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Abstract

Statistical properties of image data are of paramount importance in the design of
pattern recognition technics and the interpretation of their outputs. Image simulation
allows quantification of method’s error and accuracy. In the case of SAR images, the
contamination they suffer from a particular kind of noise, called speckle, which does
not follow the classical hypothesis of entering the signal in an additive manner and
obeying the Gaussian law, make them require a more careful treatment.

Since the seminal work of Frery et al. (1997) a great variety of studies have been
made targeting the specification of statistical properties of SAR data beyond classical
assumptions. The G distribution family proposed by Frery has been proved a flexible
tool for the design of pattern recognition algorithms based on statistical modeling.
Nevertheless, most of such work does not consider correlation present in the data
as significant, which introduces an error in the model of particular regions of the
imagery. The autocorrelation function can represent the structure of sea waves and
the random variation made by the height and width of trees, along with the variability
introduced in forests by the variation of wind intensity. Using the roughness parame-
ter of the G family for target discrimination alleviates this modeling error, since it was
shown by Frery et al. (1997) that it characterizes heterogeneity in data. Classification
accuracy is then tied to parameter estimation, which in this case it has been proved
difficult, Lucini (2002), Bustos et al. (2002).

In this paper we review some of our own simulation techniques to generate SAR
clutter with pre-specified correlation properties, Flesia (1999), Bustos et al. (2001),
Bustos et al. (2009), and release a new set of routines in R for simulation studies based
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on such techniques. We give an example of the code versatility studying the change in
accuracy of non-parametric techniques when correlated data is classified, compared
with classification of uncorrelated data simulated with the same parameters. All code
is available for download from AGF’s Reproducible Research website, Flesia (2014).

1 Introduction

An imaging radar is a system for earth observation based on an emitting and receiving
device that operates in the range of microwaves. The system sends a pulse of electro-
magnetic energy, the targets reacts to this stimulus and, eventually, part of this energy
is returned to the system. This return signal, if available, is processed to infer about the
properties of the target.

Imaging radar systems constitute a major advance in remote sensing, since they
allow the obtainment of dielectric properties of targets independently of the availability of
natural illumination (they carry their own source of energy) and of the weather conditions
(microwaves are unaffected, to a great extent, by clouds, fog, rain, smog etc). Besides
these desirable properties, the bandwidth of the signal employed is able to penetrate
canopy and other masses.

The term synthetic refers to the fact that larger antennas and, thus, greater resolu-
tions, are obtained with processing techniques. These characteristics allow the use of
synthetic aperture radar (SAR) systems for continuous earth monitoring.

The statistical properties here presented are common to every image generated with
coherent illumination, as is the case of ultrasound, laser and sonar. The relevant infor-
mation present in these images is concentrated in the mean cross section. This quantity
is sensitive to many parameters that characterize the target, as dielectric constant and
surface roughness, among other. Each individual cell in the image (pixel) has this infor-
mation, but it is corrupted by the speckle noise, which is due to interference phenomena
in the reflected signal.

The demand of exhaustive clutter measurement in all scenarios would be alleviated
if plausible data could be obtained by computer simulation. The adoption of correlated
clutter model is significant since it is the correlation effects within the clutter which often
dominate system performance.

The purpose of this work is to impulse further the use of correlation in simula-
tion studies by designing a package in the free language R to simulate data with corre-
lated properties, making it available for download following the Reproducible Research
Paradigm. The simulation techniques we discuss here have been introduced in Bus-
tos et al. (2001) for the K distribution, and Bustos et al. (2009) for the G0 distribution.
The examples reported by the authors were implemented using proprietary software,
the IDL 5.1 development platform, with a set of auxiliary Fortran routines. Moreover
Bustos & Frery (2006) showed that IDL may present numerical instabilities, while Alm-
iron et al. (2010) conducted an analysis of platforms showing that R (freely available at
http://www.r-project.org) has excellent numerical performance. We consider thus an im-
portant contribution to the community of image processing researchers the availability
of R simulation routines that introduce correlation structure in data. Code have been
tested in linux and windows platforms.

