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Kurzfassung

Die menschliche Hand ist in der Lage, verschiedene Greif- und Manipulationsaufgaben aus-

zuführen und kann als einer der geschicktesten und vielseitigsten E↵ektoren angesehen wer-

den.

In dieser Arbeit wurde ein Soft Robotic-Greifer entwickelt, der auf den Erkenntnissen aus

der Literatur zur Taxonomie der menschlichen Grei↵ähigkeiten und den biomechanischen

Synergien der menschlichen Hand basiert.

Im Bereich der Roboterhände sind sehnengetriebene, unteraktuierte Strukturen weit ver-

breitet. Inspiriert von der Anatomie der menschlichen Hand, bieten sie durch ihre Flexibil-

ität passive Adaptivität und Robustheit.

Es wurde ein Sensorsystem implementiert, bestehend aus Force Sensing Resistors (FSRs),

Biegungssensoren und einem Stromsensor, wodurch das System charakterisiert werden kann.

Die Kraftsensoren wurden in die Fingerkuppen integriert. In Anlehnung an die mensch-

liche Haut wurden Abgüsse aus Silikonkautschuk an den Fingerballen verwendet. Diese

versprechen eine erhöhte Reibung und bessere Adaptivität zum gegri↵enen Objekt.

Um den entwickelten Greifer zu evaluieren, wurden erste Tests durchgeführt. Zunächst

wurde die Funktionalität der Sensoren, wie z.B. der als FSRs ausgewählten Kraftsensoren,

getestet. Im weiteren Verlauf wurden die Grei↵ähigkeiten des Greifers durch Manipula-

tion verschiedener Objekte getestet. Basierend auf den Erkenntnissen aus den praktischen

Versuchen kann festgestellt werden, dass der entwickelte Greifer ein hohes Maß an Geschick-

lichkeit aufweist.

Auch die Adaptivität ist dank der verwendeten mechanischen Komponenten gewährleistet.

Mittels der Sensorik ist es möglich, den Greifprozess zu kontrollieren. Die Ergebnisse zei-

gen aber auch, dass z. B. die interne Systemreibung die Verlustleistung des Systems stark

beeinflusst.



Abstract

The human hand is able to perform various grasping and manipulation tasks, and can be

seen as one of the most dexterous and versatile e↵ectors known.

The prehensile capabilities of the hand have already been analyzed, categorized and sum-

marized in a taxonomy in numerous studies.

In addition to the taxonomies, research on the biomechanical synergies of the human hand

led to the following conceptions: The adduction/abduction movement is independent of the

flexion/extension movement. Furthermore, the thumb is rather independent in its mobility

from the other fingers, while those move synchronously within their corresponding joints.

Lastly, the consideration of the synergies provides that the proximal and distal interphalan-

geal joints of a human finger are more intensely coordinated than those of the metacarpal

joints.

In this work, a soft robotic gripper was developed based on the knowledge from the literature

on the taxonomy of human gripping abilities and the biomechanical synergies of the human

hand.

In the domain of robotic hands, tendon-driven underactuated structures are widely used.

Inspired by the tensegrity structure of the human hand, they o↵er passive adaptivity and

robustness through their flexibility.

A sensor system was implemented, consisting of FSRs, flex sensors and a current sensor, thus

the system parameters can be characterized continously. The force sensors were integrated

into the fingertips. Molds of silicone rubber were used as finger pads to provide higher fric-

tion and better adaptivity to the grasped object on the contact areas of the finger, to mimic

human skin.

Initial tests were carried out to evaluate the gripper. First, the functionality of the sensors,

such as the force sensors selected as FSRs, was tested. In the further course, the gripping

capabilities of the gripper were tested by manipulation of various di↵erent objects.

Based on the findings from the practical experiments, it may be stated that the gripper

has a high degree of dexterity. Thanks to the mechanical components used, adaptivity is

guaranteed as well. By means of the sensor system it is possible to control the gripping

processes. However, the results also showed that, for example, the internal system friction

dominates the system’s power dissipation.
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1 Introduction

Even though there is a long and successful history of robot development for industrial en-

vironments, there are still few applications of robots interacting with people. One of the

causes is the perception problem, which complicates the use a lot, meaning the permanent

use of sensors to understand the ambient. Additionally, common grippers are still not close

to the broad capabilities of the best known e↵ector, the human hand [Mas18]. Common

manipulation robots usually use the following proceed. Initially, the contact points between

the gripper and the object are determined. Accordingly, a collision-free trajectory is planned

afterwards. Crucial for this procedure is that only the determined contact points are allowed

to interact with the desired object. Once the gripper is in the position to lift the object, it

grasps blindly and only successfully if the calculated trajectory is correct and the pre-grasp

location is good enough to grab the object. To overcome the necessity of this high precision,

the use of soft, underactuated structures has been initiated, leading to higher adaptivity.

The fabrication of those has been favored by the continuing progress in technology of 3D-

printing, which even makes soft materials like thermoplastic polyurethane (TPU) printable.

Thus, the possibility of rapid prototyping for soft robots was induced.

Motivation and Objectives

Since the first experimental setups with tendon-driven grippers in the late 1970s [Shi+18;

Tow00] there has been an enormous increase in knowledge about the design and versatility

of grippers. These grippers, inspired by human fingers, show an underactivated behaviour

due to their morphology (see 2.3.1). In order to be able to exert an appropriate force on an

object, it is essential to implement an exteroceptive sensor system. As the main objective is

to develop a 3-finger robotic manipulator with a design inspired by the human finger, there

is also a need to integrate a system for proprioception for a precise control. Based on the

human finger (see 2.1), this work also aims to reduce the e↵ect of rigid manipulation, which

includes modifying the contact points with the object to be gripped similar to human skin.

The entire development process follows the guidelines of the VDI 2206.
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2 Fundamentals and State of Art

The following part of this work is intended to illustrate the fundamentals, which are required

to develop a suitable configuration of a tendon-driven Soft Robotic gripper with human

inspired fingers. In the development of human-inspired robotic grippers mainly exist two

approaches for the design: a purely theoretical, mathematical investigation on grasping and

manipulation or more focussed on functional prototypes in a rather intuitive way [BG06].

This part of the work aims to give an insight on both sides, to combine the knowledge.

First, the anatomical background is given, demonstrating the human hand’s morphology

(Sec. 2.1.1) and its biomechanics (Sec. 2.1.2), as well as a brief summary of the human

prehensile capabilities (Sec. 2.1.3) and synergies in human grasping (Sec. 2.1.4). Second,

to lead to the development of force control, the sensory possibilities and their functionality

will be discussed (Sec. 2.4). Finally, the issue of the mathematical fundamentals for the

description of the finger’s mechanics shall be broached (Sec. 2.1.2).

2.1 Biomechanical Overview of the Human Hand

This section first describes the anatomy of the human hand (Sec. 2.1.1). Followed by an

overview on the commonly used grasps for the manipulation of fragile objects (Sec. 2.1.3),

it leads to a more detailed biomechanical analysis of the human fingers used for those grasps

(Sec. 2.1.2).

2.1.1 Functional Anatomy of the Human Hand

The human hand is able to perform various grasping and manipulation tasks, making it the

most “dexterous and versatile e↵ector known (e.g. opposable thumb, palm mobility etc.)”

[LAK13, p. 2046]. The main use of this e↵ector is prehension, referring to a static hand

posture, in which an object is held safely, irrespective of the hand orientation [Fei+16]. Ad-

ditionally, there is the possibility of in-hand motion, which will not be looked further into

here. The enormous level of dexterity requires a certain complex framework made of bones

and tendons. This chapter yields to give an insight of the morphology and topography of

the human hand with focus on the fingers, especially on the functional characteristics (i.e.

kinematics).
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2.1 Biomechanical Overview of the Human Hand

In addition to its prehensile capabilities, the human hand is also a very accurate and sens-

itive sensory receptor [Kap74, p. 164]. The human hand is divided into three parts: wrist

Figure 2.1: Kinematic skeleton of the human hand, adapted from [BA92, p.
152]
I Thumb III Middle finger V Little finger
II Index finger IV Ring finger

(carpus), metacarpus and fingers (digiti) and is usually formed by 27 bones. Each finger

consists of three phalanges: phalanx proximalis, mediae, distalis, except the thumb (pollex ),

which persists in two phalanges [Aum+17] (see Fig. 2.1). Depending on the position, the

synovial joints between the phalanges are named distal interphalangeal (DIP), proximal in-

terphalangeal (PIP), metacarpophalangeal (MCP) and carpometacarpal (CMC) joint. While

the DIP and PIP joint only have one degree of freedom (DOF), the MCP has one extra DOF,

forming a so-called saddle joint [XT16, p. 3487]. In total, the hands framework has 15 joints

(not considering the carpal and metacarpal joints), which results in more than 20 DOF

[Fei+16]. Generally speaking, the thumb, index and middle finger are the most important

fingers in common grips [Fei+09; Fei+16; Cut89].

The joint, respectively the finger motion, is limited by the length of the ligaments (see A.5

as an example for the MCP joint). When the finger is in a flexed position, the ligaments are

tensed. Once the finger is extended, the ligaments become less stressed, which, in case of

the MCP, permits e.g. the index finger to be moved laterally [XT16; Kap74].

As seen in Fig. 2.2, there are two types of tendons connecting the bones and muscles: the

extensor (Fig. 2.2a) and flexor tendons (Fig. 2.2b). While the first mentioned are in charge
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2.1 Biomechanical Overview of the Human Hand

of straightening the finger, the others induce a force to bend the particular finger, operated

by the muscles in the forearm, the so-called extrinsic muscles. Besides those, the so-called

intrinsic muscles exist, which are a small group of muscles providing passive reflex-mediated

sti↵ness to the fingers [XT16]. The tendons are guided by the synovial sheaths (see Fig.

2.5c), which allow the tendons to move with reduced friction [Kap74, p. 190]. Those sheaths

are made of a fibrous tissue wrapped around each tendon (see. Fig. ??). Akin to the flexor

tendons, the extensor tendons (see Fig. 2.2a) are also pulled by extrinsic muscles and guided

by fibro-osseous tunnels [Kap74, p. 196].

a) dorsal view b) palmar view

Figure 2.2: Comparison of the flexor and extensor tendons of the left human hand, modified from
[XT16, p. 3489]

In addition to the knowledge on the tensegrity structure of the human hand, it is necessary to

know about the the metric data on the human hand and then take a look on the kinematics

afterwards (see Sec. 2.1.2).

Buchholz et al. did an anthropometric analysis of the human hand [BAG92] to collect

statistically-based parameters to describe the hand’s kinematics (see Fig. 2.3), needed for

the kinematic model in their subsequent publication [BA92]. The authors define the thumb

as digit I, the index finger as digit II and so on (see Fig. 2.1).
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2.1 Biomechanical Overview of the Human Hand

Figure 2.3: Lateral, schematic illustration of the human hand, containing local coordinate systems
and marker locations used for the anthropometry [BAG92, p. 265]

Their study of two female and four male hands yielded to the following coe�cient Bj (j P
t1, 2, 3, 4u) to calculate the segment length SLj ,f (f P {I, II, III, IV,V}) in relation to hand

length HL (see Tab. 2.1). The segment length is defined by the distance between two centers

of rotation (joints), for example the MCP and PIP joint (see Fig. 2.3).

Since it has already been established that the thumb, index finger and middle finger are

the most important digits, only the associated coe�cients are listed here for the sake of

simplicity.

Table 2.1: Segment length coe�cients Bj of the 3 phalanges (2 in case of the thumb) of the 3 most
important digits , based on the survey of two female and four male hands [BAG92]

Segment j
Digit

I (thumb) II (index) III(middle)

2 - 0.245 0.266

3 0.196 0.143 0.17

4 0.158 0.097 0.108

With the help of these coe�cients it is possible to estimate the respective segment length for

each finger within a certain range of deviation, only by the knowledge of the hand’s length

HL.

SLj ,f “ Bj ¨ HL (2.1)

In the process of the thesis, these findings will be used to determine the design of the robotic

fingers (see Sec. 3.2.1).

Once the most relevant grasps are pointed out in the following section, the concrete mech-

anism behind the human finger and the mechanical model shall be pointed out (see Sec.

