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Abstract—Human infertility is considered a serious disease of
the reproductive system that affects more than 10% of couples
worldwide, and more than 30% of reported cases are related to
men. The crucial step in evaluating male infertility is a semen
analysis, highly dependent on sperm morphology. However, this
analysis is done at the laboratory manually and depends mainly
on the doctor’s experience. Besides, it is laborious, and there is
also a high degree of interlaboratory variability in the results.
This article proposes applying a specialized convolutional neural
network architecture (U-Net), which focuses on the segmentation
of sperm cells in micrographs to overcome these problems. The
results showed high scores for the model segmentation metrics
such as precision (93%), IoU score (86%), and DICE score of
93%. Moreover, we can conclude that U-net architecture turned
out to be a good option to carry out the segmentation of sperm
cells.

Index Terms—sperm cell micrographs, image segmentation, U-
net architecture, deep learning

I. INTRODUCTION

Infertility is a disease of the reproductive system; in men,

this disease is diagnosed when sperm cells do not allow a

woman to conceive a child or delay pregnancy after one or

more years of regular unprotected sexual intercourse [1]. A

crucial step in diagnosing male fertility is based on examining

the morphology of the sperm cells, the main parts of which

are the head, midpiece, and tail. In practice, the results derived

from manual morphological analyses of sperm cells are highly

dependent on laboratory technicians’ experience. Furthermore,

this manual evaluation is laborious, non-repeatable, time-

consuming, and there is a high degree of interlaboratory

variability.

Given this context, it is important to design accurate,

automatic, and efficient artificial intelligence (AI) systems to

improve the numerical analysis in sperm cell images. The

morphology of sperm cells plays an essential role in the

numerical analysis of these, which has aroused great interest

in male infertility diagnosis. According to the World Health

Organization (WHO) [2], there are abnormal categories in the

morphology of sperm cells, which differ in shape, size, and

texture in a very complicated way, making the task even more

difficult for the expert [3].

This paper aims to implement and calibrate an advanced

deep convolutional neural network architecture (U-Net) in

the context of sperm cell segmentation. From the results, we

can conclude that this architecture can segment microscopic

images of sperm cells with good precision.

This article is organized as follows: In Section II, we

review the research work in the area, focusing on scientific

articles and commercial applications whose main objective is

the segmentation of sperm cells. The materials and methods

are described in detail in Section III, including the digital mi-

crograph dataset, the U-Net architecture, our proposal, and the

evaluation metrics. In Section IV, we present the experiments,

results, and discussion. Finally, the conclusions can be found

in Section V.

II. RELATED WORKS

For sperm cell segmentation tasks, conventional machine

learning algorithms have been adopted to alleviate time-

consuming work and improve segmentation performance. Al-

though several approaches have been established to analyze

sperm cells in animals, only a few approaches exist for the

morphological segmentation of sperm cells in humans. We

briefly review some approaches related to the morphological

segmentation of sperm cells.

Yang [4] proposed a flagellum tracking algorithm to obtain

flagellar movement patterns. Its framework aims to provide

both head trajectories and flagellar movement patterns to

assess sperm cell motility quantitatively. It distinguishes their

work from other existing methods that analyze the motility

of sperm cells based simply on the head’s trajectories. Later,

Van Raemdonck [5] implemented a computer-aided sperm cell

analysis algorithm to accurately and efficiently analyze these

cells’ morphology. First, the authors remove the background,

then cell segmentation is successfully used to sort cells into

motile and immobile cells first, and motile cells sort into

normal and abnormal cells second.

In other work, Medina et al. [6], presented an approach

to sperm cell segmentation in micrographic images based

on the combination of two well-known methods: background
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subtraction based on the Lambertian reflectance model and

morphological operations. The results showed a good perfor-

mance in their set of images due to the presence of similar

antecedents. However, the results also showed some issues in

the segmentation due to the complexity of the images. Next,

Mostajer [7] briefly reviewed the segmentation techniques of

2D grayscale images of sperm, and histogram-based threshold-

ing algorithms are studied in detail. The authors propose that

the combination of a non-linear transformation pre-processing

with the histogram-based threshold for segmentation and de-

tection of sperm cells.

In 2017, Chang [8] introduced a gold standard dataset,

SCIAN-MorphoSpermGS, for the analysis and evaluation of

the morphological classification of sperm cell heads. In par-

ticular, there was no open and free dataset available before

this gold standard dataset was made public. It consists of

1854 images of sperm heads labeled by three Chilean experts

in the reference domain specified by the WHO guidelines.

Chang further proposed a two-phase analysis, CE-SVM, for

the morphological classification of sperm cell heads in the

SCIAN data set. In the first phase, a classifier is trained to

distinguish the non-amorphous category from the remaining

four categories. In the second phase, four classifiers are trained

for the four amorphous categories, where each classifier aims

to distinguish the specific non-amorphous category from the

amorphous category.