We give an example of the code versatility showing that accuracy of non-parametric
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techniques change when correlated data is classified, compared with classification of
uncorrelated data simulated with the same parameters. Spatial correlation introduced
in the clustering paradigm as a priori information in the map of classes increments
accuracy of common nonparametric methods as k-means and ISODATA, when Iterated
Conditional Modes (ICM) is used to estimate the final map of classes. Classical methods
over correlated data gives high discrimination without the need of a priori information.
All code, examples plus simulation algorithms, is available for download from AGF’s
Reproducible Research website.

In the following section we will review the statistical properties of SAR data. In
section 3 we we review some of the techniques to simulate correlation properties, and in
section 4 we introduce the R package for simulation within an example of accuracy of
nonparametric classification.

2 The multiplicative model and the speckle noise

The multiplicative model has been widely used in the modeling, processing, and analysis
of synthetic aperture radar images. This model states that, under certain conditions the
return results from the product between the speckle noise and the terrain backscatter,
see Mejail et al. (2001) and references therein.

Based upon this model, we assume that the observed value in each pixel within this
kind of images is the outcome of the product of two independent two dimensional random
processes: one X modeling the terrain backscatter, and other Y modeling the speckle
noise. The former is many times considered real and positive, while the latter could be
complex (if the considered image is in the complex format) or positive and real (intensity
and amplitude formats). Therefore, the observed value is the outcome of the random
process defined by the product

Z(s1,s2) = X(s1,s2)Y(s1,s2) ∀ (s1, s2) ∈ Z2, (1)

where (s1, s2) denotes the spatial position of the pixel. We will say that the process ZI
is the intensity return process if ZI = |Z|2, and ZA is the amplitude return process if
ZA = |Z|.

The complex format has been used as a flexible tool for the statistical modeling of SAR
data. However, in several cases, complex data are not available or exists computational
limitations imposed by the imaging system that not allow us to work with them. As a
consequence, intensity format and amplitude format are more frequently considered in
the literature.

In many cases, it is easier to derive the statistical properties of the intensity data rather
than amplitude data. For instance, the intensity speckle noise modeled as the sum of
independent and exponentially distributed random variables has well know distribution,
the Gamma distribution, but this is not the case for amplitude speckle noise, since the
convolution of Rayleigh distributions has not closed from, Frery et al. (1997).

Multilook data results from taking the average over n independent samples Zr(s1, s2) =
X(s1,s2)Yr(s1, s2) 1 ≤ r ≤ n, this is

Ẑn(s1, s2) =
1

n

n∑
r=1

Zr(s1, s2) = X(s1,s2)Ŷn(s1, s2), (2)
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where Ŷn is the n-look average speckle, since X (the target9 does not vary from image
to image.

Following the description that Frery et al. (1997) made about the appropriated dis-
tributions for this model, complex speckle is assumed to have a bivariate normal dis-
tribution, with independent identically distributed components having zero mean and
variance 1/2. These marginal distributions are denoted here as N(0, 1/2), therefore,
YC,(s1,s2) = (Re(Y(s1,s2)), Im(, Y(s1,s2))) ∼ N2(0,1/2) denotes the distribution of a pair.

Multilook intensity speckle results from taking the average over n independent sam-
ples of YI,(s1,s2) = |YC,(s1,s2)|2 leading, thus, to a Gamma distribution denoted here as
YI,(s1,s2) ∼ Γ(n, n) and characterized by the density

fYI (y) =
nn

Γ(n)
yn−1e−ny y > 0, n > 0. (3)

The multilook amplitude speckle can be obtained as the square root of multilook intensity
speckle, leading to a square root of Gamma distribution denoted by YA(s1, s2) ∼ Γ1/2(n, n)
and characterized by the density

fYA(y) =
2nn

Γ(n)
y2n−1e−ny

2
y > 0, n > 0. (4)

