to further reduce the partial results
calculated from the first kernel. For the SpMV operation two implementations were done
according to the work developed in [12, 13]. The first implementation is known as the scalar

kernel. It assigns one work-item to perform the dot product between one row of the sparse
matrix and the right-hand vector. The performance of this kernel is highly affected by matrices
whose rows have very unbalanced population, because this will generate workload unbalances
among threads. The second SpMV kernel is known as vector kernel. This kernel assigns 32

xxiv

Summary

work-items to perform the dot product between each row of the sparse matrix and the right-
hand vector. First each work-item, within the work-group, loads an entry from the matrix
and a value from the vector and performs their product, then stores its result in an array on
local memory. Finally, a reduction is performed on the elements of this array using sequential
addressing. The performance of this kernel depends highly on the number of elements within
the rows of the sparse matrix. Clearly, matrices whose rows are highly populated will be
better suited for this kernel. The numerical results showed that kernels using local memory
benefited the performance of the NVIDIA device while kernels avoiding local memory use
performed better on the Intel coprocessor. They also showed that the NVIDIA GPU was faster
than the Intel device on the following cases:

• for the AXPY operation, arrays with less than 1M of elements,

• for the DOT product, arrays with less than 2M of elements,

• for the SPMV product, arrays with less than 10M of elements.

These results focused this thesis on the improvement of the SpMV product, since the latter
proved to be the most time expensive operation of common iterative solvers. Hence, research-
ing several state-of-the-art studies on optimized formats was the third step. After careful
consideration, four formats were selected for identifying successful strategies employed in
their design, or to be used as competitors for our proposals in order to validate this thesis
results. The first scheme considered is the Compressed Sparse Row (CSR) format. This for-
mat is one of the most popular storage schemes for sparse matrices on superscalar processors
[14]. Up until this day, the interest in the CSR format has been maintained to the point that
important numerical libraries still have optimized versions of it in their repertoire. The Intel
MKL [15] and the cuSPARSE [16] libraries are two examples of these libraries. The CSR
format explicitly stores the matrix’s entries and the column indices in the val[] and col[]
arrays, respectively. A third array of row pointers (row[]) is also required by this format.
If NNZ is the number of nonzero elements in the matrix, and NROWS is the number of rows
in the matrix, then the val[] and col[] arrays have length NNZ and the row[] array has
dimension NROWS+1. The major drawbacks of this format are the non-contiguously memory
accesses due to indirect addressing, and the small and unbalanced workloads among threads
due to the variable population of the rows. The CSR format has been used in this thesis to
compare its performance.

xxv

EDOARDO EMILIO CORONADO BARRIENTOS

The second scheme considered was the ELLR-T format developed for GPUs [17]. The
ELLR-T format provides a sparse matrix with a regular data structure in order to favor efficient
SpMV computing on vector machines [18]. This format uses two rectangular arrays and one
linear array to store the sparse matrix. And the parameters T and BS to tune the format for
a given matrix. The val[] array stores the nonzero elements of the matrix, the col[]

array stores their respective column indices, and the rl[] array stores the row lengths of
the matrix. The arrays val[] and col[] are of size NROWS x RMAX, where NROWS is the
number of rows of the matrix and RMAX is the maximum number of nonzero elements per row
in the matrix. The array rl[] is of dimension NROWS. Those rows whose number of nonzero
elements are inferior to RMAX are padded with zeros. The parameter T is used to indicate the
number of threads assigned to compute the result of each row. Thus, each row is split in sets
of T elements. The parameter BS is used to indicate the number of the block size. This format
has the following advantages: coalesced and aligned global memory access, homogeneous
computing within a set of 32 work-items, reduction of useless computation and unbalance of
the threads of one set of 32 work-items and high occupancy for work-items. However, the
zero padding is the major drawback of the ELLR-T format. Because a matrix that has at least
one very populated row will lead to a large memory space, making impossible to store some
matrices. The ELLR-T format has been used in this thesis to compare its performance.

The third important scheme considered is the ELL-WARP (K1) format developed for
GPUs. This format combines insights from other schemes [19]: it varies the number of stored
elements (ELL-R format [14, 20]), it reduces the storage requirement (SELL format [21]),
assigns many work-items to balance the workload (ELLR-T format [17]), and it sorts the ma-
trix’s rows (pJDS format [22]). The K1 format reorders the matrix’s rows in descending order
according to their number of elements. This reordering is done to pack the rows with a simi-
lar number of elements into segments called blocks. The size of a block specifies the number
of rows contained by it, and it is set by the parameter BLS. Having the rows packed in the
most homogeneous blocks as possible, helps to balance the workload among work-groups.
This format uses five arrays to store the matrix. The val[] array store the matrix’s entries,
the col[] array stores the column indices, the nmc[] array saves the maximum number of
columns contained by each block, the blp[] array saves the pointers to the starting position
of each block, and the permi[] keeps the inverse permutation map of the matrix. The di-
mension of the arrays val[] and col[] depends of how the blocks are formed, but their
dimension are near to the value of NNZ. The dimension of the arrays nmc[] and blp[] are

xxvi

Summary

of size BLN, the number of blocks needed to store the matrix. And the permi[] array is of
length NROWS.

The fourth scheme is the SELL-C-σ format developed for multiplatform [23]. This format
is equivalent to the K1 format, but it was developed independently by another group [19].
The SELL-C-σ format splits the matrix in equally sized chunks of rows. Each chunk has C
rows. Then each row is padded with zeros to match the length of the longest row within the
same chunk. Thereupon all elements in a chunk are stored consecutively in column-major
order. The number of rows must be completed to a multiple of C. This format uses the same
arrays, and dimensions, of the K1 format. The major difference between this format and
the K1 format is that the latter was developed for GPUs and the former was developed for
multiplatform and presented a kernel for the Intel Xeon Phi coprocessor. The third and fourth
formats were also used as competitors of the formats proposed by this thesis.

Each of the formats selected was an accomplishment on the optimization of the SpMV
performance. Certainly, it may be argued that two major events motivated their designers to
develop these schemes. The introduction of the Compute Unified Device Architecture (CUDA
[24]) model in 2006 by NVIDIA for their GPUs, and the introduction of the 512-bit Advanced
Vector Extensions (AVX-512 [25]) proposed by Intel in 2013 for their Knights Landing and
Skylake architectures [26]. However, as it can be appreciated from the above exposition,
most of these formats were developed for NVIDIA GPUs highlighting a preference for these
devices over the Intel Xeon devices, despite both platforms are used in High Performance
Computing (HPC). This trend could be explained because programmers were already using
GPUs for General Purpose computing and the introduction of the CUDA model facilitated the
use of GPUs because problems do not longer require to be masked as computer graphics tasks
[27].

Motivated by the lack of formats oriented to the Intel Xeon architecture and by the in-
creasingly complex design of current state-of-the-art storage formats, this thesis proposed
two storage formats for sparse matrices that support the following hypothesis:

If a sparse matrix format is uncomplicated (in terms of necessary arrays to contain a

matrix) and includes vector values in itself, should improve the SpMV product performance

(measured in GFLOPS), and consequently of iterative solvers, on modern parallel architec-

tures.

Therefore, the main contributions of this thesis are the following:

xxvii

EDOARDO EMILIO CORONADO BARRIENTOS

• The first proposal of this thesis was the new AXC format (A and X stands for matrix and
vector respectively in linear algebra notation, and C stands for cache memory lane) to
perform efficiently the SpMV product on the Intel Xeon Phi architecture using OpenCL
[31]. This format was developed following the recommendations found in [3]. This
work compared the performance of the SpMV product using the AXC, CSR, ELLR-T
and the K1 formats. This study also included the implementation of a real application
using the formats previously mentioned. The main features of this work are listed
below:

1. The AXC format is a very simple scheme. It uses only two arrays to contain
the sparse matrix. The first array (ax[]) stores the matrix’s entries and their
corresponding vector values contiguously in data segments called bricks. The
second array (brp[]) saves the pointers to the starting positions of each row in
the ax[] array.

2. Each brick of data has a length equal to 2 x HBRS. HBRS stands for half brick
size and is equal to the cache memory lane. This data arrangement lets the com-
piler exploit the cache memory utilization and the 512-bit registers vectorization
of the Intel Xeon Phi coprocessor in a highly efficient way. This solves the main
bottleneck performance of the Intel Xeon Phi coprocessor, which is the cache
memory utilization according to [28].

3. The inclusion of the vector values in the ax[] array makes the AXC format robust
against indirect memory accesses. This fact is confirmed by the number of cases
where the AXC format outperforms its competitors with an OpenCL kernel, that
is, in 7 out of 12 matrices. Most of these matrices have poor spatial locality due
to their random or arrow-head sparsity patterns.

4. The AXC format was tested in a real application (CG solver) using the offload
approach. This test required to convert the AXC, ELLR-T and K1 formats from
the CSR format. This step showed that the AXC format has the fastest conversion
time due to its simplicity.

5. The CG implementation also required to transfer data between host and device
which increased the number of memory operations and hindered the performance
of all the solvers.

xxviii

Summary

• The second proposal was to test the AXC format on the Intel Xeon Phi coprocessor us-
ing OpenMP and the Intel AVX-512 instructions [29]. This work was developed using
the native approach, because of the lack of performance observed using the offload ap-
proach. This work compared the SpMV performance of the AXC, CSR, and SELL-C-σ
formats. Two real applications were implemented in this study: the CG and BiCGStab
solvers. The main features of this work are listed hereunder:

1. The use of built-in vectorized functions, improved the performance of the SpMV
product using the AXC format. This fact was evidenced by the number of cases
the AXC format outperformed its competitors, that is, in 21 out of 25 matrices.

2. The numerical results confirmed the AXC resilience to memory indirections, be-
cause it achieved a maximum speedup factor of x6.8 for a matrix (M07) with poor
spatial locality due to its random sparsity pattern.

3. The native approach led to fewer memory operations than the offload approach.
This fact caused that the performance observed for the SpMV kernels were mostly
translated to the CG and BiCGStab solvers.

4. The CG AXC-based solver outperformed its competitors in 20 out of 25 matrices.
It also achieved a maximum speedup factor of x1.8 over the MKL function for the
CSR format for a matrix (M04) with poor spatial locality.

5. The BiCGStab AXC-based solver achieved a speedup factor of x1.9 over its clos-
est competitor for a matrix (M07) with poor spatial locality.

• The third proposal was the new AXT format (A and X stands for matrix and vector
respectively in linear algebra notation, and T stands for tiled) to perform efficiently the
SpMV product on the Intel Xeon and the NVIDIA architectures using OpenMP and
AVX-512 instructions and CUDA respectively [30]. This format was developed to ex-
tend the range of application of the AXC format to other platforms, such as the NVIDIA
platform. The results on this platform confirmed the success of this accomplishment.
This work tested the SpMV product using the CSR, AXC and AXT formats on both
platforms.

1. The new AXT format uses two arrays to store the sparse matrix. The first array
was already introduced (ax[]) and the auxiliary array (rwp[] or hdr[]) varies
its function depending on the data arrangement generated by the format.

xxix

EDOARDO EMILIO CORONADO BARRIENTOS

2. The AXT format uses three parameters to adapt itself to any accelerator device
and optimize the storage of any sparse matrix: the tile’s half width (THW), the
mode (MODE), and the tile’s height (TH).

3. The AXT format can spawn four different data arrangements, depending on the
selected values for each parameter:

a) the AXTUH1 variant is the AXT format with MODE=UNC and TH=1,

b) the AXTUH variant is the AXT format with MODE=UNC and TH>1,

c) the AXTCH1 variant is the AXT format with MODE=COM and TH=1,

d) the AXTCH variant is the AXT format with MODE=COM and TH>1.

4. The AXTUH variant was the best performer on the Intel Xeon platform using
TH=4 or TH=8 for most cases. It achieved a performance improvement of 18.1%
and it managed to reduce the memory footprint a 5.1% over the AXC format.
Compared to the CSR format, the AXTUH variant achieved a performance im-
provement of 44.3% and needed 34.6% more memory.

5. This variant showed no preference for a specific type of matrix because it achieved
outstanding speedup factors over different type of matrices. For a matrix with an
arrowhead sparsity pattern (M03), it achieved a speedup factor of x2.41. For a
matrix with an irregular sparsity pattern and an abnormally large row (M07), it
achieved a speedup factor of x7.33. And for a matrix a band diagonal sparsity
pattern (M25), it achieved a speedup factor of x2.73.

6. The AXTUH and AXTCH1 variants achieved the best performance on the NVIDIA
platform using TH=4 or TH=8 and BS=512 or BS=1024 respectively for most
cases. Their performance improvement is lower than 10%, while their memory
requirements represent an increment of approximately 35% compared to the CSR
format.

7. The AXT format was the best performer for matrices with abnormally large rows
within their ranks (e.g., M07, M20, M21 and M24). It reached speedup factors
from x2.68 up to x378.50 for this type of matrices.

8. The AXT format outperformed the AXC format on the NVIDIA platform in all
cases. The minimum and maximum speedup factors achieved by the AXT format
over the AXC format were x1.08 and x9.84 respectively. This fact validates the
extension of the range of application of the AXT format to the NVIDIA platform.

xxx

Contents

Resumo xiii

Summary xxiii

Contents xxxii

1 Introduction 1
1.1 Motivation . 1
1.2 Hypothesis and objectives . 3
1.3 Methodology and tools . 6

1.3.1 Metrics . 6
SpMV performance . 6
Storage occupancy . 7

1.3.2 Devices . 7
Intel Xeon Phi 3120A . 7
Intel Xeon Phi 7120P . 8
Intel Core i7-3770 . 8
Intel Xeon Gold 6148 . 8
NVIDIA Tesla GPU S2050 . 8
NVIDIA Tesla V100 PCIe GPU . 8

1.3.3 Parallel programming models . 9
OpenMP . 9
OpenCL . 11
CUDA . 13

1.3.4 Matrices . 16

Contents

1.3.5 Other tools . 16

1.4 Work summary . 17

1.4.1 Iterative solvers in OpenCL for semiconductor simulation 17

3D FEM Simulator . 18

OpenCL programming model . 19

Tests and results . 19

1.4.2 Study of basic algebra operations on different accelerators 24

Function: AXPY . 24

Function: DOT . 26

Function: SpMV . 30

1.4.3 New AXC format for the Intel Xeon Phi coprocessor in OpenCL . . . 35

Related work . 35

Competitor formats . 36

Metrics . 36

AXC in OpenCL . 37

Numerical results . 38

1.4.4 The AXC format for the Intel Xeon Phi coprocessor with AVX-512 . 39

Competitor formats . 40

Metrics . 40

AXC in OpenMP and AVX-512 . 40

Numerical results . 41

1.4.5 New AXT format using AVX-512 instructions and CUDA 42

Competitor formats . 42

Metrics . 42

AXT . 43

The AXTUH1 variant . 44

The AXTUH variant . 44

The AXTCH1 variant . 44

The AXTCH variant . 46

Numerical results . 46

1.5 Outline . 48

1.6 List of publications . 49

1.6.1 International Journals . 49

xxxiii

EDOARDO EMILIO CORONADO BARRIENTOS

1.6.2 National Journals . 49
1.6.3 National Conferences . 50

2 AXC: A new format to perform the SpMV oriented to Intel Xeon Phi architec-
ture in OpenCL 51

3 Improving Performance of Iterative Solvers with the AXC Format Using the
Intel Xeon Phi 53

4 A new AXT format for an efficient SpMV product using AVX-512 instructions
and CUDA 55

5 Conclusion 57
5.1 Future work . 60

Bibliography 63

List of Algorithms 73

List of Figures 75

List of Listings 77

List of Tables 79

xxxiv

CHAPTER 1

INTRODUCTION

1.1 Motivation

Nowadays, computers have become an essential tool for everyone because they can process
general data at astonishing speeds. Engineers and researchers have specially profited from
their ability to perform fast calculations, and deliver clear data visualization. This devel-
opment has enabled them to address real problems that were too complex to be solved by
analytical means. An example of this fact is found in the application of the Navier-Stokes
equations. Despite they do not have an analytic solution, the discipline known as Computa-
tional Fluid Dynamics (CFD) solves them numerically for studies of the aerodynamic prop-
erties of modern aircrafts [32]. The amalgamation of computers, mathematical models and
numerical methods is a new field of knowledge known as computational mechanics. A wide
range of notable industries relies on the computational mechanics simulation capabilities to
design and manufacture their high-end products [33]. Consequently, optimizing numerical
simulation in modern computers is paramount for today’s industrial and scientific activities.

In order to optimize a numerical simulation code (from here onwards simulator) it is im-
portant to understand its procedure. A simulator solves the Partial Differential Equations
(PDEs) that emerge from a mathematical model of a process using a numerical method and a
computer. Basically, the selected numerical method transforms the PDEs to algebraic equa-
tions. Then, the system of linear equations is solved by a linear equation solver (from here
onwards solver) on a computer [33]. This description expose four main parts in a simulator:
the mathematical model, the numerical method, the solver and the computer. The mathemat-
ical model is inherent to the problem at hand. However, each remaining part offers various

EDOARDO EMILIO CORONADO BARRIENTOS

options for selection. This work focuses on the last two areas of a simulator.

Despite the numerical method is out of the scope of this work, it is worthwhile to mention
that there are three extended methods for transforming PDEs to a system of linear algebraic
equations: the Finite Difference Method (FDM), the Finite Element Method (FEM) and the
Finite Volume Method (FVM). Being the FEM the most general and widespread method [6].

