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Abstract 

The Effects of Cueing on Sit to Stand Transfers in Parkinson Disease 

Problem Statement: Individuals with Parkinson Disease (PD) often experience difficulty 

transferring from sit to stand (STS). Current evidence suggests cues which promote an external 

attentional focus improve gait and transfers for individuals with PD. However, this research 

utilizes cues which are difficult to replicate in clinical or natural environments making the 

findings difficult to generalize or implement. Purpose: The primary purpose of this study is to 

determine the effect of 3 different explicit cues on STS for individuals with PD. Additionally we 

sought to determine if, in this population, a relationship exists between latency of movement 

initiation and postural sway in early standing, changes in joint angle between conditions and 

postural sway in early standing, and cue provided during the transfer and postural sway in early 

standing. Procedures/Methodology: Thirteen individuals in both the experimental and control 

groups participated in this cross-over design study. Both groups completed trials of self-initiated 

uncued STS transfers. Those in the experimental group also completed trials of STS transfers in 

3 conditions: with an external attentional focus of reaching to targets, with an external attentional 

focus of concurrent modeling, and with an explicit cue for an internal attentional focus. Data was 

collected by trained testers and utilized valid and reliable body worn inertial measurement unit 

sensors. ANOVAs were used to compare performance between conditions and to the 

performance of the healthy control group. Bonferroni corrections were completed to reduce the 

likelihood of accepting a false positive. Results: Both cues that elicit an external attentional 

focus improved motor control during the sit to stand transfer. However, only modeling was able 

to improve both motor control and postural control. Cueing that promoted an internal attentional 

focus resulted in decreased motor control and postural control. Additionally, a moderate positive 



  

correlation was found between standing taller than typical and postural sway. Clinical 

Implications: Our results provide evidence for clinicians to better tailor treatment 

methodologies to the needs of individuals with PD. Optimal cueing can be utilized as 

compensations that reduce caregiver burden and increase independence of individuals with PD.  
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CHAPTER 1: INTRODUCTION 

This dissertation study provides a fuller understanding of the effects of external cueing on 

sit to stand (STS) transfers for individuals with Parkinson Disease (PD). The introduction chapter 

presents the problem statement with relevant background information and justification for 

relevance of topic selection. Chapter 2 provides a thorough literature review of applicable 

theories and current evidence. Chapter 3 provides a detailed outline of methodology. Chapters 4, 

5, and 6 include 3 fully completed manuscripts prepared for journal submission, which provide 

results of this dissertation study within clinical context.   

 

1.1 Introduction to the Chapter 

This chapter presents an overview of this dissertation study beginning with the problem 

statement and justification for selection and completion of this project. The research objectives 

and questions are identified, hypotheses proposed, and practical applications of the findings 

discussed. Finally, key terms, abbreviations, and operational definitions used throughout this 

dissertation study are defined.  

  

1.2 Problem Statement 

Individuals with PD often struggle with transferring from STS, due to multiple factors 

such as bradykinesia, rigidity,1 and a lack of automaticity.2 Current evidence suggests that cueing 

to promote an external attentional focus may improve gait and transfers for individuals with 

PD.3-8 However, current cue research related to transfers within PD8,9 utilize cues that are 

difficult to replicate in either the clinic or the patient’s natural environment making the findings 

difficult to generalize or implement. Past studies have used audiovisual cues such as a small 
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yellow box on a computer screen that represents the patient’s center of mass9 or an 8 cm x 8 cm 

light on a wall at 1.5m distance at eye height.8 During continuous tasks, like gait, individuals 

with PD have the ability to adapt their movements to the external cues provided over time. 

However, it remains unclear if the findings related to gait can be extrapolated to discrete tasks 

like STS. With discrete tasks, the individuals may not have the benefit of improving their 

performance over time to the external cues.  

 

1.3 Relevance and Significance 

According to a 2010 epidemiology study, an average of 1.6% of Medicare beneficiaries 

have PD.10 However, in hundreds of counties in the United States, prevalence of PD reaches 

more than 13% of Medicare beneficiaries.10 In 2013, it was estimated that the healthcare cost for 

individuals with PD in the United States was $14.4 billion, approximately $8.1 billion greater 

than their healthy counterparts.11 This number is projected to increase at a high rate consistent 

with our country’s aging population.11  

Kowal, et al. compiled data from multiple national databases to allow for a comparison of 

the healthcare needs for individuals with PD to a similar population without PD.11 It was 

estimated that, in 2010, there were approximately 630,000 people living with a diagnosis of PD 

in the United States. A sample of 630,000 Americans without PD were used to create a 

comparison that would allow for a fuller understanding of the impact of PD. Kowal, et al.’s 

results indicate that the population with PD is expected to require an additional 801,000 days of 

inpatient hospital care, 1.26 million physician visits, 31,000 emergency room visits, and 26,000 

days of hospice care. 11Additionally, it would be expected that an additional 96,000 individuals 
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in the PD group would require 24 hour nursing home care beyond the 8,000 expected in the 

without PD population.11  

Studies have indicated that greater amounts of time spent in sedentary tasks by older 

adults, regardless of time spent in active tasks, was highly correlated with those individuals 

requiring additional assistance for completion of activities of daily living.12 Individuals with PD 

experience bradykinesia and rigidity1 that can make moving more difficult and burdensome.  

Accordingly, it has been found that even in mild to moderate stages of PD, individuals spent 

75% of waking hours in sedentary activities.13 Lack of automaticity has been suggested to be the 

cause of the bradykinesia experienced by those with PD,2 which may lead to an increase in 

sedentary lifestyles. As a result, provision of external cueing has been theorized to improve 

motor capabilities of those with PD.    

Health care professionals, family members, and caregivers of individuals with PD could 

benefit from the identification and translation of knowledge related to easily implemented 

strategies to improve the STS transfer of individuals with PD, such as external cues. Decreasing 

the burden on caregivers through the use of easily applied compensatory mechanisms to improve 

mobility could greatly reduce the number of individuals with PD living in nursing homes. In 

addition, increasing the independence of individuals with PD during STS transfers may reduce 

the risk of caregiver and patient injury.  

The impact of many different types of cueing on gait for individuals with PD has been 

well studied.4-7,14-17 Several of these studies reported on the result of auditory rhythmic cues on 

gait.4-7,15,17,18  Rubinstein et al, reported on the results of verbal instruction prior to gait that had 

either an internal or external attentional focus. Others reported on the impact of visual cueing on 

gait through the use of tape or cardboard lines on the floor or a rhythmic flashing light.7,15-17,19,20  
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 However, less evidence is available regarding non-gait related continuous tasks, such as 

writing and visual tracking. Currently, no systematic reviews or meta-analyses have been 

identified that focus on the impact of non-gait related external cueing within the PD field. The 

few studies available focus on continuous upper extremity tasks,21 the effect of auditory cues and 

visual cues on sequencing for individuals with PD,18 or the effect of visual and auditory cues on 

writing.22,23 In addition, none of these studies specifically looked at the effect of cues that 

increase the internal attentional focus of the participants.  

Likewise, limited evidence is available regarding the effect of cueing on discreet tasks, 

which have a definitive start and end. Because individuals with PD often lack automaticity and 

display motor patterns typical to those learning a new task even when completing familiar tasks,2 

the ability to integrate and adapt to external cues during continuous tasks may be easier than 

discrete tasks for individuals with PD.  As a result, it may not be appropriate to generalize the 

results of studies which have evaluated the efficacy of cueing during continuous tasks to the 

significantly less studied discrete tasks. The proposed study would help physical therapists to 

better understand the most effective type of cueing to use during STS.  

  

1.4 Research Questions 

Research Question 1:  

Which type of cue, external attentional focus of reaching to targets, external attentional focus of 

concurrent modeling, or an explicit cue for an internal attentional focus, will result in the most 

normalized STS transfer for individuals with PD? 

Research Question 2: Is there a relationship between the latency of movement initiation and 

postural sway noted in the first 30 seconds of stand? 
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Research Question 3: Is there a relationship between hip joint angle changes from the uncued 

condition to the cued conditions and postural sway noted in the first 30 seconds of stand?  

 

Research Question 4: Is there a difference in postural control during the first 30 seconds of 

standing based on the type of cues? 

 

1.5 Research Objectives 

Research Objective 1: 

The primary purpose of this dissertation study was to determine the effect of 3 types of explicit 

cues on the task of STS for individuals with PD, external attentional focus of reaching to targets, 

external attentional focus of concurrent modeling, and an explicit cue for an internal attentional 

focus. 

 

Research Objective 2: To determine if a relationship exists between the latency of movement 

initiation and postural sway noted in the first 30 seconds of stand following a STS in individuals 

with PD. 

 

Research Objective 3: To determine if a relationship exists between hip joint angle changes from 

the uncued condition to the cued conditions and postural sway noted in the first 30 seconds of 

stand following a STS in individuals with PD. 
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Research Objective 4: To determine if there is a difference in postural control during the first 30 

seconds of standing based on the type of cues presented during a STS transfer for individuals 

with PD.  

 

 1.6 Hypotheses 

Null Hypothesis 1:  

H0: There will be no significant difference in STS metrics between types of cue provided.  

Alternative Hypothesis 1: 

It was hypothesized that an external attentional focus, provided either through reaching to targets 

or concurrent modeling, would be more successful than explicit cueing for an internal attentional 

focus in improving the mechanics and functionality of the STS transfer in individuals with mild 

to moderate PD. Mechanics will be considered “improved” if they change to be more consistent 

with the data collected from the healthy control group. Change scores of the following metrics 

were used to determine which type of cueing, if any, provides the greatest improvement in STS 

transfers for this sample: latency of movement initiation, duration of STS, losses of control of 

center of mass within the base of support, sway area, coronal sway, sagittal sway, sway jerk, 

sway velocity, change in hip angle as compared to the uncued condition, and change in overall 

height as compared to the uncued condition, and number of attempts. The findings of this 

dissertation study may also help to determine if there are greater benefits of externally focused 

cueing provided through modeling or reaching for targets for those with PD.  

 

Null Hypothesis 2: 
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H0: There is no relationship between the latency of movement initiation of the sit to stand motion 

and postural sway noted in the first 30 seconds of stand for individuals with PD.  

Alternative Hypothesis 2: 

A greater latency of movement initiation of the sit to stand motion will be related to increased 

postural sway during the first 30 seconds of stand for individuals with PD. 

 

Null Hypothesis 3: 

H0: There is no relationship between hip joint angle changes from the uncued condition to the 

cued conditions and postural sway noted in the first 30 seconds of stand for individuals with PD. 

Alternative Hypothesis 3: 

Greater joint angle changes at the hip during a cued condition as compared to the uncued 

condition measurements will result in an increased postural sway noted in the first 30 seconds of 

stand for individuals with PD.  

 

Null Hypothesis 4: 

H0: There is no significant difference in the effect of type of cues provided on postural control 

during the first 30 seconds of standing for individuals with PD. 

Alternative Hypothesis 4: 

The visual cue of modeling will result in improved postural control during the first 30 seconds of 

standing for individuals with PD.  
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1.7 Summary 

The results of this dissertation study help clinicians to better tailor treatment 

methodologies to the needs of individuals with PD to maximize patient outcomes. It is important 

to maximize the effectiveness of cues utilized during therapy to optimize movements completed 

during every repetition of practice. This need is accentuated by the decreased rate of motor 

learning and increased need for repetitions of appropriate motor patterns experienced by 

individuals with PD.24 Repetitions of poor movement patterns, which may result from 

inappropriate external cues, may impair motor learning and impede functional gains.   

Beyond this, cues are a common compensatory mechanism that therapists and caregivers 

use to improve real time patient mobility. Understanding the best cue to give an individual may 

reduce the amount of physical assistance that is needed and reduce risk of injury to caregivers. 

Identification of optimal cueing may also help to design protocols used within long term care 

facilities.  With an increased need for repetitions to achieve motor learning,24 individuals with 

PD who have multiple caregivers may benefit from a more standardized approach to cueing for 

STS transfers.  

Identifying treatment or compensation strategies that may improve an individual with 

PD’s ability to complete a STS transfer could lead to a decrease in sedentary time. The idea that 

difficulty rising from a chair could lead to an individual choosing to sit longer has strong face 

validity, but there are no known correlation studies at this time. Improving one’s ability to stand 

up increases independence. In turn, this could lead to a decrease in caregiver burden and an 

improved overall health condition for the individual with PD.   
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1.8 Definitions of Important Terms and Abbreviations 

- BOS- base of support 

- COM- center of mass 

- External attentional focus – focus during a movement that draws a person’s attention to the 

environment around them or to the effect they will have on the environment25 

- External cue – an augmented cue that is not part of the task itself26 

- Internal attentional focus – focus during a movement that directly draws attention to the 

person’s own body during movement25 

- LOB- loss of balance 

- PD - idiopathic Parkinson disease 

- PwP- People with Parkinson disease   

- STS - sit to stand  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction to the Chapter 

 This purpose of this chapter is to present the reader with a concise but comprehensive 

review of current available literature as it relates to this dissertation study. First, an overview of 

current understanding of the neuropathology of PD will be covered with specific discussions of 

the role of genetics, alpha-synuclein, and the basal ganglia. A thorough discussion of 

commonalities and variations in clinical presentation if PD will follow. Next, motor learning in 

healthy adults will be compared to motor learning in individuals with PD. This chapter will end 

with a comprehensive review of the current evidence regarding sensory cueing as it relates 

specifically to individuals with PD.  

 

2.2 Neuropathology of Parkinson Disease  

 PD is a neurodegenerative disorder that is characterized by a complex and variable 

clinical presentation of motor and non-motor symptoms, including cognitive27 and motor 

learning changes.24 While many recent advancements have shed light on the role that both 

genetics and environment play in the disease course of PD, the complete neuropathology of PD 

is not fully understood. Several disorders present with a clinical presentation similar to idiopathic 

PD, including multiple systems atrophy, progressive supranuclear palsy, corticobasilar 

degeneration, chronic traumatic encephalopathy, vascular parkinsonism, and drug-induced 

parkinsonism. For the purposes of this paper, the term PD will exclusively refer to idiopathic PD 

and not to any of the other disorders that can result in parkinsonian symptoms. Idiopathic PD is 

defined as “the selective degeneration of pigmented, dopaminergic neurons of the substantia 
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nigra pars compacta and other brainstem nuclei, with the presence of alpha-synuclein positive 

staining cytoplasmic inclusions (known as Lewy bodies) in the surviving neurons.”28 

2.2.1 Genetics and Parkinson Disease 

Evidence strongly supports that genetics play an important role in PD29,30 with some 

journal articles on this topic dating back to the early 1900s.30,31 While 5-10% of individuals with 

PD develop the disease as a direct result of a genetic mutation, both common and rare genetic 

mutations have been found to place an individual at an increased risk of developing PD after 

certain environmental interactions.32 The Movement Disorder Society maintains an up to date 

“genetic mutation database” that compiles current evidence regarding a growing list of genetic 

mutations that have been linked to PD. Currently, evidence regarding 1651 different mutations 

has been complied within the database.33  

Many studies of environmental factors suggest a correlation between exposure to certain 

factors and an increased incidence of PD.34-37 In 2015, Chin-Chan, et al. provided an in-depth 

overview of known correlations between exposure to environmental risk factors and incidence of 

PD.35 Chin-Chan, et al. found positive correlations between incidence of PD and lifetime 

exposure to lead,35 which has been found to suppress dopamine secretion into the synaptic cleft 

and reduce sensitivity of post-synaptic cleft receptors for dopamine,38 a variety of pesticides, 

single large dose exposure to some solvents, and long term small dose exposure to other 

solvents.35 

While it is clear that both genetics and the environment can play a causative role in PD, it 

is theorized that in most instances PD occurs secondary to a complex interaction of these 2 

factors.32,39 A common phrase used to describe this phenomenon, “genetics loads the gun and the 

environment pulls the trigger,” can be traced back to a blog by Soania Mathur.40 This analogy 
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provides a quick and patient friendly image of how genetics and the environment can interact to 

cause the degenerative process in PD.  

2.2.2 Alpha-synuclein and Parkinson Disease 

Alpha-synuclein proteins are produced in high levels in the healthy adult brain. They are 

found primarily in the areas surrounding the synaptic vesicles, within erythrocytes, and within 

platelets.41  While the exact role of this protein within the body is not fully understood, most 

evidence supports that its function is to control the release of neurotransmitters.42,43 

However, alpha-synuclein is now understood to play an important part in the disease 

process of PD.43 Abnormal deposits of alpha-synuclein proteins have been found to occur early 

in the disease process for PD.41 It is still unclear if the abnormal clumping of this protein is 

causative of PD or if it may develop as a result of another pathological process that occurs early 

in PD.41  

2.2.3 Staging the Progression of Parkinson Disease Based on Pathology 

Utilizing autopsy evidence regarding the presence of alpha-synuclein in individuals who 

passed away at varying stages of PD, Braak, et al. identified a 6 stage progression of alpha-

synuclein in PD44 that has been well accepted by researchers following its initial introduction in 

2004. While Braak, et al. clearly outline within their article a comprehensive list of changes they 

noted throughout the central nervous system, this overview will focus on the most pertinent brain 

areas to understanding the clinical presentation of PD. During the stages presented by Braak, et 

al., there is a steady progression of abnormally clumped alpha-synuclein that forms in a distal to 

caudal distribution beginning in the brain stem. Braak, et al. suggested that the disease process in 

PD initiates during stage 1 at both the dorsal motor nucleus of the vagal nerve and the olfactory 
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bulb.44 Stage 2 is characterized by increased damage to the dorsal motor nucleus and beginning 

damage in the medulla oblongata and pontine tegmentum.44 It is in stage 3 that the disease 

process moves into the basal ganglia, but, at this point, the basal ganglia remain functional. Stage 

4 is characterized by worsening of the disease process within the basal ganglia resulting in the 

emergence of clinically apparent PD.44 Additionally, in stage 4 the disease process reaches the 

cortex, though the cognitive effects are not likely readily apparent at this phase.44 In stages 5 and 

6, the alpha-synuclein clumps have aggregated so heavily within the substantia nigra that this 

portion of the brain no longer has its characteristic dark coloring for which it was named. This 

coincides with significant worsening of motor symptoms.44 Additionally, in these final stages, 

the alpha-synuclein plaques spread progressively throughout the motor cortex resulting in a 

steady decline in cognitive function.44 A 2017 publication by Braak, et al., resulted in the 

author’s affirmation that, in light of his more recent research, the framework presented above 

from their original publication still holds merit, though he points out that there may be additional 

sites of initiation for PD outside of the central nervous system.45 

 However, it is important to note that the accuracy of Braak, et al.’s staging has been 

questioned.46 Burke, et al. point out that more recent case studies of “incidental Lewy body 

disease” may actually be pre-clinical PD due to the reduced number of dopamine producing cells 

within the substantia nigra of these subjects.46 In autopsies, the individuals in these case studies 

did not develop alpha-synuclein clumping in the typical pattern described by Braak, et al.47 

Burke, et al. suggest that the diagnosis of dementia with Lewy Bodies should be considered to 

have the same neuropathological process as PD and continued on to state that the early presence 

of alpha-synuclein proteins in the cortical regions for individuals with dementia with Lewy 

bodies provides evidence that the Braak Stages are not an appropriate descriptor for progressive 
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development of PD.46 Despite the flaws that Burke, et al. identify in the theoretical framework of 

Braak staging in relation to PD, the correlations between symptom onset and natural history of 

the disease have resulted in a general acceptance of Braak staging by research and clinical 

experts.48 According to the Web of Science research database, the original Braak Stages article 

has 1,170 citations, which speaks to the importance of this staging scale within PD research.48 In 

alignment with much research related to PD, this dissertation study utilizes the Braak stages to 

create a common language for further discussion of the disease.  