Several distributions could be used for the backscatter, aiming at the modeling of
different types of classes and their characteristic degrees of homogeneity. For instance,
for some sensor parameters (wavelength, angle of incidence, polarization, etc), pasture is
more homogeneous than forest, which, in turn, is more homogeneous than urban areas.
Such distributions are, in the case of intensity backscatter,

a) a constant, β2, when the target area is homogeneous,

b) when the region is non homogeneous, the Gamma distribution, denoted byXI,(s1,s2) ∼
Γ(α, λ), and characterized by the density

fXI (x) =
λα

Γ(α)
xα−1e−λx, x > 0, α > 0, λ > 0. (5)

c) For extremely heterogeneous regions, the reciprocal of a Gamma distribution, de-
noted by XI(s1, s2) ∼ Γ−1(α, γ)and characterized by the density

fXI (x) =
1

Γ(α)γα
xα−1e−

γ
x , x > 0, −α > 0, γ > 0. (6)

In the case of the amplitude backscatter XA, the formula XA =
√
XI leads to the

following distributions,

a) a constant, β, when the target area is homogeneous,

b) when the region is non homogeneous, the square root of Gamma distribution,
denoted by XA(s1, s2) ∼ Γ1/2(α, λ), and characterized by the density

fXA(x) =
2λα

Γ(α)
x2n−1e−λx

2
, x > 0, α > 0, λ > 0, (7)
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c) For extremely heterogeneous regions, the reciprocal of a square root of Gamma
distribution, denoted by XA(s1, s2) ∼ Γ−1/2(α, γ), and characterized by the density

fXA(x) =
2

Γ(α)γα
x2α−1e−

γ

x2 , x > 0, −α > 0, γ > 0. (8)

The distribution of the return arises from the product Z = X.Y ; its density is the result
of the convolution of the densities of the backscatter and speckle noise . For instance, in
the homogeneous case, we consider XI a constant β2 and the multilook intensity speckle
XI ∼ Γ(n, n), then the return ZI can be modeled by a Gamma distribution, denoted by
ZI(s1, s2) ∼ Γ(n, n/β2). The following list summarize the distributions for the intensity
return

a) a Gamma distribution, denoted by ZI(s1, s2) ∼ Γ(n, n/β2), when the target area is
homogeneous,

b) for regions with heterogeneous texture, ZI is said obey the KI distribution, situation
here denoted as ZI(s1, s2) ∼ KI(α, γ, n), if its density is given by

fZI (z) =
2
(√

λn
)n+α

Γ(α)Γ(n)
z
n+α
2
−1Kn−α

(
2
√
λnz

)
z > 0, α > 0, λ > 0, n > 0. (9)

c) the G0
I distribution for extremely heterogeneous areas. This distribution, denoted

by ZI(s1, s2) ∼ G0
I(α, γ, n), is characterized by the density

fZI (z) =
nnΓ(n− α)zn−1

γαΓ(−α)(γ + nz)n−α
, z > 0, −α > 0, γ > 0, n > 0. (10)

The following list summarize the distributions for the amplitude return ZA

a) square root of Gamma distribution denoted by ZA(s1, s2) ∼∼ Γ−1/2(n, n/β), usada
para modelar áreas homogéneas,

b) for regions with heterogeneous texture, ZA is said obey the KA distribution, denoted
as ZA(s1, s2) ∼ KA(α, γ, n), with density given by

fZA(z) =
4 (λn)

n+α
2

Γ(α)Γ(n)
zn−α+1Kn−α

(
2z
√
λn
)

z > 0, α > 0, λ > 0, n > 0. (11)

where Kν is the modified Bessel function of the third kind and order ν.

c) the G0
A distribution for extremely heterogeneous areas, denoted by ZI(s1, s2) ∼

G0
I(α, γ, n), is characterized by the density

fZI (z) =
2nnΓ(n− α)z2n−1

Γ(n)γαΓ(−α)(γ + nz2)n−α
, z > 0, −α > 0, γ > 0, n > 0. (12)

In the following tables we summarize the above distributions for backscatter, return
and noise.
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Process Intensity
homog. heter. extre. heter.

Backscatter X β2 Γ(α, λ) Γ−1(α, γ)

Noise Y Γ(n, n)

Return Z Γ(n, n/β2) KI(α, λ, n) G0
I(α, γ, n)

Process Amplitud
homog. heter. extre. heter.