It is essential to know the characteristics of a system of linear equations before choosing
its solver from the numerous algorithms available. Since a matrix associated with a system
of linear equations upholds its properties in a much compacted manner, this work uses the
matrix form of a system:

Ax = b, (1.1)

where A is known as the coefficient matrix, x is the unknown vector and b is the right-hand

vector. A matrix can be distinguished as: full or sparse. A full matrix has the number of non
zero values in the same magnitude as the number of all its entries. In a sparse matrix the num-
ber of zero values dominates over the number of non zero values. Typically, the coefficient
matrices that arise from simulators are very large and sparse [6]. An unfortunate selection
of the storage scheme used to contain a sparse matrix could lead to larger memory require-
ments and, consequently, a larger number of null operations due to zero padding. Thus, in a
simulator the storage format is fundamental for an efficient memory handling and optimum
performance.

The algorithms for solving systems of linear equations (from here onwards system) are
essential for numerical analysis, and can be classified in two wide categories: direct methods

and iterative methods [34]. The direct methods require a finite number of operations to obtain
the solution of the system. These methods depend on the size of the system being solved,
which, despite the simplicity of their conception, make them inefficient in terms of operations
and memory needed. Examples of these solvers are: Gaussian Elimination (GE), the LU
factorization, the Cholesky decomposition and so on [34]. The iterative methods start with an
approximated solution and perform a virtually infinite number of processes to refine it until a
certain criteria is satisfied [34]. Among the advantages of these algorithms are their numerical
robustness, fast implementation and easy parallelization [6]. The Conjugate Gradient (CG),
the BiConjugate Gradient (BiCG), the BiConjugate Gradient Stabilised (BiCGStab) and the
Generalized Minimum Residual (GMRes) methods belong to the last category. Due to the

2

Chapter 1. Introduction

advantages exposed above, this thesis focuses on iterative methods because they are preferred
over direct methods in most simulators.

Particularly, this thesis focuses on the optimization of the CG and BiCGStab solvers. Al-
gorithms ??, ?? and ?? show that these solvers require to perform the Sparse Matrix Vector
(SpMV) product. The SpMV product is of especial interest because it is the most time expen-
sive operation within these algorithms [31, 29, 30]. The performance of the SpMV product
is strongly related to the storage format used to contain the matrix and the code implementa-
tion of the operation [12, 13]. Hence, this work proposes two new formats and their optimal
implementation on modern architecture computers.

Since all computers are now parallel [2], parallel programming has become a must in the
skill set of all programmers. Parallelism is the path to optimal performance and use of modern
computer architectures. Parallelism is available in many ways: vector instructions, multicore
processors, manycore processors, coprocessors and Graphical Processing Units (GPUs) [2].
This thesis focuses on the optimization of iterative solvers in three distinct types of platforms:
multi and manycore processors and GPUs. The relevance of these platforms is evidenced
in their use by major supercomputers [35]. In order to effectively exploit the parallel capa-
bilities of these platforms the following parallel programming standards were used for code
implementation: Open Computing Language (OpenCL) [5], OpenMP [36], Compute Uni-
fied Device Architecture (CUDA) [24], and the Advanced Vector Extensions (AVX-512) Intel
intrinsic instructions [25].

In summary, this work improves the performance of the SpMV product, a key operation
of iterative solvers, by proposing two new storage formats and their optimal implementation
in modern computer architectures. The optimization of the SpMV product impacts directly
the performance of iterative solvers, whose use is well extended in numerical simulation.
However, the range of application of an optimal SpMV product extends beyond numerical
simulation, since it is also important in eigenvalue calculations because they are needed in
shift-and-invert techniques [37].

1.2 Hypothesis and objectives

As exposed on the motivation (Section 1.1), this thesis focus on the design of the sparse matrix
storage formats and the parallel implementations of the SpMV product on modern computer
equipment, as a mean to improve the performance of the SpMV product. Hence the hypothesis

3

EDOARDO EMILIO CORONADO BARRIENTOS

of this work is formulated hereunder:
If a sparse matrix format is uncomplicated (in terms of necessary arrays to contain a

matrix) and includes vector values in itself, should improve the SpMV product performance

(measured in GFLOPS), and consequently of iterative solvers, on modern parallel architec-

tures.

In consequence, the previous hypothesis generates the following main objective:

• Explore different studies on optimization of simulators, or iterative solvers, on modern
parallel computer architectures based mainly on proposing new sparse matrix storage
formats. This will highlight: bottleneck points, successful strategies and useful tools
that serve as the starting point to develop an optimal sparse matrix storage scheme for
parallel architectures.

The main objective is decomposed on the following secondary objectives:

• Implement custom iterative solvers using OpenCL to test a simulator performance.
There are several purposes of this objective: learn and apply the OpenCL parallel lan-
guage, test the accuracy of the results using different devices, identify main bottlenecks
changing the parallel paradigm, and compare the performance between the custom vari-
ants and the solver from an established library such as the PSPARSLIB. This objective
is tackled in the paper:

– E. Coronado-Barrientos, A.J. Garcı́a-Loureiro, G. Indalecio and N. Seoane, Im-
plementation of numerical methods for nanoscaled semiconductor device simula-
tion using OpenCL, In Proceedings of the 2015 Spanish Conference on Electron

Devices, CDE 2015, IEEE, 2015.

• Conduct a study on the performance of the basic algebraic operations that are commonly
present in iterative solver algorithms on different accelerator devices. This goal aims
to: identify the strengths and weaknesses of different accelerator devices, identify the
most time expensive operation, explore different implementation of operations using
OpenCL. The following papers address this objective:

– E. Coronado-Barrientos, G. Indalecio and A.J. Garcı́a-Loureiro, Study of basic
vector operations on Intel Xeon Phi and NVIDIA Tesla using OpenCL, Annals of

Multicore and GPU Programming, 2(1):66–80, 2015.

4

Chapter 1. Introduction

– E. Coronado-Barrientos, G. Indalecio and A.J. Garcı́a-Loureiro, Implementation
and performance analysis of the AXPY, DOT, and SpMV functions on Intel Xeon
Phi and NVIDIA Tesla using OpenCL, In Second Congress on Multicore and

GPU Programming, PPMG 2015, pages 9–17, University of Extremadura, 2015.

• Develop a new sparse matrix format that requires the minimum of arrays necessary to
contain a sparse matrix in order to optimize the SpMV performance on the Intel Xeon
Phi coprocessor using OpenCL. And test the proposal on an iterative solver. This step
intents to: compare the performance of the new proposal, the AXC format, against other
formats, develop a Performance Model for the AXC format, test the offload approach
for workload assignment, and test the OpenCL language as an optimization tool for the
Intel Xeon Phi coprocessor. This goal is achieved in the following paper:

– E. Coronado-Barrientos, G. Indalecio and A.J. Garcı́a-Loureiro, AXC: A new for-
mat to perform the SpMV oriented to Intel Xeon Phi architecture in OpenCL,
Concurrency and Computation: Practice and Experience, 31, 2018.

• Test the SpMV performance of the AXC format on the Intel Xeon Phi coprocessor
using OpenMP and Intel AVX-512 vectorized instructions. Also, test the AXC format
on iterative solvers. This objective seeks to: compare the performance of the new
proposal, the AXC format, against other formats, test the native approach for workload
assignment, and test the OpenMP and Intel AVX-512 instructions combination as an
optimization option for the Intel Xeon Phi coprocessor. The following paper addresses
this goal:

– E. Coronado-Barrientos, G. Indalecio and A.J. Garcı́a-Loureiro, Improving Per-
formance of Iterative Solvers with the AXC Format Using the Intel Xeon Phi. The

Journal of Supercomputing, 74(6): 2823–2840, June 2018.

• Develop a new sparse matrix format that requires the minimum of arrays necessary
to contain a sparse matrix in order to optimize the SpMV performance on the Intel
Xeon and NVIDIA platforms using OpenMP, Intel AVX-512 instructions and CUDA
respectively. This objective aims to: widen the range of utilization of the AXC format,
improve the performance of the AXC format on the Intel Xeon platform, reduce the
memory footprint of the AXC format. This objective is tackled in the following paper:

5

EDOARDO EMILIO CORONADO BARRIENTOS

– E. Coronado-Barrientos, M. Antonioletti and A.J. Garcı́a-Loureiro, 2021, A new
AXT format for an efficient SpMV product using AVX-512 instructions and CUDA,
Advances in Engineering Software, 156:102997, 2021.

1.3 Methodology and tools

This section provides the experimental framework for all the studies conducted to validate
the sparse matrix formats proposed in this thesis. The first step in this thesis roadmap was to
explore and analyse the state-of-the-art papers focused on optimizing simulators and popular
iterative solvers by improving the SpMV product and the sparse matrix format. While doing
this, there also were some initial tests performed using OpenCL to understand the parallel
programming paradigm for Single Instruction Multiple Data (SIMD) machines, and to iden-
tify the main bottleneck on the sparse algebraic operations. Once successful strategies were
identified, the new proposals were made using different parallel approaches. In order to avoid
the overhead due to small workloads and to obtain statistical valid results, several iterations
of each test were performed. The specific number of iterations for each test is shown in the
Numerical Results section of chapters 2, 3 and 4.

The metrics used to validate the numerical results are shown in Section 1.3.1. This thesis
targeted different architectures (e.g. multicore CPUs, manycore devices, GPUs and copro-
cessors) which are briefly described on Section 1.3.2. Different architectures, imply different
parallel programing models, these are commented in Section 1.3.3. Section 1.3.4 addresses
the suite of matrices used in this work. Lastly, Section 1.3.5 shows additional required tools
used to process data outputs.

1.3.1 Metrics

This section describes the most important metrics used to evaluate the computational and
storage efficiency of the formats proposed in this thesis.

SpMV performance

The performance of the SpMV product was calculated according to the following formula:

P =
2×NNZ

T
, (1.2)

6

Chapter 1. Introduction

where NNZ is the number of non zero entries of the sparse matrix, the quantity 2×NNZ

represents the total number of floating point operations needed to perform the SpMV product,
T is the execution time needed to perform the operation measured in seconds, and P is the
performance measured in FLOPS. The aim of the formats is to have the highest value for this
metric.

Storage occupancy

The storage occupancy of a format is defined as:

β =
NNZ
SE

, (1.3)

where NNZ was introduced in Equation 1.2, SE is the number of stored elements by the
format, and β is the storage occupancy a dimensionless quantity. The aim of all formats is
to achieve β = 1, which means that the format does store only the non zero elements of the
matrix, avoiding any storage overhead.

1.3.2 Devices

In this thesis was used the following architectures: two multicore processors (Intel Core i7-
3770, Intel Xeon Gold 6148), two manycore processors (Intel Xeon Phi 3120A and 7120P),
and two GPUs (NVIDIA Tesla S2050 and V100). These devices are described in more detail
down below.

Intel Xeon Phi 3120A

The Intel Xeon Phi 3120A is a coprocessor based on the Knights Corner (KNC) microarchi-
tecture. It has 57 cores with a 512-bit vector arithmetic unit, which allows the use of the Intel
AVX-512 instructions set. Each core has an L1 of 32 KBytes and an L2 of 512 KBytes cache
memory. The maximum core frequency is 1.1 GHz. This coprocessor has a maximum mem-
ory of 6 Gbytes and 240 GBytes/s bandwidth [8]. It can be programmed with OpenMP and
OpenCL parallel models. Since the 3120A admits fused multiply–add (FMA) operations, the
theoretical peak performance can be calculated as: 2 operations x 57 cores x 8 (SIMD length)
x 1.1 GHz = 1003 GFLOPS.

7

EDOARDO EMILIO CORONADO BARRIENTOS

Intel Xeon Phi 7120P

The Intel Xeon Phi 7120P coprocessor shares the same technology and features of the 3120A
counterpart. However, the 7120P coprocessor has: 61 cores running at a maximum frequency
of 1.33 GHz, a maximum memory of 16 Gbytes and a bandwidth of 352 GBytes/s [38]. Its
theoretical peak performance is: 2 operations x 61 cores x 8 (SIMD length) x 1.33 GHz =
1298 GFLOPS.

Intel Core i7-3770

The Intel Core i7-3770 is a desktop multicore processor. It has 4 cores running at at a maxi-
mum frequency of 3.90 GHz. Each core can run up 2 hardware threads for a total of 8 threads.
The maximum memory is 32 GBytes type DDR running at 1333 MHz with a maximum band-
width of 25.6 GBytes/s [39]. This processor allows OpenCL, OpenMP and AVX instructions
programming. Its peak performance is: 2 x 8 x 8 x 3.9 = 499 GFLOPS.

Intel Xeon Gold 6148

The Intel Xeon Gold 6148 is a processor based on the Skylake microarchitecture. It has 20
cores running at a maximum frequency of 3.70 GHz. Each core can support 2 hardware
threads for a total of 40 threads per processor. The maximum memory is 768 GBytes type
DDR4 at 2666 MHz with a maximum bandwidth of 119.21 GBytes/s [40]. This processor can
be programmed using OpenCL or OpenMP. Its theoretical peak performance is: 2 × 20 × 8 ×
3.7 = 1184 GFLOPS.

NVIDIA Tesla GPU S2050

The NVIDIA Tesla S2050 is a GPU based on the Fermi architecture. This GPU has a total
of 448 cores running at a maximum frequency of 574 MHz. The maximum memory is 3
GBytes and it also has 148 GBytes/s bandwidth. The peak performance is 514 GFLOPS
using double precision arithmetic. This GPU can be programmed using: DirectX, OpenGL,
OpenCL, Vulkan and CUDA [9].

NVIDIA Tesla V100 PCIe GPU

The NVIDIA Tesla V100 PCIe GPU is based on the Volta architecture. It has 5,120 CUDA
cores running at 1,230 GHz. This GPU has 32 GBytes of memory and 897 GBytes/s of

8

Chapter 1. Introduction

bandwidth. It has a peak performance of 7 TFLOPS using double precision. This GPU shares
the same programming languages of the S2050 GPU: DirectX, OpenGL, OpenCL, Vulkan
and CUDA [41].

1.3.3 Parallel programming models

This section briefly describes the three programming models used in this thesis. There are two
ways in how an accelerator device can be used: the native and the offload approaches. The
native approach allows the accelerator device to behave as a shared memory processor that
does not require special instructions to transfer data since all information is already contained
on it. The offload approach sees the accelerator device as an auxiliary extern processor where
some parts of the main program can be offloaded for execution. OpenMP was used to program
the Intel Xeon Phi 7120P and the Intel Xeon Gold 6148 processors with the native approach.
OpenCL was used to program the Intel Xeon Phi 3120A, the Intel Xeon Phi 7120P processors
and the NVIDIA S2050 GPU with the offload approach. Lastly the NVIDIA V100 GPU was
programmed in CUDA.

OpenMP

OpenMP is an Application Programming Interface (API) comprised of a set of compiler di-
rectives and a library of subroutines used to describe parallelism to applications. OpenMP is
designed for shared memory multiprocessors, that is, devices where all processors are able to
directly access all the memory in the machine. There are two main benefits for parallel pro-
gramming using directives: the first is that directives can be treated as comments and ignored
for language translators where the API is not installed. The second is that it allows an incre-
mental approach to parallelism starting from a sequential code. The directives of OpenMP are
offered for inclusion in the Fortran, C and C++ languages. OpenMP extensions fall into one
of three categories: control structures, data environment, and synchronization constructs [42].

The control structures modify the flow of control in a program. OpenMP uses the basic
fork/join model (Figure 1.1), and the control structures are in charge of generating (fork) new
threads or change the execution control to another thread. OpenMP offers two directives for
controlling parallelism: parallel and do. The parallel directive encloses a block of code and
creates a set of threads to execute this block concurrently. The do directive splits the iterations
of a loop among multiple concurrent threads [42].

9

EDOARDO EMILIO CORONADO BARRIENTOS

Master thread executes serial portion of the code

Master thread encounters parallel directive and create slave threads

Wait for all threads to finish

Master thread resumes serial execution

All threads execute the taks of the parallel region concurrently

Figure 1.1: OpenMP basic execution fork/join model.

The data environment constructs are for thread communication. OpenMP executes a pro-
gram with an initial thread of control associated to a data environment. This initial thread is
referred as master thread. When a master thread encounters a parallel construct new threads
and data environments are created. Each thread has its own stack for subroutines. Thus,
threads within a parallel region can invoke and execute subroutines safely without interfering
in other stacks. Threads in a parallel region can share variables or have their own private
copies. For this purpose, a variable can have one of three attributes: shared, private or re-

duce. A shared variable has a single storage location in memory and can be accessed for all
threads in the parallel region. A private variable has multiple locations in memory, one within
each data environment of each thread in the parallel region. The attribute reduce is used for
variables that are the result of a reduction operation, hence a reduce variable has shared and
private storage behaviours [42].

The synchronization constructs are designed to coordinate the execution of multiple threads.
There are two ways of synchronization: the critical directive and the barriers. The critical
directive ensures that only one thread access exclusively a shared variable. On the other hand,
barriers set waiting points where all threads should arrive, before continuing the execution
stream [42].

The construction and initialization of a parallel region add extra runtime. This extra run-
time is called parallel overhead. OpenMP has the scheduling mechanism to reduce the par-
allel overhead by improving the workload distribution among threads. A loop can have one
of four schedule types: static, dynamic, guided, or runtime. The static loop schedule assigns
a chunk of iterations to each thread. The dynamic loop schedule assigns chunks of iterations
dynamically among threads at runtime. The guided type, sets the first chunk size to a fixed

10

Chapter 1. Introduction

value, then the size of each successive chunk decreases exponentially, down to a minimum
size of chunk. The runtime schedule enables the selection of the scheduling type at runtime
based on the value of the variable omp schedule [42].