 2.2.4 Basal Ganglia Degeneration in Parkinson Disease 

The onset of motor symptoms that comprise the cardinal symptoms of PD, tremor, 

rigidity, bradykinesia, and postural instability correlates with the degeneration of the basal 

ganglia and increased presence of abnormal clumping of alpha-synuclein proteins in and around 

the basal ganglia.44 These are the hallmark clinical features associated with Braak Stage 3.44 In a 

healthy individual, the basal ganglia assist with shifting between central sets, preparing for 

movements, and execution of action.49 During the progression of PD, there is a selective and 

progressive loss of dopaminergic cells within the substantia nigra, part of the basal ganglia.50 

Dopamine is involved in multiple pathways within the brain that coordinate movement and lack 

of appropriate levels of dopamine is associated with tremor, rigidity, akinesia, and postural 

instability,51 as well as difficulty with shifting between central sets, preparing for movements, 

and execution of actions.49  

With many of the motor symptoms of PD being traced back to depletion of dopamine,51 

most medications to treat the primary symptoms of PD are designed to increase dopamine 

concentrations within the synaptic cleft.52 Most symptoms of PD can be reduced with regular use 

of dopamine replacement therapy.53 Two of the medications used by most individuals with PD in 
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the United States, carbidopa and levodopa, which act together to replace dopamine, result in a 

large fluctuation in the motor abilities throughout the day. These fluctuations, which occur due to 

a very short half-life of approximately 1.5 hours54 of the carbidopa levodopa combination, results 

in what is known as the “on-off phenomenon.” Without carbidopa, which helps the levodopa to 

cross the blood brain barrier, the half-life is decreased to only 50 minutes.55  Patients are 

considered “on” when their medication dose is working most effectively and “off” when they are 

at the point of least effectiveness of the levodopa medication.55 Carbidopa levodopa begins to 

release into the blood stream 30 minutes after the dose.55 Peterson, et al. found greater 

improvements in movement related interventions during the “on” versus “off” stage of levodopa 

medications.56 As a result, testing protocols must be carefully and optimally designed in order to 

capture all of an individual’s motor capabilities while they are in the desired relationship to their 

therapeutic window. This means that researchers must work around the medication schedule of 

the individuals, as well as complete all of their motor testing within a 90-minute window in order 

to have a decreased likelihood that wearing off of medications is affecting the subject’s motor 

function.  

 

2.3 Clinical Presentation of Parkinson Disease 

James Parkinson provided the initial written description of the clinical manifestation of 

PD in “An essay on the shaking palsy,” which was published in 1817. 57 His essay begins with a 

basic definition of “shaking palsy,” now known as PD: “involuntary tremulous motion, with 

lessened muscular power, in parts not in action and even when supported; with a propensity to 

bend forward, and to pass from a walking to a running pace: the senses and intellects being 

uninjured.”58 While application of current research and known neuropathology allows for a 
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deeper understanding of the progression of the clinical presentation of PD over time, much of the 

observations made by James Parkinson are still widely accepted. The key difference in today’s 

understanding of PD is that the “weakness” that was originally identified58 is now better 

identified as bradykinesia or akinesia.  

2.3.1 The Epidemiology of Parkinson Disease 

         A 2014 meta-analysis and systematic review of the prevalence of PD provides much insight 

on the epidemiology of PD.59 The onset of the cardinal signs of PD rarely occurs prior to the fifth 

decade of life. However, there is a sharp increase in the prevalence of the disease with each 

decade of life.59 The authors found no significant difference in prevalence between males and 

females. Certain lifestyle choices have been associated with an increased or decreased risk of 

developing PD. Likely due to the neuroprotective qualities of nicotine and caffeine, those who 

have a history of smoking or drinking coffee, respectively, have a decreased risk of developing 

PD.60  

2.3.2 The Progression of the Clinical Presentation of Parkinson Disease 

          In the early Braak Stages, the non-motor symptoms of PD have not yet become apparent.44 

However, correlating with the progressive abnormal clumping of alpha-synuclein,  

other less obvious symptoms of PD are typically present. Leentjens, et al. found a statistically 

significant higher incidence of depression in patients in the pre-clinical stages of PD than in a 

“matched control population.”61 Excessive daytime drowsiness62 and rapid eye movement 

(REM) cycle disorders63 Haehner, et al. found that idiopathic anosmia, while not always present 

as a precursor to the onset of motor symptoms in PD and not always indicative of later 

development of PD, is significantly more likely to occur in individuals who will develop PD than 
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the general population.64 Loss of sense of smell, which involves the olfactory bulb, and impaired 

sleep functions, which are controlled within the brain stem, are consistent with the early Braak 

stages that are characterized by alpha-synuclein protein clumping in these regions.44 While some 

more recent research suggests that it may be possible to diagnose some cases of PD prior to the 

disease becoming clinically apparent,65 PD is considered a diagnosis of exclusion, meaning that 

the presence of the cardinal signs without other known cause would indicate likely PD.1 

          While there are many different clinical presentations to Parkinson Disease, it is primarily 

characterized by the four cardinal signs, tremor, rigidity, bradykinesia, and postural instability.50 

These symptoms emerge during Braak stages 3 and 4,44 when approximately 60% of the 

dopaminergic cells have died.66 Most commonly, tremor within PD occurs at rest and is 

characterized by a “pill rolling” motion within the hands.1 Similarly, rigidity within PD has a 

typical clinical presentation known as “cogwheel” rigidity which is hallmarked by a repetitive 

catch and release sensation when the patient is moved passively through the range of motion.1 

Additional motor signs include freezing or “motor blocks,” hypomimia, dysphagia, dysarthria, 

decreased amplitude of arm swing during gait, festination of gait, difficulty with STS, difficulty 

with bed mobility, micrographia, difficulty with ADLs, glabellar reflex, blepharospasm, 

dystonia, striatal deformity, scoliosis, and camptocormia.1 In addition to motor signs, individuals 

with Parkinson Disease also have a variety of non-motor signs and symptoms that emerge during 

Braak stages 3 and 4, including fatigue and orthostatic hypotension.1,45 In addition, the 

depression, anxiety, apathy, sleep disorders, and anosmia may develop or worsen as the disease 

progresses.1 

 Due to the progressive nature of PD, both in the depletion of dopaminergic cells and the 

accumulation of abnormal alpha-synuclein clumping, the advanced stages of PD are hallmarked 
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by worsening of the motor and non-motor symptoms discussed above and the addition of 

cognitive decline.1,45  

2.3.4 Measuring Progression of Parkinson Disease Based On Clinical Presentation 

 As Burke, et al. pointed out, staging Parkinson Disease based on the presence or absence 

of alpha-synuclein protein can be problematic, as the clinical presentation may not always 

correlate with this quantifier of disease progression.46 Additionally, there is currently no way to 

test for the presence of alpha-synuclein clumping prior to autopsy. The Unified Parkinson’s 

Disease Rating Scale was developed by Fahn and Elton67 and later adopted and modified by the 

Movement Disorder Society (MDS-UPDRS).68 Rather than staging the disease by 

neuropathological changes, this scale stages PD based on the clinical signs and symptoms of the 

disease.68 The MDS-UPDRS is composed of questions and motor testing that evaluate the effect 

of PD and dopamine replacement medications on individuals with the disease, including items 

related to sleep, depression, anxiety, apathy, cognitive impairment, hallucinations, pain, bowel 

and bladder, fatigue, orthostatic hypotension, oral motor changes, activities of daily living, bed 

mobility, transfers, tremor, postural stability, gait, freezing, medications, rigidity, coordination, 

dysdiadochokinesia, motor fluctuations, dyskinesia, and dystonia.68 Most of the 50 items on the 

test are scored on a 5 point Likert scale ranging from normal to severe, with the higher numbers 

indicating a more severe presentation of the signs or symptoms.68  

 

2.4 Abnormalities of Motor Control in Parkinson Disease 

 Motor control has been operationally defined as “the ability to regulate or direct the 

mechanisms essential to movement.”26 Specific to PD, the aforementioned symptoms of PD that 
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demonstrate deficits in motor control include: tremor, bradykinesia, rigidity, postural instability, 

and difficulty switching between central sets. The study of motor control helps us to gain a fuller 

understanding of how movement occurs within healthy adults. Over the past several decades 

there have been many different theories of motor control presented. This chapter provides a brief 

overview of key historical theories, as well as more recent and applicable motor control theories 

as they apply to the task of STS.   

2.4.1 Reflex Theory 

Sherrington introduced his reflex based theory of motor control in 1925,69 which suggests 

that all movement occurs in response to external stimuli. He suggested that even complex 

movements could be explained as a series of reflexes in succession.69 However, this type of 

“bottom up” theory fails to explain voluntary movements that occur in the absence of external 

stimuli. One example of this could be a STS transfer that begins without an external stimulus. 

Despite proven instances of movement in the absence of external stimuli,70 application of 

Sherrington’s reflex theory helps to further understand the role of external stimuli and cues on 

overall movement.  

2.4.2 Hierarchical Theories 

Conversely, hierarchical theories of motor control suggest that cognition is divided into 

hierarchical levels that control all levels below them.71 According to this theory, all movement 

occurs after input from the higher centers of the brain. As previously discussed, evidence 

supports that movement can occur in the absence of external stimulus. However, studies have 

shown that reflexive movements can occur in the absence of cortical input.70 Perhaps most 

famous instance of this would be the decerebrate cat who is able to not only walk on the 
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treadmill without any cortical input, but able to respond to changes in treadmill speed with the 

correct cadence and resemblance of appropriate gait patterns.72  

2.4.3 Information Processing Theory 

In another approach to motor control theories, Mazzoni, et al.27 adapted the three levels 

of information processing first described by David Marr73 and applied them to the motor control 

difficulties experienced by those with PD. David Marr’s description of information processing in 

3 levels: computation, algorithmic, and implementation/hardware.27,73 The computation level 

describes the output and the reason for the movement to occur. The algorithmic level describes 

how the motor outputs are achieved. The implementation level describes the anatomy of what 

actually performs the motor output.  

Applying this concept to the difficulties often experienced by individuals with PD during 

the STS transfer provides a fuller understanding of how PD effects the motor control process 

during this task. Most easily understood are the deficits seen at the implementation, or hardware, 

level. According to Mazzoni, et al.’s theory, the implementation level would best be described 

through a thorough discussion of the reduction in the neurotransmitter dopamine and how this 

results in an increase in the output activity of the basal ganglia, which in turn will reduce activity 

within the motor cortex for the planned movement.27 Additionally, others might add that the 

presence of abnormally clumping alpha-synuclein would also be appropriate to describe the 

implementation level of this motor theory.41 Both descriptions of the implementation level 

provided explain how a defect at the implementation or “hardware” level impairs the ability of 

an individual with PD to rise from a surface. At the algorithm level, which discusses how motor 

outputs are achieved at a processes level, Mazzoni, et al. describe the individual with PD as 

having difficulty due to over activity of the basal ganglia resulting in under-excitement of the 
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associated motor cortex areas.27 While there is some discussion of neuroanatomy at this level, the 

focus here is faulty connections between larger systems within the brain. At the level of 

computation, the focus is on the motor outputs and why the action occurs. This is the level at 

which this dissertation hopes to impact the STS transfer. For individuals with PD, bradykinesia, 

rigidity, and postural instability may result in a slow STS transfer with delayed onset and lack 

full extension phase, in addition to other deficits as detailed previously in this dissertation. This 

description focuses on the motor output created as a result of changes in motor control. For many 

individuals with PD the “why” or reason to complete the transfer, which is part of the 

consideration of the computation phase, has not changed. They would like to stand up, they 

attempt to stand up, but they are unsuccessful due to factors falling within the implementation 

and algorithm levels of motor control. However, as will be discussed later in this chapter, the 

possibility of changing the “why” for the initiation of a STS transfer from an internally driven 

stimulus to an external cue may allow for a bypass of some of the structures that have created 

difficulties within the implementation and algorithm levels.  

2.4.4 Systems Theory 

Many theories of motor control exist that are based on some combination of the reflex 

theory and hierarchical theories. However, perhaps the most commonly known within the field 

of physical therapy is the Shumway-Cook and Woollacott theory of motor control.26 Referring to 

their theory as a “systems theory,” Shumway-Cook and Woollacott theorize that all movement 

occurs through an interaction of the individual, the task, and the environment.26 They continue 

on to break down the factors that may interact within the individual (cognition, perception, and 

action), the task (mobility requirements, postural control requirements, and upper extremity 

manipulation requirements), and the environment (regulatory and non-regulatory factors).26 
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Identifying all of these factors as important to motor control provides the researcher or clinician 

with multiple areas to consider when looking to promote change in the quality of movement.     

 Utilizing a Systems Theory approach can provide additional insight to the STS transfer. 

Within the individual, the most likely deficit for an individual with PD would be depletion of the 

dopaminergic cells with the basal ganglia. When PD has reached the Braak staging that coincides 

with difficulty in the STS transfer, the basal ganglia are no longer functioning optimally.1 The 

basal ganglia would be considered to fall within the motor/action factor within the individual, 

according to the Shumway-Cook and Woollacott Systems Theory of Motor Control.26 However, 

within the same subcategory, motor/action, there are many additional neuroanatomical structures 

and pathways that may allow for movement. For instance, many studies support positive effects 

from adding a regulatory cue within the environment for individuals with PD with the theory that 

this stimulates alternate pathways within the brain resulting in a bypass of the basal ganglia.74 

While sensation typically remains intact for individuals with PD, perceptual deficits in the form 

of decline of cognition and self-awareness progressive and appear in the later Braak stages of the 

disease.1,75 This would be an additional example of deficits found within the individual, 

according to the Systems Theory, that is likely to impair the STS transfer.  

 The two remaining factors within movement, according to the Systems Theory, are the 

task and the environment. There are many sub-factors within the task and the environment that 

can be modified to improve the STS for individuals with PD. For instance, the seat height can be 

raised, dual tasks can be removed, support surfaces can be made more steady or firm, distractions 

can be minimized, and footwear with optimal traction can be utilized. However, the optimal 

outcome of therapy is to improve the transfer of the individual in their natural environment while 

making the least intrusive compensations. The above-named examples of factors within the 
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environment and task that can be modified may not be possible. However, there are some 

external cueing options, that would be easy to add to the environment, that may result in the 

aforementio ned alternate pathways and allow for an improved STS transfer.  

 

2.5 Abnormalities in Motor Learning in Parkinson Disease  

The manner in which new mechanisms are learned or current mechanisms are refined 

resulting in relatively permanent change is known as motor learning.76 Like motor control, there 

are many known variances between motor learning processes employed by healthy individuals 

and those employed by individuals with PD.24 An understanding of these differences allows for 

improved methodology of the proposed study.  

Due to the progressive ineffectiveness of the basal ganglia in individuals with PD, there 

are some important differences in the manner in which motor learning occurs. Individuals with 

PD learn more slowly than healthy controls.77-79 Since sleep plays an important role in skill 

acquisition, it is theorized that the sleep changes in PD may account for some of the difficulties 

in motor learning.80 A meta-analysis suggests that implicit learning is negatively affected in 

PD.81 However, many have demonstrated improved motor learning through repetitions of tasks 

during the presence of external cues. 3,5-8,14-23,82-86 Individuals with PD often demonstrate a 

greater reliance of task specific practice in order to learn a new task. Onla-or and Winstein found 

that, while individuals with PD learned easier tasks at an equal rate to a healthy control group 

regardless of setting, individuals with PD were less likely to achieve the ability to complete a 

more difficult motor task in a new context or environment.87 With this in mind, it may be 

necessary for individuals with PD to take advantage of compensatory strategies when then are 

not in their optimal environments. Lastly, when awareness of learning is present or there is a 
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high level of cognitive demand, learning is impaired for individuals with PD.80 In the earlier 

stages of PD, this means that individuals will have a more difficult time learning new tasks. 

However, in later stages of the disease, it also means that individuals with PD may not be able to 

interpret and react to longer or more complex cueing.  

In other instances, motor learning principles that are applicable to healthy adults may also 

be applicable to individuals with PD. Wulf, et al. found that, like healthy adults, individuals with 

PD have improved postural stability when asked to maintain an external attentional focus, rather 

than an internal attentional focus.88 While previous studies suggested a significantly decreased 

ability to learn through the use of random practice, Sidaway, et al. utilized a more clinically 

relevant task and found that individuals with PD improved more when utilizing a random 

practice schedule.89 This is similar to healthy adults.89 Observation of actions and motor imagery 

has been shown to improve motor learning for both healthy adults and individuals with PD, 

theoretically this occurs secondary to activation of similar brain structures.90  

 

2.6 The Use of Sensory Cueing in Parkinson Disease    

2.6.1 Cueing Pathways  

Cunnington, et al. utilized fMRI to examine the areas of the brain with the greatest 

hemodynamic impact in response to both internally initiated movements and external cue 

initiated movements.74 While both initiating factors resulted in an increase of blood flow to the 

primary motor area, the supplementary motor area, the superior parietal lobule, the insula cortex, 

and the cingulate cortex, the basal ganglia only demonstrated significant activation during those 

movements that were internally initiated.74 The lack of involvement of the basal ganglia during 

externally cued movements provides a theory for why sensory cueing has been found to be an 
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effective way to improve motor outputs for individuals with PD. Morris hypothesized that 

external cueing is effective either because the external cue utilize the premotor cortex rather than 

the basal ganglia or because external cues utilize the dorsolateral prefrontal cortex as a means to 

bypass the basal ganglia.91  

2.6.2 Concurrent Rhythmic Auditory Cueing During Gait and Parkinson Disease 

  Several studies have found an immediate improvement in the performance of gait with 

the presence of an external cue. A 2005 systematic review of cueing during gait reported a 

finding of “strong evidence” in support of utilizing rhythmic auditory cueing during gait to 

improve gait speed, stride length, and cadence for individuals with PD.5 A 2014 systematic 

review including different studies due to more rigorous inclusion criteria and a greater body of 

research at the time of the study suggests that rhythmic auditory cueing can improve gait speed 

and cadence only, but does not improve step or stride length.92 Additional important studies on 

this topic have been completed that were not part of either systematic review. Hove, et al. 

examined the differences in fractal scaling of gait, or the relationship in characteristics of strides 

over time, for individuals with PD from healthy controls during both uncued gait and gait with 

metronomes.4 They found that when individuals with PD are asked to ambulate while listening to 

a metronome with the ability to adapt to minor changes in cadence, the individuals’ gait patterns 

became more like those of the healthy control group.4 The RESCUE trial6 suggests that, for 

individuals with PD, regular in home training with a rhythmic auditory cue while ambulating for 

a 3 week period resulted in immediate increases in gait speed, increases in step length, decreases 

in cadence, and decreases in episodes of freezing indicating a more normalized gait pattern for 

this population. The therapists prescribing metronome frequency utilized a specific protocol to 

select optimal cue frequency. It must be noted that for this study, participants were also provided 
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with specific suggestions and methods to reduce freezing during the training period, which also 

may have contributed to the positive outcomes of the study.6 Suteerawattananon, et al. found that 

auditory cueing in the form of a metronome that was set at a frequency that was 25% faster than 

their calculated maximum gait speed significantly increased gait speed for individuals with PD.15 

Rochester, et al. found that rhythmic auditory cueing consistent with the subject’s preferred 

cadence elicited immediate improvements in gait speed and step length for individuals with PD 

and that gait values during dual tasking moved significantly toward measurements collected 

during single gait tasks in the same individual.17 Niewboer, et al. looked at the effect of an 

auditory beep with a frequency set at the subjects’ comfortable gait speed based on the 10 Meter 

Walk Test. They found a significant improvement in the speed of a complex dual task gait test.19   

2.6.3 Visual Cueing During Gait in Parkinson Disease 

Many researchers have reported an immediate impacted on the performance of gait in 

response to visual cues. Others reported on the impact of visual cueing on gait through the use of 

tape or cardboard lines on the floor or a rhythmic flashing light.7,15-17,19,20 A 2005 systematic 

review found insufficient evidence to support the use of visual cueing during gait.5 A 2014 

systematic review found significant improvements cadence, gait speed, and step length.92 Others 

reported on the impact of visual cueing on gait through the use of tape or cardboard lines on the 

floor or a rhythmic flashing light.7,15-17,19,20 Suteerawattananon, et al. found that placing brightly 

colored lines perpendicular to the walkway at equal intervals based on a calculation of 40% of 

the subject’s height resulted in a significantly improved step length for individuals with PD.15 

Rochester, et al. utilized a flashing light that was present on a pair of glasses worn by the subject 

to provide a visual cue during dual task gait and found that gait speeds and step length moved 

significantly toward measurements collected during single task gait in the same individual.17 
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Nieuwboer, et al.19 looked at the effect of a light emitting device worn on a pair of glasses with a 

frequency set at the subjects’ comfortable gait speed based on the 10 Meter Walk Test. They 

found no significant improvement in the speed of a complex dual task gait test.6,19   

2.6.4 Somatosensory Cueing During Gait in Parkinson Disease 

A 2005 systematic review identified only 1 study on this topic that met inclusion and exclusion 

criteria for the study. Due to the low quality of the study the authors of the systematic review 

report that, at that time, there was insufficient evidence to support the use of somatosensory 

cueing during gait.5 Nieuwboer, et al.19 looked at the effect of a pulsed vibration emitted from a 

wrist worn device with a frequency set at the subjects’ comfortable gait speed based on the 10 

Meter Walk Test. They found a significant improvement in the speed of a complex dual task gait 

test.19 

2.6.5 Auditory Cueing in Parkinson Disease 

  Lehman, et al. utilized a pre-gait and during gait recurring cue to “take long steps” for 

daily training session occurring over 10 days. This use of external attentional focus during gait 

via verbal instruction resulted in improved gait speed, step length, and cadence as compared to 

the control group.93 Pre-gait cueing was identified as an important factor during a 2002 

systematic review. Rubinstein, et al. found that different pre-gait verbal instructions resulted in 

dramatically different gait outcomes. Cues to increase gait speed were effective in doing so, but 

also resulted in unwanted decreased step length and cadence changes.7 This suggests careful 

consideration of the verbal cues provided. Verbal cues to increase step length or arm swing 

resulted in improved gait mechanics.7  

2.6.6 Effects of Cueing on Non-Gait Continuous Tasks in Parkinson Disease 
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 Research regarding cueing for non-gait related continuous tasks for individuals with PD 

is less readily available. In 2002, a study by Almeida et al, looking at the coordination of 

continuous upper extremity tasks, foundnac that external pacing cues did not improve the motor 

function of individuals with PD.21 In 1995, Kritikos et al found that externally focused auditory 

cues were more effective than visual cues to complete proper sequencing for individuals with 

PD.18 In 1997, Oliveria et al, found that both visual and auditory cues did improve the size of 

written letters immediately and with prolonged writing.22 In 2016, Nackaerts et al completed a 

study that suggested visual cueing may actually impair handwriting for individuals with PD.23 

None of these studies specifically looked at the effect of cues that increase the internal 

attentional focus of the participants.  