2.1.2).
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2.1 Biomechanical Overview of the Human Hand

2.1.2 Biomechanics of the Human Digits

As mentioned in Sec. 2.1.1, the human finger consist in three phalanges, except in case of

the thumb. Connected by the tendons, they are driven by the extrinsic muscles, which are

located in the forearm. This actuation o↵ers a corresponding motion range of each joint of

the hand which is illustrated in the following figure (see Fig. 2.4). The PIP and DIP joint

are hinge joints (1 DOF), while MCP joints are morphologically spherical joints, but the

third DOF is limited by ligaments (see Fig. A.5).

Figure 2.4: Motion range of the finger joints [SSS14, p. 297]
a) Flexion of the DIP joint d) Extension of the DIP joint
b) Flexion of the PIP joint e) Extension of the MCP joint
c) Flexion of the MCP joint

The ranges of motion in Figure 2.4 taken from literature [Aum+17; SSS14] are mostly consist-

ent with scientific studies. For example, Ingram used the CyberGlove (Virtual Technologies,

Palo Alto, CA, USA) to record the movements of the right hand. This study showed that,

the MCP joint reaches up to 103° ˘ 16°. Additionally, they provided the range for abduction

of the index finger as 35° ˘ 5°. Due to Ingram et al.’s practical approach, the motion ranges

of their study will be used in this work.

Table 2.2: Motion ranges of the human interphalangeal joints of the index finger

Joint Flexion [°] Extension [°] Range [°] Source

MCP 78 25 (passive 90) 103 [Ing+08], passivity [Kap74]

PIP 84 -1 85 [Ing+08]

DIP 59 23 (30 passive) 82 [Ing+08], passivity [Kap74]

Angles measured starting from the calibration as pressing the hand down against a flat

surface with four fingers parallel and the thumb aligned against the side of the palm.

As seen in Figure 2.5a, the flexor digitorum sublimis (FDS) mainly flexes the PIP joint and

the flexor digitorum profundus (FDP) (see Fig. 2.5b) primarily flexes the DIP joint, but also
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2.1 Biomechanical Overview of the Human Hand

a↵ects the PIP, as there does not exist a particular antagonist [Kap74]. Together with the

extensor digitorum communis (EDC), the flexor forms a postural synergy (see Sec. 2.1.4)

[Kap74].

a) b) c)

Figure 2.5: Flexion of the human finger
a) Flexion of the PIP joint with the FDS
b) Flexion of the DIP joint with the FDP, both modified from [Kap74, p.
195]
c) Schematic illustration of tendon sheaths during flexion and its mechanical
analogy of the tendon sheath as springs in the lateral view [XT16, p. 3489]

As demonstrated in Fig. 2.5c, the sheaths of the human hand can be modeled as a series

of elastic pulleys. It can be observed that in the case of flexion, the moment arms are

lengthened by the tendon sheaths, and thus major gripping forces can be obtained.

Mathematical Model of the Human Finger

In the analysis of the kinematics of the hand, a mathematical approximation by assuming

that the joints are ideal and connected by simple line segments [BA92] is usually used. Hence,

it is possible to model the system as a rigid-body model. Each interphalangeal joint forms a

hinge joint, only being able to perform flexion and extension. Thus, they have one DOF.

Birglen et al. [BLG08]’s model is also such a rigid-body model. Their framework was de-

veloped to provide a framework the gap between the otherwise rather intuitive development

methods or the purely mathematical methods. For enveloping grasps, like the Medium Wrap

(see 2.1.3), the framework aims to analyze contact forces of robotic fingers, which o↵ers the

possibility to compare the theoretical and the actual build model. However, due to simplicity

only the general static model will be described.

A major advantage of analytical approaches is that they significantly reduce the number of

iterations in the production of intuitively designed systems [Hus+17].

In the following, the mathematical model will be explained.
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2.1 Biomechanical Overview of the Human Hand

As seen in Figure 2.6, the system is driven by the input torque Ta. Using the method of

virtual power, one obtains the following equation

tT!a “
nÿ

i“1

⇠i ˝ ⇣i, (2.2)

including the input torque vector t, the joint velocity vector !a, the twist of the ith contact

point ⇠i and the corresponding wrench ⇣i. The operator ˝ combines the sum of twists with

the according wrenches as the reciprocal product of screws in the plane for example.

Figure 2.6: Conceptual illustration of an underactuated finger [BLG08]

Each joint of the conceptual model is characterized by a local coordinate system. For the

consideration of the finger we use the local coordinate system of the MCP joint x1, y1, the

PIP joint x2, y2 and the DIP joint x3, y3. However, the model is also valid for n links with

the according coordinate system xn, yn. The model is limited by the assumption that each

phalanx i only has one contact point with the grasped object. In case of the human fingers

the number of joints is n “ 3.
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2.1 Biomechanical Overview of the Human Hand

If now the spring sti↵nessesKi are included, the torque vector t can be expressed as follows.

t “

»

——————–

Ta

T2 “ ´K2�✓2

T3 “ ´K3�✓3

. . .

Tn “ ´Kn�✓n

fi

������fl
, !a “

»

——————–

9✓a
9✓2
9✓3
. . .
9✓n

fi

������fl
(2.3)

where Ti is the torque at the ith joint, Ki is the sti↵ness of the ith spring, �✓i is the rotation

of the ith joint relative to the entire configuration. The angular velocity !i is split into its

x and y components vxi and vyi of the ith phalanx. For the ith phalanx, the tangential forces

fti, fi and ⌧i are notated as seen in Equation 2.4.

⇠i “

»

—–
!i

vxi
vyi

fi

�fl, ⇣i “

»

—–
fti

fi

⌧i

fi

�fl . (2.4)

The twist of the ith contact point ⇠i can me specified as

⇠i “
iÿ

k“1

9✓k⇠Ok
i . (2.5)

⇠Ok
i is the joint twist of the point Ok in relation to Ci, the contact point. The last mentioned

can be expressed as

⇠Ok
i “

«
1

Erki

�
(2.6)

because the joins between the phalanges are considered to be of revolute type. The vector

rki is the connection from Ok to the contact point Ci of the ith phalanx. E represents the

matrix of the planar cross product.

E “
«
0 ´1

1 0

�
(2.7)

If friction is considered, the edge of the friction cone of the ith phalanx is defined by fti “
˘µi´staticfi. µi´static is the static coe�cient of friction at the ith contact point. Generally

ft “ µf is valid, where

f “

»

————–

f1

f2

. . .

fn

fi

����fl
, ft “

»

————–

ft1

ft2

. . .

ftn

fi

����fl
(2.8)
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2.1 Biomechanical Overview of the Human Hand

and

µ “

»

————–

µ1 0 . . . 0

0 µ2 . . . 0

. . . . . . . . . . . .

0 0 . . . µn

fi

����fl
. (2.9)

It is to say, that µi ‰ µi´static always applies. The relation between ft and f is made by the

matrix µ, but both maintain unknown. Analogously, ⌧ “ ⌘f can be written, where

⌧ “

»

————–

⌧1

⌧2

. . .

⌧n

fi

����fl
(2.10)

and

⌘ “

»

————–

⌘1 0 . . . 0

0 ⌘2 . . . 0

. . . . . . . . . . . .

0 0 . . . ⌘n

fi

����fl
(2.11)

Hence, it is possible to note the wrench ⇣i as

⇣i “ ftix
‹
i ` fiy

‹
i ` ⌧iz

‹
i “ fipy‹

iµix
‹
i ` ⌘iz

‹
i q (2.12)

where the unit wrench to a pure force along yi is y‹
i “

”
yT
i 0

ıT
. Analogously applies

x‹
i “

”
xT
i 0

ıT
and z‹

i “
”
0 0 1

ıT
. These approaches lead to

⇠i ˝ ⇣i “
iÿ

k“1

9✓k⇣Ok
i ˝ fipy‹

iµix
‹
i ` ⌘iz

‹
i q (2.13)

⇠i ˝ ⇣i “ fi

˜
iÿ

k“1

9✓krTkixi ´ µi

iÿ

k“1

9✓krkiyi ` ⌘i

iÿ

k“1

9✓k

¸
. (2.14)

This can be summed up to

tT!a “ fT pJ 9✓q “ fT pJT!aq (2.15)

with

J “ J1 ´ µJ2 ` ⌘J3 (2.16)

The only dependencies of the matrix J consist in the location of the contact point on the

phalanges, the relative orientation of the phalanges and the friction coe�cients, whereas T

depends on the transmission mechanism, driving the phalanges. Via the matrix T the vector

!a is made dependent on the time derivatives of the phalanx joint coordinates. Thus one
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2.1 Biomechanical Overview of the Human Hand

receives
9✓ “ T!a (2.17)

Through the previous Equations ??, the matrices J1, J2 and J3 can be characterized.

J1 “

»

————–

k 0 0 . . . 0

rT12x2 k2 0 . . . 0

. . . . . . . . . . . . . . .

rT1nxn rT2nxn rT3nxn . . . kn

fi

����fl
(2.18)

where rTiixi “ ki is the distance between the ith joint and the ith contact point. Analogously

follows

J2 “

»

————–

0 0 0 . . . 0

rT12y2 0 . . . 0

. . . . . . . . . . . . . . .

rT1nyn rT2nyn rT3nyn . . . 0

fi

����fl
(2.19)

and

J3 “

»

————–

1 0 0 . . . 0

1 1 0 . . . 0

. . . . . . . . . . . .

1 1 1 . . . 1

fi

����fl
. (2.20)

Finally one obtains

JT “

»

——————–

k1 ` ⌘1 rT12px2 ´ µ2y2q ` ⌘2 . . . . . . rT1npxn ´ µnynq ` ⌘n

0 k2 ` ⌘2 . . . . . . rT2npxn ´ µnynq ` ⌘n

¨ 0 . . . . . . rT3npxn ´ µnynq ` ⌘n

. . . . . . . . . . . . . . .

0 0 . . . 0 kn ` ⌘n

fi

������fl
. (2.21)

Empirically, it is noticeable that the ⌘i are often very small, so that they will be neglected

from here on. In addition, the coe�cient of friction µ1 does not exist, since this phalanx due

to its kinematic constraints cannot slide.

To proceed the framework on has either to determine the matrix T or this typical matrix of

underactuation. »

——————–

9✓1
9✓2
9✓3
. . .
9✓n

fi

������fl
“

»

——————–

X1 X2 X3 . . . Xn

0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1

fi

������fl

»

——————–

9✓a1
9✓2
9✓3
. . .
9✓n

fi

������fl
(2.22)

With the method of superposition, one receives the generally valid equation

9✓ai´1 “ 9✓i´1xi
9✓ai (2.23)
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2.1 Biomechanical Overview of the Human Hand

where xi is the transmission ratio of the ith stage. This equation determines the output

velocity of the current stage fthe input velocity of the next stage (see Fig. 2.6.

For example, in case of a tendon-driven system, where the transmission ratio is known, the

parameters are

x1 “ 1 and xi “ r2i
r2i´1

, i ° 1. (2.24)

Due to the knowledge of the transmission ratio xi the first line of the matrix T (Xi (Eq.

2.22) can be stated $
’’&

’’%

X1 “ 1

Xj “ ´
jπ

i“1

, j “ 2, . . . , n

Figure 2.7: Conceptual tendon-driven finger with n phalanges [BLG08]
input force Fa,; pulley radii r1, r2, r3, . . . , r2n

, segment length l1, . . . , ln

Based on this, one obtains

TT “

»

————————–

1 0T
n´1

´ r2
r1

´ r2r4
r1r3

. . . 1n´1

´
n±

i“1

r2i
r2i´1

fi

��������fl

(2.25)

where r2i´1 is the pulley located at the base and r2i is the pulley located at the end of the

ith phalanx.
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2.1 Biomechanical Overview of the Human Hand

2.1.3 Prehensile Capabilities of the Human Hand

To elect an adequate objective for the realized grasp, it is necessary to study the human

grasp types. This part of the work aims to ease the selection of an appropriate type of grasp

to be set as goal for the developed gripper according to the requirement to manipulate fragile

objects. Furthermore, it is necessary to investigate typical dimensions in human grasps to

further specify the design of the gripper.

The human GRASP taxonomy, developed by Feix et al., provides a large, yet compact

review of current taxonomies of human prehension [Fei+09]. It di↵ers the grasp types by

the three categories Power, Intermediate and Precision Grasp, subclassifying each category

by the position of the thumb as abducted or adducted (see Fig. 2.8). The study includes

the taxonomies of Cutkosky [Cut89], and Kapandji [Kap74] and places them into a new

taxonomy called the GRASP taxonomy. Due to their meticulous procedure, which sums up

around 30 grasp types, their terminology shall be used in this work.