Backscatter X β Γ1/2(α, λ) Γ−1/2(α, γ)

Noise Y Γ1/2(n, n)

Return Z Γ1/2(n, n/β) KA(α, λ, n) G0
A(α, γ, n)

Table 1: Table of distributions for intensity and amplitude format n-look images

3 Simulation perspective: Inverse Transform Method

In formulating a stochastic model to describe a real phenomenon, there is always a
compromise between choosing a model that is a realistic replica of the actual situation
and choosing one whose mathematical analysis is tractable. That is, there is no payoff
in choosing a model faithfully conformed to the phenomenon under study if it were not
possible to mathematically analyze the model. However, the relatively recent advance of
fast and inexpensive computational power has opened up another approach-namely try
to model the phenomenon as faithfully as possible and then to rely on a simulation study
to analyze it.

Table 1 shows the full extent of the problem of simulation of textures under the
statistical model of SAR images. In general, there is a classical approach to the problem
of generating outcomes of correlated vectors, called the inverse transform method, Ross
(2012). A modification of such method, summarized in the following three steps, was
proposed by Flesia (1999) in her PhD thesis, and particularized for the constructions of
correlated Gamma vectors:

1. generating independent outcomes from a convenient distribution;

2. introducing correlation in these data;

3. transforming the correlated observations into the desired marginal properties.

The transformation that guarantees this is obtained from the cumulative distribution
functions of the data obtained in step 2 and that of the desired distributions. The reader
is invited to recall that if U is a random variable with cumulative distribution function FU
then FU (U) obeys a U(0, 1) law and, reciprocally, if V obeys a U(0, 1) distribution then
F−1U (V ) is FU distributed, Ross (2012). If the expressions for resulting correlations after
the transformation are available beforehand it is possible, in principle, to perform step 2
such that, after the transformation, the desired correlation structure is obtained.

In principle, there are no restrictions on the possible order parameters values that
can be obtained by this method, but numerical issues must be taken into account. Other
important point is that not every desired final correlation structure is mapped onto a
feasible intermediate correlation structure.
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3.1 Correlated extremely heterogeneous clutter

For the case of the G distribution the inverse transform method gives accurate results,
Bustos et al. (2009), and it is the method implemented in the toolbox. We directly generate
data that describes the return amplitude image, as an example.

Definition 1 We say that ZA, the return amplitude image, is a G0
A(α, γ, n) stochastic

process with correlation function ρZA (in symbols ZA ∼ (G0
A(α, γ, n), ρZA)) if for all

0 ≤ i, j, k, ` ≤ N − 1 holds that

1. ZA(k, `) obeys a G0
A(α, γ, n) law;

2. the mean field is µZA = E(ZA(k, `));

3. the variance field is σ2ZA = V ar(ZA(k, `));

4. the correlation function is ρZA((i, j), (k, `)) =
(
E(ZA(i, j)ZA(k, `))− µ2ZA

)
/σ2ZA .

The scale property of the parameter γ implies that correlation function ρZA and γ are
unrelated and, therefore, it is enough to generate a Z1

A ∼ (G0
A(α, 1, n), ρZA) field and then

simply multiply every outcome by γ1/2 to get the desired field.
The transformation method for this case consists of the following steps:

1. propose a correlation structure for the G0
A field, say, the function ρZA ;

2. generate a field of independent identically distributed standard Gaussian observa-
tions;

3. compute τ , the correlation structure to be imposed to the Gaussian field from ρZA ,
and impair it using the Fourier transform without altering the marginal properties;

4. transform the correlated Gaussian field into a field of observations of identically
distributed U(0, 1) random variables, using the cumulative distribution function of
the Gaussian distribution (Φ);

5. transform the uniform observations into G0
A outcomes, using the inverse of the

cumulative distribution function of the G0
A distribution (G−1).

The function that relates ρZA and τ is computed using numerical tools. In princi-
ple, there are no restrictions on the possible roughness parameters values that can be
obtained by this method, but issues related to machine precision must be taken into
account.

Examples shown in Bustos et al. (2009) were implemented in IDL 5.2 with auxiliary
Fortran routines. Our toolbox written in R reproduce their results and generate other
set of correlation functions.
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3.2 Correlated heterogeneous clutter

Mejail et al. (2003) have shown that the G0
A amplitude distribution constitutes a modeling

improvement with respect to the widespread KA distribution when fitting urban, forested,
and deforested areas in remote sensing data. Nevertheless, in the case of correlated de-
viates, restrictions are imposed by the transformation method. An important issue is that
not every desired final correlation structure ρZA is mapped onto a feasible intermediate
correlation structure τ .