2.6.7 Effects of Cueing on Discrete Tasks in Parkinson Disease 

 Similarly, there is very limited information regarding the effect of cueing on discrete 

tasks that have a definitive start and end.  All of the aforementioned studies looked at tasks that 

have an indistinct beginning and end. Because individuals with PD often lack automaticity, they 

typically display difficulty with beginning and ending tasks.2 Therefore, once initiated, 

continuous tasks may be less difficult for individuals with PD.  As a result, it may not be 

appropriate to generalize the results of studies looking at cueing during continuous tasks to the 

unstudied discrete tasks.  

Few studies have actually looked at the effect of cueing on discrete tasks. Reaching for a 

target was improved when individuals reaching for a rolling ball initiated by the tester rather than 

a self-initiated reach to a stationary ball.94 Mak, et al. found that a single auditory initiation cue 

could improve force production and reach duration in a pen retrieval task for individuals with 

PD.95  



  29 

2.6.8 Effects of Cueing on Sit to Stand in Parkinson Disease 

 Only 1 study is known to have specifically looked at the effect of audiovisual cues on 

STS transfers for individuals with PD.8 Mak and Hui-Chan compared the movements of 

individuals with PD to those of matched healthy controls during self-initiated and cue initiated 

STS transfers.8 Self-initiated movements were guided by asking the patient to stand when they 

are ready with no further cues provided. The cue initiated movement was a paired initiation cue 

of both a verbal command to “get ready, stand up” and a visual cue of a 8cm x 8cm light 

appearing on a wall 1.5m away at a height equal to their standing eye level.8 No additional cues 

were provided during the actual STS. 

  Mak and Hui Chan completed a later study looking at the effects of combined “audio-

visual cued task-specific training” during STS transfers for people with PD. During this 

experiment individuals in the experimental group completed repetitions of STS transfers in 20 

minute intervals, 3 times a week for a total of 4 weeks using the Equitest-Balance Master system 

by Neurocom.83 The cues provided during this study were controlled by the computer system and 

included a visual cue of 2 boxes stacked vertical that included one colored box to indicate if the 

patient should be standing or sitting and a stickman representation of the subject that moved in 

real time with the patient to indicate if the pressure distribution was consistent with sitting or 

standing.83 These cues would result in an initiation cue for each phase of the transfer. The 

researchers found that combined audiovisual training resulted in immediate reduced duration of 

the STS transfer and improved hip flexion torque with improvements still noted at the 2 week 

follow up.83 
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2.7 The Sit to Stand Transfer in Relation to Parkinson Disease 

  Several different groups have proposed strategies to breakdown the STS transfer to allow 

for clearer language to describe when deficits are occurring. Kotake, et al. suggest a 6 stage 

breakdown that allows for a clear understanding of what is happening at the hip, the knee, and 

the ankle in the sagittal plane during the STS process: (1) sitting in chair, (2) flexion of hip 

commences and buttocks clear surface, (3) maximum flexion of hip joint, (4) maximum 

dorsiflexion of ankle joint, (5) full standing, and (6) stabilization in standing.96 While others have 

simplified the STS transfer into 2 phases, pre-extension and extension,97 the additional phases 

suggested by Kotake, et al. allow for consideration of a period of time when the hip and knee 

joint are not working in a either a synchronized flexion or extension synergy which occurs in 

stage 4.96  

 However, the task analysis model presented by Hedman, et al.98 provides a fuller 

examination of the STS transfer. Hedman suggests a 6 stage analysis process that includes initial 

conditions, preparation, initiation, execution, termination, and outcome.98 Kotake, et al.’s 

suggested stages of the STS transfer nests under the “execution” phase of the task analysis 

presented by Hedman, et al. Hedman, et al. provided key qualifiers to look at within each phase 

of the task analysis, Table 2.1. 

Table 2.1 Hedman, et al. Phases of Task Analysis98 

PHASE OF TASK 

ANALYSIS 

QUALIFIERS 

INITIAL 

CONDITIONS 

Posture, environmental context, ability to interact with 

environment 

PREPARATION Stimulus identification, response selection, response programming 

INITIATION Timing, direction, smoothness 
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EXECUTION Amplitude, direction, speed, smoothness 

TERMINATION Timing, stability, smoothness 

OUTCOME Was the task successful? 

 

 The motor complications experienced by individuals with PD negatively impact many 

aspects of the STS transfer. Individuals with PD typically require additional time to complete a 

STS transfer99,100 and demonstrate an increased latency of movement that may occur secondary 

to deficits in motor planning. 101,102 However, studies indicate that, with instruction to do so, 

individuals with PD are able to increase the velocity of their STS.103 In a study of individuals in 

the early clinical stages of PD, Inkster and Eng found an exaggeration in hip flexion strategy and 

forward translation in center of mass during Kotake’s stage 2 of the STS transfer.104  Bishop, et 

al. found a correlation between difficulty recruiting the tibialis anterior during the early 

execution phases and overall difficulties with STS transfers in individuals with PD.105 The STS 

transfer is problematic for individuals with PD at different phases and stages for different 

reasons, Table 2.2.  

Table 2.2 Difficulties in Sit to Stand for Individuals with PD by Phase and Stage 

Task 

Analysis 

Stage98 

 Adaptations Noted in the Literature or Probable 

Difficulties for Individuals with PD 

Initial 

Conditions 

 - Kyphotic posture1 

- Rigidity1 

- Environmental conditions, such as seat height 

Preparation - When the basal ganglia are affected, there is 

difficulty switching between central sets resulting in 

hypothesized decrease in anticipatory control49 

- In the advanced stages of PD, cognitive changes 

may result in difficulty understanding the task.1,44  

Initiation - Akinesia, which presents during the middle stages of 

PD often results in a delay of movement initiation.44 

- Difficulty with shifting between central sets results49  
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Execution Sit to 

Stand 

Stage96 

Indicator Adaptations Noted or Possible Difficulties for 

Individuals with PD 

1 Seated in Chair - Kyphotic posture1 

2 Flexion of torso 

commences 

Buttocks leave chair 

surface 

- Impaired ability to switch between central sets may 

make initiation of this stage difficult49 

3 Hip joint achieves 

maximum flexion 

- Impaired ability to switch between central sets may 

make cessation of this stage difficult49 

- Increased hip flexion may result to improve postural 

stability106 

- Decreased hip flexion may result secondary to lack 

of self-awareness75 or fear of falling 

4 Ankle joint achieves 

maximum 

dorsiflexion 

- Impaired ability to switch between central sets may 

make initiation of this stage difficult49 

- Difficulty recruiting tibialis anterior105 

5 

 

Standing 

 

- Impaired ability to switch between central sets may 

make initiation of this stage difficult49 

6 Stabilize in standing 

position 

- Orthostatic hypotension1 

- Impaired ability to switch between central sets may 

make cessation of standing difficult49 

Termination  - Likely to undershoot due to a lack of awareness of 

body position75 

- Likely to undershoot due to kyphotic posture1 

Outcome  - Lack of adequate forward translation may result in 

an ineffective transfer of center of mass into the 

standing base of support 

*While some impairments or characteristics noted may be present in any stage, this table 

provides the phase or stage where it is most likely to affect the transfer.  

 

2.8 Summary 

 Previous research has demonstrated that cueing can improve movement patterns in 

individuals with PD in certain situations.3,5,6,8,15-23,82,85,86,92 However, literature is limited for 

discrete tasks and, specifically, in relation to STS transfers. While Mak and Hui-Chan were able 

to show that cue-initiated STS resulted in decreased duration of the STS transfer and increased 

hip torque8,83 as compared to their matched healthy controls, there are several factors that 

warrant additional research on this topic. The cues provided during the Mak and Hui Chan’s 

studies are not easily reproducible in the clinical or natural environments. Additionally, much 
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research supports that cues can improve movement for individuals with PD, however, the 

benefits of different cues can be context specific.89 There is no known research at this time that 

looks to identify the best type of cue to provide during the STS transfer.  This dissertation study 

helps to better understand the most appropriate type of cueing to use during the STS transfer. 

Additionally, it may provide greater insight for the best type of cue to provide during 

interventions or as compensations to improve performance on other discrete tasks and to begin 

research to determine if the results of previous studies that have suggested the benefit of external 

cues on continuous tasks can be generalized to discrete tasks.  
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CHAPTER 3: METHODOLOGY 

3.1 Introduction to the Chapter 

 This chapter is a thorough presentation of the methodology of this dissertation project. 

Descriptions for participant recruitment and selection, data collection, and data analysis are 

provided. Relevant supporting evidence are provided to justify the methods used.  

3.2 Research Methods 

 The primary purpose of this study is to determine the effect of 3 types of explicit cues on 

the task of STS for individuals with PD, external attentional focus of reaching to targets, external 

attentional focus of concurrent modeling, and an explicit cue for an internal attentional focus.  As 

shown in the literature review, there is ample research to support that external cues have the 

potential to improve the motor output for individuals with PD. However, it is currently unclear 

what type of cue is best during STS transfers. With the only studies on cueing during STS 

transfers utilizing cues that are impractical to use in everyday life or within most clinics,8,83 the 

specific cues selected for this proposed study were selected because of ease of implementation 

by both therapists and caregivers in any setting. Both reaching to targets and concurrent 

modeling utilize a primarily external attentional focus, which current research supports improves 

motor learning and motor control in both healthy individuals and individuals with PD.88 

Reaching to targets may utilize the same principles as tape line targets during gait, which has 

been shown to improve step length and gait speed for individuals with PD.16 For the purpose of 

this dissertation study, the tester drew attention to the targets at the time that the subject was to 

reach for the targets taking advantage of the effect of the moving target effect described by 

Masjsak, et al.94 The final cue, which promotes an internal attentional focus, was selected not for 

its likelihood of producing the best motor outcome, but because it is a commonly utilized 
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strategy both in the clinic and by caregivers. It is important to further investigate if this strategy 

is helpful, neutral, or unhelpful in improving the STS for individuals with PD.  

A cross-over design that exposes each study participant to each type of cue was utilized 

as it was the best type of study to investigate the research objectives. Due to the great variations 

in clinical presentation of individuals with PD,1 utilizing different patients for each group would 

require an extremely large sample size. Utilizing the same group of subjects for each condition 

reduced the likelihood of impact by covariates.107 

To investigate the primary purpose of the proposed study, the main design of the study 

will have 1 factor (cue provided) and 10 dependent variables that look at kinematics, 

bradykinesia, and postural stability, Table 3.1. In addition, this design can be utilized to 

investigate research question 4, which looks at the effect of type of cue on the first 30 seconds of 

stand. For research question 2, which asks if a relationship exists between latency of movement 

initiation and postural sway noted in the first 30 seconds of stand for individuals with PD, and 

research question 3, which asks if a relationship exists between hip joint angle changes from the 

uncued condition to the cued condition and postural sway in the first 30 seconds for individuals 

with PD, a separate correlation estimation will be completed.  

Table 3.1 Factors of Main Design  

Factor 1- Cue Provided Dependent Variables 

Uncued sit to stand Change in hip angle compared to the 

uncued condition 

External attentional focus of reaching to targets Change in total height compared to the 

uncued condition 

External attentional focus of concurrent modeling Number of attempts 

Explicit cue for internal attentional focus Latency of movement 

 Duration of the transfer 

 Sway area 

 Coronal sway 
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 Sagittal sway 

 Sway jerk 

 Losses of control of center of mass 

within the base of support 

red=kinematic measurements; yellow = measures of bradykinesia; blue=postural sway 

measurements 

3.2.1 Participants  

 Two groups of participants were recruited for this study, a PD group and an age matched 

healthy control group, with a minimum of 13 participants in each group. Sample size estimation 

was completed utilizing a 0.05 level of significance, a power of 0.8, and an effect size of 

0.85.108,109 The level of significance and power was selected based on norms within the research 

field. The effect size was calculated from data presented in a similar study3 which identified the 

effects of different types of external cues on gait. The researchers for the aforementioned study 

looked at the effect of cueing individuals to ambulate while deliberately swinging their arms, 

counting out loud, taking large steps, or walking quickly. For each condition, the researchers 

measured the effect of the cue provided on right step length, left step length, velocity, shoulder 

excursion, elbow excursion, and cadence. The researchers did not indicate which of the variables 

the primary outcome measure for their study, therefore the effect sizes were calculated from the 

variables most similar to the present study and a range was identified. Those variables that were 

considered most similar to the present study include the effect of cueing for large steps or to 

walk fast on right step length, left step length, or gait velocity and the effect of cueing for 

deliberate arm swing on shoulder or elbow excursion. These were selected because of the use of 

an external attentional focus of the cue for improved movement on a related body part. The table 

below shows the calculated effect sizes based on the AI-Therapy Statistics® online calculator. 

(Table 3.2) Calculations of the effect sizes resulted in a range of 0.85-2.5. To decrease risk of not 
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having enough power in the present study, the lower end of the range was utilized in the sample 

size calculation for this study.  

Table 3.2 Effect Size Calculations3 

Cue Measurement Effect Size Calculated 

Walk fast Right step length 0.85* 

Left step length 0.85 

Gait velocity 2.17 

Take large steps Right step length 1.85 

Left step length 1.52 

Gait velocity 1.69 

Swing arms Shoulder excursion 1.37 

Elbow excursion 2.5** 

Key: *lowest effect size found, ** highest effect size found 

The estimated sample size is consistent with similar studies completed recently with 15 subjects 

with PD and 15 healthy controls should provide adequate power for the proposed study.8,16,23,94 A 

2005 systematic review of effects of cueing during gait in individuals with PD included 24 

studies, 14 of which had experimental groups with 15 or less subjects.5 These studies included 

sample sizes as low as 6, 7, 8, 8, 10, 10, 11, and 12.5 An additional 5 studies had 16 subjects in 

the experimental groups and the remaining 6 studies from 21-68 subjects.5 The study identified 

that is most similar in methodology and purpose to the proposed study utilized 15 subjects in the 

experimental group and 15 subjects in the healthy control group8 and was published in 2004 in 

Movement Disorders.  

3.2.1.1 Inclusion Criteria 
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 Participants were required to meet specific inclusion criteria, Table 3.3. Participants in 

the PD group were diagnosed by a neurologist with idiopathic PD and were on stable dosages of 

anti-Parkinson’s medication, when applicable. All participants were able to follow directions and 

properly respond to the cues provided. All participants reported during the screening interview 

that they had at least occasional difficulty rising from a standard height chair, but are able to do 

so independently a majority of the time. All participants were able to stand from a chair 

independently without the use of their arms at least 1 of every 4 attempts during uncued testing. 

As individuals with PD often have difficulty with initiation of movement due to bradykinesia1 

and difficulties changing between central sets,49 it was anticipated that it would take multiple 

attempts to stand for some participants. If every attempt was considered an independent STS this 

would likely skew the data, however, this was controlled for within this study by the assessor 

documenting the number of attempts to stand prior to the patient giving up or successfully 

standing.  Additionally, all participants achieved the minimum score of 22 points on the 

Montreal Cognitive Assessment (MoCA). One subject was excluded from the study for not 

attaining the minimum cut-off score. This cut-off was selected based on research validating the 

MoCA for use in determining the ability of individuals with PD to provide informed consent for 

research.110 

3.2.1.2 Exclusion Criteria 

 Participants were required to meet specific exclusion criteria, Table 3.3. Candidates for 

this dissertation study were be excluded if they have a history of brain surgery for treatment of 

PD or are currently participating in a medication study, both of which could introduce an 

unnecessary covariate into the study. Other than idiopathic PD, all participants were required to 

be free of neurological, musculoskeletal, or other health conditions or cognitive impairments that 
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could impact the results of this dissertation study. Additionally, individuals with a body mass 

index greater than 35 were excluded from this study in order to reduce the likelihood of the 

presence of a covariate related to anthropomorphic outliers, since 85.7% of the United States 

population have a body mass index of less than 35.111 The World Health Organization 

recommends utilizing body mass index norms for the country of interest rather than height or 

weight norms.112 

Table 3.3 Inclusion and Exclusion Criteria 

Inclusion Criteria Exclusion Criteria 

Diagnosed by a neurologist with idiopathic 

PD (PD group only) 

Brain surgery for the treatment of PD 

Stable on medications Currently participating in a medication study 

Able to follow directions  Body mass index greater than 35 

Able to stand from a chair independently 

without the use of their arms at least 1 of 

every 4 attempts during uncued testing 

Other than idiopathic PD, all participants will 

be required to be free of neurological, 

musculoskeletal, or other health conditions 

that impair the ability of the subject to 

complete a sit to stand.  

Report at least occasional difficulty rising 

from a standard chair.  

 

Between the ages of 45 and 90  

Minimum Montreal Cognitive Assessment 

score of 22110 

 

3.2.2 Reliability of Tests and Measures 

 Kinematic and postural sway metrics were collected using APDM Mobility Lab’s Opal 

Sensors and the Moveo Explorer Data Collection Program.113 Mobility Lab’s Opal Sensors are 

valid, reliable, and responsive to change in both individuals with PD and healthy adults.114-116 

The Opal Sensors weigh less than 25 grams, have dimensions of approximately 44x40x14 mm, 

and attach with lightweight straps. They utilize accelerometers, gyroscopes, and magnetometers 

in all 3 axes to gather data that is sent wirelessly to a computer in real time. Seven opal sensors 

were utilized,1 on each leg, 1 on each thigh, 1 attached to the lumbar spine, 1 attached to the 
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sternum, and 1 attached to the forehead, Figure 3.1.117 Body worn sensors were not applied to the 

upper extremities for the purpose of this experiment. This sensor placement allowed for 

collection of the following kinematic metrics: neck flexion-extension; trunk flexion-extension; 

hip flexion-extension; knee flexion-extension; ankle dorsiflexion-plantarflexion.113 Regarding 

the STS process, this sensor placement captured the following metrics: latency of initiation of 

movement, duration of the STS transfer. In addition, this sensor placement will allow for the 

following postural control data to be collected: coronal, sagittal, and transverse plane range of 

motion.118  

Figure 3.1 Body Worn Inertial Measurement Unit Placement118 

 

 

The MDS-UPDRS119 was collected to grade the staging of PD for the experimental 

group. The MDS-UPDRS is valid, reliable, and responsive to change.68,120 All testing was 

completed by a Movement Disorder Society trained rater. Scores on the MDS-UPDRS range 

from 0-199, with higher scores indicating a greater impact of PD symptoms.  
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 The Parkinson’s Disease Questionnaire-39 (PDQ-39) was utilized to measure the impact 

of PD on the participants’ health related quality of life. The PDQ-39 is a self-report questionnaire 

that measures participation, is valid, reliable, and sensitive to change.121-123 Scores on the PDQ-

39 are calculated as a percentage and range from 0-100, with higher scores indicating a greater 

impact of symptoms.   

 As a measure of demographics, the 10 Meter Walk Test (10MWT) was completed by all 

participants. The 10MWT, a commonly utilized measure to determine gait speed (GS), is reliable 

and sensitive to change in those with PD.124 A slower GS is indicative of a greater difficulties 

with ambulation. A 10-meter straight walkway was utilized in a hallway with solid colored 

flooring with tape lines marked on the wall near the floor at 0, 2, 8 and 10 meters. Tape will not 

be placed on the floor as it may provide an external cue that would provide altered results. 