Figure 2.8: Abducted and adducted position of the thumb [Fei+16,
p. 69]

The majority of grasps is characterized by an opposed, abducted position of the thumb in

relation to the four other digits. Factually, this makes the thumb the most relevant digit of

the human hand [FBD14, p. 74]. Feix et al. demonstrated that the thumb is used in 32, the

index finger in 33 and the middle finger in 28 types of the grasps, occurring in their GRASP

taxonomy.

Depending on the number of involved real fingers, the functional units of those form a so-

called virtual finger (VF) during manipulation, a concept which has been introduced by

Arbib et al. [AIL85] in 1985. This functional unit is determined by the direction of the

applied force (see Fig. 2.9) [Ibe87, p. 1154]. For example, the so-called Palmar Pinch (Fig.

2.9a), the Medium Wrap (Fig. 2.9b) and the Lateral (Fig. 2.9c) consist in two VF. In the

context of robotic manipulation this units can be controlled individually.

Referring to the main objective, the manipulation of fragile objects, the review of the GRASP

taxonomy of human grasps by Feix et al. leads to the Precision Grasps [Fei+16]. This class

of grasps is also characterized by a mostly abducted thumb (see Fig. 2.8) and uses at least

two VF (see GRASP Taxonomy [Fei+16]). Another characteristic for most of the Precision
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2.1 Biomechanical Overview of the Human Hand

a) b) c)

Figure 2.9: Comparison of the opposition types of the human grasping and the respective integra-
tion of two Virtual Finger, modified from [MI94, p. 32]
a) Pad opposition, parallel to the palm, Palmar Pinch
b) Palm opposition, perpendicular to the palm, Medium Wrap
c) Side opposition, transverse to the palm, Lateral

Grasps is the Pad Opposition (see Fig. 2.9a). The pad opposition “occurs between hand

surfaces along a direction generally parallel to the palm” [MI94, p. 31]. The opposition type

is another criteria for the taxonomy of grasps, as there are also Palm (see Fig. 2.9b) and Side

Opposition (see Fig. 2.9c), which are not looked into further, due to the focus on Precision

Grasps.

An earlier study by Feix et al. yielded the perception, that statistically, the Medium Wrap

(Fig. 2.9b) is the most commonly used grasp type, followed by the Lateral (Fig. 2.9c) and

the Thumb-2 Finger Grasp (Fig. 2.11) (hereafter called Prismatic 2 Finger [Fei+16]) (see

Fig. 2.10). It should be mentioned that the study is limited to the analysis of grasps by two

housekeepers and machinists, who executed almost 10 000 grasp instances.
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2.1 Biomechanical Overview of the Human Hand

Figure 2.10: Results of the grasp span analysis, representing a smaller subset of grasp types, that
can be used to grasp most objects [FBD14, p. 320]

According the study by Feix et al., the Prismatic 2 Finger Grasp is one of the most important

grasps for the manipulation of small, lightweight objects. Besides the geometrical advantages

of a median grasp size of 1 cm, this grip fits well to the goal of lifting at least 20 g (see Sec.

A.3.1) as a subordinated objective of this work [FBD14]. In addition to this, Kapandji stated

that tridigital grips are the most popular grips. They use the thumb, index and middle finger

[Kap74, p. 258]. Figure 2.11 demonstrates such a grasp, known as the Tripod Grip. Even

though there are three real fingers involved in the Tripod Grip, the results by Baud-Bovy

et al. suggest that this case can be seen as a two VF grip [BBS01, p. 615].

Figure 2.11: Tridigital prehension with 2 VF, modified from [Kap74, p. 259]

These perceptions regarding the use of certain types of grasps for the manipulation of small

and fragile objects show that the Prismatic 2 Finger Grip and the Tripod Grip are the best

grasps to meet these requirements. This is further supported by the study of Townsend,

who identified that a typical robotic gripper uses less than five fingers with three phalanges

per finger [Tow00]. Hence, this work’s approach is to develop a gripper with three fingers

with three phalanges each. Although the use of two fingers, respectively two VF would be
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2.1 Biomechanical Overview of the Human Hand

enough, the third finger permits more possibilities in grasping.

Due to simplicity, only the mechanics of the index finger will be described in the following

part.

2.1.4 Synergies in Human Grasping

The term “postural synergy” comes from neuroscience and signifies a high level mechanism

that governs the manner in which the hand is shaped to grasp objects. Which in this case

means that the brain does not command the hand joint per joint, but trough few input

variables, for example the synergies that generate coordinated movements of the fingers.

The exceptional grasping capabilities of the hand are achieved partially through these same

synergies. Santello et al. suggested that few postural synergies explain most of the variance

in hand grasping configurations by accomplishing a principle components analysis (PCA). In

the context of technical realization, synergies o↵er possibilities to overcome the complexity

of the human hand without having to accept big limitations in dexterity [SFS98; Che+20].

Indeed, the PCA revealed that more than 80% of the hand posture information can be

described with two scalar values [BA07] (see Fig. 2.12). Mathematically, the synergies

suggest that a joint configuration vector q can be described by fewer elements, gathered in

the synergy vector � P Rs, as q “ qp�q [Gab+11]. However, the results by Santello et al. and

subsequent studies were discussed because they might would have been a mere byproduct of

anatomical factors. A transcranial magnetic stimulation revealed the same synergies occur

in the neuronal domain [GC06], which strengthened the theory of functional synergies in

human grasping.

Figure 2.12: Two-level hierarchy of prehensile control, including the concept of VF [Lat08, p. 208]

Due to an analysis of the force direction of each individual finger in comparison to the

direction of the total force showing minor deviation, Latash suggests that multi-finger syn-

ergies stabilize the direction of force produced by the VF [Lat08]. Further studies [Ing+08]

expanding to a non-laboratory environment and using advanced measurement parameters

have shown the following: The thumb is the most independent digit and the index finger is
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the most independent finger of the human hand, even while the other corresponding fingers

move synchronously. The study demonstrated that the first principle components (PC) re-

flect the actuation of the extension and flexion of the DIP, PIP and MCP joints of the four

fingers. In addition, it was observed that PIP and DIP joints are more finely articulated

than the MCP joint. At last, the adduction-abduction movement is independent from the

flexion-extension movement. Those three perceptions form the most important biomechan-

ical characteristics for this work. As consequence, there is a need for three transmission

modules [Che+20].

In conclusion with the previous findings, namely that the Tripod Grip and the Prismatic

2 Finger are most significant for the manipulation of small, fragile objects, it can thus be

concluded that for these grasps that have 2 VF two actuators are su�cient.

2.2 Soft Robotic Materials

In order to achieve e�cient grasping, it is necessary to maintain the relation between the

applied force and the reaction (e.g. when lifting an object against gravity without supporting

it against gravity from below). Hence, the friction at the contact points and the form closure

are really important. Generally speaking there are three main issues in multifingered robotic

grasping: impact forces can vary if the fingers are not driven equally, rigid fingers are not

able to grasp objects with uneven surfaces properly and rigid systems su↵er more from usage

because of the not existing attenuation [SG96]. To overcome those problems the use of soft

finger pads made of silicon or resin casting of flexible urethanes has been introduced [Zis+14;

MOD13]. Other studies use flexible joints of polyurethane to enhance the adaptability of

the fingers. These flexible joints also have the advantage of withstanding many repeated

movements and impacts. Furthermore, they also dampen vibrations [Hus+17].

2.3 Mechanical Fundamentals

This part of the work is intended to give an overview of the mechanical fundamentals on

which the work is based.

At first the theory of underactuation will be described (Sec. 2.3.1), followed by a brief

summary of commonly used di↵erential mechanisms in robotic grippers (2.3.2). After that,

the basics of contact point mechanics (Sec. 2.3.3) are explained. The last part is focussed

on the fundamentals of compliant mechanisms (Sec. 2.3.4).
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2.3.1 Underactuation

Due to the complex morphology of the human hand, a lot of robotic grippers have been

designed with less fingers and even less motors, which results in coupling various DOFs to

one actuator [Mas18]. Such a mechanical system can be seen as underactuated once the

number of degrees of freedom is higher than the number of actuators [Shi+18, p. 1]. The

adaptivity of grasps benefits highly from underactuation because the fingers of the grippers

adapt to the shape of the object they grip. This also simplifies the control of the gripper.

Mathematically, the following equation by Grübler determines the DOF [Vol78, p. 41]:

F “ bpn ´ 1q ´
gÿ

.1

pb ´ fq (2.26)

In the plane view of a finger the following equation applies.

F “ 3pn ´ 1q ´ 2g1 ´ g2 (2.27)

Where n is the number of gear links, g1 is the number of joints with one DOF and g2 is the

number of joints with two DOFs.

2.3.2 Di↵erential Mechanism

The concept of underactuation, i.e. a system with fewer actuators than the degree of freedom,

requires a uniform force distribution. The reason for this is the intrinsic adaptivity of sub-

actuation. This manifests itself in the fact that fingers that are not yet blocked continue

to move when others are already blocked. Thus, irregularly shaped objects can be grasped

[BG06]. Di↵erential mechanisms are used to achieve such an even distribution of forces on

the fingers. In general, the objective of the analysis of the mechanism is to derive a function

Figure 2.13: Transmission mechanism with two outputs in an underactuated system [BLG08, p.
141]. Input force Fa, two output forces respectively F a

1 and F a
2 .

of the input forces in relation to the actuation forces to the output. This function is

F “ Tft˛ (2.28)
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with

F “
«
F a
1

F a
2

�
t˛ “

«
F a
1

F a
2

�
. (2.29)

A di↵erential mechanism is a “mechanism for which the degree of freedom is two and which

may accept two inputs to produce one output or, may resolve a single input into two outputs”

[Boe+91]. In the context of grasping the most commonly used di↵erential mechanisms are

the following three types: pulley di↵erentials, linkage seesaw di↵erentials (also known as

whipple-/whi✏etree mechanisms) and gear di↵erentials.

Figure 2.14: Commonly used di↵erential mechanisms in robotic grasping [MOD13]
a) pulley di↵erential, b) linkage seesaw di↵erential, c) gear di↵erential

Due to the easier assembly and integration only the seesaw mechanism will be looked into

further.

Based on a structure as shown in Figure 2.15, the transmission matrix can be written as

Tf “ 1

c

«
b2 sin↵2

b1 ´ sin↵1

�
(2.30)

where c is the sum of the corresponding distances from the axis of the prismatic joint to A1

and A2, i.e.,

c “ b1 sin↵2 ` b2 sin↵1 (2.31)
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Figure 2.15: Seesaw mechanism

Floating pulley transmission for equalizing the force transmission [MOD13].

2.3.3 Contact Points

Following the definition of Murray et al., “a contact is described by a mapping between

forces exerted by a finger at a point on the object and the resultant wrenches in some object

reference frame” [MLS94, p. 256]. They suggested the use of a soft-finger model to obtain a

more realistic contact model.

The soft-finger model not only allows forces, but also torques about the surface’s normal.

Those torques are limited to achieve more simplicity in the model.

Contacts can be modeled as a force applied at a point on the object together with a moment

along the normal of the contact surface. According to this model, four parameters are needed

to describe each contact.

Table 2.3: Static friction coe�cients for some common materials
[HLB16]

Material 1 Material 2 Conditions µ

Nylon Nylon Dry 0.2

Nylon Steel Dry 0.4

Polyethylene Polyethylene Dry 0.2

Polyethylene Steel Dry 0.2

Requirements on material

• attenuation of impact forces

• conformability

• strain dissipation
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2.3.4 Compliant Mechanisms

The sector of human-mimetic robotics is advancing more and more and outperforms tradi-

tional robots by the use of biological mimicry of the human hand for example. Compliant

mechanisms help to mimic, for example, the ligaments of the fingers.

Compliant mechanisms are characterized by their ability to deform under external loading

due to intrinsic compliance, distributed or concentrated. A distributed compliance is present

as soon as the length of the compliant area is ten times smaller than the length of the body

or the system (L{l • 101), otherwise it is called a concentrated compliance (L{l † 101)

[Zen14]. Figure 2.16 visualizes the di↵erence between the two types. If there is compliance

Figure 2.16: Schematic illustration of the di↵erence between distributed and concentrated compli-
ance [ZL19, p. 4]

in a system, it can be divided into the following categories: variable compliance, which is fur-

ther divided into reversible and irreversible compliance, and constant compliance. Usually,

technical rigid-body and compliant systems are equipped with constant compliance [Zen14].