From a different direction, Shaker [9] published the Sperm

Cell Head Morphology (HuSHeM) data set and proposed an

adaptive dictionary learning (APDL) based approach, which

extracts certain square patches from the images of the head of

these cells, to train dictionaries to recognize those categories

of heads. In the evaluation stage, the square patches are

recreated with the dictionary. The minimum general error

among those of all the categories is calculated to identify

the best head category. Recently, with the rapid development

of deep learning techniques, Riordon [10] used a VGG16

(FT-VGG) architecture for the morphological classification of

sperm cell heads.

Next, Nissen [11] used deep convolutional neural networks

for the task of sperm cell segmentation and object detection.

He was limited by computational time and precision demands

in this task, which made training networks with many clus-

tering layers difficult. In this work, we explore using full

image training and upsampling of network outputs to increase

performance to mitigate both issues. Afterward, Reza [12]

presented a new framework for segmenting the head of sperm

cells. The proposed method efficiently segments them into

different shapes and sizes. Unlike classical learning methods

that segment heads with residual parts of mid-pieces, their

approach has precise detection and segmentation of sperm cell

heads.

Finally, after reviewing the literature, we can realize that

many of the investigations work on public data sets and with

little noise, so their models operate without much difficulty

and do not have an ideal architecture to perform the correct

segmentation of sperm cells. For this reason, in this work, we

used a single set of images where a considerable number of

them have a strong presence of noise, different illumination

conditions, and stains. Since calibrating an image processing

algorithm is complicated, we propose a model based on con-

volutional neural networks using a U-Net architecture widely

used in medical image segmentation.

III. MATERIALS AND METHODS

Deep learning is a subtype of Machine Learning and belongs

to the broader category of Artificial Intelligence, and such

learning gets its name because it uses deeper networks com-

pared to other Artificial Intelligence methods. One of the most

common types is the Convolutional Neural Network, which is

used for many computer vision tasks.

A. Dataset

The dataset contains 648 images in RGB format with

size of 2452 × 2056 pixels (see Fig. 1). The images were

acquired with an Axio Carl Zeiss optical microscope using 10x
eyepieces and a 100x objective, in addition to an AxioCam

ICc5 camera with 0.63x zoom. A considerable number of

images in the dataset present a very noticeable noise, different

degrees of illumination, and spots, making the segmentation

process difficult with conventional machine learning methods;

some examples of these images can be seen in Figure 2.

Fig. 1. Sample images of the dataset. As is visible, the images are high-
resolution. It can also be seen that the shots were made with sharpness in a
large number of these ones.

Moreover, as can be seen in Figure 3, we have binary

masks that represent the ground-truth of the dataset, which

were generated by first labeling each sperm cell in the image,

next create a .json file, and finally, generate the binary masks

for all the images in the dataset.

B. U-Net Architecture

This architecture makes its appearance in 2015, producing

outstanding results in different segmentation problems with

medical images. It is of the encoder-decoder type using a total
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Fig. 2. Example of images from dataset with high presence of noise, different
degrees of illumination and spots.

Fig. 3. Examples of Ground Truth Masks manually generated through a
previous labeling in each sperm cell belonging from dataset.

of 23 convolutional layers, as can be seen in Figure 4. Its use

is not restricted only to medicine because it can solve all kinds

of segmentation problems [13].

The encoder stage is made up of blocks with max-pooling

that reduces the resolution by half and double the channels.

The decoder stage uses convolution transposed blocks that

reverse the process. The more depth, the more significant

the reduction, being 1/16 of the proposed architecture en-

trance. The remarkable thing about this architecture is that

it concatenates the input, before the reduction, with the output

after the increase operation, managing to maintain the spatial

information, which would otherwise have been lost.

As it can be seen in Figure 4, the symmetry of the

architecture gives it a U-shape, which is why it is called U-Net.

Its two parts are distinguished: the encoder on the left side and

Fig. 4. U-Net Architecture. Figure extracted from [14].

the decoder on the right. They call the encoder the contraction

path since the size is reduced due to the subsampling layers,

and the expansion path decoder, in which the interpolations are

carried out that progressively increase the size of the image.

Likewise, five levels can be distinguished on each path that

will be differentiated by their output size.

According to [15], among the advantages offered by the

U-Net model for segmentation tasks, three important aspects

stand out:

• The model allows the use of global location and context

at the same time.

• U-Net works with very few training samples and provides

better performance for segmentation tasks.

• The U-Net network architecture provides an end-to-end

pipeline that processes the entire image in the forward

pass and directly produces segmentation maps.