Participants began at the first tape line and were instructed to “walk at a comfortable pace until I 

say stop,” which occurred at the last tape line. The average of 3 trials was used as the 10MWT 

score.125  

 The MoCA was completed by all participants to determine their ability to provide 

informed consent and has been validated for this purpose. The MoCA is a 16-item test that 

measures visuo-spatial and executive functioning, memory, language, abstraction, and 

orientation. Karlawish, et al., validated the MoCA for use in determining the ability of an 

individual with PD to provide informed consent within research studies and recommended a cut 

off score of 22 or higher.110 

3.2.2 Procedures 

3.2.2.1 Recruitment 
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Subjects were recruited through a sample of convenience from local support groups, local 

health care providers, and already established pools of research subjects. Subjects were initially 

screened for appropriateness for inclusion in this study via telephone conversation following a 

group specific protocol (Appendices 1 and 2). Telephone screening included an overview of the 

study, including possible risks and benefits, time commitments, and location of the data 

collection, questions to ensure inclusion and exclusion criteria are met, and scheduling of 

sessions as appropriate. All candidates signed an informed consent form at the data collection 

site prior to data collection.  

3.2.2.2 Setting 

Data collection occurred within a university setting or at a community exercise facility in 

a quiet area with minimal distractions. All locations will be standardized for regulatory 

environmental factors.  

3.2.2.3 Training of Testers 

The MDS-UPDRS was completed by a Movement Disorder Society trained tester. 

Testers who collected the remaining demographic information of age, height, weight, years with 

symptoms, years since the diagnosis, gender, GS, and PDQ-39 score completed a standardized 

training to ensure consistency of all data collection. Data collection for both the uncued and cued 

STS transfers was completed by a tester who is trained in the use of the body worn sensors and 

patient cueing.  

3.2.2.4 IRB Approval and Informed Consent 

 Institutional Review Board approval was attained for the proposed research project from 

Nova Southeastern University and Clarkson University and informed consent attained from each 
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participant prior to data collection. Site permission was gained from Rock Steady Boxing 

Syracuse.  

3.2.2.5 Data Collection 

For all participants, data collection occurred on a single date. Subjects were scheduled to 

begin testing 30 minutes after taking their regularly scheduled carbidopa-levodopa. This 

timeframe was selected as Hauser, et al found that “on” phase typically initiated around 45 

minutes following immediate release or extended release levodopa was ingested.126 No motor 

related testing took place until 1 hour following the medications being ingested. The 1-hour 

timeframe was selected to ensure that the “on” phase had been reached and motor measurements 

were taken during their period of optimal movement. Upon arrival, participants were educated 

about the purpose of the study, the process of the study, and their ability to opt out of continuing 

at any time. Each participant signed an informed consent form and underwent the MoCA to 

determine that they are able to provide informed consent. Then, the tester confirmed the last time 

they took their dopamine replacement medications and their next scheduled dose. Non-motor 

portions of the MDS-UPDRS, the PDQ-39, confirmation of date of birth, height, weight, 

confirmation of years with symptoms, and confirmation of years since diagnosis were completed 

between peak “off” and peak “on” time as time permits or following the completion of all time 

sensitive data collection. Sixty minutes following the patient taking their regularly scheduled PD 

medications, measurements that are time sensitive for the “on” phase were collected. These 

included uncued and experimental STS transfer kinematics, immediate standing “on” postural 

sway, the 10MWT, and “on” motor portions of the MDS-UPDRS, Appendix 3. A standard, 

backless, armless tub bench was used for all testing. Seat height for this study was standardized 

with knees in approximately 100 degrees of flexion in order to better understand the kinematics 



  44 

of the movement beginning from a standardized joint position. Knee angle was confirmed in 

sitting through the use of a goniometer. Lowering the seat beyond 100 degrees of knee flexion 

alters the STS transfer significantly requiring greater hip angular velocity.127 However, having 

the seat height lower than 90 degrees is more reflective of the situations during which individuals 

may need more assistance to perform a STS transfer in their daily lives. Additionally, all 

transfers began from a position with feet shoulder width apart and feet positioned 10 cm 

posterior to placement when the tibia is in vertical alignment, which are consistent with typical 

initial conditions of successful STS transfers.128  

 Prior studies have shown impaired motor learning in individuals with PD,24 making it 

possible to increase the repetitions with a low risk of the effect of learning on STS transfers 

within a single session. Protocols for consistency were created, Appendix 4. 

 To ensure that uncued transfers were self-initiated, participants were given a prompt to 

complete a brief verbal recall activity then stand up after they are done. The prior study on the 

effects of audiovisual cueing during the STS transfer for people with PD reported a self-initiated 

uncued transfer. However, the authors report asking the patients to stand when they were ready.8 

It is possible that subjects utilized this prompt as an external cue to initiate standing. Completion 

of a cognitive task prior to standing reduced the likelihood of this occurring in the proposed 

study. Rest breaks between all transfers were provided and required to be at least 1 minute in 

duration, but longer as requested by the test subject, to reduce the effects of fatigue. The protocol 

to collect the STS data under the 3 conditions was randomized for each participant to decrease 

the learning effect. However, the protocol for each condition remained standardized, Appendix 4.  

During the condition of external attentional focus of reaching to targets, the task was 

separated into 2 subcomponents of the transfer that was completed in a specific order to be 
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consistent with the suggested “cognitive movement strategies” suggest by Keus, et al.129 For this 

condition, the tester was positioned to the more affected side of the patient in order to prevent 

falls. During the condition of external attentional focus of concurrent modeling, the tester was 

positioned directly opposite of the patient at a distance of 2.5 times the subject’s arm length in 

order to prevent the tester and patient from touching during the transfer. If the tester and subject 

touch hands, the trial was stopped and the distance increased to 3 times the subject’s arm length 

with the change documented on the data collection sheet. The tester was in an excellent position 

to guard the patient in this condition to prevent falls. During the condition of explicit cue for an 

internal attentional focus, the area in front of the patient was cleared from all potential “targets” 

that may increase the likelihood for an external attentional focus. To prevent falls, a tester was 

positioned to the more affected side of the subject. The tester was properly trained in guarding 

techniques for each condition.  

For individuals in the healthy control group, all data collection occurred on the same day, 

Appendix 5. Uncued testing of STS will occur in the same manner as described for the PD 

groups in Appendix 4. However, data from the remaining 3 conditions was not collected since 

the research questions of this dissertation study focused on the effect of various types of cueing 

as measured by assimilation of dependent variables toward those of the healthy control group.  

3.3 Data Analysis 

Demographics were calculated and included age, gender, years with diagnosis, years with 

symptoms, health related quality of life as reported on the PDQ-39, disease severity as indicated 

by the MDS-UPDRS, and gait speed, as applicable. Mean and standard deviations were provided 

for interval and ratio level data.107 For nominal and ordinal level data, medians and mode were 

presented.107  
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All dependent variable data was first analyzed to determine whether parametric 

assumptions were met. Only the kinematic data of change in hip angle compared to the uncued 

condition and change in height compared to the uncued condition were found to have a normal 

distribution. Selection of statistical analyses was based on the ability of the data to meet the 

assumptions for the test, the research questions, and the data available.  

Data analysis for research questions 1 and 4 were completed as part of the first 

manuscript and details can be found in Chapter 4. Data analysis for question 3 was completed as 

part of the second manuscript and details can be found in Chapter 5.  Data analysis for question 2 

“is there a relationship between the latency of movement initiation and postural sway noted in 

the first 30 seconds of stand?” resulted in the acceptance of the null hypothesis and will be 

discussed here. Assessment of distribution of data determined that the sway data was not 

normally distributed. A Spearman Rank Order correlation was used to identify if a relationship 

between sway and latency was present. No relationship was identified.  

3.4 Presentation of Results 

 Three manuscripts have been prepared for submission based on this dissertation study. 

The first “Modeling improves postural control following sit to stand in Parkinson disease” can be 

found in Chapter 4. The second “Impact of cues on motor control in sit to stand transfers for 

individuals with Parkinson disease” can be found in Chapter 5. The third “Standing taller than 

typical effects postural control in Parkinson disease” can be found in Chapter 6. 
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CHAPTER 4: First Manuscript: Modeling improves postural control 

following sit to stand in Parkinson disease 

4.1 Contribution of Authors 

CHAPTER FOUR 
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4.3 Manuscript in Journal Form 

ABSTRACT 

Background: Explicit cues are commonly used to overcome the effects of motor symptoms 

associated with Parkinson disease (PD). While much is known about the effects of explicit cues 

on gait for people with PD, little is known about the impact of explicit cues on postural sway 

during discrete tasks like sit to stand (STS) transfers. Objective: To identify if three different 

types of explicit cues provided during STS transfers of people with PD will result in postural 

sway during immediate standing that was more similar to healthy controls. Methods: This 

crossover study had 13 subjects in both the PD and healthy control groups. All subjects 

completed three trials of uncued STS transfers. The PD group additionally completed three trials 

of STS transfers in three conditions: external attentional focus of reaching to targets, external 

attentional focus of concurrent modeling, and explicit cue for an internal attentional focus. Body 

worn sensors collected sway data. Sway characteristics between the healthy control and PD 

groups was compared with Mann Whitney U tests. Friedman’s Tests were used to compare sway 

characteristics between conditions. Results: Modeling was the only cue that resulted in 

decreased sway. The reaching to target and internal attentional focus cues had no impact on 

sway. However, incidences of the center of mass moving outside of the base of support were 

present for both reaching to targets and cues for an internal attentional focus. Conclusions: 

Modeling as a cue during STS for people with PD may safely reduce sway more than other 

commonly used cues.  
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Introduction 

Postural instability is one of the cardinal signs of Parkinson disease (PD).50 Long before people 

with Parkinson disease (PwP) develop a positive Pull test, they exhibit increased postural sway 

during static standing in both the sagittal and coronal planes as compared to healthy age matched 

peers.130 Changes in postural sway have been linked to fall risk within this population.130 

Additionally, when verbal-cognitive dual tasking is introduced, individuals with PD experience 

significantly more sway.130 Because of the progressive neurodegeneration seen with PD,44 

postural instability increases over time and impairs the ability of PwP to complete motor tasks 

like ambulation and transfers.  

In addition to increases in postural sway, individuals with PD experience akinesia, bradykinesia, 

tremor, rigidity, and lack of automaticity. Explicit cues are one common intervention used to 

overcome the effects of many of these motor symptoms, though their effects on postural sway 

during discrete tasks are unclear. Functional magnetic resonance imaging has shown that explicit 

cues utilize neural circuits which bypass the basal ganglia.74 Studies indicate that explicit cueing 

during gait can result in increased gait speed,5,92 increased step length,5,17 and decreased episodes 

of freezing during gait.6 Five studies looked at the impact of continuous or discrete tasks in 

sitting, but did not provide any insight into the impact of cues on postural sway.  

Multiple studies have examined the impact of providing explicit cues during the task of sit to 

stand (STS) transfers on the motor control of PwP.8,83 One study reported that visual and 

auditory cues may result in decreased duration of the transfer, improved peak horizontal and 

vertical velocities, and improved joint torque time to peak.8 Another study reported that explicit 

cues provided during the STS which had an external attentional focus reduced the duration of the 
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transfer and number of attempts to attain standing, but cues for an internal attentional focus 

resulted in a longer duration and latency period for the STS transfer (See Chapter 5). A third 

study reported a shorter duration of transfer and improved hip flexion torque after four weeks of 

training with explicit cues.83 Each of these studies provide support for the use of explicit cues to 

improve motor control of PwP during the transfer. However, it is also important to understand 

the impact of these cues on postural control in immediate standing balance.  

To the best of the authors’ knowledge, no studies have examined the effect of cues provided 

during the STS transfer on postural control during immediate standing in PwP. Identifying the 

potential positive or negative impact of commonly applied cues on postural control will allow 

clinicians to make informed decisions regarding selection of cues and intervention designs. The 

purpose of this study was to identify whether three different types of explicit cues provided 

during STS transfers of people with PD led to postural control during immediate standing that 

was more similar to healthy controls.  It was hypothesized that explicit cues which elicited an 

external attentional focus, modeling or reaching to targets, would result in improved postural 

control, while the cue that elicited an internal attentional focus would result in reduced postural 

control. 

METHODS 

Study Sample 

A PD group and a healthy control (HC) group, each with 13 subjects, were recruited from 

exercise and support groups throughout central and northern New York. Inclusion criteria were: 

stable on medications for the past two months, able to follow directions, able to rise from a chair 

without assistance or use of their arms at least one of every four attempts during uncued testing, 
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be between the ages of 45 and 90, and score a minimum of 22 on the Montreal Cognitive 

Assessment (MoCA).110 In addition, those in the PD group were required to have a diagnosis of 

idiopathic PD by a neurologist. Potential subjects were excluded from the study if they had brain 

surgery for the treatment of PD, were participating in a medication study, had a body mass index 

greater than 35 as this could significantly alter the mechanics of a STS transfer,111,112 or had any 

other health conditions that would impair their ability to complete a STS transfer. Institutional 

Review Board approval was attained from Clarkson University and Nova Southeastern 

University. All subjects signed an informed consent form prior to participation in the study. 

Study Design 

A cross-over design was used in which all subjects in the experimental group completed each 

condition of the STS transfer. The HC group completed only the uncued STS condition to allow 

for comparison of postural sway for the individuals with PD across conditions against 

neurologically healthy controls. 

Demographic Measures 

To determine the profile of the sample additional data was collected. Age, gender, height, 

weight, and gait speed were collected from all subjects. Gait speed via the 10MWT has been 

found to be valid and reliable within healthy adults and adults with PD.124 Additionally, those in 

the PD group completed the Parkinson Disease Questionnaire 39121,122 and were tested by a 

trained rater on the Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale.68,121 

These tests and measures have been found to be valid and reliable in adults with PD to assess the 

impact of PD on quality of life and disease severity. 
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Equipment and Dependent Variables 

Sway data was collected during all STS trials utilizing an inertial measurement unit sensor (Opal 

Sensors and Moveo Explorer Data Collection Program, APDM Wearable Technologies, 

Portland, Oregon) placed on the lumbar spine. This sensor utilized gyroscopes, magnetometers, 

and accelerometers to collect sway data during the first 30 seconds of standing following a STS 

transfer. These sensors have been found to be valid and reliable in both healthy adults131 and 

individuals with PD.114,115 The unit communicated with a nearby computer to collect data in real 

time. Sway data collected included sway area, amount of sway in the sagittal plane, amount of 

sway in the coronal plane, sway jerk, and sway velocity. Sway area was defined as the 95% of 

the total area in which the individual sways and combines movement in both the sagittal and 

coronal planes.118 Sway in the sagittal and coronal planes was defined as the total degrees of 

sway experienced in the related plane.118 Sway jerk was a derivative of acceleration and provides 

information regarding the smoothness of movements.131 Sway velocity was the average speed of 

sway movements118. Additionally, any incidences of the center of mass (COM) moving outside 

of the base of support (BOS), as demonstrated by the subject stepping or requiring assistance to 

prevent a fall, were operationally defined as a loss of balance (LOB) and the number was 

recorded. 

Experimental Protocol 

All data was collected in a private location in a university setting or a similar room in a 

community exercise facility during a single session. In order to ensure that all data for those in 

the PD group was collected during the same phase of medication, all motor data was collected in 

a 60-minute window that began exactly 60 minutes following the consumption of their regularly 
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scheduled dopamine replacement therapy.55 This timing would result in data collection during 

peak “on” time.132  

Both the HC and PD groups completed three trials of uncued STS trials. All STS trials began 

from a standardized position. Subjects were seated on a tub bench with the seat height adjusted 

such that their knees were in 100 degrees of flexion when their tibia were vertical. Then, the 

subjects’ feet were placed shoulder width apart and moved posteriorly 10 cm to place the 

subjects’ feet in the position most optimal for completing the STS transfer. Subjects were 

provided with a verbal prompt requesting that they respond in a single sentence and then stand 

immediately. The subjects were required to provide a verbal response prior to standing so that 

they could not use a cue from the tester to initiate their sit to stand motion. Sway data was 

collected during the first 30 seconds of standing using the inertial measurement unit sensor. In 

addition, subjects were monitored for incidences of COM moving outside the BOS that resulted 

in a step or required physical assistance to recover. 

Those in the PD group additionally completed three STS trials in each of three conditions. The 

nine experimental trials were completed in a random order (Randomizer.org, Social Psychology 

Network, Middletown, Connecticut). Prior to each trial, the tester read a condition specific set of 

directions that asked the subject to focus on the current set of directions. Condition 1 (Modeling 

for External Attentional Focus): Each subject began in the standardized position with a second 

tub bench placed opposite the subject at a distance from the subject’s toes equal to two and a half 

times the length of the subject’s arm. The tester provided a verbal prompt of “when I stand up, 

stand with me” then the tester stood up. Condition 2 (Reaching to Targets for External 

Attentional Focus): Each subject began in the standardized position with a second tub bench 

placed opposite the subject at a distance from the subject’s toes equal to the length of the 
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subject’s arm. The tester provided the prompt to “reach to my hand” as the tester placed the 

dorsum of their hand on the front of the opposing chair. When the subject contacted the tester’s 

hand, the test immediately cued the subject to “stand to the ceiling.” Condition 3 (Cued for 

Internal Attentional Focus): Each subject began in the standardized position. All objects were 

removed from in front of the subject. The tester provided the cue to “bend forward at your hips 

and stand until your back is straight.” 

Data Analysis 

Data were analyzed using SPSS Version 26.0. Demographics were calculated for both the PD and 

HC groups. Each dependent variable was assessed for normality utilizing the Shapiro-Wilk Test. 

Results were assessed for skewness and kurtosis.  Sway data was graphed and reviewed looking 

for indications of learning or fatigue, such as trend lines suggesting improvement or decline 

throughout the course of trials. No trends were identified.  

Comparison of Postural Sway Between the PD and HC Groups  

Sway metrics observed during the uncued condition were compared between the PD and HC 

groups using Mann Whitney U tests with a significance level of p < 0.013(0.5/4). For those sway 

metrics with significant differences found between the PD and HC groups during the uncued 

conditions, separate Mann Whitney U tests were completed between the uncued condition of the 

HC group and each experimental condition of the PD group. This was completed to identify if 

any experimental condition resulted in postural sway characteristics that were not significantly 

different than the HC group. 

Comparison of Postural Sway Across Conditions for the PD Group  
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Separate Friedman’s tests were utilized to compare postural sway area, sagittal plane sway, 

coronal plane sway, sway jerk and sway velocity of the PD group across all conditions of the 

STS transfers (uncued, modeling, reaching, and internal focus). Because we performed five 

separate Friedman tests (one for each measure of postural control) Bonferroni correction factors 

were applied, resulting in a p<0.01 (0.05/5) for statistical difference.  If a significant difference 

was identified in the Friedman’s test a post-hoc Mann Whitney U test was performed to identify 

between which cueing conditions the difference was. Because there were six potential 

comparisons a Bonferroni correction factor was applied resulting in p<0.008 (0.5/6). A 

McNemar Test (Bonferroni corrected p < 0.008, 0.05/6) was utilized to compare the occurrences 

of COM moving outside of the BOS across conditions. 

RESULTS 

Subjects in the PD group included eight males and five females with a mean age of 68.46(+/-

9.11) years and gait speed of 0.87(+/-0.21) m/s. Subjects in the HC group included seven males 

and six females with a mean age of 67.31(+/-10.41) and gait speed of 1.23(+/-0.12) m/s. One 

candidate for the PD group was excluded from the study for not meeting the minimum criteria 

during cognitive testing. Additional demographic information can be found within Table 1.  

[Insert Table 1 around here] 

 

Comparison of Postural Sway Between the PD and HC Groups 

There was a statistically significant difference (p< 0.013) between the PD and HC groups during 

the uncued condition with those in the PD group demonstrating increased sway area (PD= 5.192 

degrees2, HC= 0.767 degrees2) and sway jerk (PD=5.03 m/s3, HC= 0.644 m/s3). No significant 

difference was noted between the PD and HC groups during the uncued condition for coronal 
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sway, sagittal sway, or sway velocities. When sway area was compared between the uncued 

condition of the HC group and the experimental conditions of the PD group, the significant 

difference remained across all conditions. However, when sway jerk was compared between the 

uncued condition of the HC group and the experimental conditions of the PD group, the 

significant difference was no longer present in the modeling condition (PD= 2.361 m/s3, HC= 

0.644 m/s3). See Table 2. Additionally, no LOB occurred for either group in the uncued 

condition.  

[Insert Table 2 around here] 

Comparison of Postural Sway Across Conditions for the PD Group  

There was a statistically significant difference between conditions (p < 0.01) for the PD group in 

coronal sway. Post-hoc testing identified that the modeling cue resulted in significantly less 

coronal sway than the uncued, reaching to target, or internal attentional focus conditions 

(uncued= 0.272 degrees, reach to targets= 0.265 degrees, modeling= 0.197 degrees, internal 

attentional focus= 0.288 degrees). See Table 3. Additionally, LOB occurred during both the 

reaching to target and internal attentional focus conditions. Two LOB incidents occurred during 

the reaching to target condition, one which was self-corrected with a step and one which required 

tester assistance to recover. One LOB incident occurred during the internal attentional focus 

condition and the subject required tester assistance to recover. A McNemar Test found no 

statistical significance (p < 0.008) regarding incidences of LOB between conditions for the PD 

group. See Table 4.  