Depending on whether a compliant mechanism moves as a function of a rigid body joint and

a compliant joint or only a compliant joint, it is called a partially or fully compliant mechan-

ism. This categories can be extended with the former definition of thy type of compliance.

As an example, the human finger (see Sec. 2.1) can be described as a fully compliant mech-

anism with concentrated compliance. The synovial joints of the DIP and PIP joint have

one DOF each, while the MCP joint has two DOFs. In the context of compliant mechan-

ism, their mechanical behavior can be emulated by notch flexure hinges with only rotational

movements (see Fig. 2.17).
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a) b)

Figure 2.17: Possible geometries of flexure hinges to realize one DOF, respectively two
DOFs [ZL19]
a) Flexure hinge with 1 DOF with its geometric parameters, deflected by '
by a load F,M
b) Flexure hinge with 2 DOFs

As seen in Figure 2.17a, the properties of the notch flexure hinges are defined by the following

two groups:

• the basic hinge/link dimensions l, L, h,H,w,W ,

• the hinge contour height function hcpxq (Eq. 2.32).

Given by the chosen notch geometry, the most important characteristics of the hinge contour

height function hcpxq are its symmetry and that minimum of hc is at the mid-point and that

the hinge cross-section is rectangular [ZL19].

hcpxq “ h ` H ´ h

p l
2qn |x|n, n P R, 1.1. § n § 50 (2.32)

Based on these notch flexure hinges, the rigid-body replacement approach will be exerted

later (Sec. 3.2.2). This approach consists in four basic steps:

i synthesis of a suitable rigid-body mechanism;

ii replacement of the hinges and basic design of the compliant mechanism

iii goal-oriented, specific geometric design of the flexure hinges and

iv verification of results and proof of requirements.

2.4 Sensory Systems

In the following section, various sensors which can be used in position control and for de-

termination of the applied force to achieve force control in the developed gripper will be
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discussed. To this, there will be a brief overview on flex/bend sensors (Sec. 2.4.2), force

sensing resistors (FSRs) (Sec. 2.4.1) and current sensors (Sec. 2.4.3).

2.4.1 Force-sensing Resistors

FSRs [YP97] are thermally stable devices, which change their electrical resistance according

to an applied force or pressure. The most basic configuration consists of two membranes

separated by a spacer, which builds an air gap (see Fig. 2.18). The upper membrane is coated

with carbon-based ink. When the sensor is now pressed, the conductive ink completes a

a) b)

Figure 2.18: Basic construction of a FSR, from [Int16]
a) Composition of conductive ink layer, spacer and conductor sub-
strate with active area
b) Layer stack-up

specific circuit with the lower membrane. This lower membrane has two sets of interdigitated

fingers that are electrically distinct, respectively insulated from each other. Depending on

the amount of pressure, the number of shorted traces varies, thus the electrical resistance of

the sensor changes as well.

Vout “ RMVcc

RM ` RFSR
(2.33)

A voltage divider (see Fig 2.19a) can be used to relate the applied force to the output

voltage Vout. This circuit consists of the measuring resistance RM and the resistance of the

FSR RFSR (see Eq. 2.33). Another option to convert the read value is using a circuit, made

of a resistor and a capacitor, called RC-circuit (see 2.19b). This principle uses the basic

electronic property of resistors and capacitors where the time tRC for charging is measured.

At the beginning, the capacitor is empty, but when a voltage is applied, the capacitor C is

charged as a function of the ohmic resistor R. If the capacitor was uncharged at time t “ 0,
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RM
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Figure 2.19: Basic Circuits for conversion of data with variable resistors
a) Voltage Divider with supply voltage Vcc, variable resistance R, reference resistor
RM and output voltage Vout

b) RC-circuit with voltage source U0, current i, variable resistance R, capacitance C
and output voltage u

then up0q “ 0 is valid for the capacitance model and and the relation can expressed as the

following equation (Eq. 2.34) for small time periods [MR17].

uptq « U0

RC
t (2.34)

Where the time constant is RC “: ⌧ .

However there are more complex ways to convert the analog value, such as an operational

amplifier circuit or a Wheatstone bridge [BLG08].

This sensor o↵ers a good shock resistance, small size, light weight and is economic, yet

the accuracy su↵ers [Int16]. Apart from force-sensing resistors, there are also force-sensing

capacitors, however they are not looked into further due to simplicity.

2.4.2 Flex Sensors

Flex or bend sensors are used in a wide range of applications. The best publicly know is

probably the “Power Glove” from Mattel (El Segundo, CA, USA) for the Nintendo Enter-

tainment System (Nintendo Co. Ltd., Kyoto, Japan). Besides from this commercial product,

the flex sensors are also commonly used in the development on goniometric gloves for the

analysis of the hand’s kinematics (e.g. Sigma Glove (She�eld University)).

The measuring principle of flex sensors initially was based on optical flex sensors [Zim82],

which were later joined by capacitive flex sensors [NR97] and sensors with conductive ink

[Lan96]. While the sensor is stuck to a surface or within a mechanism, the amount of deflec-

tion or bending is detected.
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Figure 2.20: Schematic drawing of an optical flex sensor, adapted from [Zim82]
1 Light source; 2 flexible tube; 3 reflective interior wall;
4, 5 two di↵erent color areas; 6 photosensitive detector

Optical flex sensors [Zim82] are made of a flexible tube with a reflective inner wall. The

measurement of deflection is achieved by detecting the direct transmitted and reflected light

rays (4, 5) with a photosensitive detector (6) opposed to the light source (1) at the other

end of the tube. The photosensitive detector changes its electrical resistance according to

the light intensity.

Capacitive flex sensors [NR97] consist of two conducive layers with a comb-patterned struc-

ture (1, 2) fixed to an insulating base layer (3, 4) separated by dielectric material. The

base layer usually is made of plastic because it is economic, flexible and easy to fabric. All

layers are bonded together. The capacitive flex sensor is able to detect deflection in both

Figure 2.21: Schematic drawing of a capacitive bend-angle sensor, adapted from [NR97]
1, 2 Conductive electrodes; 3, 4 insulating base layer

directions [NR97]. The measuring principle persists of the change of capacitance between

the two conducive layers, which di↵ers when the sensor experiences flexion/extension. To

determine the bending, the capacitive sensor is operated with an oscillator whose frequency

is proportional to the characteristic capacitance C of the sensor. The output signal can be

converted into an analog or digital signal by the use of a frequency-to-voltage converter.

Conductive ink based sensors [Lan96] are formed by a phenolic resin substrate (2) with

conductive ink (3), which has segmented conductors (1) mounted on top (see Fig. 2.22a).
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The sensor works as a flexible potentiometer, given that the conductive ink changes its

electrical resistance when it is bended. This change in resistance is due to cracks in the

graphene of the ink. The segmented conductors are used to control the conductivity of the

sensor element by varying their size.

a) b)

Figure 2.22: Schematic drawing of a conductive ink based flex sensor, adapted from [Lan96]
1a,b,c Segmented conductor; 2 phenolic resin substrate; 3 deposited conduct-
ive ink; A non-deflected configuration; B bent configuration; C further bent
configuration

Due to the changing electrical resistance, the conductive ink based flex sensors can be sim-

plified as a potentiometer depending on the deflection of the sensor. For a simple force-

to-voltage conversion, a voltage divider (Fig. 2.19a) can be attached to the circuit. The

following equation (Eq. 2.35) describes the output voltage Vout, where RM is the measuring

resistance, which is chosen to configure the force sensitivity range. Vcc is the alimentation

voltage and Rflex is the resistance of the entire flex sensor.

Vout “ RMVcc

RM ` Rflex
(2.35)

Another way to convert the analog value of flex sensors is a RC-circuit (see 2.4.1).

In conclusion, flex sensors o↵er good repeatability with adequate accuracy [SN17]. In addi-

tion, the sensors are cost-e↵ective and easy to implement.

2.4.3 Current Sensors

To track the power consumption of electric devices, especially motors, current sensors form an

economic and simple solution. Due to the use of only low-voltage components, only according

measuring principles are discussed. Direct current (DC) can be sensed via shunt resistors,

copper trace, Hall E↵ect, Fluxgate, AMR E↵ect, Core-less open-loop or Fiber-Optic current
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sensors [Zie+09]. In comparison with the other sensors, the Hall e↵ect sensors provide a

sensing solution with “low losses, galvanic isolation, high bandwidth and good accuracy”

[Zie+09]. Due to the simple integration and the good availability by numerous products

for the Arduino/Microcontroller sector, only the Hall-e↵ect Sensor will be described further.

Among all magnetic field sensors, the Hall-e↵ect sensors are one of the most commonly used.

UH Hall voltage
Ix electrical current
Bz magnetic flux
l length
d thickness
b width

Figure 2.23: Schematic illustration of the Hall-e↵ect, modified from [Pau+14]

The measurement principle is based on the Hall e↵ect, which describes that the Hall voltage

UH occurs when a current Ix flows through a rod-shaped probe of conductive material with

the dimensions l, d and b. This e↵ect belongs to the galvanomagnetic e↵ects which occur

when a magnetic field has a component perpendicular to the current direction (see Fig. 2.23)

[Her18]. Due to the Lorentz law and the corresponding Lorentz force FL (Eq. 2.36) each

current carrier experiences a force by the magnetic field Bz, which can beexpressed as the

following equation.

FL “ ´qvxBz ~ey (2.36)

(q: electrical charge carrier; vx: velocity of the charge carrier)

The Lorentz force shifts the charge carriers in the y-direction. As figure 2.23 shows, in

this case there is an electron surplus (- charges) at the front of the probe and an electron

deficiency (+ charges) at the back (see Fig. 2.23). The corresponding magnitude of potential

di↵erence ist called Hall voltage UH . Equation 2.37 describes the proportional relationship

of the Hall voltage UH to the magnetic field Bz.

UH “ IxBz

nqd
(2.37)

Due to the advances in integrated circuit (IC), it is possible to implement sensors with this

measuring principle in a economic and highly-integrated way.
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2.5 Control Systems

Controllers automatically influence the physical variables in a technical system. Through the

controller disturbances are mostly compensated, thus the system is kept at a defined point.

In case of the use of FSRs Birglen et al. [BLG08] suggest the use of Fuzzy Control like seen

in Figure 2.24. However, it is to mention that their approach to prevent slippage be the use

Figure 2.24: Fuzzy control scheme to control a robotic hand with FSRs [BLG08]

of fuzzy control was too slow.
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2.6 State of the Art - Tendon-driven Soft Robotic Grippers

The following chapter is intended to inform about the current state of the art in research and

development of tendon-driven Soft Robotic grippers. To give a more comprehensive overview,

the commonly used actuation principles apart from tendon-based designs are presented,

followed by a more detailed view on the state of the art tendon-driven, anthropomorphic

grippers.

a) b) c)

Figure 2.25: Examples for Soft Robotic grippers
a) Actuation: Fin Ray® Gripper [Fes13]
b) Controlled Sti↵ness: Jamming-based gripper picking up an object [Bro+]
c) Controlled Adhesion: Electro-adhesion based Gripper [Shi+16]

The grasping technologies in the field of Soft Robotics are widely distributed. In general,

they can be divided into the three main categories of Actuation, Controlled Sti↵ness and

Controlled Adhesion. Table 2.4 provides references to scientific work on the respective cat-

egories.

Table 2.4: Examples for the di↵erent categories of grasping technologies, adapted from
[Shi+18]

Category Technology Examples

Actuation

Passive structure with external motors (Fig. 2.25a)

[Fes13; MD17;

XDM11;

KLV19]

Fluidic elastomer actuator (FEA)
[DB14;

Taw+19]

Shape memory alloy (SMA) [Wan+17]

Controlled Sti↵ness

Granular jamming (Fig. 2.25b) [Bro+]

Low melting point alloy (LMPA) [Nak+02]

Electro-rheological (ER) and magneto-rheological

(MR) fluids

[Pet+10]

Controlled Adhesion
Electro-adhesion (Fig. 2.25c) [Shi+16]

Geckoadhesion [Men+12]
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The considered classification of gripping technologies can be further divided in terms of suit-

ability for specific object geometries (see Fig. A.6). The analysis of this classification shows

that gripping by Actuation and Controlled Sti↵ness is best suited for convex object geomet-

ries, while Controlled Adhesions performs better with deformable objects. For non-convex

geometries, Controlled Sti↵ness has small advantages to Actuation [Shi+18].