OpenCL

Nowadays, HPC equipments are conformed by devices of different architectures that have
little similarity between them. The OpenCL language was developed as a common inter-
face to avoid developers having to learn multiple languages to program different architec-
tures. OpenCL has a set of data types, data structures and functions to augment C and C++.
OpenCL has three main advantages over other parallel APIs: portability, standardized vector

processing and parallel programming [43].
OpenCL has the philosophy ”write once, run on everything”. This means that every writ-

ten OpenCL routine can be compiled and run on any compliant device, whether it is a GPU
or multi/many core processor [43].

Most of modern processors have vector processing capabilities. However, ANSI C/C++
does not define a basic vector data type. This, generates a problem, vector instructions are
vendor specific. For example, Intel has its AVX instructions and NVIDIA requires PTX in-
structions. OpenCL lets the user code vector routines and the compiler will produce the right
platform instructions [43].

Parallel programming distributes tasks among several processing elements to be performed
simultaneously. In OpenCL terms, these tasks are called kernels. Kernels are sent to OpenCL
compliant devices by host applications. A host application is a regular C/C++ program run-
ning on the user system or host. Host applications manage connected devices through a con-
tainer called context. A kernel is a function selected from a program. In order to process a
kernel, this is dispatched, along with argument data, to a structure called command queue. A
host tells a device what to do though the command queue. When a kernel is enqueued the
corresponding device will execute it (Figure 1.2).

OpenCL can configure different devices to process different tasks on different data. This
means that OpenCL provides full task-parallelism, while other parallel APIs only enable data-

parallelism [43].
The device and memory models are other important elements of the OpenCL framework,

these have the following components:

• Compute unit: a processing core contained within a device.

11

EDOARDO EMILIO CORONADO BARRIENTOS

program
cg.c

host

context

device 0 device 1 device 2

command
queue
kernel
axpy()

command
queue
kernel
dot()

command
queue
kernel
spmv()

Figure 1.2: OpenCL framework.

• Work-item: is an individual kernel execution with a specific set of data.

• Work-group: is a set of work-items that access the same processing resources (e.g.
local memory).

• Global memory: write/read memory that stores data for the entire device.

• Constant memory: read memory that stores data for the entire device.

• Local memory: stores data for work-items in a work-group.

• Private memory: stores data for a single work-item.

The Figure 1.3 shows how these components are related among themselves.
The global memory is the largest and slowest memory region on the device. Data is

transferred directly between the host memory and the device global memory. The constant
memory has the same characteristics of the global memory, except it has read-only access.
The local memory is faster and commonly much smaller than global memory. Local memory
can be accessed by all work-items in a work-group. Finally, the private memory is the fastest
and smallest memory region, it can be only accessed by individuals work-items [43].

12

Chapter 1. Introduction

Global/constant memory

Local memory

Private
memory

work-item

Private
memory

work-item

Private
memory

work-item

Private
memory

work-item
work-group

compute unit

Local memory

Private
memory

work-item

Private
memory

work-item

Private
memory

work-item

Private
memory

work-item
work-group

compute unit

Local memory

Private
memory

work-item

Private
memory

work-item

Private
memory

work-item

Private
memory

work-item
work-group

compute unit

Local memory

Private
memory

work-item

Private
memory

work-item

Private
memory

work-item

Private
memory

work-item
work-group

compute unit

Figure 1.3: Schematic representation of the OpenCL device and memory models.

CUDA

The CUDA architecture was introduced by NVIDIA in 2006 with its GeForce 8800 GTX
GPU. NVIDIA intended this new architecture to let its GPUs to perform general purpose
computing. One of the advantages of CUDA was that developers no longer required to mask
their problems as graphic tasks in order to be processed in a NVIDIA GPU [27].

The CUDA programing model is very similar to the OpenCL model. It lets the user to
run applications in heterogenous systems by marking code snipets with a set of C extensions.
As in OpenCL, a host is a CPU and its memory and a device is a GPU and its memory. An
important remark is that starting with CUDA 6, NVIDIA introduced the unified memory model
which bridges the gap between the host and device memory spaces [44]. A key component
of CUDA is the kernel. The kernel is the code to be run on the device. It can be written as a
sequencial program. All code can be put in a single file, but the host code is written in ANSI
C and the device code is written in CUDA C. The nvcc compiler will generate the executable
code for the host and the device.

When a kernel is launched from the host to the device, a large number of threads are gen-
erated. The organization of threads is very important to a kernel’s performance. All threads
generated by a kernel are called grid. All threads in a grid share the global memory space. A

13

EDOARDO EMILIO CORONADO BARRIENTOS

grid is made of blocks of threads. All threads in a block can cooperate with each other using:
block local synchronization and/or block local shared memory. CUDA organizes grids and
blocks in three dimensions [44]. Figure 1.4 shows an example of a thread structure of a 2D
grid containing 2D blocks.

Host

kernel 1

kernel 2

Se
ri

al
 e

xe
cu

ti
on

Device

Block
(0,0)

Grid 1

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,0)

Grid 2

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(2,1)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

Figure 1.4: Schematic of a CUDA programming elements.

The GPU architecture is composed of a scalable array of Streaming Multiprocessors

(SMs). Each SM have 32 fundamental compute units called cores (Figure 1.5). This enables
a single SM to run hundreds of threads concurrently, thus a single GPU can run thousands of
threads at the same time. Once a kernel is launched, the threads within a block run concur-
rently in the assigned SM. Several blocks can be assigned to a SM depending on its resources
availability. CUDA uses the Single Instruction Multiple Thread (SIMT) parallel model to
run threads in groups of 32 threads known as warps [45]. All threads in a warp excute an
instruction concurrently. The SIMT model is similar to the Single Instruction Multiple Data
(SIMD) parallel model. Both models broadcast an instruction to multiple computing units.
The difference lies in that the SIMD requires that all components in a vector execute together,
whereas the SIMT allows that the threads belonging to the same warp execute independently
[44].

14

Chapter 1. Introduction

core core core core

core core core core

core core core core

core core core core

core core core core

core core core core

core core core core

core core core core

Texture L1 cache

Streaming
Multiprocessor

0

core core core core

core core core core

core core core core

core core core core

core core core core

core core core core

core core core core

core core core core

Texture L1 cache

Streaming
Multiprocessor

1

core core core core

core core core core

core core core core

core core core core

core core core core

core core core core

core core core core

core core core core

Texture L1 cache

Streaming
Multiprocessor

n-1

...

L2 cache

Global memory

Constant memory

Figure 1.5: NVIDIA general GPU with n SMs.

Figure 1.5 also shows the CUDA memory model, these concepts are briefly described
hereunder:

• Global memory: is the largest and slowest memory region. It is located on device and
its space can be accessed for any SM.

• Local memory: resides in the same region as global memory, so it has the same char-
acteristics. Variables that do not fit in the registers are placed in this memory region.

• Shared memory: is used as the CPU L1 cache, so it is faster than global memory, but
it is programmable. Shared memory can be accessed by all the cores within the same
SM.

• Constant memory: is statically declared read-only memory space. It and can be ac-
cesed by all kernels in the same compute unit. It performs best when all threads in a

15

EDOARDO EMILIO CORONADO BARRIENTOS

warp read from the same memory address, which make it perfect to declare constant
coefficients for a formula.

• Texture memory: is a read-only memory space that is designed to perform best for
2D spatial locality. If threads in a warp use this memory space for other than 2D data,
texture memory can be slower than global memory.

1.3.4 Matrices

Tables ??, ?? and ?? show the matrices, and their characteristics, used in this thesis. Most
of these matrices belong to Williams, Boeing and Janna collections that can be consulted in
[46]. Matrices E001, E002, E003, E004 and E005 are generated by a 3D FEM semiconduc-
tor device simulator that uses domain decomposition as one of their strategies for parallel
execution. All matrices are squared, that is, the matrices have the same number of rows
and columns. Since the formats proposed in this work focus on general matrices, the selected
matrices have different sparsity patterns. There are two main structured sparsity patterns iden-
tified in these matrices: banded matrices and arrowhead matrices. Banded matrices are sparse
matrices whose non zero entries are confined to a diagonal band (e.g cant, mac econ fwd500,
mc2depi). Arrowhead matrices are sparse matrices containing zeros in all entries except for
the last column, last row and main diagonal (e.g. E001, E002, E003). Remaining matrices
that can not be categorized in the those categories are considered to have a random sparsity
pattern (e.g. scircuit, webbase 1M, fullChip).

1.3.5 Other tools

All tests were coded using the C language under the Linux Operating System (OS). Most
of these tests were compiled with the GNU Compiler Collection (gcc), except those tests
where the Intel Xeon architecture was used with the native approach, in those tests the Intel
Compiler Classic (icc) was used. Tests involving CUDA were compiled using the NVIDIA
CUDA Compiler (nvcc). The output from these tests generated a large amount that required
efficient handling. For this purpose, and because of its powerful data manipulation features
python [47] was used to read and visualize data. Specifically, the matplotlib [48] package was
used for the creation of the numerical results graphs exposed in Chapters 2, 3 and 4.

16

Chapter 1. Introduction

1.4 Work summary

As it was mentioned in Section 1.1, numerical simulation is a very versatile tool whose ap-
plication is well extended in industrial and scientific areas. Anyone with access to a desktop
computer can perform a numerical simulation analysis of problems that do not require large
computational resources. For large enough problems, Supercomputer Centers deliver large
computational resources in order to run ad-hoc solutions. Moreover, they also have numeri-
cal simulation software installed in order to expand their offer to the industrial and scientific
communities. At its core, any simulator uses a system of linear equations solver to calculate
a solution for the problem at hand. As it was also mentioned in Section 1.1, most system
solvers employ iterative algorithms due to their superior numerical robustness, inferior mem-
ory requirements, and easy parallel implementation features. An iterative solver is composed
of a sequence of linear algebra operations. Commonly, the AXPY (ax+y), DOT (x ·x) and
SpMV (Equation 1.1) operations can be found within an iterative solver algorithm. From
these operations, the most time-consuming operation is the SpMV product. In fact, the SpMV
kernels historically run at 10% or less of peak performance on cache-based superscalar ar-
chitectures [1]. Thus, the SpMV becomes one the most difficult operations to optimize in
modern computers, and the focus of this thesis. Since all modern computers are parallel now
[2], it is essential to exploit their parallel capabilities in order to harness most of their pro-
cessing power. Efficient parallel processing requires data to be arranged in regular patterns
that generates regular execution paths and regular memory accesses. As a consequence, the
performance of the SpMV product is strongly related to the sparse matrix storage format used
to contain the matrix, and it is also related to the implementation of the computing kernel
[12, 13]. Hence, the present summary intends to provide the roadmap followed towards the
optimization of the SpMV product, and consequently of iterative solvers.

1.4.1 Iterative solvers in OpenCL for semiconductor simulation

The first step, in this thesis roadmap, was a performance comparison of a semiconductor
device simulator running on three different computer equipment and using different versions
of iterative solvers [4].

17

EDOARDO EMILIO CORONADO BARRIENTOS

3D FEM Simulator

The simulator employed for this comparison, is a 3D Finite Element Method (FEM) simula-
tion tool for nano scaled semiconductor devices [4]. This simulator was developed to satisfy
the accuracy and efficiency required to simulate MOSFET transistors in the nanometer regime
due to the aggressive scaling, and the use of new architectures and materials. The simulator
includes the Drift-Diffusion (DD) model for the carrier transport and the Density-Gradient
(DG) approach to include quantum corrections. The mathematical model of the physical
phenomenon is described in the equations (1.4) - (1.8), where: equation (1.4) is Poisson’s
equation for the electrostatic potential, equations (1.5) - (1.6) are the density gradient equa-
tions and equations (1.7) - (1.8) are the current density equations for electrons and holes with
the regeneration factor (R),

div(ε∇φ) = q(p−n+N+
D +N−A) (1.4)

2bn
∇2√n√

n
= φn−φ +

kBT
q

ln
(

n
ni

)
(1.5)

2bp
∇2√p
√

p
= φ −φp +

kBT
q

ln
(

p
pi

)
(1.6)

div(Jn) = qR (1.7)

div(Jp) = −qR (1.8)

where the unknown variables are: φ is the electric potential, φn and φp are the quasi-potentials,
and n and p the concentrations.

The simulation process is described next:

1. The physical problem is described by a mathematical model.

2. The mathematical model is reformulated as a variational problem.

3. The variational problem is discretized using the Finite Element Method.

4. The generated systems of nonlinear equations, generated by the discretization, are lin-
earized by the Newton method.

5. The systems of linear equations are solved using an iterative solver.

6. The calculated numerical results are ready for their analysis and visualization.

18

Chapter 1. Introduction

Once the system of linear equations is generated in step 5, then it is solved using three
different versions of iterative solvers. In order to target many core processors, the custom
implementations of the solvers were written in OpenCL. These custom solvers gave place to
two modified versions of the simulator ready for heterogeneous computing.

OpenCL programming model

The OpenCL programming model was introduced in Section 1.3.3.

Tests and results

This section describes the testing framework for the modified versions of the simulator and
shows the numerical results obtained. The simulator was run on three different architectures:
the Intel Core i7-3770 multicore processor (Section 1.3.2), the Intel Xeon Phi 3120A co-
processor (Section 1.3.2) and the NVIDIA Tesla S2050 GPU (Section 1.3.2). Two iterative
solvers were selected to be implemented in the 3D FEM simulator: the FGMRes (Algo-
rithm 1) [6], and the Preconditioned BiCGStab (Algorithm 2) [7]. A tested version of the 3D
FEM simulator using the FGMRes solver from the PSPARSLIB [6], was used as reference to
compare the performance of the custom solvers coded in OpenCL. The reference version ran
entirely on the Intel Core i7-3770 multicore processor. The custom versions of the simulator
used the Intel coprocessor and the NVIDIA GPU to offload highly intensive computing tasks
such as the calculation of the norm of a vector, the dot product between vectors or the sparse
matrix vector product. Low intensive tasks such as solving the overdetermined system gen-
erated in step 17 of Algorithm 1 were done on the host. The preconditioner matrix required
by both algorithms (step 6 in Algorithm 1 and steps 12 and 17 in Algorithm 2) was generated
using the incomplete LU factorization.

In order to validate the numerical results, the following metrics were collected from the
executions of all versions of the simulator:

• ite: the number of iterations needed to achieve convergence.

• nrm res: the norm of the residual vector:

• t sol: time spent during the execution of the solver.

• t preAlg: time spent during the execution of tasks for setting the OpenCL framework,
such as the context creation and command queues association with devices.

19

EDOARDO EMILIO CORONADO BARRIENTOS

• t alg: total time from start to end of the algorithm.

• t tra: time spent on data transfers between host and devices.

• t dev: time spent exclusively in the execution of the OpenCL kernels.

Algorithm 1: Flexible Generalized Minimal Residual
PSEUDOCODE

1 w0 = Ax0

2 r0 =−w0 +b
3 β = ||r0||2
4 v1 =

r0
β

5 for j = 1, ..., to m do
6 z j = M−1v j

7 w = Az j

8 for j = 1, ..., to m do
9 hi, j = (w ·vi)

10 w =−hi, jvi +w
11 end
12 h j+1, j = ||w||2
13 v j+1 =

w
h j+1, j

14 define Zm = {z1, ...,zm}
15 define Hm = {hi, j}, i ∈ [1, j], j ∈ [1,m]

16 end
17 ym = argminy||βe1−Hmy||2
18 xm = x0−Zmy on HOST
19 if satisfied then
20 stop
21 else
22 x0← xm and GOTO 2
23 end

20

Chapter 1. Introduction

Algorithm 2: Preconditioned BiConjugate Gradient Stabilised
PSEUDOCODE

1 w0 = Ax0

2 r0 =−w0 +b
3 δ0 = ||r0||2
4 eps = ε ∗δ0

5 v0 = p0 = 0
6 r̂ = r0

7 ρ0 = α0 = ω0 = 1
8 for i = 1, ..., to maxI do
9 ρi−1 = (r̂ · ri−1)

10 βi−1 =
(

ρi−1
ρi−2

)(
αi−1
ωi−1

)
11 pi = βi−1pi−1−βi−1ωi−1vi−1 + ri−1

12 p̂ = M−1pi

13 vi = Ap̂
14 σi = (r̂ ·vi)

15 αi =
ρi−1
σi

16 s =−αivi + ri−1

17 ŝ = M−1s
18 t = Aŝ
19 ωi =

(t·s)
(t·t)

20 xi = αip̂+ωiŝ+xi−1

21 ri =−ωit+ s
22 δi = ||ri||2
23 if δi+1 < eps then
24 return xi+1

25 end
26 ρi = ρi+1

27 end

Additionally, the simulations used three different meshes: E001 with 11,931 nodes, E002
with 121,316 nodes and E003 with 279,255 nodes. The Table 1.1 shows a comparison be-
tween two simulations using the PSPARSLIB and the custom version of the FGMRes. Despite

21

EDOARDO EMILIO CORONADO BARRIENTOS

using the same solver, the number of iterations is different which leads to a larger t sol. The
time increase is generated by the higher number of operations performed (2 more iterations to
converge), the time spent in creating the OpenCL context and the time transferring data.