[Insert Table 3 around here] 

[Insert Table 4 around here] 
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DISCUSSION 

This study examined the effects of three different types of cueing on postural sway immediately 

following a STS transfer for PwP who experience occasional difficulty completing a STS from a 

standard height chair. When not cued, individuals with PD were found to have significantly 

greater sway areas and sway jerk in immediate standing than their healthy counterparts. A verbal 

cue paired with a modeling cue resulted in decreased postural sway during the first 30 seconds of 

standing without LOB. Neither a verbal cue paired with reaching to targets or a verbal cue for 

internal attentional focus decreased postural sway during the first 30 seconds of standing. 

However, both cues introduced LOB incidents that were not present during the uncued condition 

for either the HC or PD groups. Our study provides insight on the clinical application of cues 

utilizing modeling, target, and internal attentional cues during STS transfers and the impact of 

these cues on postural stability. 

Modeling 

An explicit verbal cue paired with modeling of the STS transfer was the only cue that resulted in 

improved balance during early standing for the PD group. This suggests that, especially for 

individuals with clinically important postural instability, modeling may be a safe way to cue 

individuals while completing standing tasks. Prior research suggested that increases in sway jerk 

may be the best sway characteristic to identify untreated PD.131 In our study, modeling was able 

to reduce the level of sway jerk to not significantly different from the HC group. 

In this study, modeling was completed in “mirror image” positioning with the tester directly 

across from the subject. However, this may not be possible in all environments. Consideration of 
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the theoretical basis for why modeling was effective suggests that replicating the paired verbal 

command and modeling from beside the patient, or even utilizing a squatting position without a 

seat, should provide similar results. Modeling with a paired verbal command provides an explicit 

cue, which functional magnetic resonance imaging74 has shown utilizes neural pathways that are 

not reliant on the basal ganglia. Additionally, electromyography (EMG) studies have shown that, 

even in the absence of movement, similar activation occurs in the motor cortex when observation 

of familiar movements occurs.133 This activation is known as the mirror neuron system and 

explains how humans can predict what happens next during a familiar sequence of events.133 

Research indicates that action observation, like watching a sit to stand transfer, could activate the 

mirror neuron system and prime the motor cortex for improved movements.134  

Incidents of Loss of Balance  

While no statistically significant changes in sway area, coronal sway, sagittal sway, sway jerk, or 

sway velocity were found when subjects completed the reaching to target or internal attentional 

focus conditions, incidences of LOB were present in both of these conditions. A McNemar Test 

indicated that the incidences of COM moving outside the BOS were not statistically significant. 

However, a Delphi study reported that a 25% decrease in falls should be considered a significant 

improvement following interventions for PwP.135 While the authors of this study did not provide 

an operational definition for “fall,” it is likely the losses of balance which required tester 

assistance to recover would have fit within their operational definition. It is less likely that the 

self-initiated step would fit into this definition. If we considered the sample as a whole, the 

percentage of LOB incidents by condition would still be under this criterion. However, with all 

three LOB incidents occurring with different subjects, it is important to note that based on the 

suggested MCID, two to three different subjects may have experienced clinically important 
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increases LOB incidents with the addition of an explicit cue. Two out of 13 subjects may have 

experienced a clinically meaningful increased in LOB incidents within the reaching to target cue. 

One out of the 13 subjects likely experienced a clinically meaningful increased in LOB incidents 

within the reaching to target cue. 

Selection and Placement of Targets 

Our findings of introduction of LOB incidents suggest that targets should be carefully selected to 

reduce risk of falls. During the reaching to target condition, individuals were cued to reach to the 

tester’s hand, which occurred at the end of the pre-extension phase, then to “stand to the ceiling” 

to complete the extension phase. All subjects were able to reach the tester’s hand without signs 

of imbalance. However, the two LOB incidents that occurred during the reaching to target 

condition occurred at the end of the extension phase, which could indicate that the ceiling was 

not an appropriate target.  

Prior research has reported improved motor control during discrete tasks completed by PwP with 

the introduction of targets, but did not add to our understanding of the impact of utilizing targets 

on postural sway and balance since studied reaching tasks were completed in sitting.94,95 To the 

best of these authors’ knowledge, this is the first study to report on the impact of reaching to 

targets on postural sway. Based on prior research15,62,94 and the additional findings within the 

current study, targets are likely an effective strategy to improve motor control for individuals 

with PD, but clinicians should strive to place targets in attainable locations that result in optimal 

movement. In the case of the STS transfer, it may have been better to have the tester place a hand 

at shoulder height for the subject to stand to. In the clinic, if a therapist is seeking to improve 
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upper extremity swing during a pre-gait stepping activity, it may be better to place a target at the 

maximally attainable distance than to encourage the patient to “reach toward that wall.” 

Cueing for an Internal Attentional Focus 

Despite frequent use in clinical and home settings of the cue used in this study for an internal 

attentional focus, or similar phrases, this study adds to the limited body of evidence that 

questions the clinical utility of such cues for this population (See Chapter 5). No benefits were 

seen regarding improvements in postural sway, but rather one LOB incident was introduced with 

the addition of this cue. In combination with other reports that cues which elicit an internal 

attentional focus during STS transfers reduce the speed of the transfer, cueing for an internal 

attentional focus during STS transfers are not recommended at this time (See Chapter 5).  

Limitations and Future Research 

The sample size of this study, while adequate to find significance, is still relatively small and 

represents a limited range of disease severity. At this time, it is unclear if these findings would 

apply to individuals with more severe cognitive or motor impairments due to PD. Many different 

cues are provided in the clinic, however, in this study we only looked at 3 cues. Therefore, there 

may be other cues that are more effective at improving the postural stability of PwP in early 

standing that were not examined here. Lastly, this study looked at the effects of a one-time cue 

rather. Further research should examine the effects of practice on skill acquisition and retention 

of cued STS transfers.  
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CLINICAL IMPLICATIONS 

Modeling while providing a succinct verbal cue may improve postural control while completing 

discrete standing tasks providing caregivers and clinicians with a useful cue that can be provided 

in most settings. With an understanding of the theoretical basis of modeling, caregivers and 

clinicians should complete modeling cues from any location that allows for PwP to clearly see 

what is being modeled and maximizes safety for both individuals.    
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Table 1. Subject Demographics 

Characteristic Healthy Control 

(n=13) 

Subjects with PD 

(n=13) 

95% CI 

Gender (male/female) 7/6 8/5  

Age in years 

Mean(SD) 

67.31 (10.41) 68.46 (9.11) -9.07, 6.77 

Height in cm 

Mean(SD) 

165.72 (10.49) 172.00 (8.72) -14.09, 1.52 

Weight in kg 

Mean(SD) 

82.36 (14.41) 84.73 (12.54) -13.69, 8.95 

10MWT (m/s) 

Mean(SD) 

1.23 (0.12) 0.87(0.21) -3.09, -1.03 

Years with symptoms 

Mean(SD) 

 10.38 (9.18)  

Years with diagnosis 

Mean(SD) 

 5.38 (3.3)  

MDS-UPDRS – total 

score   Median(range) 

Possible range: 0-199 

 70 (48-112)  

PDQ-39 - 

median(range) 

Possible range: 0-100 

 34 (4-74)   

10MWT= 10 Meter Walk Test; MDS-UPDRS= Movement Disorder Society’s Unified Parkinson 

Disease Rating Scale; PDQ-39= Parkinson’s Disease Questionnaire 39 
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Table 2. Comparing Sway Characteristics Across Parkinson Disease Conditions to the Healthy 

Control Uncued Condition 

Postural Sway 

Characteristic 

Healthy 

Control Mean 

(SD) 

Parkinson Disease  

Mean (SD) 

Uncued Uncued Reach to 

Targets 

Modeling Internal 

Focus 

Sway Area 
(degrees2) 

0.767 (0.303) 5.192(7.074)* 4.824(7.100)* 3.147(3.893)* 4.316(4.798)* 

Coronal Sway 

(degrees) 

0.158(0.103) 0.272(0.177) 0.265(0.200) 0.197(0.141) 0.288(0.218) 

Sagittal Sway 

(degrees) 

0.445(0.248) 0.816(0.724) 0.702(0.425) 0.542(0.340) 0.601(0.396) 

Sway Jerk 

(m/s3) 

0.644(0.417) 5.030(7.28)* 2.564(2.69)* 2.361(3.061) 2.320(2.501)* 

Sway Velocity 

(m/s) 

0.149(.153) 0.215(.178) 0.204(0.181) 0.157(0.141) 0.207(0.143) 

*Sway characteristic of the PD group is significantly different than the HC group after the 

Bonferroni correction (p<0.013)  
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Table 3. Sway Characteristics Compared Across Conditions in Parkinson Disease Group 

Sway Characteristic Condition 

Mean (SD) 

Uncued Reach to 

Targets 

Modeling Internal 

Attentional 

Focus 

Sway Area (degrees2) 5.192(7.074) 4.824(7.100) 3.147(3.893) 4.316(4.798) 

Coronal Sway* (degrees)  0.272(0.177) † 0.265(0.200) † 0.197(0.141) † 0.288(0.218) 

Sagittal Sway (degrees)  0.816(0.724) 0.702(0.425) 0.542(0.340) 0.601(0.396) 

Sway Jerk (m/s3) 5.030(7.28) 2.564(2.69) 2.361(3.061) 2.320(2.501) 

Sway Velocity (m/s)  0.215(.178) 0.204(0.181) 0.157(0.141) 0.207(0.143) 

*Statistical significance was found for this postural sway characteristic through Friedman’s test 

after Bonferroni correction (p<0.01) 

† Statistical significance was found with post-hoc Mann Whitney U after the Bonferroni 

correction (p<0.008). Modeling resulted in significantly less coronal plane sway than the uncued 

or reaching to target conditions.  
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Table 4. Incidences of Loss of Balance* 

Incidences of the 

COM moving 

outside the BOS 

Uncued Reaching to 

Target 

Modeling Internal 

Attentional Focus 

Step  - 1 - - 

Assistance - 1 - 1 

COM= center of mass, BOS= base of support; No statistical significance was found after 

Bonferroni correction (p < 0.008) * Loss of balance operationally defined as the COM moving 

outside the BOS. 
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4.4 Instructions to Authors 

Instructions to Authors from Movement Disorders 

Excerpt from “Author Guidelines” for Movement Disorders: 

 

Documentation of Author Roles 

At the end of the manuscript, all authors must be listed, along with their specific roles in 

the project and manuscript preparation. These should include but not be restricted to: 

1. Research project: A. Conception, B. Organization, C. Execution; 2. Statistical Analysis: 

A. Design, B. Execution, C. Review and Critique; 3. Manuscript Preparation: A. Writing of 

the first draft, B. Review and Critique; 

 

Excerpt from “Author Guidelines” for Movement Disorders: 

 

• Research Articles: Full-length articles should present new clinical or scientific data in a 

field related to movement disorders. The format should include: Structured Abstract: 

(Background, Objectives, Methods, Results, Conclusions) Up to 250 words with no 

abbreviations. Text: Up to 3700 words excluding of abstract, legends and references. 

Minimal abbreviations. Tables and/or figures: Up to 5. Legends: Should be concise and 

describe results without repeating data in text. 

 

Excerpt from “Author Guidelines” for Movement Disorders: 

 

The text of the manuscript should be in the following sequence: 

(2) Abstract 

Structured Abstract: We require that authors submit structured abstracts. The page 

following the title page of Full-Length Articles should include an abstract of up to 250 

words. The abstract should be structured. The page following the title page of a Brief 

Report should include a structured abstract of up to 150 words. Reviews should include 

an unstructured abstract. Viewpoints do not need any abstract. 

(3) Introduction 

Give a brief description of the background and relevance of the scientific contribution. 

(4) Methods 

Describe the methodology of the study. For experimental investigation of human or 

animal subjects, please state in this section that an appropriate institutional review 

board approved the project. For those investigators who do not have formal ethics 

review committees, the principles outlined in the “Declaration of Helsinki” should be 

followed. For investigations in human subjects, state in this section the manner in which 

informed consent was obtained from the subjects. A letter of consent must accompany 
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all photographs, patient descriptions, and pedigrees in which a possibility of 

identification exists. The authors are responsible for ensuring anonymity. 

(5) Results 

No specific regulations. 

(6) Discussion 

No specific regulations. 

(7) Acknowledgment 

No specific regulations. These may be published on line at the discretion of the editor. 

(8) Authors' Roles 

List all authors along with their specific roles in the project and preparation of the 

manuscript. 

These may include but are not restricted to: 

1) Research project: A. Conception, B. Organization, C. Execution; 

2) Statistical Analysis: A. Design, B. Execution, C. Review and Critique; 

3) Manuscript: A. Writing of the first draft, B. Review and Critique. 

 

Excerpt from “Author Guidelines” for Movement Disorders: 

 

(13) Tables 

Tables should be typed neatly, each on a separate page, with a title above and any notes 

below. Explain all abbreviations. Do not repeat the same information in tables and 

figures that is present in text. Tables and figures should be uploaded as individual files 

and not part of the manuscript text. (You do not need to mail hard copies of your 

manuscript). 

 

*Tables and Figure Legends 

Double-space legends of fewer than 40 words for tables and figures.  
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CHAPTER 5: Second Manuscript: Impact of cues on motor control 

in sit to stand transfers for individuals with Parkinson disease 

5.1 Contribution of Authors and Co-Authors 

CHAPTER FIVE 

IMPACT OF CUES ON MOTOR CONTROL IN SIT TO STAND TRANSFERS FOR 

INDIVIDUALS WITH PARKINSON DISEASE 

 

Contribution of Authors and Co-Authors 

Author: Dr. Rebecca A Martin 

Contributions:  

Research project: Conceived, organized, and executed.  

Statistical analysis: Designed and executed the statistical analysis.  

Manuscript preparation: Wrote the first draft of the manuscript. Integrated feedback to complete 

the final draft of the manuscript. 

 

Co-Author: Dr. Jennifer Canbek 

Contributions to the research project:  

Research project: Helped conceive the study design. Review and critique. 

Data Analysis: Review and critique.  

Manuscript preparation: Review and critique. 

 

Co-Author: Dr. George Fulk 

Contributions to the research project:  

Research project: Helped conceive the study design. Review and critique. 

Data Analysis: Review and critique.  

Manuscript preparation: Review and critique. 

 

Co-Author: Dr. Lee Dibble 

Contributions to the research project:  

Research project: Helped conceive the study design. Review and critique. 

Data Analysis: Review and critique.  

Manuscript preparation: Review and critique. 

 

Co-Author: Dr. Ali Boolani 

Contributions to the research project:  

Data Analysis: Review and critique.  
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5.3 Manuscript in Journal Format 

Abstract 

Background and Purpose: Individuals with Parkinson disease (PD) often experience difficulty 

transferring from sit to stand (STS). Current evidence suggests cues which promote an external 

attentional focus improve gait and transfers for individuals with PD. However, current research 

utilizes cues which are difficult to replicate in clinical and home environments making the 

findings difficult to generalize or implement. The purpose of this study is to identify if three 

different types of explicit cues provided during STS transfers of people with PD will result in 

motor control characteristics that are more consistent with healthy controls. Methods: Twenty-

six participants completed trials of self-initiated uncued STS transfers. Those in the experimental 

group also completed trials of STS transfers in 3 conditions: an external attentional focus of 

reaching to targets, an external attentional focus of concurrent modeling, and an explicit cue for 

an internal attentional focus. Data was collected by trained testers using valid and reliable body 

worn inertial measurement units. Unpaired t-tests compared movement characteristics between 

the healthy control and experimental groups. Repeated-measures ANOVAs were used to 

compare movement characteristics between conditions, with paired t-tests used for post-hoc 

analysis. Results: Modeling shortened the duration of the transfer. Reaching to targets likely 

resulted in a clinically meaningful decrease in attempts to attain stand. Cueing for an internal 

attentional focus resulted in increased latency and duration of the STS. Discussion and 

Conclusions: Cues for an external attentional focus were most effective at reducing the impact 

of motor impairments on STS for individuals with PD.  
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INTRODUCTION 

As Parkinson disease (PD) progresses, individuals develop motor signs and symptoms that 

significantly impair movement. For example, bradykinesia increases time required to complete 

activities 1 while hypokinesia causes a decrease in the amplitude of movement.136 Akinesia can 

make beginning motor tasks problematic.137 Lack of automaticity may cause people with PD 

(PwP) to utilize motor control patterns similar to those just learning the motor task. Kyphotic 

posture can alter mechanics and impair function.1 These and other impairments contribute to 

progressive functional decline throughout the course of the disease.44 

In particular, PwP often struggle with STS transfers and experience increased latency of 

movement,137 task duration,1 and number of attempts to complete STS transfers and may need 

assistance. Even in mild to moderate stages of PD, many individuals spend up to 75% of their 

waking hours in sedentary activities.13 Evidence suggests that when controlling for active task 

participation, a high association exists between time spent performing sedentary tasks and need 

for assistance to complete activities of daily living.12 As PD progresses, caregiver burnout 

increases concurrently with an increased need for caregiver assistance,138 which may include 

transfer assistance. One way to reduce caregiver burnout is to identify ways for PwP to improve 

their motor capabilities and complete STS transfers with less assistance. 

Explicit cuing is theorized to compensate for akinesia, bradykinesia, and lack of automaticity and 

found to improve motor capabilities for PwP in certain contexts, such as during gait5,92 and 

reaching tasks.94,95 Functional magnetic resonance imaging suggests that explicit cues which 

draw an external attentional focus bypass faulty basal ganglia circuits found in PwP.74 During 

gait, several studies report improved gait mechanics including improvements in speed,5,92 
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increased step length,5,92 and reduced freezing with the provision of auditory rhythmic cues.6 

Common cueing methods used to improve gait speed and increase step length include brightly 

colored tape15on the floor, and lights shown on a pair of glasses.17,19 Verbal cues to “take long 

steps” improved gait speed but produced varied effects on step length, and cadence.93 The varied 

impact of different verbal cues suggests the importance of carefully selecting verbal cues for this 

population.  

While research supports providing cues during gait, it is unclear whether these findings are 

generalizable beyond gait due to less evidence and conflicting results regarding non-gait related 

continuous tasks and discrete tasks. Improved speed and accuracy of button pushing were found 

with externally focused auditory cues as compared to visual cues provided during upper 

extremity sequencing tasks.18  One study identified improved letter size from visual or auditory 

cues during writing.22 Another suggests visual cueing impairs handwriting for PwP.23 Two 

studies reported explicit cueing increased force production and speed during reaching.94,95 

Specific to the discrete task of STS transfers, limited evidence is available regarding optimal 

cueing for patients with PD. A verbal cue to “get ready, stand up” paired with a visual cue of an 

8x8cm light appearing at eye level resulted in increased horizontal and vertical speeds with a 

decreased duration of transfer.8 A training program of biofeedback and cues to sit or stand based 

on highlighted boxes on a monitor reduced STS transfers duration and improved hip flexion 

torque.83 While providing some support for the use of external cues for transfers, the strategies 

utilized within these studies are not transferable to home or most clinical settings. Additionally, 

these studies did not compare the use of cues that result in an internal versus external attentional 

focus.  
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While auditory, visual, verbal, and tactile cueing have been successful in gait and upper 

extremity tasks, based on current evidence, it is unclear if the external cueing during continuous 

tasks can be applied to the discrete task of a STS transfer for PwP. Therefore, the purpose of this 

study is to identify if three different types of explicit cues provided during STS transfers of 

people with PD will result in motor control characteristics that are more consistent with healthy 

controls: external attentional focus of concurrent modeling; external attentional focus of reaching 

to targets; and an explicit cue for an internal attentional focus. It was hypothesized that PwP 

would respond better to cues that create an external attentional focus, rather than the cue for an 

internal attentional focus. 

METHODS 

Study design 

This is a cross-over design study with all participants in the PD group participating in an uncued 

condition and 3 experimental STS conditions. A healthy control (HC) group participated in the 

uncued condition to allow for comparison of motor control for the PwP across conditions against 

typical. 

Study Sample:  Twenty-six participants, 13 with PD and 13 healthy controls (HC), were 

recruited for this study from PD support groups and exercise classes throughout New York. 

Inclusion criteria included being between the ages of 45 and 90, being able to follow directions, 

being stable on medications for the past two months, report occasional difficulty rising from a 

standard chair but have the ability to stand independently without the use of their arms at least 

one of every four attempts during uncued testing, and score a minimum of 22 on the Montreal 

Cognitive Assessment (MoCA).110 In addition, those in the PD group were required to have been 
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diagnosed with idiopathic PD by a neurologist. Candidates were excluded from the study if they 

had a history of brain surgery for the treatment of PD, were currently participating in a 

medication study, had a body mass index of greater than 35,111,112 or had a comorbid 

neurological, musculoskeletal, or other health condition that impaired their ability to complete a 

STS transfer. All participants signed an informed consent prior to data collection and this study 

was approved by the Institutional Review Boards of Clarkson University and Nova Southeastern 

University.  