Due to the fact that the focus of this work is in the area of tendon-operated grippers, which

belong to the Actuation category, only associated ones will be considered in more detail in

the following.

Remarkable tendon-driven, human-inspired gripper have been invested intensively over the

last years. Their advantage is the ability to mimic the human hand with the help of sti↵ and

elastic parts. Their anthropomorphic design, a so-called tensegrity structure is commonly

used together with tendon-driven grippers. As described before, the human hand o↵ers a

technically unprecedented dexterity (see Sec. 2.1). Xu et al. developed such an anthro-

pomorphic gripper [XT16]. The complexity of their design even enables to cover various

grasps of the aforementioned taxonomy (see Sec. 2.1.3). It should be said that they com-

pared the realized grasps with the ones in Cutkosky’s taxonomy [Cut89], revised and newly

integrated in the taxonomy used in this work by Feix et al. [Fei+16]. Hence, in terms of

the GRASP Taxonomy, the robotic hand is able to perform the following Precision Grasps,

relevant for this work. For circular objects there are the Precision Disk (PreD), Precision

Sphere (PreS), Tripod (TP) grasps, while the hand can realize the Prismatic 2 Finger (P2F),

Tip Pinch (TIP) and Palmar Pinch (PP) grasps for prismatic objects (see Fig. A.7).

Figure 2.26: Biomimetic hand by Xu et al. Anthropomorphic design, driven by 10 servo motors
[XT16]

Their biomimetic hand consists of five digits that are driven by a total of ten servo motors.

This complex construction results in a total weight of 942 g. The most remarkable feature

of the gripper is its high level of anthropomorphism. Based on laser/MRI scans, they 3D-

printed the bones and completed the structure by adding laser-cut extensor hoods with

intrinsic muscles, tendon sheaths, tendons and ligaments. To actuate their hand, they use

three actuators for the thumb, two servos for the flexion and extension of the ring and little

finger and finally, two motors each for the index and middle finger to realize flexion and

extension.
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Another example for a tendon-driven robotic hand is presented by Chen et al. [Che+20].

They introduced the “Synergy-Inspired Three-Fingered Hand”, which intents to overcome

the complexity of human grasping by the use of hand synergies (see Sec. 2.1.4) in form

of a compliant and underactuated mechanism. Their design implements three fingers, each

driven by one servo motor. The speciality of this design consists in the use of a di↵erential

mechanism enabling adduction/abduction of the three finger. Their preliminary results show

that the grasping ability of their hand is in no way inferior to anthropomorphic grippers they

mentioned in their paper ([BA07; Xu+14; Xio+16; CXY15]). According to the execution

of the Anthropomorphic Hand Assessment Protocol (AHAP) [LH+19], their hand provides

enough functionality to show human-like grasping ability. The AHAP quantifies the grasping

ability and anthropomorphism of artificial hands and helps to evaluate di↵erent designs (see

Sec. 5.2).

Figure 2.27: Grasping demonstration of the “Synergy-based Three-Fingered Hand” by Chen et al.,
integrated into the GRASP Taxonomy [Fei+16], modified from [Che+20]
Precision Sphere (PreS); Tripod (TP); Lateral (L); Parallel Extension (PE); Fixed
Hook (FH); Palmar Pinch (PP); Medium Wrap (MW); Large Diameter (LD). Two
non-grasping postures: IP (index pointing/pressing); P (platform)

In the context of the grasp taxonomy by Feix et al., this robotic hand is able to perform at

least eight grasp types: Precision Sphere, Tripod, Lateral, Parallel Extension, Fixed Hook,

Palmar Pinch, Medium Wrap and Large Diameter.

While the “Synergy-based Three-Fingered Hand” is already less anthropomorphic than the

first mentioned“Biomimetic Robotic Hand”, the robotic gripper developed by the Yale Open-

Hand Project [Yal] (Yale University, New Haven, CT, USA) focusses even more on function-

ality. Over the years they developed the Model M2 [MSD16], Model O [Odh+14], Model

T42 [OMD13], Model T [DH10; MOD13], Model VF [SCD18] and Model Q [MD14].

In this work, only the Model M2, Model T42 and the Model O, which is an open-source
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derivative of the iRobot-Harvard-Yale (iHY) hand [Odh+14], and the commercially avail-

able Reflex Hand (RightHand Robotics, Somerville, MA, USA) will be described further, as

they give a good overview of the typical characteristics of robotic grippers with increasing

complexity.

a) b) c)

Figure 2.28: Comparison of medium-complexity Robotic Grippers from the Yale OpenHand Project
a) Model M2 [MSD16]
b) Model T42 [OMD13]
c) Model O [Odh+14]

The least complex gripper, Model M2 (Fig 2.28a), has one actuated and one passive finger

opposing each other. The actuated finger is driven by two actuators which permit to grip

both underactuated and fully-actuated. Thus, the gripper can perform basic in-hand manip-

ulation as rolling and controlled sliding. The passive thumb can be changed depending on

the application. The use of soft finger pad materials help to grasp objects with the resulting

force dependent friction. The authors suggest that the design o↵ers good possibilities to

haptic exploration and controlled slip [MSD16].

Model T42 (Fig 2.28b) comes with four DOF in relation to two actuators, only o↵ering the

possibility of underactuated grasping. It o↵ers more dexterity and is able to fulfill di↵erent

types of in-hand manipulation. The design was elected to lift small, flat laying objects from

plane surfaces, which was achieved in the first tests. For example, for coins with a thickness

above 2mm they had a success rate over 70%.

The most complex of the considered grippers, Model O (Fig 2.28c), permits additional adduc-

tion/abduction. Thus, it is possible to switch from spherical to lateral gripping, respectively

from the pad to the palm opposition. This feature allows to cover more grasp types. The

adduction/abduction movement is realized by one actuator, while each underactuated finger

is driven by one actuator.

A brief summary of the properties of the considered grippers is presented in table 2.5.

Table 2.5: Comparison of the Model M2, Model T42 and Model O

Category Model M2 Model T42 Model O

Grasp types TIP, PP, InfP TIP, PP, MW P2F, TP, PP, MW, PreS, L

DOF 2 4 9

Base Height rmms 55–80 55–80 90
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Base Width rmms 90–105 90–105 100–125

Grip Force rNs - 10 11–13

# of active fingers 1 2 3

# of actuators 2 2 4

Gripper mass rgs 375 400 752

Source [MSD16] [OMD13] [Odh+14]

Tip Pinch (TIP); Palmar Pinch (PP); Inferior Pincer (InfP); MediumWrap (MW); Prismatic

2 Finger (P2F); Tripod (TP); Precision Sphere (PreS); Lateral (L).

All grippers use servo motors.

In summary, the analysis of the Yale OpenHand Project hands provides the insight that a

third finger significantly expands the possibilities of grasp types. However, additional actu-

ators are usually necessary to actuate this finger, unless a di↵erential is used (see [MOD13]).

The increased number of actuators and the additional mechanical components result in a

higher mass.

Generally speaking, current research shows that adaptivity

As observed ofChen et al. the gripper with 3 fingers o↵ers significantly more possibilities and

above all stability. 2-fingered grippers do o↵er the advantage in dexter manipulation.

Table 2.6: Comparison of State of the Art tendon-driven, robotic Grippers

Gripper
Biomimetic

Robotic Hand

Synergy-Inspired

Three-Fingered

Hand

Model O

Source [XT16] [Che+20] [Odh+14]

Year 2016 2020 2017

Grip modes

PreD, PreS, TP,

P2F, TIP, PP, L,

ET, PowD, PowS,

MW, AT, LT, LD,

SD

PreS, TP, L, PE,

FH, PP, MW, LD

P2F, TP, PP,

MW, PreS, L

Degrees of Freedom 20 11 9

Number of active Fingers 5 3 3

Number of Actuators 10 5 4

Gripper mass rgs 942 - 752

Comment
highly

anthropomorphic
Synergy inspired

transition between

power-grasping

and

spherical-grasping

modes
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2.6 State of the Art - Tendon-driven Soft Robotic Grippers

Precision Disk (PreD); Precision Sphere (PreS); Tripod (TP); Prismatic 2 Finger (P2F); Tip

Pinch (TIP); Palmar Pinch (PP); Lateral (L); Extension Type (ET); Power Disk (PowD);

Power Sphere (PowS); MediumWrap (MW); Adducted Thumb (AT); Light Tool (LT); Large

Diameter (LD); Small Diameter (SD); Fixed Hook (FH).

2.6.1 Actuation

One of the most di�cult aspect in the development of anthropomorphic hands still is the

actuation. Due to the high functionality of the human hand, most of the current actuation

technologies do not achieve the same level of power density and e�ciency [PCP99]. Table

2.7 gives an overview on the most relevant actuators used in the development of Soft Robotic

Grippers.

Table 2.7: Comparison of the most relevant actuators for Soft Robotic grippers, adapted from
[HFA97]

Actuator type ⇢
”
W
kg

ı
�max rMPas ✏max E rGPas ⌘

DC motors 100 0.1 0.5 * 0.6–0.8

Pneumatic 400 0.5–0.9 1 5–9 ˆ 10´4 0.4–0.5

Hydraulic 2 000 20–70 1 2–3 0.9–0.98

SMA 1 000 100–700 0.07 30–90 0.01–0.02

Human muscle 500 0.1–0.4 0.3–0.7 0.005–0.09 0.2–0.25

Power density ⇢ “ Power per unit of weight, �max “ Maximum force exerted by the actuators

per area, ✏max “ Maximum run per length, E “ Actuator sti↵ness, ⌘ “E�cency . Max-

imum stress and strain are indexes specifically designed for linear actuators. *Depending on

gearhead

One of the main advantages of tendon-based force transmission is the low inertia and low

friction. Additionally, it usually o↵ers a more adaptable design at even lower cost and

maintenance [PCP99].
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3 Design of the Manipulator

This chapter is meant to present the development process of the robotic manipulator accord-

ing to the guidelines given by the VDI 2206 [VDI04]. Thus, the list of requirements (Sec.

A.3.1) was first drawn up and the tasks were specified. However, in contrast to the applicable

Figure 3.1: Graphical illustration of the design methodology according to the VDI 2206 and VDI
2221
a) V-Model with continuous actualization of requirements, modified from VDI

2206 [VDI04]
b) Activities in system design [VDI04]

VDI norm, the list of requirements was constantly updated during the development process

as soon as new issues to be planned arose (see Fig. 3.1). Thus, also the function structure

was continuously actualized and was expanded respectively.

The system design was conducted according to the VDI 2221 [VDI19a; VDI19b]. Based on

the list of requirements, the overall function (Sec. 3.1.2) and subsequently subfunctions were
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3.1 Conceptual Design

identified. Afterwards, operation principles and solution elements for the subfunctions were

investigated.

3.1 Conceptual Design

The following section describes the design process of the project in more detail. First the

functional requirements of the gripper will be specified. All other components were handled

analogously to this procedure.

3.1.1 Requirements for the Soft Robotic Gripper

In the first step of the design process, the tasks were specified and a list of requirements was

drawn up. It is divided into di↵erent sections, such as requirements for the mechanics, the

motor, the sensors or the safety requirements. Table 3.1 shows an excerpt of the requirements

for the functionality of the gripper, the complete tables can be found in the appendix (see

3.2.1)

The main goal of the development process is to create a tendon-driven Soft Robotic gripper

that can manipulate fragile objects, such as a tomato or a glass. Here it is important to

mention that the manipulation can be understood as a grasping or handling in a particularly

skillful way [BLG08]. This skillfulness is to be realized by the implementation of force control.

The force transmission is to be realized via a rope transmission, whereby adaptivity is to be

used in the system in order to reduce the e↵ects of rigid manipulation.

The following Table 3.1 provides a specified overview of the hard requirements for the gripper

to be developed.

Table 3.1: List of the hard requirements for the Soft Robotic gripper

Description Priority Comment

Functional Properties

Soft grasping of fragile objects H Tomatos, glass, eggs etc.