C. Sperm Cell Segmentation with U-Net

Given this context, we propose to work on a convolutional

neural network architecture that has never been applied to

sperm cell segmentation, which is the U-Net. As shown in

Figure 5, convolution is the core of the U-Net architecture

consisting of two 3 × 3 convolutions, each with a batch

normalization and ReLU activation. All convolution layers in

this function use the same number of filters.

Due to hardware limitations, the image input size is resized

to 256 pixels, and the number of filters is [16, 32, 48, 64] for

each level. The decoder loops over the number of filters. Inside

the loop, a 2 × 2 top sampling layer is applied. After the

decoder part is completed, a 1×1 convolution is applied with

the sigmoid activation function. Finally, it gives the final output

in the form of a binary mask.

D. Evaluation Metrics

The Jaccard index [16] (also known as intersection over

union, IoU) and the DICE similarity score [17], were used to

assess the segmentation quality.

• Intersection over Union (IoU): represents the intersection

of the image segmentation result and the ground-truth
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Fig. 5. U-Net architecture proposed in sperm cell segmentation. Where you
can see the application of convolutions (3x3), followed by max-pooling and
up-convolution operations in each filter (16, 32, 48, 64) corresponding to each
level of the architecture.

divided by the union of the image segmentation result

and the ground-truth, and is defined in Equation 1.

IoU =
|SR ∩GT |

(|SR|+ |GT | − |SR ∩GT |)
(1)

where SR is the result of the segmentation of the images

and GT are the actual images of the original image

tagging.

• The DICE similarity: is defined by Equation 2, this score

compares the knowledge between the image segmentation

result and the ground-truth.

DICE =
2|SR ∩GT |

(|SR|+ |GT |)
(2)

The ideal situation for the segmentation result is that SR and

GT are completely coincident: IoU = 1, DICE = 1. The closer

IoU and DICE are to 1, the better the image segmentation

result.

IV. EXPERIMENTS AND RESULTS

Different experiments have been carried out (see Table 1,

Table 2, Table 3, Table 4), corresponding to hyperparameters

settings established in the process of optimizing sperm cells

segmentation. The dataset was divided as follows: 80% for

training, 10% for validation, and 10% for testing. The best

scores for IOU and DICE were achieved with a batch size of

4, a learning rate of 3e-4 and 30 epochs.

In these tables we can see how the results obtained in the

segmentation of sperm cells have been progressively improved,

in the first results we worked with a learning rate that did

not help the network to achieve good segmentations in our

architecture, for the stages following and after many tests, it

was possible to find an adequate and optimal learning radius

for our architecture, showing good segmentations as a result,

already in the last stages of the experimentations, the data

augmentation technique is applied to our dataset, from this

way obtaining substantial improvements in our segmentations.

Data augmentation is the artificial generation of data em-

ploying disturbances in the original data, which allows us to

increase both in size and diversity of our training data set. In

computer vision, this technique became a standard for regu-

larization, combat overfitting, and improve the performance of

CNNs.

In our experiments, we obtained five more images for each

original image in the dataset (see Fig. 6) by applying the

following augmentation techniques: (i) CenterCrop crops an

image from the center, which gives equal padding on both

sides vertically and horizontally; (ii) RandomRotate90, lets

the image rotate 90 degrees randomly; (iii) GridDistortion,

generates a degree of distortion in the image with a given

probability; (iv, v) HorizontalFlip and VerticalFlip, flips the

given image horizontally and vertically, respectively; randomly

with a given probability.

Original image Center Crop Random Rotate 90

Grid Distortion Horizontal Flip Vertical Flip

Fig. 6. Example of the data augmentation technique applied to our sperm
cells dataset.

Thanks to these techniques, the dataset could be increased

from 648 to 3888 images. The process also allowed to generate

the ground truth corresponding to each image obtained through

the same technique. Additionally, it allowed to significantly

improve the segmentation coefficients IoU and DICE, which

achieved better scores, thus allowing us to obtain better results

in the segmentation of our sperm cells.

The experimental results were then compared with the

annotated images (ground-truth), as shown in Figure 7. It

can be seen that the segmentation results to our model after

applying data augmentation results in better scores in both the

IOU and the DICE, unlike a segmentation without applying

this technique.

The evaluation indicators, IoU and DICE, were used as

results of the quantitative analysis. Figure 9 shows the IoU

and DICE curves of the network model training process; it

can be seen that IoU and DICE are stable after approximately

30 epochs.

In Table I, we can also observe that in the test set, IoU

reached a score of 66% and the DICE a score of 80%. On

the other hand, in Table II we can see that in the test set, IoU

reached a score of 88% and the DICE a score of 93%, which

are a good scores for our problem. Both scores were achieved
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Fig. 7. Comparison with the predictions obtained through the U-net archi-
tecture in the dataset without data augmentation

due to a gradual adjustment of the hyper-parameters and data

augmentation techniques. In the test set we can notice that for

our model it is already being easy to learn, since we can see

that the model is recognizing in the images those shapes that

resemble a spermatic cell and we can see this in Figure 8.