Participants in both groups completed all data collection during a single session in a private 

location within either a university setting or a similar room located within a community exercise 

facility. All participants completed the MoCA110 and the 10 Meter Walk Test124 to determine gait 

speed, both of which are valid and reliable within healthy adults and PwP. In addition, those in 

the PD group completed the Parkinson Disease Questionnaire 39 (PDQ-39)121 and all sections of 

the Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale (MDS-UPDRS).68 

These measures are reliable and valid measures of impact of PD on health-related quality of life 

and disease severity, respectively. The MDS-UPDRS was administered by a rater trained in the 

proper administration and rating of this measure. 

To reduce the impact of phase of medications on results of this study, all motor testing for PwP 

were completed between 60 and 120 minutes after taking the dopamine replacement therapies 

during the on phase of the medications.55  

Instrumentation and Dependent Variables 

Inertial measurement unit sensors (Opal Sensors and Moveo Explorer Data Collection Program, 

APDM Wearable Technologies, Portland, Oregon) were used to collect latency, duration of the 
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transfer, and joint angle changes during each trial. The sensors utilize accelerometers, 

gyroscopes, and magnetometers to infer joint kinematics and communicate with a nearby 

computer in real time. These sensors have been found to be valid, reliable, and sensitive to 

change in both healthy adults116 and PwP.114,115 Latency was measured as the time from the 

completion of the prompt until the moment of meaningful movement initiation. Duration was 

measured as the time from movement initiation until movement termination in standing. Joint 

angle changes were measured by subtracting the joint angles measured by the sensors in the pre-

trial cued erect posture from the post-trial standing posture. Joint angle changes were measured 

at the hip in isolation as well as a combination of knee, hip, trunk, and cervical spine through 

seven sensors that were worn by each participant, one on each lateral leg, one on each lateral 

thigh, one attached to the lumbar spine, one attached to the sternum, and one attached to the 

forehead. Number of attempts was recorded as the number of times that the participant initiated 

or re-initiated movement to complete the STS transfer and was recorded by the tester.  

STS Data Collection 

All participants completed three trials of uncued STS transfers. For each trial, sensors were 

calibrated in cued erect quiet standing (tactile cueing to sternum and lumbar spine with verbal 

cue to stand tall). Following calibration participants sat on a height adjustable tub bench that 

allowed for the participant’s knee to be in 100 degrees of flexion while sitting with the tibia in 

vertical. This is the lowest seat height prior to a significant change in STS mechanics.127 The 

participant’s feet were moved posteriorly 10 centimeters and placed at shoulder width apart, the 

foot positioning most consistent with successful STS transfers.128 The participant was then 

provided with a prompt requiring them to provide a one sentence response then immediately 
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stand up. This prompt removed the possibility of the tester providing an initiating cue for the 

transfer.  

Following uncued STS data collection, individuals in the PD group also completed three trials in 

each of the three experimental conditions: external attentional focus of modeling cue, external 

attentional focus of reaching to target cue, and internal attentional focus cue. The order in which 

the experimental trials were completed was randomized for each participant using an online 

randomizer (Randomizer.org, Social Psychology Network, Middletown, Connecticut). All trials 

in the experimental conditions began in the same standardized position described above. Prior to 

each trial, participants were reminded to focus on the current cue and not to try to utilize the 

strategy they felt was most effective. Then they were provided with a brief description of the 

current trail. For the modeling cue, a secondary tub bench was placed at a distance equal to 2.5 

times the length of the participant’s arm in front of their toe when the foot was in the 

standardized STS positioning. The tester sat on the opposing tub bench and provided the verbal 

cue “when I stand up, stand with me.” For the reaching to target cue, a secondary tub bench was 

placed at a distance equal to the length of the participant’s arm in front of their toe when the foot 

was in the standardized STS positioning. The tester placed the back of their hand on the front 

edge of the opposing tub bench and provided a verbal cue to “reach to my hand.” Immediately 

upon contact of the participant’s hand with the tester’s hand the tester provided a verbal cue to 

“stand to the ceiling.” For the internal attentional focus cue, all objects were removed from in 

front of the participant. The tester provided the verbal cue to “bend forward at your hips, then 

stand until your back is straight.” 
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Data Analysis 

Data were analyzed using SPSS Version 26.0. Gender, age, height, weight, and gait speed were 

calculated for both groups. In addition, years with symptoms, years with diagnosis, total scores 

for the MDS-UPDRS, and the PDQ-39 were calculated for the PD group. All dependent 

variables were graphed and reviewed for the presence of trend lines that may indicate fatigue or 

learning. No trend lines were identified.  

Comparison of Motor Control Between the HC and PD Groups 

Motor control characteristics during the uncued condition were compared between the HC and 

PD groups using paired t-tests or their non-parametric alternative with a significance of p < 

0.013(0.5/4). When a significant difference was identified between the characteristics in the 

uncued conditions, additional t-tests were completed between the uncued condition of the HC 

group and the experimental conditions of the PD group. This was completed to determine if any 

of the experimental conditions resulted in the elimination of the significant difference found 

between uncued conditions for that characteristic.  

Comparison of Motor Control Between Conditions of the PD Group 

Separate repeated measures ANOVAs for parametric data or their non-parametric alternative 

were utilized to identify overall between task condition differences in each motor control 

characteristic. Because five separate ANOVAs were performed (one for each dependent 

variable) the Bonferroni correction factor resulted in a p<0.01 (0.05/5) for statistical difference. 

When significance was found through the ANOVA, post-hoc paired t-tests or their non-

parametric alternative were performed to identify which conditions were statistically different. 
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Because six combinations of conditions were possible, the Bonferroni correction factor was set at 

p<0.008 (0.5/6). 

RESULTS 

The PD group consisted of eight males and five females (mean age=68.46+/-9.11 years, gait 

speed=0.87+/-0.21 m/s). The HC group consisted of seven males and six females (mean 

age=67.31+/-10.41, gait speed=1.23+/-0.12 m/s). Participant characteristics are presented in 

Table 1. One candidate was excluded from the PD group secondary to not attaining the minimum 

score on the MoCA. Twelve of the 13 participants in the PD group were taking dopamine 

replacement therapies. No incidences of the center of mass (COM) moving outside of the base of 

support (BOS) occurred during the uncued condition for either group. However, 2 incidences of 

the COM moving outside of the BOS occurred during the reaching to target condition and 1 

incidence of the COM moving outside of the BOS occurred during the internal attentional focus 

condition. These trials were included in the data analysis. No other adverse events occurred.  

---Insert Table 1 around here--- 

Comparison of Motor Control Between the HC and PD Groups 

We found a statistically significant difference (p<0.013) between the HC and PD groups with the 

PD group demonstrating a longer duration of the transfer (PD= 3.80sec, HC=1.8sec), longer 

latency (PD=3.22sec, HC=0.58sec), significantly different combined joint angle changes 

(PD=2.10 degrees, HC=2.18 degrees), and significantly different hip angle changes 

(PD=2.51degrees, HC=0.83 degrees) between the PD and HC groups. No significant difference 

in number of attempts was found between groups. When latency, change in combined joint 

angles, and change in hip angle were compared between the experimental conditions of the PD 
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group and the uncued condition of the HC group, the significant differences remained. However, 

when duration was compared between the experimental conditions of the PD group and the 

uncued condition of the HC control group, it was found that the significant difference was no 

longer present during the modeling condition (Modeling=2.85sec, HC1.8sec). See Table 2.  

--- Insert Table 2 around here --- 

Comparison of Motor Control Across Conditions for PD   

We found a statistically significant difference (p ≤ 0.01) between conditions of the PD group for 

duration of the transfer and latency. Internal attentional focus condition resulted in a significantly 

longer duration (5.60sec) than the uncued (3.80sec), reaching to targets (3.12sec), or modeling 

(2.85sec) conditions. Modeling (2.85sec) resulted in a significantly shorter duration than uncued 

(3.80sec) condition. The reaching to targets (1.34sec) and modeling (1.93sec) conditions both 

resulted in significantly shorter latency periods as compared to the internal attentional focus 

condition (5.40sec). No statistically significant different was found between conditions for 

change in combined joint angles or change in hip angle. See Table 3. 

--- Insert Table 3 around here --- 

 

DISCUSSION 

We investigated the effects of three different types of explicit cueing on STS transfers in PwP on 

motor control, modeling, reaching to targets, and an explicit cue for an internal attentional focus. 

Modeling resulted in a statistically significant reduction in bradykinesia, while reaching to 

targets may have resulted in a clinically important reduction in hypokinesia during the pre-

extension phase of the STS transfer. A degradation in motor control was noted in response to an 
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explicit cue for an internal attentional focus. The results of this study suggest that there are 

important considerations for each type of cue, modeling, provision of targets, and cueing for an 

internal attentional focus.  

Modeling 

The modeling condition resulted in reduced bradykinesia of the STS transfer as compared to the 

uncued and internal attentional focus conditions for the PD group, indicating that it may be an 

appropriate strategy to improve movement speed. Additionally, the modeling condition was the 

only condition during which the PD group did not require significantly more time than the HC 

group to complete the transfer. Modeling reduced the duration of the transfer by nearly 25% 

from 3.8 seconds to 2.8 seconds, bringing the duration closer to those in the HC group who had a 

duration of 1.8 seconds. One potential mechanism that has been proposed to explain the effect of 

modeling is the activation of mirror neurons.133 This could mean that the tester modeling the STS 

just prior to the individual with PD completing it may have resulted in a motor priming effect134 

which increased the automaticity of the movement. No incidences of the COM moving outside 

of the BOS occurred with this cue, suggesting that it may be appropriate for implementation by 

caregivers and clinicians who are not able to provide substantial physical assistance. To the best 

of the authors’ knowledge, this is the first study to look at the impact of modeling in isolation on 

motor control in PD. However, our findings are consistent with prior research that suggest 

improvements in motor control for PwP when cues elicit an external attentional focus.6,15,17  

Reaching to Targets 

Concise verbal cues combined with appropriate targets may be the most efficient cue for 

individuals who experience akinesia. While reaching to targets did not result in a statistically 
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significant reduction in attempts to stand, it is likely that a clinically important reduction is 

present. The HC group never required more than one attempt to stand. However, additional 

attempts were needed in all conditions for the PD group (uncued=1.31, reaching to targets=1.07, 

modeling=1.28, and internal attentional focus=1.47). If the typical person stands up 46+/-17 

times in a day,139 that could mean that the provision of targets during transfers may reduce 

attempts by up to 15 per day. Because prior research has shown that failed attempts at motor 

tasks leads to a decreased attempts to complete the task,140 it is important to reduce the number 

of failed attempts experienced during STS transfers.  

The STS transfer has 2 main components of the execution phase, the pre-extension and extension 

phases. A failed attempt to complete a STS may result from inadequate forward weight transfer 

during the pre-extension phase due to hypokinesia. Providing a target in front of an individual 

with PD at a distance equal to their arm’s length in front of their foot provides an external cue for 

how far forward they need to translate their weight to be within their new BOS and complete a 

successful transfer. This is consistent with prior research that found improvements in amplitude 

of movements with the introduction of targets.15,17,22 Because 2 incidences of the COM moving 

outside of the BOS occurred during the reaching to target condition, clinicians and caregivers 

who cannot provide adequate physical assistance to recover from a loss of balance should 

consider the use of modeling over this cue.  

Internal Attentional Focus 

The explicit cue for an internal attentional focus did not provide compensations for any motor 

signs or result in improved motor control during the STS transfer for PwP. In fact, the cue to 

“bend forward at your hips, then stand until your back is straight” resulted in a significantly 
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longer transfer than all other conditions, including the uncued condition. This indicates that this 

type of cue may worsen the effects of bradykinesia. Additionally, the internal attentional focus 

cue resulted in a significantly longer latency period than the other two experimental conditions 

and was the only condition with a latency period that was significantly longer than the HC group 

indicating that it may also worsen the impact of akinesia. This cue was included within this study 

because it is similar to commonly provided cues within clinical and home settings. While it was 

not expected that this cue would improve motor control during STS transfers for PwP, it was 

important to include in order to better understand the impact of commonly utilized clinical cues. 

With a worsening of bradykinesia and akinesia and the introduction of an incidence of the COM 

moving outside of the BOS, the evidence would suggest that cues which elicit an internal 

attentional focus are not optimal for PwP.  

Limitations and Directions for Future Research 

Only three commonly used types of cues were studied in this project. Other cues that could be 

easily implemented in all settings may be effective and should be studied in the future. The 

sample size is relatively small and included a limited range of disease severity making it unclear 

if the results of this study would apply to those individuals with more severe impairments due to 

PD. Additionally, the results of this study provided information about the effect of a single cue 

during one training session.  For this reason, these results should not be generalized to which 

type of cue may be retained and continue to be effective after a period of no practice. Future 

research should examine the skill acquisition and retention of such training programs.  
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CONCLUSIONS 

The results of this study support that cues which provide an external attentional focus may result 

in important improvements in motor control during STS for PwP. This finding is consistent with 

cue and reaching studies related to gait and PD5,6,92,94 and provides further evidence of the utility 

of cues during a functionally relevant discrete task. The cues provided within this study which 

elicit an external attentional focus, reaching to targets and modeling, both improved motor 

control, but only modeling significantly reduced the duration of the transfer. 
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Table 1. Participant Demographics  

Characteristic Healthy 

Control 

(n=13) 

Participants with 

PD (n=13) 

95% CI 

Gender (male/female) 7/6 8/5  

Age (years)  67.31 (10.41) 68.46 (9.11) -9.07, 6.77 

Height (centimeters) 165.72 (10.49) 172.00 (8.72) -14.09, 1.52 

Weight (kilograms) 82.36 (14.41) 84.73 (12.54) -13.69, 8.95 

10MWT 

(meters/second) 

1.23 (0.12) 0.87(0.21) -3.09, -1.03 

Years with Diagnosis  5.38 (3.3)  

Years with Symptoms  10.38 (9.18)  

PDQ-39 - 

median(range) 

Possible range: 0-100 

 34 (4-74)   

MDS-UPDRS –total 

score  Median(range) 

Possible range: 0-199 

 70 (48-112)  

CI= Confidence Interval, PDQ-39= Parkinson’s Disease Questionnaire 39, MDS-UPDRS= 

Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale 
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Table 2. Movement Characteristics Compared to the Healthy Control Group 

Motor Control 

Characteristic 

Healthy 

Control 

Mean(SD) 

Parkinson Disease  

Mean(SD) 

Uncued Uncued Reach to 

Targets 

Modeling Internal 

Focus 

Attempts to attain 

standing 

1(0) 1.31(0.54) 1.07(0.16) 1.28(0.51) 1.47(0.76)* 

Duration in seconds  1.80(0.65)  3.8(1.67)* 3.12(1.34)* 2.85(1.45) 5.6(3.36)* 

Latency in seconds 0.58 (0.14) 3.22(3.73)* 1.34(0.80)* 1.93(1.68)* 5.4(6.30)* 

Change in 

Combined Joint 

Angle (degrees) 

(lower # is taller) 

2.18(4.05) 2.10(5.60)* -1.22(7.50)* 8.21(11.36)

* 

-

2.19(15.31)* 

Change in Hip 

Angle (degrees)  

(lower # is taller) 

0.83(1.4) 2.51(3.37)* -0.43(4.27)* 4.85(5.27)* 1.79(3.65)* 

*Motor control characteristic of the PD group is significantly different than the HC group after 

the Bonferroni correction (p<0.013)  
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Table 3. Comparison of Movement Characteristics Across Conditions in Parkinson Disease 

Group 

Motor Control 

Characteristic 

Condition 

Mean (SD) 

Uncued Reach to 

Targets 

Modeling Internal 

Focus 

Attempts to attain 

standing  

1.31(0.54) 1.07(0.16) 1.28(0.51) 1.47(0.76) 

Duration in seconds*  3.8(1.67)† 3.12(1.34)† 2.85(1.45)† 5.6(3.36)† 

Latency in seconds* 3.22(3.73) 1.34(0.80)† 1.93(1.68)† 5.4(6.30)† 

Change in Combined 

Joint Angle 

(degrees) 

(lower # is taller)  

2.10(5.60) -1.22(7.50) 8.21(11.36) -2.19(15.31) 

Change in Hip Angle 

(degrees)  

(lower # is taller) 

2.51(3.37) -0.43(4.27) 4.85(5.27) 1.79(3.65) 

*Statistical significance was found for this postural sway characteristic through Friedman’s test 

after Bonferroni correction (p<0.01) 

† Statistical significance was found with post-hoc Mann Whitney U after the Bonferroni 

correction (p<0.008); Internal attentional focus had a significantly longer duration than the 

uncued, reaching to targets, or modeling conditions. Modeling had a significantly shorter 

duration than baseline. The reaching to targets and modeling conditions both had significantly 

shorter latency periods as compared to the internal attentional focus condition.  
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5.4 Instructions to Authors 

Excerpt from “Instructions for Authors” for Journal of Neurologic Physical Therapy: 

Manuscript Preparation 

All manuscripts should be prepared in Microsoft Office Word, manuscripts should be double-

spaced using 1-inch margins and at least 12-point font. All text pages created using Word 

(including Tables and References) should be contained in a single document.  

Excerpt from “Instructions for Authors” for Journal of Neurologic Physical Therapy: 

The first submission of a manuscript may not exceed 3500 words of text (not including the Abstract, 

Figure Legends, and References). Unless otherwise stated (see Manuscript Categories), materials 

should be prepared in the following order. 

 

Abstract. An abstract not exceeding 250 words should be included at the beginning of the MS Word 

document. This Abstract should be the same as the Abstract that is entered into Editorial Manager 

during submission. For Systematic Reviews and Research Articles, abstract content should be 

organized according to the following headings: Background and Purpose, Methods, Results, Discussion 

and Conclusions.  

Excerpt from “Instructions for Authors” for Journal of Neurologic Physical Therapy: 
 
Text. For Systematic Reviews and Research articles, the text is divided into sections including: 

Introduction, Methods, Results, Discussion, and Conclusions.  

 

Excerpt from “Instructions for Authors” for Journal of Neurologic Physical Therapy: 

 

Text must be free of ageist and sexist terminology. The nomenclature of disorders should be referred 
to without the possessive form (ie use Parkinson disease rather then Parkinson's disease). Manuscripts 
must be prepared using person-first language. Language such as “persons with stroke” is preferable to 

“patients with stroke” as the former recognizes that the individual is a partner in the health care 
process. If the individuals who are being referred to have consented to participate in a study, then the 
term “participants” is appropriate.  

 

Excerpt from “Instructions for Authors” for Journal of Neurologic Physical Therapy: 

As noted in the general instructions, comparative studies should report between-groups differences in 

the form of mean between-group differences or odds ratios with 95% confidence intervals, or other 

description of effect size. 

Tables. Each table should be single-spaced and placed on a separate page at the end of the 

manuscript text document. Each table should have a brief title and should be numbered consecutively 

in the order of their citation in the text. Any references cited within a table must be numbered in 

sequence with the preceding text relative to the location at which the table is to be inserted. Authors 

must indicate in in the text file the approximate location where tables are to be inserted (eg, "---insert 

Table 1 about here---") 
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6.3 Manuscript in Journal Format 

Abstract 

Objective: Falling is a common problem for individuals with Parkinson disease (PD). Studies 

show that sit to stand transfers challenge postural stability within this population. Explicit visual 

and verbal cues can impact motor outputs for individuals with PD. The purpose of this study was 

to determine if a relationship exists between standing taller than typical as a result of an external 

cue and postural stability immediately following sit to stand transfers for individuals with PD. 

Methods: Thirteen subjects completed nine sit to stand trials across three different experimental 

conditions. A Spearman-rank test was used to analyze data for a relationship between standing 

taller than typical and postural sway. Results: A moderate positive correlation between standing 

taller than typical and postural sway, indicating a decrease in postural stability. Conclusions: 

External cues that result in the most erect posture following a sit to stand transfer may also 

decrease postural stability for individuals with PD.  