Controlled force application H characterization of force control

Reduction of the influence of rigid ma-

nipulation

H
adaptive finger tips, compliant struc-

tures

Performance of various grasp types H
realization of grasps like the Medium

Wrap (see [Fei+16])

Mechanical Design

Human inspired H
e.g. proportions of the phalanges, hu-

man like contact area etc.

Tendon-driven H force transmission via tendons
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3.1 Conceptual Design

Table 3.1: List of the hard requirements for the Soft Robotic gripper (prosecution)

Description Priority Comment

Legend

H Hard requirement

D Desired requirement

M Minimum requirement

3.1.2 Overall Function and Technical Principles

Once the main components had been identified from the task and the various requirements

for the gripper, the main function of the test setup could be established (Fig. 3.2). This

is the manipulation of a fragile object by means of a tendon-driven softrobotic gripper.

Incoming parameters are an operator and an energy supply, outgoing parameters are the

measured values. It is important to take into account the environmental influences acting

on the system from the outside, as well as the e↵ects of the system on the environment.

Information flows (measured variables, control pulses or data), Energy flows (mechanical,

electrical energy, forces etc.) and Material flows (tested objects, solid bodies, treated objects

etc.) [VDI04].

Figure 3.2: Basic System Structure (based on VDI 2206 [VDI04])

Subsequently, the main function was subdivided into further components and the function

structure was formed from this. his consists of the entire gripper, which on the one hand

contains the fingers themselves, and on the other hand also an actuator. From the outside,

the operator and environmental influences act on the system boundaries of the experimental

setup, and energy is also supplied to the system. The system itself in turn acts on the

environment, and feedback signals are sent to the operator.
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Figure 3.3: Technical principle of a finger with 3 phalanges and compliant joints

The design process of the finger can be exemplified in the following Figure 3.3, as an technical

principle.

Where c is the sti↵ness of the torsional springs and � is the spring length. The system is

driven by a motor through a pulley.

3.2 Mechanical Design

The components defined in the value sensing tables were combined into a model in the design

program Autodesk Inventor Professional 2019 [Inv18].

The focus of the design is modularity. This makes it possible to use the chassis as the basis

for varying di↵erent types of fingers, flexible joints or even the number of fingers without

having to make any major changes to the assembly. Furthermore, it was important that the

components are designed mostly parametrically, so that, for example, tolerances for the fit

of the finger joints with the phalanges or with the MCP joint can be adjusted simply by

changing the tolerance value (backlash s) for all components involved. All parameters were

stored in the output file of the palm (palm base.ipt) and linked to all derived components.

This chapter provides an overview of the functional components of the“Soft Robotic Gripper”

assembly by referring to the design of the functional components. Here, the design process
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3.2 Mechanical Design

Figure 3.4: CAD-Model of the assembled Soft Robotic Gripper

of the palm, the fingers, the gear train and finally the cable train is described.

All CAD files are provided in the digital appendix.

The design of the PLA components was done according to these rules:

• wall thickness t • 2mm

• thread depth mreq • 3 ¨ d bore diameter

• Always cut thread or use heat-set inserts

• center of a bore always with a • 1, 5 ¨ d bore diameter to part contour

3.2.1 Design of the Finger

The total size and respective proportions of phalanges were determined on the basis of find-

ings of anthropometric studies [BAG92]. The data of Table 2.1 in Section 2.1.1 was used to

calculate adequate lengths for the phalanges.

For simplicity, based on other grippers, the structure of the fingers was chosen to be the

same as other grippers (see Sec. 2.6). Thus the three finger of the gripper were designed like

the human index finger, since it is the most important finger besides the thumb (see Sec.

2.1). Based on this guideline the lengths of the phalanges were determined. A hand length

HL “ 114mm was chosen according to the specified object geometry (see ). It is smaller

than the median hand length HLm “ 182.94mm from Buchholz et al. [BAG92]’s study.
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3.2 Mechanical Design

Finger Tip

To measure the contact force, it was decided to position the sensor in the fingertip. Here

it has contact with the object both with precise pinches and with more powerful enclosing

gripping methods such as the medium wrap. As considered in the implementation of the

compliant joint, the finger is guided parallel as long as possible not to slip past the object.

Studies have already shown that the response of an FSR is significantly improved when a

small disc or similar is applied to provide a more uniform load [SJJ16]. Therefore, the design

provides for such a component (see Fig. 3.5). In addition to embedding the sensor, molds

for silicon pads were also designed. These are intended to improve adaptivity and friction.

The fabrication of the silicon rubber molds is further explained in Section 3.5.2.

a)

11

66
55

22
33

44

a)

Figure 3.5: Design of the fingertip
1) Adaptive silicon rubber pad; 2) sensor plate for more uniform load; 3) Sensor PCB;
4) Phalanx distalis; 5) FSR; 6) anchor to fixate the silicon rubber mold

Tendon Routing

It is crucial to keep the friction between the tendons and the components as low as possible.

When the fingers bend parasitic capstan e↵ects [LAK13]. In addition the tendons might

cut into the rigid body material when high load is applied [MOD13]. To reduce the risk

of cutting and to optimize the friction, 2mm steel tendon guide pins are used. As seen in

Figure 3.6 the pins are assembled with a press-fit into the phalanges for example. The steel

pins provide a harder sliding contact with significantly less friction [MOD13].

At the end, at the distal phalanx, the tendon is fixed. Due to the good frictional properties,

it was decided to use Nylon fishing cables with a payload of 3.2 kg and 0.25mm diameter.
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Figure 3.6: Tendon routing of the Soft Robotic fingers
1) MCP base; 2) steel routing pin; 3) MCP hinge; 4) Pad proximalis; 5) Phalanx
proximalis; 6) DIP hinge; 7) FSR; 8) PCB; 9) sensor plate; 10) Pad distalis; 11) flex
sensor; 12) cable anchor

3.2.2 Design of the Compliant Joints

In order to follow the recommendation of the state of the art, a simulation of the deformation

was carried out with the aid of the flexure hinge design software DetasFLEX [Det18]. Since

the literature shows a ratio of 5:2 between the sti↵ness of the distal and proximal joint, this

ratio was simulated taking into account the available actuator power.

With regard to the modular design, care is taken to ensure that the flexible joints always

have the same geometry for connection to the fixed bodies, so that they can be quickly

replaced if necessary. However, in order to have an influence on the sti↵ness, it is possible

to change the density during 3D printing (see [Hus+17]) or the geometry of the beam itself.

Due to the fact that the results of the density adjustment depend very much on the printing

process, it was decided to adjust the geometry. The influencing factors in 3D printing can

be, for example, the temperature and especially the alignment on the print bed. To design

the compliant joint, the “rigid-body replacement approach” [LFL13] was performed using

their provided software.

With the help of the simulation, the sti↵nesses of the compliant joints were determined.

these can be achieved with the following parameters. The design was proceeded to fit in

smoothly with the modular design of the assembly.

41



3.2 Mechanical Design

Figure 3.7: Hinge design in detasFLEX [Det18; HLZ18]

3.2.3 Design of the Tooth Gear Mechanism

In view of the requirement to realize several types of gripping (see ), a toothed gear was

designed that enables the position of the fingers to be changed in relation to each other by

manual operation. This favors the gripping behavior, since grips such as the Medium Wrap

or, in the other mode, Power Sphere can be performed. It is also possible to create pinches.

In contrast to the human model, however, the adduction/abduction was not realized by the

thumb, but quasi inverted by the fingers.
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3.3 Electrical Design

Figure 3.8: Manually lockable gear mechanism to change between di↵erent grasp modes

As seen in Figure 3.8 the gear mechanism is unlocked when the latch is pushed by the user.

Once the latch is released, the torsional spring reverses it into the locked position. The large

gears on which the MCP joints are mounted are supported in the palm of the hand and have

a mechanical stop to prevent unwanted movement. The small transmission gears, on the

other hand, are mounted on one side on the back of the palm. From above, the two types of

gears are secured by the back surface of the hand (palm backside.ipt).

The positions that can be reached in this process are shown in Figure 2.4. The total range

of movement is 90 degrees.

a) a)

Figure 3.9: Range of motion of the gear mechanism to realize adduction/abduction. The adduc-
tion/abduction movement is between 0° and 90°

3.3 Electrical Design

The electronics required for the gripper were summarized as a circuit diagram using the

Fritzing open-source software [Fri21]. This documents the wiring of the components. The
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3.3 Electrical Design

circuit diagram includes the power supply, sensors, microcontroller and circuit boards and

basic components like resistors. The complete circuit diagram can be found in the digital, as

well as in the printed appendix (see A.8). As an example, a section containing the necessary

wiring of the FSR of the thumb (FSR t) together with the according reference resistor R1

is shown in Figure 3.10.

3.3.1 Selection: Position Sensors

Compared to other position sensors (see Tab. A.3.3), the flex sensors o↵er flexibility, robust-

ness and easy integration within a low range of cost [Ger+17]. A flex sensor was chosen to

determine the position as shown in Table A.3.3. A FS-L-0055-253-ST (Spectra Symbol,

Salt Lake City, UT, USA) was elected. One of the main advantages is the direct direct

operation with the Arduino, since it requires 5V supply voltage Vcc and provides an analog

output signal Vout.

As mentioned before (Sec. 2.4.2), the sensor can be used with a voltage divider or RC-circuit.

Since the elected microcontroller does not provide su�cient analog inputs, the RC-circuit

solution (see Fig. 2.19b) got implemented, because it operates only on digital pins.

The algorithm for the RC-timing is explained in Section 3.4.1.

3.3.2 Selection: Force Sensors

Thanks to its ease of use and relatively low cost, a FSRs was chosen. According to the

data sheet, the Interlink FSR 400 [Int15] model used here has a measuring range of 0.2N to

20N.

3.3.3 Election: Current Sensor

The elected ˘5A Linear Current Sensor [Mic20] (Microbot, Latina, LT, Italy) carries a

ACS714ELCTR-05B-T hall e↵ect-based linear current sensor from Allegro® [All12] (Al-

legro MicroSystems Inc., Worcester, MA, USA). Its IC uses a copper conduction path to

lead the measured current IM of the motor. The magnetic field of this path is converted into

a proportional voltage by a Hall IC. The sensor is implemented with a supply power Vcc of

5V and has an analog output voltage Vout with linear characteristics.

The sensitivity of the sensor is 185 mV
A with a typical error of ˘1.5%. He o↵ers a bidirectional

current range from ´5A to 5A.
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Bluno Nano

Figure 3.10: Exemplary illustration of the wiring of a FSR with the corresponding reference resistor
with the corresponding reference resistor in a voltage divider setup

Figure 3.11: Schematic drawing of the elected Flex Sensor FS-L-0055-253-ST
[Spe20]
A “ 73.66mm, B “ 55.37mm

3.3.4 Calibration of the Sensors

In order to interpret the measured data it is necessary to do a referencing. This section

explains the associated process and provides the knowledge needed for the conversion of the

flex and force sensors.

Flex Sensor

Prior to the assembly, measurements were made to determine the characteristics (Rflex ,

Vout) of the flex sensor. The sensor was clamped at the beginning of the active area and

the voltage and resistance were measured (see Fig. 3.13). As described in Sec. 2.1.2, the

maximum deflection range of the MCP is 103°, thus only angles up to 110° are of interest. The
following Figure A.2 shows the sensor’s characteristics. Additionally, the electrical resistance
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3.3 Electrical Design

Figure 3.12: Linear current sensor from Microbot with an Allegro® Hall-e↵ect based IC, from
[Mic20]

Figure 3.13: Calibration of the flex sensor with a RC-circuit

was measured (see. A.1.1). With the help of the “Basic Fitting tool” [MAT19], the best-fit

equation was determined.

'flex “ 0.083634 ¨ 'Bit ´ 37.946 (3.1)

The determined data o↵ers the possibility to quantify the analog voltage with the analog

input of the microcontroller. The original data can be found in the digital appendix.

Force Sensor

The setup shown in Figure 3.14 was used to calibrate the force sensor. It was decided to

use a vessel with water as reference load and to fill it up gradually and hence increase the

load. At the beginning of the procedure, the vessel was weighed and filled until reaching an
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3.3 Electrical Design

adequate starting weight (see Sec. A.1.2). Then, water was added precisely by using 5ml

and 20ml syringes, to achieve the required volume for the sampling points. Once, an e↵ect

of saturation was observed, the volume of added water was augmented.

x

y

z
x

y

z

FSR

H2OH2O

Microcontroller

V(n), ρ 

Aactiv gg

Bucket with water

User Legend

Information flow

Legend

Information flow

  

Figure 3.14: Technical principle for the referencing process

Based on 75 sample points the following characteristic curve (Fig. 3.15) was determined.