Metric FGMRes PSPARSLIB FGMRes OpenCL
ite 2 4
nrm res 1.2371e-04 2.3601e-06
t sol 1.0813 1.3195
t preAlg NA 0.0037
t alg NA 0.2422
t tra NA 0.0289
t dev NA 0.042

Table 1.1: Metrics comparison between simulations using the mesh E001 on the Intel Core
i7-3770 (FGMRes PSPARSLIB) and the Intel Xeon Phi 3120A (FGMRes OpenCL). Time
unit is second. NA stands for Not Applicable

Tables 1.2 and 1.3 show values of t sol for all the combinations of solvers and meshes
running on the different platforms. The numerical results show that the custom implementa-
tions were slower than the PSPARSLIB version. Clearly, the size of the meshes were not large
enough to overcome the time overhead due to setting the OpenCL context and data transfer-
ring. However, two factors are worth to mention along these results. The first factor is that
the OpenCL kernels were not optimized (e.g., the SpMV kernel assigned a row by column
product to single threads, which leads to workload unbalances). The second factor is the size
of the mesh. As the size of the mesh increases the time penalties due to the OpenCL frame-
work are reduced. The second factor can be appreciated in the Figure 1.6. It shows how each
OpenCL variant reduces the gap between their own execution time and the execution time of
the PSPARSLIB solver.

Solver Mesh
E001 E002 E003

FGMRes PSPRASLIB 363 6,309 32,607
FGMRes OpenCL 388 6,548 33,925
Preconditioned BiCGStab OpenCL 423 7,162 34,740

Table 1.2: Numerical results (t sol) for the simulator running on the Intel Core i7-3770 and
the NVIDIA Tesla GPU S2050. Time unit is second.

22

Chapter 1. Introduction

Solver Mesh
E001 E002 E003

FGMRes PSPRASLIB 317 5,265 25,272
FGMRes OpenCL 368 5,571 26,222
Preconditioned BiCGStab OpenCL 384 6,004 28,205

Table 1.3: Numerical results (t sol) for the simulator running on the Intel Core i7-3770 and
the Intel Xeon Phi 3120A. Time unit is second.

Case 1 Case 2 Case 3 Case 4
0

4

7

12

14

17

22

T
im

e
 d

if
fe

re
n
ce

 p
e
rc

e
n
ta

g
e
 (

%
)

Impact of the mesh size on the OpenCL time overhead

E001

E002

E003

Figure 1.6: The figure shows the time difference percentage of the different cases ana-
lyzed. Case 1 compares FGMRes PSPARSLIB vs FGMRes OpenCL on the NVIDIA Tesla
GPU. Case 2 compares FGMRes PSPARSLIB vs Preconditioned BiCGStab OpenCL on the
NVIDIA Tesla GPU. Case 3 compares FGMRes PSPARSLIB vs. FGMRes OpenCL on the
Intel Xeon Phi coprocessor. Case 4 compares FGMRes PSPARSLIB vs. Preconditioned
BiCGStab OpenCL on the Intel Xeon Phi coprocessor. The Case 4, for instance, shows that
the OpenCL variant of the preconditioned BiCGStab solver reduces the execution time gap
with the PSPARSLIB variant of the FGMRes from 21.5% to 12% using a larger size mesh.

To summarize, the main purpose of this study was to familiarize the author of this thesis
with the heterogenous programming paradigm, specifically the basic concepts and require-
ments of the OpenCL language. The study also showed the importance of the problem size to
hide the overhead due to the OpenCL implementation. Additionally, the results also showed
the need to optimize the OpenCL kernels because the naive implementation of the basic lin-
ear algebra operations could not improve the execution time of the original version. Lastly,

23

EDOARDO EMILIO CORONADO BARRIENTOS

the study showed that the Intel Xeon Phi platform executed the simulations faster than the
NVIDIA Tesla GPU (Tables 1.2 and 1.3).

1.4.2 Study of basic algebra operations on different accelerators

The first study exhibited two key factors to improve the overall performance of an iterative
solver, and consequently of a numerical simulator: the size of the problem, and the optimiza-
tion of the kernels for the algebra operations. The second step in this thesis roadmap was to
focus on the performance of the basic algebra operation kernels on different platforms varying
the size of the input arguments [10, 11]. An inspection on the previous Algorithms 1 and 2
shows their strong dependency on the operations: AXPY, DOT, and SpMV. Even the the norm
of a vector can be considered as the square root of the dot product of a vector by itself. The
following section shows the OpenCL kernel for the operation AXPY.

Function: AXPY

The function AXPY is the most basic of the operations. It is ideal for parallel processing
because there is no dependency between the elements of the vectors. The Figure 1.7 shows
the independency of the elements graphically.

12344321x =

67899876r =

gid 0 1 2 3 4 5 6 7

43211234y =

a = 2
*

+

=

Figure 1.7: AXPY operation. The figure shows no dependency between the elements of the
vectors.

The CPU implementation uses a loop to sweep all elements in the arrays to calculate the
result (Listing 1.1). The OpenCL implementation is also straight forward. Each work-item is
assigned to perform the operation on the same position of the two vectors (Listing 1.2).

24

Chapter 1. Introduction

1 typedef unsigned int UIN;
2 typedef float FPT;
3 void axpy_cpu(FPT a, FPT * x, FPT * y, FPT * r)
4 {
5 UIN i;
6 for (i = 0; i < LENGTH; i++)
7 r[i] = a * x[i] + y[i];
8 }

Listing 1.1: AXPY routine for CPU. The macro LENGHT indicates the size of the vectors.

1 typedef unsigned int UIN;
2 typedef float FPT;
3 __kernel void axpy_ocl(FPT a,__global FPT * x,__global FPT * y, __global FPT * r)
4 {
5 UIN gid = get_global_id(0);
6 r[gid] = a * x[gid] + y[gid];
7 }

Listing 1.2: AXPY routine in OpenCL.

The axpy ocl kernel was tested by averaging the execution time of ten iterations for
different vector sizes. The Figure 1.8 shows that the NVIDIA GPU performs faster for vec-
tors with less than 1M elements. Once the vectors exceed 1M elements the Intel Xeon Phi
overcome the GPU achieving a speedup factor of x2 for vector with 50M elements.

1e3 1e4 1e5 1e6 1e7 5e7
Size of the arrays

1e-5

1e-4

1e-3

1e-2

1e-1

5e-1

E
xe

cu
ti

o
n
 t

im
e
 (

s)

NVIDIA Tesla Intel Xeon Phi

Figure 1.8: The figure shows the execution time behaviour for the AXPY kernels on the
NVIDIA Tesla S2050 GPU and the Intel Xeon Phi 3120A.

25

EDOARDO EMILIO CORONADO BARRIENTOS

Function: DOT

The DOT function is a very important operation because its algorithm is required in multiple
numerical codes. Additionally, its algorithm is also the building core of the SpMV product.
Because the SpMV product is basically a collection of dot products between the rows of a
sparse matrix and another vector. At this still early stage, this operation was targeted, by the
author of this thesis, for optimization.

The naive implementation of the DOT operation for the CPU is shown in Listing 1.3.

1 typedef unsigned int UIN;
2 typedef float FPT;
3 void dot_cpu(FPT a, FPT * x, FPT * y, FPT * r)
4 {
5 UIN i;
6 FPT r = 0.0;
7 for (i = 0; i < LENGTH; i++)
8 r = r + x[i] * y[i];
9 }

Listing 1.3: Naive DOT implementation for CPU. The macro LENGHT indicates the size of
the vectors.

The first OpenCL kernel for the DOT operation (Listing 1.4) is basically a translation
from CUDA to OpenCL of the work done by Harris in [49]. This kernel basically uses a
work-item to load two values from each vector, calculates their product and perform a first
two-element reduction and store this result in a block in the local memory of the accelerator
device. Once all the positions within the block are filled, the for loop, in step 11, performs a
reduction based on sequential addressing that uses the work-items local ID as index to avoid
memory bank conflicts. Within each iteration of the loop, only the work-items whose local
ID is inferior to the lower half of the initial range will be performing a further reduction over
the elements of the initial range. This can be graphically appreciated in the Figure 1.9.

The second OpenCL kernel (Listing 1.5) requires two kernels to perform the dot product
between two vectors of an arbitrary size. The first kernel assigns each work-item to perform
the product between their corresponding elements within the vectors, then each work-item is
assigned a chunk (CHK) of elements to perform a partial accumulation. The resulting vector
will have in the positions multiple of the work-group size the partial reduction of CHK ele-
ments. The Figure 1.10 shows graphically the first kernel functioning. The complementary
OpenCL kernel for the dot2 ocl function is shown in Listing 1.6. This kernel uses the
work-item whose global ID is 0 to perform a final reduction by sweeping all the positions
multiple of CHK to calculate the final result.

26

Chapter 1. Introduction

1 typedef unsigned int UIN;
2 typedef float FPT;
3 __kernel void dot1_ocl(__global FPT * v1,__global FPT * v2, __global FPT * vrp)
4 {
5 UIN gid = get_global_id(0);
6 UIN lid = get_local_id(0);
7 UIN i;
8 __local FPT LB[CHK];
9 lb[lid] = v1[gid] * v2[gid] + v1[gid*CHK] * v2[gid+CHK];

10 barrier(CLK_LOCAL_MEM_FENCE);
11 for (i = (CHK/2); i > 0; i = i >> 1)
12 {
13 if (lid < i) lb[lid] = lb[lid] + lb[lid+i];
14 barrier(CLK_LOCAL_MEM_FENCE);
15 }
16 if (lid == 0) vrp[gid] = lb[lid];
17 }

Listing 1.4: Function dot1 ocl in OpenCL. The macro CHK indicates the size of the work-
group.

12344321v1=

12 88lb=

gid 0 1 2 3 4 5 6 7

43211234v2=

4 3 2 11 2 3 4

43211234

8 812 12 12

12 816lb= 16 824 24 12

12 816lb= 40 840 24 12

12 816lb= 80 840 24 12

lid 0 1 2 3 4 5 6 7

Figure 1.9: Parallel reduction with sequential addressing.

27

EDOARDO EMILIO CORONADO BARRIENTOS

1 typedef unsigned int UIN;
2 typedef float FPT;
3 __kernel void dot2_ocl(__global FPT * v1,__global FPT * v2, __global FPT * vrp)
4 {
5 UIN gid = get_global_id(0);
6 UIN lid = get_local_id(0);
7 UIN i;
8 FPT aux = 0.0;
9 vrp[gid] = v1[gid] * v2[gid];

10 if (lid == 0)
11 {
12 aux = 0.0;
13 for (i = 0; i < CHK; i++)
14 aux = aux + vrp[gid+i];
15 vrp[gid] = aux;
16 }
17 }

Listing 1.5: Function dot2 ocl in OpenCL.The macro CHK indicates the number of
elements assigned to each wrok-item.

1 typedef unsigned int UIN;
2 typedef float FPT;
3 __kernel void red2_ocl(__global FPT * vrp, __global FPT * vr)
4 {
5 UIN gid = get_global_id(0);
6 UIN ngp = get_num_grps(0);
7 UIN i;
8 FPT aux = 0.0;
9 if (gid == 0)

10 {
11 aux = 0.0;
12 for (i = 0; i < ngp; i++)
13 aux = aux + vrp[i*CHK];
14 vrp[gid] = aux;
15 }
16 }

Listing 1.6: Function red2 ocl in OpenCL.The macro CHK indicates the number of
elements assigned to each work-item.

12344321v1=

vrp=

gid 0 1 2 3 4 5 6 7

43211234v2=

4 3 2 11 2 3 4

43211234

4 6

8 9 10 11 12 13 14 15
lid 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

4 4 4 4 4 4 46 6 6 6 6 6 6

vrp= 20 6 4 4 4 46 6 6 6 6 6 620 20 20

kernel 1

Figure 1.10: DOT operation. The figure shows a two-step reduction. In the first step, each
work-item processes a chunk of CHK elements, and saves their partial reductions in the posi-
tions multiple of CHK in the vrp[] array.

The two OpenCL kernels for the DOT operation were tested using a different approach.

28

Chapter 1. Introduction

Two vectors of fixed size of 2,097,152 elements were selected as input arguments for the ker-
nels, instead of varying the size of the input arguments. By doing so, the impact of the work-
group size on the performance of the kernels was inspected. The minimum and maximum
sizes for the work-groups were selected according the technical specifications for each device.
The Figure 1.11 shows that the kernel dot1 ocl was faster than the kernel dot2 ocl for a
work-group size of 256. Clearly, the use of local memory benefits this kernel performance on
the NVIDIA GPU [49]. On the other hand, the kernel dot2 ocl was faster than the kernel
dot1 ocl on the Intel Xeon Phi coprocessor (Figure 1.12). The dot2 ocl avoids using
local memory on the Intel coprocessor since it is not on-chip as it is the case of the NVIDIA
GPU. The dot2 ocl reaches its faster performance with a work-group size of 128 work-
items. Lastly, a comparison between the Figures 1.11 and 1.12 shows that the NVIDIA GPU
is faster than its competitor for performing the dot product of two vectors of 2M elements.

4 8 16 32 64
128

256
512

1024

Work-group size

3e-4

4e-4
5e-4

7e-4

1e-3

2e-3

3e-3

4e-3
5e-3

7e-3

Ex
ec

ut
io

n
ti

m
e

(s
)

dot1_ocl dot2_ocl

Figure 1.11: Behaviour of the execution time of the dot kernels on the NVIDIA Tesla S2050
GPU.

29

EDOARDO EMILIO CORONADO BARRIENTOS

4 8 16 32 64
128

256
512

1024
2048

4096

Work-group size

4e-3

5e-3

6e-3

7e-3

8e-3

1e-2

2e-2
Ex

ec
ut

io
n

ti
m

e
(s

)
dot1_ocl dot2_ocl

Figure 1.12: Behaviour of the execution time of the dot kernels on the Intel Xeon Phi 3120A
coprocessor.

Function: SpMV

1613137320rwp=

4315432104210110col=

3216543214321121val=
137320

CSR
vector

5
4
3
2
1
0

sparse matrix
032010
000000
654321
040321
000010
000021

Figure 1.13: Example of a sparse matrix stored using the CSR format.

The SpMV product is the most complex of the basic algebraic operations to optimize. This
product not only needs a well-designed computing kernel, but it also needs a storage scheme,
for the sparse matrix, that facilitates its parallel implementation. At this stage, only the Com-
pressed Sparse Row (CSR) format was used to study the SpMV product. The CSR format

30

Chapter 1. Introduction

uses three arrays to store the sparse matrix: the val[] array contains the entries of the ma-
trix, the col[] array has their corresponding column indices, and the row[] array indicates
the starting position of each row on the previous two arrays. An example of a sparse matrix
contained using the CSR format is shown in the Figure 1.13.

The naive SpMV implementation using the CSR format for the CPU is shown in the
Listing 1.7.

1 typedef unsigned int UIN;
2 typedef float FPT;
3 void spmv_cpu(FPT * val, UIN * col, UIN * row, FPT * vec, FPT * res)
4 {
5 UIN i,j;
6 for (i = 0; i < ROWS; i++)
7 {
8 res[i] = 0.0;
9 for (j = row[i]; j < row[i+1]; j++)

10 res[i] = res[i] + val[j] * vec[col[j]];
11 }
12 }

Listing 1.7: Naive SpMV implementation for CPU. The macro ROWS indicates the number
of rows of the sparse matrix.

Two OpenCL kernels were implemented to perform the DOT product. The first kernel
shown in Listing 1.8 is known as the vector kernel [12, 13]. This kernel assigns 32 work-
items to perform the dot product between each row of the sparse matrix and the right-hand
vector. First each work-item, within the work-group, loads an entry from the matrix and a
value from the vector and performs their product, then stores its result in an array in local
memory (Figure 1.14), and finally, a reduction is performed on the elements of this array
using sequential addressing (Figure 1.9). The performance of this kernel depends highly on
the number of elements within the rows of the sparse matrix. Clearly, matrices whose rows
are highly populated will be better suited for this kernel than matrices with few elements per
row.

31

EDOARDO EMILIO CORONADO BARRIENTOS

1 typedef unsigned int UIN;
2 typedef float FPT;
3 __kernel void spmv1_ocl(__global FPT * val,__global UIN * col, __global UIN * row, __global FPT * vec,

__global FPT * res)
4 {
5 UIN lid = get_local_id(0);
6 UIN grpid = get_group_id(0);
7 UIN ind1, ind2, i;
8 __local FPT lb[32];
9 if (grpid < ROWS)

10 {
11 ind1 = row[grpid];
12 ind2 = row[grpid+1];
13 __local lb[lid] = 0.0;
14 for (i = (ind1+lid); i < ind2; i = i + 32)
15 lb[lid] = lb[lid] + val[i] * vec[col[i]];
16 barrier(CLK_LOCAL_MEM_FENCE);
17 if (lid < 16) lb[lid] = lb[lid] + lb[lid+16];
18 if (lid < 8) lb[lid] = lb[lid] + lb[lid+ 8];
19 if (lid < 4) lb[lid] = lb[lid] + lb[lid+ 4];
20 if (lid < 2) lb[lid] = lb[lid] + lb[lid+ 2];
21 if (lid < 1) lb[lid] = lb[lid] + lb[lid+ 1];
22 barrier(CLK_LOCAL_MEM_FENCE);
23 if (lid == 0) vrp[grpid] = lb[lid];
24 }
25 }

Listing 1.8: Function spmv1 ocl in OpenCL.