Therefore, it can be concluded that the results improved when

using the data augmentation technique.

Finally, the loss function used was binary cross entropy,

observing both the training data and the test data tend to

converge as shown in Figure 10 . Therefore, we note that it is

not necessary to overfit the data. Thus achieving a precision

of 93% in the training set and 86% in the test set, considered

to be good scores for our work, these can be seen in Table III

and Table IV.

TABLE I
SEGMENTATION RESULTS OF DIFFERENT TRAINING EXPERIMENTS FOR

THE DATASET WITHOUT DATA AUGMENTATION

IoU DICE
Hyper-parameters Train Val Test Train Val Test

Epochs 20
Batch 4 0.19 0.18 0.18 0.31 0.30 0.30
Lr 3.00E-4

Epochs 30
Batch 4 0.45 0.31 0.33 0.62 0.48 0.50
Lr 3.00E-4

Epochs 40
Batch 4 0.59 0.46 0.47 0.75 0.63 0.64
Lr 3.00E-4

Epochs 50
Batch 4 0.66 0.62 0.60 0.80 0.77 0.75
Lr 3.00E-4

It worth mentioning that in a small number of images, the

Fig. 8. Comparison with the predictions obtained through the U-net archi-
tecture in the dataset with data augmentation

TABLE II
SEGMENTATION RESULTS OF DIFFERENT TRAINING EXPERIMENTS FOR

THE DATASET WITH DATA AUGMENTATION

IoU DICE
Hyper-parameters Train Val Test Train Val Test

Epochs 10
Batch 4 0.58 0.56 0.54 0.73 0.71 0.70
Lr 3.00E-4

Epochs 20
Batch 4 0.69 0.63 0.61 0.82 0.77 0.75
Lr 3.00E-4

Epochs 30
Batch 4 0.86 0.82 0.80 0.93 0.90 0.89
Lr 3.00E-4

TABLE III
PERFORMANCE METRICS WITHOUT DATA AUGMENTATION

Precision Recall F1-Measure
Hyper-parameters Train Val Test Train Val Test Train Val Test

Epochs 20
Batch 4 0.82 0.68 0.69 0.63 0.67 0.65 0.71 0.67 0.68
Lr 3.00E-4

Epochs 30
Batch 4 0.87 0.81 0.88 0.79 0.51 0.52 0.83 0.64 0.65
Lr 3.00E-4

Epochs 40
Batch 4 0.92 0.79 0.80 0.85 0.69 0.68 0.88 0.74 0.74
Lr 3.00E-4

Epochs 50
Batch 4 0.92 0.81 0.81 0.86 0.71 0.69 0.89 0.76 0.75
Lr 3.00E-4
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Fig. 9. Comparison between the IoU and DICE curves of the network model
in the data set in a total of 30 epochs.

Fig. 10. Graph of Binary Cross Entropy Loss Function

segmentation did not occur so effectively due to the rolled

shapes of the sperm cells, low illumination, and presence of

spots (see Fig. 11) around 11% of the images obtained as

a result of segmentation using the U-Net architecture did not

obtain the results as expected, the remaining percentage (89%)

achieved excellent segmentation results.

TABLE IV
PERFORMANCE METRICS WITH DATA AUGMENTATION

Precision Recall F1-Measure
Hyper-parameters Train Val Test Train Val Test Train Val Test

Epochs 10
Batch 4 0.85 0.83 0.82 0.78 0.72 0.72 0.81 0.77 0.77
Lr 3.00E-4

Epochs 20
Batch 4 0.91 0.86 0.85 0.83 0.76 0.75 0.87 0.81 0.80
Lr 3.00E-4

Epochs 30
Batch 4 0.93 0.87 0.86 0.86 0.77 0.76 0.89 0.81 0.81
Lr 3.00E-4

Fig. 11. Set of examples of the proposed segmentation, which results have
some deficiencies.

V. CONCLUSIONS

The results obtained suggest that the U-Net architecture

presents a good option for sperm cell segmentation tasks.

As shown on the values obtained in both IoU and DICE,

these are very acceptable for segmentation in sperm cells.

Additionally, with this architecture, it has also been possible

to demonstrate that it is much easier to segment images

captured under different light conditions with noise and spots.

It is worth noticing that a deep learning technique such as a

convolutional neural network was applied to a dataset that no

one has manipulated.

This model could also be improved by appropriately mod-

ifying the hyper-parameters used during the training process.

On the other hand, it would be advisable to consider other

techniques for increasing data, which help to improve the

segmentation of sperm cells. As future works, we consider

working with more filters in the U-Net architecture to see how

it could improve segmentation in sperm cells.
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