Figure 3.15: Characteristic curve of the Interlink FSR® 400, with a 10 k⌦ Reference Resistor

As seen in Figure 3.15, the interpolated curve is cubic. The calculated parameters by the

Basic Fitting tool yields the following equation.

FFSR “ 3.125 ˆ 10´7x3 ´ 0.338 08 ˆ 10´3x2 ` 0.122 94x ´ 13.922 (3.2)

This function allows to convert the measured analog values into the applied force of the

FSRs.
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3.3.5 Selection of the Actuator

Due to good availability, low price and high power density, a Feetech FT90M-FB high torque

servo motor was installed [She]. However it is quite comfortable to control servo motors

with the Arduino servo library, the servo consumes Arduino processing power [Ear19]. To

overcome this consumption and to reduce the corresponding overhead, the motor is powered

through a Adafruit 16-Channel 12-bit PWM/Servo Driver [Ear19]. The reduction of the

overhead helps to enable e�cient and reliable data acquisition.

3.3.6 Power Supply

Considering the requirement of a lightweight design, the decision was made to use a external

power source. For a better interconnectivity, a 220V alternating current (AC) power supply

unit with a 5V, 2A output was elected. Thus, no converter have to be used since the

microcontrollers, the motor driver and the sensors operate at 5V.

3.4 Software Design

Apart from the mechanical and electrical design, the gripper requires software to control it.

For the software development Visual Studio Code [Vis21] with the PlatformIO IDE (integ-

rated development environment) [Pla21] extension have been used.

In addition to the functional programming, a graphical user interface (GUI) has been de-

veloped in MATLAB [MAT19] to capture, process and visualize data from the microcontroller

in a more user-friendly way and to control the gripper. This section shows first the necessary

conversions of the raw data (Sec. 3.4.1) and then the corresponding implementation, as well

as the design and handling of the GUI.

3.4.1 Calculations

All data is transmitted via Bluetooth and received by a microcontroller which works in

dongle-mode. The receiver is connected to a PC via USB. To augment the transmission

speed, as much data processing as possible is done by the PC. This section gives an overview

on the calculations to interpretable data.
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Current Sensor

The analog output of the force sensor is linear [All12] and can be converted to the according

current IA with the following equation. Because the sensor maps ˘5A, the zero point is

at 2.5V at the analog output. Since the sensor is only used in one direction, an o↵set was

added to start the calculation at 0V or 0A.

IA “
5V¨Ibit
1023 ´ 2.5V

0.185 mV
A

(3.3)

This equation is implemented in the Matlab® code and is done automatically in the back-

ground.

Flex Sensor

Because of the use of an RC-circuit a basic algorithm is necessary [Nos12]. In the course

of calibration, a best-fit line was determined for the measured value curve of the bending

sensor (see Sec. A.1.1), which lead to equation A.1. The according equation to calculate the

deflection angle is

'flex “ 0.083634 ¨ 'Bit ´ 37.946 (3.4)

FSR

Based on the data collected in Sec. A.1.2, it is possible to draw conclusions about the

applied force on the basis of the analog voltage. With the help of MATLAB®’s “Basic

Fitting Tool”, the characteristic curve was interpolated. A cubic function provides su�cient

accuracy. Hence, the raw data can be converted by the use of the following equation.

FFSR “ 3.125 ˆ 10´7x3 ´ 0.338 08 ˆ 10´3x2 ` 0, 12294x ´ 13.922 (3.5)

Where x is the read analog value sent from the microcontroller in rBits.

3.4.2 Software Implementation

The selected microcontroller can be programmed using Visual Studio Code and the Plat-

formIO integrated development environment (IDE). Figure 3.16 shows the class diagram of

the implementation. The complete source code can be found in the digital appendix. This

also includes the source code of the Bluetooth dongle, which is trivial, however, since only

the received data is passed to the PC via the serial interface.
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-Serial : HardwareSerial
+map()
+delay()
+begin()
+millis()
+analogRead(pin : uint8_t) : void
+digitalRead(pin : unit8_t) : void
+pinMode(pin : uint8_t, mode : uint8_t) : void
+digitalWrite(pin : uint8_t, val : uint_8t) : void
+operation2()

Ardu ino

Main
-mySensors : Sensors
-myServo : AdafruitPWMServoDriver
-pulselength : int
+setup()
+loop()

+Adafruit_PWMServoDriver()
+setOscillatorFrequency()
+setPWMFreq(SERVO_FREQ)
+setPWM()

Adafruit_PWMServoDriver

-currentSens : int
-servoSens : int
-potiSens : int
-fsrSensR : int
-fsrSensL : int
-fsrSensT : int
-flexSensR : int
-flexSensL : int
-flexSensT : int
+Sensors()
+getCurrent() : void
+getPoti() : int
+getServo() : void
+getFlex(flexPin : int) : void
+getFSR(fsrPin : int) : void
+sendtoMatlab() : void

Sensors

#potiPin
#servoPin
#currentPin
#FSR_t
#FSR_r
#FSR_l
#Flex_t
#Flex_r
#Flex_l
#SERVOMIN
#SERVOMAX
#SERVO_FREQ
+servonum : int

Setup

< < u s e > >
Adafruit_PWMServoDriver Library

< < u s e > >
Arduino Library

  

Figure 3.16: Class diagram of the Soft Robotic Gripper software

GUI Development

A GUI was developed to facilitate the recording and analysis of measured values during tests.

This o↵ers the possibility a serial connection between Matlab® and a Bluno Beetle, which

in turn receives the measurement data from the Bluno Nano on the gripper via bluetooth.

Figure 3.17: Soft Robotic Gripper Tool: A GUI to control the developed gripper

The functionality is that the available serial ports are scanned and the user can choose which

one to connect to. Before connecting, it is necessary to select the baud rate specified by the

terminal device. Once the baud rate is selected, the connection can be established and the

measurement mode is enabled. Here the user can start the measured value recording by
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pressing a button. If a test is finished, the recording is to be terminated manually. In the

background, MATLAB® now converts all raw data into interpretable values (see Sec. 3.4.1).

As seen in Figure 3.18, the user can now select which data he wants to plot. For example,

it is possible to display only the measured values of a finger, e.g. FSR thumb, Flex thumb

and the values of the current sensor. If one data set is to be viewed first and then another,

this is also possible thanks to the implemented ”Clear Figure” button.

Figure 3.18: Flow chart of the data acquisition

In this case, only the figure is reset, the measured values remain in the workspace. If a

plot is to be saved, this is possible via the ”Save Plot” button. This exports the figure via

WYSIWYG function of the“export fig”package [Alt21]. The file name will be automatically

filled with the involved fingers and the date of the measurement. Furthermore, it is also

possible to save the entire dataset, i.e. the entire workspace as a .mat file, if the “Save Data”

button is pressed. Also in this case the name of the saved file is provided with the date.

Finally, the workspace can be reset via the “Reset” button, so that a new measurement can

be started.

All MATLAB® files are provided in the digital appendix and can be found as “Soft Robotic

Gripper Tool”.

3.5 Fabrication

This chapter gives an insight on the fabrication process of the components of the soft robotic

gripper. First the characteristics of the fused deposition modeling (FDM), also simply called

3D-printing, are explained and then followed by the instructions on how to make the silicon

finger pads.
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Figure 3.19: Fabrication of the Soft Robotic Gripper with a 3D-Printer

3.5.1 3D-Printing

Due to reproduction of components and the further development the necessary steps are

documented in the following part.

After the design in Inventor (see Sec. 3.2) the .stl files were prepared for the print with

the Ultimaker Cura [Ult21]) slicer software. All parts were printed in a Creality Ender 3

(Shenzhen Creality 3D Technology Co., Ltd, Shenzen, China). The used materials were PLA

[AIO21] and Ninjaflex TPU [Nin16].

The most important configurations are presented in the following table.

Table 3.2: Main parameters used for 3D-Printing

Material PLA TPU

Temperature 198 °C 230 °C
Build Plate Temperature 60 °C 0 °C
Build Plate Adhesion Brim None

Layer Height 0.2mm 0.2mm

Print Speed 50 mm
s 30 mm

s

Retraction Yes No

Support Yes (depends on component) No

In addition to all CAD files, the Cura profiles are also provided in the digital appendix.
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3.5 Fabrication

3.5.2 Silicon Molds

In order to fabricate the soft finger pads, this section gives a brief overview on the procedure.

The mold design consists of two parts: the component to be used in the gripper and the

reusable mold press-fit part which snaps around the part. The material used is Wagnersil

20NF [Wag21], a silicone rubber that is liquid during processing and cures within approxim-

ately 90 minutes. This property makes it possible to create fine structures, such as a fluted

surface of the fingertips. The model for this procedure was the work of Ma et al. [MBD15]

and the Yale OpenHand Project [Yal].

Due to the hardness of Shore A20, a good adaptivity is expected, which will be tested in the

following chapter (Chap. 4).

Figure 3.20: Cleaning the silicone rubbers after curing

The mold CAD parts are also provided in the digital appendix.
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4 Practical Experiments

In the following, the developed underactuated soft robotic gripper will be tested for its func-

tionality and properties by means of practical test measurements. Initial tests will be carried

out on the functionality of the force sensors in the fingertips, the determination of the po-

sition by means of the flex sensors and finally the analysis of the data by measuring the

actuator current.

Inspired by the AHAP [LH+19], a framework which was developed to evaluate robotic hand-

s/grippers systematically, various objects will be grasped to determine the grasping capab-

ilities of the developed hand. Additionally to this, the sensor performance will be looked

into as well. The use of di↵erently shaped objects leads to the need to use di↵erent types of

grips. These are selected intuitively by the user by adjusting the position of the fingers in

relation to the thumb.

Additionally to the approach of Llop-Harillo et al. [LH+19], the interesting idea to evaluate

the performance of the gripper by Shintake et al. [Shi+16], where the grippers mass is com-

pared to the maximal load will be considered.

During the experiments, the control of the gripper or the servo motor was realized by means

of a potentiometer.

4.1 Test Measurements with the Implemented Sensors

4.1.1 Test Measurements with the FSR

For the first test of the force sensors, the gripper was left in its resting position and the

fingertips were pressed against a plane surface in the following order: thumb, finger r and

finger l. The gripper was then moved to the resting position. The according curve (Fig. 4.1)

for this was recorded using the MATLAB® GUI (see. Sec. 3.4.2). As an example the data

of the right finger is shown in Figure 4.1.
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4.1 Test Measurements with the Implemented Sensors

Figure 4.1: Example for the test measurements: FSR of the right finger

4.1.2 Test Measurements with the Flex Sensor

The flex sensors were tested in a similar manner to the FSRs. The gripper was placed in

the rest position and then the fingers were manually bent step by step. As before, first the

thumb, then the right and finally the left finger was processed. For the flexion of the fingers,

the cable was tightened manually. Figure 4.2 shows the comparison of the detected deflection

angle for each finger during a medium wrap.
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4.1 Test Measurements with the Implemented Sensors

Figure 4.2: Example for the test measurements: Flex sensors during a Medium Wrap

During the test, the gripper was continuously opened and closed.

4.1.3 Test Measurements with the Current Sensor

To verify the functionality of the current sensor a basic spherical power grip was performed

on a round object. This grip lead to the following curve.
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4.1 Test Measurements with the Implemented Sensors

Figure 4.3: Power Sphere grip to determine the functionality of the current sensor

Figure 4.4: Curve of the current of the servo motor when trying to grab an orange
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4.2 Test of the Grasping Capabilities

Since the orange is too heavy for the gripper, as previously determined, it was repeatedly

re-gripped in the experiment to create a high load on the motor.