3216543214321121val=

gid 0
1 2 3lid 0 1

321
2 3
64

1
65

3 3

4 5

3

vec= 10 1

0 0 1 2 30 1 20

wgid 0 0

10 2 4

2 2 2 3

543210

66

1 43

3
67 96 97 98 99 100 101

5 5 5
160161 162

Figure 1.14: Memory accesses by work-items from the execution of kernel spmv1 ocl.

The second kernel is shown in Listing 1.9. This kernel is known as scalar kernel [12, 13].
It assigns one work-item to perform the dot product between one row of the sparse matrix and
the right-hand vector. The performance of this kernel is highly affected by matrices whose
rows population is highly variable, because this will generate workload unbalances among
threads. The Figure 1.15 shows graphically the memory accesses done by the work-items
generated by the execution of the kernel spmv2 ocl.

32

Chapter 1. Introduction

1 typedef unsigned int UIN;
2 typedef float FPT;
3 __kernel void spmv2_ocl(__global FPT * val,__global UIN * col, __global UIN * row, __global FPT * vec,

__global FPT * res)
4 {
5 UIN lid = get_global_id(0);
6 UIN ind1 = row[gid];
7 UIN ind2 = row[gid+1];
8 UIN i;
9 FPT aux = 0.0;

10 for (i = ind1; i < ind2; i++)
11 aux = aux + val[i] * vec[col[i]];
12 res[gid] = aux;
13 }

Listing 1.9: Function spmv2 ocl in OpenCL.

3216543214321121val=

gid 0
1 2

3
lid 0

1 5

vec= 10 1

3

0wgid 0

10 2 4 543210 1 43

0 0 0
2

5

Figure 1.15: Memory accesses by work-items from the execution of kernel spmv2 ocl.

The OpenCL kernel spmv1 ocl was tested by using a sparse matrix of fixed size and
varying the size of the work-group, according to the technical specifications of each device.
The sparse matrix used has 16,384 rows with 128 elements per row, for a total of 2,097,152
nonzero elements. The Figure 1.16 shows that this kernel performs better on the NVIDIA
GPU because it uses local memory to perform the reduction of the 32 elements of the local
array. The optimum work-group size was 64 and 1024 for the NVIDIA GPU and the Intel
Xeon Phi coprocessor respectively.

The kernel spmv2 ocl was tested by varying the size of the input matrix (Figure 1.17).
The second kernel performs faster for matrices with less than 10M elements, achieving an
impressive speedup of x30 for the smallest matrix. For matrices with more than 10M elements
the Intel Xeon Phi coprocessor closes the performance gap, and it manages to overperform

33

EDOARDO EMILIO CORONADO BARRIENTOS

the NVIDIA GPU achieving a speedup factor of x1.8.

Clearly, the NVIDIA GPU executed faster the operations tested for most vectors and ma-
trices in this study. The Intel Xeon Phi improves its performance when processing high-
element vectors and matrices. This study also shows that the SpMV vector is the most time-
expensive and difficult operation to optimize. Therefore, it redirected this thesis focus towards
the study and analysis of novel sparse matrix formats and their SpMV performance on modern
computer architectures.

4 8 16 32 64
128

256
512

1024
2048

4096

Work-group size

4e-4
5e-4

7e-4
9e-4

2e-3

5e-3

7e-3

1e-2

2e-2

E
xe

cu
ti

on
 t

im
e

(s
)

spmv1_ocl NVIDIA spmv1_ocl Intel

Figure 1.16: Execution of the spmv1 ocl kernel on the NVIDIA Tesla S2050 GPU and the
Intel Xeon Phi 3120A coprocessor.

34

Chapter 1. Introduction

1e3
1e4

1e5
1e6

1e7
5e7

Work-group size

2e-5

4e-5

2e-4

6e-4
1e-3

4e-3

1e-2

3e-2
5e-2

E
xe

cu
ti

on
 t

im
e

(s
)

spmv2_ocl NVIDIA spmv2_ocl Intel

Figure 1.17: Execution of the spmv2 ocl kernel on the NVIDIA Tesla S2050 GPU and the
Intel Xeon Phi 3120A coprocessor.

1.4.3 New AXC format for the Intel Xeon Phi coprocessor in OpenCL

The previous study exhibited the SpMV product as the main bottleneck in most iterative
solvers. It also shows a strong dependency of this product on the storage format and its
kernel implementation [12, 13].

The next step in this thesis was to propose the new AXC format for the Intel Xeon Phi
7120P coprocessor [31], based on the analysis of the state-of-the-art solutions proposed to
improve the performance of iterative solvers. Specially, the focus was on solutions based on
the design of new storage formats and their kernel implementations. A deep look into this
field revealed the following formats.

Related work

The CSR format [7] is very popular due to its low memory footprint and its simplicity. It has
several variants, one of them is its block version (BCRS) [50]. Other interesting formats are
the Diagonal (DIA) format, the Packet (PKT) format and the Hybrid (HYB) format introduced
in a study of the SpMV product in CUDA [12, 13].

35

EDOARDO EMILIO CORONADO BARRIENTOS

The ELLPACK format [51] was the first vector-friendly format designed for this kind
of machines. This format has served as base for important variants, such as: the ELL-R and
ELLR-T formats [14, 20] and [17] respectively, the Sliced ELL (SELL) format [21], the Sliced
ELL-C-α (SELL-C-α) [23] and the ELL-WARP (a.k.a K1) format [19].

The Jagged Diagonal Storage (JDS) format [52, 32] is a complex scheme that introduced
the use of row sorting to rearrange the rows by population descending order to favor vector
processing. One of its variants is the padded JDS (pJDS) format [22].

Competitor formats

Three formats were selected to compare the performance of the AXC format: the CSR, the
ELLR-T and the K1 formats.

The CSR format uses three arrays (val[], col[] and rowp[]) to store the values, the
column’s indices and the row’s starting positions of the matrix respectively.

The ELLR-T format splits each row of the matrix in segments of length RMAX/T , where
RMAX is the number of elements of the most populated row in the matrix, and T is the
number of work-items assigned to process each row. This format uses three arrays (val[],
col[] and rl[]) to store the values, the column’s indices and the row’s length of the matrix
respectively.

The K1 format performs a previous ordering of the matrix in descending order of the
rows’ population. This ordering is done to group rows with similar number of elements into
segments called blocks. The size of a block is controlled by the parameter BLS, that is, the
numbers of rows contained by it. The purpose of this ordering is to balance the workload of
the work-groups by creating the most homogeneous blocks as possible. This format uses five
arrays (val[], col[], nmc[], blp[], and permi[]) to store the values, the column’s
indices, the number of maximum columns per block, the starting position of each block, and
the inverse permutation map of the matrix respectively.

These formats are shown in the Figure ??.

Metrics

Two metrics were required to test the AXC format. The storage occupancy was used to
measure the storage efficiency of the format, and it is also needed to forecast the performance,

36

Chapter 1. Introduction

it is defined as:

β =
NNZ
SE

where NNZ is the number of non-zero elements, and SE is the number of stored elements by
the format to reproduce the matrix. And the performance is a measure of the processing speed
of the kernels, is defined by:

P =
2 ·NNZ

execution time
,

where the execution time is measured in seconds.

AXC in OpenCL

The first novelty introduced by this thesis was the AXC format. This format was designed
to exploit the wide registers and vectorization capabilities of the Intel Xeon Phi 7120P co-
processor. This device was targeted because its superior programmability. It offers two pro-
gramming approaches: the native and the offload approaches. The offload approach has the
main program executed in the host and only some sections are offloaded to the coprocessor,
which make it to behave as an accelerator device. The native approach allows the coprocessor
to behave as an Intel Xeon processor running programs natively without necessity of special
instructions. This work used OpenCL and the offload approach to code and test the AXC
format.

The AXC format was designed to avoid memory indirections caused by accessing no
contiguous positions of the right-hand vector, and to exploit the memory cache utilization by
grouping data together in segments that fits the cache line. The AXC format stores the matrix
entries and vector values contiguously in the ax[] array. This array is split in segments
called bricks of size 2∗HBRS. The parameter HBRS half the number of elements per brick.
The format uses the brp[] array to pinpoint the starting position of each row. This format is
shown in Figure ??.

The Listing ?? shows the OpenCL kernel for the AXC format. It uses the explicit vec-
torization approach. That is, every multiplication and adding operation inside the for loop
are being vectorised as it explicitly uses the double8 vector data type. Thus, the vector data
types are mapped directly to the hardware vector registers.

The Roofline model [53] was deduced for the kernel in Listing ??. The kernel needs the
transference between host and device of three arrays: ax[], brp[] and y[]. The effect

37

EDOARDO EMILIO CORONADO BARRIENTOS

of the brp[] array is neglected because it does not contribute directly to the floating point
operations. Analyzing the contribution of the ax[] and y[] arrays it arrives to the following
formula:

PAXC =
bmax

8
β
+1.1

FLOPS.

where bmax is the maximum achievable bandwidth.

Numerical results

The AXC format was tested in two stages. The first stage tested exclusively its performance
while executing the SpMV product using a suite of 12 matrices (Table ??). The execution time
for each kernel was obtained as the average time of 500 iterations. The bandwidth used for
the performance model was measured by averaging the execution time of 1000 iterations of
the code shown in Listing ??, whose value was 123.074 GBytes/s. The performance and the
expected performance (Roofline model) for the formats tested (Listings ?? to ??) are shown
in the Figure ??.

The first set of results showed that the AXC format outperformed its competitors for 7
out of 12 matrices. The K1 format was the best performer for the remaining 5 matrices. The
CSR format was the third best performer, and the ELLR-T was the worst performer. Most of
these formats performed below the roofline model prediction. The AXC format achieved the
nearest performance to the roofline model forecast.

The CSR performance was affected by matrices with few elements per row and poor
spatial locality. Its performance for matrix M12 shows this, as it has an average of 3.11
elements per row and has a random sparsity pattern.

The ELLR-T performance is especially susceptible to the number of elements per row of a
matrix. If the quantity is low the work-items will process very small workloads because each
row is split in T work-items (e.g., matrix M07). On the contrary, if the quantity is high, this
could lead to a memory overhead because the format pads all rows with zeros to match the
length of the longest row of the matrix (e.g., matrix M12).

The K1 format works specially well for banded matrices (e.g., matrices M01, M02 and
M09). But its performance is greatly affected by poor spatial locality (e.g., matrices M06,
M11 and M12).

38

Chapter 1. Introduction

The AXC format was affected by matrices whose rows population is inferior to HBRS=8,
because it can not effectively exploit the 512-bits registers (e.g., matrices M06 and M07).
However, the AXC performance remained unaffected by indirect memory accesses as it out-
performed its competitors for matrices with arrow-head sparsity pattern (e.g., matrices M03,
M04 and M05).

The second stage tested these formats in a real application, such as the CG solver. The
Algorithm ?? shows all the operations, their type, and place of execution needed to implement
this solver. The Figure ?? shows a graph for each type of operation (conversion, memory and
floatin point) and the total execution time of the algorithm.

The results showed that AXC format has the fastest conversion time due to its simplicity.
This is an advantage because it represents the execution of one or two iterations before the
solvers based in other formats start their algorithm. The floating point operation times con-
firms the results from the previous stage, the AXC format was the best performer for 7 out of
12 matrices. The memory operations exposed a major drawback of the AXC format, load a
new vector on the ax[] array before executing the SpMV product (Step 15 of Algorithm ??).
The time overhead due to memory operations caused that the CG solver based on the AXC
format was not the fastest implementation.

In summary, the offload approach leads to a high volume of data transfers that increase the
time expended in memory operations, such as array copies from one device to another. The
lack of built-in functions in OpenCL to perform vector operations force the use of explicit
vectorization on basic operations. The explicit vectorization lacks the optimization of built-in
native vector functions as the AVX instructions. The AXC format has the fastest conversion
time that leads to an early start of iterative solvers. Its SpMV performance was affected by
low populated rows, but it remained unaffected by poor spatial locality.

These observations motivated the use of OpenMP and the Intel AVX-512 instructions to
implement and test the AXC format on the Intel Xeon Phi coprocessor.

1.4.4 The AXC format for the Intel Xeon Phi coprocessor with AVX-512

The poor performance showed using the offload approach and OpenCL led this thesis to test
again the AXC format using the native approach and OpenMP in conjunction with the AVX-
512 instructions on the Intel Xeon Phi 7120P coprocessor [29]. Most of the metrics and
methodology employed in the previous study remained the same for this new one [29]. The
differences will be pronounced in the following sections.

39

EDOARDO EMILIO CORONADO BARRIENTOS

Competitor formats

The formats used to compare the AXC format were the CSR format and the SELL-C-α for-
mat. The optimized Intel MKL function mkl cspblas dcsrgemv() was used in this
work to evaluate the CSR format. The SELL-C-α format is equivalent to the K1 format.
However, it was proposed independently in [23]. This variant was selected because its SpMV
kernel (Listing ??) was implemented using the Intel AVX-512 instructions for the Intel Xeon
Phi coprocessor. The ELLR-T format was excluded from this study because it could not
handle matrices with highly populated rows.

Metrics

This work used the same metrics than the previous study, those are: storage efficiency and
SpMV performance. However, because the native approach requires less memory operations,
the total execution time describes better the real computing throughput. For this reason, the
performance for the two real applications implemented in this analysis were calculated. The
first application is the CG solver (Algorithm ??) whose performance was calculated by:

PCG =
2EE +5N +NIT (2EE +12N)

ET
,

where EE is the number of stored elements by the format, N is the order of the matrix,
NIT is the number of complete iteration of the main loop and ET is the execution time. The
second application is the BiCGStab solver (Algorithm ??), and its performance was calculated
according to:

PBICGSTAB =
2EE +3N +NIT (22N +4EE)

ET
.

AXC in OpenMP and AVX-512

In this work, the AXC format experienced modifications only in its SpMV kernels. Two
SpMV kernels were implemented using OpenMP in conjunction with the AVX-512 instruc-
tions for the AXC format. The kernel kaxc1 (Listing ??) is equivalent to the OpenCL kernel
shown in the previous study as Listing ??. This kernel assigns one row per thread and relies
on the OpenMP dynamic policy to balance the workload among threads. The kernel kaxc2
(Listing ??) assigns a chunk of rows to each thread, in order to balance manually the workload
among threads.

40

Chapter 1. Introduction

Numerical results

The testing platform was the Intel Xeon Phi 7120P coprocessor using its maximum capacity,
that is, 240 threads. The code was compiled and executed using OpenMP and the native
approach to avoid data transferring between host and device. A new suite of 25 matrices
(Table ??) was considered for evaluation. Tests were performed in two phases: first phase
explored the performance of the SpMV product only, and the second phase focused on the
overall performance of the solvers where the SpMV kernels were integrated. A total of 250
runs was performed for the SpMV product, and for the solvers.

The Figure ?? shows the performance of the SpMV product. The AXC format outper-
formed its competitors in 21 out of 25 matrices. The average performance was: 15.9 GFLOPS
for the AXC format, 5.5 GFLOPS for the SELL-C-α format and 8.4 GFLOPS for the CSR-
based MKL function. The maximum performance (23.96 GFLOPS) was achieved by the CSR
format for matrix M10 which is a banded matrix. The maximum speedup factor (x6.8) was
achieved by the AXC format for matrix M07, which has poor spatial locality due to its ran-
dom sparsity pattern. The maximum AXC format performance was 20.79 GFLOPS for matrix
M22, which has an arrow-head sparsity pattern. These results verified the AXC resilience to
indirect memory accesses observed in the previous OpenCL results.

The code for all solvers is basically the same. The main differences between one version
or another, lies in the extra memory operations required by the AXC and SELL-C-α formats
(highlighted in blue and red fonts respectively in Algorithms ?? and ??), and in the SpMV
kernel used for each version. The Figure ?? shows the performance of the CG solver. Despite
the AXC format requires the extra step 8, its CG solver outperforms its competitors in 20 out
of 25 matrices. The CG solver based on the AXC format achieves a maximum speedup factor
of x1.8 over the MKL function for the CSR format for matrix M04.

The Figure ?? shows the performance for the BiCGStab solver. For this solver, the AXC-
based version outperforms its competitors in 17 out of 25 matrices. The reduction in the num-
ber of positive cases, compared with the CG solver, is explained by the fact that the BICGStab
algorithm requires two extra memory operations pointed by steps 12 and 18 in Algorithm ??.
The AXC-based solver achieved a speedup factor of x1.9 over it closes competitor for ma-
trix M07. Both solvers performances showed that the permutation operation required by the
SELL-C-α format is more expensive than updating the ax[] array. A worthy remark is that
the AXC performance was optimal for matrices with arrow-head structure (M00, M03, M09,
M16 and M22), and matrices with highly random sparsity pattern (M07).

41

EDOARDO EMILIO CORONADO BARRIENTOS

These results validated the AXC format as a legit option to the CSR format to store a
sparse matrix and perform the SpMV product efficiently on the Intel Xeon Phi coprocessor.
However, up to this point, the AXC format targeted only the Intel platform disregarding other
popular accelerator devices, such as the NVIDIA GPUs. Therefore, the next objective was
broadening the range of application of the AXC format to other platforms.