Keywords 

Parkinson disease, posture, balance, cues, fall 

Introduction 

A 2013 systematic review supports that somewhere between 35 and 95% of individuals with 

Parkinson disease (PD) fall each year.141 Of those who have fallen in the past year, 70% are 

likely to experience recurrent falls.141 Falls resulted in a decreased quality of life for individuals 

with PD across all domains of the Parkinson’s Disease Questionnaire-39 (PDQ-39), but most 

significantly for the domains of activities of daily living and mobility.142 Additionally, falls are 

an important predictor of self-reported caregiver burden in those caring for individuals with 
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PD.143 In a 2017 United States study of 16,368 patients with PD who fell within the past year, an 

average cost per fall of $1,471, with a range of $715-2,553 (95% CI) was reported.144 With an 

average of 1.6% of Medicare beneficiaries having a diagnosis of PD,10 reducing fall risk in this 

population could create significant cost savings, improvements in quality of life, and decreased 

caregiver burden.  

Transfers have been identified as a key cause of falls for individuals with PD, with up to 21% of 

falls being linked to transfers.145 Difficulty during transfers may occur for a number of reasons 

for this population, including difficulty with switching between central sets,49 lack of self-

awareness of body positioning,75 poor muscle recruitment patterns,99,105 lack of automaticity,2 

and kyphotic posture.1 While not considered one of the four cardinal signs of PD, which are 

tremor, rigidity, bradykinesia, and postural instability,1 kyphotic posture is a common sign of PD 

that becomes increasingly problematic as the disease progresses.146 Kyphotic posture may be 

problematic for both the initiation of the sit to stand (STS) transfer, as it may make forward 

translation of the center of mass (COM) more difficult, and the termination of the STS transfer, 

as it may reduce the overall amplitude of the transfer resulting in an early termination. Kyphotic 

posture has been linked to an increase in falls147 in some research, but other researchers have 

suggested that kyphotic posturing may be a compensation for poor balance that reduces fall 

risk.148  

Current research indicates that external cues, such as visual cues7,15-17,19 or auditory cues,4-6,15,17,19 

can improve gait mechanics for individuals with PD when appropriately applied. Successful 

visual cues include tape lines on the floor15 a flashing light presented on the lens of glasses worn 

by the subject,17 or light flashing to a rhythm on the lens of glasses worn by the subject.6,19 

Verbal cues to take longer steps or increase arm swing have shown improvements in gait7,93 
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while verbal cues to increase gait speed reduced step length and had undesirable effects on 

cadence.7  

Because the forward stooped posture commonly seen in individuals with PD is atypical as 

compared to the healthy population, healthcare professionals and caregivers may provide similar 

cues that result in a more erect posture in an attempt to normalize the appearance or function of 

these individuals. Currently, it is unclear what effect cues to stand taller than typical may have on 

standing postural sway for this population. Therefore, the purpose of this study was to determine 

if a relationship exists between joint angle changes from uncued to the cued conditions and 

postural sway noted in the first 30 seconds of stand following a STS transfer in individuals with 

PD. It was hypothesized that cues which resulted in a taller than typical standing posture 

following the sit to stand transfer would decrease postural stability.  

Methods 

Subjects 

Prior to recruitment, this study was jointly approved by the Institutional Review Boards (IRB) of 

both Nova Southeastern University and Clarkson University and was completed in accordance 

with the ethical principles outlined in the Declaration of Helsinki. Informed consent was attained 

from all subjects prior to data collection. A sample size estimation was completed utilizing a 

0.05 level of significance, a power of 0.8, and an effect size of 0.85. The level of significance 

and power was selected based on norms within the research field. The effect size was calculated 

from data presented in a similar study which identified the effects of different types of external 

cues on gait.3 
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Subjects were recruited from support groups and exercise classes in upstate New York. Subjects 

met the following inclusion criteria: diagnosed by a neurologist with idiopathic PD, on stable 

dosages of any dopamine replacement therapies, attain a minimum score of 22 points on the 

Montreal Cognitive Assessment,110 report during the screening interview that they “have at least 

occasional difficulty rising from a standard height chair but are able to do so independently a 

majority of the time,” and stand from a chair independently without the use of their arms at least 

one of every four attempts during uncued testing. Candidates were excluded from the study if 

they had a history of brain surgery for the treatment of PD, were currently participating in a 

medication study, had a body mass index greater than 35,111,112 or had a comorbid neurological, 

musculoskeletal, or other health related condition that impaired the ability of the subject to 

complete a sit to stand transfer.  

Study Design 

A secondary analysis was completed of data collected during an investigation into optimal 

cueing during sit to stand transfers for individuals with PD. The original study was a cross-over 

design that asked all subjects to complete a total of 24 sit to stand transfers divided evenly across 

four conditions, which included an uncued condition and in response to three types of explicit 

cues on the task of STS for individuals with PD, external attentional focus of reaching to targets, 

external attentional focus of concurrent modeling, and an explicit cue for an internal attentional 

focus. After 6 uncued trials, the remaining 18 trials were randomized (Randomizer.org, Social 

Psychology Network, Middletown, Connecticut). Both kinematic and sway data was collected 

together during the first three trials of each condition. The uncued condition was utilized to 

determine “typical” for the subject. Therefore, nine experimental trials were completed by each 

subject for a total of 117 trials across subjects. 
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Data collection 

Kinematic and postural sway metrics were collected using inertial measurement units (IMUs) 

(Opal Sensors and Moveo Explorer Data Collection Program, APDM Wearable Technologies, 

Portland, Oregon). 113 The IMUs are valid, reliable, and responsive to change in individuals with 

PD.114-116 The IMUs utilize accelerometers, gyroscopes, and magnetometers in all three axes to 

gather data that is sent wirelessly to a computer in real time. Seven IMUs were utilized, one on 

each lateral leg, one on each lateral thigh, one over the lumbar spine, one over the sternum, and 

one on the forehead.117 This IMU placement allowed for collection of bilateral knee, bilateral 

hip, lumbar spine, and cervical spine flexion-extension joint angle changes. Kinematics were 

derived from joint angle changes.  Postural sway data in immediate standing, including average 

sway area, coronal sway range, sagittal sway range, sway jerk, and sway velocity, was collected 

through the IMU placed over the lumbar spine.113,118 Sway data collected included 95% sway 

area, sway in the sagittal and coronal planes, sway jerk, and sway velocity. Sway area was 

defined as the 95% of the total area through which the IMU traveled in both the sagittal and 

coronal planes.118 Sway in the sagittal and coronal planes was measured as the total degrees of 

sway in the related plane.118 Sway jerk provides information regarding the smoothness of 

movements and was a derivative of acceleration.131 Sway velocity was defined as the average 

speed of all sway movements118. 

Data was collected during a single session. To ensure that all subjects were tested in the same 

phase of medication, all applicable subjects were scheduled to begin testing 30 minutes after 

taking their regularly scheduled carbidopa-levodopa during the peak on phase of dopamine 

replacement therapies.55 Following attainment of informed consent, non-motor testing was 

initiated and carried out until one hour after the subject ingested their dopamine replacement 
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therapy medications, at which time motor testing was completed. No motor testing exceeded a 

one-hour time frame. Any remaining non-motor testing was completed following the motor 

testing. Non-motor testing included the Montreal Cognitive Assessment, non-motor portions of 

the Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale,68 the Parkinson 

Disease Questionnaire-39,121 height, weight, and confirmation of date of birth, years with 

symptoms, and years since diagnosis. Motor testing included uncued and experimental sit to 

stand transfer kinematics, immediate standing postural sway, the 10MWT, and motor portions of 

Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale. 

Data collection for the sit to stand transfers was standardized. A single, armless tub bench was 

used for all testing. Seat height for this study was standardized with knees in 100 degrees of 

flexion when both tibia were positioned vertically, the lowest seat height prior to a significant 

change in transfer mechanics.127 All transfers began with feet positioned shoulder width apart 

and 10 cm posterior to the foot placement with tibia in vertical alignment.128 Recalibration of 

sensors took place in standing prior to each sit to stand transfer with the tester providing tactile 

cueing at the lumbar spine and sternum while saying “stand tall” to cue subjects into their fully 

erect posture. Sensors collected data from the time of calibration through stand to sit, a wash out 

period, STS, and the first 30 seconds of standing.  

Data Analysis 

To better understand the impact of standing taller than typical, the trial with the greatest increase 

in normalized combined joint angle was identified for each study subject. Normalized combined 

joint angles of the knees, hips, back, and neck as compared to the subject’s uncued average was 

calculated for each trial utilizing the following formulas:  



  97 

Formula 1. Trial combined joint angle change 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑗𝑜𝑖𝑛𝑡 𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝑝𝑜𝑠𝑡 𝑡𝑟𝑖𝑎𝑙

−  𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑗𝑜𝑖𝑛𝑡 𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝑝𝑟𝑒𝑡𝑟𝑖𝑎𝑙 

= 𝑡𝑟𝑖𝑎𝑙 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑗𝑜𝑖𝑛𝑡 𝑎𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 

Formula 2. Normalized combine joint angle change 

(𝑡𝑟𝑖𝑎𝑙 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑗𝑜𝑖𝑛𝑡 𝑎𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 − 𝑢𝑛𝑐𝑢𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑗𝑜𝑖𝑛𝑡 𝑎𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑛𝑔𝑒)

𝑢𝑛𝑐𝑢𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑒 𝑗𝑜𝑖𝑛𝑡 𝑎𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑛𝑔𝑒

= 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑗𝑜𝑖𝑛𝑡 𝑎𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 

Sway data from the same trial for each patient was analyzed to determine if a correlation was 

present. Sway data analyzed within the study included sway in the sagittal plane, sway in the 

coronal plane, sway area, sway jerk, and sway velocity. Normalized sway data was calculated 

utilizing the following formula:  

Formula 3. Change in sway metric 

𝑡𝑟𝑖𝑎𝑙 𝑠𝑤𝑎𝑦 𝑚𝑒𝑡𝑟𝑖𝑐 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑤𝑎𝑦 𝑚𝑒𝑡𝑟𝑖𝑐

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑤𝑎𝑦 𝑚𝑒𝑡𝑟𝑖𝑐
 = 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑠𝑤𝑎𝑦 𝑚𝑒𝑡𝑟𝑖𝑐 

Sway data was converted to an ordinal scale with each trial being ranked as a separate level to 

allow for the inclusion of loss of control of the COM within the base of support (BOS) ranked as 

the greatest amount of sway. With the ordinal level data, Spearman rank-order correlations were 

used to identify relationships between the degree of normalized combined joint angle increase as 

compared to uncued and the change in normalized sway characteristics. The a priori sample size 

calculation needed to identify a statistically significant different, with 80% power and an alpha 

level of 0.05, was 13 subjects. 
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Results 

Thirteen subjects [age in years= 68.46(9.11); eight male/ five female; disease severity as 

measured by the Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale= 

70/199(48-112)] participated in this study. Complete sample demographics are reported in Table 

1. 

[Insert Table 1 around here] 

 Each subject within this study had at least one trial that resulted in more erect than typical 

standing posture. A moderate level positive correlation was identified between normalized 

combined joint angle change and normalized change in coronal plane sway, sagittal plane sway, 

and sway velocity with p<.05 when the subject was standing more erect than typical, indicating 

increased sway in a more erect posture. See Table 2.  

[Insert Table 2 around here] 

Discussion 

According to our findings, individuals with PD who stand with a more erect posture than typical 

may experience a decrease in standing postural control. We found a moderate, positive 

relationship between a more erect posture at the culmination of the STS transfer and postural 

sway in early standing. This provides further evidence to support the theory that kyphotic 

posturing may be a compensation to reduce the risk of falls for this population.148 While explicit 

cues are commonly utilized to improve motor performance for individuals with PD, our findings 

suggest that visual and verbal cues which create the most erect posture for an individual may also 
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result in the greatest increase in postural sway in both the coronal and sagittal planes within this 

population.  

Our findings are consistent with multiple studies which have indicated that kyphotic posturing 

may be a mechanism by which individuals can compensate for impaired postural stability.148,149 

Some research supports that is it important to differentiate types of balance challenges when 

looking at the effects of a stooped posture.149 One study found that a stooped posture may 

compensate for impaired postural stability during rotational balance challenges, such as STS 

transfers,149 while noting that a stooped posture decreased postural stability in response to 

transverse plane shifts of the base of support.149 Another study compared reactive responses of 

healthy adults (22-33 years of age) during erect posturing to simulated kyphotic posturing with 

the subjects placed in 30 degrees of forward lean that resulted in hip and knee flexion.148 This 

study found that voluntarily adopting a kyphotic posture resulted in a significant decrease in the 

latency of reactive responses, greatest in the backward direction.148 With posterior losses of 

balance being problematic for individuals with PD, an increase in time to recover a posterior loss 

of balance could be important.  

The results of this study suggest that patients should be supervised during task specific practice 

that results in more erect than typical standing postures. Early during a rehabilitation episode of 

care, clinicians may not want to recommend a more erect than typical standing posture for 

individuals with PD. While many rehabilitation experts choose to teach caregivers to correct or 

patients to self-correct into a more erect standing posture, this may decrease the standing balance 

of individuals with PD until the patient has had time to practice within the more erect range. 

Additionally, research indicates that individuals with PD have a more difficult time transferring 

motor learning into new contexts.24 As a result, it may be important to practice taller than typical 
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standing in a variety of contexts prior to encouraging patients to adopt taller than typical 

posturing during higher risk activities, such as when dual tasking. More erect posturing should 

not be completely avoided as physical therapy interventions designed to improve erect standing 

posture have been found to be correlated with improved scores on common balance 

assessments.150 

The positive correlation noted within our study between postural sway and increased height as 

compared to typical may be partially explained by the lack of self-awareness that many 

individuals with PD experience.75 Individuals with PD may not realize when they are reacting to 

a cue that they are moving more than typical and as a result they may not be aware that their 

COM is moving to or beyond their posterior limit of stability until it results in a stepping 

reaction, a significant sway response, or a fall. Practice of relevant tasks may improve their self-

awareness. In addition to practicing tasks in a more erect posture, practice of finding limits of 

stability151 and taking compensatory steps152 appropriately have been shown to result in 

improved postural control for individuals with PD.  

Even though sit to stand transfers should result in relatively little movement within the coronal 

plane, significant increases of coronal plane movement was identified during initial standing 

when the subjects attained the most erect posturing. This indicates that the increased sway is not 

simply a result of overshooting and corrective movements, but rather a multidirectional decrease 

in stability. It is unclear if a final target to aim for would impact the coronal sway in early 

standing.  

Limitations  



  101 

This study has a relatively small sample size that represents a limited spectrum of disease 

severity making the results of this study not generalizable to all individuals with PD. Force plate 

data would have added to the understanding of impact of cues on postural sway, specifically 

gaining a fuller understanding of the path of the center of mass within the base of support.  

Future Research 

The findings of this study indicate that individuals with PD may be less stable when they are 

cued to stand more erect than typical following at STS transfer. What cannot be known from this 

study is whether individuals with PD are able to attain postural stability within a more erect 

standing posture following the STS transfer in response to practice. Additionally, further 

research to determine optimal cueing for the STS transfers in PD should include an external cue 

that works to terminate the STS at an optimal time, such as a verbal cue or a target for the 

shoulder to touch.  

Conclusions 

Based on our findings, it is recommended that clinicians complete task specific practice in erect 

postures under supervision prior to making recommendations for erect posturing with a task in 

the home and community environments. Additionally, this study supports the recommendation 

for skilled rehabilitation experts to oversee postural retraining programs. 
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Table 1. Subject Demographics 

Characteristic Subjects (n=13) 

Age (years) 

Mean (standard deviation) 

68.46 (9.11) 

Sex (male/female) 8/5 

Height (cm) 

Mean (standard deviation) 

172.00 (8.72) 

Weight (kg) 

Mean (standard deviation) 

84.73 (12.54) 

10MWT (meter/second) 

Mean (standard deviation) 

6.92 (1.73) 

Years with Diagnosis 

Mean (standard deviation) 

5.38 (3.3) 

Years with Symptoms 

Mean (standard deviation) 

10.38 (9.18) 

PDQ-39 

Mean (range) 

possible range: 0-100 

34 (4-74) 

MDS-UPDRS 

Mean (range) 

possible range: 0-199 

70 (48-112) 

10MWT= 10 Meter Walk Test; PDQ-39= Parkinson’s Disease Questionnaire 39; MDS-UPDRS= 

Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale 
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Table 2. Correlation Between Change in Height and Postural Sway 

Trials Postural Sway 

Characteristic 

Sig (p<.05) R 

(Spearman 

Rank Order 

Correlation) 

95% Confidence 

Interval 

Trials with 

greatest increase 

in height 

Sway area (degrees2) 0.059  -46.082, 20.097 

Coronal sway 

(degrees) 

0.008* .654 -46.068, 20.124 

Sagittal sway 

(degrees) 

0.025* .555 -46.085, 20.096 

Sway Jerk (m/s3) 0.162  -46.076, 20.118 

Sway Velocity (m/s) 0.029* .538 -46.092, 20.067 

* indicates statistical significance (p<0.05) 
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6.4 Instruction to Authors 

Excerpt from “Instructions to Authors” for Neurorehabilitation and Neural Repair: 

Three typewritten copies of each manuscript must be submitted, in English, double- 

spaced throughout with a 2.5 cm (1 inch) left margin.  

 

Excerpt from “Instructions to Authors” for Neurorehabilitation and Neural Repair: 

Full length original research articles should have an Abstract, Introduction, Methods, 

Results, and Discussion. 

 

Excerpt from “Instructions to Authors” for Neurorehabilitation and Neural Repair: 

Abstract: Abstracts may contain up to 200 words. For original research articles and brief 

communications the abstract should be structured with the following subheadings: 

Objective, Methods, Results, Conclusions. Up to six key words or terms should be 

included for use by referencing sources. 

 

Excerpt from “Instructions to Authors” for Neurorehabilitation and Neural Repair: 

Tables and Illustrations: All tables should have a title and should be typed double-spaced, 

including all headings, each on a separate page. All abbreviations should be defined. 

 

Excerpt from “Instructions to Authors” for Neurorehabilitation and Neural Repair: 

DETAILS OF STYLE General: An important goal of Neurorehabilitation and Neural 

Repair is to foster communication between the basic and clinical research communities 

whose work is relevant to recovery from neural injury. Therefore, basic science articles 

should include sufficient explanatory information in the Introduction and elsewhere to 

permit reading by clinician readers, and vice versa. All abbreviations and jargon terms 

should be defined and kept to a minimum. The rationale and significance of the reported 

research should be explained in terms of its relevance to recovery of neurological 

function. At the end of Discussion, a subheading Implications may be added. Slightly 

greater latitude to speculate on clinical implications of basic research findings will be 

permitted here. Clinical researchers may use this subheading to suggest what basic 

science advances would be needed in order to move the clinical research to the next level. 
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Chapter 7: Discussion 

7.1 Summary of the Findings 

This dissertation study examined the effects of three different types of explicit cues on motor 

control during and postural control immediately following a STS transfer for individuals with 

PD. The results of this study can be applied to individuals with PD who experience occasional 

difficulty completing a STS transfer from a standard height chair. Additionally, this dissertation 

study sought to determine the effects of standing taller than typical on postural control for 

individuals with PD.  

Significant findings were identified when examining the impact of explicit cues on postural sway 

immediately following STS transfers for individuals with PD. When not cued, individuals with 

PD were found to have significantly greater sway areas and sway jerk in immediate standing 

than their healthy counterparts. A verbal cue paired with a modeling cue resulted in decreased 

postural sway during the first 30 seconds of standing without LOB. Neither a verbal cue paired 

with reaching to targets or a verbal cue for an internal attentional focus decreased postural sway 

during the first 30 seconds of standing. However, both cues introduced LOB incidents that were 

not present during the uncued condition for either the HC or PD groups.  

Significant findings were identified when examining the effects of explicit cues on motor control 

during STS transfer for individuals with PD. Modeling resulted in a statistically significant 

reduction in bradykinesia, while reaching to targets may have resulted in a clinically important 

reduction in hypokinesia during the pre-extension phase of the STS transfer. A degradation in 

motor control was noted in response to an explicit cue for an internal attentional focus.  
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According to the findings of this dissertation study, individuals with PD who stand with a more 

erect posture than typical may experience a decrease in standing postural control. A moderate, 

positive relationship between a more erect posture at the culmination of the STS transfer and 

postural sway in early standing was identified. While explicit cues are commonly utilized to 

improve motor performance for individuals with PD, our findings suggest that visual and verbal 

cues which create the most erect posture for an individual may also result in the greatest increase 

in postural sway in both the coronal and sagittal planes within this population.  