Thus, for the simulation of heterogeneous texture,a faster and more accurate simu-
lation method was introduced in Flesia (1999) and discussed in Bustos et al. (2001). It
involves the use of convolution filters for the generation of gamma deviates, using inde-
pendent normal random variables as input. This is the method that is implemented in our
toolbox for several correlation structures. The procedure for generated heterogeneous
return data can be outlined as

1. Generate independent normal observations.

2. Choose the correlation as the square of a suitable function E, defined on Z2.

3. Calculate the mask θ that the convolution filter will use, such that θ ∗ θ = E.

4. Apply the convolution filter to the independent normal deviates, obtaining outcomes
from the processes with correlation E in each component.

5. Generate the correlated backscatter σ as the sum of the squares of each normal
deviate.

6. Generate independent random variables identically distributed as Γ(n, n), where n
is the desired equivalent number of looks, Y .

7. Return Z = σ.Y .

4 Experiments

4.1 Simulating a correlated SAR classification phantom

In practice both parametric and non-parametric correlation structures are of interest.
The former rely on analytic forms for ρ, while the latter merely specify values for the
correlation. Parametric forms for the correlation structure are simpler to specify, and its
inference amounts to estimating a few numerical values; non-parametric forms do not
suffer from lack of adequacy, but demand the specification (and possibly the estimation)
of potentially large sets of parameters.

In the following examples the techniques presented above will be used to generate
samples from parametric correlation structures.

4.2 Example 1

We simulated regions of KI distributed clutter with correlation structure given by three
different characteristic functions,
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Gaussian:
E(s) = exp(

−s2

2`2
) (13)

Exponential:
E(s) = exp(

|s|
`

) (14)

Sync
E(s) = exp(

sin(`s/2)

`s/2
) (15)

In Figure 1 we show a phantom with six classes, and simulations of Gamma and K

clutter with and without correlation, with the following parameters:

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
α 0.5 1 1.5 2 2.5 3
` 4 4 2 8 8 8

correlation Gaussian Sinc Gaussian Gaussian Exponencial Exponencial

Table 2: Parameters of clutter phantom depicted in Figure 1, panels (a) for Gamma and
(b) for KI distributed clutter, panels (d) for correlated Gamma and (e) for correlated KI .

4.3 Example 2

We simulated regions of G distributed clutter with correlation structure given by the
following model, which is very popular in applications. Consider L ≥ 2 an even integer,
0 < a < 1, 0 < ε (for example ε = 0.001), α < −1 and n ≥ 1. Let h : R −→ R be defined by

h(x) =

{
x if |x| ≥ ε,
0 if |x| < ε.

Let ρk be defined by

ρ1(k, j) =

{
h(a exp(−k2/`2)) ifk ≥ j,
−h(a exp(−j2/`2)) ifk < j.

ρ2(k, j) =

{
h(a cos(−k2/2`2)) ifk ≥ j,
−h(a cos(−j2/2`2)) ifk < j.

(16)

ρ3(k, j) =

{
h(a sin(πj/`2)) ifk ≥ j,
−h(a sin(πk/`2)) ifk < j.

ρ4(k, j) =

{
h(a sin(4πj/`2)) ifk ≥ j,
−h(a sin(4πk/`2)) ifk < j.

(17)

ρ5(k, j) =

{
h(sin(j`)) ifk ≥ j,
−h(sin(k`)) ifk < j.

(18)

and ρk(0, 0) = 1.
In Figure 1, two images of size 480× 480 each obtained assuming γ = 1.0 , n = 3 and

different values of a, `, α and correlation functions
Correlation function are different for each class, allowing to insert texture in the

classes. Non parametric classification of textured images has a higher accuracy than
non-correlated ones, since the classes have more differences. This simple example shows
that better classification schemes can be devised if correlation is taken into account.
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Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
α -2.5 -3 -3 -9 -9 -1,5
` 3 10 1 10 12 3

correlation Case 4 Case 2 Case 1 Case 8 Case 6 Case 4

Table 3: Parameters of G0
A distributed clutter depicted in Figure 1, panel (c), and correlated

clutter depicted in panel (f).