1.4.5 New AXT format using AVX-512 instructions and CUDA

The main objective of the last work of this thesis was to extend the range of application
of the AXC format. For this purpose, the new AXT format was proposed [30]. The new
AXT format depends on three parameters to adapt itself to different architectures without
affecting the scope for general sparse matrices. The AXT format can spawn four different
data patterns depending on the values selected for these parameters. This format was tested
on two devices: the Intel Xeon Gold 6148 processor with Skylake architecture (Section 1.3.2)
and the NVIDIA Tesla V100 GPU with Volta architecture (Section 1.3.2). The Intel AVX-
512 instructions were used, in combination with OpenMP, to code the SpMV computational
kernels for the Intel processor and CUDA is used for the computational kernels used on the
NVIDIA GPU.

Competitor formats

This work used the CSR and the AXC formats to compare the performance of the new AXT
format. The current state-of-the-art CSR-based functions were selected from the platforms
optimized libraries to obtain the maximum performance for the CSR format. For the Intel
Xeon Gold processor, the Intel MKL function mkl sparse d mv was used. And for the
NVIDIA Tesla V100 GPU, the cuSPARSE function cusparseCsrmvEx was used. The
AXC format on Intel Xeon Gold processor used the kernel introduced in the previous work,
Listing ??. The AXC format on the NVIDIA GPU used the kernel shown in Listing ??.

Metrics

This work only focused on the performance of the SpMV product, and the storage efficiency of
the format. Hence, only the metrics introduced in Section 1.4.3 were needed: the performance
for the SpMV product and the storage occupancy (β).

42

Chapter 1. Introduction

AXT

The new AXT format uses only two arrays to store the sparse matrix: the ax[] array where
the matrix’s entries and vector values are stored contiguously, and a secondary array. The new
format incorporates three tuning parameters in its design to reduce its memory footprint, adapt
itself to different architectures and improve the workload balance. The tuning parameters are
the tile’s half width (THW), the tile’s height (TH) and the mode (MODE).

The tile’s half width (THW) is a machine dependent parameter set to the size of the SIMD
execution unit of the targeted device. In this work, THW=8 for the Intel Xeon Gold processor
and THW=32 for the NVIDIA Tesla V100 GPU, for double precision arithmetic.

The mode (MODE) parameter is key to the AXT format because it activates, or deactivates,
the usage of zero padding between different row elements in the ax[] array. There values
for this parameter are uncompacted (UNC) and compacted (COM). The uncompacted mode
indicates that the elements in a row are going to be fitted to as many tiles, or tile’s columns,
as needed without mixing elements from a different row through the use of zero padding.
It also sets the auxiliary array to store row indices (rwp[]). The compacted version joins
the non-zero elements of a matrix and their corresponding vector values together without any
zero padding, which enables a tile, or tile’s column, to contain elements from different rows.
The compacted version changes the function of the auxiliary array (hdr[]), which contains
a combination of row indices and offsets in this mode.

The tile’s height (TH) depends mainly on the matrix’s structure. The value of TH should be
large enough to amortize the cost of the algorithms at a thread-level and yet small enough to
avoid a performance reduction through an excess of null operations due to the zero padding in
the uncompacted variants or a shared memory access penalization in the compacted variants.
This parameter was obtained empirically for each matrix.

The AXT format can generate four different data arrangements according to the values
selected for the parameters TH and MODE. These variants are enumerated in the following list:

• the AXTUH1 variant is the AXT format with MODE=UNC and TH=1,

• the AXTUH variant is the AXT format with MODE=UNC and TH>1,

• the AXTCH1 variant is the AXT format with MODE=COM and TH=1,

• the AXTCH variant is the AXT format with MODE=COM and TH>1;

and shown in the Figure ??.

43

EDOARDO EMILIO CORONADO BARRIENTOS

The AXTUH1 variant

The uncompacted mode of the AXT format with TH=1 stores THW matrix entries with
the corresponding THW vector values contiguously in segments named tiles in the ax[] array
in row major order. The auxiliary rwp[] array assigns the corresponding row index of its
elements to each tile. This way race conditions can appear, as different threads processing
different elements in the same row could try to write their partial results at the same time and
position in the resulting array. This is fixed though the use of atomic functions. The atomic
functions reduced the performance of this variant on the Intel processor, but they make the
tiles’ computation independent which favored its overall performance on the NVIDIA GPUs.
The Intel version of the SpMV kernel used an AVX-512 instruction for the reduction step of
the partial results (Listing ??). Its CUDA counterpart (Listing ??) implemented a warp-level
parallel reduction algorithm presented in [54].

The AXTUH variant

This is the 2D variant of the previous scheme, thus here the same arrays are used in the
same way as its 1D predecessor. This scheme stores the non zero elements of a matrix together
with their corresponding vector values in a column major order separated by THW positions.
Because this variant’s mode is uncompacted, if a row has NNZR non zero elements this scheme
will store its elements in (NNZR + TH - 1)/TH consecutive columns. If there are unused
positions in the last column they will be padded with zeros. Unused columns will have a
zero on their corresponding position on the rwp[] array. Storing the elements in column
major order will guarantee coalesced memory access from SIMD lanes and enforces a one-
step accumulation of the partial result from each column. Listing ?? and Listing ?? show the
kernels for the Intel processor and the NVIDIA GPU respectively.

The AXTCH1 variant

This variant stores the matrix entries and vector values contiguously mixing elements from
different rows in the same tile in the ax[] array. Having elements from different rows in the
same tile, requires an algorithm that can perform more than one reduction within the same
tile, that is, a segmented scan. A segmented scan is an operation for performing separate
parallel scans simultaneously on arbitrary contiguous partitions (”segments”) on a given array
of numbers. Segmented scans require a segment descriptor that encodes how a sequence is

44

Chapter 1. Introduction

divided into segments besides the sequence of values. In order to perform a segmented scan,
this work used the algorithm presented in [55] known as fast segmented sum. The segmented
sum requires an input sequence of values (is[]) and an array that indicates the distance
between the first and last element of each partition (off[]). Then, the first step is to store
the elements of is[] in the tmp[]. The second step is to perform a scan on the is[] array.
And finally, the third step is to apply the following formula:

os[i] = is[i+o f f [i]]− is[i]+ tmp[i].

The right section of the Figure ?? shows an example of the fast segmented sum algorithm.
Because the fast segmented sum requires to perform a full scan operation on the input

sequence. The block scan algorithm presented in [56] was used on kernels for this variant.
The block scan algorithm requires to use and additional parameter, the block’s length. Hence,
this variant of the AXT format requires the block’s size (BS), to indicate the length of the
sequence to be scanned. The block scan algorithm follows five steps:

1. scan the input sequence at the SIMD unit level,

2. collect the SIMD unit level results,

3. scan the SIMD unit level results,

4. accumulate the SIMD unit level results,

5. write and return the final results.

Two algorithms were employed in order to perform the first step from the previous list.
The first algorithm employed for the CUDA kernel is the warp scan [56] that uses the threads
in a warp for 32 elements scans (Figure ?? a)). The second algorithm implemented using
the AVX-512 instructions (Listing ??) is the work-efficient scan [57, 2] that uses the 512-bit
registers for 8 double precision elements scans (Figure ?? b)).

Additionally, the auxiliary array for this variant has a different function from those in the
previous variants. The auxiliary array for this variant is referred as the hdr[] array, and has
THW elements for every tile contained in the ax[] array. The hdr[] array needs to provide
the distance between the first and last element of each partition (referred to as the offset)
and the row’s index to which this partition belongs to. Therefore, the first bits of an element
belonging to the hdr[] array (counting from the least significant bit (LSB)) are dedicated to

45

EDOARDO EMILIO CORONADO BARRIENTOS

specifying the offset of the partition. The last bits of an element from the hdr[] array are
dedicated to indicate the row’s index of the partition. For example, for a block of BS=1024
elements, the maximum offset within a block is 1023, and it would require 10 bits to cover
this value as 102310 = 11111111112, then the remaining 22 bits would indicate the row index,
enough to cover matrices whose number of rows is lower than 222 = 4,194,304. This work
covers matrices with higher number of rows than 4,194,304 by using a maximum block’s size
of 512 for this variant.

Listings ?? and ?? show the kernels for the Intel processor and the NVIDIA GPU respec-
tively.

The AXTCH variant

The 2D compacted variant of the AXT format stores the matrix’s entries and the corre-
sponding vector values separated by THW elements in column-major order in the ax[] array.
This variant allows elements from more than one row to be mixed in the same column to re-
duce its memory footprint. This variant uses the fast segmented sum algorithm on the tile’s
columns. Therefore, the hdr[] array adopts the same ideas of the previous variant, but its
elements are stored in column-major order producing a 2D array. This way, the offset ex-
tracted from the hdr[] elements indicates the ”vertical” distance between the first and last
element of a partition. Because the fast segmented sum is applied in column order, the maxi-
mum offset is set by the parameter TH, hence this variant does not require the parameter BS.
The compacted mode allows the value for the parameter TH to be selected as large as de-
sired without the storing penalty the uncompacted version could generate. However, having
a large TH could lead to more partial sums that would produce a performance reduction due
to more memory writes. The Intel kernel is shown in Listing ??, and the CUDA kernel is
shown in Listing ??. Notice that the Intel kernels requires to use two static arrays (blk1[]
and blk2[]), while its CUDA counterpart can do the algorithm using only local variables
that are stored in the thread registers.

Numerical results

The new AXT format and its competitors were tested on the Intel Xeon Gold 6148 processor
and the NVIDIA Tesla V100 PCIe GPU from the GPU nodes of the Cirrus facility [58] at
the EPCC, of the University of Edinburgh. The code was compiled using OpenMP and Intel

46

Chapter 1. Introduction

AVX-512 instructions on the Intel processor and CUDA version 9.1 on the NVIDIA GPU.
A suite of 26 matrices were used for testing (Table ??). The memory requirement, storage
occupancy and optimal value selection for all formats and matrices are registered in Tables ??
and ?? for the Intel and NVIDIA platforms respectively. The execution time was the average
of 100 executions of each kernel.

The numerical results for the Intel Xeon Gold processor (Figure ??) show that the AXTUH

variant was the best performer on this platform using TH=4 or 8 for most cases. It achieved
a performance improvement of 18.1% and it managed to reduce the memory footprint a 5.1%
over the AXC format. Compared to the CSR format, the AXTUH variant achieved a perfor-
mance improvement of 44.3% and needed 34.6% more memory. There is no clear preference
of this variant for a specific type of matrix because it achieved outstanding speed up factors
over different type of matrices like on: the M03 matrix with an arrowhead sparsity pattern
(x2.41), the M24 matrix with an irregular sparsity pattern and its abnormally large row (x7.33)
and on the M25 matrix with a band sparsity pattern (x2.73).

The performance on the NVIDIA Tesla V100 GPU (Figure ??) shows that the AXTUH and
AXTCH1 variants achieved the best overall performance on this platform using TH=4 or TH=8
and BS=512 or BS=1024 respectively for most cases. Their performance improvement is
lower than 10% while their memory requirements represent an increment of approximately
35% compared to the CSR format. The AXT format excelled processing matrices with abnor-
mally large rows within their ranks (e.g. M07, M20, M21 and M24). These variants reached
speedup factors from x2.68 up to x378.50 for this type of matrices. An important remark is
that the AXT format overperformed the AXC format on the NVIDIA GPU, widening suc-
cessfully the range of application of the AXC format.

Finally, the last step in this thesis roadmap was the proposal of the AXT format, a highly
adaptable format through the use of three parameters: the tile’s half width (THW), the mode
(MODE), and the tile’s height (TH). This proposal outperformed several highly optimized for-
mats on different modern computer platforms using novel and complex parallel algorithms.
Making it a legit option to be used on current numerical codes because it opmitizes the per-
formance of a key operation such as the SpMV product.

47

EDOARDO EMILIO CORONADO BARRIENTOS

1.5 Outline

Chapters 2, 3 and 4 are reproductions of articles that compose the main body of this thesis.
The author of this thesis is the main contributor in all of them. These articles have been
published in JCR journals: Concurrency and Computation: Practice and Experience, The
Journal of Supercomputing and Advances in Engineering Software. These articles deepen the
objectives exposed in Section 1.2 and unfold the work undertaken in the development of this
thesis. Section 1.6 provides a full compendium of the journal publications and conferences
attended related to this thesis.

Chapter 2 proposes the new AXC format to improve the performance of the SpMV product
using the OpenCL standard on the Intel Xeon Phi coprocessor. In this chapter, the Roofline
Model is used to obtain a performance model for the AXC format. Also, a comparison of
the SpMV performance is made using the new proposed format against three other efficient
schemes: the Compressed Sparse Row (CSR), the ELLPACKR-T (ELLR-T) and the ELL-
WARP (K1) formats. The matrix suite used for testing is composed by 12 matrices with
different characteristics. Numerical results show that the AXC format is more robust to spa-
tial indirections proper of sparse matrices. Also, the several CG variants are implemented to
expose the strengths and weaknesses of the formats compared in a real application.

Chapter 3 verifies the AXC format as a valid option to improve the iterative solvers per-
formance on the Intel Xeon Phi coprocessor. This chapter presents a two phase comparison
of the AXC. The first phase compares the SpMV product performance of the AXC, Sliced
ELLPACK-C-α (SELL-C-α) and CSR formats using the OpenMP standard in conjunction
with the Intel intrinsic instructions, and the Intel MKL library. The second phase of the eval-
uation compares the performance of the CG and BiCGStab solvers using the three formats. A
suite of 25 matrices is used for testing. Numerical results show that the AXC format achieves
the higher average performance of 15.9 GFLOPS. The CSR function of the Intel MKL li-
brary achieves 8.4 GFLOPS. And SELL-C-α achieves 5.5 GFLOPS. Results also show that
the AXC solver variants achieve a 1.5x and 1.9x performance improvement over the CSR
variants of CG and BiCGStab solvers respectively.

Chapter 4 proposes the new AXT format that improves the performance of the AXC for-
mat. The new AXT format also widens the application of the AXC format to GPUs. The new
proposal can be adapted to different platforms through the adjustment of 4 parameter values
that are hardware or matrix dependent. The new format is compared with the AXC and CSR
formats using a suite of 26 matrices on an Intel Xeon Gold 6148 processor and an NVIDIA

48

Chapter 1. Introduction

Tesla V100 GPU. On the Intel Xeon processor the AXT format reaches speedup factors of
up to x7 over its competitors. And, on the NVIDIA GPU the AXT format reaches speedup
factors of x378.

Lastly, the conclusions of this work, the articles reproduced in the following chapters, and
the intended future work are presented in Chapter 5.

1.6 List of publications

The list of publications written by the author throughout the development of this thesis is
listed hereunder.

1.6.1 International Journals

• [31] E. Coronado-Barrientos, G. Indalecio and A.J. Garcı́a-Loureiro, AXC: A new for-
mat to perform the SpMV oriented to Intel Xeon Phi architecture in OpenCL, Concur-

rency and Computation: Practice and Experience, 31, 2018.
Category: Computer Science, Theory & Methods. Rank 59/105.
Impact Factor (JCR 2018): 1.167. Q3.

• [29] E. Coronado-Barrientos, G. Indalecio and A.J. Garcı́a-Loureiro, Improving Perfor-
mance of Iterative Solvers with the AXC Format Using the Intel Xeon Phi. The Journal

of Supercomputing, 74(6): 2823–2840, June 2018.
Category: Computer Science, Theory & Methods. Rank 35/105.
Impact Factor (JCR 2018): 2.157. Q2.

• [30] E. Coronado-Barrientos, M. Antonioletti and A.J. Garcı́a-Loureiro, A new AXT
format for an efficient SpMV product using AVX-512 instructions and CUDA, Ad-

vances in Engineering Software, 156:102997, 2021.
Category: Computer Science, Software Engineering. Rank 13/108.
Impact Factor (JCR 2019): 3.884. Q1.

1.6.2 National Journals

• [11] E. Coronado-Barrientos, G. Indalecio and A.J. Garcı́a-Loureiro, Study of basic
vector operations on Intel Xeon Phi and NVIDIA Tesla using OpenCL, Annals of Mul-

ticore and GPU Programming, 2(1):66–80, 2015.

49

EDOARDO EMILIO CORONADO BARRIENTOS

1.6.3 National Conferences

• [4] E. Coronado-Barrientos, A.J. Garcı́a-Loureiro, G. Indalecio and N. Seoane, Imple-
mentation of numerical methods for nanoscaled semiconductor device simulation using
OpenCL, In Proceedings of the 2015 Spanish Conference on Electron Devices, CDE
2015, IEEE, 2015.

• [10] E. Coronado-Barrientos, G. Indalecio and A.J. Garcı́a-Loureiro, Implementation
and performance analysis of the AXPY, DOT, and SpMV functions on Intel Xeon Phi
and NVIDIA Tesla using OpenCL, In Second Congress on Multicore and GPU Pro-

gramming, PPMG 2015, pages 9–17, University of Extremadura, 2015.

50

CHAPTER 2

AXC: A NEW FORMAT TO PERFORM THE

SPMV ORIENTED TO INTEL XEON PHI

ARCHITECTURE IN OPENCL

E. Coronado-Barrientos, G. Indalecio and A.J. Garcı́a-Loureiro, AXC: A new format
to perform the SpMV oriented to Intel Xeon Phi architecture in OpenCL, Concur-

rency and Computation: Practice and Experience, 31, 2018.

DOI: https://doi.org/10.1002/cpe.4864

Copyright

Wiley has granted permission free of charge to include this article in this thesis. Details of the
license terms and conditions can be found here.