7.2 Integration of the Findings with Previous Literature 

7.2.1 Modeling 

The results of this dissertation study demonstrated that an explicit verbal cue paired with 

modeling during the STS of an individual with PD may reduce bradykinesia and improve 

postural control during early standing balance. To the best of the primary investigator’s 

knowledge, this is the first study to look at the impact of an isolated modeling cue on motor 

control in PD. However, modeling creates an external attentional focus, which has been well 

studied and found to be effective in improving motor control in this population,6,15,17 consistent 

with the findings of this dissertation study. Modeling with a paired verbal command provides an 

explicit cue, which functional magnetic resonance imaging74 has shown utilizes neural pathways 

that are not reliant on the areas of the brain most affected by PD. The results of this dissertation 

study were consistent with prior research indicating that the use of explicit cueing that creates an 

external attentional focus may improve the motor control of individuals with PD.6,15,17 One 

potential mechanism that has been proposed to explain the effect of modeling is the activation of 

mirror neurons.133 When the tester modeled the STS motions just prior to the individual with PD 
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completing them, it may have resulted in a motor priming effect134 increasing the automaticity of 

the movement. Regarding postural control, prior research reported a direct link between 

increases in sway jerk and PD.131 In this dissertation study, modeling was able to reduce the level 

of sway jerk to not significantly different from the HC group. To the best of the primary 

investigator’s knowledge, this study is the first to look at the impact of modeling on postural 

sway in standing.  

7.2.2 Reaching to Targets 

To the best of the primary investigator’s knowledge, this dissertation study is the first to report 

on the effect of reaching to targets on postural control during discrete tasks. However, the 

findings of this dissertation study are consistent with prior research94,95 regarding a positive 

impact of use of targets on motor control for individuals with PD. Some studies have reported 

improvements in amplitude of movements with the introduction of targets.15,17,22 However, this 

dissertation study found no change in the amplitude of movement, as indicated by inferred joint 

angle changes. This may be because prior studies noting increases in amplitude of movement 

looked at the continuous tasks of gait15,17 or handwriting22 and participants may have been able 

to improve their movement patterns over time in response to the cues. This dissertation study 

found a 25% reduction in the amount of time to complete the STS transfer. This decreased 

duration is consistent with prior studies indicating an increased gait speed5,17 and decreased reach 

duration.95  

7.2.3 Internal Attentional Focus 

While there is a strong body of evidence to suggest the use of cues eliciting an external 

attentional focus, to the best of the primary investigator’s knowledge, this is the first study to 
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compare the effects of cues eliciting an external versus internal attentional focus on individuals 

with PD. In some gait studies, individuals were cued to increase their arm swing7 and improved 

gait speed and arm movements were noted. While some might consider this an internal 

attentional focus, when an individual is told to increase their arm swing they are likely focusing 

on their improving the final reach of their hand rather than their shoulder movements. Therefore, 

it would not be appropriate to consider this a cue eliciting an internal attentional focus.  

7.2.4 Effects of Standing Taller than Typical 

According to our findings, individuals with PD who stand with a more erect posture than typical 

may experience a decrease in standing postural control. Our findings are consistent with multiple 

studies which have indicated that kyphotic posturing may be a mechanism by which individuals 

can compensate for impaired postural stability.148,149 Some research supports that is it important 

to differentiate types of balance challenges when looking at the effects of a stooped posture.149 

One study found that a stooped posture may compensate for impaired postural stability during 

rotational balance challenges, such as STS transfers,149 while noting that a stooped posture 

decreased postural stability in response to transverse plane shifts of the base of support.149 

Another study compared reactive responses of healthy adults (22-33 years of age) during erect 

posturing to simulated kyphotic posturing with the subjects placed in 30 degrees of forward lean 

that resulted in hip and knee flexion.148 This study found that voluntarily adopting a kyphotic 

posture resulted in a significant decrease in the latency of reactive responses, greatest in the 

backward direction.148  

The positive correlation noted within our study between postural sway and increased height as 

compared to typical may be partially explained by the lack of self-awareness that many 

individuals with PD experience.75 Individuals with PD may not realize when they are reacting to 
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a cue that they are moving more than typical and as a result they may not be aware that their 

COM is moving to or beyond their posterior limit of stability until it results in a stepping 

reaction, a significant sway response, or a fall.  

7.3 Implications of the Findings 

7.3.1 Implications for Physical Therapy Clinical Practice 

Use of Modeling Cues 

The modeling condition resulted in reduced bradykinesia during the STS transfer and improved 

postural control immediately following the STS transfer as compared to the uncued and internal 

attentional focus conditions for the PD group, indicating that it may be an appropriate strategy to 

improve movement speed during this task. While recommended in some commonly utilized 

exercise programs, to the best of the primary investigator’s knowledge, this is the first study to 

examine the impact of modeling on motor control or postural sway during discrete tasks 

Additionally, the modeling condition was the only condition during which the PD group did not 

require significantly more time than the HC group to complete the transfer. Modeling reduced 

the duration of the transfer by nearly 25% from 3.8 seconds to 2.8 seconds, bringing the duration 

closer to those in the HC group who had a duration of 1.8 seconds. No incidences of the COM 

moving outside of the BOS occurred with this cue, suggesting that it may be appropriate for 

implementation by caregivers and clinicians who are not able to provide substantial physical 

assistance. 

Use of Targets as Cues 
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Based on prior research15,62,94 and the additional findings within the current study, targets are 

likely an effective strategy to improve motor control for individuals with PD, but clinicians 

should strive to place targets in attainable locations that result in optimal movement. In the case 

of the STS transfer, it may have been better to have the tester place a hand at shoulder height and 

prompt the subject to stand until they reach the hand. In the clinic, if a therapist is seeking to 

improve upper extremity swing during a pre-gait stepping activity, it may be more appropriate to 

place a target at the maximally attainable distance than to encourage the patient to “reach toward 

that wall.” 

While reaching to targets did not result in a statistically significant reduction in attempts to stand, 

it is likely that a clinically important reduction is present. The HC group never required more 

than one attempt to stand. However, additional attempts were needed in all conditions for the PD 

group (uncued=1.31, reaching to targets=1.07, modeling=1.28, and internal attentional 

focus=1.47). If the typical person stands up 46+/-17 times in a day,139 that could mean that the 

provision of targets during transfers may reduce attempts by up to 15 per day. Because prior 

research has shown that failed attempts at motor tasks leads to a decreased attempts to complete 

the task,140 it is important to reduce the number of failed attempts experienced during STS 

transfers. 

Use of Cues that Elicit an Internal Attentional Focus 

The explicit cue for an internal attentional focus did not provide compensations for any motor 

signs or result in improved motor control during the STS transfer for individuals with PD. In 

fact, the cue to “bend forward at your hips, then stand until your back is straight” resulted in a 

significantly longer transfer than all other conditions, including the uncued condition. This 
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indicates that this type of cue may worsen the effects of bradykinesia. Additionally, the internal 

attentional focus cue resulted in a significantly longer latency period than the other two 

experimental conditions and was the only condition with a latency period that was significantly 

longer than the HC group indicating that it may also worsen the impact of akinesia. This cue was 

included within this dissertation study because it is similar to commonly provided cues within 

clinical and home settings. While it was not expected that this cue would improve motor control 

during STS transfers for Individuals with PD, it was important to include in order to better 

understand the impact of commonly utilized clinical cues. With a worsening of bradykinesia and 

akinesia and the introduction of a LOB incident the evidence would suggest that cues which 

elicit an internal attentional focus are not optimal for individuals with PD.  

Use of Cues that Lead to Taller than Typical Standing 

The results of this dissertation study suggest that patients should be supervised during task 

specific practice that results in more erect than typical standing postures. Many rehabilitation 

experts choose to teach caregivers to correct or patients to self-correct into a more upright 

standing posture. This may decrease the standing balance of individuals with PD until the patient 

has had time to practice within the range. It may not be appropriate for clinicians to recommend 

a more erect standing posture early during a rehabilitation episode of care. Additionally, research 

indicates that individuals with PD have a more difficult time transferring motor learning into new 

contexts.24 As a result, it may be important to practice taller than typical standing in a variety of 

contexts prior to encouraging patients to adopt taller than typical posturing during higher risk 

activities, such as when dual tasking. However, more erect posturing should not be completely 

avoided as physical therapy interventions designed to improve erect standing posture have been 

found to be correlated with improved scores on common balance assessments.150 Practice of 
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relevant tasks may improve their self-awareness. In addition to practicing tasks in a more erect 

posture, practice of finding limits of stability151 and taking compensatory steps152 appropriately 

have been shown to result in improved postural control for individuals with PD. 

Even though sit to stand transfers should result in relatively little movement within the coronal 

plane, significant increases of coronal plane movement were identified during initial standing 

when the subjects attained the most erect posturing. This indicates that the increased sway is not 

simply a result of overshooting and corrective movements, but rather a multidirectional decrease 

in stability. It is unclear if a final target to aim for would impact the coronal sway in early 

standing. 

7.3.2 Implications for Clinical Practice of Other Healthcare Providers 

The findings of this dissertation study are not uniquely applicable to physical therapists and 

physical therapist assistants. Many healthcare professionals provide cues aimed to improve the 

ability of individuals with PD to attain standing. Primary care providers, certified nursing 

assistants, respiratory therapists, occupational therapists, optometrists, and many more providers 

may cue a patient who is demonstrating increased latency or amplitude during a STS transfer. In 

these instances, health care providers should utilize modeling when able to improve the motor 

control and postural control of the individuals with PD. Reaching to targets is an acceptable cue 

when the provider is not able to model, but is able to provide the patient with physical assistance 

to recover a from a LOB if needed. Use of cues that elicit an internal attentional focus should be 

avoided.  
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7.3.3 Implications for Individuals with Parkinson Disease and Their Caregivers 

Decreasing the burden on caregivers through the use of easily applied compensatory 

mechanisms to improve mobility could greatly reduce the number of individuals with PD living 

in nursing homes. Additionally, it is known that even in mild to moderate stages of PD, 

individuals spent 75% of waking hours in sedentary activities.13 Improving the ability of 

individuals with PD and their caregivers to attain standing may reduce the time spent in 

sedentary activities. This, in turn, may affect their overall cardiovascular health. In addition, 

increasing the independence of individuals with PD during STS transfers may reduce the risk of 

caregiver and patient injury. Modeling and the provision of targets are easy to provide 

compensatory strategies that could reduce the level of physical assistance required. Additionally, 

if caregivers are currently providing a cue that elicits an internal attentional focus, the change to 

model or use of targets could result in greater improvements. Any increase in independence for 

the patient or decrease in burden to the patient may result in clinically meaningful improvements 

in quality of life.  

 

7.4 Limitations and Recommendations 

Several limitations of this dissertation study are acknowledged. First, only three commonly used 

types of cues were studied in this project. These cues were selected because, based on available 

knowledge, they were believed by the researchers to either be the most effective cues possible in 

a wide variety of settings or because they are commonly utilized in the clinic and home setting. 

Other cues that could be easily implemented in all settings may also be effective and should be 

studied in the future. Additionally, other commonly used cues may not be effective and should 

be studied to determine their clinical utility. Specifically, it is recommended that future studies 
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utilize fully attainable targets to determine if the target of “stand to the ceiling” resulted in the 

backward LOB because it was unattainable. A cue to “stand to my hand” with a hand placed at 

the participant’s self-selected shoulder height may improve postural sway.  

The sample of this study decreases the generalizability of the findings. While adequate to find 

significance within this study, the sample size is relatively small. Additionally, the sample 

included a limited range of disease severity, making it unclear if the results of this study would 

apply to those individuals with more severe impairments due to PD. Lastly, because of the short 

half-life cycle of dopamine replacement therapies, sit to stand data collection needed to be 

completed within a standardized time frame with respect to medications. All data was collected 

during the peak “on” phase of medications. Therefore, it is unclear if the findings can be 

generalized to how individuals with PD would perform during the “off” phase of medications. 

Repeating this study with a larger and more diverse sample during both their “on” and “off” 

medication phases would make the results more generalizable and robust. 

Many researchers attempt to utilize more testers and locations to increase the generalizability of 

the findings. Because of the small sample size, it was important to minimize testers to reduce the 

impact of the tester as a covariate. To reduce the impact of minimal testers, cues utilized in this 

study were designed to be easy to administer in a consistent manner by caregivers and clinicians. 

However, further research to ascertain if caregivers and clinicians can replicate these findings are 

warranted.  

Importantly, the results of this dissertation study provide information about the effect of a single 

cue during one training session.  For this reason, these results should not be generalized to which 

type of cue may be retained and continue to be effective after a period of no practice. It is 
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possible that the best one-time cue is different from the best type of cue to utilize consistently for 

individuals with PD. Future research should examine the skill acquisition and retention of such 

training programs. 

The findings of this study indicate that individuals with PD may be less stable when they are 

cued to stand more erect than typical following at STS transfer. What cannot be known from this 

study is whether individuals with PD are able to attain postural stability within a more erect 

standing posture following the STS transfer in response to practice. Future research should 

examine the skill acquisition and retention of training programs to improve postural control 

following STS transfers in this population.  

7.5 Chapter Summary 

This dissertation study has several important findings. Based on the data, modeling may be an 

effective cue to reduce bradykinesia and improve standing balance during discrete tasks for 

individuals with PD. The findings of this dissertation study are consistent with prior research 

indicating that use of cues that elicit an external attentional focus may reduce bradykinesia. 

However, this dissertation study adds to the literature that reaching to targets may reduce 

postural control during discrete tasks for this population. Additionally, the data collected in this 

dissertation study support theories presented in other research which suggested that individuals 

with PD may stoop to prevent a posterior LOB. In this dissertation study, findings demonstrated 

a positive relationship between standing taller than typical and increase postural sway.  

Based on these findings, several clinical recommendations can be made. It is recommended that 

physical therapists utilize modeling cues to reduce bradykinesia and improve postural control 

during practice of new tasks with a patient. While targets can improve motor control, it is 
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recommended that targets are carefully selected to optimize movement without causing an 

unwanted LOB.  Use of cueing that elicits an internal attentional focus should be avoided with 

this patient population. Lastly, the decision of when and if posture should be corrected through 

cueing for patients with PD should be based on their ability to maintain their COM within their 

BOS safely within their new, more erect posture.  
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Appendices 

Appendix 1: Phone Screening Checklist for PD Group 

Phone Screening Checklist- Parkinson Disease Group 

Read opening script  

Have you been diagnosed with Parkinson Disease by a neurologist?  

Have you ever been told that you have a “different kind” of Parkinson’s, such as: 

multiple systems atrophy, Parkinson’s caused by a stroke or brain attack, or 

progressive supranuclear palsy? 

 

Are you able to stand up from a chair on your own with or without the use of your 

arms? 

 

Are you able to walk 30 feet with or without an assistive device such as a cane or 

walker? 

 

Are you currently taking any medications for PD? If so, what are you taking? Have 

you recently changed medications or are you working with your physician to find 

the appropriate dose of medications? 

 

Do you have any other medical diagnoses that limit your ability to stand up from a 

chair? 

 

Have you undergone any kind of surgery as a method for treating your Parkinson 

Disease? 

 

What is your date of birth?  

If appropriate, provide date for scheduled baseline testing  
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Appendix 2: Phone Screening Checklist for the Healthy Control Group 

Phone Screening Checklist- Healthy Control Group 

Read opening script  

Are you able to stand up from a chair on your 

own with or without the use of your arms? 

 

Are you able to walk 30 feet with or without 

an assistive device such as a cane or walker? 

 

Do you have any other medical diagnoses that 

limit your ability to stand up from a chair? 

 

What is your date of birth?  

If appropriate, provide date for scheduled 

baseline testing 
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Appendix 3: Testing Protocol for Parkinson Disease Group 

Testing Protocol- Parkinson Disease Group  

Time sensitive data collection indicated in green boxes and should begin at:  

(After item 7, the placement of time sensitive data can occur at any point within the protocol.) 

1. Explanation and signing of informed consent  

2. MoCA Score: 

3. Confirmation of D.O.B.  

4. Placement of sensors (APDM) on head, anterior 

chest, lumbar spine, bilateral lateral thighs, bilateral 

anterior legs, and bilateral dorsum of feet 

 

5. Type of PD medication regularly taken  

6. Time of last dose Indicate time here:  

Items sensitive to time should 

begin 1 hour after the last dose of 

PD medications. 

7. Time for next dose Indicate time here:  

Items sensitive to time should 

begin 1 hour after the last dose of 

PD medications. 

8. Height  

9. Weight  

10. Uncued Sit to Stand Testing Protocol (Table 3.4) # of attempts 

11. Comfortable gait speed measured through the 

10MWT 

 

12. Motor portion of the MDS-UPDRS  

13. Randomized collection of STS data under 3 

conditions (see standardized protocol, Table 3.4) 

 

14. Years with symptoms  

15. Years since diagnosis  

16. Non-motor portions of the MDS-UPDRS  
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17. PDQ-39  
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Appendix 4: Sit to Stand Data Collection Protocols 

Sit to Stand Data Collection Protocols 

Pre-testing measurements 

Ensure the seat height is properly adjusted to 

allow for 100 degrees of knee flexion while 

tibia are positioned vertically in sitting. 

 

Then position the feet shoulder width apart and 

10 cm posterior to the most anterior aspect of 

the knee. Place a tape marking on the floor to 

allow for easy return to starting position.  

 

In upright sitting, ask the patient to raise one 

arm to shoulder height. Measure from the 

anterior axilla to the tip of extended fingers. 

Record “arm length” here: 

Pre-testing Subject Instructions 

Say to subject, "I will be providing you with a 

variety of different directions. I would like you 

to focus on only the directions for your current 

task and not try to combine directions or 

improve your movements by thinking about 

the strategy that you feel works best. 

Remember, please focus on the directions 

given to you for that task. You will be asked to 

stand up several times. Each time it is 

important that you remain standing for a 

period of time to allow the computer to record 

your data. I will let you know when you may 

return to sitting. Can you please tell me the 2 

important things that I just told you?” 

Repeat directions until the subject is able to 

state that they should focus on the current set 

of instructions and remain standing until told 

otherwise.  

 

Uncued Sit to Stand Testing Protocol # of 

attempts 

Have the patient sit on pre-height adjusted tub chair and position their 

feet.  
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Ask the subject to “say a few sentences about their favorite meal, then 

immediately stand up. Maintain quiet standing for 1 minute until I tell 

you may return to sitting.” 

  

1 minute rest break – discuss their favorite meal during break time   

Reposition feet   

Ask the subject to “say a few sentences about their favorite place, then 

immediately stand up. Maintain quiet standing for 1 minute until I tell 

you may return to sitting.” 

  

1 minute rest break- discuss their favorite place during break time   

Reposition feet   

Ask the subject to “say a few sentences about their favorite teacher, then 

immediately stand up. Maintain quiet standing for 1 minute until I tell 

you may return to sitting.” 

  

1 minute rest break- discuss their favorite teacher during break time   

Reaching to Target Sit to Stand Testing Protocol   

Have the patient sit on height-adjusted tub chair   

Reposition feet   

Adjust a second tub chair to the patient’s knee height and place it one 

arm length from the subject’s toes while the ankle is ankle is dorsiflexed 

to 15 degrees. 

  

Say to the subject, “Reach to my hand.”    

Place back of hand on nearer edge of second tub chair so that palm is 

facing the test subject. 

  

Then when they touch the tester’s hand, “stand to the ceiling.”   

Concurrent Modeling Sit to Stand Testing Protocol   

Have the subject sit on height-adjusted tub chair   

Reposition feet   

Place a second tub chair opposite the patient at a 2.5 arms’ length from 

subject’s front chair legs 

  

Say to the subject, “When I stand up, I would like you to stand up with 

me.” 
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Model an exaggerated forward reach and stand to full erect posture.   

Internal Attentional Focus Sit to Stand Testing Protocol   

Have the subject sit on height-adjusted tub chair   

Reposition feet   

Remove all targets from in front of the subject   

Say to the subject, “Please bend at your hips and knees, then stand until 

you feel your back is straight.”  
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Appendix 5: Testing Protocol for Healthy Control Group 

Testing Protocol- Healthy Control Group  

Explanation and signing of informed consent  

Placement of sensors (APDM)  

Adjustment of tub bench to allow for 90 degrees of 

knee flexion in sitting with tibia vertical 

Indicate height here: 

Uncued STS   

Comfortable gait speed measured through the 10 

Meter Walk Test  

 

Height  

Weight  

Confirmation of D.O.B.  

Randomized collection of STS data under 3 

conditions (see standardized protocol, Table 3.6) 

 

Uncued Sit to Stand Testing Protocol # of 

attempts 

Have the patient sit on pre-height adjusted tub chair and position their 

feet.  

  

Ask the subject to “say a few sentences about their favorite meal, then 

immediately stand up. Maintain quiet standing for 1 minute until I tell 

you may return to sitting.” 

  

1 minute rest break – discuss their favorite meal during break time   

Reposition feet   

Ask the subject to “say a few sentences about their favorite place, then 

immediately stand up. Maintain quiet standing for 1 minute until I tell 

you may return to sitting.” 

  

1 minute rest break- discuss their favorite place during break time   

Reposition feet   

Ask the subject to “say a few sentences about their favorite teacher, then 

immediately stand up. Maintain quiet standing for 1 minute until I tell 

you may return to sitting.” 
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1-minute rest break- discuss their favorite teacher during break time   
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