(a) Uncorrelated Gamma Vari-
able.

(b) Uncorrelated KI Variable. (c) Uncorrelated G0
A Variable.

(d) Correlated Gamma vari-
able.

(e) Correlated KI variable. (f) Correlated G0
A variable.

Figure 1: Simulated data base example. Panels (a) and (d) uncorrelated and correlated
Gamma field. Panels (b) and (e) uncorrelated and correlated KI field. Panels (c) and
(f),uncorrelated and correlated G0

A field. Parameters are given in Tables 2 and 3.

4.4 Synthetic data classification analysis

Unsupervised classification (also known as clustering) is a method of partitioning image
data to extract land-cover information. Unsupervised classification require less input in-
formation from the analyst compared to supervised classification because clustering does
not require training data. From this process, a map with k classes is obtained. There
are hundreds of clustering algorithms. Two of the most conceptually simple family of
algorithms are the model-based clustering and distance-based clustering. The model-
based approach consists in using certain models for clusters and attempting to optimize
the fit between the data and the model. In practice, each cluster can be mathematically
represented by a parametric distribution,and the entire data set is therefore modeled by
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a mixture of these distributions. The most widely used clustering method of this kind is
the one based on learning a mixture of Gaussians, with their parameters estimated au-
tomatically with the Expectation-Maximization algorithm. The distance based clustering
algorithms attempt to minimize an objective function over the set of possible cluster con-
figurations. Of this kind, the two most cited algorithms in the remote sensing literature
are k-means and ISODATA clustering algorithms, see Jensen (2005) and Mather (2004)
for details.

(a) Six classes phantom. (b) G0
A textures. (c) G0

A correlated textures.

Figure 2: Simulated data base example with parameters given in Table 4.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
α -1.5 -3 -5 -9 -11 -15
` 4 8 8 4 4 4

correlation Case 4 Case 2 Case 2 Case 8 Case 6 Case 4

Table 4: Correlated G0
A distributions considered in the phantom of Figure 2.

All these procedures consider spectral information as independent draws of the un-
derlying joint density. Spatial correlation is often reinforced by the use of a hidden
Markovian model on the labeling field. ICM (iterated conditional modes) is a procedure
that estimates the best clustering map that fits the hidden Markovian model, usually a
eight neighbors Potts model, see Frery et al. (2009), Gimenez et al. (2014) for details on
the method. Initial points can be given by the k-means algorithm or the EM-MG (mixture
of Gaussians) algorithm. Mejail et al. (2003) made an important Monte Carlo experi-
ment with simulated G0

A data, classifying the simulated return imagery with ICM using
as starting point a clustering map made over pointwise estimations of the roughness
parameter α of the G0

A . Parameter estimation is usually a sore spot when considering
G distributions, Lucini (2002) discussed the numerical problems of maximum likelihood
and robust estimation methods, and the poor accuracy of the moment method. Since we
want only to stress the importance of considering correlation properties in simulation
studies involving G0

A distributions, we report differences on clustering accuracy on non-
parametric methods, computed over simulated image returns with the same parameters
and different correlation properties.

In this section we show a small simulation example involving automatic pointwise
clustering algorithms, k-means, ISODATA, EM-MG as starting point of contextual ICM in
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the case of uncorrelated G0
A data, and without contextual ICM in the case of correlated

G0
A data.

(a) k-means on G0
A, kappa =

0.31
(b) k-means-ICM on G0

A,
kappa = 0.48

(c) k-means-ICM on corr. G0
A,

kappa = 0.86

Figure 3: Clustering maps over images in Figure 2.

Frery et al. (2009) reports a Monte Carlo experiment to assess the performance of the
pointwise and contextual classification procedures with training stage. We follow their
design; each replication consists of assuming a certain image class and transforming
classes into observations following the assumed G0

A and correlated G0
A models, produc-

ing clustering maps and validating them. We show only results for k-means algorithms,
giving the number of clusters k = 6 as prior information: k-means as a prior to ICM con-
textual estimation, as a way of incorporate spacial correlation estimation in the clustering
approach, see Frery et al. (2009), and k-means over the correlated model. Examples of
the images considered are shown in Figure 2. The parameters used in the simulation
are given in Table 3. The accuracy results of ISODATA and EM-MG are similar.