This is the peer reviewed version of the following article: Coronado-Barrientos, E, In-
dalecio, G, Garcı́a-Loureiro, A. AXC: A new format to perform the SpMV oriented to In-
tel Xeon Phi architecture in OpenCL. Concurrency Computat Pract Exper. 2019; 31:e4864.
https://doi.org/10.1002/cpe.4864, which has been published in final form at 10.1002/cpe.4864.
This article may be used for non-commercial purposes in accordance with Wiley Terms and
Conditions for Use of Self-Archived Versions.

https://doi.org/10.1002/cpe.4864
https://s100.copyright.com/MyAccount/viewLicenseDetails?ref=5f49cfa9-691f-4b3e-a71d-20573fa8eb38
https://doi.org/10.1002/cpe.4864

CHAPTER 3

IMPROVING PERFORMANCE OF ITERATIVE

SOLVERS WITH THE AXC FORMAT USING

THE INTEL XEON PHI

E. Coronado-Barrientos, G. Indalecio and A.J. Garcı́a-Loureiro, Improving Perfor-
mance of Iterative Solvers with the AXC Format Using the Intel Xeon Phi, The Jour-

nal of Supercomputing, 74(6): 2823–2840, June 2018.

DOI: https://doi.org/10.1007/s11227-018-2325-6

Copyright

Springer Nature has granted permission free of charge to include this article in this thesis.
etails of the license terms and conditions can be found here.

Coronado-Barrientos, E., Indalecio, G., Garcı́a-Loureiro, A. Improving performance of
iterative solvers with the AXC format using the Intel Xeon Phi. J Supercomput 74, 2823–2840
(2018). https://doi.org/10.1007/s11227-018-2325-6. Springer Nature. This article can be
found in final form at 10.1007/s11227-018-2325-6.

https://doi.org/10.1007/s11227-018-2325-6
https://s100.copyright.com/MyAccount/viewLicenseDetails?ref=da751e9d-37e2-4c7a-af74-06b771fc1539
https://doi.org/10.1007/s11227-018-2325-6

CHAPTER 4

A NEW AXT FORMAT FOR AN EFFICIENT

SPMV PRODUCT USING AVX-512
INSTRUCTIONS AND CUDA

E. Coronado-Barrientos, M. Antonioletti and A.J. Garcia-Loureiro, A new AXT for-
mat for an efficient SpMV product using AVX-512 instructions and CUDA, Advances

in Engineering Software, 156:102997, 2021.

DOI: https://doi.org/10.1016/j.advengsoft.2021.102997

Copyright

According to Elsevier Copyright policies, the authors do not require permission to use the
accepted version for scholarly purposes.

E. Coronado-Barrientos, M. Antonioletti, A. Garcia-Loureiro, A new AXT format for an
efficient SpMV product using AVX-512 instructions and CUDA, Advances in Engineering
Software, Volume 156, 2021, 102997, ISSN 0965-9978. This article can be found in final
form at 10.1016/j.advengsoft.2021.102997.

https://doi.org/10.1016/j.advengsoft.2021.102997
https://www.elsevier.com/about/policies/copyright#Author-rights
https://doi.org/10.1016/j.advengsoft.2021.102997

CHAPTER 5

CONCLUSION

The main objective of this thesis, as stated in Section 1.2, was to develop an efficient sparse
matrix storage format capable of improving the performance of the SpMV product, an essen-
tial operation for a myriad of numerical codes. This was to be accomplished by identifying
bottleneck points, successful strategies and useful tools employed in the design of modern
efficient formats in state-of-the-art solutions for modern computer architectures.

The following outcomes were observed during the pursue of the secondary objectives that
composed the primary goal:

• objective1: implement custom iterative solvers using OpenCL to test the performance
of a simulator [4].
outcome1: the OpenCL versions of the FGMRes and the preconditioned BiCGStab
solvers were slower than the PSPARSLIB version of the FGMRes solver because naive
OpenCL kernels were implemented for the basic linear algebraic operations required
by the solvers.
outcome2: problems solved using OpenCL should be large enough to overcome the
time penalties due to OpenCL framework setup, data preprocessing and data trans-
ferences. For the particular case of the simulator tested, it needs meshes larger than
279,255 nodes.

• objective2: study the performance of the basic linear algebraic operations that are co-
mmonly present in iterative solver algorithms on different accelerator devices [10, 11].

EDOARDO EMILIO CORONADO BARRIENTOS

outcome3: the NVIDIA Tesla S2050 GPU processed faster than the Intel Xeon Phi
3120A coprocessor the AXPY and DOT operations for arrays whose number of ele-
ments are inferior to 50K.
outcome4: the use of local memory favors the performance of the NVIDIA GPU, while
its use penalizes the performance of the Intel Xeon Phi coprocessor.
outcome5: the performance of the SpMV product is the hardest to improve and its per-
formance strongly depends on the sparse matrix storage format selected and its kernel
implementation.

• objective3: Develop a simple sparse matrix format using OpenCL, designed to exploit
the Intel Xeon Phi coprocessor capabilities. And test it on a real application [31].
outcome6: the recommendations on [3] lead to the design of the AXC format. This is
a simple format that only uses two arrays to store the sparse matrix. The matrix entries
and their corresponding vector values are stored in contiguous positions in the ax[]
array, which is partitioned in segments of size equal to cache memory lane size.
outcome7: the data arrangement in the ax[] array favors the exploitation of the cache
memory, the major performance obstacle of the Intel Xeon Phi coprocessor according
to [28].
outcome8: the inclusion of vector values in the ax[] array makes the format robust
against indirect memory accesses.
outcome9: the AXC format outperformed its competitors in 7 out of 12 matrices on
the SpMV product. Most of these matrices presented random and arrow-head sparsity
patterns.
outcome10: the simplicity of the AXC format led to a fast conversion time from the
CSR format.
outcome11: the offload programing approach in combination with OpenCL were not
optimal for the Intel Xeon Phi coprocessor as they lead to an increased time in memory
operations. This fact negated the performance improvement achieved for the SpMV
product alone.

• objective4: test the SpMV performance of the AXC format on the Intel Xeon Phi co-
processor using OpenMP and Intel AVX-512 vectorized instructions. Also, test the
AXC format on iterative solvers. This objective seeks to test the native approach for

58

Chapter 5. Conclusion

workload assignment, and test the OpenMP and Intel AVX-512 instructions combina-
tion as an optimization option for the Intel Xeon Phi coprocessor [29].
outcome12: the AXC format outperformed its competitors in 21 out of 25 matrices.
outcome13: the average performances of the SPMV product were 15.9 GFLOPS, 5.5
GFLOPS and 8.4 GFLOPS for the AXC, SELL-C-σ and CSR formats respectively.
outcome14: the maximum speedup factor (x6.8) was achieved by the AXC format for
matrix M07, which has poor spatial locality due to its random sparsity pattern.
outcome15: the maximum AXC format performance was 20.79 GFLOPS for matrix
M22, which has an arrow-head sparsity pattern.
outcome16: the CG AXC-based solver outperformed its competitors in 20 out of 25
matrices. It also achieved a maximum speedup factor of x1.8 over the MKL function
for the CSR format for matrix M04 (with poor spatial locality).
outcome17: The BiCGStab AXC-based solver achieved a speedup factor of x1.9 over
its closest competitor for matrix M07 (with poor spatial locality).
outcome18: the native approach led to fewer memory operations than the offload ap-
proach. This fact makes the performance of the solvers approximate to the results
observed for the SpMV kernels alone.

• objective5: develop a new sparse matrix format that requires the minimum of arrays
necessary to contain a sparse matrix in order to optimize the SpMV performance on
the Intel Xeon and NVIDIA platforms using OpenMP, Intel AVX-512 instructions and
CUDA respectively [30].
outcome19: the new AXT format used two arrays to store the sparse matrix. Addi-
tionally, it uses three parameters: the tile’s half width (THW), the mode (MODE), and
the tile’s height (TH), to adapt itself to any accelerator device and reduce its memory
footprint if possible.
outcome20: depending on the values for each parameter the AXT format can spawn
four different data arrangements:

1. the AXTUH1 variant is the AXT format with MODE=UNC and TH=1,

2. the AXTUH variant is the AXT format with MODE=UNC and TH>1,

3. the AXTCH1 variant is the AXT format with MODE=COM and TH=1,

4. the AXTCH variant is the AXT format with MODE=COM and TH>1.

59

EDOARDO EMILIO CORONADO BARRIENTOS

outcome21: the AXTUH variant was the best performer on the Intel Xeon platform us-
ing TH=4 or TH=8 for most cases. It achieved a performance improvement of 18.1%
and it managed to reduce the memory footprint a 5.1% over the AXC format. Com-
pared to the CSR format, the AXTUH variant achieved a performance improvement of
44.3% and needed 34.6% more memory.
outcome22: this variant showed no preference for a specific type of matrix because it
achieved outstanding speedup factors over different type of matrices like on: the M03
matrix with an arrowhead sparsity pattern (x2.41), the M24 matrix with an irregular
sparsity pattern and its abnormally large row (x7.33) and on the M25 matrix with a
band sparsity pattern (x2.73).
outcome23: the AXTUH and AXTCH1 variants achieved the best performance on the
NVIDIA platform using TH=4 or TH=8 and BS=512 or BS=1024 respectively for
most cases. Their performance improvement is lower than 10% while their memory re-
quirements represent an increment of approximately 35% compared to the CSR format.
outcome24: the AXT format excelled processing matrices with abnormally large rows
within their ranks (e.g., M07, M20, M21 and M24). These variants reached speedup
factors from x2.68 up to x378.50 for this type of matrices.
outcome25: the increased performance of the AXT format over the AXC format on the
NVIDIA platform supports the successful widening of the range of application of the
new AXT format.

5.1 Future work

The following list presents intended objectives to accomplish that surge naturally from this
thesis:

• The work presented in [30] provided the basis for the AXT SPL library. This library,
registered under the GPL licence, intends to optimize a plethora of numerical appli-
cations whose algorithms require sparse linear algebra operations. Naturally, part of
the intended future work is to complete this library with the remaining operations not
optimised up to this point.

• Test the performance of a real application using the AXT SPL library.

60

Chapter 5. Conclusion

• Several sparse matrix storage formats were implemented and tested during the develop-
ment of this thesis, this generates other interesting objective: the utilization of machine
learning techniques for the development of a metaheuristic to select the best format
option for different types of matrices.

61

Bibliography

[1] R. W. Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels. PhD thesis,
University of California, 2003.

[2] M. McCool, A. D. Robison, and J. Reinders. Structured Parallel Programming Patterns

for Efficient Computation. Morgan Kaufmann, 2012.

[3] Intel Corporation. OpenCL Design and Programming Guide for
the Intel Xeon Phi Coprocessor. URL https://software.

intel.com/content/www/us/en/develop/articles/

opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor.

html.

[4] E. Coronado-Barrientos, G. Indalecio, N. Seoane, and A.J. Garcı́a-Loureiro. Im-
plementation of numerical methods for nanoscaled semiconductor device simulation
using OpenCL. In Proceedings of the 2015 Spanish Conference on Electron De-

vices, CDE 2015. IEEE, 2015. URL http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?reload=true&arnumber=7087476&queryText=

indalecio&newsearch=true&searchField=Search_All.

[5] Khronos Group. OpenCL. URL https://www.khronos.org/opencl/.

[6] Y. Saad. Iterative Methods for Sparse Linear Systems. Philadelphia: Society for Indus-
trial and Applied Mathematics, second edition, 2003.

[7] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, second edition, 1994.

https://software.intel.com/content/www/us/en/develop/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor.html
https://software.intel.com/content/www/us/en/develop/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor.html
https://software.intel.com/content/www/us/en/develop/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor.html
https://software.intel.com/content/www/us/en/develop/articles/opencl-design-and-programming-guide-for-the-intel-xeon-phi-coprocessor.html
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7087476&queryText=indalecio&newsearch=true&searchField=Search_All
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7087476&queryText=indalecio&newsearch=true&searchField=Search_All
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7087476&queryText=indalecio&newsearch=true&searchField=Search_All
https://www.khronos.org/opencl/

EDOARDO EMILIO CORONADO BARRIENTOS

[8] Ask geeks. Intel Xeon Phi 3120A coprocessor. URL https://askgeek.io/es/

cpus/Intel/Xeon-Phi-3120A.

[9] Tech Power Up. NVIDIA Tesla S2050 GPU. URL https://www.techpowerup.

com/gpu-specs/tesla-s2050.c1538#:˜:text=NVIDIA%20has%

20paired%2012%20GB,rated%20at%20900%20W%20maximum.

[10] E. Coronado-Barrientos, G. Indalecio, and A.J. Garcı́a-Loureiro. Implementation and
performance analysis of the AXPY, DOT, and SpMV functions on Intel Xeon Phi and
NVIDIA Tesla using OpenCL. In Second Congress on Multicore and GPU Program-

ming, PPMG 2015, pages 9–17. University of Extremadura, 2015.

[11] E. Coronado-Barrientos, G. Indalecio, and Garcı́a-Loureiro. Study of basic vector op-
erations on Intel Xeon Phi and NVIDIA Tesla using OpenCL. Annals of Multicore and

GPU Programming, 2(1):66–80, 2015. URL https://revistaseug.ugr.es/

index.php/amgp/article/view/3056.

[12] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on CUDA. Tech-
nical Report NVR-2008-004, NVIDIA, 2008.

[13] N. Bell and M. Garland. Implementing Sparse Matrix-vector Multiplication on
Throughput-oriented Processors. In Proceedings of the Conference on High Perfor-

mance Computing Networking, Storage and Analysis, SC ’09, pages 18:1–18:11, New
York, NY, USA, 2009. ACM. URL http://doi.acm.org/10.1145/1654059.

1654078.

[14] F. Vázquez, E. M. Garzón, A. Martı́nez, and J. J. Fernández. The sparse ma-
trix vector product on GPUs. Proceedings of the 2009 International Conference on

Computational and Mathematical Methods in Science and Engineering, 2:1081–1092,
2009. URL http://hpca.ual.es/˜fvazquez/fp-content/attachs/

NVIDIA_TECHREPORT09.pdf.

[15] Intel Corporation. Developer Reference for Intel Math Kernel Li-
brary - C BLAS and Sparse BLAS Routines. URL https:

//software.intel.com/content/www/us/en/develop/

documentation/onemkl-developer-reference-c/top/

blas-and-sparse-blas-routines.html.

64

https://askgeek.io/es/cpus/Intel/Xeon-Phi-3120A
https://askgeek.io/es/cpus/Intel/Xeon-Phi-3120A
https://www.techpowerup.com/gpu-specs/tesla-s2050.c1538#:~:text=NVIDIA%20has%20paired%2012%20GB,rated%20at%20900%20W%20maximum.
https://www.techpowerup.com/gpu-specs/tesla-s2050.c1538#:~:text=NVIDIA%20has%20paired%2012%20GB,rated%20at%20900%20W%20maximum.
https://www.techpowerup.com/gpu-specs/tesla-s2050.c1538#:~:text=NVIDIA%20has%20paired%2012%20GB,rated%20at%20900%20W%20maximum.
https://revistaseug.ugr.es/index.php/amgp/article/view/3056
https://revistaseug.ugr.es/index.php/amgp/article/view/3056
http://doi.acm.org/10.1145/1654059.1654078
http://doi.acm.org/10.1145/1654059.1654078
http://hpca.ual.es/~fvazquez/fp-content/attachs/NVIDIA_TECHREPORT09.pdf
http://hpca.ual.es/~fvazquez/fp-content/attachs/NVIDIA_TECHREPORT09.pdf
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/blas-and-sparse-blas-routines.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/blas-and-sparse-blas-routines.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/blas-and-sparse-blas-routines.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/blas-and-sparse-blas-routines.html

Bibliography

[16] NVIDIA Corporation. Developer Zone - The API reference guide for cuSPARSE. URL
https://docs.nvidia.com/cuda/cusparse/index.html.

[17] F. Vázquez, G. Ortega, J. J. Fernández, and E. M. Garzón. Improving the perfor-
mance of the sparse matrix vector with GPUs. In Proceedings of the 2010 10th IEEE

International Conference on Computer and Information Technology, CIT ’10, pages
1146–1151, Washington, DC, USA, 2010. IEEE Computer Society. URL http:

//dx.doi.org/10.1109/CIT.2010.208.

[18] R. G. Grimes, D. R. Kincaid, and D. M. Young. Itpack 2.0 User’s Guide. Center
for Numerical Analysis, The University of Texas at Austin, 1979. URL https://

books.google.es/books?id=EseZwgEACAAJ.

[19] J. Wong, E. Kuhl, and E. Darve. A new sparse matrix vector multiplication graphics
processing unit algorithm designed for finite element problems. International Journal

for Numerical Methods in Engineering, 102(12):1784–1814, 2015. URL http://dx.

doi.org/10.1002/nme.4865.

[20] F. Vázquez, J. J. Fernández, and E. M. Garzón. A new approach for sparse matrix vector
product on NVIDIA GPUs. Concurrency and Computation: Practice and Experience,
23(8):815–826, June 2011. URL http://dx.doi.org/10.1002/cpe.1658.

[21] A. Monakov, A. Lokhmotov, and A. Avetisyan. High Performance Embedded Architec-

tures and Compilers: 5th International Conference, HiPEAC 2010, Pisa, Italy, January

25-27, 2010. Proceedings, chapter Automatically Tuning Sparse Matrix-Vector Multipli-
cation for GPU Architectures, pages 111–125. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2010. URL http://dx.doi.org/10.1007/978-3-642-11515-8_

10.