4.2 Test of the Grasping Capabilities

The following section describes the procedure for testing the gripping capabilities of the

developed gripper. For this purpose, 12 objects were selected which, due to their geometry,

elicit di↵erent grips in order to be manipulated. The self-weight of the gripper is 216 g

Table 4.1: Objects used for to test the grasping capabilities

Object Mass Grasp Type Succesfull Grasp Comment

Egg 56 g yes Tripod
only lifted

from above

Tomato 11 g yes Lateral Pinch, Tripod, Palmar Pinch

Banana 163 g no - too heavy

Apple 206 g no -

Orange 336 g no -

Shot glas 112 g yes Lateral Pinch

Glass S 189 g no -

Glass M 285 g no -

Glass L 413 g no -

Plastic cup 7 g yes Tripod, Medium Wrap, Palmar Pinch

Pen 8 g yes Prismatic 2 Finger, Tip Pinch

only lifted

when over-

standing

Brush 2 g yes Prismatic 2 Finger, Tip Pinch

only lifted

when over-

standing

As an example the grasping of a tomato will be showed more in detail.

First, the gripper was aligned with the tomato (see Fig. 4.6a) and slowly closed by means

of the potentiometer control (see Fig. 4.6b); as soon as a stable grip became apparent, the

object was lifted and gently swiveled (see Fig. 4.6a). Since slippage occurred, for example,

with the glasses, visual monitoring was used in this case to readjust the control, i.e. to

further tighten the rope gear.
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4.3 Test of the Sensors during Grasping

a) b) c)

Figure 4.5: Soft Robotic Gripper performing the a) lateral tripod; b) lateral pinch and c) tripod
grasp

As seen in Figure 4.5, the tomato is elevated by using the inverse adduction/abduction to

change between Precision and Power Grasps.

Figure 4.6 provides an overview on sequences of a Medium Wrap. At first the gripper is

aligned then closed step by step until the grasp is tough enough to lift the plastic cup.

1) 2) 3)

Figure 4.6: Sequences of a Medium Wrap during the manipulation of a plastic cup, chronological
from 1) to 3)

4.3 Test of the Sensors during Grasping

Additional experiments were conducted to test the capabilities of the sensory system during

active grasping. Figure 4.7 shows the curve of the force during the attempt to lift a shot

glass from above. Since the gripper often slipped, it was always regripped.
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4.3 Test of the Sensors during Grasping

Figure 4.7: Curve of the Force of the FSR of the left finger while trying to grab a shot glass with
a Medium Wrap
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5 Evaluation of the Soft Robotic Gripper

The result of this work is a soft robotic gripper that enables the gripping of delicate, fragile

objects. By implementing a sensor system consisting of force sensors in the form of FSRs,

bending sensors and a current sensor, the system can be controlled. In addition to the

sensor system, silicone rubber pads were used to provide better friction and adaptivity to

the grasped object.

For measurement data analysis, a GUI was developed in MATLAB® to acquire, convert,

visualize and store the raw data.

In the following, the implemented functions and the results of the practical experiments will

be discussed further.

5.1 Evaluation of the Sensor Functionality

The preliminary tests of the sensor technology have shown that the sensors provide inter-

pretable data and thus fulfill their purpose. This applies to the force and bending sensors

and also the current sensor.

5.2 Evaluation of the Grasping Capabilities

The observations from the practical experiments show that the developed gripper has a good

degree of adaptivity, as it can be adapted to numerous geometries. In addition to adaptivity,

it also has a high degree of dexterity, with which it is even possible to manipulate small,

light objects such as a tomato. The following Table 5.1 shows the types of grasps according

to Feix et al. [Fei+16], which the developed gripper can handle.

61



5.2 Evaluation of the Grasping Capabilities

Tripod Lateral Tripod Palmar Pinch

Medium Wrap Prismatic 2 Finger

Figure 5.1: Prehensile capabilities of the Soft Robotic gripper

The practical experiments show that the manipulation of small, fragile objects works well,

but e↵ects like the roll-back phenomenon can occur (see Fig. 5.2).

62



5.2 Evaluation of the Grasping Capabilities

Figure 5.2: Roll-back Phenomenon during the grasp of a banana
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6 Discussion

In the following chapter the achieved results of development of the Soft Robotic gripper will

be discussed and successfully implemented requirements as well as points which can still be

optimized will be discussed. In addition, possible causes for measurement inaccuracies will

be discussed.

6.1 Design strengths and weaknesses

It was required to develop a Soft Robotic Gripper which is able to perform manipulation

on fragile objects. With the help of compliant joints, adaptive contact surfaces and an

underactuated tendon gear, this was achieved as far as possible.

This design allows, for example with the inverted adduction/abduction, the realization of

numerous grip types, such as the medium wrap, the pinch or the power sphere.

The practical experiments show that the manipulation of small, fragile objects works well,

but e↵ects like the “roll-back phenomenon” can occur. During the design process, care was

taken to ensure modularity so that components can be easily exchanged. Furthermore, the

complete gripper is designed for rapid prototyping, except for the electrical components, so

that it can be reproduced at will. In order to ensure as many types of gripping as possible.

The requirements for a low self-weight were taken into account as far as possible, but in the

end the gripper was marginally heavier than originally anticipated.

During the practical tests it was observed that the sampling rate or the speed of the serial

transmission is not very high. Thus, it is not possible to determine exactly how high the

sampling rate is, since all data is only retrieved via polling.

During assembly, it became apparent that a great deal of dexterity was required when knot-

ting the rope gear. When gripping heavy objects such as a large orange, it was noticed that

the actuator force is not su�cient. However, this is also due to the high friction within the

rigid bodies.
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7 Conclusion and Outlook

In addition to improving the current design, there are other points of high interest. For

example, an extension of the system that allows in-hand manipulation would be interesting.

Regarding the sensory capabilities, an analysis of the shear forces would also be of interest

to find the center of gravity of a grasped object.

With regard to the mechanical components, a refinement of the design is conceivable which,

on the one hand, further reduces the overall weight and, on the other hand, improves the fit

tolerances.

In view of the complicated assembly of the rope gear, it would be conceivable to integrate a

tensioning mechanism to be able to adequately tension the respective tendon of each finger,

like the one proposed by Gerez et al. [GL18]. Considering the rather simple electrical cir-

cuits, it would make sense to optimize the system. This includes the production of an own

application specific circuit board as well as the use of more precise electrical components.

For example, the measurement accuracy could be improved by using higher quality reference

resistors in the FSRs circuit to provide more precise contact forces. In addition, it would

be worth considering the use of measuring amplifiers (see [Int16]) and thus again increase

the precision of the sensors. However, since analog values are still processed, the use of a

analog-digital converter (ADC) with more than the standard 10-bit ADC of the Bluno Nano

could also be considered.

Another goal could be to implement a control loop that precisely regulates the force. In

combination with the position sensors and the current sensor it would be very interesting to

test if it is possible to design the control to detect when an object is detected with su�cient

force. This would make the manipulation much more active and further increase the level of

dexterity.

Regarding the evaluation process, procedures such as AHAP [LH+19] or, regarding anthro-

pomorphism, the procedure of Liarokapis et al. [LAK13] could be applied more completely.

The last mentioned is a framework to quantify the anthropomorphism of a robotic gripper

comparing the workspace of the finger phalanges and the workspace of the finger base frames,

whereas Llop-Harillo et al. focus on both, anthropomorphism and functionality. The pro-

cedure uses the numerical Grasping Ability Score (GAS) to quantify the anthropomorphism

and functionality of a gripper. This score is determined with the help of the publicly avail-

able Yale-CMU-Berkeley Object and Model Set and the grasp for the respective objects is

analyzed and evaluated.
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A Appendix

A.1 Complementary Sections

A.1.1 Calibration of the Flex Sensor

In order to obtain conclusions about the deflection angle with the help of the flex sensors, a

referencing was carried out. The flex sensor was clamped and gradually bent more (5° steps).
The inclination was adjusted visually by means of an angle disc, as seen in Figure A.1 from

0° to 110°. Apart from the referencing directly with the measured time tRC , the electrical

Figure A.1: Referencing of the flex sensor with an angle disc

resistances depending on the angle of deflection was measured (Fig. ??). The application of

the “Basic Fitting Tool” provided the following equation.

' “ 1.7232 ¨ 'bit ´ 31.873 (A.1)

Compared to the former results of the referencing with the RC-circuit, Equation 3.4, the

norm of residuals is slightly higher (rR “ 23.532 vs. rRC “ 17.242).
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Figure A.2: Calibration of the flex sensors with a MS8233C digital multimeter (MASTECH® ,
Plovdiv, Bulgaria)

A.1.2 Calibration of the Force Sensor

As previously described in Section 3.3.4, the force sensor was calibrated using water as the

reference weight. Here, the density of water at room temperature (296K) was determined

with ⇢H20 “ 997.532 kg
m3 . Based on the density the weight was calculated with g “ 9.806 65 m

s2

[Pau+14, p. 493]. As drawn in the technical principle (Fig. A.3), the FSR was loaded by a

a) a)

Figure A.3: Setup of the calibration by means of a beam with a flat contact surface for optimum
loading of the active zone of the FSR

bucket that was constantly filled with water.
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Figure A.4: Dorsal view of the calibration setup

A.2 Complementary Figures
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Figure A.5: Schematic drawing of the collateral ligaments and volar plate at the MCP joint [XT16,
p. 3488]

Figure A.6: Classification of gripping technologies in relation to di↵erent object geometries [Shi+16]
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Figure A.7: Taxonomy realized by the anthropomorphic hand by Xu et al. [XT16]
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A.3 Complementary Tables

A.3.1 List of Requirements
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A.3.2 Solution Concepts
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A.3.3 Evaluation Matrices
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A.4 Technical Drawings

 
 

Figure A.8
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 DIN ISO 13715

Allgemeintoleranzen

Werkst¯ckkanten  
 

DIN ISO 2768-mK
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List of Parts: Soft Robotic Gripper
BemerkungSachnummer/Norm-Kurzbez.BenennungEinh.MengePos.

PLA, 3D-printed Palm baseQty.11
PLA, 3D-printed Gear leftQty.12
PLA, 3D-printed Gear rightQty.23
PLA, 3D-printed MCP BaseQty.34
Ninjaflex TPU, 
3D-printed

 DIP HingeQty.35

Steel Routing Dowel 
Palm

Qty.56

PLA, 3D-printed Palm BacksideQty.17
Ninjaflex TPU, 
3D-printed

 MCP HingeQty.38

PLA, 3D-printed SpacerQty.49
PLA, 3D-printed Phalanx proximalisQty.210

PLA, 3D-printed Phalanx distalisQty.211
  Torsional SpringQty.112
PLA, 3D-printed LatchQty.113
  Feetech 

FT90M-FB Servo 
Motor

Qty.114

PLA, 3D-printed PulleyQty.115
ABS Servo DiskQty.116
PLA, 3D-printed DifferentialQty.117
  Spectra Symbol 

Flex Sensor
Qty.318

PLA, 3D-printed Motor MountQty.119
PLA, 3D-printed HandleQty.120
  PCB FSRQty.721
Wagnersil 
20NF, mold

 Pad_distQty.322

Wagnersil 
20NF, mold

 Pad proximalisQty.323

  Interlink FSR400 
Short Tail

Qty.324

PLA, 3D-printed Sensor PlateQty.325
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List of Parts: Soft Robotic Gripper
BemerkungSachnummer/Norm-Kurzbez.BenennungEinh.MengePos.

PLA, 3d-printed Toothgear RightQty.126
  Adafruit PCA9685Qty.126
Steel Routing DowelQty.1527
PLA, 3D-printed PCB FastenerQty.227
PLA, 3D-printed Phalanx 

proximalis thumb
Qty.128

PLA, 3D-printed PCB MountQty.228
PLA, 3D-printed Phalanx distalis 

thumb
Qty.129

  Bluno NanoQty.129
 ISO 7046-1  - M2,5 x 16 - 

4.8 - H
Countersunk 
head Screw

Qty.830

 ISO 7045 - M2,5 x 5 - 
4.8 - H

Phillips flat head 
screw

Qty.331

 ISO 7046-1  - M2,5 x 6 - 
4.8 - H

Countersunk 
head Screw

Qty.432

 EN ISO 7045 - M2 x 3 - 
4.8 - H

Countersunk 
head Screw

Qty.133

 ISO 7045 - M1,6 x 5 - 4.8 
- H

Phillips flat head 
screw

Qty.234

 ISO 7045 - M1,6 x 4 - 4.8 
- H

Phillips flat head 
screw

Qty.335

 ISO 7045 - M2 x 6 - 4.8 
- H

Phillips flat head 
screw

Qty.536
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