In the Figure 3 we observe two clustering results over uncorrelated data, with kappa
values significatively different (non overlapping 95% confidence intervals). Clustering
improves when ICM is applied, reinforcing the idea that spatial or contextual correlation
must be considered in the model for a better clustering accuracy. The third image is a
clustering map made with k-means over the correlated clutter, simulated with the same
parameter than the uncorrelated image, and different correlation properties per class,
see Table 3 for details.

The confusion matrix shown in Table5 shows the change in false positives and false
negatives when considering correlation. The correlation lag was chosen large for almost
all classes, which helped differentiate the textures from the independent G0

A data. Such
textures were simulated with correlation structure similar to real data as shown in Bustos
et al. (2009).

In order to compare how similar two classifications are, it is convenient to summarize
the data of the two images in a table. In Table 6 we show similarities between clustering
of correlated data using ISODATA and k-means. An overall measure of how similar
ISODATA clustering is to k-means clustering can be derived by identifying for each class
in classification 1 the class with maximum number of pixels in classification 2. The next
step is to calculate the overall percentage of these pixels. For the table below this would
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k-means over uncorrelated data
A-2 B-2 C-2 D-2 E-2 F-2

A-2 0.7368 0.2465 0.0167 0 0 0
B-2 0.3428 0.4716 0.1775 0.0064 0.0016 0
C-2 0.0860 0.3060 0.3666 0.1365 0.0782 0.0267
D-2 1.0000 0 0 0 0 0
E-2 0.9622 0.0378 0 0 0 0
F-2 0.0109 0.0673 0.1665 0.2315 0.2468 0.2770

k-means over uncorrelated data
A-2 B-2 C-2 D-2 E-2 F-2

A-2 1.0000 0 0 0 0 0
B-2 0 0.9878 0.0008 0.0115 0 0
C-2 0 0 0.8655 0.1345 0 0
D-2 0 0 0 0.9200 0.0800 0
E-2 0 0 0 0.2520 0.6957 0.0522
F-2 0 0 0 0 0.0179 0.9821

Table 5: Confusion matrix of methods k-means over correlated and uncorrelated data.

equate to:

similarity =
∑

max[nij ]
100

N
(19)

A-2 B-2 C-2 D-2 E-2 F-2 Max %Err
A-1 36224.00 947.00 0.00 159.00 0.00 63.00 36224.00 3.13
B-1 3234.00 23962.00 0.00 1.00 0.00 10371.00 23962.00 36.22
C-1 0.00 0.00 20327.00 0.00 111.00 0.00 20327.00 0.54
D-1 14.00 0.00 0.00 51772.00 211.00 0.00 51772.00 0.43
E-1 0.00 0.00 0.00 17.00 43284.00 0.00 43284.00 0.04
F-1 21688.00 95.00 0.00 17280.00 638.00 2.00 21688.00 45.37

Max 36224.00 23962.00 20327.00 51772.00 43284.00 10371.00
%Err 40.77 4.17 0.00 25.22 2.17 0.62

Table 6: ISODATA clustering is 85.62 % similar to k-means clustering. k-means clustering
is 80.7 % similar to ISODATA clustering. Overall agreement 83.1591 %. Accuracy 0.92.
Kappa 0.71

5 Conclusion

In this work we revised several methods for the simulation of correlated clutter with de-
sirable marginal law and correlation structure. These algorithms allow the obtainment of
precise and controlled first and second order statistics, and they have been implemented
using standard numerical tools in the free software R. The adequacy of the algorithms for
the simulation of several scenarios has been assessed within a clustering simulation study
involving the use of correlation. Kappa coefficient and confusion matrix have been used
as a objective evaluation criteria. The results show that contextual modeling improves
significatively the accuracy of the classifier, including correlation as a prior hypothesis on
the labeling field or including correlation in the reflectivity data. To continue this work,
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we are planning a more ambitious Monte Carlo simulation involving classification based
on the roughness parameter using correlated data. In our small example introduced
here, correlation help separate classes with close mean value, since the distributions are
intrinsically different.
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