[22] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann, and A. R. Bishop.
Sparse Matrix-vector Multiplication on GPGPU Clusters: A New Storage Format
and a Scalable Implementation. In Proceedings of the 2012 IEEE 26th International

Parallel and Distributed Processing Symposium Workshops & PhD Forum, IPDPSW
’12, pages 1696–1702, Washington, DC, USA, 2012. IEEE Computer Society. URL
http://dx.doi.org/10.1109/IPDPSW.2012.211.

65

https://docs.nvidia.com/cuda/cusparse/index.html
http://dx.doi.org/10.1109/CIT.2010.208
http://dx.doi.org/10.1109/CIT.2010.208
https://books.google.es/books?id=EseZwgEACAAJ
https://books.google.es/books?id=EseZwgEACAAJ
http://dx.doi.org/10.1002/nme.4865
http://dx.doi.org/10.1002/nme.4865
http://dx.doi.org/10.1002/cpe.1658
http://dx.doi.org/10.1007/978-3-642-11515-8_10
http://dx.doi.org/10.1007/978-3-642-11515-8_10
http://dx.doi.org/10.1109/IPDPSW.2012.211

EDOARDO EMILIO CORONADO BARRIENTOS

[23] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop. A unified sparse matrix
data format for modern processors with wide SIMD units. SIAM Journal on Scientific

Computing, 36:C401–C423, 2014. URL https://epubs.siam.org/doi/abs/

10.1137/130930352?journalCode=sjoce3.

[24] NVIDIA Developer Zone. CUDA Toolkit documentation. URL https://docs.

nvidia.com/cuda/index.html.

[25] Intel Corporation. Intel Intrinsics Guide. URL https://software.intel.com/

sites/landingpage/IntrinsicsGuide/#.

[26] J. Jeffers, J. Reinders, and A. Sodani. Intel Xeon Phi Processor High Performance

Programming. Knights Landing Edition. Morgan Kaufmann, 2016.

[27] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-Purpose

GPU Programming. Addison-Wesley, first edition, 2011.

[28] E. Saule, K. Kaya, and Ü. V. Çatalyürek. Performance Evaluation of Sparse Ma-

trix Multiplication Kernels on Intel Xeon Phi, pages 559–570. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014. URL http://dx.doi.org/10.1007/

978-3-642-55224-3_52.

[29] E. Coronado-Barrientos, G. Indalecio, and A. J. Garcı́a-Loureiro. Improving Perfor-
mance of Iterative Solvers with the AXC Format Using the Intel Xeon Phi. J. Su-

percomput., 74(6):2823–2840, june 2018. URL https://doi.org/10.1007/

s11227-018-2325-6.

[30] E. Coronado-Barrientos, M. Antonioletti, and A.J. Garcia-Loureiro. A new AXT format
for an efficient SpMV product using AVX-512 instructions and CUDA. Advances in

Engineering Software, 156:102997, 2021. URL https://doi.org/10.1016/j.

advengsoft.2021.102997.

[31] E. Coronado-Barrientos, G. Indalecio Fernández, and A. J. Garcı́a-Loureiro. AXC: A
new format to perform the SpMV oriented to Intel Xeon Phi architecture in OpenCL.
Concurrency and Computation: Practice and Experience, 31, 2018. URL https:

//doi.org/10.1002/cpe.4864.

66

https://epubs.siam.org/doi/abs/10.1137/130930352?journalCode=sjoce3
https://epubs.siam.org/doi/abs/10.1137/130930352?journalCode=sjoce3
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#
http://dx.doi.org/10.1007/978-3-642-55224-3_52
http://dx.doi.org/10.1007/978-3-642-55224-3_52
https://doi.org/10.1007/s11227-018-2325-6
https://doi.org/10.1007/s11227-018-2325-6
https://doi.org/10.1016/j.advengsoft.2021.102997
https://doi.org/10.1016/j.advengsoft.2021.102997
https://doi.org/10.1002/cpe.4864
https://doi.org/10.1002/cpe.4864

Bibliography

[32] G. Hager and G. Wellein. Introduction to High Performance Computing for Scientifics

and Engineers. CRC Press, 2010. URL https://dl.acm.org/doi/10.5555/

1855048.

[33] J. N. Reddy. An Introduction to Nonlinear Finite Element Analysis. Ox-
ford University Press, second edition, 2015. URL https://oxford.

universitypressscholarship.com/view/10.1093/acprof:

oso/9780198525295.001.0001/acprof-9780198525295.

[34] T. A. Beu. Introduction to Numerical Programming A Practi-

cal Guide for Scientists and Engineers Using Python and C/C++.
CRC Press, 2015. URL https://www.routledge.com/

Introduction-to-Numerical-Programming-A-Practical-Guide-for-Scientists/

Beu/p/book/9781466569676.

[35] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer. TOP500. URL https://www.

top500.org/lists/top500/.

[36] OpenMP organization. OpenMP. URL https://www.openmp.org/.

[37] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Society for Industrial and
Applied Mathematics, second edition, 2011.

[38] Ask geeks. Intel Xeon Phi 7120P coprocessor. URL https://askgeek.io/en/

cpus/Intel/Xeon-Phi-7120P.

[39] Intel Corporation. Intel Core i7-3770. URL https://ark.

intel.com/content/www/us/en/ark/products/65719/

intel-core-i7-3770-processor-8m-cache-up-to-3-90-ghz.html.

[40] Ask geeks. Intel Xeon Gold 6148 processor. URL https://askgeek.io/en/

cpus/Intel/Xeon-Gold-6148.

[41] NVIDIA. NVIDIA Tesla V100 PCIe GPU. URL https://www.techpowerup.

com/gpu-specs/tesla-v100-pcie-32-gb.c3184.

[42] R. Chandra and L. Dagum and D. Kohr and D. Maydan and J. McDonald and R. Menon.
Parallel Programming in OpenMP. Morgan Kaufmann, second edition, 2001.

67

https://dl.acm.org/doi/10.5555/1855048
https://dl.acm.org/doi/10.5555/1855048
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780198525295.001.0001/acprof-9780198525295
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780198525295.001.0001/acprof-9780198525295
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780198525295.001.0001/acprof-9780198525295
https://www.routledge.com/Introduction-to-Numerical-Programming-A-Practical-Guide-for-Scientists/Beu/p/book/9781466569676
https://www.routledge.com/Introduction-to-Numerical-Programming-A-Practical-Guide-for-Scientists/Beu/p/book/9781466569676
https://www.routledge.com/Introduction-to-Numerical-Programming-A-Practical-Guide-for-Scientists/Beu/p/book/9781466569676
https://www.top500.org/lists/top500/
https://www.top500.org/lists/top500/
https://www.openmp.org/
https://askgeek.io/en/cpus/Intel/Xeon-Phi-7120P
https://askgeek.io/en/cpus/Intel/Xeon-Phi-7120P
https://ark.intel.com/content/www/us/en/ark/products/65719/intel-core-i7-3770-processor-8m-cache-up-to-3-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/65719/intel-core-i7-3770-processor-8m-cache-up-to-3-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/65719/intel-core-i7-3770-processor-8m-cache-up-to-3-90-ghz.html
https://askgeek.io/en/cpus/Intel/Xeon-Gold-6148
https://askgeek.io/en/cpus/Intel/Xeon-Gold-6148
https://www.techpowerup.com/gpu-specs/tesla-v100-pcie-32-gb.c3184
https://www.techpowerup.com/gpu-specs/tesla-v100-pcie-32-gb.c3184

EDOARDO EMILIO CORONADO BARRIENTOS

[43] M. Scarpino. OpenCL in Action: How to accelerate graphics and computations. Man-
ning Publications Co., first edition, November 2011.

[44] J. Cheng, M. Grossmann, and T. McKercher. Profesional CUDA C Programming. John
Wiley & Sons, Inc., 2014.

[45] D. Storti and M. Yurtoglu. CUDA for Engineers An introduction for High-Performance

Parallel Computing. Addison-Wesley, 2016.

[46] Texas A&M University. SuiteSparse Matrix Collection. URL https://sparse.

tamu.edu/.

[47] Python organization. The Python languaje. URL https://www.python.org/.

[48] Matplotlib organization. matplotlib. URL https://matplotlib.org/.

[49] M. Harris. Optimizing Parallel Reduction in CUDA. URL https://developer.

download.nvidia.com/assets/cuda/files/reduction.pdf.

[50] R. W. Vuduc and H.-J. Moon. Fast Sparse Matrix-vector Multiplication by Exploit-
ing Variable Block Structure. In Proceedings of the First International Conference

on High Performance Computing and Communications, HPCC’05, pages 807–816,
Berlin, Heidelberg, 2005. Springer-Verlag. URL http://dx.doi.org/10.1007/

11557654_91.

[51] D. R. Kincaid, T. C. Oppe, and D. M. Young. ITPACKV 2D User’s Guide, May 1989.
URL https://web.ma.utexas.edu/CNA/ITPACK/manuals/userv2d/.

[52] S. Hossain. On efficient data structures for sparse matrix storage, july 2006.
URL http://www.mathematik.hu-berlin.de/˜gaggle/EVENTS/

2006/BRENT60/presentations/Shahadat%20Hossain%20-%20On%

20efficient%20data%20structures%20for%20sparse%20matrix%

20storage.pdf.

[53] S. Williams, A. Waterman, and D. Patterson. Roofline: An Insightful Visual Perfor-
mance Model for Multicore Architectures. Commun. ACM, 52(4):65–76, 2009. URL
http://doi.acm.org/10.1145/1498765.1498785.

68

https://sparse.tamu.edu/
https://sparse.tamu.edu/
https://www.python.org/
https://matplotlib.org/
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://dx.doi.org/10.1007/11557654_91
http://dx.doi.org/10.1007/11557654_91
https://web.ma.utexas.edu/CNA/ITPACK/manuals/userv2d/
http://www.mathematik.hu-berlin.de/~gaggle/EVENTS/2006/BRENT60/presentations/Shahadat%20Hossain%20-%20On%20efficient%20data%20structures%20for%20sparse%20matrix%20storage.pdf
http://www.mathematik.hu-berlin.de/~gaggle/EVENTS/2006/BRENT60/presentations/Shahadat%20Hossain%20-%20On%20efficient%20data%20structures%20for%20sparse%20matrix%20storage.pdf
http://www.mathematik.hu-berlin.de/~gaggle/EVENTS/2006/BRENT60/presentations/Shahadat%20Hossain%20-%20On%20efficient%20data%20structures%20for%20sparse%20matrix%20storage.pdf
http://www.mathematik.hu-berlin.de/~gaggle/EVENTS/2006/BRENT60/presentations/Shahadat%20Hossain%20-%20On%20efficient%20data%20structures%20for%20sparse%20matrix%20storage.pdf
http://doi.acm.org/10.1145/1498765.1498785

Bibliography

[54] Y. Lin and V. Grover. Using CUDA Warp-Level Primitives. URL https://

devblogs.nvidia.com/using-cuda-warp-level-primitives/.

[55] W. Liu and B. Vinter. CSR5: An Efficient Storage Format for Cross-Platform Sparse
Matrix-Vector Multiplication, 2015.

[56] S. Sengupta and M. Harris and M. Garland. Efficient Parallel Scan Algorithms for GPUs.
Technical Report NVR-2008-003, NVIDIA Corporation, December 2008.

[57] S. Sengupta, M. Harris, and J. D. Owens. Parallel Prefix Sum (Scan) with CUDA. In
H. Nguyen, editor, GPU Gems 3, chapter 39, pages 39–69. Addison Wesley Profes-
sional, 2007.

[58] Edinburgh Parallel Computing Centre (EPCC). Cirrus. URL http://www.cirrus.

ac.uk/.

69

https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
http://www.cirrus.ac.uk/
http://www.cirrus.ac.uk/

List of Algorithms

1 Flexible Generalized Minimal Residual . 20
2 Preconditioned BiConjugate Gradient Stabilised 21

List of Figures

Fig. 1.1 OpenMP basic execution fork/join model. 10

Fig. 1.2 OpenCL framework. 12

Fig. 1.3 Schematic representation of the OpenCL device and memory models. 13

Fig. 1.4 Schematic of a CUDA programming elements. 14

Fig. 1.5 NVIDIA general GPU with n SMs. 15

Fig. 1.6 The figure shows the time difference percentage of the different cases an-
alyzed. Case 1 compares FGMRes PSPARSLIB vs FGMRes OpenCL on
the NVIDIA Tesla GPU. Case 2 compares FGMRes PSPARSLIB vs Pre-
conditioned BiCGStab OpenCL on the NVIDIA Tesla GPU. Case 3 com-
pares FGMRes PSPARSLIB vs. FGMRes OpenCL on the Intel Xeon Phi
coprocessor. Case 4 compares FGMRes PSPARSLIB vs. Preconditioned
BiCGStab OpenCL on the Intel Xeon Phi coprocessor. The Case 4, for
instance, shows that the OpenCL variant of the preconditioned BiCGStab
solver reduces the execution time gap with the PSPARSLIB variant of the
FGMRes from 21.5% to 12% using a larger size mesh. 23

Fig. 1.7 AXPY operation. The figure shows no dependency between the elements of
the vectors. 24

EDOARDO EMILIO CORONADO BARRIENTOS

Fig. 1.8 The figure shows the execution time behaviour for the AXPY kernels on the
NVIDIA Tesla S2050 GPU and the Intel Xeon Phi 3120A. 25

Fig. 1.9 Parallel reduction with sequential addressing. 27
Fig. 1.10 DOT operation. The figure shows a two-step reduction. In the first step,

each work-item processes a chunk of CHK elements, and saves their partial
reductions in the positions multiple of CHK in the vrp[] array. 28

Fig. 1.11 Behaviour of the execution time of the dot kernels on the NVIDIA Tesla
S2050 GPU. 29

Fig. 1.12 Behaviour of the execution time of the dot kernels on the Intel Xeon Phi
3120A coprocessor. 30

Fig. 1.13 Example of a sparse matrix stored using the CSR format. 30
Fig. 1.14 Memory accesses by work-items from the execution of kernel spmv1 ocl. 32
Fig. 1.15 Memory accesses by work-items from the execution of kernel spmv2 ocl. 33
Fig. 1.16 Execution of the spmv1 ocl kernel on the NVIDIA Tesla S2050 GPU and

the Intel Xeon Phi 3120A coprocessor. 34
Fig. 1.17 Execution of the spmv2 ocl kernel on the NVIDIA Tesla S2050 GPU and

the Intel Xeon Phi 3120A coprocessor. 35

76

List of Listings

1.1 AXPY routine for CPU. The macro LENGHT indicates the size of the vectors. 25
1.2 AXPY routine in OpenCL. 25
1.3 Naive DOT implementation for CPU. The macro LENGHT indicates the size

of the vectors. 26
1.4 Function dot1 ocl in OpenCL. The macro CHK indicates the size of the

work-group. 27
1.5 Function dot2 ocl in OpenCL.The macro CHK indicates the number of el-

ements assigned to each wrok-item. 28
1.6 Function red2 ocl in OpenCL.The macro CHK indicates the number of el-

ements assigned to each work-item. 28
1.7 Naive SpMV implementation for CPU. The macro ROWS indicates the num-

ber of rows of the sparse matrix. 31
1.8 Function spmv1 ocl in OpenCL. 32
1.9 Function spmv2 ocl in OpenCL. 33

List of Tables

Tab. 1.1 Metrics comparison between simulations using the mesh E001 on the Intel
Core i7-3770 (FGMRes PSPARSLIB) and the Intel Xeon Phi 3120A (FGM-
Res OpenCL). Time unit is second. NA stands for Not Applicable 22

Tab. 1.2 Numerical results (t sol) for the simulator running on the Intel Core i7-3770
and the NVIDIA Tesla GPU S2050. Time unit is second. 22

Tab. 1.3 Numerical results (t sol) for the simulator running on the Intel Core i7-3770
and the Intel Xeon Phi 3120A. Time unit is second. 23

	PARALLELIZATION AND OPTIMIZATION OF ITERATIVE SOLVERS ON HIGH PERFORMANCE ARCHITECTURES
	Resumo
	Summary
	Contents
	CHAPTER 1. INTRODUCTION
	1.1 Motivation
	1.2 Hypothesis and objectives
	1.3 Methodology and tools
	1.3.1 Metrics
	1.3.2 Devices
	1.3.3 Parallel programming models
	1.3.4 Matrices
	1.3.5 Other tools

	1.4 Work summary
	1.4.1 Iterative solvers in OpenCL for semiconductor simulation
	1.4.2 Study of basic algebra operations on different accelerators
	1.4.3 New AXC format for the Intel Xeon Phi coprocessor in OpenCL
	1.4.4 The AXC format for the Intel Xeon Phi coprocessor with AVX-512
	1.4.5 New AXT format using AVX-512 instructions and CUDA

	1.5 Outline
	1.6 List of publications
	1.6.1 International Journals
	1.6.2 National Journals
	1.6.3 National Conferences

	CHAPTER 2. AXC: A NEW FORMAT TO PERFORM THE SPMV ORIENTED TO INTEL XEON PHI ARCHITECTURE IN OPENCL
	CHAPTER 3. IMPROVING PERFORMANCE OF ITERATIVE SOLVERS WITH THE AXC FORMAT USING THE INTEL XEON PHI
	CHAPTER 4. A NEW AXT FORMAT FOR AN EFFICIENT SPMV PRODUCT USING AVX-512 INSTRUCTIONS AND CUDA
	CHAPTER 5. CONCLUSION
	5.1 Future work

	Bibliography
	List of Algorithms
	List of Figures
	List of Listings
	List of Tables

